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The cardinal invariants a(n), for 1 ≤ n <ω, multidimensional generalizations
of the mad family number a, were proved by Spinas (Pacific J. Math. 176:1
(1996), 249–262) to be greater than or equal to the bounding number b. The
lack of knowledge of other lower bounds for these cardinal invariants was
noted in the same article. We present a couple of more general results that
give lower bounds to the cardinal a(A⊕ B), where A⊕ B is the free product
of the Boolean algebras A and B. One of them, when restricted to the free
products of P(ω)/fin, gives a new proof of the known result. The other has
as a corollary a newer lower bound that adds relevant information to the
open question of the consistency of a(n + 1) < a(n), for some 1 ≤ n < ω.

1. Families mad in their own way

Mad families of infinite subsets of integers and their minimum size a are a very
important keystone and source of study in infinite combinatorics and cardinal
characteristics of the continuum. The relation of a to other cardinals has been
extensively studied. Some of the cardinal characteristics of the continuum whose
relation to a has been of great importance are the bounding number b, the splitting
number s and the dominating number d. The relations provable in ZFC that involve
these cardinal characteristics are b ≤ a, b ≤ d and s ≤ d.

Since the consistency of ω1 = s= b= a< d= ω2 was established by the Cohen
model, proving the consistency of some of the strict inequalities between any pair of
these cardinals has gone hand in hand with the development of forcing techniques.
Shelah [1984; 2004] proved the consistency of b < a and d < a developing, respec-
tively, creature forcing and forcing iterations along a template. A matrix iteration
was used in [Brendle and Fischer 2011] for proving the consistency of a < s. With
the exception of d < a, all these inequalities are known to be consistent with the
smaller cardinal equal to ω1 and the larger cardinal equal to ω2. Thus, the following
important question remains open since the 1970’s.

Question 1.1 (Roitman). Does d = ω1 imply a = ω1?
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Since adding any reals destroys many ground model mad families, another way
mad families have influenced research in forcing theory is the study of indestructible
mad families. The standard proof of a = ω1 holding in the Cohen model consists
of the construction, under the assumption of CH, of a Cohen-indestructible mad
family, i.e., a mad family that remains a mad family after adding a Cohen real.
Important results on the (consistent) existence of P-indestructible mad families for
large classes of forcing notions P can be found in [Raghavan 2009; Guzmán and
Hrušák 2022; Brendle et al. 2022].

As a natural consequence of this broad research corpus, specializations and
generalizations of the concept of mad families have arisen. Among the former,
we can find mad families of functions (i.e., whose elements are subsets of ω × ω

which are graphs of functions f : ω → ω), which are studied in [Blass et al. 2005;
Raghavan 2009], or mad families that are constructed by the union of definable
subsets. If aclosed is the least size of a family of closed subsets whose union is a
mad family, in interesting contrast to what is known about a, in [Raghavan and
Shelah 2012] it was proved that d = ω1 implies that aclosed = ω1, and in [Brendle
and Raghavan 2014] the consistency of aclosed < b was proved.

One generalization comes from the study of the quotients P(X)/I, where X
is a countable set and I an ideal on X , where a family A ⊆ P(X) \ I is called
I-mad if X ∩ Y ∈ I, for all different X, Y ∈ A, and is maximal with that property.
Defining ā(I) as the least size of an uncountable I-mad family, a parallel to mad
families is the result that b ≤ ā(I), for all coanalytic P-ideals I, which is proved
in [Farkas 2011]. An interesting contrast to this is the consistency of ā(EDfin) < b,
presented in [Brendle 2009], where EDfin is an Fσ ideal defined in [Hernández-
Hernández and Hrušák 2007].

Also, since at least [Cummings and Shelah 1995], cardinal characteristics on
uncountable cardinals have been studied. Recent advances in this topic, including the
study of maximal κ-ad families, for uncountable cardinals κ , and its least possible
size, denoted aκ , can be found in [Blass et al. 2005; Raghavan and Shelah 2017;
2019; Brendle et al. 2018]. In contrast to the case κ = ω, for which it is consistent
that ω1 = b < a, for uncountable regular κ we have that bκ = κ+ implies aκ = κ+.

