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We describe a construction procedure of infinite sets of 2-links in closed
simply connected 4-manifolds that are topologically isotopic, smoothly in-
equivalent and componentwise topologically unknotted. These 2-links are
the first such examples in the literature. The examples provided have surface
and free groups as their 2-link groups, and display subtle exotic phenomena
that are related to their linking. In particular, our examples are not parallel
copies of exotic embeddings of 2-spheres that were previously known to exist
nor their combinations with smoothly unknotted 2-spheres.

1. Introduction and main results

All embeddings and manifolds in this paper are smooth unless it is stated otherwise.
The main contribution of this paper is to introduce a construction procedure of
infinite sets of multiple components 2-links in closed 4-manifolds that are topologi-
cally isotopic, yet smoothly inequivalent, and whose components are topologically
unknotted. The explicit examples that we produce have the property that the
fundamental group of the complement can be chosen to be any free group or a
surface group. We begin by making these notions precise in the following definition.

Definition 1. • A k-component 2-link

(1-1) 0 = S1 ⊔ · · · ⊔ Sk ⊂ X

in a 4-manifold X is an unordered union of disjointly embedded 2-spheres Si with
trivial tubular neighborhood ν(Si )= D2

× S2 for i = 1, . . . , k and k ∈ N. We say
that a component Si is topologically unknotted if there is a locally flat embedded
3-ball Di ⊂ X such that ∂Di = Si .

• The fundamental group π1(X \0) of the complement of (1-1) is called the 2-link
group.

MSC2020: primary 57K45, 57R55; secondary 57R40, 57R52.
Keywords: surfaces, 4-manifolds, exotic smooth structures.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2025.338-1
https://doi.org/10.2140/pjm.2025.338.35
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


36 VALENTINA BAIS, YOUNES BENYAHIA, OLIVIERO MALECH AND RAFAEL TORRES

• A 2-link (1-1) is symmetric if for any permutation σ of {1, . . . , k} there is a
diffeomorphism φ : X → X such that φ(Si )= Sσ(i) for i = 1, . . . , k.

• Two k-component 2-links 0 and 0′ embedded in a 4-manifold X are smoothly
inequivalent if there is no diffeomorphism of pairs

(X, 0)→ (X, 0′).

• A family of k-component 2-links is exotic if its elements are topologically isotopic
and pairwise smoothly inequivalent.

There has been a flurry of research on exotic embeddings of surfaces in closed 4-
manifolds ignited by Fintushel and Stern’s foundational paper [14]. Finding such em-
beddings of nullhomotopic 2-spheres is particularly difficult: just notice that it is still
unknown if there is an exotic S2 in S4. There is an implicit topologically unknotted
2-sphere that is smoothly knotted in a closed simply connected 4-manifold in work
of Fintushel and Stern [13] as pointed out by Ray and Ruberman in [35], and infinite
sets of such embeddings of 2-spheres were constructed by Torres in [42, Theorem A].

The construction procedure that we introduce in this paper extends these results
to multiple components 2-links, where our key raw material is defined as follows.

Definition 2. An admissible 4-manifold M is a 4-manifold that satisfies the follow-
ing properties:

• There is at least one basic class k ∈ H 2(M; Z), i.e., the Seiberg–Witten invariant
of M satisfies SWM(k) ̸= 0.

• The 4-manifold M is simply connected.

• There is a pair of embedded disjoint 2-tori T1, T2 ⊂ M such that

Ti has self-intersection 0 for i = 1, 2,
and

π1(M)= {1} = π1
(
M \ (ν(T1)⊔ ν(T2))

)
.

There is no shortage of admissible 4-manifolds [8; 13; 20; 28] where the quintes-
sential examples are the elliptic surfaces E(n) for n ≥ 2. We now give a sample of
the produce of our construction procedure with our main result. A closed oriented
surface of genus g is denoted by 6g, and the free group of g generators by Fg.

Theorem A. Let M be an admissible 4-manifold as in Definition 2 and fix g ∈ N.
Let G be a group isomorphic to either π1(6g) or Fg, and let n be its rank. Let K
be an infinite family of knots K ⊂ S3 with pairwise distinct Alexander polynomials.
There is an infinite set of smooth n-component 2-links

(1-2) {0K = S1,K ⊔ · · · ⊔ Sn,K | K ∈ K},

which are smoothly embedded in M # n(S2
× S2) and have the following properties:



EXOTIC 2-LINKS IN CLOSED 4-MANIFOLDS WHOSE COMPONENTS ARE UNKNOTS 37

(1) Their 2-link group is G.

(2) The 2-links in (1-2) form an exotic family as in Definition 1.

(3) The components of (1-2) are topologically unknotted.

(4) Surgery on the components of (1-2) yields an infinite set of pairwise nondiffeo-
morphic closed 4-manifolds in a same homeomorphism class with fundamental
group G.

Theorem A unveils exotic phenomena of codimension-two embeddings that were
not previously known to exist. A detailed description of the procedure is given
in Section 2.2. Examples of exotic 2-links in closed 4-manifolds with homolog-
ically essential components are available. Auckly, Kim, Melvin and Ruberman
[5, Theorem B] produced infinite sets of exotic 2-links with trivial 2-link group
and whose components have self-intersection +1. Hayden, Kjuchukova, Krishna,
Miller, Powell and Sunukjian provided pairs of exotic 2-component 2-links in [25,
Theorem 8.2]; see [24] as well.

Much like the examples in [5; 25], linking is of significant importance regarding
the subtlety of the exotic behavior of the 2-links of Theorem A. Less subtle phe-
nomena can be readily obtained by taking parallel copies of the exotic 2-spheres
in [42] and a combination of them with smoothly unknotted 2-spheres to produce
exotic 2-links whose 2-link group is Fg; see Remark 22. In order to guarantee that
our examples of Theorem A are not of this kind and to put in display the subtlety
of their exotica, we introduce the following notion.

Definition 3. An exotic pair of smooth k-component 2-links

0 = S1 ⊔ · · · ⊔ Sk and 0′
= S′

1 ⊔ · · · ⊔ S′

k

in the sense of Definition 1 is Brunnianly exotic if the 2-links

0 \ Si and 0′
\ S′

j

are smoothly equivalent for any i, j = 1, . . . , k.

The Brunnianity property of Definition 3 rules out uninteresting constructions
of exotic 2-links. Our second main result shows that the examples of Theorem A
satisfy this property and that they stabilize by taking the connected sum with a
single copy of S2

× S2 at a point away from every element in (1-2).

Theorem B. • Every 2-link in the infinite set (1-2) of Theorem A with free 2-link
group is smoothly symmetric.

• There is an infinite subset of (1-2) made of pairwise Brunnianly exotic 2-links
smoothly embedded in M # g(S2

× S2). Moreover, elements in this infinite subset
are pairwise smoothly equivalent in (M # g(S2

× S2)) # (S2
× S2).
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Related notions of Brunnianity of 2-links in 4-manifolds are available in the
literature, always in analogy with the properties of Brunnian links in S3 introduced
by Brunn in 1892 [10]. The notion of Brunnianity used by Auckly, Kim, Melvin
and Ruberman in [5, Theorem B] is quite similar to ours albeit a bit stronger:
their results address smooth isotopy by considering ordered links. We consider
only equivalence and not isotopy between our surfaces, but do so irrespectively
of their order. A stronger use of the adjective Brunnian is employed by Hayden,
Kjuchukova, Krishna, Miller, Powell and Sunukjian in [25].

We finish the introduction with a pair of questions that arose during the production
of this work, and a third question that was posed by a referee. The first question
concerns a topological property of the 2-links constructed under our procedure.
Notice that the 2-links (1-2) of Theorem A with Fg as 2-link group are smoothly
linked: there are no g smoothly embedded disjoint 3-balls in M # g(S2

× S2) such
that each of them bounds a component of 0K . The locally flat embedded realm
immediately comes to mind.

