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EQUIVARIANT RIGIDITY OF RICHARDSON VARIETIES

ANDERS S. BUCH, PIERRE-EMMANUEL CHAPUT AND NICOLAS PERRIN

We prove that Schubert and Richardson varieties in flag manifolds are
uniquely determined by their equivariant cohomology classes, as well as a
stronger result that replaces Schubert varieties with closures of Białynicki-
Birula cells under suitable conditions. This is used to prove a conjecture of
Buch, Chaput, and Perrin, stating that any two-pointed curve neighborhood
representing a quantum cohomology product with a Seidel class is a Schubert
variety. We pose a stronger conjecture which implies a Seidel multiplication
formula in equivariant quantum K -theory, and prove this conjecture for
cominuscule flag varieties.

1. Introduction

A Schubert variety � in a flag manifold X = G/P is called rigid if it is uniquely
determined by its class [�] in the cohomology ring H∗(X). More precisely, if Z ⊂ X
is any irreducible closed subvariety such that [Z ] is a multiple of [�] in H∗(X),
then Z is a G-translate of �. This problem has been studied in numerous papers;
see, e.g., [Hong 2005; 2007; Coskun 2011; 2014; 2018; Robles and The 2012;
Coskun and Robles 2013; Hong and Mok 2020; Liu et al. 2024]. In this paper we
show that all Schubert varieties and Richardson varieties are equivariantly rigid. In
other words, if T ⊂ G is a maximal torus, � ⊂ X is a T -stable Richardson variety,
and Z ⊂ X is a (nonempty) T -stable closed subvariety such that the T -equivariant
class [Z ] ∈ H∗

T (X) is a multiple of [�], then Z = �.
More generally, let T be an algebraic torus over an algebraically closed field, let X

be a nonsingular projective T -variety, and let �⊂ X be a T -stable closed subvariety.
Let �T denote the set of T -fixed points in �. We will say that � is T -convex if,
for any T -stable closed subvariety Z ⊂ X satisfying Z T

⊂ �, we have Z ⊂ �.
A fixed point p ∈ X T is called fully definite if all T -weights of the Zariski tangent
space Tp X belong to a strict half-space of the character lattice of T . We show that if
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all T -fixed points in X are fully definite, then any irreducible T -convex subvariety
of X is also T -equivariantly rigid. Here � is called T -equivariantly rigid if � is
determined by its class in the T -equivariant Chow cohomology ring of X .

Let Gm ⊂ T be a one-parameter subgroup such that X T
= XGm , and assume that

this fixed point set is finite. The associated Białynicki-Birula decomposition of X is
given by X =

⋃
p∈X T X+

p , where X+
p = {x ∈ X : limt→0 t · x = p} is the Białynicki-

Birula cell of points attracted to p by the action of t ∈ Gm . This decomposition is
called a stratification if each cell closure X+

p ⊂ X is a union of smaller cells. In this
case we show that all cell closures are T -convex. We arrive at the following result
combining Theorem 4.3 and Proposition 5.3.

Theorem. Let X be a nonsingular projective T -variety with finitely many T -fixed
points, and choose Gm ⊂ T such that X T

= XGm .

(a) Assume that the Białynicki-Birula decomposition of X is a stratification. Then
each cell closure X+

p is T -convex.

(b) Assume that all T -fixed points in X are fully definite. Then any irreducible
T -convex subvariety of X is T -equivariantly rigid.

This result applies to Schubert and Richardson varieties in flag varieties, as
well as positroid varieties in Grassmannians, so these subvarieties are both T -
convex and T -equivariantly rigid. However, projected Richardson varieties do not
in general enjoy these properties; see Remark 6.5. Our theorem also covers a class
of horospherical varieties, which includes all nonsingular horospherical varieties of
Picard rank 1 [Pasquier 2009].

Our theorem has additional applications in quantum Schubert calculus. Let
X = G/P be a complex flag manifold. A Schubert class [Xw

] is called a Seidel
class if the Weyl group element w is the minimal representative of a point in some
cominuscule flag variety G/Q. Multiplication by Seidel classes in the quantum
cohomology ring QH(X) is given by the identity [Xw

] ⋆ [Xu
] = qd(w,u)

[Xwu
],

where d(w, u) is the unique minimal degree of a rational curve connecting the
opposite Schubert varieties Xw0w and Xu [Seidel 1997; Belkale 2004; Chaput et al.
2009]. This implies that [Xwu

] is equal to the class of the curve neighborhood
0d(w,u)(Xw0w, Xu), defined as the union of all stable curves in X of degree d(w, u)

connecting Xw0w to Xu . We conjectured in [Buch et al. 2023] that this curve
neighborhood is in fact the translated Schubert variety

(1) 0d(w,u)(Xw0w, Xu) = w−1
· Xwu .

This has been proved in some cases when X is cominuscule, in all cases when X is
a flag variety of type A [Li et al. 2025; Tarigradschi 2023], and for X = SG(2, 2n)

[Benedetti et al. 2024]. Using that 0d(w,u)(Xw0w, Xu) and w−1
· Xwu define the

same class in H∗

T (X) by an equivariant version of the Seidel multiplication formula
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from [Chaput et al. 2009; Chaput and Perrin 2023], the identity (1) follows from
our result that Schubert varieties are equivariantly rigid.

In this paper we conjecture the more general identity

(2) 0d(w,u)+e(Xw0w, Xu) = 0e(w
−1(Xwu)),

where the right-hand side is the union of all stable curves of degree e that pass
through w−1

· Xwu . This union is a Schubert variety [Buch et al. 2013] whose
Weyl group element was determined in [Buch and Mihalcea 2015]. Denote by
Md(w,u)+e(Xw0w, Xu) the moduli space of three-pointed stable maps to X of de-
gree d(w, u) + e and genus zero, which send the first two marked points to
Xw0w and Xu , respectively. We further conjecture that the evaluation map ev3 :

Md(w,u)+e(Xw0w, Xu) → 0e(w
−1(Xwu)) is cohomologically trivial. This conjec-

ture implies a Seidel multiplication formula in the equivariant quantum K -theory
ring QKT (X). We prove this conjecture when X is a cominuscule flag variety,
thereby obtaining an equivariant generalization of our Seidel multiplication formula
from [Buch et al. 2023]. This generalized Seidel multiplication formula has also
been obtained for Grassmannians of type A in [Gorbounov et al. 2025] using
different methods. Based on suggestions from Mihail Tarigradschi, we finally apply
the methods of [Tarigradschi 2023] to prove the identity (2) when X = GLn(C)/P
is any flag manifold of Lie type A.

Our paper is organized as follows. In Section 2 we recall some basic facts and
notation related to torus actions. In Section 3 we show that if all T -fixed points
of X are fully definite, then the fixed point set Z T of a T -stable subvariety Z ⊂ X is
determined by its equivariant class [Z ] ∈ H∗

T (X). This is used in Section 4 to prove
part (b) of the above theorem. Section 5 proves part (a). Section 6 interprets our
theorem for flag varieties, which is used in Section 7 to prove the conjecture about
curve neighborhoods from [Buch et al. 2023]. Section 8 discusses the more general
conjecture as well as its consequences in quantum K -theory. Finally, Section 9
interprets our theorem for certain horospherical varieties.

2. Torus actions

We work with varieties over a fixed algebraically closed field K. Varieties are
reduced but not necessarily irreducible. A point will always mean a closed point.
The multiplicative group of K is denoted by Gm = K ∖ {0}. An (algebraic) torus is
a group variety isomorphic to (Gm)r for some r ∈ N.

Let T = (Gm)r be an algebraic torus. Any rational representation V of T is a
direct sum V =

⊕
λ Vλ of weight spaces Vλ = {v ∈ V : t ·v = λ(t)v ∀t ∈ T } defined

by characters λ : T → Gm . The weights of V are the characters λ for which Vλ ̸= 0.
The group of all characters of T is called the character lattice and is isomorphic
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to Zr . Given a T -variety X , we let X T
⊂ X denote the closed subvariety of T -fixed

points. A subvariety Z ⊂ X is called T -stable if t · z ∈ Z for all t ∈ T and z ∈ Z .
In this case Z is itself a T -variety.

Definition 2.1. The T -fixed point p ∈ X is nondegenerate in X if T acts with
nonzero weights on the Zariski tangent space Tp X . The point p is fully definite if
all T -weights of Tp X belong to a strict half-space of the character lattice of T .

Equivalently, p ∈ X T is fully definite in X if and only if there exists a cocharac-
ter ρ : Gm → T such that Gm acts with strictly positive weights on Tp X though ρ.
For example, if X = G/P is a flag variety and T ⊂ G is a maximal torus, then all
points of X T are fully definite in X (see Section 6). Any nondegenerate T -fixed
point must be isolated in X T . Fully definite T -fixed points are called attractive
in many sources, see, e.g., [Brion 1997]; here we follow the terminology from
[Białynicki-Birula 1973].

Remark 2.2. If X is a normal quasiprojective T -variety, then XGm = X T holds
for all general cocharacters ρ : Gm → T . Here a cocharacter is called general if
it avoids finitely many hyperplanes in the lattice of all cocharacters. This follows
because X admits an equivariant embedding X ⊂ P(V ), where V is a rational
representation of T [Kambayashi 1966; Mumford 1965; Sumihiro 1974].

In the rest of this paper we let X be a nonsingular T -variety. The T -equivariant
Chow cohomology ring of X will be denoted by H∗

T (X); see [Fulton 1998; An-
derson and Fulton 2024]. This is an algebra over the ring H∗

T (point), which may
be identified with the symmetric algebra of the character lattice of T . Given a
class σ ∈ H∗

T (X) and a T -fixed point p ∈ X T , we let σp ∈ H∗

T (point) denote the
pullback of σ along the inclusion {p} → X . When X is defined over K = C, Chow
cohomology can be replaced with singular cohomology. In fact, our arguments will
only depend on equivariant classes [Z ]p ∈ H∗

T (point) obtained by restricting the
class of a T -stable closed subvariety Z ⊂ X to a fixed point, and these restrictions are
independent of the chosen cohomology theory. Similarly, we can use cohomology
with coefficients in either Z or Q.

3. Equivariant local classes

Let Z be a T -variety, fix p ∈ Z T , and let m⊂OZ ,p be the maximal ideal in the local
ring of p. Then the tangent cone C p Z = Spec

(⊕
mi/mi+1

)
is a T -stable closed

subscheme of the Zariski tangent space Tp Z = (m/m2)∨ = Spec(Sym(m/m2)).
The local class of Z at p is defined by (see [Anderson and Fulton 2024, §17.4])

(3) ηp Z = [C p Z ] ∈ H∗

T (Tp Z) = H∗

T (point).

When p is a nonsingular point of Z , we have ηp Z = 1.
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Proposition 3.1. Let Z be a T -variety and let p ∈ Z T be fully definite in Z. Then
ηp Z ̸= 0 in H∗

T (point).

Proof. We may assume that p is a singular point of Z , so that C p Z has positive
dimension. Choose Gm ⊂ T such that Gm acts with positive weights on Tp Z .
It suffices to show that the class of C p Z is nonzero in H∗

Gm
(Tp Z). Let {v1, . . . , vn}

be a basis of Tp Z consisting of eigenvectors of Gm . Then the action of Gm is given
by t · vi = tai vi for positive integers a1, . . . , an > 0. Set A =

∏n
i=1 ai , and let Gm

act on U = Kn by t · u = t Au. Then the map φ : Tp Z → U defined by

φ(c1v1 + · · · + cnvn) = (cA/a1
1 , . . . , cA/an

n )

is a finite Gm-equivariant morphism. By [Edidin and Graham 1998, Theorem 4]
we obtain

H∗

Gm
(U ∖ {0}) ⊗ Q = H∗(PU ) ⊗ Q,

where PU = (U ∖ {0})/Gm ∼= Pn−1 is the projective space of lines in U , and

φ∗[C p Z ]|U∖{0} = deg(φ)[φ(C p Z ∖ {0})/Gm] ∈ H∗(PU ) ⊗ Q.

The result now follows from the fact that every nonempty closed subvariety of
projective space defines a nonzero Chow class. □

Corollary 3.2. Let X be a nonsingular T -variety, Z ⊂ X a T -stable closed subva-
riety, and p ∈ Z T a T -fixed point of Z. If p is nondegenerate in X and fully definite
in Z , then [Z ]p ̸= 0 ∈ H∗

T (point).

Proof. By [Anderson and Fulton 2024, Proposition 17.4.1] we have

[Z ]p = cm(Tp X/Tp Z) · ηp Z ,

where m = dim Tp X − dim Tp Z . The result therefore follows from Proposition 3.1,
noting that T acts with nonzero weights on Tp X/Tp Z . □

The following example rules out some potential generalizations of Corollary 3.2.

Example 3.3. Let Gm act on A4 by

t.(a, b, c, d) = (ta, tb, t−1c, t−1d) .

Set Z = V (ad − bc) ⊂ A4, and let p = (0, 0, 0, 0) be the origin in A4. Then

Tp Z = TpA4
= A4 and C p Z = Z .

Since Gm acts trivially on the equation ad−bc, we have ηp Z =[Z ]= 0 in H∗

Gm
(A4)

(see [Anderson and Fulton 2024, §2.3]).
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4. Rigidity of convex subvarieties

Let T be an algebraic torus and let X be a nonsingular T -variety. We will show in
Section 6 that Schubert varieties and Richardson varieties in a flag variety X satisfy
the following two definitions.

Definition 4.1. A T -stable closed subvariety � ⊂ X is T -equivariantly rigid if it is
uniquely determined by its T -equivariant cohomology class up to a constant. More
precisely, if Z ⊂ X is any T -stable closed subvariety such that [Z ] = c [�] holds
in H∗

T (X) for some 0 ̸= c ∈ Q, then Z = �.

Definition 4.2. A T -stable closed subvariety �⊂ X is T -convex if, for any T -stable
closed subvariety Z ⊂ X satisfying Z T

⊂ �, we have Z ⊂ �.

When the action of T is clear from the context, we frequently drop T from
the notation and write simply equivariantly rigid and convex. Both notions are
properties of the T -equivariant embedding � ⊂ X ; for example, any T -variety
is convex as a subvariety of itself. Intersections of T -convex subvarieties are
again T -convex (with the reduced scheme structure). Most of this paper concerns
applications of the following observation.

Theorem 4.3. Let X be a nonsingular projective T -variety such that all fixed
points p ∈ X T are fully definite in X. Then any irreducible T -convex subvariety
of X is T -equivariantly rigid.

Proof. Let � ⊂ X be irreducible and convex, and let Z ⊂ X be any T -stable
closed subvariety such that [Z ] = c [�] holds in H∗

T (X), with 0 ̸= c ∈ Q. Then
Corollary 3.2 shows that Z T

= �T
= {p ∈ X T

: [Z ]p ̸= 0}. Since � is convex, we
obtain Z ⊂ �. Finally, the assumption [Z ] = c [�] implies that Z and � have the
same dimension, so we must have Z = �. □

Example 4.4. Let X be a nonsingular projective T -variety, let H∗

T (X) be the T -
equivariant Chow cohomology ring, and let L be a T -equivariant line bundle. Given
a section f ∈ 0(X,L), the associated divisor D = Z( f ) is T -stable if and only
if f is semi-invariant, that is, f ∈ 0(X,L)λ for some character λ. In this case f
is an equivariant section of L⊗ K−λ, and hence [D] = c1(L) − c1(Kλ) ∈ H∗

T (X).
Moreover, the T -stable effective Cartier divisors D′ satisfying [D′

] = [D] are
in bijective correspondence with P(0(X,L)λ). It follows that if D is reduced
and dim 0(X,L⊗m)mλ = 1 for all m ∈ N, then D is T -equivariantly rigid. This
observation can be used to produce examples of equivariantly rigid subvarieties that
are not convex. For example, if T = (Gm)n+1 acts on Pn through the standard action
on Kn+1, then any reduced T -stable divisor D ⊂ Pn is equivariantly rigid, but D
is convex only if it is irreducible; see Theorem 6.3. We have not found an example
of an irreducible T -stable subvariety that is equivariantly rigid but not convex.
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5. Rigidity of Białynicki-Birula cells

The multiplicative group Gm is identified with the complement of the origin in A1.
Given a morphism of varieties f : Gm → X , we write limt→0 f (t) = p if f can be
extended to a morphism f̄ : A1

→ X such that f̄ (0) = p. This limit is unique when
it exists, and it always exists when X is complete.

Let X be a nonsingular projective Gm-variety such that XGm is finite. Then each
fixed point p ∈ XGm defines the (positive) Białynicki-Birula cell

X+

p = {x ∈ X : lim
t→0

t · x = p} .

A negative cell is similarly defined by X−
p = {x ∈ X : limt→0 t−1

· x = p}. By
[Białynicki-Birula 1973, Theorem 4.4], these cells form a locally closed decompo-
sition of X ,

(4) X =

⋃
p∈XGm

X+

p ,

that is, a disjoint union of locally closed subsets. In addition, each cell X+
p is

isomorphic to an affine space.

Lemma 5.1. For any Gm-stable closed subset Z ⊂ X , we have

Z ⊂

⋃
p∈ZGm

X+

p .

Proof. For any point x ∈ Z , we have x ∈ X+
p , where p = limt→0 t · x ∈ ZGm . □

Definition 5.2. A locally closed decomposition X =
⋃

X i is called a stratification
if each subset X i is nonsingular and its closure X i is a union of subsets X j of the
decomposition.

The Białynicki-Birula decomposition (4) typically fails to be a stratification, for
example, when X is the blow-up of P2 at the point [0, 1, 0], where Gm acts on P2

by t · [x, y, z] = [x, t y, t2z]; see [Białynicki-Birula 1976, Example 1]. Lemma 5.1
shows that the Białynicki-Birula decomposition is a stratification if and only if
X+

q ⊂ X+
p holds for each fixed point q ∈ (X+

p )Gm . It was proved in [Białynicki-
Birula 1976, Theorem 5] that the decomposition is a stratification when each positive
cell X+

p meets each negative cell X−
q transversally. In particular, this holds when

X = G/P is a flag variety and Gm ⊂ G is a general one-parameter subgroup;
see [McGovern 2002, Example 4.2] or Lemma 6.1. When both the positive and
negative Białynicki-Birula decompositions are stratifications, all cells X+

p and X−
q of

complementary dimensions meet transversally, and hence the positive and negative
cell closures form a pair of Poincaré dual bases of the cohomology ring H∗(X); see
[Benedetti and Perrin 2022, Lemma 3.11]. In this paper we utilize the following
application, which is a consequence of Lemma 5.1.
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Proposition 5.3. Assume that the Białynicki-Birula decomposition of X is a stratifi-
cation. Then each cell closure X+

p ⊂ X is Gm-convex.

Corollary 5.4. Let T be an algebraic torus and X a nonsingular projective T -
variety such that all fixed points p ∈ X T are fully definite in X. Assume that
X T

= XGm for some one-parameter subgroup Gm ⊂ T , such that the associated
Białynicki-Birula decomposition of X is a stratification. Then each cell closure X+

p

is T -convex and T -equivariantly rigid.

Proof. The cell X+
p is T -stable because T is commutative and p ∈ X T . The result

now follows from Theorem 4.3 and Proposition 5.3. □

Question 5.5. We do not know whether Proposition 5.3 and Corollary 5.4 are
true without the assumption that the Białynicki-Birula decomposition of X is a
stratification. It would be very interesting to settle this question.

Example 5.6. Let X be a nonsingular projective toric variety, with torus T ⊂ X , and
choose Gm ⊂ T such that X T

= XGm . We show that the conclusion of Corollary 5.4
holds, even though the Białynicki-Birula decomposition is rarely a stratification.
All fixed points p ∈ X T are fully definite in X , as the weights of Tp X form a basis
of the character lattice of T . The T -orbits Oτ ⊂ X correspond to the cones τ of the
fan defining X , and we have Oσ ⊂ Oτ if and only if τ is a face of σ ; see [Fulton
1993, §3.1]. In particular, the T -fixed points in X correspond to the maximal
cones σ . Since X is complete, each cone τ is the intersection of the maximal
cones σ corresponding to the T -fixed points in Oτ . Since all cell closures X+

p

are T -orbit closures, it suffices to show that each orbit closure Oτ is T -convex.
Let Z ⊂ X be a T -stable closed subvariety such that Z T

⊂ Oτ . We may assume
that Z is irreducible, in which case Z = Oκ is also a T -orbit closure. Since κ is
the intersection of the maximal cones given by the fixed points in Z T , we obtain
τ ⊂ κ and Oκ ⊂ Oτ , as required. Now assume that X has dimension two. By
[Białynicki-Birula 1973, Corollary 1 of Theorem 4.5], there is a unique repulsive
fixed point b ∈ XGm with X+

b ={b}, and a unique attractive fixed point a ∈ XGm such
that X+

a is a dense open subset of X . For all other fixed points p ∈ XGm ∖{a, b}, the
cell X+

p
∼= A1 is a line. If the Białynicki-Birula decomposition of X is a stratification,

then b ∈ X+
p for all p ∈ XGm . The T -fixed point b corresponds to a maximal cone σ ,

and b is connected to exactly two T -stable lines corresponding to the rays forming
the boundary of this cone. We deduce that X contains at most four T -fixed points.
Higher-dimensional toric varieties for which the Białynicki-Birula decomposition
is not a stratification can be constructed by taking products. We do not know if the
cell closures X+

p are Gm-convex when X is a toric variety.1

1Teddy Gonzales and Chayim Lowen [≥ 2025] have recently produced several examples showing
that X+

p may not be Gm -convex when X is a nonsingular projective toric variety.
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6. Rigidity of Richardson varieties

Let X = G/P = {g.P : g ∈ G} be a flag variety defined by a connected reductive
linear algebraic group G and a parabolic subgroup P . Fix a maximal torus T and a
Borel subgroup B such that T ⊂ B ⊂ P ⊂ G. The opposite Borel subgroup B−

⊂ G
is defined by B−

∩ B = T . Let 8 be the root system of nonzero weights of T1G, the
tangent space of G at the identity element. The positive roots 8+ are the nonzero
weights of T1 B. Let W = NG(T )/T be the Weyl group of G, WP = NP(T )/T the
Weyl group of P , and let W P

⊂ W be the subset of minimal representatives of the
cosets in W/WP . The set of T -fixed points in X is given by X T

= {w · P : w ∈ W },
where each point w · P depends only on the coset wWP in W/WP . Each fixed
point w · P defines the Schubert varieties Xw = Bw · P and Xw

= B−w · P . For
w ∈ W P we have dim(Xw) = codim(Xw, X) = ℓ(w). The Bruhat order ≤ on W P

is defined by

u ≤ w ⇐⇒ Xu ⊂ Xw ⇐⇒ Xu
⊃ Xw

⇐⇒ Xu
∩ Xw ̸= ∅.

A Richardson variety is any nonempty intersection Xu
w = Xw ∩ Xu of opposite

Schubert varieties in X . More generally, any G-translate of Xu
w will be called a

Richardson variety. Any Richardson variety is reduced, irreducible, and rational;
see [Deodhar 1977; Brion and Kumar 2005, §2].

Recall that a cocharacter ρ : Gm → T is strongly dominant if ⟨α, ρ⟩ > 0 for all
positive roots α ∈ 8+, where ⟨α, ρ⟩ ∈ Z is defined by α(ρ(t)) = t ⟨α,ρ⟩ for t ∈ Gm .
The following lemma is well known; see, e.g., [McGovern 2002, Example 4.2] or
[Benedetti and Perrin 2022, Corollary 3.14].

Lemma 6.1. Let ρ : Gm → T be a strongly dominant cocharacter. Then the
associated Białynicki-Birula cells of X are given by X+

p = B · p, for p ∈ X T .

Proof. Let Gm act on G by conjugation through ρ. The fixed point set for this
action is [Springer 1998, (7.1.2), (7.6.4)]

T = {g ∈ G : tgt−1
= g ∀t ∈ Gm},

and the corresponding Białynicki-Birula cell is [Springer 1998, (8.2.1)]

B = {g ∈ G : lim
t→0

tgt−1
∈ T }.

This implies B · p ⊂ X+
p for any fixed point p ∈ XGm . We deduce from (4) that the

positive Białynicki-Birula cells in X are the B-orbits. □

Lemma 6.2. Let Y be any G-variety, and � ⊂ Y a T -stable closed subvariety. Any
T -stable G-translate of � has the form w · �, with w ∈ NG(T ).
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Proof. Let �′
= g · � be a T -stable translate, and let H ⊂ G be the stabilizer

of �′. Since T and gT g−1 are maximal tori in H , we can choose h ∈ H such that
T = hgT g−1h−1. We obtain hg ∈ NG(T ) and �′

= h ·�′
= hg ·�, as required. □

Theorem 6.3. Any T -stable Richardson variety in the flag variety X = G/P is
T -convex and T -equivariantly rigid.

Proof. It follows from Proposition 5.3 and Lemma 6.1 that all Schubert varieties Xw

and Xu are convex. This implies that every Richardson variety Xu
w = Xw∩Xu is con-

vex; hence all T -stable Richardson varieties in X are convex by Lemma 6.2. The B-
fixed point p = 1· P is fully definite in X because the weights of Tp X are a subset of
the negative roots of G. Since W acts transitively on X T , this implies that all T -fixed
points in X are fully definite. The result therefore follows from Theorem 4.3. □

Let E = G/B denote the variety of complete flags, and let π : E → X be the nat-
ural projection. A projected Richardson variety in X is the image 5u

w(X) = π(Eu
w)

of a Richardson variety in E . Projected Richardson varieties in the Grassmannian
X = Gr(m, n) of type A, obtained as images of Richardson varieties in Fl(n), are
also called positroid varieties.

Corollary 6.4. Let X = Gr(m, n) be a Grassmannian of type A, and let T = (Gm)n

act on X through the diagonal action on Kn . Then all positroid varieties in X are
T -convex and T -equivariantly rigid.

Proof. It was proved in [Knutson et al. 2013] that any positroid variety � is defined
by Plucker equations. Equivalently, � is an intersection of T -stable Schubert
divisors, so � is convex by Theorem 6.3 and equivariantly rigid by Theorem 4.3. □

Remark 6.5. Corollary 6.4 does not hold for projected Richardson varieties in
arbitrary flag varieties X = G/P . Each simple root β defines a projected Richardson
divisor Dβ = 5

sβ

wP
0
(X), where wP

0 denotes the longest element in W P . It frequently
happens that two distinct divisors Dβ ′ and Dβ ′′ have the same T -equivariant coho-
mology and K -theory classes, which implies that these divisors are not equivariantly
rigid. For example, this is the case for the quadric hypersurfaces of dimensions seven
and eight, of Lie types B4 and D5, and the two-step flag variety Fl(1, 4; 5) of
type A4. For other flag varieties X , all projected Richardson varieties have distinct
equivariant classes, but some projected Richardson divisor Dβ contains all T -fixed
points in X , which rules out that Dβ is convex. For example, this is the case for
the Lagrangian Grassmannian LG(2, 4) of type C2 and the maximal orthogonal
Grassmannian OG(4, 8) of type D4. This is a special case of [Benedetti and Perrin
2022, Lemma 3.1], which can be used to produce many more examples.

Any element u ∈ W has a unique factorization u = u Pu P for which u P
∈ W P and

u P ∈ WP , called the parabolic factorization with respect to P . This factorization
is reduced in the sense that ℓ(u) = ℓ(u P) + ℓ(u P). The parabolic factorization of
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the longest element w0 ∈ W is w0 = wP
0 w0,P , where wP

0 and w0,P are the longest
elements in W P and WP , respectively. Since w0 and w0,P are self-inverse, we have
w0,P = w0w

P
0 . As preparation for the next section, we prove the following identity

of Schubert varieties.

Lemma 6.6. Let Q ⊂ G be a parabolic subgroup containing B and set w = w
Q
0 .

Then w−1
· Xw

= Xw0w.

Proof. Since Xw0,Q is a Q-stable Schubert variety, we have Xw0,Q = w0,Q · Xw0,Q .
By translating both sides by w = w

Q
0 , we obtain w · Xw0w = w0 · Xw0w = Xw. □

7. Seidel neighborhoods

In this section we prove a conjecture about curve neighborhoods from [Buch et al.
2023]. Since this conjecture and its proof relies on the moduli space of stable maps,
we will restrict our attention to varieties defined over the field K = C of complex
numbers. As in Section 6, we let X = G/P denote a flag variety.

For any effective degree d ∈ H2(X, Z), we let Md =M0,3(X, d) denote the Kont-
sevich moduli space of three-pointed stable maps to X of degree d and genus zero;
see [Fulton and Pandharipande 1997]. The evaluation map evi : Md → X , defined
for 1 ≤ i ≤ 3, sends a stable map to the image of the i-th marked point in its
domain. Given two opposite Schubert varieties Xv and Xu , the Gromov–Witten
variety Md(Xv, Xu) is the variety of stable maps that send the first two marked
points to Xv and Xu :

Md(Xv, Xu) = ev−1
1 (Xv) ∩ X−1

2 (Xu) ⊂ Md .

The curve neighborhood 0d(Xv, Xu) is the union of all stable curves of degree d
in X connecting Xv and Xu :

0d(Xv, Xu) = ev3(Md(Xv, Xu)) ⊂ X.

Let Z[q] = SpanZ{qd
: d ∈ H2(X, Z) effective} be the semigroup ring defined by

the effective curve classes on X . The equivariant quantum cohomology ring of X is
an algebra over H∗

T (point)⊗Z Z[q], which is defined by QHT (X)= H∗

T (X)⊗Z Z[q]

as a module. The quantum product of two opposite Schubert classes is given by

[Xv] ⋆ [Xu
] =

∑
d≥0

qd ev3,∗[Md(Xv, Xu)],

where the sum is over all effective degrees d ∈ H2(X; Z).
A simple root γ ∈ 8+ is called cominuscule if, when the highest root is written

in the basis of simple roots, the coefficient of γ is one. The flag variety G/Q is
cominuscule if Q is a maximal parabolic subgroup corresponding to a cominuscule
simple root γ , that is, sγ is the unique simple reflection in W Q . Let W comin

⊂ W
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be the subset of point representatives of cominuscule flag varieties of G, together
with the identity element:

W comin
= {w

Q
0 : G/Q is cominuscule} ∪ {1}.

This is a subgroup of W , which is isomorphic to the quotient of the coweight
lattice of 8 modulo the coroot lattice [Bourbaki 1981, Proposition VI.2.6]. The
isomorphism sends w

Q
0 to the class of the fundamental coweight ω∨

γ corresponding
to Q. Notice that γ is the unique simple root for which w

Q
0 · γ < 0. In the following

we set d(w
Q
0 , u) = ω∨

γ − u−1
· ω∨

γ ∈ H2(X; Z) for any u ∈ W . Here we identify
the group H2(X, Z) with a quotient of the coroot lattice, by mapping each simple
coroot β∨ to the curve class [Xsβ

] if sβ ∈ W P , and to zero otherwise.
The Seidel representation of W comin on QH(X)/⟨q −1⟩ is defined by w · [Xu

] =

[Xw
] ⋆ [Xu

] for w ∈ W comin and u ∈ W . In fact, we have [Seidel 1997; Belkale
2004; Chaput et al. 2009]

(5) [Xw
] ⋆ [Xu

] = qd(w,u)
[Xwu

]

in the (nonequivariant) quantum ring QH(X). This implies that d(w, u) is the unique
minimal degree d for which 0d(Xw0w, Xu) is not empty [Fulton and Woodward
2004; Buch et al. 2020]. More generally, it was proved in [Chaput et al. 2009;
Chaput and Perrin 2023] that the identity

(6) [Xw
] ⋆ [w · Xu

] = qd(w,u)
[Xwu

]

holds in the equivariant quantum cohomology ring QHT (X). We will discuss
generalizations to quantum K -theory in Section 8.

It follows from (5) and the definition of the quantum product in QH(X) that
[0d(w,u)(Xw0w, Xu)] = [Xwu

] holds in H∗(X). Conjecture 3.11 from [Buch et al.
2023] asserts that 0d(w,u)(Xw0w, Xu) is in fact equal to the translated Schubert
variety w−1

· Xwu . This is proved below as a consequence of Theorem 6.3 and (6).
This result was known when X = G/P is cominuscule and w = wP

0 [Buch et al.
2023], when X is a Grassmannian of type A and [Xw

] is a special Seidel class
[Li et al. 2025, Corollary 4.6], when X is any flag variety of type A [Tarigradschi
2023], and when X is the symplectic Grassmannian SG(2, 2n) [Benedetti et al.
2024, Theorem 8.1].

Theorem 7.1. Let X = G/P be a complex flag variety. For w ∈ W comin and u ∈ W
we have 0d(w,u)(Xw0w, Xu) = w−1

· Xwu .

Proof. By applying w−1 to both sides of (6) and using Lemma 6.6, we obtain

[Xw0w] ⋆ [Xu
] = qd(w,u)

[w−1
· Xwu

]
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in QHT (X). By definition of the quantum product, this implies that

[w−1
· Xwu

] = ev3,∗[Md(w,u)(Xw0w, Xu)] = c [0d(w,u)(Xw0w, Xu)]

holds in H∗

T (X), where c is the degree of the map

ev3 : Md(w,u)(Xw0w, Xu) → 0d(w,u)(Xw0w, Xu).

The result therefore follows from Theorem 6.3. □

8. Seidel products in quantum K -theory

In this section we discuss a generalization of the Seidel multiplication formula to
quantum K -theory. We start by briefly recalling the definition of quantum K -theory.
A more detailed discussion can be found in [Buch et al. 2018a, §2].

Let X = G/P be a flag variety defined over K = C. The equivariant K -
theory ring K T (X) is an algebra over the representation ring 0 = K T (point).
The equivariant quantum K -theory ring QKT (X) was originally constructed by
Givental [2000] and Lee [2004]. This ring is an algebra over the formal power
series ring 0[[q]] = 0[[qβ : sβ ∈ W P

]], which has one variable qβ for each simple
reflection sβ in W P . As a module over 0[[q]] we have QKT (X) = K T (X)⊗0 0[[q]].
The undeformed product of two opposite Schubert classes in QKT (X) is defined by

[OXv
] ⊙ [OXu ] =

∑
d≥0

qd ev3,∗[OMd (Xv,Xu)].

Let 9 : QKT (X) → QKT (X) be the 0[[q]]-linear map defined by

9([OXw ]) =

∑
d≥0

qd
[O0d (Xw)],

where the curve neighborhood 0d(Xw) = ev2(ev−1
1 (Xw)) is defined using the

evaluation maps from Md . This curve neighborhood is a Schubert variety in X by
[Buch et al. 2013, Proposition 3.2(b)], whose Weyl group element was determined
in [Buch and Mihalcea 2015]. By [Buch et al. 2018a, Proposition 2.3], Givental’s
quantum K -theory product ⋆ is given by

(7) [OXv
] ⋆ [OXu ] = 9−1([OXv

] ⊙ [OXu ]).

The following conjecture is the K -theoretic analogue of the Seidel multiplication
formula (6) in QHT (X) proved in [Chaput et al. 2009; Chaput and Perrin 2023].

Conjecture 8.1. For w ∈ W comin and u ∈ W we have

[OXw0w
] ⋆ [OXu ] = qd(w,u)

[Ow−1.Xwu ] and [OXw ] ⋆ [Ow.Xu ] = qd(w,u)
[OXwu ]

in QKT (X).
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The two identities in Conjecture 8.1 are equivalent by Lemma 6.6. The nonequiv-
ariant case of this conjecture was proved in [Buch et al. 2023, Corollary 3.7]
when X is a cominuscule flag variety. When X is a Grassmannian of type A,
the conjecture is equivalent to [Gorbounov et al. 2025, Corollary 10.4]. We will
prove Conjecture 8.1 for cominuscule flag varieties below, based on the following
conjectural generalization of Theorem 7.1. Recall that a morphism π : Z → Y is
called cohomologically trivial if π∗OZ = OY and R jπ∗OZ = 0 for j ≥ 1.

Conjecture 8.2. Let w ∈ W comin, u ∈ W , and let e ∈ H2(X, Z) be effective.

(a) We have 0d(w,u)+e(Xw0w, Xu) = 0e(w
−1

· Xwu).

(b) The evaluation map ev3 : Md(w,u)+e(Xw0w, Xu) → 0d(w,u)+e(Xw0w, Xu) is
cohomologically trivial.

Conjecture 8.2 is a variant of the quantum-equals-classical theorem for Gromov–
Witten invariants as stated in [Buch et al. 2018b, Theorem 4.1]; see also [Xu 2024,
Theorem 1.2]. The conjecture is true for e = 0; part (a) is equivalent to Theorem 7.1,
and part (b) holds because the map ev3 : Md(w,u)(Xw0w, Xu) → 0d(w,u)(Xw0w, Xu)

is birational by [Belkale 2004; Chaput et al. 2009], and Md(w,u)(Xw0w, Xu) has
rational singularities by [Buch et al. 2013, Corollary 3.1]. For e ≥ 0, Theorem 7.1
implies that

(8) 0e(w
−1.Xwu) = 0e(0d(w,u)(Xw0w, Xu)) ⊂ 0d(w,u)+e(Xw0w, Xu),

and 0d(w,u)+e(Xw0w, Xu) is irreducible by Corollary 3.8 in [Buch et al. 2013].
Conjecture 8.2(a) is therefore true if and only if 0d(w,u)+e(Xw0w, Xu) and 0e(Xwu)

have the same dimension. We prove below that Conjecture 8.2(a) is true when
X = GL(n)/P is any flag variety of Lie type A. Conjecture 8.1 follows from
Conjecture 8.2 by the following observation.

Lemma 8.3. Given w ∈ W comin and u ∈ W , the identity

[OXw0w
] ⋆ [OXu ] = qd(w,u)

[Ow−1.Xwu ]

holds in QKT (X) if and only if

(9) ev3,∗[OMd(w,u)+e(Xw0w,Xu)] = [O0e(w−1.Xwu)]

holds in KT (X) for all effective degrees e ∈ H2(X, Z).

Proof. Both assertions are equivalent to the identity

[OXw0w
] ⊙ [OXu ] =

∑
e≥0

qd(w,u)+e
[O0e(w−1.Xwu)]

by the definition (7) of the quantum product in QKT (X). □

Theorem 8.4. Conjectures 8.1 and 8.2 hold when X is a cominuscule flag variety.
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Proof. Assume that X is cominuscule. Then Conjecture 8.2(b) is a special case of
[Buch et al. 2018b, Theorem 4.1], and Conjecture 8.2(a) follows from Theorem 7.1
and [Buch et al. 2022, Corollary 8.24], noting that qd(w,u) is the maximal power
of q occurring in the quantum cohomology product [Xw0w]⋆[Xu

] by [Belkale 2004;
Chaput et al. 2009]. This proves Conjecture 8.2, which implies Conjecture 8.1 by
Lemma 8.3. □

We finish this section by proving that Conjecture 8.2(a) can be reduced to the case
where X is a flag variety of Picard rank 1. In particular, Conjecture 8.2(a) follows
from Theorem 8.4 in type A. These results were proved for e = 0 in [Tarigradschi
2023]. We thank Mihail Tarigradschi for suggesting that his methods might apply
to the general case of our conjecture.

Recall that X =G/P . Let Q1, Q2⊂G be parabolic subgroups such that P=Q1∩Q2.
Set Yi = G/Qi and let πi : X → Yi be the projection, for i ∈ {1, 2}. Given a degree
d ∈ H2(X, Z), we also let d denote the image πi,∗(d) of this degree in H2(Yi , Z).
Let 0d(Yi,v, Y u

i ) ⊂ Yi be the union of all stable curves of degree d in Yi that connect
the Schubert varieties Yi,v =πi (Xv) and Y u

i =πi (Xu), for u, v ∈ W . The next result
generalizes [Björner and Brenti 2005, Theorem 2.6.1; Tarigradschi 2023, Lemma 4].

Lemma 8.5. We have 0d(Xu) = π−1
1 (0d(Y u

1 )) ∩ π−1
2 (0d(Y u

2 )).

Proof. Let distX (Xv, Xu) denote the unique minimal degree of a rational curve
in X connecting Xv and Xu . It follows from [Buch et al. 2020, Theorem 5]
that this degree is uniquely determined by πi,∗(distX (Xv, Xu)) = distYi (Yi,v, Y u

i )

for i ∈ {1, 2}. Using that v · P ∈ 0d(Xu) holds if and only if d ≥ distX (Xv, Xu), we
deduce that 0d(Xu) and π−1

1 (0d(Y u
1 )) ∩ π−1

2 (0d(Y u
2 )) contain the same T -fixed

points. The lemma follows from this, as both sets are B−-stable subvarieties of X . □

The following result implies that Conjecture 8.2(a) follows from the case where X
has Picard rank 1. It was proved for e = 0 in [Tarigradschi 2023, Theorem 3].

Theorem 8.6. Let X = G/P , Y1 = G/Q1, and Y2 = G/Q2 be flag varieties
such that P = Q1 ∩ Q2. Let w ∈ W comin, u ∈ W , and let e ∈ H2(X, Z) be any
effective degree. If 0d(w,u)+e(Yi,w0w, Y u

i ) = 0e(w
−1

·Y wu
i ) holds for i ∈ {1, 2}, then

0d(w,u)+e(Xw0w, Xu) = 0e(w
−1

· Xwu).

Proof. The assumptions and Lemma 8.5 imply that

0d(w,u)+e(Xw0w, Xu) ⊂ π−1
1 (0d(w,u)+e(Y1,w0w,Y u

1 ))∩π−1
2 (0d(w,u)+e(Y2,w0w,Y u

2 ))

= π−1
1 (0e(w

−1
·Y wu

1 ))∩π−1
2 (0e(w

−1
·Y wu

2 )) = 0e(w
−1

· Xwu),

and the opposite inclusion holds by (8). □

Corollary 8.7. Conjecture 8.2(a) is true when X = GL(n)/P has Lie type A.

Proof. This follows from Theorems 8.4 and 8.6, noting that all flag varieties of
type A with Picard rank 1 are Grassmannians, and therefore cominuscule. □
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9. Horospherical varieties of Picard rank 1

In this section we interpret Theorem 4.3 and Proposition 5.3 for a class of horo-
spherical varieties that includes all nonsingular projective horospherical varieties
of Picard rank 1 (except flag varieties) by Pasquier’s classification [2009]. Let G
be a connected reductive linear algebraic group, B ⊂ G a Borel subgroup, and
T ⊂ B a maximal torus. Let V1 and V2 be irreducible rational representations of G,
and let vi ∈ Vi be a highest-weight vector of weight λi , for i ∈ {1, 2}. We assume
that λ1 ̸= λ2. Define

X = G · [v1 + v2] ⊂ P(V1 ⊕ V2).

If X is normal, then X is a horospherical variety of rank 1; see [Timashev 2011, Chap-
ter 7]. We will assume that X is nonsingular and K = C, even though many claims
hold more generally; this implies that X is fibered over a flag variety G/P12 with
nonsingular horospherical fibers of Picard rank 1; see Remark 9.5. Any G-translate
of a B-orbit closure in X will be called a Schubert variety. Our next result uses the
action of T ×Gm on X defined by (t, z)·[u1+u2]= t ·[u1+zu2], for ui ∈ Vi . We have
X T ×Gm = X T , and a Schubert variety is T -stable if and only if it is T × Gm-stable.

Theorem 9.1. Any T -stable Schubert variety in X is T × Gm-convex and T × Gm-
equivariantly rigid.

Before proving Theorem 9.1, we sketch elementary proofs of some basic facts
about X , which are also consequences of general results about spherical varieties;
see [Timashev 2011; Perrin 2014; Pasquier 2009].

Given an element [u1 + u2] ∈ P(V1 ⊕ V2), we will always assume ui ∈ Vi , and
i will always mean an element from {1, 2}. We consider P(Vi ) as a subvariety
of P(V1 ⊕ V2). Let πi : P(V1 ⊕ V2) ∖ P(V3−i ) → P(Vi ) denote the projection
from V3−i , defined by πi ([u1 + u2]) = [ui ]. Set X0 = G · [v1 + v2] ⊂ P(V1 ⊕ V2),
X i = G · [vi ] ⊂ P(Vi ), and X12 = G · ([v1], [v2]) ⊂ P(V1) × P(V2). Since vi is a
highest-weight vector, the stabilizer Pi = G[vi ] is a parabolic subgroup containing B.
It follows that X i ∼= G/Pi and X12 ∼= G/(P1 ∩ P2) are flag varieties. In particular,
X i is closed in P(Vi ), and X12 is closed in P(V1) × P(V2). Notice also that
X0 ∼= G/H , where H ⊂ P1∩ P2 is the kernel of the character λ1−λ2 : P1∩ P2 → Gm .
This shows that X0 is a Gm-bundle over X12, so X is a nonsingular projective
horospherical variety of rank 1 (but not necessarily of Picard rank 1; see Remark 9.5).

Let W be the Weyl group of G, and recall the notation from Section 6.

Lemma 9.2. We have X = X0 ∪ X1 ∪ X2. The B-orbit closures in X are

Bw · [vi ] =
⋃

w′≤w

Bw′
· [vi ] for w ∈ W Pi and i ∈ {1, 2},

Bw · [v1 + v2] =
⋃

w′≤w

(Bw′
· [v1 + v2] ∪ Bw′

· [v1] ∪ Bw′
· [v2]) for w ∈ W P1∩P2 .
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Proof. Set P0 = P(V1 ⊕ V2) ∖ (P(V1) ∪ P(V2)). Since λ1 ̸= λ2, it follows that
T · [v1 + v2] is the line through [v1] and [v2] in P(V1 ⊕ V2). This implies X0 =

(π1 × π2)
−1(X12); hence X0 is closed in P0 and X0 = X ∩ P0. We also have

X i ⊂ X ∩ P(Vi ) ⊂ π−1
i (X i )∩ P(Vi ) = X i , which proves the first claim. To finish

the proof, it suffices to show w′
· [vi ] ∈ Bw · [v1 + v2] if and only if w′

≤ w

(when w′
∈ W Pi ). The implication ‘if’ holds because w′

· [vi ] ∈ T w′ · [v1 + v2],
and ‘only if’ holds because πi (Bw · [v1 + v2]∖ X3−i ) ⊂ Bw · [vi ]. □

Define an alternative action of Pi on V3−i by p • u = λi (p)−1 p · u, and use this
action to form the space

G ×
Pi V3−i = {[g, u] : g ∈ G, u ∈ V3−i }/{[gp, u] = [g, p • u] : p ∈ Pi }.

Define a morphism of varieties φi : G ×
Pi V3−i → P(V1 ⊕ V2) by

φi ([g, u]) = g · [vi + u].

This is well defined since p · (vi + u) = λi (p)(vi + p • u) holds for p ∈ Pi and
u ∈ V3−i . Set Ei = (Pi • v3−i ) ∪ {0} ⊂ V3−i . Noting that Ei is the cone over
Pi · [v3−i ] ∼= Pi/(P1 ∩ P2), it follows that Ei is closed in V3−i .

Lemma 9.3. The restricted map φi : G ×
Pi Ei → X0 ∪ X i is an isomorphism of

varieties. In particular, Ei ⊂ V3−i is a linear subspace.

Proof. Assume φi ([g, u]) = φi ([g′, u′
]), and set p = g−1g′. We obtain p ∈ Pi and

[vi + u] = p · [vi + u′
] = [vi + p • u′

] in P(V1 ⊕ V2); hence

[g, u] = [g, p • u′
] = [gp, u′

] = [g′, u′
]

in G ×
Pi V3−i . We deduce that φi : G ×

Pi Ei → X0 ∪ X i is bijective, so the lemma
follows from Zariski’s main theorem, using that X0 ∪ X i is nonsingular. □

Fix a strongly dominant cocharacter ρ : Gm → T . For a ∈ Z, define the map
ρa : Gm → T ×Gm by ρa(z) = (ρ(z), za). The resulting action of Gm on X is given
by ρa(z) · [u1 + u2] = ρ(z) · [u1 + zau2].

Lemma 9.4. All T -fixed points in X are fully definite for the action of T × Gm .

Proof. Lemma 9.3 shows that [v1] has a T × Gm-stable open neighborhood in X
isomorphic to B−

·[v1]×E1, where the action is given by (t, z)·(x, u)= (t ·x, t •zu).
If a is sufficiently negative, then Gm acts through ρa on T[v1]X = T[v1]X1 ⊕ E1 with
strictly negative weights; hence [v1] is fully definite in X for the action of T × Gm .
A symmetric argument shows that [v2] is fully definite. The result follows from
this, since all T -fixed points in X are obtained from [v1] or [v2] by the action of
the Weyl group W . □
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Proof of Theorem 9.1. For a sufficiently negative, it follows from Lemma 6.1 that
the Białynicki-Birula cells of X defined by ρa are

X+

w·[v1]
= Bw · [v1] and X+

w·[v2]
= Bw · [v1 + v2] ∪ Bw · [v2].

These cells form a stratification of X by Lemma 9.2, so Proposition 5.3 implies that
Bw · [v1] and Bw · [v1 + v2] are T ×Gm-convex for w ∈ W . A symmetric argument
applies to Bw · [v2]; hence all T -stable Schubert varieties in X are T × Gm-convex
by Lemma 6.2. The result now follows from Theorem 4.3 and Lemma 9.4. □

Remark 9.5. The exact sequence of [Perrin 2014, Theorem 3.2.4] implies that
Pic(X) is a free abelian group of rank equal to the rank of X (which is one) plus
the number of B-stable prime divisors in X that do not contain a G-orbit. Any
B-stable prime divisor meeting X0 has the form D = Bw0sβ · [v1 + v2], where
β is a simple root, and Lemma 9.2 shows that D contains X i if and only if β

is a root of Pi . Let P12 ⊂ G be the parabolic subgroup generated by P1 and P2.
We obtain Pic(X) ∼= Z ⊕ Pic(G/P12). Let π : X → G/P12 be the map defined
by π(g · [v1 + v2]) = π(g · [vi ]) = g · P12. This is a G-equivariant morphism of
varieties, as its restriction to X0 ∪ X i is the composition of πi : X0 ∪ X i → G/Pi

with the projection G/Pi → G/P12. The fibers of π are translates of π−1(1 · P12) =

L · [v1 + v2] ⊂ P(V1 ⊕ V2), where L is the Levi subgroup of P12 containing T .
Moreover, π−1(1 · P12) is a nonsingular projective horospherical variety of Picard
rank 1, so it is either a flag variety or one of the nonhomogeneous spaces from
Pasquier’s classification [2009].

Question 9.6. Let X be any projective G-horospherical variety fibered over a flag
variety G/P with nonsingular horospherical fibers of Picard rank 1. Is it true that
X is isomorphic to an orbit closure G · [v1 + v2] ⊂ P(V ), where V is a rational
representation of G, and v1, v2 ∈ V are highest-weight vectors?