Another natural path of generalization for mad families is the study of their multi-
dimensional versions. A simple n-dimensional version of mad families, for n < ω,
would be the infinite partitions of the Boolean algebra

⊕n P(ω)/fin, or the identical
concept of maximal antichains of the poset (P(ω)/fin)n . The least sizes of these
n-mad families, usually denoted a(n), form a (not strictly) decreasing sequence of
uncountable cardinals. This is the generalization mainly studied here.

To the author’s knowledge, most of the advances in this topic have been the finding
of some lower bounds for the number a(P × Q), where P and Q are infinite posets
with no minimum element, and for the numbers a(n), for all n < ω (see [Kurilić
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2017; Spinas 1996]). In particular, in the case of [Spinas 1996, Theorem 1.2],
it was first proved that b ≤ a(n), for all 1 ≤ n < ω. This result generalizes the
known inequality b≤ a. In [Spinas 1996], both the existence of other lower bounds
for a(n) and the consistency of a(n + 1) < a(n), for some n < ω, are left as the
object of further research.

Here, the cardinal a(A ⊕ B), where A and B are infinite Boolean algebras, is
studied. Since every partition P of A (and B) induces a partition of A ⊕ B, namely
{a ·1 : a ∈ P}, it easily follows that a(A ⊕ B) ≤ a(A), a(B), for all infinite Boolean
algebras A and B. This observation motivated the next question, asked in [Monk
2014, Problem 8].

Question 1.2. Does
a(A ⊕ B) = min{a(A), a(B)}

hold for any pair of infinite Boolean algebras A and B?

As an advance for the solution of this question, the following lower bound was
given to a(A ⊕ B) in [Santos 2023, Theorem 13].

Theorem 1.3. If A and B are infinite Boolean algebras, then

min
{
a(A), a(B), max{p(A), p(B)}

}
≤ a(A ⊕ B).

Observe that from this theorem it follows that any instance of

a(A ⊕ B) < min{a(A), a(B)}

is one of p(A), p(B) < a(A), a(B). Since a(A) = ω if and only if p(A) = ω,
for every infinite Boolean algebra A, to obtain such a counterexample we need
ω1 ≤ p(A), p(B), and hence ω1 ≤ a(A ⊕ B).

Theorem 3.2 gives another lower bound for a(A ⊕ B), generalizing [Spinas
1996, Theorem 1.2], with a simpler proof. In addition, in Theorem 3.1, another
lower bound is given, which is related to the splitting number and improves that of
Theorem 1.3, at least for homogeneous Boolean algebras.

Some notation, as well as the definitions and results on Boolean algebras, free
products, and their cardinal invariants relevant for both theorems, are given in
Section 2. For more basic concepts on Boolean algebras and cardinal characteristics
of the continuum, the reader is referred to [Koppelberg 1989; Monk 2014; Blass
2010].

2. Boolean algebras and their cardinal invariants

Since every Boolean algebra is isomorphic to the family of clopen sets of some
zero-dimensional compact Hausdorff space, equipped with the usual set-theoretic
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operations (∪, ∩, \) from now on A and B will be, respectively, the algebra of
clopen sets of some zero-dimensional compact Hausdorff spaces X and Y .1

Formally speaking, if A and B are two Boolean algebras, their free product,
denoted A ⊕ B, is an algebra C such that there exist subalgebras A′, B ′

≤ C , such
that A ∼= A′, B ∼= B ′, such that C is algebraically generated by A′

∪ B ′. Given two
Boolean algebras A and B, this algebra exists and is unique up to isomorphisms.
In accordance with the use of topological duality settled at the beginning of this
section, in what follows A⊕ B will refer to the algebra of clopen sets of the product
space X × Y . Some basic kinds of infinite Boolean algebras are the following.

Definition 2.1. A Boolean algebra A will be called homogeneous if for all x ∈ A+,
the Boolean algebra defined on A ↾ x := {y ∈ A : y ⊆ x} with the structure inherited
from A is isomorphic to A.

Definition 2.2. A Boolean algebra A will be called atomless if for all x ∈ A+ there
exists y ∈ A+ such that y ⊊ x .