Question C. Are the 2-links of Theorem A with free 2-link group topologically
unlinked? That is, are there locally flat embedded disjoint 3-balls

(1-3) 2g = D3
1 ⊔ · · · ⊔ D3

g

in M # g(S2
× S2) such that ∂2K = 0k for any K ∈ K?

The second question regards a comparison of the Brunnianity property of
Definition 3 and the Brunnian behavior of the examples of Hayden, Kjuchukova,
Krishna, Miller, Powell and Sunukjian.

Question D. Are the 2-links of Theorem A with free 2-link group Brunnian in the
sense of [25]? That is, is 0K \ Si,K smoothly unlinked for every i = 1, . . . , g?

Bing doubling is the primary tool used by Hayden, Kjuchukova, Krishna, Miller,
Powell and Sunukjian to construct their examples [25, Section 2]. It is canonical to
wonder whether the examples of Theorem A can be obtained by Bing doubling a
topologically unknotted but smoothly knotted 2-sphere in [13; 42] as an anonymous
referee kindly pointed out to us.

Question E. Let S be a topologically unknotted and smoothly knotted 2-sphere in a
closed 4-manifold M. Is it possible to construct an example of an exotic 2-link in a
closed 4-manifold by Bing doubling S?

The paper is organized as follows. The construction procedure of infinite sets of
exotic 2-links is laid down in Section 2.2. A topological restriction on admissible
4-manifolds is given in Section 2.1. The main building blocks are produced in Sec-
tions 3.1, 3.2 and 3.3. These sections contain results to pin down the diffeomorphism
type of a 4-manifold constructed from surgeries that might be of independent interest,
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including a handlebody depiction of the Kodaira–Thurston manifold not previously
available in the literature to the best of our knowledge. The smooth structures
of Theorem A are constructed in Section 3.4. The diffeomorphism type of the
ambient 4-manifolds are pinned down in Section 3.5. The 2-links are manufactured
in Section 3.6, where we also show that they are pairwise topologically isotopic.
The properties of Definition 3 are investigated in Section 3.8.

2. Recipe for exotic 2-links

2.1. Admissible 4-manifolds of Theorem A and their size. As already mentioned,
there are many examples of admissible 4-manifolds in the literature [8; 13; 20; 28].
For example, in [8, Theorem 18], Baldridge and Kirk construct an admissible
4-manifold that is homeomorphic to 3CP2 # 5CP2. The presence of the 2-tori T1

and T2 of Definition 2 imposes certain restrictions on the second Betti number of
an admissible 4-manifold, which are recorded in the following inequality (see [17,
Lemma 1]).

Lemma 4. If M is an admissible 4-manifold in the sense of Definition 2, then

(2-1) b2(M)≥ |σ(M)| + 4,

where b2(M) and σ(M) are the second Betti number and the signature of M ,
respectively. In particular, M has an indefinite intersection form.

Proof. Since the complement M \ (ν(T1) ⊔ ν(T2)) is simply connected, each 2-
torus Ti has a geometrically dual immersed 2-sphere Si for i = 1, 2. The 2-torus Ti

is disjoint from the 2-sphere S j for i ̸= j . We define the linear subspace

S = ⟨[T1], [S1], [T2], [S2]⟩ ⊂ H2(M; R)

and compute the intersection form on its generators to be the matrix
0 1 0 0
1 ∗ 0 ∗

0 0 0 1
0 ∗ 1 ∗

.
This matrix is equivalent to A = 2(+1)⊕ 2(−1) via a real change of basis. We
can extend this new basis to a basis for H2(M; R), so that, after possibly changing
again coordinates, the intersection form QM over R becomes

QM ∼=

[
A 0
0 B

]
.

This yields the desired inequality

|σ(M)| = |σ(QM)| = |σ(B)| ≤ rank(B)= b2(M)− 4. □
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Remark 5 (nonempty boundary and the size of admissible 4-manifolds). Hayden,
Kjuchukova, Krishna, Miller, Powell and Sunukjian in [25] construct pairs of exotic
properly embedded 2-disks in the 4-ball, where the adjective ‘exotic’ in this case
means topologically isotopic rel. boundary and pairwise smoothly inequivalent
(see [24] too). In order to distinguish the smooth structures of their complements,
they make use of Stein structures and a well-known adjunction formula [21, Theo-
rem 11.4.7]; see [3, Section 9.1]. In order to be able to distinguish infinite sets and
not only pairs of exotic 2-links, we employ the Seiberg–Witten invariants instead
and work with larger ambient 4-manifolds.

2.2. Strategy to construct exotic 2-links and prove Theorem A.

(a) Start with an admissible 4-manifold of Definition 2 and perform Fintushel–Stern
knot surgery [12; 15] along the 2-torus T1 to produce an infinite set {MK | K ∈ K}

of pairwise nondiffeomorphic 4-manifolds that are homeomorphic to M . Notice
that each one of these 4-manifolds contains a copy of the 2-torus T2.

(b) Build the generalized fiber sum (see [20]) Z K = MK #T 2 BG of MK and a
4-manifold BG . For an appropriate choice of the building block BG , this yields an
infinite set of pairwise nondiffeomorphic 4-manifolds in the homeomorphism type
of Z K with fundamental group G.

(c) Perform surgery along n loops LG = {γ1, . . . , γn} in Z K whose homotopy
classes are the generators of the group π1(Z K )= G, and produce a closed simply
connected 4-manifold Z∗

K that is diffeomorphic to M # n(S2
× S2) for every K ∈ K.

This step can be traced back to Wallace [44] and Milnor [29].

(d) The belt 2-spheres of the surgeries of (c) form a 2-link 0K of n nullhomotopic
components smoothly embedded in M#n(S2

×S2)whose 2-link group is isomorphic
to G. A result of Sunukjian [39, Theorem 7.2] implies that each component of 0K

is topologically unknotted.

(e) Any two 2-links 0K and 0K ′ are smoothly inequivalent for any two different
knots K , K ′

∈ K since their complements

(2-2) M # n(S2
× S2) \ ν(0K ) and M # n(S2

× S2) \ ν(0K ′)

are nondiffeomorphic. This is proven indirectly using gauge-theoretical invariants
of the closed 4-manifolds Z K and Z K ′ of (b).

(f) The explicit nature of our constructions yields a homeomorphism of the com-
plements (2-2) that extends to a homeomorphism of pairs

(2-3) (M # n(S2
× S2), 0K )→ (M # n(S2

× S2), 0K ′),

which induces the identity map on homology. Results of Quinn and Perron allow
us to conclude that the 2-links {0K | K ∈ K} are topologically isotopic.
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(g) Surgery on one loop in (c), instead of n loops, is already enough to produce
the same diffeomorphism type regardless of the knot K . This is used to show that
giving up one component in each 2-link stabilizes the family (1-2).

3. Building blocks and auxiliary results

We gather in this section the raw materials that are used in the proof of Theorem A
and record several of their topological properties that are useful for our purposes.
The following items are fixed in the sequel:

• a natural number g ∈ N,

• a group G ∈ {Fg, π1(6g)} of rank n,

• an infinite collection K of knots K ⊂ S3 with pairwise distinct Alexander
polynomials (for simplicity, we assume that the family K contains the unknot
U ⊂ S3),

• an admissible manifold M as in Definition 2.

3.1. T 2×S2 #2g(S2×S2) as a result of surgery to T 2×6g . We begin this section
with a description of the building block Bπ1(6g) = T 2

×6g (see (b) of Section 2.2),
where T 2 is the 2-torus. To ease notation, we will call such building block Bg.

We pick on the surfaces T 2 and 6g simple closed curves x, y and ai , bi for
i = 1, . . . , g as in Figure 1. In particular, writing T 2

= S1
× S1, the loop x is

S1
×{1} and the loop y is {1}× S1. Moreover, we take as a parallel copy of x the

loop x ′
= S1

×{−1}. Notice that the loops {ai , bi | i = 1, . . . , g} form a symplectic
basis for the first homology group H1(6g; Z).