Example 9.7. Let X be the blow-up of P2 at a point p, let π : X → P1 be the
morphism defined by projection from p, and set G = SL(2, C). Then X is G-
horospherical and fibered over P1 with fiber P1. This variety X is isomorphic
to G · [v1 + v2] ⊂ P(V1 ⊕ V2), where v1 is a highest-weight vector in V1 = C2, and
v2 is a highest-weight vector in V2 = Sym2(C2).
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et al., Eur. Math. Soc., Zürich, 2018. MR

[Coskun and Robles 2013] I. Coskun and C. Robles, “Flexibility of Schubert classes”, Differential
Geom. Appl. 31:6 (2013), 759–774. MR

[Deodhar 1977] V. V. Deodhar, “Some characterizations of Bruhat ordering on a Coxeter group and
determination of the relative Möbius function”, Invent. Math. 39:2 (1977), 187–198. MR

[Edidin and Graham 1998] D. Edidin and W. Graham, “Equivariant intersection theory”, Invent. Math.
131:3 (1998), 595–634. MR

[Fulton 1993] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton
Univ. Press, 1993. MR

[Fulton 1998] W. Fulton, Intersection theory, 2nd ed., Ergebnisse der Math. (3) 2, Springer, 1998.
MR

[Fulton and Pandharipande 1997] W. Fulton and R. Pandharipande, “Notes on stable maps and
quantum cohomology”, pp. 45–96 in Algebraic geometry, II (Santa Cruz, CA, 1995), edited by J.
Kollár et al., Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Providence, RI, 1997. MR

[Fulton and Woodward 2004] W. Fulton and C. Woodward, “On the quantum product of Schubert
classes”, J. Algebraic Geom. 13:4 (2004), 641–661. MR

[Givental 2000] A. Givental, “On the WDVV equation in quantum K -theory”, Michigan Math. J. 48
(2000), 295–304. MR

[Gonzales and Lowen ≥ 2025] T. Gonzales and C. Lowen, “Counterexamples to Gm -convexity for
toric varieties”, In preparation.

[Gorbounov et al. 2025] V. Gorbounov, C. Korff, and L. C. Mihalcea, “Quantum K-theory of
Grassmannians from a Yang–Baxter algebra”, preprint, 2025. arXiv 2503.08602

[Hong 2005] J. Hong, “Rigidity of singular Schubert varieties in Gr(m, n)”, J. Differential Geom.
71:1 (2005), 1–22. MR

[Hong 2007] J. Hong, “Rigidity of smooth Schubert varieties in Hermitian symmetric spaces”, Trans.
Amer. Math. Soc. 359:5 (2007), 2361–2381. MR

[Hong and Mok 2020] J. Hong and N. Mok, “Schur rigidity of Schubert varieties in rational homoge-
neous manifolds of Picard number one”, Selecta Math. (N.S.) 26:3 (2020), art. id. 41. MR

[Kambayashi 1966] T. Kambayashi, “Projective representation of algebraic linear groups of transfor-
mations”, Amer. J. Math. 88 (1966), 199–205. MR

[Knutson et al. 2013] A. Knutson, T. Lam, and D. E. Speyer, “Positroid varieties: juggling and
geometry”, Compos. Math. 149:10 (2013), 1710–1752. MR

[Lee 2004] Y.-P. Lee, “Quantum K -theory, I: Foundations”, Duke Math. J. 121:3 (2004), 389–424.
MR

[Li et al. 2025] C. Li, Z. Liu, J. Song, and M. Yang, “On Seidel representation in quantum K -theory
of Grassmannians”, Sci. China Math. 68:7 (2025), 1523–1548. MR

[Liu et al. 2024] Y. Liu, A. Sheshmani, and S.-T. Yau, “Multi-rigidity of Schubert classes in partial
flag varieties”, preprint, 2024. arXiv 2410.21726

[McGovern 2002] W. M. McGovern, “The adjoint representation and the adjoint action”, pp. 159–238
in Algebraic quotients, torus actions and cohomology, the adjoint representation and the adjoint
action, Encyclopaedia Math. Sci. 131, Springer, 2002. MR

https://doi.org/10.1007/s11856-014-0009-3
http://msp.org/idx/mr/3219572
https://doi.org/10.4171/182-1/4
http://msp.org/idx/mr/3754188
https://doi.org/10.1016/j.difgeo.2013.09.003
http://msp.org/idx/mr/3130568
https://doi.org/10.1007/BF01390109
https://doi.org/10.1007/BF01390109
http://msp.org/idx/mr/435249
https://doi.org/10.1007/s002220050214
http://msp.org/idx/mr/1614555
https://doi.org/10.1515/9781400882526
http://msp.org/idx/mr/1234037
https://doi.org/10.1007/978-1-4612-1700-8
http://msp.org/idx/mr/1644323
https://doi.org/10.1090/pspum/062.2/1492534
https://doi.org/10.1090/pspum/062.2/1492534
http://msp.org/idx/mr/1492534
https://doi.org/10.1090/S1056-3911-04-00365-0
https://doi.org/10.1090/S1056-3911-04-00365-0
http://msp.org/idx/mr/2072765
https://doi.org/10.1307/mmj/1030132720
http://msp.org/idx/mr/1786492
http://msp.org/idx/arx/2503.08602
http://projecteuclid.org/euclid.jdg/1143644311
http://msp.org/idx/mr/2191767
https://doi.org/10.1090/S0002-9947-06-04041-4
http://msp.org/idx/mr/2276624
https://doi.org/10.1007/s00029-020-00571-9
https://doi.org/10.1007/s00029-020-00571-9
http://msp.org/idx/mr/4114423
https://doi.org/10.2307/2373055
https://doi.org/10.2307/2373055
http://msp.org/idx/mr/206001
https://doi.org/10.1112/S0010437X13007240
https://doi.org/10.1112/S0010437X13007240
http://msp.org/idx/mr/3123307
https://doi.org/10.1215/S0012-7094-04-12131-1
http://msp.org/idx/mr/2040281
https://doi.org/10.1007/s11425-024-2361-1
https://doi.org/10.1007/s11425-024-2361-1
http://msp.org/idx/mr/4920795
http://msp.org/idx/arx/2410.21726
https://doi.org/10.1007/978-3-662-05071-2_3
http://msp.org/idx/mr/1925831


EQUIVARIANT RIGIDITY OF RICHARDSON VARIETIES 229

[Mumford 1965] D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer
Grenzgebiete, (N.F.) 34, Springer, 1965. MR

[Pasquier 2009] B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”,
Math. Ann. 344:4 (2009), 963–987. MR

[Perrin 2014] N. Perrin, “On the geometry of spherical varieties”, Transform. Groups 19:1 (2014),
171–223. MR

[Robles and The 2012] C. Robles and D. The, “Rigid Schubert varieties in compact Hermitian
symmetric spaces”, Selecta Math. (N.S.) 18:3 (2012), 717–777. MR

[Seidel 1997] P. Seidel, “π1 of symplectic automorphism groups and invertibles in quantum homology
rings”, Geom. Funct. Anal. 7:6 (1997), 1046–1095. MR

[Springer 1998] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics 9,
Birkhäuser, Boston, MA, 1998. MR

[Sumihiro 1974] H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ. 14 (1974), 1–28. MR

[Tarigradschi 2023] M. Tarigradschi, “Curve neighborhoods of Seidel products in quantum cohomol-
ogy”, preprint, 2023. arXiv 2309.05985

[Timashev 2011] D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia
of Mathematical Sciences 138, Springer, 2011. MR

[Xu 2024] W. Xu, “Quantum K -theory of incidence varieties”, Eur. J. Math. 10:2 (2024), art. id. 22.
MR

Received October 10, 2024. Revised April 29, 2025.

ANDERS S. BUCH

DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

PISCATAWAY, NJ
UNITED STATES

asbuch@math.rutgers.edu

PIERRE-EMMANUEL CHAPUT

DOMAINE SCIENTIFIQUE VICTOR GRIGNARD

UNIVERSITÉ DE LORRAINE

NANCY

FRANCE

pierre-emmanuel.chaput@univ-lorraine.fr

NICOLAS PERRIN

CENTRE DE MATHÉMATIQUES LAURENT SCHWARTZ

ECOLE POLYTECHNIQUE

PALAISEAU

FRANCE

nicolas.perrin.cmls@polytechnique.edu

http://msp.org/idx/mr/214602
https://doi.org/10.1007/s00208-009-0341-9
http://msp.org/idx/mr/2507635
https://doi.org/10.1007/s00031-014-9254-0
http://msp.org/idx/mr/3177371
https://doi.org/10.1007/s00029-011-0082-y
https://doi.org/10.1007/s00029-011-0082-y
http://msp.org/idx/mr/2960030
https://doi.org/10.1007/s000390050037
https://doi.org/10.1007/s000390050037
http://msp.org/idx/mr/1487754
https://doi.org/10.1007/978-0-8176-4840-4
http://msp.org/idx/mr/1642713
https://doi.org/10.1215/kjm/1250523277
http://msp.org/idx/mr/337963
http://msp.org/idx/arx/2309.05985
https://doi.org/10.1007/978-3-642-18399-7
http://msp.org/idx/mr/2797018
https://doi.org/10.1007/s40879-024-00738-0
http://msp.org/idx/mr/4719974
mailto:asbuch@math.rutgers.edu
mailto:pierre-emmanuel.chaput@univ-lorraine.fr
mailto:nicolas.perrin.cmls@polytechnique.edu




PACIFIC JOURNAL OF MATHEMATICS
Vol. 338, No. 2, 2025

https://doi.org/10.2140/pjm.2025.338.231

GENUS THREE GOERITZ GROUPS
OF CONNECTED SUMS OF TWO LENS SPACES

HAO CHEN AND YANQING ZOU

We prove that the mapping class groups of the genus three Heegaard split-
tings of the connected sums of two lens spaces are finitely generated, and the
corresponding reducing sphere complexes are all connected.

1. Introduction

It is well known that every closed orientable 3-manifold N admits a Heegaard
splitting V ∪6 W , which is a decomposition of N into two handlebodies V and W
of the same genus. Their common boundary surface 6 is called Heegaard surface,
and the genus of 6 is called the genus of the Heegaard splitting. Two Heegaard
splittings of N are said to be isotopic if their corresponding Heegaard surfaces are
ambient isotopic. The Goeritz group G(N , 6), first introduced by Goeritz [1933],
is the group of isotopy classes of orientation-preserving diffeomorphisms of N
that preserve these two handlebodies of the splitting setwise. As a subgroup of the
mapping class group of 6, there is an open question about it in [Gordon 2007].

Question. Is the Goeritz group finite or finitely generated?

By the works of Johnson [2010], Namazi [2007], as well as Zou and Qiu [2020],
the Goeritz groups of almost all Heegaard splittings of distance at least 2 are finite.
However, if V ∪6 W is weakly reducible, or equivalently, of distance at most 1,
G(N , 6) is infinite as shown in Namazi’s construction. We focus on studying the
finite generation problem for the Goeritz group of reducible Heegaard splittings.

A Heegaard splitting V ∪6 W is reducible if there is a 2-sphere S ⊂ N that
intersects 6 transversely in one essential simple closed curve. Such a 2-sphere S
is called a reducing sphere for 6. When V ∪6 W is reducible, we can decompose
it as a connected sum of two Heegaard splittings of smaller genus, denoted by
V ∪6 W = N1 ♯N2, where N1 = V1 ∪61 W1 and N2 = V2 ∪62 W2. A natural question
arises: If both G(N1, 61) and G(N2, 62) are finitely generated, is G(N , 6) also
finitely generated?
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If g(61)+ g(62) = 2, Cho and Koda [2019] proved that G(N , 6) is finitely
presented. Here we study the case g(61)+ g(62)= 3 and give an answer to the
Question as follows.

Theorem 1.1. If N = V ∪6 W is a genus three Heegaard splitting1 for a connected
sum of two lens spaces (̸= S3, S1

× S2), then G(N , 6) is finitely generated.

Furthermore, we study the reducing sphere complex R for V ∪6 W , which is a
subcomplex of the curve complex spanned by those curves that bound disks in both
handlebodies. As a corollary, we have the following.

Corollary 1.2. Under the same condition as in Theorem 1.1, R is connected.

For any reducible Heegaard splitting V ∪6 W = (V1 ∪61 W1) ♯ (V2 ∪62 W2), let
µ= S ∩6 be the intersection of a reducing sphere S and the Heegaard surface 6.
Although the method in the proof of Theorem 1.1 does not apply in general, it
provides insight into the widely studied subgroup Gµ ⩽ G(N , 6), the stabilizer
of µ, which is a key subgroup of G(N , 6). By its definition, it is not hard to see
that there is a natural homomorphism from Gµ to G(Ni , 6i ) for each i . Thus, it
is of interest to determine whether Gµ is finitely generated (or finitely presented)
when both of those two Goeritz groups are finitely generated (or finitely presented).
Using standard combinatorial techniques, we obtain the following result.

Theorem 1.3. If G(N1, 61) and G(N2, 62) are both finitely generated (or finitely
presented), then so is Gµ.2

Overview of the proof. We first show that the Goeritz group under consideration
can be generated by three stabilizers of reducing curves, as shown in Theorem 4.8.
As a corollary, the corresponding reducing sphere complex is connected. Next, we
carefully study the stabilizer of a reducing sphere and give a proof of Theorem 1.3.
Finally, by the previous work [Cho and Koda 2019] on genus two reducible Heegaard
splittings, we arrive at the finite generation of each stabilizer.

This paper is organized as follows. We introduce some notations in Section 2
and study two classes of automorphisms, eyeglass twist and visional bubble move,
in Section 3. Next, we carefully study the properties of three stabilizers in Section 4.
After all preparations have been done, we complete the proof of Theorem 1.1 and
Theorem 1.3 in Section 5.

Notations. We respectively denote the isotopy class of a curve µ in a surface and
of a diffeomorphism h of a manifold by µ̄ and h̄. When µ is endowed with an
orientation, we denote it by µ⃗. For an oriented curve µ⃗, we denote its isotopy
by [µ⃗].

1By Haken’s lemma, the Heegaard splitting is reducible.
2Here, Ni (i = 1, 2) is not necessarily a lens space.
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2. Preliminaries

Throughout the paper, we respectively denote the isotopy class of a curve µ and of
a diffeomorphism f by µ̄ and f̄ . From now on, we assume that N is the connected
sum of two lens spaces unless otherwise specified, and V ∪6 W is a genus three
Heegaard splitting of N . Let Diff+(N , 6) be a subgroup of Diff+(N ) defined as

Diff+(N , 6)def
=

{
f ∈ Diff+(N ) : f (6)=6 and f preserves the orientation of 6

}
.

It is clear that if an orientation-preserving diffeomorphism of N preserves the
Heegaard splitting of N , it must preserve the orientation of 6. Hence, the natural
homomorphism ρ1 : Diff+(N , 6)→ G(N , 6) is an epimorphism.

Definition 2.1. Two reducing spheres S1, S2 (for6) are isotopic if there is an isotopy

Ht : (N , 6)→ (N , 6), 0 ≤ t ≤ 1,

such that H0 = id and H1(S1)= S2.

Definition 2.2. A triplet T = (S1, S2, S3) of pairwise nonisotopic reducing spheres
for 6 is called a sphere triplet (for 6), and spheres Si (i = 1, 2, 3) are called the
components of T . We say the triplet is complete if the reducing spheres are pairwise
disjoint (i.e., its three components span a 2-simplex in the corresponding reducing
sphere complex).

Definition 2.3. Two sphere triplets T1, T2 are isotopic if there is an isotopy

Ht : (N , 6)→ (N , 6), 0 ≤ t ≤ 1,

such that H0 = id and H1(T1)= T2.

Note 2.4. We usually make no notational distinction between triplets and their
isotopy classes when the context is clear.

Definition 2.5. Two sphere triplets T1, T2 are congruent if they differ by a permuta-
tion. For instance, (S1, S2, S3) is congruent with (S3, S1, S2).

We designate a complete sphere triplet T = (S1, S2, S3) for 6, as depicted in
Figure 1, such that (1) Si (i =1, 2) cuts off a genus one Heegaard splitting of Mi \B3;
(2) S3 cuts off a genus one Heegaard splitting of a 3-ball. Clearly, S1 and S2 are
two reducible 2-spheres and cobound S2

× I in N . We also write µi = Si ∩6, for
i = 1, 2, 3. Throughout the remainder of this paper, we fix the notations Si and µi

for these designated reducing spheres in Figure 1 and corresponding reducing curves
respectively.

Lemma 2.6. Up to congruences, G(N , 6) acts transitively on the set of isotopy
classes of complete sphere triplets for 6.
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S1
S2

S3

Figure 1. Heegaard surface 6 and triplet T = (S1, S2, S3).

Proof. It suffices to show that for any given triplet T ′
= (S′

1, S′

2, S′

3), there exists a
diffeomorphism h ∈ Diff+(N , 6) such that h(T ) is congruent to T ′. Firstly, each
reducing sphere S′

i cuts off a genus one summand of 6. Then, by uniqueness of
the prime decomposition of 3-manifolds, one of the three reducing spheres bounds
a 3-ball B ⊂ N . By assumption, N \ int(B) does not admit a genus one Heegaard
splitting. This implies that 6 ∩B is a torus with a open disk removed. Thus, the
other two reducing spheres are isotopic in N and each cuts off a genus one Heegaard
splitting of a once-punctured lens space. It follows that

⋃3
i=1 S′

i divides N into four
parts, a 3-ball, a thrice-punctured 3-sphere, and two once-punctured lens spaces.
Since

⋃3
i=1 S′

i divides N into four parts of the same diffeomorphism type as those
divided by

⋃3
i=1 Si , we glue all diffeomorphisms of these four parts along spheres

to obtain the desired h. □

Using similar arguments, we can prove the following lemma.

Lemma 2.7. If S is a common component of these two complete sphere triplets T
and T ′, then there exists a diffeomorphism h ∈ Diff+(N , 6) such that h(T )= T ′

and h(S)= S.

3. Eyeglass twist and visional bubble move

A Heegaard splitting N = A ∪6 B is weakly reducible if there are two properly
embedded disjoint essential disks, a ⊂ A and b ⊂ B. We call (a, b) a weakly
reducing pair for 6. An eyeglass is a triple (a, b, λ), where (a, b) is a weakly
reducing pair for 6 and λ⊂6 is an arc connecting a and b with its interior disjoint
from them. For an eyeglass η = (a, b, λ), we refer to (a, b) as the lenses of η
and λ as the bridge of η. Given a normal direction n⃗ pointing toward the interior
of B, we can push the 1-handle a × I around the circumference of the disk b in a
counterclockwise direction as in Figure 2 (left). In fact, it is exactly an excursion
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b

n⃗

λ
6

a

βλγα

Figure 2. Left: eyeglass twist. Right: regular neighborhood 1.

of the handlebody A that ends at the initial position. More formally, an eyeglass η
defines a natural automorphism Tη : (N , 6) → (N , 6), known as the positive
eyeglass twist. The inverse of this operation, which involves a clockwise excursion
of A, is called negative eyeglass twist and denoted by Tη̄. For an eyeglass twist Tη,
the eyeglass η is referred to as its base eyeglass. It is not hard to see that an eyeglass
twist preserves the isotopy classes of its lenses.

Note 3.1. The above definition does not depend on the order of the two lenses of the
eyeglass. In other words, if η = (a, b, λ) and η′

= (b, a, λ), then we have Tη = Tη′ .

Let η = (a, b, λ) be an eyeglass, where α def
= ∂a, β def

= ∂b, and let 1 be a regular
neighborhood of α ∪ λ ∪ β in surface 6. Denote by γ the component (as in
Figure 2 (right)) of ∂1, which is isotopic to neither α nor β. We can now describe
the above situation as

Tη = τα · τβ · τ−1
γ ,

where τ[ · ] denotes the left-handed Dehn twist. See more details in [Zupan 2020,
Lemma 2.5].

Remark. Although different choices of regular neighborhoods of the eyeglass η
yield different eyeglass twists, they are all equivalent up to isotopy. Therefore, for
the eyeglass η, we obtain two eyeglass twists Tη, Tη̄ ∈ G(N , 6).

Definition 3.2. Suppose η1 and η2 are two eyeglasses in N . They are isotopic
if there is an isotopy Ht : (N , 6) → (N , 6), 0 ≤ t ≤ 1, such that H0 = id and
H1(η1)= η2. Furthermore, the isotopy class of an eyeglass η is denoted by [η].

It is not hard to see that the eyeglass twist Tη depends only on the isotopy class
of η. In analogy to the case for Dehn twists, we have the following lemma.

Lemma 3.3. Given any ϕ ∈ G(N , 6), we have Tϕ(η) = ϕ · Tη ·ϕ−1.

When a lens of an eyeglass η is decomposed into two disks, the corresponding
eyeglass twist Tη can be expressed as the composition of two new eyeglass twists.
We write it as the following lemma.
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γ
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Figure 3. Composition of eyeglass twists.

Lemma 3.4 [Freedman and Scharlemann 2018, Figure 8]. Let η = (a, b, λ) be an
eyeglass in N. If b is the band sum of two disks b1 and b2 along arc ι such that
βi = ∂bi is disjoint from both the bridge λ and the disk a, then for i = 1, 2, we can
choose a proper arc λi which connects α and βi , in the planar surface bounded
by α, β1, β2 and γ . Given such a choice, we can obtain two new eyeglasses, η1

(= (a, b1, λ1)) and η2 (= (a, b2, λ2)). Moreover, there exists a suitable choice {λi }

such that Tη is a composition of Tη1 and Tη2 .

Proof. Let P ⊂6 be the pair of pants bounded by β1, β2, and β, and let p = λ∩β.
Let ℓ⊂ P be an embedded arc that connects p and another point in β. Clearly, ℓ
divides P into two annuli A1 and A2 that contain β1 and β2, respectively. Next,
we choose for each i ∈ {1, 2} an embedded arc λ′

i ⊂ Ai that connects p and βi .
Finally, let λi = λ∪λ′

i . We can verify that {λi } is a desired choice. We also provide
a specific choice in Figure 3, in which Tη = Tη1 · Tη2 . □

Definition 3.5. Suppose η is an eyeglass in N , and S a reducing sphere for 6. We
say S separates η if these two lenses of η are disjoint from S and lie in different
components of N \ S.

Definition 3.6. Suppose S is a reducing sphere for 6, µs = S∩6, and η⊂ N (with
∂η=α∪β∪λ)) an eyeglass with lenses disjoint from S. The geometric intersection
number between S and η is defined as I (η, S) = Ĩ (λ, µs), where Ĩ ( · , · ) is the
geometric intersection number up to isotopies (of 6) that leave α and β invariant.

Definition 3.7. For any separating reducing sphere S for 6, we associate it with a
subgroup Ek(S) of G(N , 6) for each k ∈ N+ defined as

Ek(S)= ⟨Ek(S)⟩,
where

Ek(S)=
{
Tη ∈ G(N , 6) : S separates η and I (η, S)≤ k

}
.

By definition, we have Ek(S)⊂ Ek+1(S). Then we have the ascending sequence
E1(S)≤ E2(S)≤ E3(S)≤ · · · .
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βα

p
λ1 · · ·

Figure 4. Intersection pattern.

Let us return to the setting from the previous section, in which N = V ∪6 W is a
genus three Heegaard splitting for a connected sum of two lens spaces and each Si

(i = 1, 2, 3) is a fixed separating reducing sphere for 6, as in the previous section.
Then we have the following lemma.

Lemma 3.8. For i = 1, 2, 3 and k ∈ N+, we have Ek+1(Si )⩽ Ek(Si ).

Proof. It is sufficient to prove that Ek+1(Si )⊂ Ek(Si ). Consider an eyeglass twist Tη
(suppose η= (a, b, λ) and ∂η=α∪β∪λ) representing an element of Ek+1(Si ). We
aim to show that Tη ∈ Ek(Si ). Without loss of generality, we assume that β lies in
the genus one component of 6\Si , and the bridge λ intersects µi (= Si ∩6) at k +1
points. Let one of these points, say p, be closest to α, as depicted in Figure 4. The
point p divides λ into two segments, λ1 and λ2, where λ1 denotes the one that is
disjoint from µi .

Next, we choose an arc λ3 in the pair of pants 6 \ (Si ∪ β) that connects the
point p and β, and whose interior does not intersect β (see Figure 5 (left)). Then
we obtain a new eyeglass η′

= (a, b, λ1 ∪λ3), with the corresponding two eyeglass
twists ϕ1 and ϕ2 (ϕ1 = Tη′, ϕ2 = Tη̄′). Let γ ⊂6 be a curve such that α, β, and γ
cobound a pair of pants 1 ⊂ 6 containing η′, as shown in Figure 6. Notice that
I (η′, Si )= 1, which implies that ϕ1, ϕ2 ∈ Ek(Si ).

Pushing the 1-handle a × I along the path ι, as illustrated by the green line in
Figure 5 (left), produces an eyeglass twist. This twist is exactly ϕ2 (= τ−1

α ·τ−1
β ·τγ ).

After the excursion of the 1-handle a × I along path ι, the intersection points p
and p′ are eliminated, as shown in Figure 5 (right). To see this, we assume that ϕ2

is supported in 1. Thus, we only need to observe where the arcs λ∩1 are sent
by ϕ2. The precise picture is illustrated in Figure 5 (middle). Let ℓ⊂ λ∩1 be the
component that is closest to α (i.e., {p, p′

} ⊂ ℓ). After having removed all bigons,
we can see that ϕ2(ℓ) is disjoint from Si (See details in Figure 5 (right).) On the
other hand, for any other component ℓ′ ⊂ λ ∩1, |ϕ2(ℓ

′) ∩ Si | = |ℓ′ ∩ Si |. This
implies that I (ϕ2(η), Si )< k +1. By Lemma 3.3, we then have Tη = ϕ−1

2 ·Tϕ2(η) ·ϕ2.
Since both Tϕ2(η) and ϕ2 belong to Ek(Si ), it follows that Tη ∈ Ek(Si ). □

In summary, we have the equation

E1(Si )= E2(Si )= E3(Si )= · · ·

for i = 1, 2, 3.
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Figure 5. Left: new eyeglass. Middle: new intersection pattern. Right:
new pattern with bigons removed.
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Figure 6. Specific neighborhood 1 of η.

Scharlemann [2022] defines a class of automorphisms of a Heegaard splitting,
called bubble moves, which generalize one of the five automorphisms proposed by
Powell [1980]. In this work, we extend the concept to a more general setting.

Definition 3.9. For a 3-manifold N with a Heegaard splitting N = A∪6 B, a bubble
is a 3-submanifold B of N , whose boundary is a 2-sphere. If the boundary ∂B is a
reducing sphere for 6, we call B a bubble for 6. The genus of B∩6 is referred to
as the genus of B. In addition, a bubble is called trivial if it is a 3-ball, otherwise it
is called essential.

Definition 3.10 [Scharlemann 2022, Section 2]. Let N = A ∪6 B be a Heegaard
splitting, and B a trivial bubble for 6. A bubble move is an isotopy of B along a
closed path in 6 \ int(B) that starts and ends at B, returning (B,B ∩6) to itself.
See Figure 7 (left).

For essential bubbles, we introduce a new class of automorphisms defined as
follows.

Definition 3.11 (visional bubble move). Let N = A ∪6 B be a Heegaard splitting
for a closed 3-manifold N , and B a bubble for 6 with S as its boundary. The
submanifold N \ int(B) is also a bubble for 6, which we refer to as the dual bubble
of B and denote by B′. By capping off the sphere boundary of B′ with a 3-ball,
we obtain a new manifold N (B). The manifold N (B) inherits a Heegaard splitting,
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bubble S

Figure 7. Left: bubble move. Right: Heegaard surface 6′.

with its Heegaard surface 6′ being the boundary sum of 6 \ int(B) and a bordered
torus (torus with an open disk removed), as illustrated in Figure 7 (right). Clearly,
N (B)\ int(B′) is a trivial bubble in N (B), bounded by the sphere S, denoted by B3.
As in the case of trivial bubbles, a bubble (B3) move induces a diffeomorphism
h : N (B) → N (B) such that h|B3 = id. We then glue the two diffeomorphisms
h|B′ : B′

→ B′ and id : B → B along the sphere S to obtain a diffeomorphism
h̃ : (N , 6)→ (N , 6), which we refer to as a visional bubble (B) move.

In our setting, each sphere Si (i ∈ {1, 2, 3}) bounds a genus one bubble, denoted
by Bi . It is easy to see that a visional Bi move fixes the sphere Si . In other words,
any visional Bi move lies in the stabilizer Hi ⩽ G(N , 6) of the isotopy class of the
curve µi = Si ∩6. Furthermore, let H be the subgroup of G(N , 6) generated by
H1,H2, and H3; i.e., H = ⟨H1,H2,H3⟩.

4. Stabilizers of reducing 2-spheres

To prove the main theorem, we first show that G(N , 6) = H in Theorem 4.8.
Then we will prove that H is finitely generated in the next section. As a corollary,
the reducing sphere complex R is connected. Before proving Theorem 4.8, we
introduce the following two lemmas.

Lemma 4.1. E1(Si ) <H for i = 1, 2, 3.

Proof. It is sufficient to prove that all generators of E1(Si ) belong to the subgroup H;
i.e., E1(Si )⊆ H for i = 1, 2, 3. Without loss of generality, we assume that i = 1.
For any element Tη ∈ E1(S1), η = (a, b, λ) is an eyeglass such that S1 separates η
and the bridge λ intersects S1 transversely at one point p1. In this case, both α= ∂a
and β = ∂b are disjoint from S1 ∩6. We assume the following conditions:

(1) a and b are, respectively, a disk in V and W .

(2) α and β lie in the genus two and the genus one component of6\S1 respectively.

We prove by induction on the geometric intersection number I (α, µ3) that Tη ∈ H.
The base case α ∩µ3 = ∅ is divided into the following Case 1 and Case 2.
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Figure 8. Top: finding a new arc λ′

1. Bottom left: a visional B1 move
along the pink path. Bottom right: the reduction.

Case 1. α∩µ3 =∅ and α lies in the genus one component of6\S3. Let pm ∈λ∩S2

be the point that is closest to α and λ1 ⊂ λ be the subarc bounded by p0 and pm , as
shown in Figure 8 (top row). Then we choose an arc λ′

1 ⊂6 connecting pm and
a point of S1, with its interior disjoint from S1, S2, and α. Let λ′

= λ1 ∪ λ′

1. We
endow λ′ with an orientation as illustrated in Figure 8 (top row) and write λ⃗′ for the
resulting oriented arc. Notice that the visional B1 move along λ⃗′, denoted by ψ1,
can reduce the intersection number I (η, S2). To be precise, ψ1 ∈ H1 satisfies

I (ψ1(η), S2)= 0, ψ1(α)= α, ψ1(β)= β.

Figure 8 (bottom row) illustrates how a visional bubble move reduces the intersection.

Note that ψ1(η) is disjoint from S2. It means that Tψ1(η) ∈ H2. Then we have

Tη = ψ−1
1 · Tψ1(η) ·ψ1 ∈ H.

Case 2. α ∩µ3 = ∅ and α lies in the genus two component of 6 \ S3. Similarly,
we can find a visional B1 move ψ2 ∈ H1 such that

I (ψ2(η), S3)= 0, ψ2(α)= α, ψ2(β)= β.

It follows that Tψ2(η) ∈ H3 and Tη = ψ−1
2 · Tψ2(η) ·ψ2 ∈ H.
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Figure 9. New eyeglasses.

Assume the statement is true for I (α, µ3) ≤ 2n. We consider the case that
I (α, µ3) = 2n + 2. We first isotope η so that all the endpoints of the bridge λ
lie in the genus two component of 6 \ S3, while keeping the curves α and β
invariant during the isotopy. Next, we apply a visional B1 move h̄ ∈ H1 such that
I (h(α), µ3)⩽ I (α, µ3) and h(λ) is disjoint from µ3.

Let D and D′ be, respectively, the disks bounded by h(α) and µ3 in V . Without
loss of generality, we assume that |D∩D′

| is minimal. Let D′′
⊂ D′ be an outermost

subdisk cut off by D. Doing a compression on D along D′′ results in two essential
disks D1 and D2, with boundaries α1 and α2. Since h(λ)∩ D′′

⊂ h(λ)∩µ3 = ∅,
α1 ∪α2 intersects h(λ) at most once. Thus, we consider the following two subcases:

Case 3.1. (α1 ∪ α2) ∩ h(λ) = ∅. By Lemma 3.4, Th(η) is a composition of
two eyeglass twists whose bases have a smaller intersection with µ3. Since the
intersection number is smaller, the induction hypothesis applies. Therefore, by the
induction assumption, we have Th(η) ∈ H.

Case 3.2. |(α1 ∪ α2)∩ h(λ)| = 1. Without loss of generality, we assume that α1

intersects h(λ) at one point. We now construct two new eyeglasses η1 (= (D1, b, λ1))
and η2 (= (D2, b, λ2)), as depicted in Figure 9. By Lemma 3.4, we know that
Tη1 = Tη2 · Th(η). From the induction assumption, it follows that Th(η) ∈ H. □

Lemma 4.2. For any eyeglass η = (a, b, λ) (with ∂η = (α, β, λ)) satisfying that
both α and β lie in the genus two component of 6 \ Si (i = 1 or 2), we have Tη ∈ H.

Proof. Without loss of generality, we assume that both α and β lie in the genus two
component of 6 \ S1. The other case is similar. So we omit it. If λ is disjoint from
µ1 = S1 ∩6, then Tη fixes µ1. This means that Tη ∈H. So we assume that neither α
nor β is isotopic to µ1, and λ∩µ1 ̸=∅. After performing three compressions on 6
along a, b, and the disk D ⊂ V bounded by µ1, we obtain a 2-sphere S.

Claim 4.3. The sphere S contains a scar3 of D.

3A disk compression will produce two copies of the surgery disk in the resulting surface, which
we refer to as scars of the surgery disk.
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Proof. Suppose that the conclusion is false. In this case, one of α and β is separating
in 6. Suppose it is α. Then β lies in the genus one component of 6 \α. Since α is
disjoint from µ1, it means that λ is disjoint from µ1, a contradiction. □

Hence, S contains a scar of D and the scars of a and b. Then we choose two
disjoint simple closed curves ℓ1, ℓ2 ⊂ S such that ℓ1 cuts off a disk that contains
only the scars of a, while ℓ2 cuts off a disk containing only the scars of b. Since ℓ1

(resp. ℓ2) is a band sum of two scars of a (resp. b), ℓ1 (resp. ℓ2) bounds an essential
disk in V (resp. W ). Moreover, ℓ1, ℓ2, and the reducing curve µ1 (= ∂D) cobound
a pair of pants in 6. Then ℓ1 is the band sum of µ1 and ℓ2. Hence ℓ1 bounds a
disk in W . So ℓ1 is a reducing curve. Similarly, ℓ2 is also a reducing curve. Then,
there are two disjoint reducing spheres Sℓ1 and Sℓ2 such that Sℓi ∩6 = ℓi . By
definition, these three spheres (Sℓ1, Sℓ2 and S1) constitute a complete sphere triplet,
denoted by T ′. Note that S1 is a common 2-sphere of T (= (S1, S2, S3)) and T ′. By
Lemma 2.7, there exists an element φ ∈ Hi such that φ(T ′)= T . To prove Tη ∈ H,
it suffices to prove Tφ(η) ∈ H.

If α is isotopic to ℓ1, then φ(α) is isotopic to one of µ1, µ2, and µ3. So Tφ(η) ∈H.
Otherwise, Sℓ1 separates η. Then φ(Sℓ1) separates φ(η). By Lemma 3.8, we know
that EI (φ(η),φ(Sℓ1 ))(φ(Sℓ1)) = E1(φ(Sℓ1)). On the other hand, φ(T ′) = T implies
that φ(Sℓ1) is exactly one component of T . Further, by Lemma 4.1, it follows that
E1(φ(Sℓ1)) <H. In summary, we have

Tφ(η) ∈ E I (φ(η),φ(Sℓ1 ))(φ(Sℓ1))⊆ EI (φ(η),φ(Sℓ1 ))(φ(Sℓ1))= E1(φ(Sℓ1)) <H. □

Recently, the classical “Haken’s lemma” has been strengthened into the “strong
Haken’s lemma” by several authors in various ways [Scharlemann 2024; Hensel
and Schultens 2024; Taylor 2025], which says that a sphere set in a 3-manifold
can be isotoped to be aligned with the given Heegaard surface (See the following
definition for “aligned”.)

Definition 4.4 [Freedman and Scharlemann 2024, Section 1]. A sphere set E ⊂ N
is a compact properly embedded surface in N such that each component of E is
a sphere. Then, a Heegaard surface 6 and a sphere set E in N (= A ∪6 B) are
aligned if they are transverse, and each component of E intersects 6 in at most
one circle. In addition, each disk component of E \6 is essential in either A or B.

Definition 4.5 (bubble-sum). Suppose R1 ⊂ N is a reducing sphere for6 and B⊂ N
a trivial bubble disjoint from R1. We will use the notation R2 =∂B, γ1 = R1∩6, and
γ2 = R2∩6. Let λ⊂6 be an embedded arc that connects γ1 and γ2, with its interior
disjoint from γ1 and γ2. Then for a good closed neighborhood N (R1 ∪ R2 ∪ λ),
∂N (R1 ∪ R2 ∪λ) consists of copies of R1 ∪ R2 and a new reducing sphere R3. The
reducing sphere R3 is called a bubble-sum of R1 and R2 along λ.
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Definition 4.6 [Freedman and Scharlemann 2024, Definition 1.4]. Let E0 and E1 be
two sphere sets aligned with 6 in N . E0 and E1 are equivalent if there is an isotopy
H : N × I → N with Hs :6×{s} →6 for 0 ≤ s ≤ 1 such that H1 maps E0 to E1.

Freedman and Scharlemann [2024] prove that any two alignments of a sphere
set are related by a sequence of bubble-sums, which are called “bubble moves” in
their paper, and eyeglass twists.

Theorem 4.7 [Freedman and Scharlemann 2024, Theorem 1.6]. If E0 and E1 are
two sphere sets that are properly isotopic in N and each aligns with 6, then up
to equivalence, E1 can be obtained from E0 by a sequence of bubble-sums and
eyeglass twists.4

There is a bijection between the isotopy classes of reducing curves and the isotopy
classes of reducing spheres. We identify a reducing sphere with its corresponding
reducing curve. Therefore, the reducing sphere complex can be treated as a subcom-
plex of the curve complex of6. In subsequent arguments, we will use the symbol R

to represent the reducing sphere complex for the Heegaard splitting N = V ∪6 W .

Theorem 4.8. G(N , 6)= H.

Proof. We divide the proof into two cases: (a) N1 ̸= N2; (b) N1 = N2.

Case (a). Let R0 be the 0-skeleton of R. As both G(N , 6) and H naturally act
on R0, we denote the corresponding orbit containing the isotopy class µ̄i by Oi

and O ′

i respectively. Since we have assumed that N1 ̸= N2, we know that O1∩O2 =∅.
To prove the theorem, it suffices5 to show that O1 = O ′

1.
Given any reducing sphere S for 6 with the intersection curve µ (= S ∩6)

representing an isotopy class µ̄ of O1, we will prove that µ̄ ∈ O ′

1. If it does, we
immediately obtain the desired result O1 = O ′

1.
By an innermost curve argument, these two essential spheres S and S1 are isotopic.

Both S and S1 are aligned with 6. By Theorem 4.7, S is related to S1 by a sequence
of bubble-sums and eyeglass twists. Thus, there is a sequence of reducing curves λi

in 6 such that λi+1 can be obtained from λi by a bubble-sum or an eyeglass twist

(1) µ1 =6 ∩ S1 = λ1, λ2, λ3, . . . , λn =6 ∩ S = µ.

We first prove by induction that λ̄i ∈ O ′

1 ∪O ′

2. The base case λ̄1 ∈ O ′

1 ∪O ′

2 clearly
holds. We assume that λ̄i ∈ O ′

1 ∪ O ′

2. Then we prove that λ̄i+1 ∈ O ′

1 ∪ O ′

2. Without
loss of generality, we assume that λ̄i ∈ O ′

1. It means that there is an element ḡ ∈ H
such that ḡ(λ̄i ) = µ̄1. Let g ∈ Diff+(N , 6) be a representative of ḡ such that
g(λi )= µ1. Then there are two cases as follows.

4Each involved eyeglass twist must have its base lenses disjoint from the sphere set on which it
acts. See details in [Freedman and Scharlemann 2024, Section 1].

5Assume that O1 = O ′
1. Then, for any φ ∈ G(N , 6), we can find an element ϕ ∈ H such that

φ(µ̄1)= ϕ(µ̄1). So ϕ−1
·φ ∈ H1 ⩽H. It follows that φ ∈ H.
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g(λi+1)µ1 = g(λi )

ℓ

Figure 10. A pair of pants bounded by g(λi+1), ℓ, and µ1.

Case 1. λi+1 is obtained from λi by a bubble-sum. It implies that g(λi+1) can
be obtained from g(λi ) by a bubble-sum. In this bubble-sum, the involved triv-
ial bubble has sphere boundary Sℓ, where Sℓ ∩ 6 = ℓ. By Definition 4.5, the
three curves g(λi+1), ℓ, and µ1 (= g(λi )) cobound a pair of pants illustrated as in
Figure 10. Denote by Sg(λi+1) the reducing 2-sphere intersecting transversely with6
in g(λi+1). Note that S1 ∪ Sℓ ∪ Sg(λi+1) divides N into four submanifolds of the
same diffeomorphism type as those divided by S1 ∪ S3 ∪ S2. It follows that there is a
diffeomorphism h ∈ Diff+(N , 6) such that h(S1, Sℓ, Sg(λi+1))= (S1, S3, S2). Thus,
we have h · g(λi+1)= µ2. Furthermore, h̄ · ḡ(λ̄i+1)= µ̄2, where ḡ ∈ H and h̄ ∈ H1.
So λ̄i+1 ∈ O ′

2.

Case 2. λi+1 is obtained from λi by an eyeglass twist Tη′

i
. It means that g(λi+1)

can be obtained from g(λi ) (= µ1) by the eyeglass twist Tg(η′

i )
. Write ηi = g(η′

i ).
From the hypotheses of Theorem 4.7, we know that the lenses of η′

i are disjoint
from λi . This implies the lenses of ηi are also disjoint from µ1. Accordingly, there
are two subcases as follows.

Subcase 2.1. S1 separates ηi . By Lemma 3.8 and Lemma 4.1, we have Tηi ∈ H.
Since T −1

ηi
· g(λi+1)= µ1, we have that λ̄i+1 ∈ O ′

1.

Subcase 2.2. S1 does not separate ηi . Then these two lenses of ηi both lie in
the component of N \ S1 which contains the genus two component of 6 \ S1. By
Lemma 4.2, Tηi ∈ H. So we have λ̄i+1 ∈ O ′

1.
The above argument completes the proof for the statement that λ̄i ∈ O ′

1 ∪ O ′

2 for
all i ⩽ n. In particular, µ̄ = λ̄n ∈ O ′

1 ∪ O ′

2. However, µ̄ ∈ O1, O1 ∩ O2 = ∅, and
O ′

i ⊂ Oi . This implies that µ̄ ∈ O ′

1. This completes the proof of the case (a).

Case (b). Since any lens space has a unique genus one Heegaard splitting up to
diffeomorphism, we can construct a diffeomorphism f ∈ Diff+(N , 6) such that
f (S1, S2, S3)= (S2, S1, S3), as in the proof of Lemma 2.6. This means that O ′

1 =O ′

2.
Then we can prove by induction on the sequence (1), as in Case (a), that λ̄i ∈ O ′

1. It
follows that O ′

1 = O1. Overall, G(N , 6)= H. □
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We use the above results to prove the connectedness of the reducing sphere
complexes R.

Proof of Corollary 1.2. These three reducing 2-spheres S1, S2 and S3 are contained
in a same component of R, say R′. To prove the connectedness of R, it suffices to
show that R = R′.

Given any reducing sphere S ∈ R, there are two other reducing spheres S′ and S′′

in R such that the sphere triplet T ′
= (S, S′, S′′) is complete. By Lemma 2.6, there

is an element ν ∈ G(N , 6) such that ν(T ) is congruent to T ′. By Theorem 4.8,

ν = θn · θn−1 · · · θ2 · θ1,

where θi ∈ H1 ∪H2 ∪H3.
Let νi = θi ·θi−1 · · · θ2 ·θ1 (0⩽ i ⩽ n) and Ti = νi (T ). Then we obtain a sequence

of triplets
T = T0, T1, T2, . . . , Tn−1, Tn = T ′.

We identify a complete sphere triplet with a 2-simplex of R. Then we prove by
induction that Ti ⊂ R′. The base case T0 ⊂ R′ clearly holds. We assume that
Tk ⊂ R′. Without loss of generality, we assume that θk+1 ∈ H1. By the induction
assumption, Tk and S1 are contained in the same component R′. So θk+1(Tk) and
θk+1(S1) are also in the same component of R. Since θk+1(S1)= S1 ∈ R′, we have
that Tk+1 = θk+1(Tk)⊂ R′. Therefore, S ∈ T ′

= Tn ⊂ R′. □

5. Finitely many generators

In this section, we prove that each Hi is finitely generated. Then, by Theorem 4.8,
G(N , 6) (= ⟨H1,H2,H3⟩) is also finitely generated. Before that, we first introduce
the following definition.

Definition 5.1. Let N = A ∪6 B be a Heegaard splitting and D a union of
finitely many disjoint marked6 disks in 6. In this case, we define the Goeritz
group G(N , 6, D) to be the group of diffeomorphisms of N that preserve the Hee-
gaard splitting and fix D pointwise, modulo isotopies7 that leave 6 and D invariant.

Note 5.2. Unless otherwise specified, all manifolds considered in this section are
not assumed to be the connected sum of lens spaces.

Suppose B is a bubble for 6, with the boundary sphere S = ∂B intersecting 6 in
an essential simple closed curve µ. Let Da be the disk S∩ A and6B be the bordered
surface6\int(B). Denote by6(B) the closed surface6B∪Da . Since S is separating

6In classical surface mapping class group theory, the surfaces with marked points are frequently
considered. Here, we simply follow this tradition by discussing mapping class groups of surfaces with
marked disks.

7Precisely, such an isotopy Ht : N → N , 0 ≤ t ≤ 1, is required to satisfy that Ht (6, D)= (6, D)
and H0|D = H1|D = id.
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in N , we cap off the sphere boundary S of the dual bubble B′ (= N \ int(B)) with a
3-ball to obtain a new closed orientable 3-manifold N (B). It is not hard to see that
6(B) is a Heegaard surface for N (B). Putting an orientation for the curve µ, we get
the oriented curve µ⃗ and its isotopy class [µ⃗]. Denote by Gµ⃗ the stabilizer of [µ⃗]:

Gµ⃗
def
= {φ ∈ G(N , 6) : φ([µ⃗])= [µ⃗]}.

We define a subgroup of Diff+(N , 6) by

Diff+(N , 6, S) def
= { f ∈ Diff+(N , 6) : f |S = id}.

By the definition, if f ∈ Diff+(N , 6, S), then f (B′) = B′ (B′
= N \B). We

associate it with an element of the Goeritz group G(N (B),6(B), Da) as fol-
lows. Since N (B) is the union of B ′ and a 3-ball, f |B′ can be naturally ex-
tended into a diffeomorphism f̂ : (N (B),6(B), Da) → (N (B),6(B), Da). All
different extensions of f are pairwise isotopic. Subsequently, we obtain a map
ρ2 : Diff+(N , 6, S)→ G(N (B),6(B), Da). It is not hard to verify that ρ2 is also
an epimorphism.

Restricting the natural homomorphism ρ1 : Diff+(N , 6) → G(N , 6) to the
subgroup Diff+(N , 6, S) results in a restriction map, which we still denote by ρ1.
It is easy to see that ρ1(Diff+(N , 6, S))= Gµ⃗.

We want to define a homomorphism ρ : Gµ⃗ → G(N (B),6(B), Da) so that the
following diagram commutes:

Diff+(N , 6, S) Gµ⃗

G(N (B),6(B), Da)

ρ2

ρ1

ρ

If such a ρ exists, it is uniquely determined by the requirement. Its existence is
guaranteed by the following lemma.

Lemma 5.3. For any diffeomorphism f ∈ Diff+(N , 6, S), if ρ1( f ) = id, then
ρ2( f )= id.

Proof. Assume that α⃗ is an oriented essential simple closed curve in 6B. Since
ρ1( f )= id, f (α⃗) is isotopic to α⃗ in 6. By [Farb and Margalit 2012, Lemma 3.16],
we know that f (α⃗) is also isotopic to α⃗ in 6B. In other words, f preserves the
isotopy classes of all oriented essential simple closed curves in 6B. We can prove
by the Alexander method8 that such a diffeomorphism is isotopic to a power of the
Dehn twist τµ. This means that ρ2( f )= id. □

8Here, we first choose a collection {γi } of essential simple closed curves in 6B, as shown in
Figure 11. By the Alexander method [Farb and Margalit 2012, Proposition 2.8], we know that f

(⋃
γi

)
is isotopic to

⋃
γi relative to µ (= ∂6B). So we assume that f

(⋃
γi

)
=

⋃
γi . In addition, f also
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µ

γnγn−1
γn−2γ3γ2

γ1γ0
· · ·

Figure 11. The surface 6B.

It follows that such ρ exists and is surjective, and the kernel of ρ is denoted
by I(ρ). Then we have the exact sequence

(2) 1 → I(ρ) i
−→ Gµ⃗

ρ
−→ G(N (B),6(B), Da)→ 1.

Similarly, for the dual bubble B′, we also have a dual exact sequence

(3) 1 → I(ρ ′)
i ′

−→ Gµ⃗
ρ′

−→ G(N (B′),6(B′), Da)→ 1.

Lemma 5.4. The composite homomorphism ρ ′
· i is an epimorphism.

Proof. By a similar argument for the dual bubble B′, we have the following
commutative diagram:

Diff+(N , 6, S) Gµ⃗

G(N (B′),6(B′), Da)

ρ′

2

ρ1

ρ′

Since ρ2 is surjective, for any element φ ∈ G(N (B′),6(B′), Da), we can find a
diffeomorphism f ∈ Diff+(N , 6, S) such that ρ ′

2( f )= φ. We extend f |B by the
identity to obtain a diffeomorphism f̂ ∈ Diff+(N , 6, S). It is not hard to see that ρ ′

·

ρ1( f̂ )=ρ ′

2( f̂ )=ρ ′

2( f )=φ and ρ1( f̂ )∈I(ρ). The lemma follows immediately. □

Subsequently, we have the exact sequence

(4) 1 → I(ρ ′)∩ I(ρ) i ′′′

−→ I(ρ) ρ
′
·i

−→ G(N (B′),6(B′), Da)→ 1.

Since the marked disk Da can be treated as a marked point in 6(B), we apply the
description of the kernel of the capping homomorphism9 [Farb and Margalit 2012,
Proposition 3.19] to obtain I(ρ ′)∩ I(ρ)= ⟨τ̃µ⟩, where τ̃µ is the extension of the
Dehn twist τµ to the whole manifold N .

preserves the orientation of γi . This implies that f fixes each vertex and each edge of
⋃
γi (regard⋃

γi as a graph). Without loss of generality, we may further assume that f |
⋃
γi

= id. On the other
hand, 6B \

(⋃
γi

)
is an annulus. It follows that f is isotopic to a power of the Dehn twist τµ.