Now we have some definitions on the combinatorics of infinite Boolean algebras.
By A+ is denoted A \ {∅}, the set of positive elements of A. We will say that a
splits b if b ∩ a ̸= ∅ ̸= b \ a. If P ⊆ A+, we will say that P is a centered family
if

⋂
i<n xi ̸= ∅, for any nonempty finite collection of elements x0, . . . , xn−1 ∈ P .

It will be called a (pairwise) disjoint family if a and b are disjoint, for all distinct
a, b ∈ P . Whenever P is a centered family, if x ∈ A+ and x ⊆ a, for all a ∈ P ,
x will be called a pseudointersection of P . Two families C, D ⊆ A+ will be called
orthogonal if x and y are disjoint, for all x ∈ C and all y ∈ D. Some special families
arising from these simple concepts are the following.

Definition 2.3. Let A be a Boolean algebra.

• A partition of A is a disjoint family P ⊆ A+ that is maximal with respect to
this property.

• A splitting family of A is a subset P ⊆ A+ such that all positive elements of A
are split by some element of P .

• A Rothberger gap of A consists of a pair (C, D) of orthogonal families of A+

such that C is a countable disjoint family and there is no x ∈ A+ disjoint to all
elements of C and an upper bound to all elements of D.

Each of these classes of subfamilies of a Boolean algebra A is related to a
cardinal invariant.

Definition 2.4. Let A be an infinite Boolean algebra. Some of its combinatorial
cardinal invariants are

1For topological duality, as well as other basic topics on Boolean algebras, the reader is referred to
[Koppelberg 1989].
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• a(A) := min{|P| : P ⊆ A+ is an infinite partition},

• p(A) := min{|P| : P ⊆ A+ is centered with no pseudointersection},

• s(A) := min{|P| : P ⊆ A+ is a splitting family},

• b(A) := min{|D| : ∃C ∈ [A+
]
ω (C, D) is a Rothberger gap}.

Observe that s(A) is well defined only if A is atomless. For b(A) to be defined,
there must exist C ∈ [A+

]
ω with no least upper bound. This happens, for example,

when ω1 ≤ a(A). The basic relations between these cardinal invariants are the
following.

Fact 2.5. Let A be an infinite Boolean algebra. Then

• p(A) ≤ a(A),

• p(A) ≤ s(A), if A is atomless, and

• b(A) ≤ a(A), if ω1 ≤ a(A).

Proof. For the first inequality, observe that if P ⊆ A+ is an infinite partition of A,
then {X \ x : x ∈ P}. For the second one, observe that any maximal centered
subfamily of a splitting family is a centered family with no pseudointersection.

Now suppose that a(A) ≥ ω1. Let {aα : α < κ} be an infinite partition of size
κ =a(A). Observe that A := {an : n <ω} and B := {aα :α ∈ κ\ω} form a Rothberger
gap. Otherwise, if there is c ∈ A+ such that an ∩ c =∅, for all n < ω and aα ⊆ c, for
all α ∈ κ \ ω, then A∪ {c} is an infinite partition of A, which is a contradiction. □

The behavior of the cardinal invariants b(A) and s(A) on free products is de-
scribed in the following results. A proof of Theorem 2.7 can be found in [Santos
2023].

Observation 2.6. If A and B are infinite Boolean algebras, then b(A ⊕ B) = ω.

Let {an : n < ω} and {bn : n < ω} be disjoint families of A and B. Then
{an ×bn : n <ω} and {an ×bm : m, n <ω, n ̸= m} are both sides of a Rothberger gap.

Theorem 2.7. s(A ⊕ B) = min{s(A), s(B)}, for all infinite atomless Boolean
algebras A and B.

Now comes a word on some classic cardinal characteristics of the continuum,
many of which are defined as cardinal invariants of the Boolean algebra P(ω)/fin.
This is the Boolean algebra defined on the equivalence classes of the relation X ∼ Y ,
where X ∼ Y if and only if (X \ Y ) ∩ (Y \ X) is finite, with the operations induced
by the set-theoretic operations ∪, ∩ and \.