On the other hand, the surfaces T 2
×{pt}, {p}×6g and the collections of 2-tori

{x × ai | i = 1, . . . , g}, {x ′
× bi | i = 1, . . . , g},(3-1)

{y × ai | i = 1, . . . , g} and {y × bi | i = 1, . . . , g}(3-2)

generate the second homology group H2(T 2
×6g; Z)= Z2+4g.

×

y

x ′

x a1

b1 bg

ag

Figure 1. The 4-manifold T 2
×6g , the curves x , x ′, y in T 2 and ai , bi

for i = 1, . . . , g in 6g .
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The second building block is a 4-manifold B∗
g that is obtained from T 2

×6g by
doing loop surgery along the framed components of the 1-dimensional submanifold

(3-3) Lπ1(6g) = γ1 ⊔ γ ′

1 ⊔ . . .⊔ γg ⊔ γ ′

g ⊂ T 2
×6g,

where γi is the loop {p} × ai and γ ′

i is {p′
} × bi for p ̸= p′ and the framing is the

one induced by the product structure of T 2
×6g.

In particular, we get B∗
g as

(3-4) B∗

g = (T 2
×6g) \

g⊔
i=1
(ν(γi )⊔ ν(γ

′

i ))∪
2g⊔

i=1
(D2

× S2).

Notice that doing surgery on the loops (3-3) kills the subgroup

(3-5) {1} ×π1(6g) < π1(T 2
×6g)= π1(T 2)×π1(6g).

We also build an auxiliary 4-manifold B̂g as the result of a performing a total of
2g torus surgeries on the framed 2-tori (3-1). More explicitly, this 4-manifold is
defined as

(3-6) B̂g = (T 2
×6g) \

( g⊔
i=1
(ν(x × ai )⊔ ν(x ′

× bi ))∪φ

2g⊔
i=1
(T 2

× D2)
)
,

where φ is a gluing diffeomorphism

φ :

g⊔
i=1
∂ν(x × ai )∪ ∂ν(x ′

× bi )→

2g⊔
i=1
(T 2

× ∂D2)

that satisfies

(φ|∂ν(x×ai ))
−1
∗
([{p} × ∂D2

])= [li ] ∈ H1(∂ν(x × ai ); Z)

and a similar equation for the 2-tori of the form x ′
× bi for any i = 1, . . . , g. Here

li is a Lagrangian push-off of the loop γi into ∂ν(x × ai ).
This cut-and-paste construction is known as a multiplicity-zero log transform

along the loops γi and γ ′

i [21, p. 83]. We now briefly explain a trick due to Moishezon
[30, Lemma 13], which will play a key role in Lemmas 6 and 10. In general, the
transformation of T 2

× D2 under a multiplicity-zero log transform is depicted in
Figure 2, left and middle, where we use the dotted circle notation for 1-handles
[1; 21, Section 5.4; 36; 37]. Figure 2, left, depicts a copy of T 2

× D2 inside a
smooth 4-manifold X , where all handles that go through the two dotted circles
and the 0-framed circle are ignored. Figure 2, middle, depicts the changes in the
handlebody of T 2

× D2 when the multiplicity-zero log transform is performed,
yielding the manifold X̂ [3, Figure 6.9; 21, Figure 8.25]; all other handles are
ignored. Figure 2, right, depicts the same area after performing a loop surgery
on X , we call the result X∗. Notice that X∗ can also be obtained by performing a
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0

b

b

b
0

b 0

b
0

Figure 2. A trick due to Moishezon [30] as explained by Gompf in [19,
proof of Lemma 3].

loop surgery on X̂ . The trick is to split a loop surgery into a multiplicity-zero log
transform followed by a different loop surgery.

The 2-torus T 2
×{p}, equipped with the framing induced by the product structure

in T 2
×6g, is disjoint from the families of 2-tori (3-1), and it defines a framed

2-torus embedded in B̂g and one in B∗
g . We denote both of them by T . We now

identify the diffeomorphism type of (3-4).

Lemma 6. Let B̂g be the 4-manifold in (3-6). There is a diffeomorphism

(3-7) B̂g ≈ T 2
× S2.

Moreover, through this diffeomorphism the framed 2-torus T ⊂ B̂g is mapped to the
framed 2-torus T 2

× {p} ⊂ T 2
× S2 equipped with its standard product framing.

Let B∗
g be the 4-manifold defined in (3-4). There is a diffeomorphism

(3-8) B∗

g ≈ (T 2
× S2) # 2g(S2

× S2).

Moreover, through this diffeomorphism the framed 2-torus T ⊂ B∗
g is mapped to the

canonical 2-torus T 2
× {p} ⊂ (T 2

× S2) # 2g(S2
× S2) equipped with its product

framing.

Proof. We first prove the existence of the diffeomorphism (3-7). Write T 2
×6g as

S1
×∂(D2

×6g), where the S1 factor corresponds to the loop x . Use this splitting to
view each 4-dimensional torus surgery as a (1+3)-dimensional surgery. In particular,
the resulting manifold is B̂g = S1

× Y , where the 3-manifold Y is obtained from
S1

×6g by performing 0-Dehn surgeries around the 2g loops {1}×ai and {−1}×bi

for i = 1, . . . , g. This is equivalent to adding 2g 4-dimensional 2-handles with 0
framing along the same loops in D2

×6g to get a 4-manifold Z bounded by Y
as in Figure 3. From Figure 4, after some handle slides, handle cancellations and
isotopies, we conclude that Z is diffeomorphic to D2

× S2. In particular, Y is
diffeomorphic to S1

× S2 and the existence of the diffeomorphism (3-7) follows.
The torus T in S1

× Y is S1
× l, where l is the meridian of the black 0-framed

2-handle in Figure 3. Notice that the handle slides in Figure 4 do not move the
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. . .

0

0

0
0

0

Figure 3. The 1-handles and the black 0-framed 2-handle represent the
disk bundle D2

×6g over the orientable surface of genus g. The red
loops are the loops {1} × ai and the blue ones are the loops {−1} × bi .
The manifold Z is obtained from D2

×6g by adding the 0-framed blue
and red 2-handles. The boundary of the 4-manifold Z is the 3-manifold Y .

loop l. Under the diffeomorphism Y ≈ S1
× S2, the loop l corresponds to the

loop S1
× {p}. Therefore, the 2-torus T is mapped to S1

× (S1
× {p}) and, after

checking the framing of l, we conclude that the first part of the lemma holds.

. . .

0

0
0

. . .

0

0
0

. . .

0

0
0

. . .

0

0
0

. . .

0

0
0

. . .