9Let f ∈ Diff+(N , 6, S) be a diffeomorphism that represents an element of I(ρ′)∩ I(ρ). Then,
with Da identified with a marked point in 6(B), f |6B represents an element of the kernel of the
capping homomorphism Cap : Mod(6B, ∂6B) → Mod(6(B), Da). By [Farb and Margalit 2012,
Proposition 3.19], f |6B is isotopic to a power of the Dehn twist along µ (= ∂6B), and so is f |6B′ .
This implies that f is isotopic to a power of the Dehn twist along µ.
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Lemma 5.5. If both G(N (B),6(B)) and G(N (B′),6(B′)) are finitely generated
(or finitely presented), then Gµ⃗ is finitely generated (or finitely presented) as well.

Proof. We first prove that G(N (B),6(B), Da) is finitely generated (or finitely pre-
sented). If the genus g(6(B)) is 1, we have G(N (B),6(B), Da)= G(N (B),6(B)).
Then there is nothing to prove. If g(6(B))⩾ 2, we apply the Birman exact sequence
[Birman 1969] for the pair (6(B), Da) to obtain the commutative diagram

1 K G(N (B),6(B), Da) G(N (B),6(B)) 1

1 π1(6(B)) Mod(6(B), Da) Mod(6(B)) 1

push

i

forget

i i
push forget

where i denotes the inclusion map. The Birman exact sequence provides a descrip-
tion for the kernel of the forget map, which asserts that the kernel is generated by
the isotopies (of 6(B)) that push Da along a closed path (that begins and ends
at Da) in 6(B). Note that all such isotopies can be extended to the whole mani-
fold N (B). It follows that K =π1(6(B)). Since both π1(6(B)) and G(N (B),6(B))
are finitely generated (or finitely presented), so is G(N (B),6(B), Da). Similarly,
G(N (B′),6(B′), Da) is also finitely generated (or finitely presented).

By the exact sequence (4), I(ρ) is finitely generated (or finitely presented). Then
by the exact sequence (2), Gµ⃗ is also finitely generated (or finitely presented). □

With the above preparations completed, we can present the proof of Theorem 1.3.

Proof of Theorem 1.3. By Lemma 5.5, we know that Gµ⃗ is finitely generated (or
finitely presented). Since Gµ⃗ is a subgroup of Gµ with index at most two, Gµ is
also finitely generated (or finitely presented). □

The genus at most two Goeritz groups for lens spaces or their connected sum
have been shown to be finitely generated in [Cho 2013; Cho and Koda 2016; 2019].
Then by Theorem 1.3, the stabilizer Gµi , which is exactly the group Hi , is finitely
generated. By Theorem 4.8, it follows that G(N , 6) is finitely generated. So we
complete the proof of Theorem 1.1.
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COMPLETE MINIMAL HYPERSURFACES
IN A HYPERBOLIC SPACE H4(−1)

QING-MING CHENG AND YEJUAN PENG

We study n-dimensional complete minimal hypersurfaces in the hyperbolic
space Hn+1(−1) of constant curvature −1. We prove that a 3-dimensional
complete minimal hypersurface with constant scalar curvature in H4(−1)

satisfies S ≤
21
29 by making use of the generalized maximum principle, where S

denotes the squared norm of the second fundamental form of the hypersurface.

1. Introduction

Let Mn be an n-dimensional minimal hypersurface in the hyperbolic space H n+1(−1)

of constant curvature −1. A very important subject of study is the rigidity of
complete minimal hypersurfaces in the hyperbolic space H n+1(−1). It is well
known that there are many important results on the rigidity of compact minimal
hypersurfaces in the unit sphere Sn+1(1). For example, Simons [7], Chern, do Carmo
and Kobayashi [3] and Lawson [4] prove that an n-dimensional compact minimal
hypersurface in the unit sphere Sn+1(1) is isometric to a totally geodesic sphere or a
Clifford torus if the squared norm S of its second fundamental form satisfies S ≤ n.
In particular, for n = 3, it is known that a 3-dimensional compact minimal hyper-
surface in the unit sphere S4(1) with constant scalar curvature is isometric to a
totally geodesic sphere or a Clifford torus or the Cartan minimal isoparametric
hypersurface (see [1; 6]). On the other hand, Cheng and Wan [2] proved complete
minimal hypersurfaces with constant scalar curvature in the Euclidean space R4

are isometric to the hyperplane R3. But for complete minimal hypersurfaces in
the hyperbolic space H n+1(−1), there are only few results on rigidity of complete
minimal hypersurfaces. It is our main purpose to study the following conjecture:

Conjecture. A complete minimal hypersurface with constant scalar curvature in
the hyperbolic space H 4(−1) is isometric to the hyperbolic space H 3(−1).

We will prove the following:
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Theorem 1.1. A complete minimal hypersurface with constant scalar curvature in
the hyperbolic space H 4(−1) satisfies S ≤

21
29 , where S denotes the squared norm

of the second fundamental form of the hypersurface.

2. Basic formulas

Let Mn be an n-dimensional hypersurface in an (n+1)-dimensional hyperbolic
space H n+1(−1). At each point p in H n+1(−1), we choose a local orthonormal
frame field {e1, e2, . . . , en+1} and the dual coframe {ω1, ω2, . . . , ωn+1

} such that,
restricted to Mn , {e1, e2, . . . , en} is tangent to Mn . Structure equations of H n+1(−1)

are given by

(2-1)

dωA = −

∑
B

ωAB ∧ ωB, ωAB + ωBA = 0,

dωAB +

∑
C

ωAC ∧ ωCB =
1
2

∑
C,D

KABCD ωC ∧ ωD,

with

(2-2) KABCD = −(δACδBD − δADδBC).

If we restrict these forms to Mn , then ωn+1
= 0. We have

(2-3) ωi,n+1 =

∑
j

hi jω j , hi j = h j i .

One calls

(2-4) H =
1
n

∑
i

hi i , h =

∑
i, j

hi jωi ⊗ ω j

the mean curvature and the second fundamental form of Mn , respectively. If H is
identically zero, Mn is called minimal. The structure equations of Mn are given by

(2-5)

dωi = −

∑
j

ωi j ∧ ω j , ωi j + ω j i = 0,

dωi j +

∑
k

ωik ∧ ωk j =
1
2

∑
k,l

Ri jkl ωk ∧ ωl,

where

(2-6) Ri jkl = −(δikδ jl − δilδ jk) + (hikh jl − hilh jk).

For minimal hypersurfaces in H n+1(−1), we obtain

R = −n(n − 1) − S,
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where R and S denote the scalar curvature and the squared norm of the second
fundamental form of Mn , respectively. From the structure equations of Mn , Codazzi
equations and Ricci formulas are given by

hi jk = hik j , hi jkl − hi jlk =

∑
m

him Rmjkl +

∑
m

hmj Rmikl,

where hi jk = ∇khi j and hi jkl = ∇l∇khi j , respectively. Define f3 and f4 by

f3 =

n∑
i, j,k=1

hi j h jkhki and f4 =

n∑
i, j,k,l=1

hi j h jkhklhli ,

respectively. We have, for minimal hypersurfaces,

(2-7)
1
31 f3 = −(n + S) f3 + 2C,

1
41 f4 = −(n + S) f4 + (2A + B),

where
C =

∑
i, j,k

λi h2
i jk, A =

∑
i, j,k

λ2
i h2

i jk, B =

∑
i, j,k

λiλ j h2
i jk

and λi ’s are principal curvatures of Mn , that is,∑
i

hi i =

∑
i

λi = 0, S =

∑
i, j

h2
i j =

∑
i

λ2
i ,

hi j i j − h j i j i = (λi − λ j )(−1 + λiλ j ).

By a direct computation, we have

S = n(1 − n) − R, 1hi j = −(S + n)hi j ,
1
21S = −S(S + n) +

∑
i, j,k

h2
i jk .

If the squared norm S of the second fundamental form is constant, we have∑
i, j,k

h2
i jk = S(S + n),

∑
i, j,k,l

h2
i jkl = S(S + n)(2n + 3 + S) + 3(A − 2B).

The following generalized maximum principle due to Omori [5] (see Yau [8]) will
play an important role in this paper.

Theorem 2.1. Let Mn be a complete Riemannian manifold with sectional curvature
bounded from below. If a C2-function f is bounded from above in Mn , then there
exists a sequence {pk}

∞

k=1 ⊂ Mn such that

(1) limk→∞ f (pk) = supMn f ,

(2) limk→∞ |∇ f (pk)| = 0,

(3) limk→∞ sup ∇l∇l f (pk) ≤ 0, for l = 1, 2, . . . , n.
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3. Minimal hypersurfaces with two distinct principal curvatures

Theorem 3.1. Let M3 be a minimal hypersurface in H 4(−1) with constant scalar
curvature. If M3 has two principal curvatures somewhere, we have S ≤

21
29 .

Proof. We assume, at p ∈ M3, that M3 has two distinct principal curvatures. At p,
we may choose an orthonormal frame e1, e2, e3 such that hi j =λiδi j . We can assume

λ1 = λ2 = λ.

Since M3 is minimal, we have

λ3 = −2λ, λ2
=

1
6 S.

Because
∑

i hi i = 0 and S is constant, we have

h11k + h22k + h33k = 0, h11k + h22k − 2h33k = 0.

We obtain
h11k + h22k = 0, h33k = 0, k = 1, 2, 3.

We can choose e1, e2 such that h123(p) = 0 at p. In fact, if necessary, we make a
rotation of e1, e2 with angle θ , which satisfies

cos(−2θ) =
h223(p)√

h2
223(p) + h2

123(p)
, sin(−2θ) =

h123(p)√
h2

223(p) + h2
123(p)

.

Letting
a = h2

113, b = h2
111 + h2

112,

in view of

S(S + 3) =

∑
i, j,k

h2
i jk = 3(h2

112 + h2
113 + h2

221 + h2
223) + (h2

111 + h2
222)

= 6h2
113 + 4(h2

111 + h2
112),

we have
6a + 4b = S(S + 3).

Since n = 3, we have

f4 =
1
2 S2, 2A + B =

1
2 S2(S + 3).

Lemma 3.1. hi jkl are symmetric in i , j , k, l if i , j , k, l are not {1, 1, 3, 3},
{2, 2, 3, 3} and

h3311 = h3322 =
2

3λ
(a + b), h3333 =

2a
3λ

, h3312 = 0, h3313 =
2

3λ
h111h113,

h3323 =
2

3λ
h112h113, h1111 = h2222, h1133 = h2233 = −

a
3λ

.
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Proof. According to the Ricci formula,

hi jkl − hi jlk =

∑
m

hmj Rmikl +

∑
m

him Rmjkl

= (λi − λ j )Ri jkl

= (λi − λ j )(−1 + λiλ j )(δikδ jl − δilδ jk).

Also S =
∑

i, j h2
i j is constant. We have

0 =

∑
i, j

(h2
i j )kl = 2

( ∑
i, j

hi jkhi jl +
∑
i, j

hi j hi jkl

)
= 2

( ∑
i, j

hi jkhi jl −3λh33kl

)
. □

Lemma 3.2. We have

(3-1) x + 2y =
26
9 a2

+
7
18ab − b2

+
5
4 Sb,

where

x = λ2
[3(h2

1123 +h2
2213)+h2

1113 +h2
2223], y = λ2(h2

1111 +h2
1112)+ (a +b)λh1111.

Proof. We have∑
i, j,k,l

h2
i jkl = S(S + 3)(S + 9) + 3(A − 2B)

= S(S + 3)(S + 9) + 4(2A + B) − 5(A + 2B)

= S(S + 3)(S + 9) + 2S2(S + 3) − 5
( ∑

i, j,k

h2
i jkλ

2
i + 2

∑
i, j,k

h2
i jkλiλ j

)
= 3S(S + 3)2

−
5
3

∑
i, j,k

h2
i jk(λi + λ j + λk)

2,

where∑
i, j,k

h2
i jk(λi + λ j + λk)

2
= 3

∑
i ̸=k

h2
i ik(2λi + λk)

2
+ 9

∑
i

h2
i i iλ

2
i = 36λ2b.

We have∑
i, j,k,l

h2
i jkl = 3S(S+3)2

−60λ2b = 3S(S+3)2
−10Sb,

∑
i, j,k

h2
i jk1 =

∑
i ̸= j ̸=k

h2
i jk1+3

∑
i ̸=k

h2
i ik1+

∑
i

h2
i i i1

= 6h2
1231+3(h2

1121+h2
1131+h2

2211+h2
2231+h2

3311)+(h2
1111+h2

2221+h2
3331)

= 3(2h2
1123+h2

1113+h2
2213)+(h2

1111+3h2
1112)+h2

3331+(h2
2221+3h2

2211+3h2
3311)

= 3(2h2
1123+h2

1113+h2
2213)+4(h2

1111+h2
1112)+h2

3331+6(h1111h3311+h2
3311).
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In the same way, we have∑
i, j,k

h2
i jk2 =

∑
i ̸= j ̸=k

h2
i jk2 + 3

∑
i ̸=k

h2
i ik2 +

∑
i

h2
i i i2

= 3(2h2
2213 + h2

1123 + h2
2223) + 4(h2

1111 + h2
1112)

+ h2
3332 + 3(2h1111h3322 + h2

3311 + h2
3322),∑

i, j,k

h2
i jk3 =

∑
i ̸= j ̸=k

h2
i jk3 + 3

∑
i ̸=k

h2
i ik3 +

∑
i

h2
i i i3

= 3(h2
1123 + h2

2213) + h2
1113 + h2

2223

+ 3(h2
1133 + h2

2233 + h2
3313 + h2

3323) + h2
3333

= 3(h2
1123 + h2

2213) + h2
1113 + h2

2223 +

(
2a2

3λ2 +
4

3λ2 ab
)

+
4a2

9λ2

= 3(h2
1123 + h2

2213) + h2
1113 + h2

2223 +
10a2

+ 12ab
9λ2 .

Hence we obtain∑
i, j,k,l

h2
i jkl =

∑
i, j,k

h2
i jk1 +

∑
i, j,k

h2
i jk2 +

∑
i, j,k

h2
i jk3

= 12(h2
1123 + h2

2213) + 4(h2
1113 + h2

2223) + 8(h2
1111 + h2

1112)

+ 12h1111h3311 + (h2
3331 + h2

3332) + 12h2
3311 +

10a2
+ 12ab

9λ2

= [12(h2
1123 + h2

2213) + 4(h2
1113 + h2

2223)]

+

[
8(h2

1111 + h2
1112) +

8
λ

h1111(a + b)

]
+

4
9λ2 ab + 12

[
2

3λ
(a + b)

]2

+
10a2

+ 12ab
9λ2 .

We infer, from the above formulas,

4
λ2 x +

8
λ2 y +

4ab + 48(a + b)2
+ 10a2

+ 12ab
9λ2 = 3S(S + 3)2

− 10Sb,

that is,
x + 2y =

26
9 a2

+
26
9 ab +

2
3 b2

−
5
12 S2b

=
26
9 a2

+
7
18ab − b2

+
5
4 Sb. □

Lemma 3.3. We have

(3-2) x + 4aλh1111 = −
34
9 a2

−
4
3ab +

4
3 b2

+ λ2(72λ2
+ 18)a + λ2(40λ2

+ 8)b.
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Proof. Since S =
∑

i, j h2
i j is constant, we get, for any k, l, m,

0 =

( ∑
i, j

h2
i j

)
klm

= 2
∑
i, j

(hi j hi jklm + hi jmhi jkl + hi jkhi jlm + hi jlhi jkm).

Since ∑
i, j

hi j hi jklm = −3λh33klm,

we have
3λh33klm =

∑
i, j

hi jmhi jkl +
∑
i, j

hi jkhi jlm +
∑
i, j

hi jlhi jkm .

Hence, ∑
k,l,m

hklmh33klm =
1
λ

∑
i, j,k,l,m

hi jkhklmhi jlm .

On the other hand, we have

0 =

( ∑
i, j,k

h2
i jk

)
33

= 2
∑

i, j,k
(hi jkhi jk33 + h2

i jk3).∑
i, j,k

hi jk(h33i jk − hi jk33) =
∑

i, j,k
hi jkh33i jk +

∑
i, j,k

h2
i jk3

=
1
λ

∑
i, j,k,l,m

hi jkhklmhi jlm +
x
λ2

+
10a2

+12ab
9λ2

.

Since∑
i, j,k

hi jk(h33i jk −hi jk33)

=
∑

i, j,k
hi jk[h3i3 jk −hi jk33]

=
∑

i, j,k
hi jk

[(
h3i j3+

∑
m

hmi Rm33 j +
∑
m

h3m Rmi3 j

)
k
−

(
hi j3k +2

∑
m

hmj Rmik3

)
3

]
=

∑
i, j,k

hi jk

[
h3i j3k −hi j3k3+

∑
m

hmik Rm33 j +
∑
m

h3mk Rmi3 j −2
∑
m

hmj3 Rmik3

]
+

∑
i, j,k,m

hi jkhmi (hm3h3 j −hmj h33)k +
∑

i, j,k,m
hi jkh3m(hm3hi j −hmj hi3)k

−2
∑

i, j,k,m
hi jkhmj (hmkhi3−hm3hik)3

=
∑

i, j,k
hi jk

[
2
∑
m

hmi j Rm33k +5
∑
m

h3mj Rmi3k

]
+

∑
i, j,k,m

hi jkhmi (hm3kh3 j +hm3h3 jk −hmjkh33)

+
∑

i, j,k,m
hi jkh3m(hm3hi jk −hmjkhi3−hmj hi3k +hm3khi j )

−2
∑

i, j,k,m
hi jkhmj (hmk3hi3−hm3hik3)
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=
∑

i, j,k,m

[
2hi jkhmi j (−1+λkλ3)(δk3δ3m −δmkδ33)

+5hi jkh3mj (−1+λiλk)(δm3δik −δmkδi3)
]

+
∑
i,k

λ3λi h2
i3k −

∑
i, j,k

λ3λi h2
i jk

+
∑
j,k

λ2
3h2

3 jk +
∑

i, j,k
h2

i jkλ
2
3−

∑
j,k

h2
3 jkλ

2
3

−
∑
i,k

λ2
3h2

i3k −2
∑
j,k

λ3λ j h2
3 jk +2

∑
i,k

λ2
3h2

i3k

=

[
2
∑
i, j

h2
i j3(−1+λ2

3)−2
∑

i, j,k
h2

i jk(−1+λkλ3)−5
∑
j,k

h2
3 jk(−1+λ3λk)

]
−

∑
i, j

λ3λi h2
i j3−

∑
i, j,k

λ3λi h2
i jk +

∑
i, j,k

λ2
3h2

i jk +
∑
i, j

λ2
3h2

i j3

=
[
2(−1+4λ2)(2a)−2(−(6a+4b)−2λ(4λb))+5(1+2λ2)(2a)

]
+4aλ2

+2λ(4λb)+4λ2(6a+4b)+8λ2a
= (72λ2

+18)a+(40λ2
+8)b.∑

i, j,k,l,m
hi jkhklmhi jlm

=
∑

k,l,m
hklm(h11kh11lm + h22kh22lm + 2h12kh12lm + 2h13kh13lm + 2h23kh23lm)

=
∑

k,l,m
h11khklm(h11lm − h22lm) +

∑
l,m

2(h112h1lm − h111h2lm)h12lm

+
∑
l,m

2h113h1lmh13lm −
∑
l,m

2h113h2lmh23lm

=
∑
k

h11k
[
hk11(h1111 − h2211) + hk22(h1122 − h2222) + 2hk13(h1113 − h2213)

+ 2hk23(h1123 − h2223) + 2hk12(h1112 − h2212)
]

+ 2h112(2h112h1212 + 2h113h1213 + h111h1211 + h122h1222)

− 2h111(2h212h1212 + h211h1211 + h222h1222 + 2h223h1223)

+ 2h113
[
h111h1311 + h113(h1313 + h1331) + 2h112h1312 + h122h1322

]
− 2h113

[
h222h2322 + 2h212h2312 + h223(h2323 + h2332) + h211h2311

]
= (a + b)(h1111 − h2211) +

∑
k

h2
11k(h1111 − h2211)

+ 4bh1122 + 2a(h1133 + h3311 + h2233 + h3322)

+ 4h111h113h1113 − 4h112h223h2223 + 4h112h113h1123 − 4h113h221h2213

= 2(a + b)(h1111 − h2211) + 4bh1122

+ 4h113(h111h1113 + h112h2223 + h112h1123 + h111h2213)

+ 2a(h1133 + h3311 + h2233 + h3322)



COMPLETE MINIMAL HYPERSURFACES IN A HYPERBOLIC SPACE H4(−1) 259

= 2(a + b)(h1111 − h2211) + 4bh1122

− 4h113(h111h3313 + h112h3323) + 2a(h1133 + h3311 + h2233 + h3322)

= 2(a + b)(2h1111 + h3311) − 4b(h1111 + h3311)

− 4h113(h111 ·
2

3λ
h111h113 + h112 ·

2
3λ

h112h113)

+ 2a
(
−

a
3λ

+
2

3λ
(a + b) −

a
3λ

+
2

3λ
(a + b)

)
= 4ah1111 + 2(a − b) ·

2
3λ

(a + b) −
8

3λ
a(h2

111 + h2
112) −

4a2

3λ
+

8a
3λ

(a + b)

= 4ah1111 +
8a2

−4b2

3λ
.

Hence, we have

(72λ2
+ 18)a + (40λ2

+ 8)b =
4ah1111

λ
+

8a2
−4b2

3λ2
+

x
λ2

+
10a2

+12ab
9λ2

,

x + 4aλh1111 = λ2(72λ2
+ 18)a + λ2(40λ2

+ 8)b −
1
9(34a2

+ 12ab − 12b2)

= −
34
9 a2

−
4
3ab +

4
3 b2

+ λ2(72λ2
+ 18)a + λ2(40λ2

+ 8)b. □

In view of (3-1) and (3-2), we have from 6a + 4b = S(S + 3), 6λ2
= S,

(3-3) 2λ2(h2
1111 + h2

1112) − 2(a − b)λh1111

=
60
9 a2

+
31
18ab −

7
3 b2

+
5
4 Sb − λ2(72λ2

+ 18)a − λ2(40λ2
+ 8)b

=
20
3 a2

+
31
18ab −

7
3 b2

+
5
4 Sb −

1
6 S(12S + 18)a −

1
6 S

( 20
3 S + 8

)
b

=
20
3 a2

+
31
18ab −

7
3 b2

− 2S(S + 3)a + 3Sa −
10
9 S

(
S +

3
40

)
b

=
20
3 a2

+
31
18ab −

7
3 b2

− 2(6a + 4b)a + 3Sa −
10
9 S

(
S + 3 −

117
40

)
b

= −
16
3 a2

−
233
18 ab −

61
9 b2

+ S
(
3a +

13
4 b

)
.

According to

2λ2(h2
1111 + h2

1112) − 2(a − b)λh1111 ≥ −
1
2(a − b)2,

we obtain

(3-4) −
29
6 a2

−
251
18 ab −

113
18 b2

+ S
(
3a +

13
4 b

)
≥ 0.

Since

−
29
6 a2

−
58
18ab −

13
2 ab −

13
3 b2

= −
29
36a(6a + 4b) −

13
12(4b + 6a)b = −

29
36 S(S + 3)a −

13
12 S(S + 3)b,

we have from (3-4)( 21
36 −

29
36 S

)
Sa −

76
18ab −

35
18 b2

−
13
12 S2b ≥ 0.

Hence we have S ≤
21
29 . □
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4. Proof of Theorem 1.1

In this section, we will give a proof of the Theorem 1.1.

Proof of Theorem 1.1. We choose a local frame field {e1, e2, e3, e4} such that at any
point p,

hi j = λiδi j .

Since S is constant, we notice that the sectional curvature is bounded from below
from Gauss equations. By making using of the generalized maximum principle due
to Omori [5], there exists a sequence {pk}

∞

k=1 ⊂ M3 such that

lim
k→∞

f3(pk) = sup
M3

f3, lim
k→∞

|∇ f3(pk)| = 0, lim
k→∞

sup∇l∇l f3(pk) ≤ 0 for l = 1,2,3.

Since S is constant,∑
i, j,k

h2
i jk = S(S + 3),

∑
i, j,k,l

h2
i jkl = S(S + 3)(S + 9) + 3(A − 2B),

we know that, for any i, j, k, l, {λi (pk)}, {hi jk(pk)} and {hi jkl(pk)} are bounded se-
quences, respectively. Thus, we can assume, if necessary, by taking a subsequences
of {pm},

lim
m→∞

λi (pm) = λ̂i , lim
m→∞

hi jk(pm) = ĥi jk, lim
m→∞

hi jkl(pm) = ĥi jkl for all i, j,k, l.

From now on, all the computations are considered for λ̂i , ĥi jk and ĥi jkl . For
simplicity, we omit ˆ.

If the principal curvatures are the same, S ≡ 0 since M3 is minimal. We only
consider the following two cases.

Case 1. The number of distinct principal curvatures is two. By the same proof as
in the Section 3, we get

S ≤
21
29 .

Case 2. All three principal curvatures are distinct. If f3 is constant, M3 is isopara-
metric and S ≡ 0. This is impossible. From now on, we suppose that f3 is not
constant. We will derive a contradiction. Without loss of the generality, we assume
that λ1 < λ2 < λ3. We also assume sup f3 ̸= 0; otherwise we use inf f3 ̸= 0.

Lemma 4.1. We have

hi ik = 0 for any i, k and h2
123 =

1
6 S(S + 3).

Proof. Since
∑

i hi i = 0 and S =
∑

i, j h2
i j is constant, we have∑

i
hi ik = 0,

∑
i

hi ikλi = 0.
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Since limk→∞ |∇ f3(pk)| = 0, we have∑
i

hi ikλ
2
i = 0.

Since λi ̸= λ j for i ̸= j , we have hi ik = 0 for any i, k. From

S(S + 3) =
∑

i, j,k
h2

i jk = 6h2
123,

we obtain
h2

123 =
1
6 S(S + 3). □

Lemma 4.2. We have

hi i jk = hi i ik = hkii i = 0 for i ̸= j ̸= k.

Proof. Since
∑

i, j,k h2
i jk = S(S + 3), we have h123l = 0 for any l, i.e.,

(4-1) hi i jk = 0 for i ̸= j ̸= k.

Since
∑

i hi i = 0 and S =
∑

i, j h2
i j is constant, we have∑

i
hi i jk = 0,

∑
i

hi i jkλi = 0.

For j ̸= k, using (4-1), we have

(4-2) h j j jk + hkk jk = 0,
∑

i
hi i jkλi = 0 for j ̸= k.

From (4-2), we have h j j jk = hkk jk = 0 for j ̸= k. □

Lemma 4.3. We have ∑
i,k

h2
i ikk + 2

∑
i ̸=k

h2
i ikk = 3S(S + 3)2.

Proof. From∑
i, j,k,l

h2
i jkl = S(S + 3)(S + 9) + 3(A − 2B),

3(A − 2B) = 6h2
123(λ

2
1 + λ2

2 + λ2
3 − 2λ1λ2 − 2λ2λ3 − 2λ3λ1) = 2S2(S + 3),∑

i, j,k,l
h2

i jkl =
∑

i ̸= j ̸=k
l

h2
i jkl + 3

∑
i ̸=k

l

h2
i ikl +

∑
i,l

h2
i i il

= 3
∑
i ̸=k

h2
i ikk +

∑
i

h2
i i i i =

∑
i,k

h2
i ikk + 2

∑
i ̸=k

h2
i ikk,

we have∑
i,k

h2
i ikk + 2

∑
i ̸=k

h2
i ikk = S(S + 3)(S + 9) + 2S2(S + 3) = 3S(S + 3)2. □
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Lemma 4.4. We have

sup f3 > 0, −

√
1
2 S < λ1 < −

√
1
6 S, −

√
1
6 S < λ2 < 0.

Proof. Since limk→∞ sup 1 f3(pk) ≤ 0 and 1
31 f3 = −(S + 3) f3, we have

0 ≥ −(S + 3) lim
k→∞

sup f3(pk)

= −(S + 3) sup
M3

f3.

We get sup f3 > 0. We also notice that λ1 < 0 and λ3 > 0. By a direct computation,

sup f3 = λ3
1 + λ3

2 + λ3
3 = 3λ1λ2λ3 = 3λi

(
λ2

i −
1
2 S

)
for all i.

We obtain λ2
1 < 1

2 S and λ2
3 > 1

2 S, λ2 < 0 and

(4-3) λ2
1 + λ2

2 < 1
2 S.

Because of λ2
1 + λ2

2 + λ1λ2 =
1
2 S and λ1 < λ2 < 0, we have

λ2
1 > 1

6 S, λ2
2 < 1

6 S.

and
1
6 S < λ2

1 < 1
2 S, 0 < λ2

2 < 1
6 S, λ1 < λ2 < 0. □

For simplicity, we use f3 in place of sup f3 in the following.

Lemma 4.5. We have

hi ikk = −
1
3(S + 3)λi + giλk + wgi gk,

where
gi = λ2

i −
f3

S
λi −

1
3 S.

Proof. Taking derivatives of
∑

i hi i = 0 and
∑

i, j h2
i j = S, we have∑

i
hi ikk = 0,

∑
i

hi ikkλi = −
1
3 S(S + 3).

We solve this rank-5 linear system of six equations with six unknowns hi ikk , i ≤ k,
with hi i j j = h j j i i + (λi − λ j )(−1 + λiλ j ). □

Lemma 4.6. We have

f5 =
5
6 S f3, f6 =

1
3 f 2

3 +
1
4 S3,∑

i
g2

i =
∑

i
giλ

2
i =

1
6 S2

−
f 2
3
S

,
∑

i
g4

i =
1
2

(
1
6 S2

−
f 2
3
S

)2
,

∑
i

g2
i λi =

f 3
3

S2
−

1
6 S f3,

∑
i

g2
i λ

2
i =

1
36 S3

−
1
6 f 2

3 ,
∑

i
g3

i λi = 0.
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Proof. From f3 = 3λi
(
λ2

i −
1
2 S

)
, for i = 1, 2, 3, we have

f5 =
5
6 S f3, f6 =

1
3 f 2

3 +
1
4 S3.

According to gi = λ2
i −

f3
S λi −

1
3 S, we infer∑

i
g2

i =
1
6 S2

−
f 2
3
S

,
∑

i
g4

i =
1
2

(
1
6 S2

−
f 2
3
S

)2
,

∑
i

g2
i λi =

f 3
3

S2
−

1
6 S f3,

∑
i

g2
i λ

2
i =

1
36 S3

−
1
6 f 2

3 ,
∑

i
giλ

2
i =

1
6 S2

−
f 2
3
S

,

Because of F3 = 3gi
(
g2

i −
1
2 F2

)
, for i = 1, 2, 3, we have∑

i
g3

i λi = 0,

where Fk =
∑

i gk
i . □

Lemma 4.7. We have

y =

(
1
3 +

1
S

)
f3 ±

[ f 2
3

S2

( 19
9 S2

+
8
3 S + 1

)
+

7
9 S(S + 6)

(
S +

15
7

)] 1
2
,

where
y =

(
1
6 S2

−
f 2
3
S

)
w.

Proof. By using the Lemmas 4.5 and 4.6, we have

(4-4)
∑
i,k

h2
i ikk =

∑
i,k

(
−

1
3(S + 3)λi + giλk + wgi gk

)2

=
1
3 S(S + 3)2

+ S
(

1
6 S2

−
f 2
3
S

)
+ w2

(
1
6 S2

−
f 2
3
S

)2
,

(4-5)
∑

i
h2

i i i i =
∑

i

(
−

1
3(S + 3)λi + giλi + wg2

i
)2

=
1
9(S + 3)2S +

∑
i

g2
i λ

2
i + w2 ∑

i
g4

i + 2w
∑

i
λi g3

i

−
2
3(S + 3)

∑
i

giλ
2
i −

2
3(S + 3)w

∑
i

g2
i λi

=
1
9 S(S + 3)2

+
1
6 S

(
1
6 S2

−
f 2
3
S

)
+ w2 1

2

(
1
6 S2

−
f 2

S

)2

−
2
3(S + 3)

(
1
6 S2

−
f 2
3
S

)
−

2
3(S + 3)w

( f 3
3

S2
−

1
6 S f3

)
,

(4-6)
∑
i ̸=k

h2
i ikk =

∑
i,k

h2
i ikk −

∑
i

h2
i i i i

=
2
9 S(S + 3)2

+
[ 5

36 S3
−

5
6 f 2

3
]
+

2
3(S + 3)

(
1
6 S2

−
f 2
3
S

)
+

2
3w(S + 3)

(
−

1
6 S f3 +

f 3
3

S2

)
+

1
2w2

[
1
36 S4

−
1
3 S f 2

3 +
f 4
3

S2

]
.

Substituting (4-4) and (4-6) into the Lemma 4.3 completes the proof. □
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Lemma 4.8. We have

−
3
S

y
(
λ2

l −
1
6 S

)(
λ2

l −
2
3 S

)
≤ λl

(
λ2

l −
1
6 S

)( 9
S
λ4

l −
15
2 λ2

l + 2S + 3
)
.

Proof. Since
1
3( f3)ll =

∑
i

hi illλ
2
i + 2

∑
i, j

h2
i jlλi ,

we have

(4-7) 0 ≥
1
3 lim

k→∞

sup( f3)ll =
1
3 lim

k→∞

( f3)ll =
∑

i
hi illλ

2
i + 2

∑
i, j

h2
i jlλi .

By a direct computation, we infer∑
i

hi illλ
2
i = −λl(S +3)

(
λ2

l −
1
2 S

)
+λl

(
1
6 S2

−
f 2
3
S

)
+

(
λ2

l −
f3

S
λl −

1
3 S

)
y,(4-8)

2
∑
i, j

h2
i jlλi = −

1
3 S(S +3)λl .(4-9)

By substituting (4-8) and (4-9) into (4-7), we have(
λ2

l −
f3

S
λl −

1
3 S

)
y ≤ λl

[
(S + 3)

(
λ2

l −
1
2 S

)
−

(
1
6 S2

−
f 2
3
S

)
+

1
3 S(S + 3)

]
. □

If y ≥ 0, by using the Lemma 4.6, we have

(4-10) y =

(
1
3 +

1
S

)
f3 +

[ f 2
3

S2

( 19
9 S2

+
8
3 S + 1

)
+

7
9 S(S + 6)

(
S +

15
7

)] 1
2
,

>
(

1
3 +

1
S

)
f3 +

[ f 2
3

S2

( 4
3 S + 1

)2
] 1

2

=

(
5
3 +

2
S

)
f3.

By substituting (4-10) into the Lemma 4.8 with l = 1, we have

(4-11)
(

24
S

+
18
S2

)
λ4

1 −

(
25 +

21
S

)
λ2

1 + 7S + 9 < 0.

We notice that the left-hand side of (4-11) is an increasing function of λ2
1 for λ2

1 > 1
6 S.

Substituting λ2
1 =

1
6 S into (4-11), we have

S < −
12
7 .

It is a contradiction.
If y < 0, by taking l = 2 in the Lemma 4.8, we have

(4-12) 3
S

y
(
λ2

2 −
2
3 S

)
+ λ2

(
9
S
λ4

2 −
15
2 λ2

2 + 2S + 3
)

≤ 0.

Because of

y =

(
1
3 +

1
S

)
f3 −

[ f 2
3

S2

(19
9 S2

+
8
3 S + 1

)
+

7
9 S(S + 6)

(
S +

15
7

)] 1
2
,
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and since the left-hand side of (4-12) is an increasing function of λ2 for 0>λ2>−

√
1
6 S,

substituting λ2 = −

√
1
6 S into (4-12), we have

LHS of (4-12) > 0.

It is a contradiction. □
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THE RECIPROCAL COMPLEMENT OF A POLYNOMIAL RING
IN SEVERAL VARIABLES OVER A FIELD

NEIL EPSTEIN, LORENZO GUERRIERI AND K. ALAN LOPER

The reciprocal complement R(D) of an integral domain D is the subring of
its fraction field generated by the reciprocals of its nonzero elements. Many
properties of R(D) are determined when D is a polynomial ring in n ≥ 2
variables over a field. In particular, R(D) is an n-dimensional, local, non-
Noetherian, non-integrally closed, non-factorial, atomic G-domain, with
infinitely many prime ideals at each height other than 0 and n.

1. Introduction

Let D be an integral domain with fraction field F . What can we say about the
subring R(D) of F generated by the reciprocals of all the nonzero elements of D
(called the reciprocal complement, or ring of reciprocals, of D)?

Simple as the above question is, it appears to be a new one, and as we will see
in this paper, the answer can be both surprising and satisfying. The question arises
naturally in the study of Egyptian domains, which extends the notion of Egyptian
fractions from the integers to arbitrary integral domains. This study was initiated
in [Guerrieri et al. 2024] and continued in [Epstein 2024a]. Recall [Guerrieri et al.
2024] that an integral domain D is Egyptian if every element of its fraction field F
can be written as a sum of (resp., of distinct) reciprocals of elements of D (in general,
such an element of F is called Egyptian or D-Egyptian). From the viewpoint of
the above question then, D is Egyptian if and only if F = R(D). So the distinction
between R(D) and F can be seen as a measure of how far an integral domain is
from being Egyptian.

The idea of Egyptian domains ultimately comes from the way the ancient Egyp-
tians represented fractions. Namely, they represented an element of Q ∩ (0, 1) as a
sum of reciprocals of (distinct) positive integers (so-called unit fractions). More than
eight centuries ago, Fibonacci [Dunton and Grimm 1966] showed that this is always
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possible. However, it is far from unique. There are always infinitely many ways to
represent a positive rational number as a sum of distinct unit fractions. For the past
century or so, number theorists have taken up questions of the diversity of ways to
represent fractions as unit fractions. Indeed, such questions can always be rephrased
as diophantine equations. Most prominently, the Erdős–Straus conjecture posits that
for any n ≥ 5, the number 4/n can be written as a sum of at most three unit fractions.

In addition to its connection with Egyptian fractions, the setting of Egyptian
domains and reciprocal complements also isolates natural properties of affine
semigroups, rings, and even of algebraic varieties. For instance, it can distinguish
whether a subsemigroup 3 of Qn is a group, in the following sense. Let D be an
Egyptian domain (e.g., Z, or any field). Then D[3] is Egyptian if and only if 3

is a group (see [Guerrieri et al. 2024, Proposition 3] for “if” and [Epstein 2024a,
Theorem 2.6] for “only if”). On the other hand, any local domain is Egyptian
[Guerrieri et al. 2024, Example 3] and in an affine-local sense, any domain that is
finitely generated over a field is locally Egyptian [Epstein 2024a, Corollary 3.11],
even though k[x] is not Egyptian. Thus, the Egyptian property is an essentially
global property that cannot be checked locally, unlike many ring-theoretic properties.
Passing to algebraic varieties, Dario Spirito [2025, Theorem 2.1] has shown that
when k is an algebraically closed field, and D is a one-dimensional finitely generated
k-algebra that is a domain, then D is Egyptian if and only if there is some realization
X ⊆ An

k of D that is regular at ∞ such that |X \ X | ̸= 1, where X is the projective
closure of X in Pn

k . Otherwise, if {p} = X \ X , he shows that the reciprocal
complement of D is isomorphic to OX ,{p}

.
The first-named author called an integral domain Bonaccian if for any nonzero

f ∈ F , either f or 1/ f can be written as a sum of reciprocals from D. Equivalently,
R(D) is a valuation domain. He then showed that a Euclidean domain is always
Bonaccian [Epstein 2024c], and indeed R(D) is either a DVR or a field. In particular,
he [Epstein 2024b] showed that the reciprocal complement of K [X ] (K a field, X
an indeterminate) is K [T ](T ), where T = 1/X .

In the current paper, we show that no such thing is true for the reciprocal com-
plement of a polynomial ring in two or more variables over a field. Indeed, let D =

K [X1, . . . , Xn] and R = R(D). Then R has many properties like those of D, but
also many interesting, even exotic features. Our main results include the following:

• Any prime ideal of R is generated by elements of the form 1/ f , where f ∈ D\K .
This is a special case of a result that holds in any reciprocal complement (see
Proposition 2.8).

• R is a local ring whose unique maximal ideal is generated by all elements of
the form 1/ f for f ∈ D \ K (see Theorem 3.3). This is a special case of a
result that holds in any reciprocal complement (see Theorem 2.4).



THE RECIPROCAL COMPLEMENT OF A POLYNOMIAL RING 269

• For every 1 ≤ i ≤ n − 1, R has infinitely many primes of height i (see
Theorem 6.6).

• dim R = n (see Theorem 4.4).

• R is atomic (see Theorem 3.11).

• For every j ≤ n, there is a prime ideal p ∈ Spec R such that Rp is isomorphic
to the reciprocal complement of a polynomial ring in j variables over a field
(see Proposition 4.2).

• R is a G-domain. In fact, R
[∏n

i=1 X i
]
= Frac R (see Proposition 2.9).

• For certain height-one primes p, we have that Rp is a DVR (see Lemma 3.6).

• If n ≥ 2, R is not Noetherian. In fact it is not even coherent (see Corollary 5.7).

• If n ≥ 2, R is not integrally closed (see Theorem 5.8).

• When n ≤ 2 and ht p = 1, Rp is always Noetherian (see Theorem 7.3).

• When n = 2, any finitely generated ideal is contained in all but finitely many
prime ideals (see Theorem 7.5). Since all but two prime ideals of R have
height one, this behavior can be seen as an extreme version of Krull’s principal
ideal theorem.

A key to our results has been a change in perspective, wherein one uses the
K -automorphism σ of the field K (X1, . . . , Xn) that sends X i 7→ 1/X i . Then
R∗

:= σ(R(D)) contains D as a subring, even though R∗ and R are isomorphic
as rings. The effect of this on reciprocals of explicit polynomials is captured
in Lemma 3.5. We will sometimes use the R∗ point of view to analyze R, and
sometimes the R point of view.

We also use valuations in a variety of ways to control the behavior of prime
ideals in R.

Prior to this paper, there were four standard constructions that generally lead to
non-Noetherian rings in ways that are essentially different from one another:

• polynomial rings in infinitely many variables over a field or Z (and their
quotients),

• putting a valuation on a field with value group not isomorphic to Z and ex-
tracting the valuation ring,

• pullbacks, and

• rings of integer-valued polynomials.

Now we know there is a fifth such construction: the reciprocal complement. The
fact that the reciprocal complement of such a well-behaved ring as K [X1, . . . , Xd ]

for d > 1 is non-Noetherian, not integrally closed, and so forth (see above) indi-
cates that these properties probably also fail for reciprocal complements of many
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other otherwise well-behaved integral domains. This provides a fertile ground
for and source of problems for factorization theory and other investigations in
non-Noetherian commutative algebra, being so different (as seen in the list of
properties above) from valuation rings, pullbacks, integer-valued polynomial rings,
and infinite-dimensional polynomial rings.

2. General properties

In this section, we determine some properties of the reciprocal complement R =

R(T ) of any integral domain T . In particular, we show that R is always local (see
Theorem 2.4), that the prime ideals of R are generated by reciprocals of elements
of T (see Proposition 2.8), and that if T is finitely generated over a field, then the
fraction field of R is a finitely generated R-algebra (see Proposition 2.9).

Definition 2.1. For any integral domain T , we let R(T ) be the reciprocal comple-
ment of T . That is, if F(T ) is the fraction field of T , then R(T ) is the subring
of F(T ) generated by all terms of the form 1/ f , where f ∈ T \ {0}. Equivalently,
R(T ) is the set of all finite sums 1/ f1 + · · ·+ 1/ ft , where t ≥ 0 and each fi is an
element of T \ {0}.

Let T be an integral domain. Let E be the set of Egyptian elements of T , and set
G := E ∪{0}. Recall [Guerrieri et al. 2024, Proposition 8(3), where G is called E3]
that G is a subring of T . Since it must then be an integral domain, E = G \ {0} is a
multiplicatively closed subset of T .

Proposition 2.2. Let T , E , G be as above. Then

(1) R(E−1T ) = R(T ), and

(2) the set of Egyptian elements of E−1T , along with 0, coincides with the fraction
field of G.

Proof. To prove (1), note that taking the reciprocal complement preserves inclusion;
hence, R(E−1T ) ⊇ R(T ). Conversely, let y ∈ R(E−1T ). By definition there exists
d1, . . . , dn ∈ T and e1, . . . , en ∈ E such that

y =
e1

d1
+ · · · +

en

dn
.

But each ei is an Egyptian element of T , and thus we can write ei =
∑ni

j=1(1/di j ).
It follows that

y =

n∑
i=1

1
di

( ni∑
j=1

1
di j

)
∈ R(T ).

To prove (2), let K the fraction field of G. Pick an (E−1T )-Egyptian element x
of E−1T . Hence, x ∈ R(E−1T ) = R(T ). We can write x = d/e with d ∈ T and



THE RECIPROCAL COMPLEMENT OF A POLYNOMIAL RING 271

e ∈ E = G \ {0}. But e ∈ R(T ) and therefore d = ex ∈ R(T ). It follows that
d ∈ R(T ) ∩ T = G. Thus x = d/e ∈ K .

Conversely, let 0 ̸= x ∈ K . Then x = g/h, where g, h ∈ E . Write g =
∑s

i=1(1/di ),
di ∈ T . Then x = g/h =

∑s
i=1 1/(di/g). Since each di/g is an element of E−1T ,

we have x ∈ R(E−1T ). Since g ∈ T and h ∈ E , we have x ∈ E−1T . Hence x is an
Egyptian element of E−1T . □

Lemma 2.3. Let K be a field. Let T be a K -algebra all of whose Egyptian elements
are in K . Let x1, . . . , xn ∈ T \ K and u ∈ K \ {0}. Then

y = u +
1
x1

+ · · · +
1
xn

is a unit in R := R(T ).

Proof. We can reduce to the case u = 1 by dividing all the xi ’s by u.
If n = 0, the statement is vacuously true. So we may assume n ≥ 1 and work by

induction on n. Set αi := x−1
i for each 1 ≤ i ≤ n.

If y = 0, then αn = −
(
1 +

∑n−1
i=1 αi

)
∈ U (R) by the inductive hypothesis. Thus,

xn =α−1
n ∈ R, so xn is an Egyptian element of T , whence xn ∈ K by the assumptions

on T . But that contradicts the assumption on xn that xn ̸∈ K . Hence, y ̸= 0.
Next, notice that

Hn :=

∏n
i=1 αi

1 + α1 + · · · +αn
=

1∏n
i=1 xi +

∑n
i=1

(∏
j ̸=i xi

) ∈ R(T ).

Starting from this fact we prove by reverse induction that

Hk :=

∏k
i=1 αi

1 + α1 + · · · +αn
∈ R(T )

also for every 0 ≤ k ≤ n. Suppose that Hk+1 ∈ R(T ). Then notice that
k∏

i=1

αi − Hk+1 =

(∏k
i=1 αi

)(
1 +

∑
i ̸=k+1 αi

)
1 + α1 + · · · +αn

=

(
1 +

∑
i ̸=k+1

αi

)
Hk .

Since by the original inductive hypothesis 1 +
∑

i ̸=k+1 αi is a unit in R(T ), we get
Hk ∈ R(T ). In particular, H0 ∈ R(T ), as was to be shown. □

Theorem 2.4. Let T be an integral domain. Then R(T ) is a local ring, with
maximal ideal generated by all elements of the form 1/x , with 0 ̸= x ∈ T not an
Egyptian element.

Proof. First assume that all the Egyptian elements of T are in a subring K of T that is
a field. Let m be the set of finite sums of elements of the form 1/x , where x ∈ T \ K .
Since any multiple of a nonunit of T is a nonunit of T , and all units of T are in K , it
follows that m is an ideal of R(T ). Moreover, any element of R(T ) \m is a unit of
R(T ) by Lemma 2.3. Thus it suffices to show that m does not contain a unit of R(T ).
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Let α ∈ m. Write α = 1/x1 + · · · + 1/xn , with each xi in T \ K . We proceed
by induction on n to show that α is not a unit. If n = 0 (so α = 0) the claim is
vacuously true. If n > 0 and α is a unit of R(T ), then α−1

∈ R(T ). We have

(1) x1 = (1/x1)
−1

=
1

α −
∑n

i=2(1/xi )
=

α−1

1 − α−1
∑n

i=2(1/xi )
.

But since α−1
∈ R(T ),

∑n
i=2(1/xi ) ∈ m by the inductive hypothesis, and m is

an ideal, we have −α−1 ∑n
i=2(1/xi ) ∈ m. By Lemma 2.3, it follows that the

denominator of (1) is a unit. Hence, x1 ∈ R(T ), so that 1/x1 ∈ U (R(T )) ⊆ K ,
contradicting the fact that x1 ̸∈ K .

Finally, we drop the assumption on T . Let E be the set of Egyptian elements of T .
Then by Proposition 2.2, R(T )= R(E−1T ), and E−1T has all its Egyptian elements
in the subfield E−1G, where G is the subring E ∪{0} of T . Then by the first part of
the proof, R(T ) is a local ring whose maximal ideal m is generated by all elements
of the form 1/(x/e), where x ∈ T \{0}, e ∈ E , and x/e ̸∈ E−1G. First note that since
every e ∈ E is a unit of R(E), it follows that m is generated by those elements 1/x
where x ∈ T \ {0} and x ̸∈ E−1G. But since E−1G ∩ T = G, the result follows. □

We will see shortly that every prime ideal of R(T ) shares the property with m

that it is generated by reciprocals of elements of T . First, we need the following
notion of length.

Definition 2.5. For α ∈ R(T ), the T -length of α, denoted by ℓT (α) (or the length
of α, denoted by ℓ(α), if the ring is understood) is the minimum number t such that
there exist f1, . . . , ft ∈ T such that α = 1/ f1 + · · · + 1/ ft . For α in the fraction
field of T but not in R(T ), we write ℓT (α) = ∞.

Lemma 2.6. Let T be an integral domain and 0 ̸=α ∈ R(T ). Write α =
∑t

i=1(1/ fi ),
where t = ℓT (α) and each fi is an element of T \ {0}. Then, in R(T ), α is a factor
of the product of all the elements 1/ fi .

Proof. Set F :=
∏t

i=1 fi . Since F/ fi ∈ T for each i , we have Fα ∈ T , and since
both F and α are nonzero elements of the fraction field of T , we have Fα ̸= 0.
Hence 1/(Fα) ∈ R(T ). Then the equation 1/F = 1/(Fα) ·α finishes the proof. □

Lemma 2.7. Let T be an integral domain and 0 ̸= α ∈ R(T ). Let t = ℓT (α) and
write α =

∑t
i=1 1/ fi with fi ∈ T \ {0}. Then ℓT (α − (1/ ft)) = t − 1.