The cardinal characteristic a, usually defined as the least size of an infinite
maximal almost disjoint (mad) family, i.e., a family {Aα : α < κ} ⊆ [ω]

ω, such that
|Aα ∩ Aβ | < ω, for all α < β < κ , and which is maximal with this property, can be
defined as a(P(ω)/fin). Similarly, s = s(P(ω)/fin). The cardinal b can be defined
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as b(P(ω)/fin), although its usual definition is the smallest size of a family F ⊆ ωω

such that for all g ∈ ωω there exists f ∈ F such that f (m) > g(m), for infinitely
many m < ω. The equivalence of both definitions was proved in [Rothberger 1941].

3. Lower bounds for a(A ⊕ B)

By definition, if c ∈ A ⊕ B, then there exist {ai : i < k} ⊆ A and {bi : i < k} ⊆ B,
for k < ω, such that

c =
⋃
i<k

ai × bi .

Since
c =

⋃
∅̸=J⊆k

( ⋂
i∈J

ai \
⋃

j∈k\J
a j

)
×

⋃
i∈J

bi

we can always assume that either {ai : i < k} is a disjoint family or that {bi : i < k}

is a disjoint family. Therefore, when dealing with infinite partitions (or disjoint
families) of A⊕ B we can always assume that they are of the form {aα ×bα : α < κ},
where aα ∈ A and bα ∈ B, for all α < κ . Now we give the main results of the
article, a couple of lower bounds for a(A ⊕ B). The similarity of the proof of
Theorem 3.1 to that of [Raghavan and Steprāns 2023, Theorem 2.23], mainly in the
use of κ < s(A ↾ x), for any x ∈ A+, which here is implied by homogeneity, has
been observed by the author. More about this similarity will be given in Section 4.

Theorem 3.1. Let A and B be homogeneous Boolean algebras. Then

min
{
a(A), a(B), max{s(A), s(B)}

}
≤ a(A ⊕ B).

Proof. Suppose that ω1 ≤ κ < a(A), a(B), max{s(A), s(B)} and that the set
P = {aα × bα : α < κ} is a disjoint subfamily of A ⊕ B. Without loss of generality,
we can suppose that κ < s(A). We will prove two cases.

Case 1: There exists E ∈ [κ]
ω such that {aα : α ∈ E} is a centered family. Without

loss of generality E = ω. Since ω1 ≤ p(A), we can take a′
∈ A+ such that a′

⊆ an ,
for all n < ω. Furthermore, take a ∈ A ↾ a′ that witnesses that {aα ∩ a′

: α < κ} is
not a splitting family of A ↾ a′, i.e., for all α < κ , either a ∩ aα =∅ or a ⊆ aα . Since
E :={α<κ :a ⊆aα} is an infinite set, it follows that {bα :α∈ E} is an infinite disjoint
family of B. Also, since κ < a(B), there exists b ∈ B such that b ∩ bα = ∅, for
all α ∈ E . Take α <κ . If α ∈ E , then b∩bα =∅. If α /∈ E , then a∩aα =∅. In either
case a × b is disjoint from aα × bα , which means that P is not an infinite partition.

Case 2: The family {aα : α ∈ E} is not centered, for all E ∈ [κ]
ω. Let M ⊆ [κ]

<ω

be the collection of all subsets E of κ such that
⋂

α∈E aα ̸= ∅, and maximal with
that property. Observe that M is infinite. In fact, if E0, . . . , En−1 ∈ M , for n < ω,
taking α ∈ κ \

⋃
i<n Ei and extending {α} to E , maximal with the property that⋂

α∈E aα ̸= ∅, we obtain a new element of M .
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For E ∈ M , define dE :=
⋂

α∈E aα . Observe that {dE : E ∈ M} is a disjoint family.
Since κ < a(A), there exists x ∈ A+ such that x ∩ dE =∅, for all E ∈ M . Since A is
homogeneous, the nonempty elements of {x∩aα :α <κ} do not form a splitting fam-
ily of A ↾ x . Take nonempty c ⊆ x such that for all α <κ either c ⊆ aα or c∩aα =∅.