0

0
0

Figure 4. A handlebody of the manifold Z in the proof of Lemma 6. The
dotted arrows indicate the 2-handle slide performed. If we apply g times
this sequence of moves to the handlebody depicted in Figure 3, we see
that the manifold Z has 2g canceling pairs of 1- and 2-handles, along
with a 0-framed unknotted 2-handle. Thus, Z is diffeomorphic to D2

×S2.
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To show the existence of the diffeomorphism (3-8), we use the Moishezon trick,
described above, to break down the surgery along the loops γi , γ

′

i by first performing
2g multiplicity-zero log transforms along the tori x × ai and x ′

× bi , and then 2g
loop surgeries along some framed loops c1, . . . , c2g which are nullhomotopic since
π1(B∗

g )
∼= π1(B̂g). The manifold B∗

g is the result of 2g surgeries along the loops ci

in B̂g = T 2
× S2 and it is therefore diffeomorphic to either B̂g # 2g(S2

× S2)

or B̂g # 2g(S2
×̃S2) [21, Section 5.2]. We conclude that B∗

g is diffeomorphic
to B̂g # 2g(S2

× S2) since it admits a spin structure given that the surgeries preserve
the spin structure. Another argument to see this, albeit more complicated, is to show
that the intersection form of B∗

g is isomorphic to the intersection form of T 2
×6g

(which is even). To see this, consider a set of 4g + 2 surfaces representing a basis
for H2(T 2

×6g; Z) and call Q the intersection matrix of this basis. Assume, in
addition, that these surfaces are away from the loops (3-3); hence surgery on such
loops leaves the surfaces intact. This yields a set of 4g + 2 surfaces in B∗

g , whose
intersections give the matrix Q, which is unimodular. This, together with the fact
that b2(B∗

g )= 4g +2, implies that these surfaces must be a basis for H2(B∗
g ; Z), on

which the intersection matrix is again Q.
We now argue that the framed 2-torus T ⊂ B∗

g is mapped to the canonical 2-
torus inside (T 2

× S2) # 2g(S2
× S2). The diffeomorphism (3-7) maps the framed

loops c1, . . . , c2g ⊂ B̂g to framed loops c̄1, . . . , c̄2g ⊂ T 2
× S2. The loops c̄i

are nullhomotopic and disjoint from T 2
× {p}, since the loops ci are already

nullhomotopic and disjoint from T inside B̂g. Moreover, the loops c̄i are null-
homotopic also in T 2

× (S2
\ {p}), given that the inclusion map T 2

× (S2
\ {p})→

T 2
× S2 induces an isomorphism between fundamental groups. Therefore, each

simple loop c̄i bounds a smooth 2-disk disjoint from T 2
×{p}. We can write T 2

×S2

as (T 2
× S2) # S4 and, by a smooth ambient isotopy of T 2

× S2, we can move
one by one all the loops c̄i into the S4 factor keeping fixed a neighborhood of the
2-torus T 2

× {p}. In this way the diffeomorphism of tuples

(B̂g, T, c1, . . . , c2g)≈
(
(T 2

× S2) # S4, T 2
× {p}, c̄1, . . . , c̄2g

)
is inducing a diffeomorphism of pairs

(3-9) (B∗

g , T )≈
(
(T 2

× S2) # (S4)∗, T 2
× {p}

)
,

where (S4)∗ is the 4-manifold obtained as the result of 2g surgery operations along
the framed loops c̄1, . . . , c̄2g in S4. By the previous paragraphs we know that
(S4)∗ is diffeomorphic to the connected sum of 2g copies of S2

× S2, and we can
conclude the proof of this lemma by composing the diffeomorphism (3-9) with a
last diffeomorphism between (T 2

× S2)# (S4)∗ and (T 2
× S2)# 2g(S2

× S2), which
is the identity on a neighborhood of the 2-torus T 2

× {p}. □
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3.2. (T 2×S2)#(S2×S2) as a result of surgery to the Kodaira–Thurston manifold.
We now describe the Kodaira–Thurston manifold N , an essential building block for
our constructions in the case G = Fg. It is the total space of a T 2-bundle over T 2

[7, Section 2.4; 8, Section 2] which can also be seen as a product N = S1
× YDa

between the 1-sphere S1 and the mapping torus YDa of a Dehn twist Da : T 2
→ T 2

around the loop a := S1
× {p} ⊂ T 2

= S1
× S1. For convenience, we also define

the auxiliary loop b := {p′
} × S1

⊂ T 2. In particular, the 3-manifold YDa is
the total space of a T 2-bundle over a circle y and its first homology group is
H1(YDa ; Z) = Zb ⊕ Zy. Notice that the loop a is homologically trivial in YDa .
Moreover, we write the T 2-bundle over T 2 structure of N = S1

×YDa = x ×YDa as

(3-10) a × b ↪→ N → x × y,

where our notation emphasizes the loops contained in the 2-torus fiber and the 2-
torus section that generate the first homology group H1(N ; Z)=Zx⊕Zy⊕Zb. Note
that the fiber 2-torus a × b is geometrically dual to the 2-torus section T := x × y.
Moreover, there is another pair of geometrically dual 2-tori inside N , that we denote
by x × b and y × a, respectively, which are disjoint from both the fiber and the
section; see [7, Section 2] for a detailed description of these submanifolds.

We equip N with a symplectic structure for which the 2-torus x × b ⊂ N is
Lagrangian and use the unique Lagrangian framing when we perform surgery along
this submanifold; this is explained in detail in [7, Section 2.1; 26]. Let m and l
be the Lagrangian push-offs of x and b, respectively, and let µ be the meridian
of x × b, i.e., a curve isotopic to {p}× ∂D2

⊂ ∂ν(x × b). The triple {m, l, µ} is a
basis for the group H1(∂ν(x × b); Z); see [7, Section 2.1] for further details. We
now define the 4-manifold

(3-11) N̂ = (N \ ν(x × b))∪ϕ0 (T
2
× D2),

by using a diffeomorphism

(3-12) ϕ0 : ∂ν(x × b)→ T 2
× ∂D2

satisfying the condition ϕ0(l)∗ = [{p} × ∂D2
] ∈ H1(T 2

× ∂D2
; Z). In other words,

N̂ is obtained from N by applying a multiplicity-zero log transform.
We identify the diffeomorphism type of N̂ and of another useful 4-manifold

obtained by the Kodaira–Thurston manifold via loop surgery in the following
lemma.

Lemma 7. Let N̂ be the 4-manifold in (3-11). There is a diffeomorphism

(3-13) N̂ ≈ T 2
× S2.

Let N ∗ be the 4-manifold that is obtained from the Kodaira–Thurston manifold by
performing surgery along the based loop b with respect to the framing induced by
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Figure 5. Handlebody depiction of the Kodaira–Thurston manifold N
and the 4-manifold N ∗.

the Lagrangian framing on x × b ⊂ N. There is a diffeomorphism

(3-14) N ∗
≈ (T 2

× S2) # (S2
× S2).

Moreover, the framed 2-torus T ⊂ N is disjoint from the loop b, so it defines a
framed 2-torus T ⊂ N ∗ which is mapped through the diffeomorphism (3-14) to
the canonical 2-torus T 2

×{p} ⊂ (T 2
× S2) # (S2

× S2) equipped with its product
framing.

We present two proofs of the lemma for the convenience of the reader.

Proof. Given the relevance of the 4-manifold N ∗ in the proof of Theorem A, we
begin with a proof of the existence of the diffeomorphism (3-14). The handlebody
of the 4-manifold N ∗ is given in Figure 5, where its three 3-handles and its 4-handle
are not drawn; its construction is explained in the next paragraph. The existence of
the diffeomorphism (3-14) is seen by first using the 0-framed circle that links once
the second dotted circle from left to right in Figure 5 to unlink all other attaching
spheres of the 2-handles from this dotted circle. Cancel this 1-handle and 2-handle
pair. Straightforward handle slides unlink the diagram even further, and two more
1- and 2-handle cancellations yield a handlebody of (T 2

× S2) # (S2
× S2).

In order to draw this handlebody of N ∗, we build heavily on work of Akbulut to
first draw a Kirby diagram of the Kodaira–Thurston manifold. Equip the 4-torus
T 4

= x × y × a × b with the product symplectic form. The Kodaira–Thurston
manifold N is obtained from the 4-torus T 4 by applying one Luttinger surgery to
the Lagrangian 2-torus x × a along the Lagrangian push-off of a [6]. We use this
description of N in order to draw its handlebody by building on the handlebody
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of the 4-torus drawn in [3, Figure 4.5] and the depiction of Luttinger surgery [3,
Section 6.4]. The handlebody of the Kodaira–Thurston manifold is given in Figure 5
without the 0-framed 2-handle that links the second dotted circle from left to right
along with four 3-handles and a 4-handle; see [3, Figure 14.35].