Proof. Write β = α − 1/ ft . Since β =
∑t−1

i=1(1/ fi ), we have ℓT (β) ≤ t − 1. Write
β =

∑s
j=1(1/g j ), where s = ℓT (β) and each g j is an element of T \ {0}. Then

α = (1/ ft) +
∑s

j=1(1/g j ). Thus,

t = ℓT (α) ≤ s + 1 ≤ (t − 1) + 1 = t.

Hence, s + 1 = t , as was to be shown. □
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As a consequence of the above two lemmas, we obtain the following result about
the generators of any prime ideal of R(T ), which recapitulates the fact about the
maximal ideal of R(T ) given in Theorem 2.4.

Proposition 2.8. Any prime ideal of R(T ) is generated by elements of the form 1/ f ,
where f ∈ T .

Proof. Let 0 ̸= α ∈ p and t = ℓT (α). We proceed by induction on t to show that α

is a sum of elements of p of the form 1/ f , where f ∈ T .
When t = 1, it is clear. Suppose t > 1. Write α =

∑t
i=1(1/ fi ), where fi ∈ T . By

Lemma 2.6,
∏t

i=1(1/ fi ) is a multiple of α ∈ R(D). Hence,
∏t

i=1(1/ fi )∈ p. Since p
is prime, it follows that 1/ fi ∈ p for some 1 ≤ i ≤ t . Let β =α−1/ fi . Clearly β ∈ p,
and by Lemma 2.7, ℓT (β) = t − 1, so by the inductive hypothesis, β is a sum of
elements of the form 1/g ∈ p, with g ∈ T . Thus, α =β+1/ fi is also such a sum. □

We culminate this section with a result on reciprocal complements of finitely
generated K -algebras.

Proposition 2.9. Let L/K be a field extension, let f1, . . . , fn ∈ L , and let T =

K [ f1, . . . , fn]. Then R(T )
[∏n

i=1 fi
]

= Frac T . Hence 1/
∏n

i=1 fi ∈ p for every
nonzero prime ideal p of R(T ).

Proof. Write g =
∏n

i=1 fi . First, note that since g ∈ T , we have 1/g ∈ R(T ).
We have

f1 =
g∏n

i=2 fi
= g ·

1∏n
i=2 fi

∈ R(T )[g],

since 1/
(∏n

i=2 fi
)
∈ R(T ). By symmetry, we have f1, . . . , fn ∈ R(T )[g]. Obviously

K ⊆ R(T ) as well, so T = K [ f1, . . . , fn] ⊆ R(T )[g]. Let α ∈ Frac T . We may
write α = u/v with u, v ∈ T and v ̸= 0. Then, since u ∈ T ⊆ R(T )[g] and
1/v ∈ R(T ) ⊆ R(T )[g], we have α = u ·(1/v) ∈ R(T )[g]. Thus, Frac T ⊆ R(T )[g],
but the reverse containment is obvious, so R(T )[g] = Frac T .

The final statement follows from [Kaplansky 1970, Theorem 19]. □

Remark 2.10. Recall that a G-domain is an integral domain whose fraction field
is a finitely generated algebra over it [Kaplansky 1970, Definition following
Theorem 18]. Hence, Proposition 2.9 implies that for any integral domain T that is
finitely generated over a field, R(T ) is a G-domain.

3. Properties and bounds on the ring of polynomial reciprocals

In this section, we give bounds on the reciprocal complement of a polynomial ring
in n variables. That is, we exhibit rings that it is contained in and rings that it
contains. We also show it is atomic, but fails unique factorization. A main tool is
the map σ , an involution on K (X1, . . . , Xn), which makes our ring isomorphic to
an overring of K [X1, . . . , Xn].
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Notation 3.1. Let D = Dn = K [X1, . . . , Xn], the polynomial ring in n variables
over a field K , where n ≥ 1. Let F = Fn the fraction field of Dn . That is,
Fn = K (X1, . . . , Xn). We set R := Rn = R(Dn).

We let σ = σn : Fn → Fn be the unique K -algebra homomorphism that sends
X i 7→ 1/X i for 1 ≤ i ≤ n. Note that σ ◦ σ = 1F ; hence σ is an involution, whence
a K -automorphism of F . For any subring T of F , we set T ∗

:= σ(T ).
We define 2n functions ti , ai : D \ {0} → N0 for 1 ≤ i ≤ n as follows. We

set ti ( f ) = c if X c
i | f but X c+1

i ∤ f , and we let ai ( f ) = degX i
( f ) − ti ( f ), where

degX i
( f ) is equal to the degree of f as a polynomial in X i with coefficients

in K [X1, . . . , X i−1, X i+1, . . . , Xn]. Then, for any f ∈ D \ {0}, we write f =(∏n
i=1 X ti ( f )

i

)
f0, where f0 ∈ D \

⋃n
i=1 X i D.

For any n-tuple (u1, . . . , un) ∈ Zn , write u := (u1, . . . , un) and Xu
:=

∏n
i=1 Xui

i .

Our first goal will be to prove that the maximal ideal is generated by the recipro-
cals of the nonconstant polynomials.

Lemma 3.2. Let T be an N-graded integral domain. Then all the Egyptian elements
of T are in T0, its 0-th graded component.

Proof. For f ∈ T , we let its degree be the degree of its largest nonzero graded compo-
nent. Note that degree is then additive in T ; that is, if f, g ∈ T \{0}, then deg( f g) =

deg( f ) + deg(g). Also, if f + g ̸= 0, then deg( f + g) ≤ max{deg f, deg g}.
With this in mind, let f ∈ T be Egyptian. Write

f =
1
f1

+ · · · +
1
fs

with f j ∈ T for each j . Clearing denominators by multiplying through by
∏s

i=1 fi ,
we have

f f1 · · · fs =

s∑
i=1

∏
j ̸=i

f j .

By equating degrees, it follows that

deg( f ) +

s∑
i=1

deg( fi ) ≤ max
i

∑
j ̸=i

deg( f j ).

Since all degrees are nonnegative, it follows that deg f = 0, so that f ∈ T0. □

Theorem 3.3. R (as in Notation 3.1) is a local ring, with maximal ideal generated
by all elements of the form 1/ f , with f a nonconstant polynomial.

Proof. By Theorem 2.4, R(D) is a local ring with maximal ideal m generated by all
elements of the form 1/ f with 0 ̸= f ∈ D non-Egyptian. However, by Lemma 3.2
(and using the standard grading on the polynomial ring), no nonconstant polynomial
can be Egyptian. Since the nonzero constant polynomials are units and hence
Egyptian, the result follows. □
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Proposition 3.4. Let 0 ≤ j < n be integers. Then Rn ∩ F j = R j and R∗
n ∩ F j = R∗

j .

Proof. We need only prove the first statement, since it then follows that

R∗

n ∩ F j = σ(Rn) ∩ F j = σ(Rn ∩ F j ) = σ(R j ) = R∗

j .

Moreover, by an easy induction, we may assume j = n − 1.
It is clear that Rn−1 ⊆ Rn ∩ Fn−1. So let α ∈ Rn ∩ Fn−1. Then α =

∑t
i=1(1/ fi ),

where each fi is an element of Dn \{0}. Reorder the fi such that f1, . . . , fs ∈ Dn−1

and fs+1, . . . , ft ∈ Dn \Dn−1. Then for 1 ≤ i ≤ s, we have 1/ fi ∈ Rn−1 ⊆ Rn ∩Fn−1.
Let β = α −

∑s
i=1(1/ fi ); then we have

(2) β =

t∑
i=s+1

1
fi

.

Assume β ̸= 0. Then multiplying (2) by
∏t

i=s+1 fi , we have

β fs+1 · · · ft =

t∑
i=s+1

∏
j ̸=i
j>s

f j .

With respect to the polynomial ring Fn−1[Xn], note that β ∈ Fn−1 and each fi

for i > s is a nonconstant polynomial. Say deg fi = di > 0 for each i > s. Then
the left hand side above has degree

∑t
i=s+1 di , whereas the right hand side has

degree ≤ maxi
{∑

j ̸=i, j>s d j
}

<
∑t

s=i+1 di , a contradiction. Hence β = 0. That is,
α =

∑t
i=1(1/ fi ) ∈ Rn−1, since each fi is an element of Dn−1. □

Lemma 3.5. Let f ∈ D \ {0}. Then

σ

(
1
f

)
=

X a( f )+t( f )

f ∗
,

where f ∗
∈ D \

⋃n
i=1 X i D. Moreover, a( f ) = a( f ∗) and f = X t( f ) f ∗∗.

Proof. First suppose f ∈ D \
⋃n

i=1 X i D, so that t( f ) = 0. Write f =
∑

j∈Nn
0

u j X j ,
where each u j is in K and u j = 0 for all but finitely many n-tuples j . Then
ai ( f )= degX i

( f )= max{c | ∃ j with ji = c and u j ̸= 0} for each 1 ≤ i ≤ n. We have

σ

(
1
f

)
=

1∑
j u j/X j =

X a( f )∑
j u j X a( f )− j .

Let f ∗ denote the expression in the denominator above. Note that a( f ) − j ∈ Nn
0

whenever u j ̸= 0, since for each such j we have ji ≤ ai ( f ) for all 1 ≤ i ≤ n. Hence
f ∗ is a true polynomial. Moreover, for each i , since X i ∤ f , there is some j with
u j ̸= 0 and ji = 0, and hence ai ( f ) − ji = ai ( f ). Thus, ai ( f ∗) = ai ( f ). Finally,
for each i , there is some j with u j ̸= 0 and ji = ai ( f ). Hence ai ( f )− ji = 0, so
X i ∤ f ∗, whence f ∗

i ∈ D \
⋃n

i=1 X i D.
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For the final claim, we have

σ

(
1
f ∗

)
=

X a( f ∗)∑
j u j X a( f ∗)−(a( f )− j) =

X a( f ∗)∑
j u j X j =

X a( f ∗)

f
.

Now we go to the general case, where t( f ) is not necessarily the zero vector.
We have f = X t( f ) f0, where f0 ∈ D \

⋃n
i=1 X i D. Then

σ

(
1
f

)
=

( n∏
i=1

σ

(
1
X i

)ti ( f ))
σ

(
1
f0

)
= X t( f )σ

(
1
f0

)
=

X a( f0)+t( f )

f ∗

0
.

Moreover, ai ( f ) = degX i
( f ) − ti ( f ) = degX i

( f0) = ai ( f0) for each 1 ≤ i ≤ n, so
a( f ) = a( f0). Setting f ∗

= f ∗

0 , we have f ∗∗
= f ∗∗

0 = f0, so that f = X t( f ) f0 =

X t( f ) f ∗∗

0 , completing the proof. □

Lemma 3.6. We have R∗
⊆ D(X i ) for each 1 ≤ i ≤ n. In particular there are

n distinct height-one prime ideals pi of R∗ obtained as centers of the X i -adic
valuations of D, and R∗

pi
= D(X i ).

Proof. Choose i with 1 ≤ i ≤ n. Let f ∈ D. Let vi be the X i -adic valuation function.
Then by Lemma 3.5, vi (σ (1/ f ))= ti ( f )+ai ( f )−vi ( f ∗)≥0, as ai ( f )=degX i

( f ∗),
and vi ( f ∗) cannot exceed the X i -degree of f ∗. Since every nonzero element α ∈ R∗

is a sum of terms of the form σ(1/ f ), it follows that vi (R∗) ≥ 0.
Now let 1 ≤ i < j ≤ n, and let pi and p j be the centers of the X i - and X j -adic

valuations on D in R∗, respectively. Since vi (X i ) = 1 but v j (X i ) = 0, we have
X i ∈ pi \ p j . Similarly, vi (X j ) = 0 and v j (X j ) = 1, so X j ∈ p j \ pi .

For the final claim, let α ∈ D(X i ). Then α = f/g for some f ∈ D and g ∈ D\X i D.
If g ∈ pi , then g ∈ X i D(X i ) ∩ D = X i D, which is a contradiction. Hence, f ∈ R∗

and g ∈ R∗
\ pi , so f/g ∈ R∗

pi
. Thus, R∗

pi
= D(X i ), whence ht pi = 1. □

Lemma 3.7. Let p be a nonzero prime ideal of R. Then 1/X i ∈ p for some 1 ≤ i ≤ n.

Proof. By Proposition 2.9, 1/
(∏n

i=1 X i
)

=
∏n

i=1(1/X i ) ∈ p. Since p is prime,
some 1/X i is in p. □

Lemma 3.8. Let f ∈ D. If f (0) ̸= 0 then f is a unit in R∗. In particular,

K [X1, . . . , Xn](X1,...,Xn) ⊆ R∗.

Proof. We prove this by induction on n. If n = 0, then the result is vacuous. Thus,
let n ≥ 1 and assume the result true for smaller n.

By way of contradiction suppose that f ∈ p for a prime ideal p of R∗. By
Lemma 3.7, some X i is in p; without loss of generality assume i = n, so that
Xn ∈ p. Then f = Xng + h for some g ∈ Dn and h ∈ Dn−1 \ (X1, . . . , Xn−1)Dn−1.
Then h ∈ p ∩ Dn−1 \ (X1, . . . , Xn−1)Dn−1, so that, by the inductive hypothesis,
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1/h ∈ K [X1, . . . , Xn−1](X1,...,Xn−1) ⊆ R∗

n−1. Hence also 1/h ∈ R∗. But then 1 =

(1/h)( f − Xng) ∈ p, a contradiction. □

Lemma 3.9. Let w be the order valuation of D(X1,...,Xn) on F , i.e., the unique
valuation on F such that for any nonzero g ∈ D, w(g)=max{ j |g ∈ (X1, . . . , Xn)

j
}.

Let (W,mW ) be the corresponding DVR. Then R∗
⊆ W , and mW ∩R∗ is the maximal

ideal m of R∗.

Proof. By construction D ⊆ W and X i ∈ mW for all i , so that w(X i ) > 0. We
first show that for any nonconstant polynomial f not divisible by any of the
variables, w(σ(1/ f )) ≥ 1. Under these assumptions, σ(1/ f ) = X a( f )/ f ∗ by
Lemma 3.5. Note that there is some i and some monomial m in f ∗ such that
Xai ( f )

i ∤ m. Thus, w( f ∗) ≤ w(m) ≤ (ai ( f )− 1)+
∑

j ̸=i a j ( f ) <
∑

j a j ( f ). Thus,
w(σ(1/ f )) =

∑
j a j ( f ) − w( f ∗) > 0.

For a general nonconstant polynomial f , we have f = X t( f ) f0, where f0 is
not a multiple of any of the X i , and if f0 is constant then some ti ( f ) > 0. Hence,
w(σ(1/ f )) =

∑n
i=1 ti ( f )w(X i ) + w(σ(1/ f0)) > 0.

Now let α ∈ R∗. Write α = u +
∑t

j=1 σ(1/ f j ), where u ∈ K and each f j is
in D \ K . Since K ⊆ D ⊆ W , by the above we have α ∈ W , whence R∗

⊆ W .
If u = 0 then w(α) ≥ min{w(σ(1/ fi ) | 1 ≤ i ≤ t} > 0, so that α ∈ mW . Thus by
Theorem 3.3, m ⊆ mW ∩ R∗, but then since m is maximal, the result follows. □

The following result must be well known but we provide a proof for the conve-
nience of the reader.

Lemma 3.10. Let (T,m) be a local integral domain with fraction field F , and let
(V, n) be a discrete rank-one valuation ring such that T ⊆ V ⊆ F and n∩ T = m.
Then T is atomic, and any x ∈ m \ n2 is an irreducible element of T .

Proof. We begin with the second statement. Let x ∈m\n2. Write x = st with s, t ∈ T
and s not a unit. Then if v is the valuation function of v, we have v(s) ≥ 1, so that
1 = v(x)= v(st)= v(s)+v(t) ≥ 1+v(t), whence v(t)= 0, so that t ∈ T \n= T \m

and is thus a unit. Thus, x is irreducible.
For the first statement, let A = {x ∈ m | x cannot be written as a product of

irreducible elements}. If A ̸= ∅, choose a ∈ A such that v(a) ≤ v(b) for all b ∈ A.
Since a is not irreducible, we may write a = bc for some nonunits b, c ∈ T ; hence
b, c ∈ m. But then v(c) ≥ 1, so v(b) = v(a) − v(c) < v(a). Thus, b ̸∈ A, so b can
be written as a product of irreducible elements. By the same argument, the same
holds for c. Hence, a = bc is also a product of irreducible elements, which is a
contradiction. Thus, A = ∅, so every element of T is either a unit or a product of
irreducibles. That is, T is atomic. □

Theorem 3.11. The ring R is atomic. That is, every nonzero nonunit element
factors into a product of irreducible elements.
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Proof. Since R ∼= R∗, we may work with R∗. By Lemma 3.9, the maximal ideal
of R∗ is the center of a rank-one discrete valuation. The result then follows from
Lemma 3.10. □

Remark 3.12. However, R is not a UFD provided n ≥ 2. To see this (and working
in R∗), use the labels X := X1 and Y := X2, and first note that s := σ(1/(X +Y )) =

XY/(X +Y ) ∈ R∗, and also that t := X2/(X +Y ) = X − s and u := Y 2/(X +Y ) =

Y −s ∈ R∗. But each of s, t , u has value 1 in the order valuation w from Lemma 3.9,
hence must be irreducible elements of R∗ by Lemma 3.10.

Then we have X2Y 2/(X + Y )2
= s2

= tu, so if R∗ were a UFD, s would be
associate to either t or u. But if s is an associate of t , then s ∈ t R∗, which implies
that Y/X ∈ R∗. And if s is an associate of u, then u ∈ s R∗, which again implies
that Y/X ∈ R∗. So in either case we obtain X/Y = σ(Y/X) ∈ R = R(D) ⊆

R(K (X3, . . . , Xn)[X, Y ]), contradicting [Epstein 2024c, Example 2.9].

4. Dimension

In this section, we show that R has the same Krull dimension as D (see Theorem 4.4).

Lemma 4.1. For any 1 ≤ i ≤ n, we have

R[X i ] = R(K (X i )[X1, . . . , X̂ i , . . . , Xn]).

Hence, R∗
[X−1

i ] is isomorphic to the reciprocal complement of the polynomial ring
in n − 1 variables over a field.

Proof. Without loss of generality set i = n. Set S := R(K (Xn)[X1, . . . , Xn−1]).
For the forward containment, first note that Xn = 1/(1/Xn) ∈ S since 1/Xn ∈

K (Xn)[X1, . . . , Xn−1]. Moreover, since Dn ⊆ K (Xn)[X1, . . . , Xn−1] and R(−)

preserves containment, we have R ⊆ S. Thus, R[Xn] ⊆ S.
For the reverse, let 0 ̸= f ∈ K (Xn)[X1, . . . , Xn−1]. By finding a common denom-

inator to the K (Xn)-coefficients of the monomials in X1, . . . , Xn−1, we may write
f = g/h, where g ∈ Dn and h ∈ K [Xn]. Write h =

∑t
i=0 ci X i

n with all ci ∈ K . Then

1
f

=
h
g

=

t∑
i=0

ci

g
· X i

n.

But for each i , if ci = 0, then ci/g = 0 ∈ Rn; otherwise ci/g = (1/g/ci ) ∈ R. Thus,
1/ f =

∑t
i=0(ci/g) · X i

n ∈ R[Xn]. Hence, S ⊆ R[Xn], completing the proof. □

Proposition 4.2. Let j and n be integers with 0 ≤ j ≤ n. Then there is a unique
prime ideal P of R such that RP is the reciprocal complement of L[X1, . . . , X j ],
where L = K (X j+1, . . . , Xn).

Proof. By applying induction to Lemma 4.1, we have

R[X j+1, . . . , Xn] = R(L[X1, . . . , X j ]) =: S.
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But, since S is a local ring by Theorem 2.4, and since each X−1
i is an element of R,

there is a unique prime ideal P of R maximal with respect to avoiding all of X−1
i

for j + 1 ≤ i ≤ n such that RP = S. □

Lemma 4.3. For each i , there is a unique prime ideal qi of R maximal with respect
to not containing 1/X i . We have Rqi = R[X i ].

Proof. We may assume i = n ≥ 1. By Lemma 4.1, R[Xn] is the reciprocal
complement of the polynomial ring in n − 1 variables over a field, which by
Theorem 2.4 is local. Hence by elementary localization theory, there is a unique
prime ideal qn of R maximal with respect to avoiding X−1

n , and Rqn = R[Xn] =

R(K (Xn)[X1, . . . , Xn−1]). □

Theorem 4.4. dim R = n.

Proof. We proceed by induction on n. Of course R0 = K , which has dimension 0,
so we may assume n > 0. By Theorem 3.3, R is local, and its maximal ideal m
contains the reciprocals of all the variables. Let q = qn be as in Lemma 4.3, so that
1/Xn ̸∈ qn and Rq is isomorphic to the reciprocal complement of a polynomial ring
in n − 1 variables over a field by Lemma 4.1. Then by the inductive hypothesis,
ht q = dim Rq = n − 1. Since 1/Xn ∈ m \ q, we have htm > ht q = n − 1, whence
dim R = htm ≥ n.

On the other hand, since R∗ is an overring of the n-dimensional Noetherian
domain D, we have dim R = dim R∗

≤ n; see [Anderson et al. 1988]. Hence
dim R = n. □

5. Exotic properties of R

For most of this section, we work in two variables, so that D = K [X, Y ], where
X = X1 and Y = X2 for short. Then the notation Dn , Rn , etc. when n ̸= 2 will
stand for the corresponding rings of other dimensions. We show that R∗

n is not
integrally closed when n ≥ 2. We also show that it is not a finite conductor domain,
hence not coherent, and is thus also non-Noetherian.

Before we begin, recall the following presumably well-known result:

Lemma 5.1. Let A ⊆ B be integral domains such that B is free as an A-module.
Then B ∩ Frac(A) = A.

Proof. Let b ∈ B ∩ Frac A. Write b = x/y with x, y ∈ A and y ̸= 0. Then
x = yb ∈ y B ∩ A = (y A)B ∩ A = y A, where the latter equation holds by freeness.
Thus, x = ya for some a ∈ A, whence yb = ya, so by cancellation, b = a ∈ A. □

Our methodology here is to construct a family of valuation rings that contain R∗,
which serve as a tool to analyze the elements and prime ideals of our ring. We must
start with notation that will be useful:
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Notation 5.2. Choose two relatively prime positive integers p and q with p < q,
such that neither p nor q is a multiple of char K . Let K ′ be the smallest field exten-
sion of K that contains all the primitive p-th and q-th roots of 1. Let L/K ′(X, Y )

be generated by elements s and t such that s p
= X and tq

= Y . Note that K ′
[s, t]

is free as a K ′
[X, Y ]-module on the basis {si t j

| 0 ≤ i < p, 0 ≤ j < q}.

Lemma 5.3. Let g ∈ K [X, Y ]. Then s − t | g in K ′
[s, t] if and only if Xq

− Y p
| g

in K [X, Y ].

Proof. Since K ′
[X, Y ] ∩ K (X, Y ) = K [X, Y ] by Lemma 5.1, we may assume

K = K ′. Thus, we may let ξp (resp. ξq) be a primitive p-th (resp. q-th) root of
unity in K . Then
p−1∏
i=0

q−1∏
i=0

(ξ i
ps − ξ j

q t) =

p−1∏
i=0

((ξ i
ps)q

− tq) =

p−1∏
k=0

(ξ k
psq

− tq) = (−1)p
p−1∏
k=0

(tq
− ξ k

psq)

= (−1)p(t pq
− s pq) = (−1)p(Y p

− Xq).

The second equality above holds because p and q are relatively prime, so that the
order of q + pZ in Z/pZ must be p.

Also note that for each pair (i, j) of integers with 0 ≤ i < p and 0 ≤ j < q,
there is a unique τi j ∈ AutK (X,Y ) L such that τi j (s) = ξ i

ps and τi j (t) = ξ
j

q t . Thus, if
s − t | g in K [s, t], then for each i and j , we have τi j (s − t) = ξ i

ps −ξ
j

q t | τi j (g) = g.
Since the ξ i

ps − ξ
j

q t are mutually nonassociate irreducible elements of K [s, t], a
UFD, it follows that Xq

− Y p
= ±

∏
i, j (ξ

i
ps − ξ

j
q t) | g in K [s, t]. Hence,

g
Xq − Y p ∈ K (X, Y ) ∩ K [s, t] = K [X, Y ],

again by Lemma 5.1, which implies that Xq
− Y p

| g in K [X, Y ].
For the converse, simply note that if Xq

−Y p
| g in K [X, Y ], then as s−t | Xq

−Y p

in K [s, t] and K [X, Y ]⊂ K [s, t], it follows by transitivity of divisibility that s−t | g
in K [s, t]. □

Notation 5.4. Let u := s − t . Then s and u are algebraically independent over K ′,
and K ′

[s, t] = K ′
[s, u]. We define a valuation w := wh := wp,q,h on K ′

[s, u]

by setting w(s) = 1 and w(u) = h for some integer h ≥ 1, and for any nonzero
f =

∑
i, j ci j si u j in K ′

[s, t], where ci j ∈ K ′, we set

w( f ) = min{w(si u j ) | ci j ̸= 0} = min{i + hj | ci j ̸= 0}.

Then we let W := Wh := Wp,q,h be the corresponding valuation ring in the field L .
Clearly K ′

[s, u] ⊆ W . Set V := W ∩ F (denoted by Vh or Vp,q,h if needed) and let
v = vh = vp,q,h be the corresponding valuation on F .

Lemma 5.5. The valuation ring V is an overring of R∗
:= R∗

2 if and only if
h ≤ pq + 1. If h < pq + 1, then σ(1/ f ) ∈ mV for all f ∈ D \ K .
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Suppose on the other hand that h = pq + 1. Then for an irreducible polynomial
f ∈ K [X, Y ], with α = σ(1/ f ∗) and θ = σ(1/(Xq

− Y p)) = XqY p/(Y p
− Xq),

we have v(α) = 0 if and only if α = θmδ−1 for some m ≥ 1 and some element
δ ∈ K [θ ] \ (θ)K [θ ]. Otherwise v(α) ≥ p.

Proof. Since X =X∗ and Y =Y ∗, we have v(σ (1/X∗))=v(X)=w(s p)= pw(s)= p,
and w(t)=w(s − u)=1, so v(σ (1/Y ∗))=v(Y )=w(tq)=qw(t)=q. Hence, V is
an overring of K [X, Y ], with (X, Y )⊆mV .

Now suppose (i, j) is a pair of integers with 0 ≤ i < p, 0 ≤ j < q, and
(i, j) ̸= (0, 0). Then ξ i

ps − ξ
j

q t = (ξ i
p − ξ

j
q )s + ξ

j
pu, so since ξ i

p − ξ
j

q ∈ K \ {0}, we
have w(ξ i

ps − ξ
j

q t) = 1. Therefore,

v(Xq
− Y p) = w

(
±

p−1∏
i=0

q−1∏
i=0

(ξ i
ps − ξ j

q t)
)

= w(s − t) +

(i, j) ̸=(0,0)∑
i, j

w(ξ i
ps − ξ j

q t)

= h + pq − 1.

It follows that

v(θ) = v

(
XqY p

Xq − Y p

)
= qp + pq − (h + pq − 1) = pq + 1 − h.

Thus, if h > pq + 1, we have v(θ) < 0, so that θ ̸∈ V and R∗ ⊈ V . But as long
as h ≤ pq + 1 we have v(θ) ≥ 0, with v(θ) > 0 ⇐⇒ h < pq + 1. From now on
we assume h ≤ pq + 1.

Now let f ∈ K [X, Y ] be nonconstant, irreducible, and not associate to any of
X , Y , Xq

− Y p. Then for some ci j ∈ K , we have

(3) f =

∑
i, j

ci j X i Y j
=

∑
i j

ci j s pi (s − u)q j

=

∑
i, j

ci j s pi
q j∑

k=0

(−1)k
(

q j
k

)
sq j−kuk

=

(∑
i, j

ci j s pi+q j
)

+ u ·

∑
i, j

ci j s pi
q j∑

k=1

(−1)k
(

q j
k

)
sq j−kuk−1.

Then since f is not associate to (hence not divisible by) Xq
− Y p in K [X, Y ], it

follows from Lemma 5.3 that u ∤ f in K ′
[s, u]. Therefore, f = f1 + u f2 with

0 ̸= f1 ∈ K ′
[s] and f2 ∈ K ′

[s, u]. in particular, f1 =
∑

i, j ci j s pi+q j . Then v( f ) =

w( f ) ≤ w( f1) = min{pi + q j | ci j ̸= 0}. As usual, recalling the notation of
Lemma 3.5, write α = σ(1/ f ∗) = XaY b/ f , where (a, b) = (a1( f ), a2( f )), a ≥ 1,
and b ≥ 1. Thus in the sums in (3) above, we have i ≤ a and j ≤ b for all pairs (i, j)
such that ci j ̸= 0. Hence, w( f1) takes the form pi + q j for some i ≤ a and j ≤ b.
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Therefore v(α) = pa +qb −v( f ) ≥ p(a − i)+q(b − j) ≥ 0, and if it is nonzero it
must be at least p. Since R∗ is generated as a K -algebra by all such terms σ(1/ f ∗),
it follows that R∗

⊆ V .
Now, suppose δ ∈ K [θ ] \ (θ)K [θ ]. Then by Theorem 3.3, δ is a unit of R∗,

hence also in V , so v(δ) = 0. Hence for any nonnegative integer m, we have
v(θm/δ) = m · (pq + 1 − h). Thus, it has value 0 if and only if h = pq + 1, and is
otherwise positive.

It remains to show that if h = pq + 1 and v(α) = 0, then there exist some m ≥ 0
and some δ ∈ K [θ ] \ (θ)K [θ ] with α = θm/δ, whereas if h < pq +1 then v(α) > 0.
To prove this, let f , α, f1, f2 be as above. We proceed by induction on the number
ℓ = a + b = a1( f )+ a2( f ), noting that the statement is vacuously true for ℓ = 0, 1.

We first dispense with the case that some monomial ci j s pi+q j appearing in f1

satisfies either i < a or j < b. Then v( f ) ≤ w( f1) ≤ pi + q j ≤ pa + qb − p, so
that v(α) = pa + qb − v( f ) ≥ p.

Thus, we may assume that f1 = cabs pa+qb, so that cab ̸= 0. Set g := f −cab XaY b.
Then rewriting g as an element of K ′

[s, u], we have g = g1 + ug2, where g1 =

f1 − cabs pa+qb
= 0. Hence u | g in K ′

[s, t], whence Xq
− Y p

| g in K [X, Y ] by
Lemma 5.3. That is, we have f = cab XaY b

+ (Xq
− Y p)m H , where m ≥ 1 and

H ∈ K [X, Y ] is relatively prime to each of X , Y , and Xq
− Y p. Thus a ≥ p and

b ≥ q . Also note that a1(H) ≤ a − qm and a2(H) ≤ b − pm.
Set α′

:= XaY b/((Y p
− Xq)m H). Then there are nonnegative integers e1, e2 with

α′
= X e1Y e2θmσ(1/H∗). In particular, e1 =a−mp−a1(H) and e2 =b−mq−a2(H).

Thus, cabα
′
+ 1 is a unit of R∗, so since α = α′/(cabα

′
+ 1), we have v(α′) = v(α),

which we assume to be 0. But v(α′) = e1 p + e2q + m(pq + 1 − h)+ v(σ (1/H∗)),
whence, since v(α′) = 0, we have e1 = e2 = 0, and every irreducible factor τ of H
satisfies v(σ (1/τ ∗)) = 0. Moreover if h < pq + 1 it further follows that m = 0,
so that f = cab XaY b, contradicting the fact that f is relatively prime to X and Y ,
finishing this case.

Then in the remaining case (where h = pq +1), by the inductive hypothesis each
such τ satisfies σ(1/τ ∗) = θm(τ )/δ(τ ). As these terms are multiplicative, there is
some k ∈ N and ϵ ∈ K [θ ] \ (θ)K [θ ] with σ(1/H∗) = θ k/ϵ Thus, we have

α =
α′

cabα′ + 1
=

θm+k/ϵ

cab(θm+k/ϵ) + 1
=

θm+k

cabθm+k + ϵ
.

Since cabθ
m+k

+ ϵ ∈ K [θ ] \ (θ)K [θ ], we are done. □

Recall (see [Zafrullah 1978]) that an integral domain is a finite conductor domain
if the intersection of any pair of principal ideals is finitely generated.

Theorem 5.6. For any n ≥ 2, the ideal (1/X1)Rn ∩ (1/X2)Rn is not finitely gener-
ated. Hence Rn is not a finite conductor domain.
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Proof. Let n ≥ 3 and suppose (1/X1)Rn ∩ (1/X2)Rn = (α1, . . . , αt)Rn for some
α1, . . . , αt ∈ Rn . Let S = Rn[X3, . . . , Xn]. Let L = K (X3, . . . , Xn). By Lemma 4.1,
we have S = R(L[X1, X2]). Let (−)′ denote the image of an element of Rn in S.
Then α′

j ∈ (1/X1)S ∩ (1/X2)S for all j , so (α′

1, . . . , α
′
t) ⊆ (1/X1)S ∩ (1/X2)S.

Conversely let u ∈ (1/X1)S ∩ (1/X2)S. Then by clearing denominators, there
is some positive integer d such that (X3 · · · Xn)

−du ∈ (1/X1)Rn ∩ (1/X2)Rn =

(α1, . . . , αt)Rn . Since S = Rn[X3, . . . , Xn], it follows that u ∈ (α′

1, . . . , α
′
t)S.

Thus, (1/X1)S ∩ (1/X2)S is a finitely generated ideal, and we have reduced to the
2-dimensional case. So from now on we assume n = 2 and we rewrite X = X1 and
Y = X2. For the rest of the proof, we pass to the R∗ notation.

Suppose X R∗
∩ Y R∗

= (α1, . . . , αt) for some finite list of nonzero αi ∈ R∗;
a contradiction will complete the proof. Then there exist βi , γi ∈ R∗ with αi =

Xβi = Yγi for all i . Write γi = ci +
∑mi

j=1 σ(1/ fi j ), where ci ∈ K , mi ≥ 0,
and each fi j is in D \ K . If some ci ̸= 0, then γi is a unit by Lemma 2.3, so
Y/X = γ −1

i βi ∈ R∗, which is false by [Epstein 2024c, Example 2.9]. Hence mi ≥ 1
and γi =

∑mi
j=1 σ(1/ fi j ). Choose some positive integer q that is not a multiple of

char K and such that q > max{degX fi j | 1 ≤ i ≤ t, 1 ≤ j ≤ mi }. Set v := v1,q,q+1

and θ = θ1,q = XqY/(Y − Xq) as in Lemma 5.5.
Then Y θ = Xq

· (θ + Y ) ∈ X R∗, and therefore Y θ ∈ X R∗
∩ Y R∗. It follows

that θ ∈ (γ1, . . . , γt). Since v(θ) = 0, it follows that for some pair (i, j), we have
v(σ (1/ fi j )) = 0. By Lemma 5.5, there exists some positive integer m and some
element δ ∈ K [θ ] \ (θ)K [θ ] such that σ(1/ fi j ) = θmδ−1. Write f = fi j .

Let d = degX ( f ) and e = degY ( f ). Then by Lemma 3.5, we have σ(1/ f ) =

XdY e/ f ∗, where degX ( f ∗) ≤ d and degY ( f ∗) ≤ e.
Write δ = c0 +

∑s
i=1 ciθ

i , where each ci is in K and c0 ̸= 0. Then

XdY e

f ∗
= σ(1/ f ) = θmδ−1

=
(XqY )m/(Y − Xq)m

c0 +
∑s

i=1 ci (XqY )i/(Y − Xq)i .

If m ≥ s, then the latter equation simplifies to an equation where both the numerator
and denominator of each fraction is a polynomial, as follows:

XdY e

f ∗
=

XqmY m

c0(Y − Xq)m +
∑s

i=1 ci (XqY )i (Y − Xq)m−i .

Since q > d by the choice of q , we have qm > d . It follows that X | c0(Y − Xq)m ,
which contradicts the fact that c0 ∈ K ×.

On the other hand if m < s, then the equation simplifies with numerators and
denominators being polynomials, as follows:

XdY e

f ∗
=

XqmY m(Y − Xq)s

c0(Y − Xq)s +
∑s

i=1 ci (XqY )i (Y − Xq)s−i .
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Cross-multiplying, we have

XqmY m(Y − Xq)s f ∗
= XdY e

·

(
c0(Y − Xq)s

+

s∑
i=1

ci (XqY )i (Y − Xq)s−i
)

.

Since qm > d, it follows that X | c0(Y − Xq)s , which again contradicts the fact
that c0 ∈ K ×. □

Recall that a ring is coherent if every finitely generated ideal is finitely presented.
The coherent rings include the Noetherian rings and also all valuation domains (see
[Bourbaki 1972, Chapter I, §2, Exercise 12 and Chapter VI, §1, Exercise 3]).

Corollary 5.7. For any n ≥ 2, the ring Rn is not coherent. Hence it is non-
Noetherian.

Proof. This follows from Theorem 5.6 and [Chase 1960, Theorem 2.2]. □

The next result is notably unlike the behavior of localized polynomial rings.

Theorem 5.8. For any n ≥ 2, Rn is not integrally closed.

Proof. We first consider the 2-dimensional case. Let p and q be relatively prime inte-
gers with 1 < p <q , such that neither p nor q is a multiple of char K . By elementary
number theory, there is a unique pair of integers c and d with qd− pc = 1, 0 < c <q ,
and 0 < d < p. Consider the element β := βp,q := (X2q−cY d)/(Xq

− Y p) ∈ F .
We claim that β is integral over R∗ — in fact, β p

∈ R∗ — but β ̸∈ R∗.
To see that β p

∈ R∗, simply note the following:

β p
=

X (2q−c)pY dp

(Xq − Y p)p =

(
XqY p

Xq − Y p

)d

·

(
XqY p

Xq − Y p + Xq
)p−d

· X,

which is in R∗ since X ∈ R∗ and σ(1/(Y p
− Xq)) = XqY p/(Xq

− Y p) ∈ R∗.
On the other hand, let v = vp,q,pq+1. Then

v(β) = v

(
X2q−cY d

Xq − Y p

)
= (2q − c)p + qd − 2pq = qd − pc = 1.

Suppose β ∈ R∗. Since v(β) > 0, it follows that β ∈mV ∩ R∗
⊆m, the maximal

ideal of R∗. So by Theorem 3.3, we have β =
∑t

i=1 σ(1/ f ∗

i ) for nonconstant
polynomials fi ∈ K [X, Y ]. By reordering, let f1, . . . , fs be the polynomials whose
only irreducible factor is Xq

− Y p up to associate and multiplicity, whereas each
of fs+1, . . . , ft has an irreducible factor not associate to Xq

− Y p. Set γ :=∑s
i=1 σ(1/ f ∗

i ) and δ :=
∑t

i=s+1 σ(1/ f ∗

i ), so that β = γ + δ. By Lemma 5.5, we
have v(δ) ≥ p, so that since v(β) = 1 < p, we have v(γ ) = 1.

On the other hand, for 1 ≤ i ≤ s, there exist λi ∈ K and ℓi ∈ N0 with fi =

λi (Xq
−Y p)ℓi . Thus, σ(1/ f ∗)=λiθ

ℓi , so that by Lemma 5.5 we have v(σ (1/ f ∗

i ))=
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ℓiv(θ) = 0. Thus, either γ = 0 or v(γ ) = 0, either of which is a contradiction.
Hence, β ̸∈ R∗.

Finally, we pass to the n-dimensional case. We have β p
∈ R∗

2 ⊆ R∗
n . Since R∗

2 =

R∗
n ∩ K (X, Y ) by Proposition 3.4, and β ∈ K (X, Y )\ R∗

2 , it follows that β ̸∈ R∗
n . □

6. The abundance of prime ideals in R

In this section, we show that Rn , which as we have seen is far from Noetherian
when n > 1 (see Corollary 5.7), does have infinitely many prime ideals of each
height other than 0 and n, a property enjoyed by any n-dimensional Noetherian ring,
but not by some non-Noetherian rings (e.g., any valuation domain of dimension at
least 2). We start with the following result to bootstrap our efforts.

Proposition 6.1. For any n ≥ 2, Rn has infinitely many height-one prime ideals.

Proof. In this proof, we use R∗ notation.
First suppose n = 2. For any relatively prime pair (p, q) of positive integers

with p < q , let V , v, θ , and h be as in Lemma 5.5, with h = pq + 1. Let p = pp,q

be the contraction of mV to R∗. Then since v(θ) = 0, we have θ ̸∈ p. Since p is
a nonzero prime but not the maximal ideal of R∗ (as θ ∈ m), it follows that p is a
height-one prime.

On the other hand, let (r, s) be a different pair of relatively prime positive integers
with r < s. We claim that v(X s

− Y r ) = min{v(X s), v(Y r )} = min{ps, qr}. Other-
wise we would have v(X s) = v(Y r ), whence ps = qr . But then by assumption of
relatively prime pairs, we would have p = r and q = s, contradicting the assumption
of distinctness. Therefore, v(θr,s) = v(X sY r ) − v(X s

− Y r ) = max{qr, ps}. Thus,
θr,s ∈ pp,q . But by the proof of Lemma 5.5, θr,s ̸∈ pr,s . Hence, pp,q ̸= pr,s . Since
there are infinitely many such pairs of integers, it follows that R∗ has infinitely
many height-one primes.

Finally, we drop the assumption that n = 2. By Proposition 4.2, there is a prime
ideal Q of R∗ such that R∗

Q is isomorphic to the reciprocal complement of L[X, Y ]

for some field L . But then by the dimension 2 part of the proof above, R∗

Q has
infinitely many height-one primes. Thus, there are infinitely many height-one
primes of R∗ that are contained in Q. □

Notation 6.2. Recall that given a valuation ring with fraction field K and an
indeterminate t over K , the ring V (t) is a valuation ring of K (t) called the trivial
extension of V . Given ϕ =

∑e
j=0 f j t j with f j ∈ K , then the value of ϕ with respect

to V (t) is min j {v( f j )} (see [Gilmer 1972, p. 218]).
By Lemma 4.3, there is a prime ideal Q ∈ Spec Rn such that

(Rn)Q = R(K (Xn)[X1, . . . , Xn−1]).

Fix this prime for the next two lemmas.
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Lemma 6.3. Let V be a valuation overring of Rn−1; then the trivial extension
V (Xn) is an overring of (Rn)Q , where Q is as in Notation 6.2.

Proof. By the comment before the Lemma, it suffices to show that 1/ϕ ∈ V (Xn)

for every ϕ ∈ K (Xn)[X1, . . . , Xn−1]. Since K (Xn) ⊆ V (Xn), we may assume
ϕ ∈ K [X1, . . . , Xn]. Let v∗ be the valuation for V (Xn); write ϕ =

∑e
j=0 f j X e

n with
f j ∈ K [X1, . . . , Xn−1]. Since V is an overring of Rn−1, we have that v( f j ) ≤ 0

whenever f j ̸= 0. Hence, v∗(1/ϕ) = − min{v( f j ) | 0 ≤ j ≤ e and f j ̸= 0} ≥ 0. □

Lemma 6.4. Let p∈ Spec Rn−1, and let V be a valuation overring of Rn−1 centered
on p. Let p′ be the center of V (Xn) in Rn . Then ht p′

≥ ht p, with equality if
ht p ∈ {0, n − 2, n − 1}.

Proof. Let i =ht p. If i =0, then p= (0), so that V =Frac Rn−1 = K (X1, . . . , Xn−1),
whence p′

= (0). Assume by induction that i ≥ 1 and the inequality holds for all
primes with smaller height. Note that p′

∩ Rn−1 = p.
Let q⊊ p with q ∈ Spec Rn−1 and ht q = i − 1. Let W be a valuation overring of

Rn−1 centered on q; let q′ be the center of W (Xn) in Rn . To show that q′
⊆ p′, it

suffices by Proposition 2.8 to show that for any ϕ ∈ K [X1, . . . , Xn] with 1/ϕ ∈ q′,
we have 1/ϕ ∈ p′. Write ϕ =

∑e
j=0 f j X j

n , where f j ∈ K [X1, . . . , Xn−1. Since
1/ϕ ∈ q′, there is some 0 ≤ k ≤ e with 1/ fk ∈ q, by the way the valuation on W (Xn)

is defined. Thus, 1/ fk ∈ p, so v∗(1/ϕ) = − min{v( f j ) | 0 ≤ j ≤ e} ≥ −v( fk) > 0.
Hence q′

⊆ p′. On the other hand q′
̸= p′, since for any α ∈ p\q, we have α ∈ p′

\q′.
Thus, q′ ⊊ p′, so that

ht p′
≥ 1 + ht q′

≥ 1 + (i − 1) = i,

with the second inequality by the inductive hypothesis.
Suppose i = n −1. Since Xn ̸∈ p′, we have that p′ is not the maximal ideal of Rn ,

so that ht p′
≤ n − 1. But also ht p′

≥ ht p = n − 1, so that ht p′
= n − 1.

Finally, suppose i = n − 2. Let m be the maximal ideal of Rn−1. Since m

contains all nonunits of Rn−1 and htm = n − 1, there is some α ∈ m \ p. Thus
α ̸∈ p′. But since V (Xn) ⊇ (Rn)Q by Lemma 6.3, we have p′

⊆ Q. Moreover, the
containment must be strict, since α ∈ m ⊆ Q but α ̸∈ p′. Thus, ht p′

≤ n − 2, so
ht p′

= ht p = n − 2. □

Lemma 6.5. Let p be a prime ideal of Rn−1 of height n − 2. Let V a valuation ring
of Rn−1 centered on p. Let κV be the residue field of V and let π : V (Xn)↠ κV (Xn)

be the canonical surjection. Let W := π−1(κV [X−1
n ](X−1

n )). Then W is a valuation
overring of Rn centered on a prime ideal a with ht a= n −1, such that a∩ Rn−1 = p.

Proof. We have that W is a valuation ring with quotient field K (X1, . . . , Xn) by
[Bastida and Gilmer 1973, Theorem 2.1(h)]. If G is the value group of V , then
G ⊕ Z, ordered lexicographically, is the value group of W . In particular, given ϕ =
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j=0 f j X j

n ∈ K [X1, . . . , Xn], with each f j in K [X1, . . . , Xn−1], the valuation w

is given by w(ϕ) = (v( fk), −k), where k is the largest index i with 0 ≤ i ≤ e such
that v( fi ) ≤ v( f j ) for all 0 ≤ j ≤ e. Then w(1/ϕ) = (−v( fk), k) ≥ (0, 0) since
1/ fk ∈ Rn−1 ⊆ V , whence v( fk) ≤ 0.

Set a := mW ∩ Rn and p′
:= mV (Xn) ∩ Rn . By standard pullback results, the

maximal ideal of V (Xn) is a nonmaximal prime of W ; thus p′
⊆ a. On the other

hand, X−1
n ∈ a \ p′, so that p′ ⊊ a. Since p is a nonmaximal ideal of Rn−1, there

is some nonunit α of Rn−1 (hence also of Rn) that avoids p. We have w(α) =

(v(α), 0) = (0, 0), so that α ̸∈ a. Thus, p′ ⊊ a⊊mRn , so that since ht p′
= n − 2 by

Lemma 6.4, we have ht a = n − 1.
Now, p = p′

∩ Rn−1 ⊆ a ∩ Rn−1. Hence, ht(a ∩ Rn−1) ≥ ht p = n − 2. But
α ∈ mRn−1 \ a, so ht(a∩ Rn−1) = n − 2, whence a∩ Rn−1 = p. □

Theorem 6.6. For every 1 ≤ i ≤ n − 1, there exist infinitely many primes of Rn of
height i .

Proof. When n = 0, 1, the statement is vacuous. Moreover, since when n ≥ 2
we know that Rn has infinitely many height-one primes by Proposition 6.1, the
result holds for n = 2. Thus, we assume inductively that n > 2 and the result holds
for smaller n. Since (Rn)Q = R(K (Xn)[X1, . . . , Xn−1]) (see Notation 6.2), it has
infinitely many primes of height i for 1 ≤ i ≤ n − 2, which then restrict to distinct
primes of these heights in Rn via the localization map. So we need only show
that Rn has infinitely many primes of height n − 1.

Let p and q be distinct prime ideals of height n−2 in Rn−1. By Lemma 6.5, there
are valuation overrings W1 and W2 of Rn whose centers in Rn are height n−1 primes
p′ and q′ such that p′

∩Rn−1 =p and q′
∩Rn−1 =q. Since p ̸=q, it follows that p′

̸=q′.
Since there are infinitely many primes of height n − 2 in Rn−1 by the inductive
hypothesis, it follows that there are infinitely many primes of height n −1 in Rn . □

7. The dimension 2 case

In this section, we work in two variables, so that D = K [X, Y ] where X = X1,
Y = X2 for short, R = R(K [X, Y ]), F = K (X, Y ), etc. We have done likewise
in many results earlier in the paper in service of extending the results to higher
dimensions. However, for each of the results in this section, either we do not know
how to extend it into higher dimension, or else we know it to be false in higher
dimension. In the dimension 2 case, we will show that R has an integral overring
that is not finitely generated, that localizing R at height-one primes always yields
Noetherian domains, and that any finitely generated proper ideal lives in almost all
height-one primes.

We start by expanding Theorem 5.8 to show that the integral closure if R∗ is
quite a bit larger than R∗ itself:
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Proposition 7.1. There is an overring S of R = R2, that is integral over R but not
finitely generated over it.

Proof. As usual, we will work with R∗ instead of R.
Let 6 := {βp,q} as in the proof of Theorem 5.8, where the pairs (p, q) range

over all relatively prime pairs of integers 1 < p < q such that neither p nor q is a
multiple of char K . Let S := R∗

[6]. Then, as seen in the proof of Theorem 5.8,
each βp,q is in the integral closure of R∗. Hence, S is integral over R∗.

Suppose that S is finitely generated as an R∗-algebra. Then there is a finite
list of such pairs {(pi , qi )}1≤i≤s such that S = R∗

[βp1,q1, . . . , βps ,qs ]. Choose
r > max{pi | 1 ≤ i ≤ s} such that r > 1. Then (r, r +1) is such a pair, so βr,r+1 ∈ S.
Let v = vr,r+1,r2+r+1.

Then for any relatively prime pair (p, q) with p < r , we claim that v(Xq
−Y p)=

min{v(Xq), v(Y p)}. If this were not the case, we would have rq =v(Xq)=v(Y p)=

(r + 1)p, so that (q − p)r = p, contradicting the facts that q − p ≥ 1 and r > p.
Thus, v(Xq

− Y p) = min{rq, (r + 1)p}.
Now choose any (p, q) = (pi , qi ) with 1 ≤ i ≤ s. Let (c, d) be the unique pair

of integers with 0 < c < q , 0 < d < p, and qd = pc + 1. Then

v(βp,q) = v

(
X2q−cY d

Xq − Y p

)
= (2q − c)r + d(r + 1) − min{rq, (r + 1)p}

≥ (2q − c)r + d(r + 1) − rq = (q − c)r + (r + 1)d ≥ 2r + 1.