Define F := {α <κ : c ⊆ aα}. If F =∅, then c×Y shows that P is not a partition.
Suppose F is not empty. Extend F to a family E0 ∈ M . Since c ∩ dE0 = ∅, it
follows that F ⊊ E0. Take β ∈ E0 \ F . Since {aα : α ∈ E0} is centered, then
bβ ∩ bα = ∅, for all α ∈ F . Take α < κ . If α /∈ F , then c ∩ aα = ∅. If α ∈ F , then
bβ ∩ bα = ∅. Either way, c × bβ witnesses that P is not an infinite partition. □

Since max{p(A), p(B)} ≤ max{s(A), s(B)}, for all homogeneous Boolean alge-
bras A and B, this more specific theorem gives an improvement to Theorem 1.3.

Theorem 3.2. Let A and B be Boolean algebras such that ω1 ≤ a(A), a(B). Then

min
{
a(A), a(B), max{b(A), b(B)}

}
≤ a(A ⊕ B).

Proof. Suppose without loss of generality that κ < b(A), a(B) and that the set
P = {aα × bα : α < κ} is a disjoint family of A ⊕ B. As in the previous theorem,
we have two cases.

Case 1: Suppose that {bn : n < ω} is a centered family and, hence, that {an : n < ω}

is a pairwise disjoint family. Take b ∈ B+ such that b ⊆ bn , for all n < ω. Define
E := {α ∈ κ \ω : bα ∩ b ̸=∅}. It follows that an ∩ aα =∅, for all n < ω and α ∈ E .
Since |E | < b(A), there exists c ∈ A such that aα ⊆ c, for all α ∈ E , and an ∩ c =∅,
for all n < ω. Since {an : n < ω} ∪ {c} is not an infinite partition of A, take a ∈ A+

as a witness of this fact. Take α < κ . If α ∈ ω ∪ E , then a ∩ aα = ∅. If α /∈ ω ∪ E ,
then b ∩ bα = ∅. Either way, a × b witnesses that P is not an infinite partition.

Case 2: Suppose that {bα :α∈ E} is not centered, for all E ∈[κ]
ω. Let {Fγ :γ <κ} be

the family of all F finite subsets of κ , maximal with the property that {bα :α ∈ F} is a
centered family. Define dγ :=

⋂
α∈Fγ

bα , for γ < κ . Clearly, the family {dγ : γ < κ}

is pairwise disjoint. Since κ < a(B), take d ∈ B+ such that d∩ dγ =∅, for all γ <κ .
Take F ∈[κ]

<ω, maximal with the property that {bα :α∈ F}∪{d} is a centered family.
Take γ < κ such that F ⊆ Fγ . Since d ∩ dγ =∅, it follows that F ̸= Fγ . Take β ∈

Fγ \F and define b :=
⋂

α∈F bα∩d . Take α<κ . If α∈ F , then aα∩aβ =∅. If α /∈ F ,
then bα ∩ b = ∅. Either way, aβ × b shows that P is not an infinite partition. □

In Section 4, these results are applied to the Boolean algebras
⊕

i<n P(ω)/fin,
that is, the free product of n many copies of P(ω)/fin.

4. Mad families on ωn

Since this section is mainly set in ωk , for 2 ≤ k < ω, some notation for its subsets
is given here.
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Notation 4.1. Take 2 ≤ k < ω and A ⊆ ωk . If n < ω define

A(n) := {x̄ ∈ ωk−1
: (n) ⌢ x̄ ∈ A}.

Notation 4.2. For X ⊆ ω and {Yn : n ∈ X} ⊆ P(ω) define∐
n∈X

Yn :=
⋃

n∈X
{n} × Yn.

Before applying Theorems 3.1 and 3.2, we define a notion for n-dimensional
mad family, for 1 ≤ n < ω, where 1-mad family means simply mad family.

Definition 4.3. Take 2 ≤ n < ω. An infinite family {(X0
α, . . . , Xn−1

α ) : α < κ} ⊆

([ω]
ω)n is called an n-ad family if for all α < β < κ there exists i < n such that

|X i
α ∩ X i

β | < ω. It will be called an n-mad family if it is maximal with this property.
Define a(n) as the smallest size of an infinite n-mad family.