The second argument to prove the lemma is as follows. The existence of the
diffeomorphism (3-13) follows from a standard argument; see [8, Proof of Lemma 2].
The 4-manifold N̂ is diffeomorphic to the product S1

× M3 of the circle with a
3-manifold M3 that is obtained from the 3-torus T 3

= y × a × b by applying a
1-Dehn surgery along a and a 0-Dehn surgery along b. The resulting 3-manifold M3

has infinite cyclic fundamental group. By a similar Kirby diagram argument as
for the diffeomorphism (3-7), we see that M3 is diffeomorphic to S1

× S2 and we
conclude that N̂ = S1

× (S1
× S2)= T 2

× S2.
We now prove the existence of the diffeomorphism (3-14) using the Moishezon

trick; it implies that the 4-manifold N ∗ is obtained by doing surgery along a
nullhomotopic loop in N̂ . Therefore, N ∗ is diffeomorphic to either N̂ # (S2

× S2)

or N̂ #(S2
×̃S2). To check that the diffeomorphism type is the former, it is sufficient

to proceed as in Lemma 6. Using (3-13), we conclude that N ∗
≈ (T 2

×S2)#(S2
×S2).

Moreover, this diffeomorphism can be chosen to send the framed 2-torus T to the
canonical 2-torus with its product framing (see proof of Lemma 6). □

3.3. The 4-manifolds Ng for g ∈ N. We now generalize the construction of the
Kodaira–Thurston manifold N in the previous section to produce a 4-manifold Ng

that will be the building block BFg mentioned in (b) of the strategy in Section 2 for
any natural number g. The symplectic 4-manifold Ng is defined as

(3-15) Ng := S1
× Yg,

where Yg is the mapping torus of

ϕg := Da1 ◦ · · · ◦ Dag :6g →6g

and Dai is a Dehn twist around the loop ai ⊂6g defined in Figure 1.

Remark 8. It is possible to describe (3-15) as a symplectic sum

(3-16) Ng = N1 #T 2 · · · #T 2 N1

of g copies of the Kodaira–Thurston manifold N1 = N . As we already saw
in Section 3.2, N is obtained by taking the product of S1 with a mapping torus of a
Dehn twist of T 2. This is generalized in the construction (3-15) of Ng given that a
surface of genus g can itself be deconstructed as a connected sum of g copies of
the 2-torus:

6g = T 2 # · · · # T 2︸ ︷︷ ︸
g times

.



EXOTIC 2-LINKS IN CLOSED 4-MANIFOLDS WHOSE COMPONENTS ARE UNKNOTS 49

The 4-manifold Ng contains a symplectic 2-torus

(3-17) T = x × y ⊂ N1 \ ν(T 2)⊂ Ng

as well as a Lagrangian 2-torus x × b for each copy of N1 in (3-16). These 2-tori
can also be seen as x ′

× bi where x ′ is a parallel copy of x and bi is the inclusion
of b in Ng through the i-th copy of N1 in (3-16). Let γ ′

i be the framed loops

(3-18) γ ′

i = {p′
} × bi ⊂ x ′

× bi ⊂ Ng

with framing induced by the Lagrangian framing on the 2-torus x ′
× b. We gather

together the framed loops (3-18) into a 1-dimensional submanifold

(3-19) LFg = γ ′

1 ⊔ · · · ⊔ γ ′

g.

The following homotopical properties of Ng are useful for our purposes.

Lemma 9. Let g ∈ N.

• The fundamental group of Ng is generated by the inclusion of the fundamental
group of the torus j∗π1(T ) and the loops γ̃i obtained by connecting the loops γ ′

i to
a base point.

• There is an isomorphism

(3-20)
π1(Ng)

⟨ j∗π1(T )⟩N
≈ Fg,

where ⟨ j∗π1(T )⟩N is the normal subgroup generated by j∗π1(T ) and the loops γ̃i

correspond to generators.

Proof. We know that π1(Yg) is given by an HNN extension, which yields

π1(Ng)∼= ⟨x⟩ ⊕

〈
y, a1, b1, . . . , ag, bg

∣∣
[y, ai ] = [y, bi ]a−1

=

g∏
j=1

[a j , b j ] = 1 for i = 1, · · · , g
〉

with j∗(π1(T ))= ⟨x, y | [x, y]⟩. We conclude that

π1(Ng)

⟨ j∗(π1(T ))⟩N

∼= ⟨b1, b2, . . . , bg⟩ ∼= Fg,

where x ∈ π1(T 2
×6g) is the homotopy class of the loop x × {p} ⊂ T 2

×6g

connected to a base point, and similarly for y, ai and bi for i = 1, . . . , g. □

Perform g surgeries to Ng along the framed loops (3-18) to produce a closed
4-manifold

(3-21) N ∗

g =

(
Ng \

g⊔
i=1
ν(γ ′

i )
)

∪

( g⊔
i=1
(D2

× S2)
)
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with fundamental group π1(N ∗
g )= Z ⊕ Z. The 2-torus T is disjoint from the seam

of the surgeries in (3-21) and it defines an embedded framed 2-torus T in N ∗
g .

We now identify the diffeomorphism type of the 4-manifold N ∗
g .

Lemma 10. Let g ∈ N and let N ∗
g be the manifold defined in (3-21). There is a

diffeomorphism

(3-22) N ∗

g ≈ (T 2
× S2) # g(S2

× S2).

Moreover, through this diffeomorphism the framed 2-torus T ⊂ N ∗
g is mapped to

the canonical 2-torus T 2
×{p} ⊂ (T 2

× S2) # g(S2
× S2) equipped with its product

framing.

Proof. A proof of Lemma 10 by induction on g is obtained using Lemma 7 and the
construction of Ng in terms of a generalized fiber sum of g copies of the Kodaira–
Thurston manifold N1 as it is described in Remark 8. The details are left to the
reader. □

3.4. Infinitely many inequivalent smooth structures. The smooth 4-manifolds of
the fourth clause of Theorem A are introduced in the following proposition.

Proposition 11. Let M be an admissible 4-manifold in the sense of Definition 2.
Let BG be the building block in (b) of Section 2 that was defined in Sections 3.1
and 3.3 for the groups G = π1(6g) and G = Fg, respectively.

The generalized fiber sum

(3-23) M #T 2 BG = (M \ ν(T2))∪ (BG \ ν(T ))

admits infinitely many pairwise inequivalent smooth structures {Z K | K ∈ K}.
Moreover, the fundamental group of (3-23) is isomorphic to G and it is generated

by the homotopy classes of the loops obtained by connecting every component of LG ,
(3-3) and (3-19), to a common base point.

Proof. For a knot K ∈ K, perform Fintushel–Stern knot surgery to M along T1 to
obtain the 4-manifold MK . Notice that we still have an inclusion

T2 ⊂ (M \ ν(T1))
i
↪→ MK ,

since this cut-and-paste operation can be performed away from the 2-torus T2.
We abuse notation and denote i(T2) by T2, and we make sure that the context resolves
any confusion. The intersection forms of M and MK are isomorphic as computed
in [15; 22, V.4.1]. Moreover, there is an isomorphism of the second homology
groups sending the homology class [T2] ∈ H2(M; Z) onto [T2] ∈ H2(MK ; Z) [22,
Chapter V]. By Freedman’s theorem [18] this isomorphism can be realized by a
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homeomorphism f : M → MK such that the induced map in homology f∗ sends
the homology class [T2] onto itself:

H2(M; Z) H2(MK ; Z)

[T2] [T2]

f∗

∈ ∈

By our hypothesis, the 2-tori f (T2), T2 ⊂ MK have simply connected complement.
A result of Sunukjian [39, Theorem 7.1] implies the existence of a homeomorphism
of pairs

(3-24) g :
(
MK , ν( f (T2))

)
→ (MK , ν(T2))

and we obtain the desired homeomorphism of pairs

(3-25) g ◦ f : (M, ν(T2))→ (MK , ν(T2)).