On the other hand, by the proof of Theorem 5.8, we have v(βr,r+1) = 1.
Let Z1, . . . , Zs be algebraically independent indeterminates over R∗. It follows

that if g ∈ R∗
[Z1, . . . , Zs] such that βr,r+1 = g(βp1,q1, . . . , βps ,qs ), then g has a

nonzero constant term c, and 1 = v(βr,r+1) = v(c). But this contradicts the fact
(see Lemma 5.5) that every element of R∗ has value either 0 or ≥ r under v. Thus,
S is not finitely generated as an R∗-algebra. □

Our main result for dimension 2 shows that the localizations at height-one primes
are surprisingly well behaved. First, though, we need the following lemma.

Lemma 7.2. Let p ∈ Spec Rn and 1 ≤ i ≤ n such that p ⊈ qi , where qi is as in
Lemma 4.3. Then 1/X i ∈ p.

The qi are mutually incomparable, and for each i , 1/X j ∈ qi for each j ̸= i .
If n = 2, then any nonzero prime distinct from q1 and q2 contains (1/X1, 1/X2)R.

Hence with the notation of Lemma 3.6, p1 = q2 and p2 = q1.

Proof. By Lemma 4.3, any prime ideal avoiding X−1
i must be contained in qi . Thus

1/X i ∈ p.
Now let i and j be distinct integers between 1 and n. Combining Lemmas

4.1 and 4.3 and Theorem 4.4 yields ht qi = ht q j = n − 1. Thus, qi and q j must be
incomparable. Since qi ⊈ q j , we have X j ∈ qi by the first paragraph.
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In the n = 2 case, by Theorem 4.4 we have that any nonmaximal nonzero
prime has height one. In particular, if p is distinct from q1 and q2, then since
ht p= 1 = ht q1 = ht q2, we have p⊈ qi for i = 1, 2. Since 1/X i ∈ pi \qi for i = 1, 2,
the final claim follows. □

Theorem 7.3. Let p be a height-one prime ideal of R = R2 . Then Rp is a Noetherian
one-dimensional local domain.

Proof. By Lemma 3.6, we may assume p ̸= p1, p2. We work in R∗ and use
the notation D = K [X, Y ] and R∗

= σ(D). Since p is not maximal there must
exist f ∈ (X, Y )D irreducible and not associate to either X or Y in D, such
that α := σ(1/ f ∗) ̸∈ p. As neither α nor α−1 are in S = D(X,Y ) it follows from
[Seidenberg 1953, Theorem 7] that S[α] is a two-dimensional Noetherian ring
having a height-one prime ideal q generated by X and Y . Hence S[α]q = D[α](X,Y )

is a one-dimensional local Noetherian domain.
Moreover, since S ⊆ R∗, we get S[α] ⊆ R∗. Let us show that p∩ S[α] = q. By

Lemma 7.2, X, Y ∈ p, so that q ⊆ p∩ S[α]. For the reverse containment, it will
be enough to show that p∩ S[α] is a height-one prime, for which it will suffice to
show it is not a maximal ideal.

Every maximal ideal of S[α] that contains q is of the form (q, h(α)) where
h ∈ K [T ] is an irreducible monic polynomial. This is because by [Seidenberg 1953,
Theorem 7], we have S[α]/q ∼= K [T ], where T is an indeterminate over K and
22α 7→ T in the isomorphism. We know that α ̸∈ p. If h(T ) ̸= T , then it has a
nonzero constant term, so by Theorem 3.3, h(α) is a unit in R∗, whence h(α) ̸∈ p.
On the other hand, α ̸∈ p by assumption.

Thus p∩S[α]=q, so that S[α]q⊆ R∗
p . By the Krull–Akizuki theorem [Matsumura

1986, Theorem 11.7], R∗
p is Noetherian, finishing the proof. □

Remark 7.4. Suppose, in the setting of Theorem 7.3, that there exists f ∈ (X, Y )D\

(X, Y )2 D such that 1/ f ∗
̸∈ p. Then Rp is not merely one-dimensional and Noether-

ian, but a DVR.
To see this, and continuing the notation in the proof above, let Z be an in-

determinate over D and let π : K [X, Y, Z ] → D[α] be the unique K -algebra
homomorphism that fixes D and sends Z 7→ α. Note that π is surjective. Since
D[α] has dimension 2, the kernel of π is a height-one prime of K [X, Y, Z ]. It is
clear that the polynomial h = f Z − Xa1( f )Y a2( f ) is irreducible in K [X, Y, Z ] and
contained in the kernel of π . It follows that

D[α] ∼=
K [X, Y, Z ]

(h)
.

The ring

S[α]q
∼=

( K [X, Y, Z ]

(h)

)
(X,Y )
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is a DVR if and only if h is a regular parameter in K [X, Y, Z ](X,Y ). This happens
if and only if f ∈ (X, Y )D \ (X, Y )2 D. In case S[α]q is a DVR, we clearly have
S[α]q = R∗

p since a DVR has no proper overring other than its fraction field.

Next we show a “cofinite character” result that is somewhat dual to the finite
character property of Krull domains.

Theorem 7.5. Every finitely generated proper ideal of R = R2 is contained in all
but finitely many prime ideals.

Proof. Every nonunit element ϕ ∈ R∗ can be written as a finite sum ϕ =ϕ1+· · ·+ϕt

such that any ϕ j is a finite product of elements of the form σ(1/ f ) with f irreducible
in K [X, Y ]. Thus it is sufficient to prove that any σ(1/ f ) with f irreducible is
contained in all but finitely many primes of R∗. Since we already know this fact
for X and Y by Lemma 3.7, we can assume f is not an associate of X nor Y .
Set α = σ(1/ f ). We know that α is in the maximal ideal of R∗. By the proof of
Theorem 7.3, we get that if a prime p of R∗ does not contain α, then R∗

p contains
the one-dimensional Noetherian local domain D[α](X,Y ). Suppose there exist two
distinct nonzero prime ideals p and q of R∗ with α ̸∈ p∪q. Necessarily p and q have
height one. We show that R∗

p and R∗
q cannot be contained in a common valuation

overring. Suppose by way of contradiction that R∗
p ∪ R∗

q ⊆ V for some valuation
ring V contained in K (X, Y ). Then V is an overring of D[α](X,Y ), hence a DVR.
Since R∗

p and R∗
q are one-dimensional, the maximal ideal mV of V contains both the

maximal ideals of R∗
p and R∗

q . Therefore the intersection R∗
p ∩ R∗

q is local. For this
observe that given two nonunits β, θ ∈ R∗

p ∩ R∗
q , we have β, θ ∈ pR∗

p ∪ qR∗
q ⊆ mV

and hence their sum β + θ ∈ mV ∩ R∗
p ∩ R∗

q ⊆ pR∗
p ∩ qR∗

q is a nonunit in R∗
p ∩ R∗

q .
Moreover, we have R∗

⊆ R∗
p∩ R∗

q ⊆ R∗
p . Because α−1

∈ (R∗
p∩ R∗

q)\ R∗, the maximal
ideal of R∗

p ∩ R∗
q must contract to a nonzero prime ideal of R∗ not containing α.

But any such ideal has height one, so that R∗
p ∩ R∗

q contains the localization of R∗

at some height-one prime. This is a contradiction since two localizations at distinct
height-one primes cannot be comparable with respect to inclusion. Hence, R∗

p

and R∗
q cannot have a common valuation overring.

Suppose there are infinitely many distinct primes of R∗ not containing α. Then
the above implies that D[α](X,Y ) has infinitely many valuation overrings, but it is
clearly a contradiction since D[α](X,Y ) is local, Noetherian and one-dimensional. □

Recall that in a domain S, with fraction field F , for any S-submodule I of F we
can write I −1

:= {x ∈ F | x I ⊆ S}. Then for any ideal I of S, we set Iv := (I −1)−1

and It :=
⋃

{Jv | J ⊆ I and J is finitely generated}. A t-ideal is then an ideal I
such that I = It . If there is a unique maximal element among the proper t-ideals
of S, we say S is t-local. See [Fontana and Zafrullah 2019].

Corollary 7.6. The ring R = R2 is t-local.
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Proof. In fact the unique maximal ideal m of R is a t-ideal. To see this, let I be a
finitely generated proper ideal of R. Then by Theorem 7.5, I is contained in some
height-one prime ideal p. But p is a t-ideal by [Elliott 2019, top of p. 23]. Hence,
It ⊆ pt = p ⊂ m. Thus, mt = m. □

8. Questions

The study of reciprocal complements is an entirely new field of inquiry. There are
many interesting questions one could ask about this particular R, or about reciprocal
complements in general. The following are just some questions that occurred to
these authors, but such questions are easy to generate. As seen below, some of these
questions have had progress on them since they were first proposed in an earlier
draft of this paper.

Question 1. What can be said about the integral closure of R, where R is the
reciprocal complement of a polynomial ring in two or more variables over a field?
In particular:

(a) Is the integral closure of R infinitely generated over R? (We can’t conclude
this from Proposition 7.1 since R is not a Noetherian ring, so finitely generated
R-modules can have infinitely generated submodules.)

(b) Is the integral closure of R local? If not, is it at least semilocal?

(c) Is the integral closure of R completely integrally closed?

Question 2. Let R be the reciprocal complement of a polynomial ring in finitely
many variables over a field. Is R a strong Bézout intersection domain (SBID) (see
[Guerrieri and Loper 2021])? That is, is it true that every finite intersection of
non-comparable principal ideals fails to be finitely generated?

Some positive evidence is given by Theorem 5.6, and also by Corollary 7.6, since
any SBID is t-local.

Question 3. Let D be a Noetherian domain. Is R(D) a G-domain?

For some evidence of this, see Proposition 2.9. More generally, by [Guerrieri
2025, Theorem 2.12], the above holds whenever dim R(D) < ∞.

Question 4. Let D be an integral domain of dimension ≥ 2. Assume that any
nonzero Egyptian element of D is a unit. Must R(D) be non-Noetherian?

We have seen in Corollary 5.7 that D = Dn is an example of the above phenom-
enon when n ≥ 2. More generally, by [Guerrieri 2025, Corollary 2.9], the answer
is yes whenever dim R(D) ≥ 2.

Question 5. For any integral domain D, must we have dim R(D) ≤ dim(D)?
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Note that there is no hope for equality in the above, as we have for D = Dn

by Theorem 4.4. Indeed, the quantity ϕ(D) := dim(D) − dim R(D) can be any
nonnegative value ω, by letting A be a Jaffard (e.g., Noetherian) Egyptian domain
of dimension ω and D = A[X1, . . . , Xd ]; then by Proposition 2.2 and Theorem 4.4,
dim R(D) = d , but dim D = d +dim A, so ϕ(D) = dim A = ω. Moreover, one can
make A have any dimension ω by letting G = Z⊕ω and A = K [G] for any field K ,
which is Egyptian by [Guerrieri et al. 2024, Proposition 3].

By [Guerrieri 2025, Theorem 5.5], for any nonnegative integer c, one can
construct integral domains D all of whose Egyptian elements are units, such that
ϕ(D) = c.

The above question has a positive answer when D is finitely generated over a
field or falls into certain classes of semigroup algebras [Guerrieri 2025, Theorem
3.2, Remark 4.11].

Question 6. Let D be a Noetherian integral domain with dim D = n ≥ 2. Are there
infinitely many prime ideals of R(D) of height i for each 1 ≤ i ≤ n − 1?

We see an example of this phenomenon when D = Dn by Theorem 6.6. If D
is not restricted to be Noetherian, however, there are counterexamples [Guerrieri
2025, Theorem 4.2].
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ON A-PACKETS CONTAINING UNITARY
LOWEST-WEIGHT REPRESENTATIONS OF U( p, q)

SHUJI HORINAGA

We determine all the Arthur packets containing an irreducible unitary lowest-
weight representation π of a real unitary group G = U( p, q), including
nonscalar cases. Our methods are the Barbasch–Vogan parametrization of
representations of G and Trapa’s algorithm to calculate the cohomological
inductions. In particular, we show that an Arthur packet has at most one
irreducible unitary lowest-weight representation of G. As a consequence,
if an irreducible unitary lowest-weight representation π exists in the Arthur
packet of ψ , we give an explicit formula for the lowest K -type of π .

1. Introduction

One of the fundamental problems in number theory is to investigate arithmetic
properties of holomorphic cusp forms on Hermitian symmetric spaces and the
geometry of Shimura varieties. For instance, in the case of Siegel modular forms,
the detailed analysis of Fourier coefficients and zeta integrals leads to arithmeticity
of standard L-values and the cohomology of Siegel modular varieties. In contrast,
holomorphic cusp forms associated with unitary groups remain less understood
despite their importance.

Recently, there has been significant progress in Arthur’s endoscopic classification
of automorphic representations on classical groups, and now it is possible to study
the automorphic forms systematically. When we try to apply these advances to
the study of holomorphic cusp forms on Hermitian symmetric spaces, we face
problems in the local representation theory. A key local question is how to classify
the local Arthur packets containing a given unitary lowest-weight representation.
In this paper, we completely determine the local Arthur packets containing a given
unitary lowest-weight representation for unitary groups using the Barbasch–Vogan
parametrization of irreducible admissible representations.

To state the main theorem, we recall lowest-weight representations and Mœglin
and Renard’s description of Arthur packets. Let G =U (p, q) with N = p+q and K
be the maximal compact subgroup of G. With the usual choice of positive roots, the
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highest weights of irreducible representations of K are (λ1, . . . ,λp,λp+1, . . . ,λN )∈ZN

satisfying
λ1 ≥ · · · ≥ λp, λp+1 ≥ · · · ≥ λN .

We denote by λ the irreducible representation of K with highest-weight λ for
short. For each irreducible representation λ of K , there exists a unique irreducible
lowest-weight representation πλ with the lowest K -type λ. For an irreducible
representation π , let χπ be the infinitesimal character of π .

Let us recall the Arthur classification for G. The Arthur classification associates
the A-parameters ψ with a finite set 5(ψ), called the Arthur packet (or A-packet)
for ψ , consisting of unitary representations of finite length of G. The A-parameters
are equivalence classes of N -dimensional representations of C×

× SL2(C) with
suitable properties. The A-packet satisfies several properties that can be easily inves-
tigated by ψ . For example, all the representations in 5(ψ) have the same infinitesi-
mal characters χψ , and their Harish-Chandra parameter is given by the exponents in
the representation C×

→ GLN (C) defined by z 7→ ψ
(
z, diag((z/z̄)1/2, (z/z̄)−1/2)

)
.

When the corresponding Harish-Chandra parameter for ψ is integral, the parame-
ter ψ is called good or good parity. The good A-parameters ψ of G can be viewed
as a formal sum

ψ =

r⊕
i=1
χti ⊗ Sai

such that
∑

i ai = N , Sm is the m-dimensional irreducible representation of SL2(C)

and ti + ai + N ∈ 2Z, where χt is the character of C× defined by χt(z)= zt/2 z̄−t/2.
Suppose ti ≥ ti+1 and ai ≥ ai+1 if ti = ti+1. Put

D(ψ)=

{
(pi , qi ) ∈ (Z≥0 × Z≥0)

r
| pi + qi = ai ,

r∑
i=1

pi = p,
r∑

i=1
qi = q

}
.

For each d ∈D(ψ), we will attach a cohomological induction Ad(ψ)= Aq(xd )(µd);
see (4-3). By [Mœglin and Renard 2019, Théorème 1.1], the A-packet 5(ψ) is
equal to the set

5(ψ)= {Ad(ψ) | d ∈ D(ψ)}.

For a good A-parameter ψ =
⊕r

i=1 χti ⊗ Sai , let j = j (ψ) be the minimal
number i so that

∑i
ℓ=1 aℓ ≥ p. Put a<i =

∑
ℓ<i aℓ and a>i =

∑
ℓ>i aℓ. Define

d0 ∈ D(ψ) by

d0 = d0(ψ)= {(a1, 0), . . . , (a j−1, 0), (p j , q j ), (0, a j+1), . . . , (0, ar )}

where p j = p−a< j , q j =q−a> j . Let νi be the segment
[ 1

2(ti −ai +1), 1
2(ti +ai −1)

]
and

ν<i =
⊔
k<i
νk, ν>i =

⊔
i<k
νk .
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Here, we consider the union as multisets. The multisets ν≤i and ν≥i are defined
similarly.

For an irreducible representation λ= (λ1, . . . , λN ) of K , put

p′
= p′(λ)=#{i |λp =λi , 1≤ i ≤ p}, q ′

=q ′(λ)=#{i |λi =λp+1, p+1≤ i ≤ N }.

Set

P = P(λ)=
{
λp −

1
2(N − 1), λp−1 −

1
2(N − 1)+ 1 . . . , λ1 +

1
2(p − q − 1)

}
,

Q = Q(λ)=
{
λN +

1
2(p − q + 1), λN−1 +

1
2(p − q + 3), . . . , λp+1 +

1
2(N − 1)

}
.

The multiset P ⊔ Q can be identified with the infinitesimal character of the lowest-
weight representation πλ. We define the segments P ′ and Q′ by

P ′
=

[
λp −

1
2(N − 1), λp −

1
2(N + 1)+ p′

]
,

Q′
=

[
λp+1 +

1
2(N + 1)− q ′, λp+1 +

1
2(N − 1)

]
.

Put I = P ′
∩ Q′.

Lemma 1.1 (Lemma 4.6). Let ψ =
⊕r

i=1 χti ,s ⊗ Sai be an A-parameter. If 5(ψ)
contains an irreducible lowest-weight representation π , the parameter ψ is good
and χψ = χπ . Moreover, if Ad(ψ) ∈ 5(ψ) is nonzero and lowest weight, there
exists j such that qi = 0 for any i < j and pℓ = 0 for any ℓ > j , i.e., d = d0.

As a consequence of this lemma, there exists at most one unitary lowest-weight
representation in 5(ψ). We now state the main theorem of the present paper.

Theorem 1.2 (Theorem 4.7). Let λ= (λ1, . . . , λN ) be an irreducible representation
of K and πλ be the irreducible lowest-weight representation with lowest K -type λ.
Suppose that ψ is a good A-parameter such that χψ = χπλ and Ad0(ψ) is nonzero.

(1) If N − p′
≤ λp − λp+1 < N − q ′, the packet 5(ψ) contains πλ if and only if[

λp −
1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ P ′.

(2) If N − q ′
≤ λp − λp+1 < N − p′, the packet 5(ψ) contains πλ if and only

if either

• ν≤ j = P , or

•

[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ Q′.

(3) If N − p′, N −q ′
≤ λp −λp+1, the packet5(ψ) contains πλ if and only if either

• P ⊂ ν≤ j ⊂ P ⊔ I , or

• I ⊂ ν j ⊂ Q′.

(4) If λp − λp+1 < N − p′, N − q ′, the packet 5(ψ) contains πλ if and only if[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
= ν j .
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Conversely, we have the following:

Theorem 1.3 (Corollary 4.8). Let ψ =
⊕r

i=1 χti ⊗ Sai be a good A-parameter. The
packet 5(ψ) contains a nonzero unitary lowest-weight representation if and only
if both

• ν< j and ν> j are multiplicity free, and

• #(ν j ∩ ν> j )≤ p j and #(ν j ∩ ν< j )≤ q j .

When 5(ψ) contains a nonzero unitary lowest-weight representation π in 5(ψ),
the lowest K -type λ of π is given as follows:

(1) When q j = 0, the lowest K -type λ of π satisfies P(λ)= ν≤ j and Q(λ)= ν> j .

(2) When p j = #(ν j ∩ ν> j ) and q j ̸= 0, the lowest K -type λ of π satisfies
P(λ)= ν< j ⊔ (ν j ∩ ν> j ) and Q(λ)= ν≥ j \ (ν j ∩ ν> j ).

(3) When q j = #(ν j ∩ ν< j ) ̸= 0, the lowest K -type λ of π satisfies

P(λ)= ν≤ j \ (ν< j ∩ ν j ) and Q(λ)= (ν j ∩ ν< j )⊔ ν> j .

(4) When p j ̸=#(ν j ∩ν> j ) and q j ̸=#(ν j ∩ν< j ), put ν< j ⊔ν> j ={σ1, . . . , σN−#(ν j )}.
Let i0 be the minimal integer such that

1 ≤ i0 ≤ N − #(ν j ) and #(ν j )− i0 + 1 + #{x ∈ ν< j ⊔ ν> j | x > ν j,i0} = p.

Then, the lowest K -type λ= (λ1, . . . , λN ) of π is given by

λi =


σi −

1
2(p − q + 1)+ i if i < p − #(ν j )+ i0,

ν j,1 +
1
2(N + 1)− #(ν j ) if p − #(ν j )+ i0 ≤ i ≤ p,

ν j,1 −
1
2(N − 1) if p+1 ≤ i ≤ p + i0 − 1,

σi−#(ν j ) −
1
2(N + 1)− p + i if p + i0 ≤ i .

To conclude the introduction, we give some remarks and one application of the
present paper. In the proof of the main theorem, we do not calculate the K -types
of cohomological inductions except for special cases. Our proof is based on the
Barbasch–Vogan parametrization of representations of G. This parametrization
says that for any irreducible representation π , the map π 7→ (Ann(π),AS(π)) is
injective, where Ann(π) is the annihilator and AS(π) is the asymptotic support.
The invariants Ann(π) and AS(π) can be described as certain tableaux in our case.
Trapa [2001] gave an algorithm to compute such invariants for cohomological
inductions Aq(µ). We calculate the tableaux and investigate the conditions where
the cohomological inductions Aq(µ) are isomorphic to a given πλ. When G is
not a unitary group, the problem becomes complicated, and there are at least two
difficulties that do not occur in the unitary group case: one, the description of
unipotent A-parameters and two, the reducibility of Aq(µ) in the weakly fair range.

Finally, the results of this paper have been applied to the birational geometry of
Shimura varieties of U (1, n) in [Horinaga et al. 2025]. In the study of the Kodaira
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dimension of Shimura varieties, it is crucial to show that the existence of low-weight
cusp forms, i.e., cusp forms whose weights are less than that of the discrete series.
The method is based on Arthur’s multiplicity formula, and the result in the present
paper plays a vital role.

2. Unitary groups and representations

Here, we review definitions of unitary groups and representations. We also recall the
Barbasch–Vogan parametrization of the representations, which is key to our study.

2.1. Tableau notation. By a segment, we mean a set of the form {a, a+1, . . . , a+n},
say [a, a+n], for a real number a and n ∈Z≥0. In this paper, the segments are always
regarded as multisets, that is, sets with multiplicities. For segments ν1 = [a, b] and
ν2 = [c, d], we say that ν1 and ν2 are linked (resp. ν1 ≤ ν2) if either c = b + 1 or
a = d + 1 (resp. a ≤ c and b ≤ d) holds.

For a partition n = n1 + · · ·+ nℓ with n1 ≥ · · · ≥ nℓ, we have a diagram with ni

boxes in the i-th row. This diagram is called a Young diagram of size n =n1+· · ·+nℓ.
If ν = (ν1, . . . , νn) is an n-tuple of real numbers, a ν-quasitableau is defined as
a tableau such that the shape is a Young diagram of size n and the entries are an
arrangement of ν1, . . . , νn . For a ν-quasitableau T , we say that T is ν-antitableau
if entries strictly decrease down along each column and weakly decrease along each
row. This definition is the same as the definition of the semistandard tableau by
replacing “decreasing” with “increasing.”

We define a (p, q)-signed tableau as an equivalence class of Young diagrams
whose boxes are p plus boxes and q minus boxes so that the signs alternate across
the row. Here, we say that two signed tableaux are equivalent if the signatures (p, q)
are the same and coincide by interchanging rows of the same length. For a tableau T
with entries, we say that the (a, b)-th entry of T is the entry in the a-th row and the
b-th column.

The definitions above are those in the previous works [Huang 2025; Chengyu
2025; Trapa 2001] on the nonvanishing of cohomological inductions. See these
references for examples of tableaux.

2.2. Unitary groups. For a Lie group H , we denote by h (resp. hC) the Lie algebra
of H (resp. complexification of h) and by U(hC) the universal enveloping algebra
of hC. Fix a positive integer N with a partition N = p +q and p, q ≥ 0. We define
the unitary group G = U (p, q) by

G = U (p, q)= {g ∈ GLN (C) |
tḡ Ip,q g = Ip,q}, Ip,q =

(
1p

−1q

)
.

Here, ḡ is the complex conjugate of g. For a Cartan involution θ :g 7→Ad(Ip,q)(
tḡ−1),

let K be the group of the fixed points of θ . Then, K is a maximal compact subgroup



300 SHUJI HORINAGA

of G, which is isomorphic to U (p)× U (q). The Cartan involution θ induces an
involution θ on g and a decomposition

g = k⊕ p, gC = kC ⊕ p+ ⊕ p−.

Here, p is the (−1)-eigenspace of θ on g, and p+ (resp. p−) corresponds to the
holomorphic (resp. antiholomorphic) tangent space of a Hermitian symmetric
space G/K . Let T be the diagonal subgroup of G. Then, T is a Cartan subgroup
of G and K . Define ei ∈ t∗

C
by ei (diag(t1, . . . , tN )) = ti . We regard t∗

C
as CN by

the basis {e1, . . . , eN }. Then, the root system △ of gC with respect to tC is equal to

△ = {±(ei − e j ) | 1 ≤ i < j ≤ N }.

We choose a positive system △
+ as

△
+

= {ei − e j | 1 ≤ i < j ≤ N }.

Let △c (resp. △n) be the compact (resp. noncompact) root system with the positive
system △

+
c = △c ∩ △

+ (resp. △
+
n = △n ∩ △

+), explicitly,

△c = {±(ei − e j ) | 1 ≤ i < j ≤ p or p + 1 ≤ i < j ≤ N }

and
△n = {±(ei − e j ) | 1 ≤ i ≤ p < j ≤ N }.

Then, the root system of p+ associated with tC is △
+
n . Let b be the Borel subalgebra

of gC associated with △
+ and b− be the opposite of b. For a Lie subalgebra u

of gC stable under the adjoint action of tC, let ρ(u) be half the sum of roots in u.
Put ρ = ρ(b).

For λ= (λ1, . . . , λN ) ∈ ZN with λ1 ≥ · · · ≥ λp and λp+1 ≥ · · · ≥ λN , let F(λ)
be an irreducible representation of K with the highest-weight λ. We often write
F(λ) as λ, for short. The restriction of an admissible (g, K )-module π to K is
decomposed as a direct sum

π |K =

⊕
λ

F(λ)⊕mπ (λ), mπ (λ) ∈ Z≥0,

where λ runs over all △+
c -dominant integral weights. The nonnegative integer mπ (λ)

is the multiplicity of F(λ) in π . By a K -type of π , we mean F(λ) with mπ (λ) ̸= 0.
The restriction of π to Z(gC) defines a character χπ of Z(gC). The character χπ

is called the infinitesimal character of π . By the Harish-Chandra isomorphism,
infinitesimal characters are parametrized by t∗

C
/W , where W = W (G; T ) is the Weyl

group of G for T . For λ∈ t∗
C
/W , let χλ (or λ for short) be the corresponding charac-

ter of Z(gC). We say that an infinitesimal character ν is integral if ν is in the image
of ZN

+ ρ. In this paper, we regard integral infinitesimal characters as multisets
with N -elements or an element (x1, . . . , xN ) in ZN

+
1
2(N −1) with x1 ≥ · · · ≥ xN .



A-PACKETS CONTAINING LOWEST-WEIGHT REPRESENTATIONS OF U (p, q) 301

2.3. Unitary lowest-weight representations. For a (g, K )-module π , we say that
π is lowest-weight if there exists v ∈ π such that v generates π and v is annihilated
by b−. Let λ = (λ1, . . . , λN ) ∈ ZN

⊂ t∗
C

be a △
+
c -dominant integral weight. We

regard the irreducible representation F(λ) of K as an irreducible p− ⊕ kC module
by letting p− act trivially. Set

N (λ)= U(gC)⊗U(p−⊕kC) F(λ).

The module N (λ) is called the parabolic Verma module and has the unique ir-
reducible quotient L(λ) by [Humphreys 2008, §9.4]. By [Enright et al. 1983,
Theorem 2.4] the module L(λ) is unitarizable if λp − λp+1 ≥ N − p′

− q ′ where
p′

= p′(λ)= #{i | λi = λp, i ≤ p} and q ′
= q ′(λ)= #{i | λi = λp+1, p+1 ≤ i ≤ N }.

In particular, L(λ) is a discrete series representation if λp − λp+1 > N − 1, and is
limits of discrete series if λp−λp+1 = N−1. The infinitesimal character of πλ equals(
λ1 +

1
2(p−q −1), . . . , λp −

1
2(N −1), λp+1 +

1
2(N −1), . . . , λN +

1
2(p−q +1)

)
.

Note that the infinitesimal character χπλ is integral by λ ∈ ZN .

2.4. Barbasch–Vogan parametrization of representations of G. For the details
of this subsection, we refer to [Trapa 2001, §4,5; Barbasch and Vogan 1983].
We introduce two invariants Ann(π) and AS(π) associated to (g, K )-modules π .
For a (g, K )-module π , let Ann(π) be the annihilator of π in U(gC). When π
is irreducible, the ideal Ann(π) is called a primitive ideal. Primitive ideals for
an irreducible representation with infinitesimal character ν are parametrized by
ν-antitableau. The asymptotic support AS(π) is defined via the local behavior of
the character of π . By definition, AS(π) is a union of nilpotent orbits of gC.

Theorem 2.1 [Barbasch and Vogan 1983, Theorem 4.2; Trapa 2001, Theorem 6.1].
For irreducible (g, K )-modules π and π ′ with integral infinitesimal characters, the
representation π is isomorphic to π ′ if and only if

(Ann(π),AS(π))= (Ann(π ′),AS(π ′)).

Trapa and Vogan [Trapa 2001, Conjecture 1.1] conjectured that the cohomological
inductions in the weakly fair range exhaust the unitary (g, K )-modules with integral
infinitesimal characters. As far as the author knows, the conjecture has been proven
only for specific cases such as U (n, 1) and U (n, 2) (see [Wong and Zhang 2024]
for details).

3. Cohomological inductions

In this section, we introduce the cohomological inductions Aq(µ), recall their basic
properties, review Trapa’s algorithm to determine the tableaux for Aq(µ), and state
a nonvanishing criterion for certain Aq(µ).
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3.1. θ -stable parabolic subalgebras and cohomological induction. Take x∈
√

−1k.
Since the action ad(x) on gC is diagonalizable with real eigenvalues, we define the
subalgebras of gC by

q = q(x)= sum of root vectors with nonnegative eigenvalues,

u = u(x)= sum of root vectors with positive eigenvalues,

l = l(x)= sum of root vectors with zero eigenvalues.

We call parabolic subalgebras q of gC obtained in the above way θ -stable parabolic
subalgebras of gC. By a conjugate of an element in K , we may assume x ∈

√
−1 t.

For µ ∈ t∗
C

, let Cµ denote the character of l with Cµ|tC = µ, if it exists. We then
obtain the cohomological induction Aq(µ) by the induction of Cµ as in [Knapp and
Vogan 1995, (5.6)].

For G=U (p, q), θ -stable parabolic subalgebras q(x) arise from d={(pi , qi )1≤i≤r }

and an element xd in
√

−1 t ∼= RN of the form

(3-1) xd = (x1, . . . , x1︸ ︷︷ ︸
p1

, . . . , xr , . . . , xr︸ ︷︷ ︸
pr

, x1, . . . , x1︸ ︷︷ ︸
q1

, . . . , xr , . . . , xr︸ ︷︷ ︸
qr

), x1 > · · ·> xr ,

such that (pi , qi ) ∈ (Z≥0)
2 with (pi , qi ) ̸= (0, 0) for any i and p1 + · · · + pr = p,

q1 +· · ·+qr = q . Set qd = q(xd). The centralizer CG(qd) is a connected reductive
group Ld isomorphic to

Ld ∼= U (p1, q1)× · · · × U (pr , qr )

such that ld = l(xd)C = Lie(Ld)⊗ C. Note that our choice of qd or the hermitian
form Ip,q is different from that of [Mœglin and Renard 2019; Trapa 2001; Vogan
1997], but the same as [Ichino 2022]. We say that a θ -stable parabolic subalgebra q

is holomorphic if there exists j such that qi = 0 for any i < j and pℓ = 0 for
any ℓ > j , in other words, u∩ pC ⊂ p+. The choices for a holomorphic θ-stable
parabolic subalgebra are the same as [Trapa 2001; Vogan 1997].

3.2. Properties of Aq(µ). Here, we review the basic properties of Aq(µ). Let
d = {(pi , qi )1≤i≤r } be a set of pairs of nonnegative integers with (pi , qi ) ̸= 0,∑

i pi = p, and
∑

i qi = q . Take µ ∈ ZN such that

µ= (µ1, . . . , µ1︸ ︷︷ ︸
a1

, . . . , µr , . . . , µr︸ ︷︷ ︸
ar

), ai = pi + qi .

We define the segments νi associated with d and µ by

(3-2) νi = νi (d, µ)=
[
µi +

1
2(N + 1)− a≤i , µi +

1
2(N − 1)− a<i

]
.

Here, a<i =
∑

ℓ<i aℓ and a≤i =
∑

ℓ≤i aℓ. We denote the cohomological induc-
tion Aqd (µ) by A(qd , ν1, . . . , νr ) = A(d, ν1, . . . , νr ) for short. We say that the
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cohomological induction Aqd (µ) is in the weakly fair range (resp. mediocre range)
if µi −µi+1 ≥ −

1
2(ai +ai+1) for any i (resp. µi −µ j ≥ −max{ai , a j }−

∑
i<k< j ak

for any i < j). We also say that ν = µ+ ρ =
⊔

i νi is in the weakly fair range
(resp. mediocre range) if Aqd (µ) is so.

The cohomological induction Aqd (µ) is in the weakly fair range (resp. mediocre
range) if and only if the mean value in νi is greater than or equal to the mean value
in νi+1 (resp. νi ̸≥ ν j for any i < j ) by the explicit calculation (see [Chengyu 2025,
Lemma 2.4]).

The following statements are well known (for example, see [Knapp and Vogan
1995; Adams 1987, Lemma 4.2; Huang and Pandžić 2006, Theorem 6.4.4; Trapa
2001, Theorem 3.1 (iv)]):

• In the weakly fair range, Aq(µ) is unitarizable. Moreover, it is zero or irreducible
for G = U (p, q).

• For Aq(µ) in the mediocre range,

dim HomK (F(λ), Aq(µ))=
∑
w∈W 1

sgn(w)Pu∩pC

(
w(λ+ρc)− (µ+2ρ(u∩p)+ρc)

)
holds. Here, W 1 is the subgroup of the Weyl group of K with respect to T consisting
of w for which α ∈ △

+
c , w

−1α < 0 implies α ∈ △(u∩pC), and Pu∩pC
is the partition

function with respect to u∩ pC, i.e., Pu∩pC
(x) is the multiplicity of weight x in the

symmetric algebra S(u∩ pC)
l∩k∩n.

• If µ+2ρ(u∩pC) is △
+
c -dominant, µ+2ρ(u∩pC) occurs in Aq(µ) and K -types

in Aq(µ) are of the form

(3-3) µ+ 2ρ(u∩ pC)+
∑

α∈△(u∩pC)

nαα, nα ≥ 0.

Calculating the K -type formula directly seems complicated, even when q is a
holomorphic θ-stable parabolic subalgebra. To avoid such complexity, we will
calculate the tableaux described below instead.

3.3. Tableaux associated with Aq(µ). Let π be a cohomological induction in
the weakly fair range. We associate two invariants Ann(π) and AS(π) to π in
Section 2.4. The annihilator Ann(π) can be regarded as a ν-antitableau, but AS(π)
is a union of unipotent orbits. If π is isomorphic to a cohomological induction Aq(µ)

in the weakly fair range, the asymptotic support AS(π) is a single unipotent orbit by
[Trapa 2001, Proposition 5.4]. Indeed, for Aq(µ) in the good range, its asymptotic
support is a single unipotent orbit. Since we can obtain π as a translation of
cohomological inductions in the good range, one can show that the asymptotic
supports coincide. Hence, AS(Aq(µ)) is a single unipotent orbit. Thus, we may
associate a ν-antitableau and a (p, q)-signed tableau for a cohomological induction
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in the weakly fair range by [Collingwood and McGovern 1993, Theorem 9.3.3].
The examples of tableaux associated with Aq(µ) are available in [Huang 2025;
Chengyu 2025; Trapa 2001].

In the following, we associate tableaux for Aq(µ). Let q be the θ -stable parabolic
subalgebra corresponding to {(pi , qi )1≤i≤r } andµ be a △

+
c -dominant integral weight

such that Aq(µ) is in the mediocre range. We first construct the (p, q)-signed tableau
inductively. Let S1 be the Young diagram of size 1 + · · · + 1 with p1 + q1 boxes
filled with p1 plus boxes and q1 minus boxes. Suppose that the

(∑
i<k pi ,

∑
i<k qi

)
-

signed tableau
⊔

i<k Si for k ≤ r is defined. We then construct the signed tableau⊔
i≤k Si by adding pk boxes filled with + and qk boxes filled with −, from top to

bottom, to each row-ends of
⊔

i<k Si such that

• at most one box is added in each row-end, and
• the signs in

⊔
i≤k Si are alternating across the row.

Then,
⊔

i≤k Si is defined as a Young diagram with decreasing rows by rearranging
the rows. The resulting tableau S =

⊔
i≤r Si is the asymptotic support of Aq(µ).

We next construct the ν-antitableau. For Aq(µ), the shape of (p, q)-signed
tableau and the ν-antitableau are the same. The shape S of the (p, q)-signed
tableau is partitioned into

⊔
1≤i≤r Si , which is the same as in the definition of the

(p, q)-signed tableau. For each Si , we fill νi,1, . . . , νi,ai from top to bottom, where
νi = νi (d, µ)= {νi,1, . . . , νi,ai } with νi,1 > · · ·> νi,ai . Then, S is a ν-quasitableau.
When the S is a ν-antitableau, let Ann(Aq(µ)) = S, which is possibly equiva-
lent to the formal zero tableau explained below. We introduce the two invariants
overlap(Si , Si+1) and sing(Si , Si+1) associated with cohomological inductions. Set

sing(Si , Si+1)= #(νi ∩ νi+1).

For Si and Si+1 as in the definition of (p, q)-signed tableau S =
⊔

i Si , let m be the
largest integer such that for any i with i ≤ m, the (ai −m + i)-th box of Si is strictly
left to the i-th box of Si+1. If such an integer m does not exist, set m = 0. We then
define overlap(Si , Si+1) by the nonnegative integer m. In the following, we give
an algorithm [Trapa 2001, Procedure 7.5] to obtain a ν-antitableau or the formal
zero tableau from the tableau S. By [Trapa 2001, Theorem 7.9], the cohomological
induction Aq(µ) is zero if and only if the tableau S is equivalent to the formal zero
tableau. More precisely, let S′

=
⊔

i S′

i be the tableau after Trapa’s algorithm. Let ν ′

i
be the segment consisting of the entries of S′

i . The cohomological induction Aq(µ)

is nonzero if and only if the resulting tableau S′
=

⊔
i S′

i satisfies

• νi ≥ νi+1, and
• overlap(S′

i , S′

i+1)≥ sing(S′

i , S′

i+1) for any i .

We give Trapa’s algorithm to transform the tableau to ν-antitableau or the formal
zero tableau. For S =

⊔
i Si , the algorithm is generated by replacing adjacent skew
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columns Si ⊔ Si+1 with S′

i ⊔ S′

i+1. Set R = Si ⊔ Si+1 and R′
= S′

i ⊔ S′

i+1. When R′

is the formal zero tableau, we understand that the tableau S is equivalent to the
formal zero tableau. We review the construction of R′, which is an arrangement
of νi ⊔ νi+1 with the shape R.

(1) If overlap(Si , Si+1) = sing(Si , Si+1) < min{ai , ai+1} or overlap(Si , Si+1) >

sing(Si , Si+1), set R′
= R. Here, ai = #(νi ).

(2) If overlap(Si , Si+1) < sing(Si , Si+1), then R′ is the formal zero tableau.

(3) Assume overlap(Si , Si+1) = sing(Si , Si+1) = ai+1. In this case, νi+1 ⊂ νi .
We define R′ by induction on m = νi+1,ai+1 − νi,ai . When m = 0, set R′

= R.
When m > 0, set νi+1(−) = {νi+1,1 − 1, . . . , νi+1,ai+1 − 1}. We define Si+1(−)

by the tableau with the shape Si+1 filled with νi+1(−). Set R(−)= Si ⊔ Si+1(−).
By the induction hypothesis, R(−)′ is defined. Then, in R(−)′, there exists at
most one box B filled with νi+1,1 − 1 and strictly to the right of the unique box
filled with νi+1,1 in R(−)′. If the box B exists, add one to the entry in B. If no
such box exists, add one to the entry in the left-most box filled with νi+1,1 − 1
in R(−)′. We denote the resulting tableau by R(−)′1. Now construct R(−)′2 by
the same procedure applied to R(−)′1, but instead considering the entries νi+1,2

and νi+1,2 − 2. By the same procedure, we get R(−)′ai+1
. Set R′

= R(−)′ai+1
.

(4) Assume overlap(Si , Si+1) = sing(Si , Si+1) = ai . In this case νi ⊂ νi+1. We
define R′ by induction on m = νi+1,1 − νi,1. When m = 0, set R′

= R. When
m > 0, set νi (+) = {νi,1 + 1, . . . , νi,ai + 1}. We define the tableau Si (+) by the
tableau with the shape Si filled with νi (+). Set R(+) = Si (+) ⊔ Si+1. By the
induction hypothesis, R(+)′ is defined. Then, in R(+)′, there exists at most one
box B filled with νi,ai + 1 and strictly to the left of the unique box filled with νi,ai

in R(+)′. If the box B exists, subtract one from the entry in the box B. If no such
box exists, subtract one from the entry in the right-most box filled with νi,ai + 1
in R(+)′. We denote the resulting tableau by R(+)′1. Now construct R(+)′2 by the
same procedure applied to R(+)′1, by the same procedure again, we get R(+)′ai

.
Set R′

= R(+)′ai
.

We still need to consider a partition of the resulting tableau R′ into R′
= S′

i ⊔S′

i+1.
The last box in R′ is the right-most box filled with ν ′

i+1,ai+1
= min{νi,ai , νi+1,ai+1}.

The box next to the last box is the right-most box filled with νi+1,ai+1 + 1. This
procedure stops when the entry of the box reaches min{νk,1, νk+1,1}. Let S′

i be the
tableau of the remaining boxes. We then obtain the partition R′

= S′

i ⊔ S′

i+1.
If interested, the author recommends to calculate examples and check the well-

definedness of the above definition. The explicit formula for the overlap is investi-
gated in [Chengyu 2025, Theorem 3.6; Huang 2025, Lemma 5.4]. For the explicit
description of entries in the tableau R′, see [Huang 2025, §4.5].
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3.4. Unitary lowest-weight representations as cohomological inductions. In this
subsection, we determine a cohomological induction that is isomorphic to a given
lowest-weight representation πλ. The following is one of the easiest cases in which
to calculate the K -types.

Lemma 3.1. Let qd be a holomorphic θ -stable parabolic subalgebra corresponding
to d = {(pi , qi )i } such that pi qi = 0 for any i and π = Aqd (µ) be a cohomological
induction in the mediocre range. Put j = max{i | qi = 0}. Then, π is nonzero if and
only if the multisets ν≤ j and ν> j are multiplicity free. If π is nonzero, then π is a
unitary lowest-weight representation with the lowest K -type

µ+ 2ρ(u∩ pC)= µ+ (q, . . . , q︸ ︷︷ ︸
p

,−p, . . . ,−p︸ ︷︷ ︸
q

).

Moreover, let

σi =

{
µi +

1
2(p − q + 1)− i if 1 ≤ i ≤ p,

µi +
1
2(N + 1)− (i − p) if p + 1 ≤ i ≤ N.

We denote by i0 the maximal positive integer such that σp+min{p,q}+1−i0 ≥ σp+1−i0 ,
if it exists. If there is no such integer, put i0 = 0. Then, the first column of the
tableau Ann(π) consists of

σ1, σ2, . . . , σp−i0, σp+min{p,q}+1−i0, . . . , σp+min{p,q}︸ ︷︷ ︸
i0

, σp+min{p,q}+1, . . . , σN

and the second column consists of

σp+1, . . . , σp+min{p,q}−i0, σp+1−i0, . . . , σp︸ ︷︷ ︸
i0

.

Proof. Before applying the algorithm, the first column of the tableau Ann(π)
consists of

σ1, . . . , σp︸ ︷︷ ︸
p

, σp+min{p,q}+1, . . . , σN︸ ︷︷ ︸
q−min{p,q}

and the second column consists of

σp+1, . . . , σp+min{p,q}

from top to bottom. To apply Trapa’s algorithm, we use the partition AS(π)=
⊔

i Si .
Let νi be the segment defined in (3-2). Then, νi = [σa≤i , σa<i +1] and the tableaux Si

are filled with νi . By the algorithm for the partition
⊔

i≤ j Si and
⊔

i> j Si , the
representation π is zero if ν≤ j or ν> j is not multiplicity free.

Suppose that ν≤ j and ν> j are multiplicity free. By the algorithm, the dia-
gram

⊔
i Si is invariant under the algorithm if ν j ̸⊂ν j+1 and ν j ̸⊃ν j+1. Consider the
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partition S j ⊔S j+1. When ν j ⊃ ν j+1, the tableau S j consists only of the first column
with the entries σp+1−a j , . . . , σp and the tableau S j+1 consists only of the second
column with the entries σp+1, . . . , σp+a j+1 . Hence, the tableau S j ⊔S j+1 is invariant
under the algorithm, but the partition S′

j ⊔ S′

j+1 is different. The tableau S′

j consists
only of the first column with entries σp+1−a j , . . . , σp+a j+1 and the tableau S′

j+1
consists of the remaining boxes. Then, if S′

j+1 has a box in the first column, the
maximal entry is σp+a j+1 − 1. The tableau

(⊔
i≤ j−1 Si

)
⊔ S′

j is invariant under the
algorithm by definition. Since the entry σp+a j+1 − 1 is greater than or equal to the
maximal entry in S j+2, the tableau S′

j+1 ⊔ S j+2 is invariant under the algorithm.
Continuing the same procedure, one obtains the resulting tableau Ann(π). This
shows that i0 = 0 and the representation π is nonzero. The lowest K -type of π is
given as (3-3), since µ+ 2ρ(u∩ pC) is △

+
c -dominant.

When ν j ⊂ ν j+1, we first assume that a j+1 >min{p, q}. By the same procedure
as above, if σp > σp+min{p,q}+1, the tableau S′

j ⊔ S′

j+1 is the same as S j ⊔ S j+1

and i0 = 0. The first column of the tableau S′

j consists of σp+1−a j , . . . , σp and the
second column consists of σp+1, . . . , σp+1−a j + 1. Since ν≤ j is multiplicity free,
we have σp−a j ≥ σp+1−a j . The tableau S j−1 ⊔ S′

j is stable under the algorithm.
Similarly, S′

j+1 ⊔ S j+2 is stable. Hence, the tableau
⊔

i Si is stable under the
algorithm. If σp ≤σp+min{p,q}+1, the first column of the tableau S′

j ⊔S′

j+1 consists of

σp+min{p,q}−a j +1, . . . , σp+min{p,q}︸ ︷︷ ︸
a j

, σp+min{p,q}+1, . . . , σp+a j+1︸ ︷︷ ︸
a j+1−min{p,q}

and the second column consists of

σp+1, . . . , σp+min{p,q}−a j︸ ︷︷ ︸
min{p,q}−a j

, σp+1−a j , . . . , σp︸ ︷︷ ︸
a j

.

The first column of S′

j consists of

σp+min{p,q}+1−a j , . . . , σp

and the second column consists of

σp+1, . . . , σp+min{p,q}−a j .

By the same procedure to the end, the statement follows.
We suppose ν j ⊂ν j+1 and a j+1 ≤min{p, q}. Then, i0 =0. Since ν> j is multiplic-

ity free, σp is greater than or equal to σp+min{p,q}. In this case, the tableau S′

j ⊔ S′

j+1
is the same as S j ⊔ S′

j+1, but the tableau S′

j+1 consists only of the second column
with entries σp + 1, . . . , σp+min{p,q}. By the routine discussion, the tableau

⊔
i Si

is invariant under the algorithm. □
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We explicitly describe πλ in terms of cohomological induction as follows:

Lemma 3.2. Let πλ be a unitary lowest-weight representation with lowest K -type
λ= (λ1, . . . λN ).

(1) When λp − λp+1 < N − p′, N − q ′, let q be the θ -stable parabolic subalgebra
corresponding to{

(1, 0), . . . , (1, 0)︸ ︷︷ ︸
p−p′

, (p′, N − (λp − λp+1)− p′), (0, 1), . . . , (0, 1)︸ ︷︷ ︸
λp−λp+1−p+p′

}
and

µ= (µ1, . . . , µN )

be an element in ZN defined by

µi =


λi − q if i ≤ p − p′,

λp+1 + p − p′ if p − p′ < i ≤ N − (λp − λp+1)− p′,

λi + p if N − (λp − λp+1)− p′ < i .

Then, Aq(µ)∼= πλ.

(2) When min{N − p′, N − q ′
} ≤ λp − λp+1, let q be the θ -stable parabolic subal-

gebra corresponding to

{(1, 0), . . . , (1, 0)︸ ︷︷ ︸
p−p′

, (p′, 0), (0, q ′), (0, 1), . . . , (0, 1)︸ ︷︷ ︸
q−q ′

}

and µ be an element in ZN defined by

µ= (λ1 − q, . . . , λp − q︸ ︷︷ ︸
p

, λp+1 + p, . . . , λN + p︸ ︷︷ ︸
q

).

Then, Aq(µ)∼= πλ.

(3) Let q be the θ -stable parabolic subalgebra corresponding to

{(1, 0), . . . , (1, 0)︸ ︷︷ ︸
p−p′

, (p′, 0), (0, q ′), (0, 1), . . . , (0, 1)︸ ︷︷ ︸
q−q ′

}

and µ be an element in ZN defined by µ= (µ1, . . . , µN ) such that µ1 ≥ · · · ≥ µp,
µp+1 ≥ · · · ≥ µN , µp = µp−1 = · · · = µp−p′+1, and µp+1 = µp+2 = · · · = µp+q ′ .
Suppose that Aq(µ) is in the mediocre range. Then, Aq(µ) is a nonzero lowest-
weight representation and the lowest K -type λ= (λ1, . . . , λN ) of Aq(µ) satisfies

min{N − p′(λ), N − q ′(λ)} ≤ λp − λp+1,

where p′(λ)= #{i | 1 ≤ i ≤ p, λi =λp} and q ′(λ)= #{i | p+1 ≤ i ≤ N , λi =λp+1}.
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Proof. We calculate the K -types of Aq(µ). For (1), we have

2ρ(u∩ pC)= (q, . . . , q︸ ︷︷ ︸
p−p′

, λp − λp+1 − p + p′, . . . , λp − λp+1 − p + p′︸ ︷︷ ︸
p′

,

−p + p′, . . . ,−p + p′︸ ︷︷ ︸
N−(λp−λp+1)−p′)

,−p, . . . ,−p︸ ︷︷ ︸
λp−λp+1−p+p′

)

and

µ+ 2ρ(u∩ p)= (λ1, . . . , λp, λp+1, . . . , λN ).