Observe that identifying the sequences (X0, . . . , Xn−1) ∈ ([ω]
ω)n with the n-

cube
∏

i<n X i ⊆ ωn , and X i with an element of P(ω)/fin, an n-mad family is
just a partition of

⊕
i<n P(ω)/fin, and a(n) = a

(⊕
i<n P(ω)/fin

)
. Therefore, the

theorems of the previous section give lower bounds to the numbers a(n). However,
this is not the only notion of “almost-disjointness”, or even “cube” on ωn , and a
word will be given on some of them for comparison.

Take, for example, the ideal

fin2
:= {X ⊆ ω2

: ∀
∞n < ω |X (n)| < ω}.

Elements of both Boolean algebras are of the form
∐

n∈X Yn , where X, Yn ∈ [ω]
ω,

for all n ∈ X . However, if elements of P(ω2)/fin2 have no restriction on the
family {Yn : n ∈ X}, basic elements of P(ω)/fin ⊕P(ω)/fin have the restriction
of Yn = Ym , for all n, m ∈ X .

In general, for 2 < k < ω, we can recursively define

fink
:= {X ⊆ ωn

: ∀
∞n < ω X (n) ∈ fink−1

}

Although with a different notation, the numbers a(fink), for 2 ≤ k < ω, are studied
in [Raghavan and Steprāns 2023]. Their results will be compared with what is
known about a(n), for n < ω, which is summarized here.

Corollary 4.4. (1) ω1 ≤ a(n + 1) ≤ a(n) ≤ a, for all 1 ≤ n < ω.

(2) min{s, a} ≤ a(n), for all 2 ≤ n < ω.

(3) b ≤ a(n), for all 1 ≤ n < ω.

Proof. (1) From the definition it follows that a(2) ≤ a(1) ≤ a. Taking this fact as
the base case, suppose that a(n) ≤ a(n−1) ≤ a has been proved for some 2 ≤ n < ω.
Since

⊕
i<n+1 P(ω)/fin =

(⊕
i<n P(ω)/fin

)
⊕P(ω)/fin, it follows that a(n +1) ≤

min{a, a(n)} = a(n). Since ω1 ≤ p ≤ a(n), for all 1 ≤ n < ω, item (1) is proved.
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(2) Observe that s
(⊕

i≤n P(ω)/fin
)
= s, for all 1 ≤ n < ω. Trivially, min{a, s} ≤ a.

Suppose, as the induction hypothesis, min{a, s} ≤ a(n), for some 1 ≤ n < ω. By
Theorem 3.1, it follows that min{a, s} ≤ min{a, a(n), s} ≤ a(n + 1).

(3) Taking b ≤ a as the base case, suppose that b ≤ a(n) has been proved for some
1 ≤ n < ω. From Theorem 3.2 and Observation 2.6, it follows that

min{a, a(n), max{b, ω}} = min{a(n), b} = b ≤ a(n + 1). □

In parallel to these results, the following facts are proved in [Raghavan and
Steprāns 2023, Corollaries 2.18 and 2.27].

Proposition 4.5. Take 2 ≤ k < ω. Then

• b ≤ a(fink) and

• min{a, s} ≤ a(fink).

To prove the first inequality, in [Raghavan and Steprāns 2023] the usual definition
of b was used. In contrast, the use of a nonsplitting family in Case 1 of the proof of
Theorem 3.1 is very similar to the use of countably many nonsplitting families in
the proof of [Raghavan and Steprāns 2023, Theorem 2.23]. Furthermore, it is easy
to see that P(ω)/fin ⊕P(ω)/fin is a subalgebra of P(ω2)/fin2, and that all 2-ad
families induce fin2-ad families. However, the similarity of these results does not
seem to emerge from the structures themselves and their partitions. Indeed, “one in
every two” 2-mad families is not a fin2-mad family. The next lemma, whose proof
is included for completeness sake, will help to prove this.

Lemma 4.6. Suppose that P = {aα × bα : α < κ} is an infinite partition of A ⊕ B.
Then there exists {αn : n < ω} ⊆ κ such that {aαn : n < ω} is a centered family or
{bαn : n < ω} is a centered family.