We proceed to fiber sum both M and MK with BG . In particular, we perform the
generalized fiber sum by identifying the 2-tori T2 in M and MK with the framed
2-torus T ⊂ BG . In order to do so, we fix a smooth framing τ for the 2-torus T2 in M
and we endow the 2-torus T2 ⊂ MK with a smooth framing τK as follows. Denote
by τ̃K the restriction of the map τ ◦ (g ◦ f )−1 to ν(T2). Notice that τ̃K : ν(T2)→

T 2
× D2 is not necessarily a smooth map. However, any homeomorphism of a 3-

manifold is isotopic to a diffeomorphism [11; 31, Theorem 6.3], and we can assume
that τ̃K is indeed smooth near the boundary. We have that the diffeomorphism

(τ̃K ◦ τ−1)|∂ : T 2
× S1

→ T 2
× S1

induces a map ((τ̃K ◦ τ−1)|∂)∗ : H1(T 2
× S1) → H1(T 2

× S1) ∼= Z3 that can be
represented by a matrix of the form

A =

 C
0
0

p q 1


with C ∈ SL(2,Z). Let ϕC : T 2

→ T 2
= R2/Z2 be the self-diffeomorphism of the

2-torus that induces an isomorphism (ϕC)∗ : H1(T 2)→ H1(T 2)= Z2 given by the
matrix C , and let Rθ : D2

→ D2 be a rotation of angle θ of the 2-disk. Consider
the diffeomorphism given by

σ : T 2
× D2

≈ R2/Z2
× D2

→ T 2
× D2

≈ R2/Z2
× D2,

((x1, x2), y) 7→ (ϕC(x1, x2), R2π(px1+qx2)(y)),
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for (x1, x2)∈ T 2
= S1

× S1 and y ∈ D2. The map induced by the diffeomorphism σ

satisfies (σ|∂)∗ = ((τ̃K ◦ τ−1)|∂)∗. We set τK = σ ◦ τ and point out that the diffeo-
morphisms τ̃K |∂ and τK |∂ are smoothly isotopic by a result of Hatcher and Wahl
[23, Proposition 2.1]. Without loss of generality, we assume that they are equal and
pick τK to be the framing of T2 ⊂ MK . We define the smooth 4-manifolds

(3-26) Z := M #T 2 BG and Z K := MK #T 2 BG .

Given our chosen framings, the homeomorphism (3-25) extends via the identity
map to a homeomorphism F : Z → Z K since τK defines the same gluing map
as τ̃K . The claim regarding the fundamental group π1(M #T2 BG)= G follows from
Lemma 9 and the Seifert–van Kampen theorem.

To show that the set {Z K | K ⊂ K} consists of pairwise nondiffeomorphic 4-
manifolds, we look at the Seiberg–Witten invariant of each of its elements as a
Laurent polynomial in the group ring Z[H2(Z K ; Z)] for every K ∈K [16, Lecture 2].
Recall that the Seiberg–Witten invariants {SWX (k) | k ∈ H2(X)} of a 4-manifold X
can be combined into an element of Z[H2(X; Z)] by associating a formal variable eα

to each homology class α ∈ H2(X; Z) and by setting

(3-27) SW X =
∑

SWX (k) · ek,

where the sum is taken over all the basic classes k ∈ H2(X; Z); see [12, p. 200; 38]
for further details. An admissible 4-manifold contains at least one basic class,
and hence the invariant (3-27) is nonzero, and the same holds for the symplectic
4-manifold BG by a result of Taubes [40].

We proceed to set up the use of a gluing formula due to Taubes [41] to compute
(3-27) for Z K ; see [3, Section 13.9]. The boundary of BG \ ν(T ) is diffeomorphic
to S1

× S1
× ∂D2 by the diffeomorphism coming from the framing of T ⊂ BG and

the rim 2-tori
S1

× {p} × ∂D2 and {p} × S1
× ∂D2

bound 3-manifolds in BG \ ν(T ). This fact combined with the Mayer–Vietoris
sequence for Z K = (MK \ ν(T2))∪ (BG \ ν(T )) implies that the inclusion induced
homomorphism

j∗ : H2(BG \ ν(T ); Z)→ H2(Z K ; Z)

is injective. The Mayer–Vietoris sequence for MK = (MK \ ν(T2))∪ ν(T2) yields
that the inclusion induced homomorphisms

i∗ : H2(MK \ ν(T2); Z)→ H2(Z K ; Z)

and
i ′

∗
: H2(MK \ ν(T2); Z)→ H2(MK ; Z)
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have the same kernel

ker(i ′

∗
)= ker(i∗)=

〈[
τ−1

K ({p} × S1
× ∂D2)

]
,
[
τ−1

K (S1
× {p} × ∂D2)

]〉
.

On the other hand, SWMK = SWM ·1K (e2[T1]) ̸= 0 by [15] (see [3, Proposi-
tion 13.21; 12, p. 201]). Taubes’ gluing formula [41, Theorem 1.1] implies that

SWMK = i ′

∗
(SWMK \ν(T2)) · i ′′

∗
(SWν(T2)).

It follows that SWMK \ν(T 2) ̸∈ ker(i ′
∗
)= ker(i∗). Moreover, c := i∗([T ′

1]) ̸= 0 where
T ′

1 is a push-off of T1 inside MK \ ν(T2). We apply again Taubes’ gluing formula
[41, Theorem 1.1] and get

SW Z K = i∗(SWMK \ν(T2)) · j∗(SWBG\ν(T ))

= i∗(1K (e2[T ′

1])) · i∗(SWM\ν(T2)) · j∗(SW(BG\ν(T ))

=1K (e2c) ·SW Z

≇ SW Z

for a knot K with nontrivial Alexander polynomial. The SW-invariants, thus, are
different [38], and we conclude that Z and Z K are nondiffeomorphic. Moreover,
for two knots K1 and K2 with Alexander polynomials 1K1 ̸=1K2 , we have that
the 4-manifolds Z K1 and Z K2 have different SW-invariants and, therefore, they are
nondiffeomorphic. This concludes the proof of the proposition. □

It is possible to give a more explicit computation of the value (3-27) for Z K in the
proof of Proposition 11 by using other gluing formulas [12, Section 1]. B. D. Park
computed

SWT 2×6g = (t−1
− t)2g−2 and SWT 2×60

g
= (t−1

− t)2g−1

for t = [T 2
× {p}] and 60

g =6g \ D2 in [32, Corollary 19]. Since the symplectic
4-manifold Ng is obtained by applying Luttinger surgeries to T 2

×6g , the invariants
SWNg and SWNg\ν(T ) can be computed using Park’s work.

Remark 12. The diffeomorphism type of the generalized fiber sum M #T2 (T
2
×S2)

is the same regardless of the choice of framing τ or τK for T2 and the product
framing for T 2

× {p} ⊂ T 2
×6g.

3.5. The ambient 4-manifolds of Theorem A. We now identify the diffeomorphism
types of the ambient 4-manifolds of Theorem A. Since the codimension-three
submanifold LG ⊂ BG is disjoint from T , it is embedded in the 4-manifold Z K

constructed in (3-26) and each of its components is framed. We define Z∗

K to be
the 4-manifold obtained by doing loop surgery along each component of LG ⊂ Z K .
Moreover, we can define 0 to be the 2-link in Z∗

K given by the belt 2-spheres of
the surgeries.
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Proposition 13. For every knot K ∈ K, there is a diffeomorphism

(3-28) Z∗

K ≈ M # n(S2
× S2).