Since µ+ 2ρ(u ∩ pC) is △
+
c -dominant, the representation Aq(µ) is isomorphic

to πλ by (3-3). The statement (2) is a restatement of Lemma 3.1. We prove (3).
Since q is holomorphic, Aq(µ) is a lowest-weight representation by Lemma 3.1.
Suppose Aq(µ)∼= πλ. In this case, we have

νp−p′+1 =
[
µp −

1
2(p − q − 1), µp −

1
2(p − q + 1)+ p′

]
and

νp−p′+2 =
[
µp+1 −

1
2(p − q − 1)− q ′, µp+1 −

1
2(p − q + 1)

]
.

Here, νi is the segment defined in (3-2). Since it is in the mediocre range, either

µp −
1
2(p − q + 1)+ p′

≥ µp+1 −
1
2(p − q + 1)

or

µp −
1
2(p − q − 1)≥ µp+1 −

1
2(p − q − 1)− q ′

holds. This is equivalent to

µp −µp+1 ≥ −p′ or µp −µp+1 ≥ −q ′.

By (2), we have

µp = λp − q and µp+1 = λp+1 + p.

Then, the statement (3) follows from p′(λ)≥ p′ and q ′(λ)≥ q ′. □

The signed tableaux for unitary lowest-weight representations are as follows:

Corollary 3.3. Let π be a unitary lowest-weight representation. Then the signed
tableau AS(π) has at most two columns. If the tableau AS(π) has only one column,
π is a character. If AS(π) has two columns, the signs are arranged in the order
of + and − in rows with two boxes. In particular, the tableau AS(π) is uniquely
determined by its shape.

Proof. This follows from Lemma 3.2 and the definition of (p, q)-signed tableau
for Aq(µ). □
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3.5. Nonvanishing criterion for Aq(µ). For a θ-stable maximal parabolic subal-
gebra q, Trapa’s algorithm gives the following nonvanishing criterion for Aq(µ).

Lemma 3.4 [Huang 2025, Lemma 2.6]. Let q be a θ-stable parabolic subalgebra
corresponding to d = {(p1, q1), (p2, q2)} and µ be a △

+
c -dominant integral weight

such that Aq(µ) is in the mediocre range. Then, Aq(µ) is nonzero if and only if

min{p1, q2} + min{q1, p2} ≥ #(ν1 ∩ ν2).

Take a holomorphic θ-stable parabolic subalgebra associated to d={(pi,qi )1≤i≤r}.
Let j = j (d) be the minimal integer i such that a≤i ≥ p. The cohomological
inductions Aq(µ) for holomorphic θ-stable parabolic subalgebras q are lowest
weight by [Adams 1987, Lemma 1.7]. We will show that the converse holds
in Lemma 4.6. We can calculate the nonvanishing conditions and tableaux of such
cohomological induction as follows:

Lemma 3.5. Let qd be a holomorphic θ -stable parabolic subalgebra corresponding
to d = {(pi , qi )1≤i≤r } with ai = pi +qi and π be a cohomological induction Aqd (µ)

in the mediocre range. Then, π is nonzero if and only if

• ν< j and ν> j are multiplicity free, and

• #(ν j ∩ ν< j )≤ q j and #(ν j ∩ ν> j )≤ p j .

When π is nonzero and q j ̸= 0, we have ν< j ∩ ν> j = ∅. Write

ν j = {ν j,1, . . . , ν j,a j } and ν< j ⊔ ν> j = {σ1, . . . , σt }

such that ν j,1> · · ·>ν j,a j and σ1> · · ·>σt . Put ν j ∩(ν< j ⊔ν> j )={σ f +1, . . . , σg}.
Let m = min{ f, q j − #(ν j ∩ ν< j )} and let i0 be the maximal integer such that
1 ≤ i0 ≤ g − f and σ f +i0 ≥ ν j,m+i0 . The first column of the tableau Ann(π)
consists of

σ1, σ2, . . . , σ f , σ f +1, σ f +2, . . . , σ f +i0︸ ︷︷ ︸
i0

,

ν j,m+i0+1, ν j,m+i0+2, . . . , ν j,g, ν j,g+1, . . . , ν j,a j , σ f +p−m+1, . . . , σt

and the second column consists of

ν j,1, ν j,2 . . . , ν j,m︸ ︷︷ ︸
m

, ν j,m+1, ν j,m+2, . . . , ν j,m+i0︸ ︷︷ ︸
i0

,

σ f +i0+1, σ f +i0+2, . . . , σg︸ ︷︷ ︸
g−i0

, σg+1, . . . , σmin{t, f +p−m}

from top to bottom. Here, we understand that there is no box next to the box filled
with ν j,a j if t ≤ f + p − m in the first column. In particular, if m ̸= 0, then the
(1, 2)-th entry of Ann(π) is ν j,1.
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Proof. The proof is the same as Lemma 3.1. The case q j = 0 follows from Lemma 3.1.
When q j ̸= 0, we compute the tableau Ann(π). If ν< j ∩ν> j ̸=∅, take x ∈ ν< j ∩ν> j .
Since any element in ν has multiplicity at most two, any element in ν j is greater than
or less than x . If x is less than any element in ν, the segment ν j is contained in ν j−1,
since π is in the mediocre range. Applying the algorithm to the tableau S j−1 ⊔ S j ,
the representation Aqd (µ) is zero by p j ̸= 0. If x is greater than any element in ν j ,
the representation is zero by the same method as q j ̸= 0. Hence, ν< j ∩ ν> j = ∅.

If ν< j or ν> j is not multiplicity one, we have π = 0. Hence, we may assume that
ν< j and ν> j are multiplicity free. Let h be the integer such that ν< j = {σ1, . . . , σh}

with h = p − p j = f +#(ν j ∩ν< j ). Set m′
= min{h, q j }. Before Trapa’s algorithm,

the first column of the tableau Ann(π) consists of

σ1, . . . , σh, ν j,m′+1, . . . , ν j,a j , . . .

and the second column consists of

ν j,1, ν j,2, . . . , ν j,m′, σh+1, . . .

from top to bottom. Let ν j−1 = {σk, . . . , σh} and Si be the tableau consisting of
entries with elements in νi defined in Trapa’s algorithm. Consider R = S j−1 ⊔ S j .
By Trapa’s algorithm, we have R = R′ if σh ≥ ν j,m′ or ν j−1 ̸⊂ ν j . In this case, R is
equivalent to zero when q j < #(ν j−1 ∩ν j ). If not, the first column of R′ consists of

ν j,m′−h+k, . . . , ν j,m′, ν j,m′+1, . . .

and the second column consists of

ν j,1, . . . , ν j,m′−h+k−1, σk, . . . , σh, σh+1, . . .

from top to bottom. If σh < ν j,m′ , then σk < ν j,m′−h+k . Trapa’s algorithm for
R = S′

j−2⊔S′

j−1 is similar and R is equivalent to zero if q j−#(ν j−1)<#(ν j−2∩ν
′

j−1).
Also, the algorithm for S′

j ⊔ S j+1 is similar. Continuing this procedure to the end,
one obtains the lemma. Note that f − m = h − m′ by elementary computations. □

The following statements, which are helpful to compute Aq(µ), show that when
the associated segments are linked, we may replace the linked segments or, con-
versely, partition them into smaller segments.

Corollary 3.6. Under the same notation as in Lemma 3.5, suppose Aq(µ) is nonzero.
Let ν ′

1 ⊔ · · · ⊔ ν ′

k = ν< j be a partition of ν< j into segments with ν ′

1 > · · ·> ν ′

k and
ν ′′

1 ⊔ · · · ⊔ ν ′′

ℓ = ν> j be a partition of ν> j into segments with ν ′′

1 > · · ·> ν ′′

ℓ . Let q′

be the θ -stable parabolic subalgebra associated with{
(#(ν ′

1), 0), . . . , (#(ν ′

k), 0), (p − #(ν< j ), q − #(ν> j )), (0, #(ν ′′

1 )), . . . , (0, #(ν ′′

ℓ ))
}
.

Put π = A(q′, ν ′

1 ⊔ · · · ⊔ ν ′

k ⊔ ν j ⊔ ν ′′

1 ⊔ · · · ⊔ ν ′′

ℓ ). Then, if π is in the mediocre range,
we have Aq(µ)∼= π .
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Proof. The statement follows from Lemma 3.5, since the tableau Aq(µ) does not
depend on a partition of ν< j and ν> j . □

Corollary 3.7. Under the same notation as in Lemma 3.5, suppose Aq(µ) is nonzero.
When ν j−1 ⊂ ν j (resp. ν j+1 ⊂ ν j ), let q′ be the θ-stable parabolic subalgebra
corresponding to{
(p1, q1), . . . , (p j−2, q j−2), (p j + p j−1, q j − p j−1),

(0, p j−1), (p j+1, q j+1), . . . , (pr , qr )
}(

resp.
{
(p1, q1), . . . , (p j−1, q j−1), (q j+1, 0),

(p j − q j+1, q j + q j−1), (p j+2, q j+2), . . . , (pr , qr )
})

and π= A(q′, ν1, . . . , ν j , ν j−1, . . . , νr ) (resp. π= A(q′, ν1, . . . , ν j+1, ν j , . . . , νr )).
If π is in the mediocre range, one has Aq(µ)∼= π .

Proof. The statement follows from Lemmas 3.1 and 3.5 by the explicit computation
of tableaux. □

Remark 3.8. One can prove Corollaries 3.6 and 3.7 by the induction in stages
of Aq(µ) (see [Huang 2025, §5.6; Trapa 2001, Lemma 3.9]). Note that Corollary 3.7
is a special case of [Huang 2025, Proposition 4.9; Trapa 2001, Lemma 9.3].

4. A-parameters and main theorem

We recall Mœglin and Renard’s description of A-parameters in terms of cohomo-
logical inductions, and state the main theorem of this paper.

4.1. A-parameters. The A-parameters ψ are defined by a formal sum

(4-1) ψ =

r⊕
i=1

χti ,si ⊗ Sai ,

where χt,s is the character of C× defined by z 7→ (z/z̄)t/2(zz̄)s/2, Sm is the irreducible
representation of SL2(C) with dimension m, and the triplets (t, s, a) run over
multisets on (t, s, a) ∈ Z ×

√
−1 R × Z>0. When s = 0, we write χt = χt,s . This

definition of χt differs slightly from that of [Ichino 2022] but is the same as [Mœglin
and Renard 2019]. For an A-parameter ψ =

⊕
i χti ,si ⊗ Sai , we say that ψ is good

if 1
2(ti + ai + N ) ∈ Z and si = 0 for any i . Associated with an A-parameter ψ ,

we obtain the component group Sψ . It is isomorphic to a free Z/2Z-module

Sψ = (Z/2Z)e1 ⊕ · · · ⊕ (Z/2Z)er .

Let 5(ψ) be the A-packet of ψ , that is, the set of semisimple representations of G
satisfying the standard and twisted endoscopic character relations (see [Atobe et al.
2024, §1.6; Kaletha et al. 2014, (1.6.1)]).
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Remark 4.1. In the usual definition, an A-parameter is a homomorphism ψR

from WR × SL2(C) to the L-group of the unitary group. Here, WR is the real Weil
group. By the base change ψR|C××SL2(C), the parameter ψR can be identified with
the formal sum (4-1). For details, see [Gan et al. 2012, Theorem 8.1].

4.2. Mœglin–Renard’s construction of A-packets. Take a good A-parameter

ψ =

r⊕
i=1
χti ⊗ Sai .

We define the infinitesimal character χψ of ψ by the multiset

(4-2)
r⊔

i=1

{1
2(ti + ai − 1), 1

2(ti + ai − 3), . . . , 1
2(ti − ai + 1)

}
=

r⊔
i=1

[1
2(ti − ai + 1), 1

2(ti + ai − 1)
]
.

Then, all the representations in 5(ψ) have the same infinitesimal character with the
Harish-Chandra parameter (4-2). Following Théorème 1.1 in [Mœglin and Renard
2019], we describe the representations in 5(ψ). Put

D(ψ)=
{
(pi ,qi )i=1,...,r ∈(Z≥0)

2
| pi +qi = ai for any i and

r∑
i=1

pi = p,
r∑

i=1
qi = q

}
.

For d ∈ D(ψ), set

µd = (µ1, . . . , µ1︸ ︷︷ ︸
p1

, . . . , µr , . . . , µr︸ ︷︷ ︸
pr

, µ1, . . . , µ1︸ ︷︷ ︸
q1

, . . . , µr , . . . , µr︸ ︷︷ ︸
qr

),

where µi =
1
2(ti + ai − N )+ a<i and a<i =

∑
j<i a j . Note that there is a typo in

[Mœglin and Renard 2019, (4.2)]: 1
2(ti +ai −N )−a<i should be 1

2(ti +ai −N )+a<i .
For xd as in (3-1), we define the cohomological induction by

(4-3) Ad(ψ)= Aq(xd )(µd)

and a character εd on Sψ by

εd(ei )= (−1)pi a<i +qi (a<i +1)+ai (ai −1)/2

for any ei ∈Sψ . The following is proved in [Mœglin and Renard 2019, Théorème 1.1].
We choose the same Whittaker datum w as [Mœglin and Renard 2019] (see [Atobe
2020, Appendix A]).

Theorem 4.2. Let ψ be a good A-parameter with ψ =
⊕r

i=1 χti ⊗ Sai . Suppose
that t1 ≥ · · · ≥ tr and ai ≥ ai+1 if ti = ti+1. We then have

5(ψ)= {Ad(ψ) | d ∈ D(ψ)}.

The character of Sψ associated with Ad(ψ) is equal to εd . Moreover, the multiplic-
ity one holds in 5(ψ).
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Remark 4.3. The correspondence Ad(ψ) to εd depends on the choice of Whittaker
datum w. We may explicitly calculate the dependence. See [Kaletha et al. 2014,
Theorem 1.6.1] for details.

Remark 4.4. The statement does not imply that the cohomological induction Ad(ψ)

is nonzero. Trapa [2001] gives an algorithm to determine whether cohomological
inductions of G are zero. Recently, Huang [2025] and Chengyu [2025] indepen-
dently considered the nonvanishing of cohomological inductions of real unitary
groups with Chengyu treating the “nice” case and Huang the general case.

Remark 4.5. For general ψ , representations in the A-packet 5(ψ) consist of the
parabolic induction from the representations in the packet 5(ψ0) for certain good
A-parameter ψ0 ⊂ ψ . Here, ψ0 is a good A-parameter of a unitary group that is a
subgroup of G.

4.3. Main theorem. In this subsection, we state the main theorem following the
notation as in the introduction. The lemma below plays a crucial role in stating and
proving the main theorem.

Lemma 4.6. Let ψ =
⊕r

i=1 χti ,s ⊗ Sai be an A-parameter. If 5(ψ) contains an
irreducible lowest-weight representation π , the parameter ψ is good and χψ = χπ .
Moreover, if Ad(ψ) ∈5(ψ) is nonzero and lowest weight, there exists j such that
qi = 0 for any i < j and pℓ = 0 for any ℓ > j , i.e., d = d0 and qd is holomorphic.

Proof. The goodness of ψ follows from the construction of general ψ as in [Mœglin
and Renard 2019, Proposition 5.2]. The condition χψ =χπ is obvious since represen-
tations in 5(ψ) have the same infinitesimal character χψ . For the second statement,
consider the signed tableau Ann(Ad(ψ)). If there exist different integers k and ℓ
with pkqk pℓqℓ ̸= 0, the signed tableau Ann(Ad(ψ)) satisfies either

• there exists a row with three or more boxes, or

• there exists a row with two boxes arranged in the order of − and +.

Then Ad(ψ) is not of a unitary lowest-weight representation by Corollary 3.3. □

The following is the main theorem of this paper. Note that the nonvanishing
condition Ad0(ψ) is determined in Lemma 3.5 (see also Corollary 4.8).

Theorem 4.7. Let λ= (λ1, . . . , λN ) be a △
+
c -dominant integral weight and πλ be

the irreducible lowest-weight representation of lowest K -type λ. Let ψ be a good
A-parameter with χψ = χπλ such that Ad0(ψ) is nonzero.

(1) If N − p′
≤ λp − λp+1 < N − q ′, the packet 5(ψ) contains πλ if and only if[

λp −
1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ P ′.

(2) If N − q ′
≤ λp − λp+1 < N − p′, the packet 5(ψ) contains πλ if and only

if either
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• ν≤ j = P , or

•

[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ Q′.

(3) If N − p′, N −q ′
≤ λp −λp+1, the packet5(ψ) contains πλ if and only if either

• P ⊂ ν≤ j ⊂ P ⊔ I , or

• I ⊂ ν j ⊂ Q′.

(4) If λp − λp+1 < N − p′, N − q ′, the packet 5(ψ) contains πλ if and only if[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
= ν j .

Our proof, provided in Section 5, is based on the explicit computation of K -types
and the associated tableaux of Ad(ψ). More precisely, the if part follows from
Lemma 3.2 and Corollaries 3.6–3.7. For the only if part, we divide the cases
into q j = 0 or q j ̸= 0. When q j = 0, the statement follows from Lemma 3.1.
When q j ̸= 0, we calculate the associated tableau Ann(Ad(ψ)) in Lemmas 5.2, 5.3,
and 5.4. Then, the theorem follows.

As a consequence of Theorem 4.7, we can determine the lowest K -type of the
lowest-weight representation in 5(ψ).

Corollary 4.8. Let ψ =
⊕r

i=1 χti ⊗ Sai be a good A-parameter. The packet 5(ψ)
contains a nonzero unitary lowest-weight representation if and only if both

• ν< j and ν> j are multiplicity free, and

• #(ν j ∩ ν> j )≤ p j and #(ν j ∩ ν< j )≤ q j .

When 5(ψ) contains a nonzero unitary lowest-weight representation π in 5(ψ),
the lowest K -type λ of π is given as follows:

(1) When q j = 0, the lowest K -type λ of π satisfies P(λ)= ν≤ j and Q(λ)= ν> j .

(2) When p j = #(ν j ∩ ν> j ) and q j ̸= 0, the lowest K -type λ of π satisfies
P(λ)= ν< j ⊔ (ν j ∩ ν> j ) and Q(λ)= ν≥ j \ (ν j ∩ ν> j ).

(3) When q j = #(ν j ∩ ν< j ) ̸= 0, the lowest K -type λ of π satisfies

P(λ)= ν≤ j \ (ν< j ∩ ν j )= {σ1, . . . , σp} and Q(λ)= (ν j ∩ ν< j )⊔ ν> j .

(4) When p j ̸= #(ν j ∩ν> j ) and q j ̸= #(ν j ∩ν< j ), set ν< j ⊔ν> j ={σ1, . . . , σN−#(ν j )}.
Let i0 be the minimal integer such that

1 ≤ i0 ≤ #(ν j ) and #(ν j )− i0 + 1 + #{x ∈ ν< j ⊔ ν> j | x > ν j,i0} = p.

Then, the lowest K -type λ= (λ1, . . . , λN ) of π is given by

λi =


σi −

1
2(p − q + 1)+ i if i < p − #(ν j )+ i0,

ν j,1 +
1
2(N + 1)− #(ν j ) if p − #(ν j )+ i0 ≤ i ≤ p,

ν j,1 −
1
2(N − 1) if p+1 ≤ i ≤ p + i0 − 1,

σi−#(ν j ) −
1
2(N + 1)− p + i if p + i0 ≤ i .
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Proof. To show the nonvanishing condition, it suffices to consider the case d = d0

by Lemma 4.6. The nonvanishing condition for Ad0(ψ) is given in Lemma 3.5.
Suppose that Ad0(ψ) is nonzero. Then, the statement (1) follows from Lemma 3.1.
For (2) and (3), the statements follow from Lemma 3.2 and Corollaries 3.6–3.7.
For (4), we have λp − λp+1 < N − p′(λ), N − q ′(λ) by Theorem 4.7. Now,
i0 as in (4) exists. We then have ν j =

[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
and

P(λ)= {ν j,i0, ν j,i0+1 . . . , ν j,#(ν j )} ⊔ {x ∈ ν \ ν j | x > ν j,i0}. The statement follows
from Lemma 3.2(1) and Corollary 3.7. □

5. Proof of main theorem

We prove the main theorem in Sections 5.2, 5.3, 5.4, and 5.5.

5.1. Cohomological induction for holomorphic θ-stable parabolic subalgebras.
To show the main theorem, we will need Lemma 5.1 below.

By Lemma 4.6, it suffices to consider d = d0. We already described the nonvan-
ishing conditions of such cohomological inductions in Lemma 3.5. In the following
lemma, we will investigate the necessary condition that Ad0(ψ) is isomorphic to πλ
with a given λ. A key point here is that the cohomological induction Ad(ψ) is in
the weakly fair range.

Lemma 5.1. Take an irreducible unitary lowest-weight representation πλ with
lowest K -type λ. Let ψ be an A-parameter with πλ ∈5(ψ). Let νi be the segments
associated with ψ and d0.

(1) As multisets, ν< j and ν> j are multiplicity free.

(2) If ν j ⊂ ν> j , then q j = 0.

(3) ν j ̸⊂ ν< j .

(4) I ⊂ ν< j ⊔ ν> j .

(5) If ν< j ∩ ν> j ̸= ∅, then ν j ⊂ ν> j and q j = 0.

(6) If ν< j ∩ ν> j ∩ I ̸= ∅ and I ∩ ν j ̸= ∅, then ν j ⊂ I ⊂ ν> j and q j = 0.

(7) If ν< j ∩ ν> j ∩ I = ∅, then I ⊂ ν j .

(8) If I ̸= ∅, then I ∩ ν j ̸= ∅.

Proof. The statements (1), (2), (3), and (5) follow immediately from Lemma 3.5.
Note that p j ̸= 0 by definition of j . For (4), consider the multiplicities of each
element in ν. The multiplicities of elements in I are two in ν. Thus, ν< j ⊔ ν> j

contains I , since ν j is a set.
Set I =[x, y] and ν j =[α, β]. By πλ∈5(ψ), one has P⊔Q =ν. For (6), assume

ν< j ∩ν> j ∩ I ̸=∅ and ν j ∩ I ̸=∅. Since any element in I has multiplicity two in ν,
one has ν< j ∩ ν> j ∩ I = I \ (I ∩ ν j ) by (1). Moreover, I ∩ ν j is a segment since I
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and νi are segments. Hence, ν< j ∩ ν> j ∩ I contains x or y. When y ∈ ν< j ∩ ν> j ,
we denote by z the minimal member in ν< j ∩ν> j ∩ I . The maximal member in ν j ∩ I
is z − 1. By the weakly fair property, the set ν< j does not contain z − 1. We thus
have z − 1 ∈ ν> j . Then, the set ν> j contains I and in particular, ν j ⊂ I ⊂ ν> j .
Here, we use the fact that the real numbers x − 1 and y + 1 have multiplicity at
most one in ν. When x ∈ ν< j ∩ ν> j , one has ν j ⊂ I ⊂ ν< j by the same discussion.
This case does not happen by (3). Hence, we have ν j ⊂ I ⊂ ν> j and then q j = 0.

The statement (7) follows immediately from the fact that the multiplicities of
elements in I are two.

For (8), suppose I ̸= ∅ and I ∩ ν j = ∅. By the proof of Lemma 3.5, we have
ν j ⊂ ν> j and α≤ β < x . Then, q j = 0, and there exists an element t in P ′

⊔ Q′ with
multiplicity two such that t < x . The existence of t implies λp − λp+1 < N − q ′.
By q j = 0 and Lemma 3.2(3), we may assume N − p′

≤ λp −λp+1. Then, the set I
is equal to Q′. In this case, x −1 ̸∈ Q, but x −1 ∈ P ∩ν> j by definition. Moreover,
the segment ν> j contains the set Q \ Q′ and I = Q′, and then Q ⊂ ν> j . Hence,

#ν> j ≥ #{x − 1} + #Q ≥ q + 1.

This contradicts the definition of j . Hence I ∩ ν j ̸= ∅. □

In the following sections, we complete the proof of Theorem 4.7.

5.2. Proof of main theorem: the case N − p′ ≤ λ p − λ p+1 < N − q′. We first
show the only if part. By the assumption, one has I = Q′. Put ν j = [α, β].

When q j = 0, by Lemma 3.1, we have ν≤ j = P and I = Q′
⊂ ν> j = Q

if Ad0(ψ)
∼= πλ. In this case, one has α = λp −

1
2(N − 1). Note that by the weakly

fair property, we have β ≥ λp+1 +
1
2(N − 1). Hence, the segment ν j contains[

λp −
1
2(N − 1), λp+1 +

1
2(N − 1)

]
.

When q j ̸= 0, the segment ν j is not contained in ν> j by Lemma 5.1 (2). Also,
ν< j ∩ ν> j = ∅ and ν j contains I by Lemma 5.1. Set

ν \ ν j = {σ1, . . . , σN−#(ν j )}, ν j ∩ (ν< j ⊔ ν> j )= {σ f +1, . . . , σg}

with σ1 > · · ·> σN−#(ν j ). Define d = {(pi , qi )} and ν ′

i by

(pi , qi )=


(1, 0) if i < p − p j ,

(p j , q j ) if i = p j ,

(0, 1) if i > p j ,

ν ′

i =


{σi } if i < p − p j ,

ν j if i = p − p j ,

{σi−1} if i > p − p j ,

and

(5-1) π(ψ)= A(qd , ν
′

1, . . . , ν
′

N−#(ν j )+1).

By Corollary 3.6, π(ψ) is in the mediocre range and isomorphic to Ad0(ψ).
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Lemma 5.2. If π(ψ)∼= πλ, then
[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ P ′.

Proof. Since the segment ν j contains I , it suffices to show α= λp −
1
2(N − 1). Sup-

pose α≥λp−
1
2(N −1). By Lemma 3.5, one has #(ν< j ∩ν j )≤ q j = q−#ν> j . Since

the set (ν< j∩ν j )⊔ν> j contains Q in this case, one has #ν> j+#(ν< j∩ν j )≥q . Hence,
we have ν> j ⊔(ν< j ∩ν j )= Q and in particular, ν> j ⊂ Q. By I ⊂ν j , the multiset ν j is
not multiplicity free or ν> j ̸⊂ Q if α > λp−

1
2(N−1). This shows α ≤ λp−

1
2(N−1).

It remains to show α ≥ λp −
1
2(N − 1). Suppose α < λp −

1
2(N − 1). To show

π(ψ) ̸∼= πλ under this assumption, recall the tableau Ann(πλ). By Lemma 3.2(2),
the first column of the tableau Ann(πλ) consists of entries

λ1 +
1
2(p − q − 1), λ2 +

1
2(p − q − 3), . . . , λp −

1
2(N − 1), . . .

and the second column consists of entries

λp+1 +
1
2(N − 1), λp+2 +

1
2(N − 3), . . . , λp+min{p,q} +

1
2(N + 1)− min{p, q}

from top to bottom. This is invariant under Trapa’s algorithm. We describe the
tableau Ann(π(ψ)) as follows. By #(ν< j ) + p j + q j − #(ν< j ∩ ν j ) > p and
#(ν< j )+ p j = p, we have q j −#(ν< j ∩ν j ) > 0. When there is no x ∈ ν with β < x ,
the first column of π(ψ) consists of

β = λ1 +
1
2(p − q − 1), β − 1, . . . , α, . . .

from top to bottom. In particular, the entry next to λp −
1
2(N −1) is λp −

1
2(N +1).

However, the entry next to λp −
1
2(N − 1) in the first column of Ann(πλ) does not

equal λp −
1
2(N + 1). Indeed, if q ≤ p, there is no such box. If q > p, the entry

is λ2p+1 +
1
2(N + 1)− (p + 1)= λ2p+1 −

1
2(p − q + 1). We then have

λp −
1
2(N +1)−

(
λ2p+1 −

1
2(p−q +1)

)
= λp −λ2p+1 −q

= λp −λp+1 −(N − p)+(λp+1 −λ2p+1)

≥ λp+1 −λ2p+1.

For the last line, we use P = P ′ and N−p′
≤λp−λp+1. By N−p = N−p′<N−q ′,

one has q ′ < p and then λp+1 − λ2p+1 > 0. Hence, the tableaux Ann(πλ) and
Ann(π(ψ)) are different and in particular, the representations are different. We may
assume that there exists x ∈ ν such that x > β. Put f = #{x ∈ ν | x > β}. Let
m = min{ f, q j −#(ν j ∩ν< j )} and i0 be the maximal integer such that 1 ≤ i0 ≤ g− f
and σ f +i0 ≥ ν j,m+i0 . Here, ν j = {ν j,1, . . . , ν j,a j } with ν j,1 > · · · > ν j,a j . By
assumption, m is positive. By Lemma 3.5, the (1, 2)-th entry in Ann(π(ψ)) is β.
Hence, we have β = λp+1 +

1
2(N − 1). This shows i0 ≥ #I . The second column

of Ann(π(ψ)) consists of
ν j,1, ν j,2, . . . , ν j,m+i0, . . .



A-PACKETS CONTAINING LOWEST-WEIGHT REPRESENTATIONS OF U (p, q) 319

from top to bottom. In particular, the entry next to ν j,#(I ) = λp+1 +
1
2(N +1)−q ′ is

ν j,#(I )+1 = ν j,#(I )−1. Note that λp+1+
1
2(N − 1)−q ′ is in ν by λp −λp+1< N −q ′.

However, in the second column of Ann(πλ), the entry next to λp+1 +
1
2(N + 1)−q ′

is λp+q ′+1 +
1
2(N − 1) − q ′ < ν j,#(I )+1, if it exists. Hence, the representation

λp+1 +
1
2(N + 1)− q ′ is not isomorphic to πλ since the associated ν-antitableau

tableaux are different. □

We show the converse. Suppose that Ad0(ψ) satisfies[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ P ′.

The nonvanishing of Ad0(ψ) follows from Lemma 3.5. Since the multiset ν \ ν j =

ν< j ⊔ ν> j is multiplicity free, the representation Ad0(ψ) is isomorphic to πλ by
Lemma 3.2 and Corollaries 3.6–3.7.

5.3. Proof of main theorem: the case N −q′ ≤λ p−λ p+1< N − p′. We first show
the only if part. Let P ′′

= (P∩Q′)\I and p′′
=#(P ′′). One has I = P ′ and I ∩ν j ̸=∅

by Lemma 5.1(8). When q j = 0, by Lemma 3.1, the representation Ad0(ψ) is
isomorphic to πλ if and only if ν≤ j = P .

We consider the case where q j ̸= 0. Then, the multiset ν< j ⊔ ν> j is multiplicity
free and ν j is not contained in ν> j . Let π(ψ) be the cohomological induction
defined in the same way in (5-1). The statement follows from this lemma:

Lemma 5.3. If π(ψ)∼= πλ, we then have[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ Q′.

Proof. Put ν j = [α, β]. Since ν j contains I , one has α ≤ λp −
1
2(N − 1). It remains

to show β = λp+1 +
1
2(N − 1). Suppose that β < λp+1 +

1
2(N − 1). We then

have p j ≥ #(ν j ∩ ν> j ) and the multiset ν≤ j contains a set P properly, since
ν< j contains {x ∈ ν | x > β}. We show that #(ν j ∩ ν> j ) − p j is positive. By
#(ν j ∩ ν> j )= #I + #P ′′

− #(ν< j ∩ ν j ), one has

#(ν j ∩ ν> j )− p j = p′
+ p′′

− #(ν j ∩ ν< j )− p j

= p′
+ p′′

− #(ν j ∩ ν< j )− (p − #(ν< j ))

= #(ν< j )− #(ν j ∩ ν< j )− (p − p′
− p′′) > 0.

The last inequality follows from β < λp+1 +
1
2(N − 1). Hence π(ψ) is zero. This

is a contradiction. Therefore we have β ≥ λp+1 +
1
2(N − 1).

It remains to show β≤λp+1+
1
2(N −1). Put f =#

{
x ∈ ν | x > λp+1+

1
2(N −1)

}
.

Suppose β >λp+1+
1
2(N − 1). By assumption, we have q j > #(ν j ∩ν< j ) and f ̸= 0.

We recall the tableau Ann(πλ). By Lemmas 3.2 and 3.5, the second column of the
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tableau Ann(πλ) consists of

λp+1+
1
2(N−1), λp+2+

1
2(N−3), . . . , λp+min{p,q}+1−i0+

1
2(N−1)−min{p, q}+i0,

λp+1−i0 −
1
2(N + 1)+ i0, . . . , λp −

1
2(N − 1)︸ ︷︷ ︸

i0

, . . . .

Here, i0 is the maximal positive integer such that

λp+min{p,q}+1−i0 +
1
2(N − 1)− min{p, q} + i0 ≥ λp+1−i0 −

1
2(N + 1)+ i0

if it exists. If no such i0 exists, i0 is defined as 0. In particular, the (1, 2)-th entry is
λp+1+

1
2(N−1). In this case, the number of boxes in the second column from the top

to the box filled with λp −
1
2(N − 1) is greater than p′

+ p′′. If there exists x ∈ν with
x >β, the (1, 2)-th entry of Ann(π(ψ)) is β by q j > #(ν j ∩ν> j ). Thus, the tableaux
Ann(πλ) and Ann(π(ψ)) are different by the assumption β > λp+1 +

1
2(N − 1). In

other words, the representations πλ and π(ψ) are different. The remaining case
is that there is no x ∈ ν with x > β. Then, the second column of Ann(Ad0(ψ))

consists of entries

λ f +1 +
1
2(p − q − 1)− f, λ f +2 +

1
2(N − 3)− f, . . . , λp −

1
2(N − 1), . . .

from top to bottom. The number of boxes from the top to the box filled with
λp −

1
2(N − 1) is p′

+ p′′, different from that of Ann(πλ). Therefore, the represen-
tation Ad0(ψ) is not isomorphic to πλ. We conclude that β = λp+1 +

1
2(N − 1). □

It remains to show the converse. Suppose that Ad0(ψ) satisfies ν≤ j = P . Then,
Ad0(ψ)

∼= πλ by Lemma 3.1. Suppose next that Ad0(ψ) satisfies[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
⊂ ν j ⊂ Q′.

In this case, by the explicit computation of p j and q j , the representation Ad0(ψ) is
nonzero and isomorphic to πλ by Lemma 3.2 and Corollaries 3.6–3.7.

5.4. Proof of main theorem: the case N − p′, N − q′ ≤ λ p −λ p+1. We first show
the only if part. When q j = 0, by Lemma 3.1, we have ν≤ j = P and ν> j = Q.
In particular, P ⊂ ν≤ j ⊂ P ⊔ I . When q j ̸= 0, the segment ν j contains I . When
ν j ∩ (Q′

\ I )= ∅, we have ν≤ j ⊂ P ⊔ I and P ⊂ ν≤ j since ν> j is multiplicity free
by Lemma 3.5. We may assume that ν j ∩ (Q′

\ I ) ̸= ∅ and λ1 +
1
2(p − q − 1) >

λp+1 +
1
2(N − 1). In fact, if λ1 +

1
2(p − q − 1)= λp+1 +

1
2(N − 1), the segment ν j

is automatically contained in Q′. Consider the tableaux for Ann(Ad0(ψ)) and
Ann(πλ). We show that ν j is contained in Q′ if Ad0(ψ)

∼= πλ. Note that we have
q j − #(ν j ∩ ν< j ) > 0. Indeed, by assumption, the multiset ν≤ j contains P properly
and then P ⊔ (ν j ∩ ν< j ) ⊊ ν≤ j . We then have p + #(ν j ∩ ν< j ) < #ν< j + p j + q j
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and, in particular, 0< q j − #(ν j ∩ ν< j ) by p j + #(ν< j )= p. By Lemma 3.2, the
first column of Ann(πλ) is

λ1 +
1
2(p − q − 1), λ1 +

1
2(p − q − 3), . . . , λp −

1
2(N − 1), . . .

and the second column is

λp+1 +
1
2(N − 1), λp+2 +

1
2(N − 3), . . . , λp+min{p,q} +

1
2(N + 1)− min{p, q}.

Put ν j = [α, β]. Suppose β = λ1 +
1
2(p − q − 1). Then

P = P ′ and β > λp+1 +
1
2(N − 1).

The first column of Ann(Ad0(ψ)) consists of

β, β − 1, . . . , α, . . .

and the second column consists of

λp+1 +
1
2(N − 1), λp+2 +

1
2(N − 3), . . . , λp+ℓ +

1
2(N + 1)− ℓ, α− 1, . . .

from top to bottom. Here, ℓ is the unique positive integer such that

λp+ℓ +
1
2(N + 1)− ℓ= λp −

1
2(N − 1).

Note that in the second column of Ann(Ad0(ψ)), the box next to the box filled with
λp+ℓ +

1
2(N + 1)− ℓ exists if and only if β > λp+1 +

1
2(N − 1) and ν j ⊔ I ̸= ν.

Contrary to this, in the second column of Ann(πλ), the box next to the box filled
with λp+ℓ+

1
2(N +1)−ℓ exists if and only if λ1 +

1
2(p−q −1) > λp+1 +

1
2(N −1)

and I ̸= Q. Hence, under our assumption, there exists a box next to the box
filled with λp+ℓ +

1
2(N + 1)− ℓ in the second column of Ann(πλ) and it is equal

to λp+ℓ +
1
2(N − 1) − ℓ. We may additionally assume ν ̸= ν j ⊔ I . The entry

next to λp+ℓ +
1
2(N + 1)− ℓ in the second column of Ann(Ad0(ψ)) is strictly less

than λp+ℓ +
1
2(N + 1)− ℓ− 1. This shows that the tableaux Ann(Ad0(ψ)) and

Ann(πλ) are different. Suppose β ̸= λ1 +
1
2(p − q − 1). Then, the (1, 2)-th entry

in Ann(Ad0(ψ)) is β by q j > #(ν j ∩ ν< j ). Hence, we have β = λp+1 +
1
2(N − 1)

if Ad0(ψ)
∼= πλ. In other words, one has I ⊂ ν j ⊂ Q′ if Ad0(ψ)

∼= πλ.
The converse follows from Lemmas 3.2–3.5 and Corollaries 3.6–3.7. This

completes the proof.

5.5. Proof of main theorem: the case λ p −λ p+1 < N − p′, N − q′. We first show
the only if part. Put ν j =[α, β]. In this case, one has q j > 0 by Lemma 3.2(3). Then,
ν j contains I and ν< j ⊔ ν> j is multiplicity free. Let π(ψ) be the cohomological
induction defined in the same way in (5-1). The statement follows from this lemma:

Lemma 5.4. If π(ψ)∼= πλ, one has ν j =
[
λp −

1
2(N − 1), λp+1 +

1
2(N − 1)

]
.
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Proof. The statement follows from the explicit calculation of the associated tableaux.
Recall the tableau Ann(πλ). Put f = #

{
x ∈ ν | x > λp+1 +

1
2(N − 1)

}
and

m = min{ f, N −(λp −λp+1)− p′
− p′′

}, where p′′
= #((P ∩ Q′)\ I ). When f ̸= 0,

the (1, 2)-th entry in Ann(πλ) is λp+1 +
1
2(N − 1) by Lemmas 3.2(1) and 3.5. Let

i0 be the maximal positive integer such that λ f +i0 +
1
2(p − q + 1)− ( f + i0) ≥

λp+1 +
1
2(N + 1)− m − i0, if it exists. If there is no such i0, set i0 = 0. Then, the

first column of Ann(πλ) consists of

λ1 +
1
2(p − q − 1), λ2 +

1
2(p − q − 3), . . . , λ f +

1
2(p − q + 1)− f,︸ ︷︷ ︸

f

λ f +1 +
1
2(p − q + 1)− ( f + 1), λ f +2 +

1
2(p − q + 1)− ( f + 2),
. . . , λ f +i0 +

1
2(p − q + 1)− ( f + i0)

}
i0

λp+m+i0+1 +
1
2(N − 1)− (m + i0), λp+m+i0+2 +

1
2(N − 1)− (m + i0 + 1),

. . . , λp −
1
2(N − 1), . . .

from top to bottom. The entry adjacent to λp −
1
2(N − 1) is strictly less than

λp −
1
2(N − 1)− 1 since p − f is strictly greater than the number of elements in ν

with multiplicity two. When f = 0, the (1, 2)-th entry in Ann(πλ) is the maximal
member in ν with multiplicity two. This is greater than or equal to λp−

1
2(N−1)+p′.

Then the first column consists of

λp+1 +
1
2(N − 1), λp+1 +

1
2(N − 3), . . . , λp −

1
2(N − 3), λp −

1
2(N − 1), . . .

from top to bottom.
We claim β = λp+1 +

1
2(N −1). Note that q j > #(ν j ∩ν< j ) and p j > #(ν j ∩ν> j )

if π(ψ) ∼= πλ by Lemma 3.2 and Corollaries 3.6–3.7. Suppose first that β <
λp+1 +

1
2(N − 1). Then, there exists x ∈ ν such that x > β. In this case, the

(1, 2)-th entry in π(ψ) is β by q j > #(ν j ∩ ν< j ). If π(ψ) ∼= πλ, there exists
no x ∈ ν with x > λp+1 +

1
2(N − 1), i.e., f = 0, and β is the maximal member

in ν with multiplicity two. Consider the number of boxes from the top to the
box filled with λp+1 +

1
2(N − 1)− q ′ in the first column. For πλ, by f = 0, this

number is q ′, but for π(ψ), it is strictly less than q ′ by β < λp+1 +
1
2(N − 1) unless

β = λp −
1
2(N +1)+ p′. If β = λp −

1
2(N +1)+ p′, consider the location of the box

filled with the unique entry λp+1 +
1
2(N − 1)− q ′. This is in the first column for

Ann(πλ) and in the second column for Ann(π(ψ)). Hence, the representations πλ
and Ad0(ψ) are different. Suppose next that β > λp+1 +

1
2(N − 1). Then, f > 0.

If there exists x ∈ ν with x > β, the (1, 2)-th entry in π(ψ) is β. Then, one
has β = λp+1 +

1
2(N − 1). This is a contradiction. When there exists no x ∈ ν

with x > β, we compare the ν-antitableaux of πλ and π(ψ). In this case, for πλ,
the number of boxes from the top to the box filled with λp+1 +

1
2(N + 1)− q ′ in

the first column is at most max{−q + q ′
+ (λp − λp+1), q ′

}, that is strictly less
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than f + q ′ by f ̸= 0. Note that −q + q ′
+ (λp − λp+1) is equal to the integer a

such that λa +
1
2(p − q + 1)− a = λp+1 +

1
2(N + 1)− q ′. For π(ψ), the number

of boxes from the top to the box filled with λp+1 +
1
2(N +1)−q ′ in the first column

is f + q ′, since ν j contains I . Hence, the tableaux are different. We conclude that
β is equal to λp+1 +

1
2(N − 1) if πλ ∼= Ad0(ψ). In the following, we may assume

β = λp+1 +
1
2(N − 1).

It remains to show α = λp −
1
2(N − 1). If there exists no x ∈ ν with x >

λp+1 +
1
2(N − 1), the first column of Ann(π(ψ)) consists of

λp+1 +
1
2(N − 1)= β, . . . , α, . . .

from top to bottom. Then, the entry next to α is strictly less than α − 1 since
q j > #(ν j ∩ ν< j ). For πλ, in the first column, the entry next to λp −

1
2(N − 1) is

strictly less than λp −
1
2(N −1)−1 and the entry next to x with λp −

1
2(N −1)< x ≤

λp+1 +
1
2(N − 1) is x − 1. Hence, if πλ ∼= Ad0(ψ), we have α = λp −

1
2(N − 1).

We may assume that there exists x ∈ ν with x > λp+1 +
1
2(N − 1), i.e., f ̸= 0.

Recall that by πλ ∼= Ad0(ψ), we have p j > #(ν ′

4). This shows that the entry next to
α in the first column is strictly less than α− 1 if the box exists. By the description
of Ann(πλ) and the same discussion above, we have α = λp −

1
2(N − 1). □

For the converse, apply Lemma 3.2(1) and Corollaries 3.6–3.7. We then have
πλ ∼= Ad0(ψ). This completes the proof.
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AN EVOLUTION OF MATRIX-VALUED
ORTHOGONAL POLYNOMIALS

ERIK KOELINK, PABLO ROMÁN AND WADIM ZUDILIN

We establish new explicit connections between classical (scalar) and matrix
Gegenbauer polynomials, which result in new symmetries of the latter and
further give access to several properties that have been out of reach before:
generating functions, distribution of zeros for individual entries of the matri-
ces and new type of differential-difference structure. We further speculate
about other potentials of the connection formulas found. Part of our proofs
makes use of creative telescoping in a matrix setting — the strategy which is
not yet developed algorithmically.

1. Introduction

When it comes to a topic as classical as orthogonal polynomials, one can hardly
expect spectacular novelties. But they do happen: for example, in situations when
a natural generalization is found. Decades ago, in the middle of the 20th century,
M. G. Krein introduced matrix-valued orthogonal polynomials, in his study of
higher-order differential operators and of the corresponding moment problem. This
new topic progressed at a slow pace and mainly focused on analogs of classical
results for scalar orthogonal polynomials; the overview in [7] gives an introduction
and extensive literature up to 2008. Despite of the theoretical development, not
so many concrete examples of matrix-valued orthogonal polynomials have been
encountered. Those that have been found in the last decades using insights from
representation theory demonstrate a rich structure, not always observable for their
scalar originals. At the same time the polynomials are not easily accessible from
a computational perspective; this makes it hard to draw further connections to
other mathematics areas, for example, to number theory and analysis of special
functions. In this paper we aim at changing this perception and demonstrating that
naturally defined matrix-valued orthogonal polynomials are much closer to their
scalar prototypes than expected. It is this closeness and its numerous consequences
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that we refer to as an evolution in the title. We are mainly concerned with matrix-
valued analogs of the Gegenbauer polynomials

C (ν)
n (x) =

(2ν)n

n!

n∑
k=0

(−n)k(2ν + n)k

k!
(
ν +

1
2

)
k

(
1 − x

2

)k

=

⌊n/2⌋∑
k=0

(−1)k 0(ν + n − k)

k! (n − 2k)! 0(ν)
(2x)n−2k,

also known as ultraspherical polynomials, where (a)k = 0(a +k)/0(a) denotes the
Pochhammer symbol. These matrix-valued polynomials P (ν)

n (x) were introduced
in [18]. For a special value of ν = 1, they are matrix-valued analogs of the
Chebyshev polynomials of the second kind and they had been previously defined
using matrix-valued spherical functions, see [16; 17], building on earlier work
of Koornwinder [21]. For the 2 × 2 case, a more general set of matrix-valued
Gegenbauer polynomials is introduced by Pacharoni and Zurrián [23], and the
entries are directly given as sum of two scalar Gegenbauer polynomials. The
connection between these sets of 2 × 2-matrix-valued Gegenbauer polynomials is
discussed in [18, Remark 3.8]. In this paper we give an extension of the expansion
in scalar Gegenbauer polynomials for arbitrary size, see Theorem 3.6.

A connection between the scalar and matrix-valued Gegenbauer polynomials is
somewhat intimate: the former appear in description of the matrix-valued weight
for the latter, see [18] and Section 2 below. At the same time, the scalar Gegenbauer
polynomials can be naturally promoted to matrix-valued orthogonal polynomials and
their span connected with the span of the matrix-valued Gegenbauer polynomials.
Such connections between different sets of matrix-valued orthogonal polynomials
have been never recorded before; in Section 3 we give two explicit connection
formulas for the scalar and matrix-valued Gegenbauer polynomials. With their help
we can further explore the structure of related difference and differential equations.
In particular, we construct in Section 4 new type of differential equations satisfied
by the matrix-valued orthogonal polynomials. These equations utilize the non-
commutative structure of the matrix-valued orthogonal polynomials and, therefore,
degenerate in the scalar setting; this is perhaps a reason for their nonappearance in
the literature.

The expressions in Section 3 lead to a fairly simple computational access to
the matrix-valued polynomials. For example, they allow us to discuss generating
functions of the matrix-valued Gegenbauer polynomials using known generating
functions of the scalar ones; this is done in Section 5. The explicit formulas and
numerical check suggest further that the zeros of entries of the matrix-valued
polynomials follow distinguished patterns — those serve as a generalization of
the property of scalar orthogonal polynomials to have all zeros located in the
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convex hull of the orthogonality measure on the real line. We speculate about
these observations in Section 6, also towards other known matrix-valued orthogonal
polynomials. Finally, in Section 7 we highlight some further potential applications
of the connection formulas from Section 3.

The lineup of our exposition is somewhat misleading for how our results were
actually found. We first looked for distribution of the zeros of entries of Gegenbauer
polynomials of “reasonable” matrix size utilizing their expressions from [18] as
triple hypergeometric sums. We observed that, for certain entries, the zeros were real
and interlacing with those of the corresponding polynomial entry from the previous-
indexed Gegenbauer. Such considerations helped us to suspect an explicit connection
with scalar orthogonal polynomials and to realize that simpler expressions exist;
making use of basic principles of experimental mathematics [3] we managed to
recognize new symmetries of the matrix-valued polynomials and figure out what
now comes as Theorem 3.6. In order to prove the corresponding formulas we needed
to invent a matrix generalization of the famous Wilf–Zeilberger algorithm of creative
telescoping [25; 26]; as no implementation of such exists at the moment of writing,
the related linear algebra calculations were manually performed. Theorem 3.6
suggests that the formulas can be inverted, to express scalar Gegenbauer polynomials
in terms of matrix-valued ones; after another round of experimentation we ended
up with what is now Theorem 3.4. Its proof is more in “classical spirits” — in
contrast with the other proof, we could not find a creative-telescoping argument. Our
analysis of the zeros of entries of Gegenbauer polynomials played an important role
in the execution and further development of this project. Though we only possess
a limited explanation of the structure of these zeros, we feel a need for sharing our
observations with the reader, so we display them in a condensed form in Section 6.

It seems to be worthy of pointing out in this introduction that a potential use
of creative telescoping in the matrix- or vector-valued (noncommutative!) setup
may give access to interesting hypergeometric identities, not necessarily linked to
matrix-valued orthogonal polynomials. We hope that related algorithms will be
designed and made efficient in the near future, with several nice applications that
we cannot foresee at the moment.

2. Gegenbauer polynomials

We start this section with an overview of classical Gegenbauer polynomials and
then review known facts from [18] about their matrix-valued mates.