Proof. Suppose that if E ⊆ κ is such that {aα : α ∈ E} is a centered family,
then |E | < ω. Let {Eβ : β < κ} ⊆ [κ]

<ω be the set of all E ∈ [κ]
<ω such that

{aα : α ∈ E} is centered and maximal with this property. Observe that if E is
maximal with this property, then {bα : α ∈ E} is a disjoint family and⋃

α∈E
bα = Y.

We will recursively construct a sequence {αn : n < ω}, such that {bαn : n < ω} is a
centered family. Extend {0} to a set E0, maximal with the property that {aα :α ∈ E0}

is centered. Write E0 = {α0
0, . . . , α

k0−1
0 } and define

H i
0 := {β ∈ κ \ E0 : bαi

0
∩ bβ ̸= ∅}, for all i < k0.

There exists i0 < k0 such that |H i0
0 | = κ . Define α0 := α

i0
0 and H0 := H i0

0 .
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Suppose now that for some n ≥ 1 we have constructed the sets {αl : l < n} ⊆ κ ,
{Hl : l < n} ⊆ [κ]

κ , and {El : l < n} ⊆ [κ]
<ω such that

• αl ∈ El ,

• αl ′ ̸= αl ,

• Hl ⊆ Hl ′ , for all l ′ < l < n, and that

•

bβ ∩
⋂
l<k

bαl ̸= ∅,

if and only if β ∈ Hn−1, for all β < κ .

Define b :=
⋂

l<k bαl and take β ∈ Hn−1 \ {αl : l < n}. Extend {β} to a family En ,
maximal with the property that {aα : α ∈ En} is centered. Clearly

b =
⋃

α∈En∩Hn−1

b ∩ bα.

Also α ̸= αl , for all l < n and all α ∈ En: otherwise we would have bαl ∩ bβ ̸=∅ ̸=

aαl ∩ aβ , which is a contradiction. Write En ∩ Hn−1 := {α0
n, . . . , α

kn−1
n } and define

H i
k := {β ∈ Hk−1 : bαi

n
∩ b ∩ bβ ̸= ∅}.

Since there exists in < kn such that |H in
n | = κ , define αn := α

in
n and Hn := H in

n .
Since we can continue this recursion, we get {αn : n < ω} ⊆ κ such that {bαn : n < ω}

is a centered family. □

Now, let {(X0
α, X1

α) : α < κ} be a 2-mad family. Without loss of generality, by the
previous lemma, {X0

n : n < ω} is a centered family. Let X be a pseudointersection
of that family. It is easy to see that

∐
n∈X X1

n witnesses that {X0
α × X1

α : α < κ}

is not a fin2-mad family. Therefore, the similarity on the lower bounds obtained
for a(k) and a(fink), for 2 ≤ k < ω, as well as that of their proofs, could be pointing
to some feature of multidimensional infinite combinatorics, which could also be
reflected on the eventual constructions of models of a(fink) < a or of a(k) < a, for
some 2 ≤ k < ω, or on the not yet impossible ZFC proofs of the corresponding
equalities.

We finish this article by listing the main open questions about the cardinals a(n),
for n < ω.

Question 4.7. (1) Is it consistent that a(n) < a(n − 1), for any 2 ≤ n < ω?

(2) Is it consistent that ω1 = b = s = a(n) < a(n − 1), for any 2 ≤ n < ω?

(3) Is it consistent that ω1 < b < s < a(n) = a(n − 1), for any n < ω?

The first and second questions also remain open for the cardinals a(fink), for k <ω.
The second question is emphasized because of its relation to the following question.
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Question 4.8 (Brendle and Raghavan). Does b = s = ω1 imply that a = ω1?

This open question, related to Question 1.1, as well as the history of separating a

from other cardinal characteristics by means of breakthroughs in forcing techniques,
could point to the potential difficulties in answering Question 4.7. Related to
the third question, in [Brendle and Fischer 2011] it was asked if it is consistent
b < s < a. With current forcing techniques to make a “large”, such as those
described in [Fischer and Mejia 2017], it seems that the same model for these
inequalities would give a positive answer to the third question.
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