Proof. We fix a knot K ∈ K and take a closer look at the assemblage of Z∗

K to
prove the existence of the diffeomorphism (3-28). Recall that the manifold Z K

is defined as the generalized fiber sum of MK and BG along the 2-tori T2 ⊂ MK

with framing τK and T ⊂ BG with the Lagrangian framing. Since LG ⊂ BG is
disjoint from T , the 4-manifold Z∗

K is the generalized fiber sum of MK and B∗

G
along T2 ⊂ MK and T ⊂ B∗

G . Lemmas 6 and 10 say that there is a diffeomorphism

B∗

G ≈ (T 2
× S2) # n(S2

× S2)

that sends the framed 2-torus T to the canonical 2-torus

(3-29) T 2
× {p} ⊂ (T 2

× S2) # n(S2
× S2).

Therefore, the 4-manifold Z∗

K is diffeomorphic to the generalized fiber sum of MK

and (T 2
× S2)# n(S2

× S2) along the 2-tori T2 ⊂ MK and (3-29). To sum up, using
Remark 12, we have

Z∗

K = MK #T 2 B∗

G ≈ MK #T 2 (T 2
× S2) # n(S2

× S2)≈ MK # n(S2
× S2).

A result of Akbulut [2], Auckly [4] and Baykur [9] allows us to conclude that Z∗

K
is diffeomorphic to the connected sum M # n(S2

× S2) for any K ⊂ S3. □

3.6. The 2-links of Theorem A and topological isotopy. In this section, we con-
struct the 2-links of Theorem A and show that they are pairwise topologically
isotopic and componentwise topologically unknotted.

Proposition 14. For G ∈ {Fg, π1(6g)} and n = rk(G), there is an infinite collection
of n-component 2-links

(3-30) {0K | K ∈ K}

smoothly embedded in M # n(S2
× S2) that are pairwise topologically isotopic and

componentwise topologically unknotted.
The 4-manifold that is obtained from M # n(S2

× S2) by doing surgeries along
every component of (3-30) is diffeomorphic to the 4-manifold Z K defined in (3-26)
for any knot K ∈ K.

Proof. Let U ⊂ S3 be the unknot. For any knot K ∈ K, there is a homeomorphism
of pairs

(3-31) fK : (Z K ,LG)→ (ZU ,LG)

that restricts to the identity in a neighborhood of LG by the proof of Proposition 11.
The 4-manifolds Z∗

U and Z∗

K are the result of surgeries along the components of



EXOTIC 2-LINKS IN CLOSED 4-MANIFOLDS WHOSE COMPONENTS ARE UNKNOTS 55

the submanifold LG ⊂ BG and we define 0 ⊂ B∗

G \ ν(T ) to be the 2-link given by
the disjoint union of the belt 2-spheres of such surgeries. In particular, there is an
embedding of 0 inside Z∗

K for any knot K ∈ K, and the number of components
of 0 and of LG are both equal to n. Moreover, the homeomorphism (3-31) induces
a homeomorphism of pairs

gK : (Z∗

K , 0)→ (Z∗

U , 0).

Proposition 13 allows us to fix a diffeomorphism φU : Z∗

U → M # n(S2
× S2) and

to define 0U as φU (0).
Notice that we also have a diffeomorphism

(3-32) φK : Z∗

K → M # n(S2
× S2)

such that (φK )∗ = (φU ◦ gK )∗ in homology for every K ∈ K. Indeed, any diffeo-
morphism taken from Proposition 13 can be adjusted at the level of homology by
composing it via a self-diffeomorphism of M # n(S2

× S2) by a result of Wall [43,
Theorem 2] since the intersection form of M is indefinite; see Lemma 4.

We define the 2-link (3-30) to be the image of 0K under the diffeomorphism
(3-32), i.e.,

(3-33) 0K := φK (0).

We now argue that the 2-links 0K and 0U are topologically isotopic for any knot.
The map

hK = φU ◦ gK ◦φ−1
K : (M # n(S2

× S2), 0K )→ (M # n(S2
× S2), 0U )

is a homeomorphism of pairs that induces the identity map in homology. Work of
Perron [33] and Quinn [34] guarantees that hK is isotopic to the identity map and,
hence, we conclude that the 2-links 0K and 0U are topologically isotopic for any
K ∈ K. Each component of the 2-link (3-30) is topologically unknotted by either
[42, Theorem B] or [39, Theorem 7.2]. This concludes the proof of the first clause
of Proposition 14.

The second clause is straightforward from the construction of Z K and Z K
∗. □

3.7. Smoothly inequivalent 2-links. In this section, we distinguish the smooth
embeddings of our 2-links. The key idea is to tell them apart by looking at the smooth
structures of their complements and use their Seiberg–Witten invariants indirectly.
More precisely, we undo the surgeries and reconstruct Z K from M # n(S2

× S2) as

(3-34) Z K ≈
(
M # n(S2

× S2) \ (ν(0K ))∪ (ν(LG))
)

and use inequivalent smooth structures constructed in Proposition 11 in order to
distinguish our 2-links.
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Proposition 15. Let 0 and 0′ be a pair of 2-links that are smoothly embedded in a
smooth 4-manifold Z∗. Let Z and Z ′ be the 4-manifolds that are obtained from Z∗

by doing surgery along every component of 0 and 0′, respectively. If there is no
diffeomorphism Z → Z ′, then the 2-links 0 and 0′ are smoothly inequivalent.

In particular, the 2-links (3-30) constructed in Proposition 14 are pairwise
smoothly inequivalent.

The proof of Proposition 15 is immediate and, hence, omitted. Any distinct pair
of 2-links in the collection (3-30) satisfies the assumptions of this proposition by
Proposition 11.

3.8. Symmetric and Brunnianly exotic 2-links. In this section, we study some
properties of the 2-links of Theorem A. We start with the following result regarding
their symmetry.

Proposition 16. Suppose G = Fg. Every 2-link 0K ⊂ M # g(S2
× S2) belonging to

the infinite collection (3-30) is smoothly symmetric.

Proof. For any permutation σ of g elements, there is a self-diffeomorphism

(3-35) f : Ng → Ng

that is the identity on a neighborhood of the 2-torus (3-17) and such that it maps
the framed loops (3-19) to f (γ ′

i ) = γ ′

σ(i) for every i = 1, . . . , g. The map (3-35)
yields a diffeomorphism of pairs

(Z K , γ
′

1, . . . , γ
′

g)→ (Z K , γ
′

σ(1), . . . , γ
′

σ(g)),

which allows us to define a diffeomorphism of pairs

(Z∗

K , S1, . . . , Sg)→ (Z∗

K , Sσ(1), . . . , Sσ(g)).

In particular, the 2-link 0 := S1 ⊔ · · · ⊔ Sg ⊂ Z∗

K is smoothly symmetric and so
is the 2-link (3-33) smoothly embedded in M # g(S2

× S2), given that there is a
diffeomorphism of pairs

φK : (Z∗

K , 0)→ (M # g(S2
× S2), 0K );

see (3-32). □

We will employ the following two results to address Brunnianity.

Lemma 17 (Mandelbaum [27], Gompf [19, Lemma 4]). Let X and B be two
oriented 4-manifolds (possibly with boundary) and let TX ⊂ X and αB×βB =TB ⊂ B
be two smoothly embedded framed 2-tori. Suppose that X , B and X \ ν(TX ) are
simply connected and that either X is spin, or X \ ν(TX ) is nonspin. Consider the
generalized fiber sum

F = X #T 2 B
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of X and B along TX and TB . Then F # S2
× S2 is diffeomorphic to X # B∗, where

B∗ is the manifold obtained from B by doing surgery along the push-offs of the
loops αB and βB . Moreover, we can assume the chosen diffeomorphism to be the
identity on ∂F = ∂X ⊔ ∂B if X or B have nonempty boundary.

Lemma 18. Let M be an admissible 4-manifold. If M is nonspin, then, up to
swapping the roles of the 2-tori T1 and T2, M \ ν(T2) is nonspin.