The scalar Gegenbauer polynomials form a subfamily of the Jacobi polynomials.
Their definition above can be put in the hypergeometric form

(2-1) C (ν)
n (x) =

(2ν)n

n!
2 F1

(
−n, 2ν + n

ν +
1
2

;
1 − x

2

)
,
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where we conventionally follow the standard notation, see [1; 2; 13; 15]. The
Gegenbauer polynomials satisfy the connection formula

(2-2) C (ν)
m (x) =

⌊m/2⌋∑
s=0

(λ + m − 2s)(ν)m−s

(λ)m−s+1

(ν − λ)s

s!
C (λ)

m−2s(x).

In the particular case λ = ν + N , N ∈ N, the sum has a natural upper bound:

(2-3) C (ν)
m (x) =

⌊m/2⌋∧N∑
s=0

(ν + N + m − 2s)(ν)m−s

(ν + N )m−s+1

(−N )s

s!
C (ν+N )

m−2s (x),

where ⌊m/2⌋∧ N denotes the minimum of ⌊m/2⌋ and N . The linearization formula
for the Gegenbauer polynomials reads

(2-4) C (ν)
k (x)C (ν)

l (x)

=

k∧l∑
p=0

k + l +ν −2p
k + l +ν − p

(ν)p(ν)k−p(ν)l−p(2ν)k+l−p

p!(k − p)!(l − p)!(ν)k+l−p

(k + l −2p)!

(2ν)k+l−2p
C (ν)

k+l−2p(x).

The orthogonality relations

(2-5)
∫ 1

−1
C (ν)

k (x)C (ν)
n (x)(1 − x2)ν−

1
2 dx = δk,n

π 21−2ν 0(n + 2ν)

0(ν)2(n + ν) n!

hold for ν > −
1
2 , with a slightly different normalization required when ν = 0. Since

the Gegenbauer polynomials are orthogonal, they satisfy a three-term recurrence
relation; it is

(2-6) 2(n + ν) xC (ν)
n (x) = (n + 1)C (ν)

n+1(x) + (n + 2ν − 1)C (ν)
n−1(x),

which determines the polynomials from the initial conditions C (ν)
−1(x)=0, C (ν)

0 (x)=1.
We also use the Gegenbauer polynomials for negative ν, in which case we follow
the convention in [5]. We refer to [1; 2; 13; 15] for these results and for more
information on the Gegenbauer polynomials; see, in particular, Askey [2] for the
history and importance of the connection and linearization formulas (2-2), (2-4).

We now review the matrix-valued Gegenbauer polynomials. For ℓ∈
1
2 N and ν >0,

following [18, Definition 2.1] their matrix-valued weight is the (2ℓ+ 1)× (2ℓ+ 1)-
matrix-valued function W (x) = W (ν)(x) given by

(2-7) (W (x))i, j = (1 − x2)ν−
1
2

i∧ j∑
k=0∨i+ j−2ℓ

αk(i, j)C (ν)
i+ j−2k(x),

αk(i, j) = (−1)k i ! j !(i + j − 2k)!

k!(2ν)i+ j−2k(ν)i+ j−k

(ν)i−k(ν) j−k

(i − k)!( j − k)!

i + j − 2k + ν

i + j − k + ν

×
(2ℓ − i)!(2ℓ − j)!
(2ℓ + k − i − j)!

(−2ℓ − ν)k
(2ℓ + ν)

(2ℓ)!
,
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where i, j ∈ {0, 1, . . . , 2ℓ} and the notation a ∨ b, a ∧ b stands for min{a, b}

and max{a, b}, respectively. We slightly alter the expression for αk from [18] to
make W (ν) transparently symmetric. Finally, put W (ν)(x) = (1 − x2)ν−1/2 W (ν)

pol (x)

(correcting a typo in [18, p. 463], where a superfluous (1 − x2)ν−1/2 appears in
the first line). It turns out that W (ν)(x) is positive definite; this follows from the
LDU-decomposition [18, Theorem 2.1], which states

(2-8) W (ν)(x) = L(ν)(x)T (ν)(x)L(ν)(x)t , x ∈ (−1, 1),

where L(ν)
: [−1, 1] → M2ℓ+1(C) is the unipotent lower triangular matrix-valued

polynomial,

(L(ν)(x))m,k =

{0 if m < k,
m!

k!(2ν + 2k)m−k
C (ν+k)

m−k (x) if m ≥ k,

and T (ν)
: (−1, 1) → M2ℓ+1(C) is the diagonal matrix-valued function,

(T (ν)(x))k,k = t (ν)
k (1 − x2)k+ν−

1
2 , t (ν)

k =
k!(ν)k(
ν +

1
2

)
k

(2ν + 2ℓ)k (2ℓ + ν)

(2ℓ − k + 1)k (2ν + k − 1)k
.

Let J be the matrix with 1s along the antidiagonal, Ji, j = δi+ j,2ℓ. Then J W (ν)(x) =

W (ν)(x) J for all x ∈ (−1, 1) by [18, Proposition 2.6].
The monic matrix-valued Gegenbauer polynomials P (ν)

n (x), n ∈ N, are orthogo-
nal with respect to the matrix-valued measure (2-7), i.e.,

(2-9)
∫ 1

−1
P (ν)

n (x)W (ν)(x)(P (ν)
m (x))∗ dx = δn,m H (ν)

n ,

P (ν)
n (x)= xn P (ν)

n,n +xn−1 P (ν)
n,n−1+· · ·+x P (ν)

n,1 + P (ν)
n,0 , P (ν)

n,n = 1, P (ν)
n,i ∈ M2ℓ+1(C);

a formula for the squared norm H (ν)
n , a positive definite diagonal matrix, can be

found in [18, Theorem 3.1(i)]. The matrix conjugation ∗ in our real setting simply
means the transpose.

An important property of the matrix-valued Gegenbauer polynomials is

(2-10)
dP (ν)

n

dx
(x) = n P (ν+1)

n−1 (x);

see [18, Theorem 3.1(ii)].
Similar to the scalar case, matrix-valued orthogonal polynomials satisfy a three-

term recurrence relation. In the case of matrix-valued Gegenbauer polynomials the
relation assumes the explicit form [18, Theorem 3.3]

(2-11) x P (ν)
n (x) = P (ν)

n+1(x) + B(ν)
n P (ν)

n (x) + C (ν)
n P (ν)

n−1(x),



330 ERIK KOELINK, PABLO ROMÁN AND WADIM ZUDILIN

where the matrices B(ν)
n and C (ν)

n are given by

B(ν)
n =

2ℓ∑
j=1

j ( j + ν − 1)

2( j + n + ν − 1)( j + n + ν)
E j, j−1

+

2ℓ−1∑
j=0

(2ℓ− j)(2ℓ− j + ν − 1)

2(2ℓ− j + n + ν − 1)(2ℓ+ n − j + ν)
E j, j+1,

C (ν)
n =

2ℓ∑
j=0

n(n + ν − 1)(2ℓ+ n + ν)(2ℓ+ n + 2ν − 1)

4(2ℓ+ n + ν − j − 1)(2ℓ+ n + ν − j)( j + n + ν − 1)( j + n + ν)
E j, j .

Here Ei, j denotes the matrix with 1 on the (i, j)-entry and 0 elsewhere. With the
initial conditions P (ν)

−1 (x) = 0, P (ν)
0 (x) = 1, the recurrence (2-11) determines the

family (P (ν)
n (x))n∈N completely.

The matrix-valued Gegenbauer polynomials can actually be made symmetric, a
feature which seems to be rather uncommon. We define

(2-12) P̂ (ν)
n (x) = D(ν)

n P (ν)
n (x), (D(ν)

n )i, j = δi, j

(
2ℓ

i

)
(ν + n)i

(ν + n + 2ℓ − i)i
,

and we show in Corollary 3.7 that (P̂ (ν)
n (x))t

= P̂ (ν)
n (x), so that P̂ (ν)

n (x) is symmetric.

Remark 2.1. (i) Notice that the diagonal matrix D(ν)
n depends only on ν + n; in

particular, D(ν)
n = D(ν+1)

n−1 and by (2-10) we have

(2-13) d
dx

P̂ (ν)
n (x) = nD(ν)

n (D(ν+1)
n−1 )−1 P̂ (ν+1)

n−1 (x) = n P̂ (ν+1)
n−1 (x).

(ii) JD(ν)
n = D(ν)

n J , where as above J is the matrix with 1s along the antidiagonal.

3. The expansion of Gegenbauer polynomials in matrix-valued Gegenbauer
polynomials

The goal of this section is to establish two special cases of a connection formula
between the matrix-valued Gegenbauer polynomials and the scalar Gegenbauer
polynomials. To start with, we define the matrices F (ν)

k,n , k ∈ {0, 1, . . . , n}, by

(3-1) P̂ (ν)
n (x) =

n∑
k=0

F (ν)
k,n C (ν+2ℓ)

n−k (x)

and in dual setting we define G(ν)
k,n , k ∈ {0, 1, . . . , n}, by

(3-2) C (ν)
m (x)1 =

m∑
r=0

G(ν)
r,m P̂ (ν)

m−r (x).

We show that the summation ranges in (3-1), (3-2) are bounded by 2ℓ, so that the
number of nonzero terms in (3-1), (3-2) is at most the size of the matrix-valued
polynomials. We first describe the relation arising from (2-13).
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Lemma 3.1. For n, m ∈ N, n ≥ 1, m ≥ 1, we have

F (ν)
k,n =

n
2(ν + 2ℓ)

F (ν+1)
k,n−1 , 0 ≤ k ≤ n − 1,

G(ν)
r,m =

2ν

m − r
G(ν+1)

r,m−1, 0 ≤ r ≤ m − 1.

Proof. Differentiate (3-1) using d
dx C (λ)

n (x) = 2λC (λ+1)
n−1 (x) and (2-13) to find out

that

n P̂ (ν+1)
n−1 (x) =

2ℓ∑
k=0

F (ν)
k,n 2(ν + 2ℓ)C (ν+1+2ℓ)

n−1−k (x)

= 2(ν + 2ℓ)
2ℓ∑

k=0
(D(ν)

n )−1 D(ν+1)
n−1 F (ν)

k,n C (ν+1+2ℓ)
n−1−k (x).

On the other hand, applying (3-1) with (n, ν) replaced by (n − 1, ν + 1) gives

F (ν+1)
k,n−1 =

2(ν + 2ℓ)

n
F (ν)

k,n

by uniqueness of the expansion. This proves the first statement, and the second one
follows analogously. □

In particular, it follows from Lemma 3.1 that

(3-3) G(ν)
m,m+k =

2k(ν)k

k!
G(ν+k)

m,m and F (ν)
m,m+k =

(m + 1)k

2k(ν + 2ℓ)k
F (ν+k)

m,m

for m, k ∈ N. Therefore, viewing (G(ν)
r,m)r,m∈N and (F (ν)

r,m)r,m∈N as infinite matrices
we see that they are upper triangular, with (3-3) showing that each element in the
r -th row is determined by the element on the diagonal in the r -th row.

Next we look at G(ν)
m,m and F (ν)

m,m . From (3-3) we see that the upper bound of
the sum in (3-2), respectively (3-1), can be replaced by 2ℓ ∧ m = min(2ℓ, m),
respectively 2ℓ ∧ n = min(2ℓ, n), if we show that G(ν)

m,m = F (ν)
m,m = 0 for m > 2ℓ.

Lemma 3.2. F (ν)
m,m = 0 for m > 2ℓ.

Proof. Note that the (i, j)-th entry of the matrix F (ν)
m,m is a multiple of the integral

(3-4)
∫ 1

−1
(P (ν)

m (x))i, j (1 − x2)ν+2ℓ− 1
2 dx

and we need to show that this integral vanishes for m > 2ℓ. By [18, Theorem 3.4],

(P (ν)
m (x))i, j =

2ℓ∧m+i∑
p= j

z p C (ν+p)

m+i−p(x)C (1−ν−p)

p− j (x)

for some explicit constants z p, so that the integral (3-4) equals

2ℓ∧m+i∑
p= j

z p

∫ 1

−1
C (ν+p)

m+i−p(x){C (1−ν−p)

p− j (x)(1 − x2)2ℓ−p
}(1 − x2)ν+p−

1
2 dx .
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Using the orthogonality (2-5) and the fact that the term in the parentheses is a
polynomial of degree 4ℓ− p− j , we see that the p-th term vanishes for m + i − p >

4ℓ − p − j , that is, for m > 4ℓ − i − j . Therefore, the integral (3-4) vanishes for
m > 2ℓ when i + j ≤ 2ℓ.

Because J commutes with W (ν)(x) for all x , see [18, Proposition 2.6], we also
have that the monic polynomials P (ν)

n (x) commute with J by [19, Lemma 3.1(2)].
In particular, (P (ν)

m (x))2ℓ−i,2ℓ− j = (P (ν)
m (x))i, j and the integral in (3-4) is zero for

m > 2ℓ for all (i, j). □

In principle the approach of Lemma 3.2 can also be used to calculate F (ν)
m,m for

m ≤ 2ℓ; this gives an explicit but rather complicated expression for F (ν)
k,m with the

help of (3-3). In Theorem 3.6 we give a simple formula for F (ν)
k,m . We leave it open

whether the summation formula induced from these two different calculations is of
interest on its own.

For the matrices G(ν)
k,m we first recall that we can rewrite (2-9) as

(3-5)
∫ 1

−1
P̂ (ν)

n (x)W (x)(P̂ (ν)
m (x))∗ dx = δm,n Ĥ (ν)

n ,

with Ĥ (ν)
n = D(ν)

n H (ν)
n (D(ν)

n )∗ being a diagonal matrix as well. Then∫ 1

−1
C (ν)

m (x)W (x)(D(ν)
0 )∗ dx =

∫ 1

−1

m∑
r=0

G(ν)
r,m P̂ (ν)

m−r (x)W (x)(P̂ (ν)
0 (x))∗ dx

= G(ν)
m,m Ĥ (ν)

0

and

(3-6) G(ν)
m,m D(ν)

0 H (ν)
0 =

∫ 1

−1
C (ν)

m (x)W (x) dx .

Note that D(ν)
0 H (ν)

0 is an explicit invertible diagonal matrix, so that all we need to
do is to calculate the matrix entries of∫ 1

−1
C (ν)

m (x)W (x)i, j dx

to determine G(ν)
m,m . Observe that W (x)i, j = W (x) j,i , since W is Hermitian and real-

valued for x ∈ (−1, 1). Furthermore, W (x)i, j = W (x)2ℓ−i,2ℓ− j by Proposition 2.6
in [18]. This reduces our calculation to evaluating the integral∫ 1

−1
C (ν)

m (x)W (x)i, j dx

for the case i ≥ j , i + j ≤ 2ℓ.
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Lemma 3.3. Assume j ≥ i , i + j ≤ 2ℓ. Then∫ 1

−1
C (ν)

m (x)W (x)i, j dx = 0,

when m < j − i or i + j ̸≡ m mod 2 or m > 2ℓ.

In particular, Lemma 3.3 shows that the r-th term of the sum (3-2) vanishes
when r > 2ℓ ∧ m.

Proof. Recall formula (2-7). Using the orthogonality relations (2-5) and the fact that
the matrix-valued Gegenbauer polynomials are symmetric, the statement follows. □

Theorem 3.4. Define

φ(ν; i, j, r)

= φℓ(ν; i, j, r)

=

(
2ℓ

r

)(
r

1
2(r + i − j)

)(
2ℓ− r

1
2(i + j − r)

)(
2ℓ

i

)−1(2ℓ

j

)−1

(ν − r + j)(ν +2ℓ− r − j)

×
0(ν + 2ℓ − r) 0

(
ν −

1
2(r − i + j)

)
0

(
ν −

1
2(r + i − j)

)
0

(
ν + 1 −

1
2(r − i − j)

)
0

(
ν + 2ℓ + 1 −

1
2(r + i + j)

)
if i + j ≡ r mod 2 and φ(ν; i, j, r) = 0 otherwise. Then for 0 ≤ r ≤ 2ℓ, m ∈ N,
the matrices

(G(ν)
r,m)i, j =

2m−r

(m − r)! 0(ν)
· φ(ν + m; i, j, r), i, j ∈ {0, 1, . . . , 2ℓ},

satisfy

C (ν)
m (x)1 =

m∧2ℓ∑
r=0

G(ν)
r,m P̂ (ν)

m−r (x).

Proof. The zero entries of the matrix in (3-6) given in Lemma 3.3 can be ignored.
Employing the formula

(H (ν)
0 ) j, j =

√
π

0
(
ν +

1
2

)
0(ν + 1)

(2ℓ + ν)
j !(2ℓ − j)!(ν + 1)2ℓ

(2ℓ)!(ν + 1) j (ν + 1)2l− j

for the squared norm at n = 0 and (2-7) for αk(i, j), using the expression for D(ν)
n

from (2-12) and the orthogonality relations (2-5) in (3-6), we can evaluate G(ν)
m,m .

Then the formula for G(ν)
m,r follows from the shift property (3-3). A straightforward

calculation gives the result. □

As a corollary to the proof of Theorem 3.4, we find symmetry properties for G(ν)
r,m .

Corollary 3.5. We have G(ν)
r,m J = JG(ν)

r,m , and the matrix G(ν)
r,m D(ν)

0 H (ν)
0 is symmetric.
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Proof. The explicit expression of D(ν)
n in (2-12) shows that D(ν)

n commutes with J .
Furthermore, W (x) commutes with J by [18, Proposition 2.6]. This implies that
J commutes with P (ν)

n (x) and H (ν)
n by [19, Lemma 3.1] and the fact that J ∗

= J .
In turn, this means that J also commutes with P̂ (ν)

n (x) and Ĥ (ν)
n . With the help

of (3-6) we deduce that

G(ν)
m,m =

∫ 1

−1
C (ν)

m (x)W (ν)(x) dx (D(ν)
0 )∗(Ĥ (ν)

0 )−1

=

∫ 1

−1
C (ν)

m (x)W (ν)(x) dx (H (ν)
0 )−1(D(ν)

0 )−1,

so that G(ν)
m,m commutes with J . By (3-3) we see that G(ν)

r,m commutes with J . This
also implies that G(ν)

m,m D(ν)
0 H (ν)

0 is a symmetric matrix, and hence the statement
for G(ν)

r,m follows from (3-3). □

Our next objective is to determine F (ν)
k,n using Lemma 3.2. We follow an indirect

approach and prove (3-1) by showing that the right-hand side of (3-1) satisfies the
three-term recurrence relation for the polynomials P̂ (ν)

n (x). In other words, we want
to show that these polynomials satisfy the three-term recurrence relation

(3-7) x P̂ (ν)
n (x) = Â(ν)

n P̂ (ν)
n+1(x) + B̂(ν)

n P̂ (ν)
n (x) + Ĉ (ν)

n P̂ (ν)
n−1(x),

with Â(ν)
n = D(ν)

n (D(ν)
n+1)

−1, B̂(ν)
n = D(ν)

n B(ν)
n (D(ν)

n )−1 and Ĉ (ν)
n = D(ν)

n C (ν)
n (D(ν)

n−1)
−1

with the matrices B(ν)
n , C (ν)

n as in (2-11). Note that Â(ν)
n and Ĉ (ν)

n are symmetric,
however B̂(ν)

n is not in general.

Theorem 3.6. For i, j, k ∈ {0, 1, . . . , 2ℓ}, define

γ (ν; i, j, k) = γℓ(ν; i, j, k)

= (−1)k(ν + 2ℓ)(ν + 2ℓ − k)

(
2ℓ

k

)(
k

1
2(k + i − j)

)(
2ℓ − k

1
2(i + j − k)

)
×

0
(
ν −

1
2(k − i − j)

)
0

(
ν + 2ℓ−

1
2(k + i + j)

)
0(ν) 0

(
ν + 2ℓ+ 1 −

1
2(k − i + j)

)
0

(
ν + 2ℓ+ 1 −

1
2(k + i − j)

)
if i + j ≡ k mod 2 and γ (ν; i, j, k) = 0 otherwise. Let the matrix F (ν)

k,n be given by

(F (ν)
k,n )i, j =

n! 0(ν + 2ℓ)

2n γ (ν + n; i, j, k);

then

P̂ (ν)
n (x) =

n∧2ℓ∑
k=0

F (ν)
k,n C (ν+2ℓ)

n−k (x).

Since
(n

k

)
is nonzero only for n, k ∈ N with 0 ≤ k ≤ n, we see that F (ν)

0,n is a
diagonal matrix. Similarly, F (ν)

1,n is zero on the diagonal and has nonzero sub- and
superdiagonals.
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Since the matrices F (ν)
k,n are symmetric, the following corollary is immediate.

Corollary 3.7. The polynomials P̂ (ν)
n (x) are symmetric, i.e., (P̂ (ν)

n (x))t
= P̂ (ν)

n (x).
In particular, (P (ν)

n (x))t
= D(ν)

n P (ν)
n (x)(D(ν)

n )−1.

Proof of Theorem 3.6. Lemma 3.2 gives us the bound n ∧ 2ℓ for the number of
terms in the expansion. We prove the latter by showing that the right-hand side
satisfies the same three-term recurrence (3-7) and initial conditions for n = −1 and
n = 0. For n = −1, we have that the right-hand side is the zero matrix. For n = 0,
the right-hand side reduces to the diagonal matrix F (ν)

0,0 and by inspection

(F (ν)
0,0 )i,i = 0(ν + 2ℓ)(ν + 2ℓ)2

(
2ℓ

i

)
0(ν + i) 0(ν + 2ℓ − i)
0(ν) 0(ν + 2ℓ + 1)2

=

(
2ℓ

i

)
(ν)i

(ν + 2ℓ − i)i
= (D(ν)

0 )i,i .

Thus, the initial values match, and it remains to show that the three-term recurrence
relation (3-7) is satisfied by

∑n∧2ℓ
k=0 F (ν)

k,n C (ν+2ℓ)
n−k (x).

Using the three-term recurrence relation (2-6) for the Gegenbauer polynomials
and the explicit expressions we see that (i, j)-entry of x

∑n∧2ℓ
k=0 F (ν)

k,n C (ν+2ℓ)
n−k (x)

consists of two sums in terms of the Gegenbauer polynomials C (ν+2ℓ)
n−k (x) for k ≥ 0.

Similarly, since the matrices Â(ν)
n , B̂(ν)

n and Ĉ (ν)
n that appears on the right-hand

side of (3-7) are either diagonal or have two nonzero diagonals, we see that the
right-hand side involves four sums in terms of Gegenbauer polynomials C (ν+2ℓ)

n−k (x)

with k ≥ 0. Comparing the coefficients of C (ν+2ℓ)
n−k (x) on both sides, we see that we

need the equality

n − k
ν + 2ℓ + n − k − 1

γ (ν + n; i, j, k + 1) +
2(ν + 2ℓ) + n − k
ν + 2ℓ + n − k + 1

γ (ν + n; i, j, k − 1)

=
(n + 1)(ν + n)(ν + 2ℓ + n)

(ν + n + i)(ν + 2ℓ + n − i)
γ (ν + n + 1; i, j, k + 1)

+
(ν + i − 1)(2ℓ − i + 1)

(ν + n + i)(ν + 2ℓ + n − i)
γ (ν + n; i − 1, j, k)

+
(i + 1)(ν + 2ℓ − i − 1)

(ν + n + i)(ν + 2ℓ + n − i)
γ (ν + n; i + 1, j, k)

+
(ν + 2ℓ + n)(2ν + 2ℓ + n − 1)

(ν + n + i)(ν + 2ℓ + n − i)(ν + 2ℓ + n − 1)
γ (ν + n − 1; i, j, k − 1)

to be valid, where we have divided by the normalizing constant n! 0(ν + 2ℓ)/2n+1.
This identity is trivially true in case i + j ̸≡ k mod 2, since all six terms equal zero.
In the general case, we divide by γ (ν + n; i, j, k + 1) and the required identity
becomes an identity involving rational functions in the parameters. This rational
identity is checked (by computer algebra) to be valid. □
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The matrices G(ν)
r,m and F (ν)

k,n determined in Theorems 3.4 and 3.6 are related to
expansion and summation formulas, which we state below.

Corollary 3.8. The matrix-valued polynomials P̂ (ν)
n (x) satisfy the expansion

P̂ (ν)
n (x) =

n∧4ℓ∑
t=0

M (ν)
t P̂ (ν+2ℓ)

n−t (x), where M (ν)
t =

n∧2ℓ∑
k=0∨t−2ℓ

F (ν)
k,n G(ν+2ℓ)

t−k,n−k .

Corollary 3.8 follows immediately by first applying Theorem 3.6 and next
Theorem 3.4. Note that Corollary 3.8 is a matrix analog of a very specific case
of (2-3).

Corollary 3.9. The following double summation result holds: for s ∈ N with
0 ≤ s ≤ ⌊m/2⌋ and indices i, j , we have
2ℓ∑

p=0

m∧2ℓ∑
r=0∨2s−2ℓ

(G(ν)
r,m)i,p (F (ν)

2s−r,m−r )p, j

= δi, j
ν + 2ℓ + m − 2s

ν + 2ℓ

(ν)m−s

(ν + 2ℓ + 1)m−s

(−2ℓ)s

s!
.

Proof. First apply Theorem 3.4 and then Theorem 3.6 to deduce

C (ν)
m (x)1 =

m∧2ℓ∑
r=0

(m−r)∧2ℓ∑
k=0

G(ν)
r,m F (ν)

k,m−r C (ν+2ℓ)
m−p ;

this connection formula of the scalar Gegenbauer polynomials is known: see (2-3)
with N = 2ℓ. Comparing the two we conclude that

m∧2ℓ∑
r=0∨t−2ℓ

G(ν)
r,m F (ν)

t−r,m−r = 0

for t odd (which is already clear from the definitions in Theorems 3.4 and 3.6), and
m∧2ℓ∑

r=0∨2s−2ℓ

G(ν)
r,m F (ν)

2s−r,m−r =
ν + 2ℓ + m − 2s

ν + 2ℓ

(ν)m−s

(ν + 2ℓ + 1)m−s

(−2ℓ)s

s!
1

for t = 2s even. Taking the (i, j)-th entry we obtain the desired result. □

The identity in Corollary 3.9 gives an example of a matrix hypergeometric summa-
tion formula; we are not aware of its proof using classical hypergeometric identities.

4. Differential and difference equations related to matrix-valued Gegenbauer
polynomials

Since the matrix-valued Gegenbauer polynomials P̂ (ν)
n are symmetric by Corollary

3.7, we can take the transposed version of identities for the polynomials P̂ (ν)
n and

compare the resulting identity to the original one. This gives various identities for the



AN EVOLUTION OF MATRIX-VALUED ORTHOGONAL POLYNOMIALS 337

matrix-valued polynomials P̂ (ν)
n ; with the help of Theorem 3.6 we can rewrite those

in terms of recurrence relations for the matrices F (ν)
k,n . Therefore, the fact that P̂ (ν)

n

are symmetric polynomials gives a series of identities which can be viewed as mixed
differential-difference equations, where the differential and difference operators
can act from both sides. This procedure can be performed for any set of difference,
respectively differential, equations that occur in the left, respectively right, Fourier
algebras associated to the matrix-valued Gegenbauer polynomials, see [6] for the
definition. The results obtained do not have any classical analogs, since in the scalar
case all commutators vanish. The resulting identities have a true matrix nature.

In this section we outline this procedure for three explicit situations. First we con-
sider the three-term recursion for the matrix-valued Gegenbauer polynomials P̂ (ν)

n ,
and next we deal with the two matrix differential operators that have the matrix-
valued Gegenbauer polynomials P̂ (ν)

n as eigenfunctions, see [18, Theorems 2.3, 3.2].
We start with the three-term recursion (3-7), which is the basic example of an

element in the left Fourier algebra. The symmetry of the matrix-valued orthogonal
polynomials P̂ (ν)

n (x) shows that the polynomials also satisfy a three-term recurrence
relation with matrix multiplication by matrices depending on n from the right, i.e.,

(4-1) x P̂ (ν)
n (x) = P̂ (ν)

n+1(x) Â(ν)
n + P̂ (ν)

n (x)(B̂(ν)
n )t

+ P̂ (ν)
n−1(x)Ĉ (ν)

n ,

considering that the diagonal matrices Â(ν)
n and Ĉ (ν)

n are automatically symmetric.

Proposition 4.1. The symmetric matrix-valued Gegenbauer polynomials satisfy

[P̂ (ν)
n+1(x), Â(ν)

n ] + P̂ (ν)
n (x)(B̂(ν)

n )t
− B̂(ν)

n P̂ (ν)
n (x) + [P̂ (ν)

n−1(x), Ĉ (ν)
n ] = 0.

In turn, the matrices F (ν)
k,n defined in Theorem 3.6 satisfy

[F (ν)
k+1,n+1, Â(ν)

n ] + F (ν)
k,n (B̂(ν)

n )t
− B̂(ν)

n F (ν)
k,n + [F (ν)

k−1,n−1, Ĉ (ν)
n ] = 0,

with the convention that F (ν)
k,n = 0 for k > n ∧ 2ℓ or for k < 0, and Ĉ (ν)

0 = 0.

Entrywise the recursion for F (ν)
k,n boils down to

(( Â(ν)
n ) j, j − ( Â(ν)

n )i,i )(F (ν)
k+1,n+1)i, j + (B̂(ν)

n ) j, j−1(F (ν)
k,n )i, j−1

+ (B̂(ν)
n ) j, j+1(F (ν)

k,n )i, j+1 − (B̂(ν)
n )i,i−1(F (ν)

k,n )i−1, j − (B̂(ν)
n )i,i+1(F (ν)

k,n )i+1, j

+ ((Ĉ (ν)
n ) j, j − (Ĉ (ν)

n )i,i )(F (ν)
k−1,n−1)i, j = 0,

with the explicit matrix entries for Â(ν)
n , B̂(ν)

n and Ĉ (ν)
n recorded in (2-11), (3-7).

Proof. The first part follows by subtracting (3-7) from (4-1). Note that this is
a polynomial identity of degree n, since the leading coefficient D(ν)

n+1 of P̂ (ν)
n+1

commutes with Â(ν)
n as both are diagonal.
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The statement for the matrices F (ν)
k,n then follows by plugging Theorem 3.6 in

the identity from the first part. This procedure leads to an expansion in terms
of Gegenbauer polynomials C (ν+2ℓ)

m ; collecting the coefficients of a Gegenbauer
polynomial of fixed degree gives the result. □

Our next example arises from the second-order matrix differential operator of
hypergeometric type for which the matrix-valued Gegenbauer polynomials are
eigenfunctions. At the same time, the matrix-valued Gegenbauer polynomials are
eigenfunctions for a first-order matrix differential equation. These two matrix dif-
ferential operators are in the right Fourier algebra for the matrix-valued Gegenbauer
polynomials. We recall the operators explicitly from [18, Theorem 3.2].

The second-order matrix hypergeometric differential operator for which the
polynomials are eigenfunctions is given as follows, see [18, Theorems 2.3, 3.2],
where we switched to the notation D(ν) in order to avoid confusion with the diagonal
matrix D(ν)

n used in this paper:

(4-2) P (ν)
n ·D(ν)

= 3n(D(ν))P (ν)
n , 3n(D(ν)) = −n(2ℓ + 2ν + n)1 − V,

with

D(ν)
=

d2

dx2 (1 − x2)1 +
d

dx
(
C − x(2ℓ + 2ν + 1)1

)
− V,

C =

2ℓ−1∑
i=0

(2ℓ − i)Ei,i+1 +

2ℓ∑
i=1

i Ei,i−1, V = −

2ℓ∑
i=0

i(2ℓ − i)Ei,i .

It follows that

(4-3) P̂ (ν)
n ·D(ν)

= D(ν)
n 3n(D(ν))(D(ν)

n )−1 P̂ (ν)
n = 3n(D(ν))P̂ (ν)

n ,

since D(ν)
n and 3n(D(ν)) commute, being diagonal matrices.

Proposition 4.2. In the notation above, the symmetric matrix-valued Gegenbauer
polynomials satisfy

dP̂ (ν)
n

dx
(x)C − C t dP̂ (ν)

n

dx
(x) = −2[V, P̂ (ν)

n (x)].

In turn, the matrices F (ν)
k,n defined in Theorem 3.6 satisfy

F (ν)
k,n C−C t F (ν)

k,n =
1

ν + 2ℓ + n − k − 1
[F (ν)

k+1,n, V ]−
1

ν + 2ℓ + n − k + 1
[F (ν)

k−1,n, V ].

Observe that the first identity of Proposition 4.2 is a matrix-valued polynomial
identity of degree n − 1, since the leading coefficient of P̂ (ν)

n is diagonal and
commutes with V . Furthermore, notice that the participating matrices C and V
depend on neither degree n nor parameter ν.
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Entrywise the recursion for F (ν)
k,n in Proposition 4.2 reads

V j, j − Vi,i

ν + 2ℓ + n − k − 1
(F (ν)

k+1,n)i, j −
V j, j − Vi,i

ν + 2ℓ + n − k + 1
(F (ν)

k−1,n)i, j

= C j−1, j (F (ν)
k,n )i, j−1 + C j+1, j (F (ν)

k,n )i, j+1 − Ci−1,i (F (ν)
k,n )i−1, j − Ci+1,i (F (ν)

k,n )i+1, j ,

with the explicit matrix entries for C and V given above. Again, C and V are
independent of n and ν.

Proof. Equation (4-3) translates into

d2P̂ (ν)
n

dx2 (x)(1 − x2)1 +
dP̂ (ν)

n
dx

(x)
(
C − x(2ℓ + 2ν + 1)1

)
− P̂ (ν)

n (x)V
= 3n(D(ν))P̂ (ν)

n (x).

We take the transpose of this identity using the fact that V and 3(D(ν)) are diagonal,
and therefore symmetric, and then subtract one from the other, keeping in mind
that multiples of the identity 1 commute with any matrix:

dP̂ (ν)
n

dx
(x)C − C t dP̂ (ν)

n
dx

(x) − [P̂ (ν)
n (x), V ] = [3n(D(ν)), P̂ (ν)

n (x)].

The commutator on the right side does not depend on n in the eigenvalue 3n(D(ν)),
as all the dependence on n in 3(D(ν)) is in the multiple −n(2ℓ+ 2ν + n)1 of the
identity; it reduces to −[V, P̂ (ν)

n (x)] and gives the first identity of the proposition.
For the second identity we implement Theorem 3.6 in the identity just proven

and use d
dx C (ν+2ℓ)

n−k (x) = 2(ν + 2ℓ)C (ν+2ℓ+1)
n−k−1 (x) (see, e.g., [1; 2; 13; 15]) to obtain

n∧2ℓ∑
k=0

(F (ν)
k,n C − C t F (ν)

k,n ) 2(ν + 2ℓ)C (ν+2ℓ+1)
n−k−1 (x) = −2

n∧2ℓ∑
k=0

[V, F (ν)
k,n ] C (ν+2ℓ)

n−k (x).

The case N = 1 of (2-3) leads to

(4-4)
ν + 2ℓ + n − k

ν + 2ℓ
C (ν+2ℓ)

n−k (x) = C (ν+2ℓ+1)
n−k (x) − C (ν+2ℓ+1)

n−k−2 (x)

and to an expansion in Gegenbauer polynomials C (ν+2ℓ+1)
n−k on the right-hand side.

It remains to compare the coefficients in Gegenbauer polynomials C (ν+2ℓ+1)
n−k on

both sides to deduce the second identity in the proposition. □

We perform the same procedure for the first-order matrix differential operator E (ν)

contained in the right Fourier algebra. The operator is given by

(4-5) P (ν)
n · E (ν)

= 3n(E (ν))P (ν)
n , 3n(E (ν)) = A(ν)

0 + nB1,

where

E (ν)
=

d
dx

(x B1 + B0) + A(ν)
0 , 2ℓB0 =

2ℓ−1∑
i=0

(2ℓ − i)Ei,i+1 −

2ℓ∑
i=1

i Ei,i−1,

ℓB1 = −

2ℓ∑
i=0

(ℓ − i)Ei,i , ℓA(ν)
0 =

2ℓ∑
i=0

(
(ℓ + 1)(i − 2ℓ) − (ν − 1)(ℓ − i)

)
Ei,i .
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Then the symmetric Gegenbauer polynomials satisfy

(4-6) P̂ (ν)
n · E (ν)

= D(ν)
n 3n(E (ν))(D(ν)

n )−1 P̂ (ν)
n = 3n(E (ν))P̂ (ν)

n ,

since D(ν)
n and 3n(E (ν)) commute, being diagonal matrices.

Proposition 4.3. The symmetric matrix-valued Gegenbauer polynomials satisfy

x
[

dP̂ (ν)
n

dx
(x), B1

]
+

dP̂ (ν)
n

dx
(x)B0 − B t

0
dP̂ (ν)

n

dx
(x) = [2A(ν)

0 + nB1, P̂ (ν)
n (x)].

Furthermore, the matrices F (ν)
k,n defined in Theorem 3.6 satisfy[ F (ν)

k−2,n

ν + 2ℓ + n − k + 2
, (2 − k + 2ν + 4ℓ)B1 − 2A(ν)

0

]
+

[ F (ν)
k,n

ν + 2ℓ + n − k
, (2n − k)B1 + 2A(ν)

0

]
= 2(B t

0 F (ν)
k−1,n − F (ν)

k−1,n B0).

Note that the first identity of Proposition 4.3 is a matrix-valued polynomial
identity of degree n − 1, since the leading coefficient of P̂ (ν)

n is diagonal and
commutes with B1 and A(ν)

0 . We refrain from writing the second identity in terms
of matrix coefficients.

Proof. Note that (4-6) means

dP̂ (ν)
n

dx
(x)(x B1 + B0) + P̂ (ν)

n (x) A(ν)
0 = 3n(E (ν))P̂ (ν)

n (x);

we take the transpose of this identity taking into account that B1, A(ν)
0 and 3(E (ν))

are diagonal, and therefore symmetric. Subtracting one from the other gives

x
[

dP̂ (ν)
n

dx
(x), B1

]
+

dP̂ (ν)
n

dx
(x)B0 − B t

0
dP̂ (ν)

n

dx
(x) + [P̂ (ν)

n (x), A(ν)
0 ]

= [3n(E (ν)), P̂ (ν)
n (x)].

It remains to collect the two commutators to obtain the first identity. Using it
together with Theorem 3.6, plugging in the derivative of the scalar Gegenbauer
polynomial and applying the connection formula (4-4) leads to

n∧2ℓ∑
k=0

[F (ν)
k,n , B1] 2xC (ν+2ℓ+1)

n−k−1 (x) +

n∧2ℓ∑
k=0

(F (ν)
k,n B0 − B t

0 F (ν)
k,n ) 2C (ν+2ℓ+1)

n−k−1 (x)

=

n∧2ℓ∑
k=0

[2A(ν)
0 + nB1, F (ν)

k,n ]

ν + 2ℓ + n − k

(
C (ν+2ℓ+1)

n−k (x) − C (ν+2ℓ+1)
n−k−2 (x)

)
.
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Finally, we use the three-term recursion (2-6) for the scalar Gegenbauer polyno-
mials to write both sides as expansions in terms of C (ν+2ℓ+1)

p (x); comparing the
coefficients of these expansions gives us the second identity of the proposition. □

5. Generating function for matrix-valued Gegenbauer polynomials

Several generating functions are known for the scalar Gegenbauer polynomials; they
depend on a related normalization factor. The “pure” generating function is simply

(5-1)
∞∑

n=0

C (λ)
n (x) tn

=
1

(1 − 2xt + t2)λ
.

In contrast, generating functions are not known for matrix-valued orthogonal polyno-
mials, in particular, for the matrix-valued Gegenbauer polynomials that we discuss.
In this short section we explain how the explicit formulas in Theorem 3.6 allow
one to write down the generating function for suitably normalized matrix-valued
Gegenbauer polynomials when ℓ is fixed. For this purpose consider the polynomials

P̃ (ν)
n (x) =

2ℓ∑
k=0

F̃ (ν)
k,n · C (ν+2ℓ)

n−k (x),

where
(F̃ (ν)

k,n )i, j = 0(ν + n + 2)(ν + n + 1)γ (ν + n; i, j, k).

This normalization of the Gegenbauer polynomials does not affect their symmetry
and is chosen in such a way that the entries of new matrices F̃ (ν)

k,n are polynomials
in ν +n, in fact of degree ⌊ℓ⌋; indeed, the latter integer counts the maximal number
of scalar Gegenbauer polynomials that show up in a linear combination of every
entry of the matrix P̃ (ν)

n (x). Notice that from (5-1) we have
∞∑

n=0

(λ + n) j C (λ)
n (x)tn

= t−λ

∞∑
n=0

(λ + n) j C (λ)
n (x)tλ+n

= t−λ

(
t

d
dt

)j ∞∑
n=0

C (λ)
n (x)tλ+n

= t−λ

(
t

d
dt

)j( t
1 − 2xt + t2

)λ

;

for example,
∞∑

n=0

(λ + n)C (λ)
n (x)tn

=
λ(1 − t2)

(1 − 2xt + t2)λ+1 .

Using these formulas for j = 0, 1, . . . , ⌊ℓ⌋ we can write explicitly the generating
series

M(x; t) =

∞∑
n=0

P̃ (ν)
n (x)tn
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for every particular choice of ℓ. We will limit ourselves to the illustration for ℓ = 1,
when the Gegenbauer polynomials are 3 × 3 matrices. In this case we obtain

F̃ (ν)
0,n =

λ − 1 0 0
0 2λ − 4 0
0 0 λ − 1

∣∣∣∣∣∣
λ=(ν+2)+n

,

F̃ (ν)
1,n =

 0 −2λ 0
−2λ 0 −2λ

0 −2λ 0

∣∣∣∣∣∣
λ=(ν+2)+(n−1)

,

F̃ (ν)
2,n =

 0 0 λ + 1
0 2λ + 4 0

λ + 1 0 0

∣∣∣∣∣∣
λ=(ν+2)+(n−2)

.

Therefore, the generating function of the 3 × 3 Gegenbauer polynomials reads

M(x; t) =

1 0 0
0 2 0
0 0 1

 ∞∑
n=0

((ν + 2) + n)C (ν+2)
n (x)tn

−

1 0 0
0 4 0
0 0 1

 ∞∑
n=0

C (ν+2)
n (x) tn

− 2t

0 1 0
1 0 1
0 1 0

 ∞∑
n=1

((ν + 2) + (n − 1))C (ν+2)
n−1 (x)tn−1

+ t2

0 0 1
0 2 0
1 0 0

 ∞∑
n=2

((ν + 2) + (n − 2))C (ν+2)
n−2 (x)tn−2

+ t2

0 0 1
0 4 0
1 0 0

 ∞∑
n=2

C (ν+2)
n−2 (x)tn−2

=

1 0 0
0 2 0
0 0 1

 (ν + 2)(1 − t2)

(1 − 2xt + t2)ν+3 −

1 0 0
0 4 0
0 0 1

 1
(1 − 2xt + t2)ν+2

−

0 1 0
1 0 1
0 1 0

 2(ν + 2)t (1 − t2)

(1 − 2xt + t2)ν+3

+

0 0 1
0 2 0
1 0 0

 (ν + 2)t2(1 − t2)

(1 − 2xt + t2)ν+3 +

0 0 1
0 4 0
1 0 0

 t2

(1 − 2xt + t2)ν+2 ,

so that M(x; t) · (1 − 2xt + t2)ν+3 is a 3 × 3 matrix with entries from Z[ν, x, t].
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The computation shows that, for general ℓ > 0, the generating function M(x; t)
is a (2ℓ+ 1)× (2ℓ+ 1) matrix multiple of the generating function (5-1) with λ =

ν+2ℓ+⌊ℓ⌋, whose all entries are polynomials in ν, x and t with integer coefficients.

6. Zeros of matrix-valued Gegenbauer polynomials

It is common to understand zeros of matrix-valued polynomials as those of their
determinants, see [7] for further discussion. Such zeros serve as a natural analog of
those for scalar polynomials: in the case of matrix-valued orthogonal polynomials
for the measure supported on a real interval, their determinants have all zeros on
the (internal part of the) interval (of multiplicities that do not exceed the size of the
matrix); see [10, Theorem 1.1; 11, Corollary 4.4]. For our matrix-valued Gegenbauer
polynomials, the support of the measure is the interval [−1, 1], and hence all the
zeros of their determinants lie in the interior of this interval (and are symmetric with
respect to the origin). Theorem 3.6 provides us with access to individual entries
of these matrix-valued polynomials, and we report on our findings in this section.
At the moment, these considerations do not seem to provide any particular insight
on a connection between entrywise zeros and the zeros of the determinant of the
matrix-valued polynomial. They may be part of a different analytic phenomenon
that shows up in the matrix-valued setting. On the other hand, there is a clear interest
in zeros of suitable linear combinations of scalar orthogonal polynomials, see, e.g.,
Beardon and Driver [4] and Durán [9]. The linear combinations of Gegenbauer
polynomials arising as entries of the matrix-valued Gegenbauer polynomials for
which we study the structure of the zeros give intriguing examples, which are
typically outside the classes studied in [4; 9].

For the clarity of exposition in this section, we introduce the notion of echelon
for entries of an (2ℓ + 1) × (2ℓ + 1)-matrix (ai j )0≤i, j≤2ℓ. This corresponds to
a “distance of the entry ai j to the boundary of the matrix”, given explicitly by
echℓ(i, j) = 1 + min{i, 2ℓ − i, j, 2ℓ − j}. For example, entries located in the first
or last rows, or in the first or last columns are referred to as being from the “first
echelon”: if i ∈ {0, 2ℓ} or j ∈ {0, 2ℓ} then echℓ(i, j) = 1.

The binomial factor(
2ℓ

k

)(
k

1
2(k + i − j)

)(
2ℓ − k

1
2(i + j − k)

)
in the definition of γℓ(ν; i, j, k) dictates the presence of at most echℓ(i, j) polynomi-
als C (ν+2ℓ)

m (x) in the linear combination expressing the entry (P̂ (ν)
n (x))i, j . In partic-

ular, the entries from the “first echelon” (when echℓ(i, j)= 1) are multiples of corre-
sponding scalar Gegenbauer polynomials, so that their zeros are real and lie on the in-
terval (−1, 1). They even inherit the zero interlacing property when we consider the
same first-echelon entry of two consecutive matrix-valued Gegenbauer polynomials.
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The zeros of the entries from the “second echelon” (when echℓ(i, j) = 2) are
also real and belong to the measure support interval [−1, 1]. To see this, notice
that these entries are always linear combinations of C (λ)

m (x) and C (λ)
m−2(x), where

λ = ν + 2ℓ, with coefficients of the same sign. On the other hand, the two scalar
Gegenbauer polynomials in such combinations can be translated into consecutive
Jacobi polynomials1 J (α,β)

n (x) with the help of expressions

C (λ)
2n (x)=

(λ)n( 1
2

)
n

J (λ−
1
2 ,− 1

2)
n (2x2

−1) and C (λ)
2n+1(x)=

(λ)n+1( 1
2

)
n+1

x J (λ−
1
2 , 1

2)
n (2x2

−1).

Finally, the zeros of two consecutive Jacobi polynomials (labeled by the same pair
of parameters (α, β)) lie on the interval (−1, 1) and interlace, so that the zeros of
their linear combination with nonnegative coefficients lie on the same interval by
the Hermite–Kakeya–Obreschkoff theorem (see, for example, [24, Theorem 6.3.8]
or [22, Proposition 2.10] for a more general statement when multiple zeros and
nonstrict interlacing are allowed). This justifies the location of zeros of entries
(P̂ (ν)

n (x))i, j with echℓ(i, j) = 2.

Remark 6.1. For the middle (1, 1)-entry in the 3 × 3 case (ℓ = 1), Theorem 3.6
gives the following explicit expression:

(P̂ (ν)
n (x))1,1 =

(ν + n + 2) n! 0(ν + 2)

2n−1(ν + n + 1)20(ν + n)
·

(
C (ν+2)

n (x)

ν + n + 2
+

C (ν+2)
n−2 (x)

ν + n

)
,

so that the polynomial is proportional to the sum C̃ (ν+2)
n (x) + C̃ (ν+2)

n−2 (x), where
C̃ (λ)

n (x) = C (λ)
n (x)/(λ+ n). Though the argument from the last paragraph explains

why the zeros of C̃ (λ)
n (x)+ C̃ (λ)

n−k(x) lie on the interval −1 < x < 1 for k = 1 and 2,
experimentally we have observed that this is also the case for other choices of shift
k ∈ Z.

The first case when the “third echelon” shows up is the middle (2, 2)-entry of
the 5 × 5 Gegenbauer polynomials (ℓ = 2); we get

(P̂ (ν)
n (x))2,2

=
3(ν + n + 4) n! 0(ν + 4)

2n−10(ν + n)

×

(
C (ν+4)

n (x)

(ν + n + 2)2(ν + n + 3)2(ν + n + 4)

+
4C (ν+4)

n−2 (x)

(ν +n +1)2(ν +n +2)(ν +n +3)2 +
C (ν+4)

n−4 (x)

(ν +n)(ν +n +1)2(ν +n +2)2

)
.

1They are usually called P(α,β)
n (x) but we try to avoid a conflicting notation with our matrix-valued

Gegenbauer polynomials.
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Figure 1. Zeros of the middle entry (P̂ (3)

30 (x))ℓ,ℓ for ℓ = 2 (left), ℓ = 4
(center) and ℓ = 6 (right).

The structure of zeros of these polynomials is somewhat peculiar: There is one
zero x = 0 for n = 1; then a pair of purely imaginary (conjugate) zeros for n = 2;
then another pair and x = 0 for n = 3. Beyond this n we start witnessing real
zeros (always on the interval −1 < x < 1) and a pair of imaginary conjugates. The
real zeros interlace when passing from n − 1 to n, while the upper imaginary zero
increase (up to a certain constant strictly less than 1) with n.

Similar structures are present for “higher echelons” when more pairs of purely
imaginary zeros come up, while all other zeros remain real — see Figure 1 for
selected instances. So far we have not figured out reasons of this behavior. Through
a complicated route, our discussions of this phenomenon led us to consider general
linear combinations of scalar orthogonal polynomials and finally resulted in a
separate project — the details of this side investigation can be found in [20].

We have not explored carefully the theme of zero loci of individual entries for
other known families of symmetrizable orthogonal polynomials. But the peculiar
structure of zeros seems to persist, for instance, in “randomly chosen” examples of
matrix-valued Hermite polynomials from [14]; the fact that they can be normalized
as symmetric is numerically supported in all these examples. At the same time, we
do not expect the zero location to be a “universal” phenomenon. As has been pointed
out to us by Arno Kuijlaars, the off-diagonal entries of matrix-valued orthogonal
polynomials can have a very exotic distribution already in 2×2 situations; examples
arising from a beautiful combinatorics of periodic hexagon tilings with period 2 are
discussed in detail in [12] — the off-diagonal zeros follow a quite unexpected pattern.

7. Matrix matters and discussion

The explicit connection formulas for the matrix-valued and scalar Gegenbauer
polynomials in Theorems 3.4 and 3.6 raise a question about how general this
phenomenon is for matrix-valued orthogonal polynomials. They also suggest an
approach to look for new families of matrix-valued polynomials by imposing the
length in such expansions to depend only on the matrix size but not on the degree.
Decompositions of this type, in particular Theorem 3.6, hint at the possibility to



346 ERIK KOELINK, PABLO ROMÁN AND WADIM ZUDILIN

investigate asymptotics of matrix-valued orthogonal polynomials using known ones
for their scalar bases. These formulas also offer numerous further directions for
study and applications of matrix-valued polynomials.