Proof. Since M \ ν(T2) is simply connected, it is enough to show that there
exists an element σ ∈ H2(M \ ν(T2); Z) with odd self-intersection. The assump-
tion π1

(
M \ (ν(T1) ⊔ ν(T2))

)
= {1} implies the existence of immersed 2-spheres

S1, S2 ⊂ M such that Si · Ti = 1 for i = 1, 2 and S1 ∩ T2 = S2 ∩ T1 =∅. If either of
them has odd self-intersection, then the complement of one of the 2-tori contains a
surface of odd self-intersection and we are done. Suppose that S2 · S2 is even. Since
M is nonspin, there exists an element α ∈ H2(M; Z) with odd self-intersection.
Define σ := α− (α · [T2])[S2] and notice that we have

σ · σ = α ·α− 2(α · [T2])([S2] ·α)+ (α · [T2])
2
[S2]

2
≡ α ·α ≡ 1 mod 2

and σ ·[T2]=α ·[T2]−α ·[T2]= 0. Let6⊂ M be an embedded surface representing
the homology class σ ∈ H2(M; Z). The algebraic intersection of 6 and T2 is zero.
We eliminate the geometric intersection by tubing6 in oppositely signed intersection
points, obtaining a new surface 6′ in M \ν(T2) which has odd self-intersection. □

We are now ready to prove the main result of this section.

Proposition 19. For G = Fg, consider the family (3-30). There exists an infinite
subset K′

⊂ K of knots K ⊂ S3 parametrizing a subfamily

(3-36) {0K | K ∈ K′
}

of pairwise Brunnianly exotic 2-links.

Proof. Let 0K = SK ,1 ⊔ SK ,2 ⊔ · · · ⊔ SK ,g be a g-component 2-link from the
family (3-30). Thanks to Proposition 16, in order to prove the theorem it is enough to
show that removing the first component from each 0K yields a family of 2-links that
is no longer exotic. By construction, we have the following diffeomorphism of pairs:

(3-37) (M # n(S2
× S2), 0K )≈ (MK #T 2

K
(N ∗ #T 2 · · · #T 2 N ∗), 0).

Here the notation #T 2
K

is used to point out the fact that the framing of that generalized
fiber sum depends on the knot K , while 0 = S1 ⊔ · · · ⊔ Sg is the 2-link made up
by the belt spheres of the surgery (3-21) on Ng. Such diffeomorphism can be
chosen to send the component SK ,1 to S1 for each knot K . In particular, each one
of the components Si is contained in a N ∗

≈ (T 2
× S2) # (S2

× S2) block, which
is therefore disjoint from the (n−1)-component 2-link 0 \ Si . In the following, we
will use the copy of S2

× S2 that intersects S1 to stabilize 0 \ S1, which is contained
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in the remaining N ∗ #T 2 · · · #T 2 N ∗
≈ N ∗

g−1. In particular, we have the following
diffeomorphism of pairs:

(M # g(S2
× S2), 0 \ SK ,1)≈ ((MK #T 2

K
N ∗) #T 2 N ∗

g−1, 0 \ S1).

To conclude it is enough to show that there exists an infinite subfamily K′
⊆K such

that for any two knots K , K ′
∈K′ there exists a diffeomorphism between MK #T 2

K
N ∗

and MK ′ #T 2
K ′

N ∗ relative to ν(T ′), where T ′ is a parallel push-off of T in N ∗. In
particular, we will see that there are at most four diffeomorphism types of pairs
in the family {(MK #T 2

K
N ∗, T ′) | K ⊂ K} where T ′ is framed. By the pigeonhole

principle, we can obtain K′.
We have, by (3-13), the identification

MK #T 2
K

N ∗
≈ (MK # (S2

× S2)) #T 2
K
(T 2

× S2),

which sends the framed 2-torus T ′ to the canonically framed 2-torus T 2
×{p}⊂T 2

× S2.
If M is nonspin, then MK is nonspin and, by Lemma 18, M \ ν(T2) is also

nonspin, and they are all simply connected. Since MK is the generalized fiber sum
between M and S1

× YK , where YK is the result of a Dehn surgery on S3 along K ,
we can apply Lemma 17 to obtain a diffeomorphism ψ relative to the boundary
between (MK \ ν(T2)) # (S2

× S2) and the manifold P obtained by performing two
loop surgeries on (M \ν(T2))# (S1

×YK ). It can be shown that P is diffeomorphic
to (M \ν(T2))#(S2

×S2) (modulo changing the initial framing of T1). We extend ψ
by the identity on (T 2

× S2) \ ν(T 2
× {p}) and obtain a diffeomorphism

ψ̃ : (MK # (S2
× S2)) #T 2

K
(T 2

× S2)→ (M # (S2
× S2)) #T 2

K
(T 2

× S2).

We can apply Lemma 17 a second time as follows. Consider the generalized fiber
sum FK between M and (T 2

× S2)\ν(T 2
×{p}) along T2, with framing depending

on K , and T 2
× {q}. Lemma 17 implies that FK # (S2

× S2) is diffeomorphic
to M #

(
(T 2

× S2) \ ν(T 2
×{p})

)∗ by a diffeomorphism ϕ that keeps the boundary
∂ν(T 2

× {p}) fixed. Here we use the notation X∗ to denote the result of two loop
surgeries on a 4-manifold X along the loops described by Lemma 17. Hence, we
can extend ϕ via the identity to a map

ϕ̃ : (M # (S2
× S2)) #T 2

K
(T 2

× S2)→ M # (T 2
× S2)∗.

We do not need to determine the result of the loop surgeries (T 2
× S2)∗. Since

the loops do not depend on the knot K , but their framings might, there are four
possibilities at most for the framed pair ((T 2

× S2)∗, ϕ̃(T 2
× {p}). □

Remark 20. By taking the connected sum of the ambient manifold with a copy
of S2

× S2, the same proof of Proposition 19 shows that the 2-links of the fam-
ily (3-36) (instead of their sublinks) become smoothly equivalent in the ambient
4-manifold (M # g(S2

× S2)) # (S2
× S2).
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Remark 21. It is possible to prove that K′ is equal to K. In particular, the use of
the pigeonhole principle in the proof of Proposition 19 can be avoided by taking
a closer look at the framing of the loops and at the framing τK for the 2-torus T2

inside MK .

Remark 22. From a pair of exotic 2-spheres in a 4-manifold, one easily obtains
exotic 2-links with a prescribed number of components and the free group with
g generators as 2-link group by adding unknotted 2-spheres. The results in this
section prove that this is not the case for the 2-links constructed in Theorem A with
2-link group Fg.

In the case of G = π1(6g) and using similar arguments, one can show a weaker
property after pairing up the 2-link components, in which disregarding a pair
of components from the n-component 2-link yields smoothly equivalent (n−2)-
component 2-links.

4. Proofs

4.1. Proof of Theorem A. We collect the results of previous sections into a proof
of Theorem A. The infinite set (1-2) of 2-links {0K | K ∈ K} smoothly embedded
in M # n(S2

× S2) was constructed in Proposition 14. The 2-link group of 0K is
isomorphic to the fundamental group of the manifold obtained from M #n(S2

× S2)

by doing surgery on every component of 0K . This manifold is Z K by Proposition 14
and by Proposition 11 we know that its fundamental group π1(Z K ) is isomorphic
to G. This settles the first clause of the theorem. The second clause of the theorem
is that the collection of 2-links {0K | K ∈K} is an exotic family. By Proposition 14,
elements of this family are pairwise topologically isotopic and by Proposition 15 they
are pairwise smoothly inequivalent. The 2-links are componentwise topologically
unknotted by Proposition 14 and this establishes the third clause. The infinite set
of pairwise nondiffeomorphic closed 4-manifolds of the fourth clause has been
described in detail in Section 3.4. □

4.2. Proof of Theorem B. The 2-links of Theorem A with 2-link group Fg are
symmetric by Proposition 16. The existence of the infinite subfamily of pairwise
Brunnianly exotic 2-links that stabilize after one connected sum with S2

×S2 follows
from Proposition 19 and Remark 20. □
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