The expressions in Theorem 3.6 allow one to pursue analysis of a related
Padé problem for the matrix-valued generating function of the moments of the
weight (2-7). The corresponding theoretical setup goes in complete parallel with the
scalar version [8]. This gives room to potential applications of these matrix-valued
orthogonal polynomials in number theory, to arithmetic properties of the values of
the generating function at rationals — the values that can be viewed as both matrices
and entrywise. This arithmetic direction seems to be under-explored at the moment.

It would be also of great interest to understand the new differential-difference
structure for the matrix-valued Gegenbauer polynomials given in Section 4 more
conceptually. We stress on the fact that it completely degenerates in the scalar case
(for 1 × 1 matrices), so that it does not represent any classically familiar setting.

We are confident that the mathematics story of this note will continue in diverse —
and quite remarkable! — directions.
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DEFECT RELATION OF n + 1 COMPONENTS
THROUGH THE GCD METHOD

MIN RU AND JULIE TZU-YUEH WANG

We study the defect relation through the GCD method. In particular, among
other results, we extend the defect relation result of Chen, Huynh, Sun and
Xie (2025) to moving targets. The truncated defect relation is also studied.
Furthermore, we obtain the degeneracy locus, which can be determined
effectively and is independent of the maps under the consideration.

1. Motivation

Let f : C → Pn(C) be a holomorphic map. It is known that (see [10; 14; 15])
if f (C) omits n + 2 smooth hypersurfaces D j , 1 ≤ j ≤ n + 2, of Pn(C), where
D := D1 + · · · + Dn+2 is located in general position, then f must be algebraically
degenerate (that is, f (C) is contained in a proper subvariety of Pn(C)). In [11],
J. Noguchi, J. Winkelmann, and K. Yamanoi showed that the number n + 2 of
the omitting hypersurfaces could be reduced to n + 1 when deg D ≥ n + 2. Their
proof relies on their earlier result for holomorphic maps from C in the semiabelian
variety A := (C∗)n , which is stated as follows.

Theorem A [12]. Let D be an effective divisor on A := (C∗)n . Let f : C → A
be an algebraically nondegenerate holomorphic map. Then there exists a smooth
compactification of A independent of f , such that, for any ϵ > 0,

(1-1) N f (D, r) − N (1)
f (D, r) ≤exc ϵT f,D(r).

Using the above theorem, Noguchi, Winkelmann, and Yamanoi showed that one
can reduce the number of omitting divisors by one (i.e., from n + 2 to n + 1). Their
argument is similar to ours described in Section 5. We briefly outline the argument
here: Assume that D j = {Q j = 0} and f (C) omits D j for 1 ≤ j ≤ n + 1. Consider
a morphism π : Pn(C) → Pn(C) given by x 7→ [Qa1

1 (x) : · · · : Qan+1
n+1 (x)], where

The research of Min Ru is supported in part by Simon Foundations grant award #531604 and #521604.
Wang is supported in part by Taiwan’s NSTC grant 113-2115-M-001-011-MY3.
MSC2020: primary 30D35; secondary 32H30, 32Q45.
Keywords: defect, hyper surfaces, moving targets, GCD methods.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2025.338-2
https://doi.org/10.2140/pjm.2025.338.349
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


350 MIN RU AND JULIE TZU-YUEH WANG

ai := lcm(deg Q1, . . . , deg Qn+1)/deg Qi . Let

G := det
(

∂ Qi

∂x j

)
1≤i≤n+1

0≤ j≤n

∈ C[x0, . . . , xn].

By taking out a nonconstant irreducible factor G̃ of G in C[x0, . . . , xn], one produces
an additional hypersurface D̃n+2 = {G̃ = 0} in Pn(C). Furthermore, one can show
that D1, . . . , Dn+1, D̃n+2 are located in general position, and, by using (1-1), one
can show that N f (D̃n+2, r) ≤exc ϵT f (r). Thus we can apply the second main
theorem obtained by the first author [15] to get the conclusion.

In a recent manuscript by Z. Chen, D. T. Huynh, R. Sun and S. Y. Xie (see [1]),
the result of Noguchi, Winkelmann, and Yamanoi mentioned above was further
extended to the following defect relation.

Theorem B (Chen, Huynh, Sun and Xie [1]). Let {Di }
n+1
i=1 be n + 1 hypersurfaces

in Pn(C) with total degree
∑n+1

i=1 deg Di ≥ n + 2 satisfying one precise generic
condition (see (4.3) in [1]). Then, for every algebraically nondegenerate entire
holomorphic curve f : C → Pn(C), the following defect relation holds:

n+1∑
i=1

δ f (D j ) < n + 1.

In the omitting case, we have that Q j ( f ) is nowhere zero for all 1 ≤ j ≤ n + 1
where D j ={Q j = 0}, so that one can reduce it to the semiabelian variety case (C∗)n

by considering

F :=

(
Q1( f )

Qn+1( f )
, . . . ,

Qn( f )

Qn+1( f )

)
∈ (C∗)n,

assuming that deg Q1 =· · ·=deg Qn+1. Hence Theorem A could be applied directly.
However, in their “proof-by-contradiction” argument of the proof of Theorem B, the
condition that

∑n+1
i=1 δ f (D j ) = n+1 only implies that N f (r, Di ) = o(T f (r)) (rather

than f (C) omitting D j ). To overcome this difficulty, they used the “parabolic
Nevanlinna theory” developed by M. Păun and N. Sibony (see [13]), by considering
the holomorphic mapping f : Y → Pn(C) with Y := C\ f −1(D), which leads to the
omitting case after restricting f to Y . The key ingredient in their paper is to show
that Y is an open parabolic Riemann surface with exhaustion function σ satisfying

lim sup
r→∞

Xσ (r)

T f (r)
= 0.

While the method of Chen, Huynh, Sun, and Xie is very interesting and creative,
it still relies on the result of Noguchi, Winkelmann, and Yamanoi (Theorem A),
which greatly depends on the geometry of semiabelian varieties. For example, it is
very hard to generalize the result to the moving target case.



DEFECT RELATION OF n + 1 COMPONENTS THROUGH THE GCD METHOD 351

This paper studies the defect relation through the GCD method. We don’t use
Theorem A. Indeed, we give and prove a variant and more general version of
Theorem A by using the GCD theorem established by Aaron Levin and the second
author [9]. This allows us to get a much more general defect relation (for example,
the moving target case). The method was initiated by P. Corvaja and U. Zannier
(see [2]), where they studied the n = 2 case. After Aaron Levin and the second
author [9] established the general GCD theorem, it has been successfully used
in a series papers by the second author and her coauthors; see [4; 5; 6; 7]. The
purpose of this paper is to further use the ideas developed in [4; 5; 6; 7] to extend
the defect relation, for example, to the moving target case, by using the GCD
method. Furthermore, the truncated defect relation is also studied. We also pay
attention on the degenerate locus. In particular, we can relax the condition that f is
algebraically nondegenerate to the condition that the image of f is not contained
in a subvariety Z which can be effectively predetermined and is independent of f ,
in the spirit of the strong Green–Griffiths–Lang conjecture.

2. Statement of the results

We use the standard notation in Nevanlinna theory (see [16] or [4; 5; 6; 7]). Let
g = (g0, . . . , gn) : C → Pn(C) be a holomorphic curve, where g0, . . . , gn are entire
functions without common zero. We recall that the small function field with respect
to g is given by

(2-1) K g := {a : a is a meromorphic function on C with Ta(r) = o(Tg(r))}.

Let K be a subfield of the field M of meromorphic functions. We say that
Z is a Zariski closed subset in Pn defined over K if there exists a nonconstant
homogeneous polynomial F ∈ K [x0, . . . , xn] such that

Z = {[ f0 : · · · : fn] ∈ Pn(M) : F( f0, . . . , fn) ≡ 0}.

We say a holomorphic map g : C → Pn is not contained in Z if F(g) is not
identically zero. In particular, when K = C, the Zariski closed set is defined
over C, that is, F ∈ C[x0, . . . , xn], and g is not contained in Z is equivalent
to F(g) ̸≡ 0. For each homogeneous polynomial G =

∑
I aI x I

∈ K [x0, . . . , xn],
where I = (i0, . . . , in)∈Zn+1

≥0 and x I
= x i0

0 · · · x in
n , we define G(z0) :=

∑
I aI (z0)x I

if all the coefficients of G are holomorphic at z0 and do not vanish simultaneously
at z0. Let G1, . . . , Gq be nonconstant homogeneous polynomials in K [x0, . . . , xn].
We say that they are in weakly general position if there exists a point z0 ∈ C such
that each Gi (z0), 1 ≤ i ≤ q , can be defined as above and the union of the zero loci
of Gi (z0) (as a divisor in Pn(C)), 1 ≤ i ≤ q , is in general position.
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Theorem 1. Let K be a subfield of the field M of meromorphic functions. Let F be
a nonconstant homogeneous polynomial in K [x0, . . . , xn] with no monomial factors
and no repeated factors. Denote by Hi , 0 ≤ i ≤ n, the coordinate hyperplanes
of Pn(C). Then, for any ϵ > 0, there exists a proper Zariski closed subset Z of Pn

defined over K such that for any nonconstant holomorphic curve g : C → Pn(C)

with K ⊂ K g , Ng(Hi , r)= o(Tg(r)) for 0 ≤ i ≤ n and g not contained in Z , we have

(2-2) Ng([F = 0], r) − N (1)
g ([F = 0], r) ≤exc ϵTg(r).

If we assume furthermore that the hypersurface defined by F in Pn and the coordi-
nate hyperplanes are in weakly general position, then

(2-3) N (1)
g ([F = 0], r) ≥exc (deg F − ϵ) · Tg(r).

Moreover, the exceptional set Z can be expressed as the zero locus of a finite set
6 ⊂ K [x0, . . . , xn] with the following properties:

(Z1) 6 depends on ϵ and F only and can be determined explicitly;

(Z2) the degree of each polynomial in 6 can be effectively bounded from above in
terms of ϵ, n, and the degree of F.

We apply Theorem 1 to derive the following version of the strong Green–Griffiths–
Lang conjecture for moving targets.

Theorem 2. Let K be a subfield of the field of meromorphic functions. Let Fi ,
1 ≤ i ≤ n + 1, be homogeneous irreducible polynomials of positive degree in
K [x0, . . . , xn] such that

∑n+1
i=1 deg Fi ≥ n + 2. Assume that there exists z0 ∈ C

such that all the coefficients of all Fi , 1 ≤ i ≤ n + 1, are holomorphic at z0

and the zero locus of Fi evaluated at z0, 1 ≤ i ≤ n + 1, intersect transversally.
Then there exists a nontrivial homogeneous polynomial B ∈ K [x0, . . . , xn] such
that for any nonconstant holomorphic map f : C → Pn(C) with K ⊂ K f and
NFi ( f )(0, r) = o(T f (r)) for 1 ≤ i ≤ n + 1, we have B( f ) ≡ 0. Furthermore, B can
be determined effectively and its degree can be effectively bounded from above in
terms of n, and the degrees of Fi , 1 ≤ i ≤ n + 1.

As a consequence, we obtain the following defect relation for moving targets.

Corollary 3 (defect relation for moving targets). With the same notation and
assumptions as in Theorem 2, let Di = [Fi = 0] for 1 ≤ i ≤ n + 1. Then for any
nonconstant holomorphic map f : C → Pn(C) with K ⊂ K f and B( f ) ̸≡ 0, the
following defect inequality holds:

n+1∑
i=1

δ f (Di ) < n + 1,
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where Di = [Fi = 0]. Additionally, if n = 2, then

3∑
i=1

δ
(1)

f (Di ) < 3,

where, for a divisor D with d = deg D,

δ
(1)

f (D) = 1 − lim sup
r→∞

N (1)
f (D, r)

dT f (r)
.

When K = C, the following strong defect relation improves Theorem B by giving
an explicit exceptional set and a truncated defect bound when n = 2.

Corollary 4. Let Di , 1 ≤ i ≤ n + 1, be n + 1 hypersurfaces in Pn(C), not all being
hyperplanes. Assume Di , 1 ≤ i ≤ n + 1, intersect transversally. Then there exists
a Zariski closed subset Z in Pn(C), which can be determined effectively and its
degree can be effectively bounded from above in terms of n, and the degree of Di ,
such that for any nonconstant holomorphic map f : C → Pn(C) whose image is
not contained in Z , the following defect inequality holds:

n+1∑
i=1

δ f (Di ) < n + 1.

Additionally, if n = 2, then
3∑

i=1

δ
(1)

f (Di ) < 3.

3. Some preliminaries and the GCD theorem

3.1. Preliminaries. We now introduce some basic notation and definitions from
Nevanlinna theory, and recall fundamental results. For further details, we refer the
reader to [16]. Let f be a meromorphic function, z ∈ C be a complex number, and
m be a positive integer. Define the valuation functions vz( f ) := ordz( f ),

v+

z ( f ) := max{0, vz( f )}, and v−

z ( f ) := −min{0, vz( f )}.

Let n f (∞, r) (respectively, n(m)
f (∞, r)) denote the number of poles of f in the

set {z : |z| ≤ r}, counting multiplicity (respectively, ignoring multiplicity larger
than m ∈ N). The associated counting function and truncated counting function
of f of order m at ∞ are

N f (∞, r) :=

∫ r

0

n f (∞, t) − n f (∞, 0)

t
dt + n f (∞, 0) log r,

N (m)
f (∞, r) :=

∫ r

0

n(m)
f (∞, t) − n(m)

f (∞, 0)

t
dt + n(m)

f (∞, 0) log r.
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For a ∈ C, the counting function and truncated counting function of f with respect
to a are defined as

N f (a, r) := N1/( f −a)(r, ∞) and N (m)
f (a, r) := N (m)

1/( f −a)(∞, r).

The proximity function m f (∞, r) is given by

m f (∞, r) :=

∫ 2π

0
log+

| f (reiθ )|
dθ

2π
,

where log+ x = max{0, log x} for x ≥ 0. The characteristic function is defined by

T f (r) := m f (∞, r) + N f (∞, r).

Let f1, . . . , fn be meromorphic functions with n ≥ 2. Define the local gcd
multiplicity function by

n( f1, . . . , fn, r) :=

∑
|z|≤r

min
1≤i≤n

{v+

z ( fi )}

and the associated gcd counting function by

Ngcd( f1, . . . , fn, r) :=∫ r

0

n( f1, . . . , fn, t) − n( f1, . . . , fn, 0)

t
dt + n( f1, . . . , fn, 0) log r.

Let f : C → Pn(C) be a holomorphic map and ( f0, . . . , fn) be a reduced
representation of f , i.e., f0, . . . , fn are entire functions on C without common
zeros. The Nevanlinna–Cartan characteristic function T f (r) is defined by

T f (r) =

∫ 2π

0
log max{| f0(reiθ )|, . . . , | fn(reiθ )|}

dθ

2π
.

Let D = [F = 0] be a divisor in Pn(C) defined by a homogeneous polyno-
mial F ∈ C[x0, . . . , xn]. The counting function with respect to D is defined
by N f (D, r) = NF( f )(0, r).

We will make use of the following elementary inequality (see [16]).

Proposition 5. Let f = ( f0, . . . , fn) : C → Pn(C) be holomorphic curve, where
f0, . . . , fn are entire functions without common zeros. Assume that f0 is not
identically zero. Then

T f j / f0(r) + O(1) ≤ T f (r) ≤

n∑
j=1

T f j / f0(r) + O(1).

Combining Proposition 5 with [17, Theorem 2.1], we obtain the following result.
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Theorem 6 [17, Theorem 2.1]. Let f0, . . . , fn be entire functions with no common
zeros. Assume that fn+1 is the holomorphic function such that

f0 + · · · + fn + fn+1 = 0.

If
∑

i∈I fi ̸= 0 for any proper subset I ⊂ {0, . . . , n + 1}, then

T f j / fi (r) ≤ T f (r) + O(1) ≤exc

n+1∑
i=0

N (n)
fi

(0, r) + O(log T f (r))

for any pair 0 ≤ i, j ≤ n, where f := ( f0, . . . , fn).

We will use the following version of the Hilbert Nullstellensatz, reformulated
from [8, Chapter IX, Theorem 3.4]. See also [3, Proposition 2.1; 18, Chapter XI].

Proposition 7. Let K be a subfield of the field of meromorphic functions. Let
{Qi }

n+1
i=1 be a set of homogeneous polynomials in K [x0, . . . , xn] in weakly general

position and with deg Q j = d j ≥ 1. Then there exist a positive integer s, an element
R ∈ K which is not identically zero and Pj i ∈ K [x0, . . . , xn], 1 ≤ i, j ≤ n +1, such
that, for each 0 ≤ j ≤ n,

x s
j · R =

n+1∑
i=1

Pj i Qi .

The following is a version of the Borel lemma for small functions. The proof
can easily be obtained with some slightly modifications from [4, Lemma 3.3].

Lemma 8. Let f0, . . . , fn be nontrivial entire functions with no common zero and
let f := ( f0, . . . , fn). Assume that

N (1)
fi

(0, r) = o(T f (r)) for 0 ≤ i ≤ n.

If f0, . . . , fn are linearly dependent over K f , then for each i ∈ {0, . . . , n} there
exists j ∈ {0, . . . , n} with j ̸= i such that fi/ f j ∈ K f .

3.2. The GCD theorem.

Theorem 9 (the GCD theorem). Let g0, g1, . . . , gn be entire functions without com-
mon zeros and let g = [g0 : g1 : · · · : gn]. Let F, G ∈ K g[x0, . . . , xn] be nonconstant
coprime homogeneous polynomials. Assume that one of the following holds:

(a) Ngi (0, r) = o(Tg(r)) for 0 ≤ i ≤ n;

(b) N (1)
gi (0, r) = o(Tg(r)) for 0 ≤ i ≤ n and one of the hypersurfaces defined

by G = 0 or F = 0 in Pn(K ) is in weakly general position with the n + 1
coordinate hyperplanes.
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Then, for any ϵ > 0, there exists a positive integer m independent of g such that we
have either

(3-1) Ngcd(F(g0, . . . , gn), G(g0, . . . , gn), r) ≤exc ϵTg(r),

or

(3-2) T(g1/g0)
m1 ···(gn/g0)mn (r) = o(Tg(r))

for some nontrivial tuple of integers (m1, . . . , mn) with |m1| + · · · + |mn| ≤ 2m.

For the convenience of later application, we state the following result for n = 1.

Proposition 10. Let g0, g1 be entire functions without common zeros and let
g = (g0, g1). Assume that g is not constant. Let F, G ∈ K g[x0, x1] be nonconstant
coprime homogeneous polynomials. Then

(3-3) Ngcd(F(g0, g1), G(g0, g1), r) ≤ o(Tg(r)).

Proof. Since F and G are coprime homogeneous polynomials in K g[x0, x1], we
may apply Proposition 7 to find an integer s, R ∈ K g \ {0} and Hi ∈ K g[x0, x1],
1 ≤ i ≤ 4, such that

x s
0 · R = H1 F + H2G and x s

1 · R = H3 F + H4G.(3-4)

Here, we may assume that Hi , 1 ≤ i ≤ 4, are homogeneous polynomials with degree
equal to s − deg F . By evaluating (3-4) at (g0, g1), we have

(3-5)
gs

0 · R = H1(g0, g1)F(g0, g1) + H2(g0, g1)G(g0, g1),

gs
1 · R = H3(g0, g1)F(g0, g1) + H4(g0, g1)G(g0, g1).

Since g0 and g1 have no common zeros, we observe that

(3-6) min{v+

z (F(g0, g1)), v
+

z (G(g0, g1))} ≤ v+

z (R) +

∑
α∈I

v−

z (α)

for each z ∈ C. Here I is the set of nontrivial coefficients of Hi , 1 ≤ i ≤ 4. Hence,

(3-7) Ngcd(F(g0, g1), G(g0, g1), r) ≤ NR(0, r) +

∑
α∈I

Nα(∞, r) ≤ o(Tg(r)),

as R and the coefficients of Fi are in K g . □

To prove Theorem 9, we use the following fundamental result by Levin and the
second author for n ≥ 2.

Theorem 11 [9, Theorem 5.7]. Let g0, g1, . . . , gn be entire functions without com-
mon zeros with n ≥ 2 and let g = [g0 : g1 : · · · : gn]. Let F, G ∈ K g[x0, x1, . . . , xn]

be coprime homogeneous polynomials of the same degree d > 0. Let I be the set of
exponents i such that x i appears with a nonzero coefficient in either F or G. Let
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m ≥ d be a positive integer. Suppose that {gi0
0 · · · gin

n : i0 + · · · + in = m} is linearly
independent over K g . Then, for any ϵ > 0, there is a positive integer L such that

(3-8) MNgcd(F(g),G(g),r)

≤exc cm,n,d

n∑
i=1

N (L)
gi

(0,r)+

(
m

n+1

(
m+n

n

)
−cm,n,d−M ′m

) n∑
i=1

Ngi (0,r)

+

(
m+n−2d

n

)
Ngcd({g i

}i∈I ,r)+

(
M ′mn+ϵm+

Mϵ

2

)
Tg(r)+o(Tg(r)),

where cm,n,d = 2
(m+n−d

n+1

)
−

(m+n−2d
n+1

)
, M = 2

(m+n−d
n

)
−

(m+n−2d
n

)
, and M ′ is an

integer of order O(mn−2), where ≤exc means the inequality holds for all r ∈ (0, ∞)

except for a set E of finite measure.

We note that M ′
:= dim K g[x0, . . . , xn]m/(F, G)m ≤ d2

(m+n−2
n−2

)
.

Proof of Theorem 9. Without loss of generality, we assume that deg F = deg G.
We first prove when n ≥ 2. Let ϵ > 0. To establish (3-1) or (3-2), we can assume
that ϵ is sufficiently small. We can choose a real C1 ≥ 1 independent of ϵ and g
such that m = C1ϵ

−1
≥ 2d,

M ′mn
M

≤
ϵ

4
, and

1
M

(
m

n + 1

(
m+n

n

)
− cm,n,d − M ′m

)
≤

ϵ

4(n + 1)
.(3-9)

We may assume that each gi is not identically zero; otherwise, (3-2) holds trivially.
Suppose that the set {gi0

0 · · · gin
n : i0 + · · · + in = m} is linearly independent over K g .

We aim at concluding (3-1) under assumption (a) or (b). Suppose (a) holds, i.e.,
Ngi (0, r) = o(Tg(r)) for 0 ≤ i ≤ n. Then (3-8) implies that

(3-10) Ngcd(F(g), G(g), r)≤exc

(
M ′mn

M
+ϵ

m
M

+
ϵ

2

)
Tg(r)+o(Tg(r))<ϵTg(r).

If (b) holds, then
N (L)

gi
(0, r) ≤ L N (1)

gi
(0, r) = o(Tg(r))

for 0 ≤ i ≤ n. The assumption that one of [G = 0] or [F = 0] is in weakly
general position with the n + 1 coordinate hyperplanes in Pn implies that the
set {(d, 0, . . . , 0), . . . , (0, . . . , 0, d)} is a subset of I . Since g0, . . . , gn are entire
function with no common zero, we have

Ngcd({g i
}i∈I , r) = 0

when (b) holds. Then by (3-8), (3-9) and that Ngi (0, r) ≤ Tg(r), we obtain (3-1).
Finally, if the set {gi0

0 · · · gin
n : i0 + · · · + in = m} is dependent over K g , then we

may apply Lemma 8 to derive that there exists a nontrivial n-tuple of integers
( j1, . . . , jn) with | j1| + · · · + | jn| ≤ 2m such that

T(g1/g0)
j1 ···(gn/g0) jn (r) = o(Tg(r)). □
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4. Proof of Theorem 1

4.1. Some lemmas. We recall some lemmas from [7].

Lemma 12. Let n ≥ 2 and let (m1, . . . , mn) be a nonzero vector in Zn with
gcd(m1, . . . , mn) = 1. Then there exist vi = (vi,1, . . . , vi,n) ∈ Zn for 1 ≤ i ≤ n − 1
such that

|vi, j | ≤ max{|m j |, 1} for 1 ≤ j ≤ n

and (m1, . . . , mn) together with the vi ’s form a basis of Zn .

Let k be a field and let q and r be positive integers. We write t := (t1, . . . , tq) and
x := (x1, . . . , xr ). For i = (i1, . . . , ir )∈Zr , define x i

= x i1
1 · · · x ir

r and t i
= t i1

1 · · · t ir
r .

For 6 ⊆ k[t], let Z(6) = {λ ∈ kq
: f (λ) = 0 for every f ∈ 6.}.

Lemma 13. Assume that k is infinite. Let f (t, x) ∈ k[t, x] be a polynomial with
no monomial factor and no repeated irreducible factor in k[t, x]. Then there exists
an effectively computable nonempty finite set 6 ⊂ k[t] \ {0} such that for every
λ ∈ kq

\Z(6), the polynomial f (λ, x) has no monomial or repeated irreducible
factor. Moreover, the cardinality of 6 and the degree of each polynomial in 6

can be bounded effectively in terms of q, r , and the degree of f . Furthermore,
if f (t, x) ∈ k0[t, x] for k0 being a subfield of k, then 6 is defined over k0.

4.2. Preliminary theorem. Let g = (g0, . . . , gn), where gi ̸≡ 0, 0 ≤ i ≤n, are entire
functions without common zeros. Let ui = gi/g0, for 1 ≤ i ≤ n. We observe that

(4-1) max
1≤ j≤n

{Tu j (r)} ≤ Tg(r) ≤ n max
1≤ j≤n

{Tu j (r)},

and

(4-2) Nui (0, r) + Nui (∞, r) ≤ Ngi (0, r) + Ng0(0, r)

for each 1 ≤ i ≤ n.
Recall that

K g := {a : a is a meromorphic function on C with Ta(r) ≤ o(Tg(r))},

which is the field of meromorphic functions of slow growth with respect to g.
We note that a′

∈ K g if a ∈ K g . Furthermore, u′

i/ui ∈ K g if

N (1)
ui

(0, r) + N (1)
ui

(∞, r) ≤ o
(

max
1≤ j≤n

{Tu j (r)}
)
.

Let x := (x1, . . . , xn) and u = (u1, . . . , un). For i = (i1, . . . , in) ∈ Zn , we let
x i

:= x i1
1 · · · x in

n and ui
:= ui1

1 · · · uin
n . For a nonconstant polynomial

F(x) =

∑
i

ai x i
∈ K g[x] := K g[x1, . . . , xn],
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we define

(4-3) Du(F)(x) :=

∑
i

(ai ui )′

ui x i
=

∑
i

(
a′

i + ai ·

n∑
j=1

i j
u′

j

u j

)
x i

∈ K g[x].

A direct computation shows that

(4-4) F(u)′ = Du(F)(u),

and that the product rule

(4-5) Du(FG) = Du(F)G + FDu(G)

holds for F, G ∈ K g[x].

Lemma 14 [5, Lemma 3.1]. Let F be a nonconstant polynomial in K g[x] with no
monomial factors and no repeated factors. Assume that

N (1)
ui

(0, r) + N (1)
ui

(∞, r) = o
(

max
1≤ j≤n

{Tu j (r)}
)

for each 1 ≤ i ≤ n. Then F and Du(F) are coprime in K g[x] unless there exists
a nontrivial tuple of integers (m1, . . . , mn) with

∑n
i=1 |mi | ≤ 2 deg F such that

Tu
m1
1 ···umn

n
(r) = o

(
max1≤ j≤n{Tu j (r)}

)
.

We now state a preliminary theorem in affine form.

Theorem 15. Let K be a subfield of the field of meromorphic functions. Let G
be a nonconstant polynomial in K [x1, . . . , xn] with no monomial factors and no
repeated factors. Assume one of the following holds:

(a) Nui (0, r) + Nui (∞, r) = o
(
max1≤ j≤n{Tu j (r)}

)
for each 1 ≤ i ≤ n, or

(b) N (1)
ui (0, r) + N (1)

ui (∞, r) = o
(
max1≤ j≤n{Tu j (r)}

)
for each 1 ≤ i ≤ n, and that

[G = 0] and the n + 1 coordinate hyperplanes are in weakly general position in Pn .

For any ϵ > 0, there exists a positive integer m such that for any n-tuple of mero-
morphic functions u = (u1, . . . , un) satisfying K ⊂ K g , where g = [1 : u1 : · · · : un],
we have either

(4-6) Tu1
m1 ···un mn (r) = o

(
max

1≤ j≤n
{Tu j (r)}

)
for a nontrivial n-tuple (m1, . . . , mn) of integers with

∑n
i=0 |mi | ≤ m, or

(4-7) NG(u)(0, r) − N (1)
G(u)(0, r) ≤exc ϵ max

1≤ j≤n
{Tu j (r)}.

Proof. Let z0 ∈C. If vz0(G(u))≥2, then it follows from (4-4) that vz0(Du(G)(u))=

vz0(G(u)) − 1. Hence,

min{v+

z0
(G(u)), v+

z0
(Du(G)(u))} ≥ v+

z0
(G(u)) − min{1, v+

z0
(G(u))}.
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Consequently,

(4-8) Ngcd(G(u), Du(G)(u), r) ≥ NG(u)(0, r) − N (1)
G(u)(0, r).

By Lemma 14, G and Du(G) are either coprime or (4-6) holds for m = 2 deg G.
Therefore, we assume that G and Du(G) are coprime. By Theorem 9, we find a
positive integer m depending only on ϵ, n and deg G such that either (4-6) holds or

(4-9) Ngcd(G(u), Du(G)(u), r) ≤exc ϵ max
1≤ j≤n

{Tu j (r)}.

Together with (4-8), we obtain (4-7). □

4.3. Further refinement. We will prove the following theorem by finding an ex-
ceptional set in Theorem 15.

Theorem 16. Let K be a subfield of the field of meromorphic functions. Let G be a
nonconstant polynomial in K [x1, . . . , xn] with no monomial factors and no repeated
factors. For any ϵ > 0, there exists a nonconstant polynomial H in K [x1, . . . , xn]

such that for any n-tuple of meromorphic functions u = (u1, . . . , un) satisfying

(4-10) Nui (0, r) + Nui (∞, r) = o
(

max
1≤ j≤n

{Tu j (r)}
)

for each 1 ≤ i ≤ n,

and K ⊂ K g , where g = [1 : u1 : · · · : un], we have either H(u) ≡ 0 or

NG(u)(0, r) − N (1)
G(u)(0, r) ≤exc ϵ max

1≤ j≤n
{Tu j (r)}.(4-11)

Moreover, H can be determined effectively and the degree of H can be bounded
effectively in terms of ϵ, n and the degree of G.

Remark. The effectiveness of determining H follows from the application of
Lemma 13 in the induction process. Moreover, the estimate for the degree of H
depends on the fact that the constant m in Theorem 9 can be determined effectively,
as well as on the proof of Theorem 9 and the content of Lemma 12. While a
rough bound for the degree of H can, in principle, be obtained by tracing these
dependencies, carrying this out would involve substantial additional technical detail
beyond the scope of the present work.

Proof. The proof of [7, Theorem 4] can be adapted to suit the current situation.
We will closely adhere to their arguments and notation. We first fix some notation:

(i) For a matrix A = (ai j ) with complex-valued entries, let

∥A∥∞ = max
i

∑
j

|ai j |

be the maximum of the absolute row sums.

(ii) We say that a nontrivial meromorphic function β has small zeros and poles
with respect to g if Nβ(0, r) + Nβ(∞, r) = o(Tg(r)).
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Let G ∈ K [x1, . . . , xn] \ K with no monomial factors and no repeated factors.
Let ϵ > 0. In the following we consider a n-tuple of meromorphic functions
u = (u1, . . . , un) satisfying

Nui (0, r) + Nui (∞, r) = o
(

max
1≤ j≤n

{Tu j (r)}
)
= o(Tg(r))

for each 1 ≤ i ≤ n, and K ⊂ K g , where g = [1 : u1 : · · · : un]. We note that λ ∈ K g
if and only if Tλ(r) = o

(
max1≤ j≤n{Tu j (r)}

)
by (4-1).

When n = 1, the theorem is a direct consequence of Theorem 15 since u1 is
constant if (4-6) holds.

From this point, we let n ≥ 2. We will effectively construct a nonconstant
polynomial H in K [x1, . . . , xn] such that (4-11) holds if H(u1, . . . , un) ̸≡ 0.

The arguments are carried out inductively in several steps. In the following, the
ci, j ’s and Mi ’s denote positive real numbers depending only on ϵ, n, deg G, and
the previously defined ci ′, j ′ and Mi ′ .

Step 1: We apply Theorem 15. The condition (a) in Theorem 15 holds under our
assumption, so if (4-7) holds then we are done. Otherwise, there exists an n-tuple
of integers (m1, . . . , mn) ̸= (0, . . . , 0) with

∑
|mi | ≤ M1 such that

(4-12) λ1 := um1
1 · · · umn

n ∈ K g.

We may assume gcd(m1, . . . , mn) = 1. By Lemma 12, (m1, . . . , mn) extends to
a basis (m1, . . . , mn), (a21, . . . , a2n), . . . , (an1, . . . , ann) of Zn such that

(4-13) |ai1| + · · · + |ain| ≤ M1 + n for 2 ≤ i ≤ n.

Consider the change of variables

(4-14) 31 := xm1
1 · · · xmn

n and X1,i := xai1
1 · · · xain

n for 2 ≤ i ≤ n

and put

(4-15) β1,i = uai1
1 · · · uain

n for 2 ≤ i ≤ n.

Let A1 denote the n×n matrix whose rows are the above basis of Zn . Then we
formally express the above identities as

(4-16) (31, X1,2, . . . , X1,n) = (x1, . . . , xn)
A1, (λ1,β1,2, . . . ,β1,n)=(u1, . . . ,un)

A1 .

Let B1 = A−1
1 . The entries of B1 can be bounded from above in terms of M1 and n.

We have

(4-17) (x1, . . . , xn) = (31, X1,2, . . . , X1,n)
B1, (u1, . . . ,un) = (λ1,β1,2, . . . ,β1,n)

B1 .



362 MIN RU AND JULIE TZU-YUEH WANG

Let G1(31, X1,2, . . . , X1,n) ∈ K [31, X1,2, . . . , X1,n] with no monomial factors
and

(4-18) G((31, X1,2, . . . , X1,n)
B1) = 3

d1
1 Xd2

1,2 · · · Xdn
1,nG1(31, X1,2, . . . , X1,n)

for some integers di , 1 ≤ i ≤ n. Since the transformations in (4-16) and (4-17) are
invertible of each other and G has no repeated irreducible factors, we have that G1

has no repeated irreducible factors either. The coefficients of G1 are the same as
the coefficients of G and deg G1 can be bounded from above explicitly in terms
of M1, n, and deg G. Consider G1(λ1, X1,2, . . . , X1,n) ∈ K (λ1)[X1,2, . . . , X1,n];
by using (4-12) we have

(4-19) K (λ1) ⊂ K g.

For the particular change of variables in (4-16), (4-17), and (4-18) (that de-
pends on the matrix A1), we apply the Lemma 13 with k being the field of mero-
morphic functions M and k0 = K and (4-14) to find a nonconstant polynomial
H ′

1 ∈ K [x1, . . . , xn] such that G1(λ1, X1,2, . . . , X1,n) has neither monomial nor
repeated irreducible factors if H ′

1(u1, . . . , un) ̸≡ 0. We now take H1 to be the
product of all such H ′

1 where A1 ranges over the finitely many elements of GLn(Z)

with ∥A1∥∞ ≤ M1 + n. From Lemma 13, deg H1 depends only on ϵ, n and deg G.
Since the ui ’s, λ1, and β1, j ’s have small zero and pole with respect to g, we have

(4-20) NG(u)(0, r) − N (1)
G(u)(0, r)

= NG1(λ1,β1,2,...,β1,n)(0, r) − N (1)
G1(λ1,β1,2,...,β1,n)(0, r) + o(Tg(r))

by (4-16) and (4-18). From (4-16), (4-17) and (4-12), we have

(4-21) max
1≤i≤n

{Tui (r)} = O
(
max{Tλ1(r),Tβ1,2(r), . . . ,Tβ1,n (r)}

)
= O

(
max

2≤i≤n
{Tβ1,i (r)}

)
.

In conclusion, at the end of this step we have

(4-22) max
2≤i≤n

{Tβ1,i (r)} = O
(

max
1≤i≤n

{Tui (r)}
)
.

Furthermore, it remains to consider the case when

NG1(λ1,β1,2,...,β1,n)(0, r) − N (1)
G1(λ1,β1,2,...,β1,n)(0, r) <exc ϵ max

1≤i≤n
{Tui (r)}(4-23)

fails to hold under the assumption that H1(u1, . . . , un) ̸≡ 0.
There are n−1 many steps in total. Hence if n ≥ 3, we proceed with the following

n − 2 many more steps.

Step 2: We include this step in order to illustrate the transition from Step s − 1
to Step s below. Since the various estimates and constructions are similar to
those in Step 1, we skip some of the details. Suppose H1(u1, . . . , un) ̸≡ 0 so that
G1(λ1, X1,2, . . . , X1,n) has neither monomial nor repeated factors.
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We apply Theorem 15, assuming (4-23) fails to hold for G1(λ1, X1,2, . . . , X1,n)

and (β1,2, . . . , β1,n), and use (4-19), (4-22), to get an (n−1)-tuple (m′

2, . . . , m′
n) ̸=

(0, . . . , 0) with
∑

|m′

i | ≤ M2 such that

(4-24) λ2 := β
m′

2
1,2 · · · β

m′
n

1,n ∈ K g.

We may assume gcd(m′

2, . . . , m′
n) = 1. By Lemma 12, (m′

2, . . . , m′
n) extends to a

basis of Zn−1 in which each vector has ℓ1-norm at most M2 + n.
Let A′

2 be the (n−1)×(n−1) matrix whose rows are the above basis of Zn−1.
We make the transformation

(32, X2,3, . . . , X2,n) = (X1,2, . . . , X1,n)
A′

2, (λ2,β2,3, . . . ,β2,n) = (β1,2, . . . ,β1,n)
A′

2 .

Let A2 = (1) ⊕ A′

2 be the n×n block diagonal matrix with the (1, 1)-entry 1 and
the matrix A′

2 in the remaining (n−1)×(n−1) block. We have

(31, 32, . . . , X2,n) = (31, X1,2, . . . , X1,n)
A2,

(λ1, λ2, . . . , β2,n) = (λ1, β1,2, . . . , β1,n)
A2 .

Combining this with (4-16), we have

(4-25)
(31, 32, X2,3, . . . , X2,n) = (x1, . . . , xn)

A2 A1,

(λ1, λ2, β2,3, . . . , β2,n) = (u1, . . . , un)
A2 A1 .

Let B2 = (A2 A1)
−1. Let G2(31, 32, X2,3, . . . , X2,n) be the polynomial with no

monomial factors such that

G0((31,32, X2,3, . . . , X2,n)
B2)=3

d ′

1
1 3

d ′

2
2 X

d ′

3
2,3 · · · Xd ′

n
2,nG2(31,32, X2,3, . . . , X2,n)

for some d ′

1, . . . , d ′
n ∈ Z. We have that deg G2 can be bounded from above explicitly

in terms of M2, M1, n, and deg G. As before, we regard G2(λ1, λ2, X2,3, . . . , X2,n)

as a polynomial in X2,3, . . . , X2,n with coefficients in K g using (4-12) and (4-24).
For a particular A1 and A2, we apply Lemma 13 with k = M and k0 = K and

use (4-12) and (4-24) to get a nonconstant polynomial H ′

2 in K [x1, . . . , xn] such
that G2(λ1, λ2, X2,3, . . . , X2,n) has neither monomial nor repeated factors. We now
take H2 to be the product of all such H ′

2 where A1 and A2 range over the finitely
many unimodular matrices with ∥A1∥∞ ≤ M1 +n and ∥A2∥∞ ≤ M2 +n. By using
similar estimates, at the end of this step, we have

(4-26) max
3≤i≤n

{Tβ1,i (r)} = O
(

max
1≤i≤n

{Tui (r)}
)

and

(4-27) NG2(λ1,λ2,β2,3,...,β2,n)(0, r) − N (1)
G2(λ1,λ2,β2,3,...,β2,n)(0, r) <exc ϵ max

1≤i≤n
{Tui (r)}

fails to hold.
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Let 2 ≤ s ≤ n − 1 and suppose that we have completed Step s − 1. This includes
the construction of Hs−1 ∈ K [x1, . . . , xn] with degree depends on ϵ, n and deg G
only. We then complete Step s in the same manner Step 2 is carried out after
Step 1. The last one is Step n − 1 resulting in Hn−1 ∈ K [x1, . . . , xn]. We now
define H = H1 · · · Hn−1. Then deg H depends only on ϵ, n and deg G since each
Hi does so. Suppose H(u1, . . . , un) ̸≡ 0. Assume we go through all the above
n − 1 steps to get the polynomial

P(Xn−1,n) := Gn−1(λ1, . . . , λn−1, Xn−1,n) ∈ K g[Xn−1,n]

such that its degree can be bounded explicitly in terms of Mn−1, . . . , M1, n, and
deg G. At the end of Step n − 1, we have that βn−1,n has small zero and pole with
respect to g, so it satisfies

(4-28) Tβn−1,n (r) = O
(

max
1≤i≤n

{Tui (r)}
)
.

If

(4-29) NP(βn−1,n)(0, r) − N (1)
P(βn−1,n)(0, r) <exc ϵ max

1≤i≤n
{Tui (r)},

then we are done. Otherwise, since Hn−1(u1, . . . ,un) ̸≡0, the polynomial P(Xn−1,n)

has neither monomial nor repeated irreducible factors, according to Theorem 15,
there exists a nonzero integer m such that, by using (4-28),

Tβm
n−1,n

(r) = o(Tβn−1,n (r)),(4-30)

which is not possible since βn−1,n is not constant. □

4.4. Proof of Theorem 1.

Proof of Theorem 1. Let F ∈ K [x0, . . . , xn]. Consider a holomorphic curve
g = (g0, . . . , gn), where g0, . . . , gn are entire functions with no common zeros, such
that K ⊂ K g and Ng(Hi , r) = o(Tg(r)) for 0 ≤ i ≤ n. Let ui = gi/g0 for 0 ≤ i ≤ n,
u = (u1, . . . , un), and G := F(1, x1, . . . , xn) ∈ K [x1, . . . , xn]. Then

(4-31) Nui (0, r) + Nui (∞, r) ≤ Ngi (0, r) + Ng0(0, r)

= Ng(Hi , r) + Ng(H0, r) = o(Tg(r))

for each 1 ≤ i ≤ n, and, by (4-1),

(4-32) max
1≤i≤n

{Tui (r)} = O(Tg(r)).

Since F(g) = F(g0, . . . , gn) = gd
0 G(u), we have

(4-33) NF(g)(0,r) = NG(u)(0,r)+o(Tg(r)), N (1)
F(g)(0,r) = N (1)

G(u)(0,r)+o(Tg(r)).
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Consequently, we may apply Theorem 16 for any given positive real ϵ to find a
nontrivial polynomial Q ∈ K [x1, . . . , xn] such that (2-2) holds, that is,

(4-34) NF(g)(0, r) − N (1)
F(g)(0, r) ≤ ϵTg(r),

when Q(u) ̸≡ 0. In addition, the polynomial Q can be determined effectively and
the degree of Q can be bounded effectively in terms of ϵ, n and the degree of F .
At this step, we take Z to be the zero locus of the homogeneous polynomial

xdeg Q
0 · Q

(
x1

x0
, . . . ,

xn

x0

)
∈ K [x0, . . . , xn].

Let F =
∑

i∈IF
αi x i

∈ K [x0, . . . , xn], and let W be the Zariski closed subset
that is the union of hypersurfaces of Pn of the form

∑
i∈J αi x i

= 0, where J is
a nonempty subset of IF . The Zariski closed set Z ∪ W satisfies (Z1) and (Z2)
since both Z and W do so. We now prove (2-3) holds (after possibly enlarging Z )
by further assuming that the hypersurface [F = 0] and the coordinate hyperplanes
in Pn are in weakly general position. Therefore, we may write

(4-35) F(g) =

∑
0≤i≤n

αii g
d
i +

∑
i∈IG\I

αi g i ,

where αii ̸= 0 for 0 ≤ i ≤ n and I = {i0 := (d, 0, . . . , 0), . . . , in := (0, . . . , 0, d)}.
For g with g(C) not contained in Z ∪ W , we may use Theorem 6 to show that

dTg(r) ≤ NF(g)(0, r) + o(Tg(r))

since αii ∈ K g and Ngi (0, r) = o(Tg(r)) for 0 ≤ i ≤ n. Together with (4-34), we
arrive at N (1)

F(g)(0, r) ≥ (d − ϵ)Tg(r). By letting Z ∪ W be the desired exceptional
set Z , we finish the proof. □

5. Proof of Theorem 2

We will adapt the proof strategy employed in [6, Theorem 1.2] to suit the current
situation and subsequently apply Theorem 1.

Proof. Let z0 ∈ C such that all the coefficients of all Fi , 1 ≤ i ≤ n + 1, are
holomorphic at z0 and the zero locus of Fi , 1 ≤ i ≤ n + 1, evaluating at z0, denoted
by Di (z0), intersect transversally. These conditions imply that z0 is not a common
zero of the coefficients of Fi , for each 1 ≤ i ≤ n + 1.

Since the zero locus of Fi (z0), 1 ≤ i ≤ n + 1, intersect transversally, they are
in general position; thus the set of polynomials Fi , 1 ≤ i ≤ n + 1, is in weakly
general position. Then Proposition 7 implies that the only (x0, . . . , xn) ∈ Mn+1

with Fi (x0, . . . , xn) ≡ 0 for each 1 ≤ i ≤ n + 1 is (0, . . . , 0). Thus the association
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x 7→ [Fa1
1 (x) : · · · : Fan+1

n+1 (x)], where ai := lcm(deg F1, . . . , deg Fn+1)/deg Fi ,
defines a morphism π : Pn(M) → Pn(M) over K . Let

G := det
(

∂ Fi

∂x j

)
1≤i≤n+1

0≤ j≤n

∈ K [x0, . . . , xn].

Define π |z0 = [Fa1
1 (z0) : · · · : Fan+1

n+1 (z0)] : Pn(C) → Pn(C), which is a morphism
since F1(z0), . . . , Fn+1(z0) are in general position. As proved in [6, Theorem 1.2],
we have that [G(z0) = 0] (the zero locus of G(z0)), D1(z0), . . . , Dn+1(z0) are in
general position (in Pn(C)). Hence, there is a nonconstant irreducible factor G̃
of G in K [x0, . . . , xn] such that G̃, F1, . . . , Fn+1 is in weakly general position.
Denote by Y the zero locus of G̃ in Pn(K ). We note that Y is contained in the
ramification divisor of π since G̃ is a factor of the determinant of the Jacobian
matrix associated with the map π . Then there exists an irreducible homogeneous
polynomial A ∈ K [y0, . . . , yn] such that the vanishing order of π∗ A along Y is at
least 2. Then this construction gives π∗

◦ A = G̃2 H for some H ∈ K [x0, . . . , xn].
Since the divisors defined by G̃(z0), F1(z0), . . . , Fn+1(z0) are in general position,
their images are also in general position. Therefore, A and yi , 0 ≤ i ≤ n, are in
weakly general position.

Now let f = ( f0, . . . , fn) : C → Pn be a holomorphic map, where f0, . . . , fn

are entire functions without common zeros. Assume that K ⊂ K f . Let g :=

π( f ) = (F1( f )a1, . . . , Fn+1( f )an+1), where each Fi ( f )ai , 1 ≤ i ≤ n + 1, is an
entire function with no zeros. Then

(5-1) Tg(r) = d1T f (r) + o(T f (r)),

where d1 = deg F1 · a1. From A(g) = (π∗
◦ A)( f ) = G̃2( f )H( f ), it follows that

for each z ∈ C with vz(G̃( f )) > 0, we have

(5-2) max{0, vz(A(g))} ≥ 2vz(G̃( f )) + min{0, vz(H( f ))}

≥ vz(G̃( f )) + 1 + min{0, vz(H( f ))}.

Since f0, . . . , fn are entire functions, the nonnegative number −min{0, vz(H( f ))}

is bounded by the number of poles of the coefficients of H at z. Since the coefficients
of H are in K and Nβ(∞, r) ≤ Tβ(r)+ O(1) = o(T f (r)) for any β ∈ K , it follows
from (5-2) that

(5-3) NG̃( f )(0, r) ≤ NA(g)(0, r) − N (1)
A(g)(0, r) + o(T f (r)).

Assume furthermore that NFi ( f )(0, r) = o(T f (r)) for 1 ≤ i ≤ n + 1. Then
Ng(Hi , r)=o(T f (r)) (=o(Tg(r)) by (5-1)) for coordinate hyperplanes Hi , 0≤i ≤n,
of Pn . We now apply Theorem 1 for ϵ = 1/(4d1). Then we can find a homogeneous
polynomial B0 ∈ K [y0, . . . , yn] such that for any nonconstant holomorphic map
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f = ( f0, . . . , fn) : C → Pn such that K ⊂ K f and NFi ( f )(0, r) = o(T f (r)) for
1 ≤ i ≤ n + 1, with B0(g) = B0(π( f )) not identically zero, we have

(5-4) NA(g)(0, r) − N (1)
A(g)(0, r) ≤exc ϵTg(r)

and

(5-5) N (1)
A(g)(0, r) ≥exc (deg A − ϵ) · Tg(r).

Combining (5-3) and (5-4), we have

(5-6) NG̃( f )(0, r) ≤exc ϵTg(r).

Since [G̃ = 0]≤π∗([A = 0]) as divisors, we can derive, from the functorial property
of Weil functions,

(5-7) m f ([G̃ = 0], r) ≤ m g([A = 0], r) = deg A ·Tg(r)− NA(g)(0, r)+o(Tg(r)).

Then by (5-5),we have

(5-8) m f ([G̃ = 0], r) ≤exc ϵTg(r).

Combining (5-6), (5-8) and (5-1), we have

(5-9) T
[G̃=0], f (r) ≤exc 2ϵTg(r) = 2ϵ · d1T f (r) + o(T f (r)),

On the other hand, the first main theorem implies that

(5-10) deg G̃ · T f (r) = T
[G̃=0], f (r) + o(T f (r)).

Therefore, we have

(5-11) T f (r) ≤exc 2ϵ · d1T f (r) + o(T f (r)),

which is not possible since ϵ = 1/(4d1). This shows that B0(g) is identically zero.
Let B := π∗(B0) = B0(Fa1

1 , . . . , Fan+1
n+1 ) ∈ K [x0, . . . , xn], which is not identically

zero since π is a finite morphism. Then B( f ) is identically zero as asserted. □

The defect relation stated in Corollary 3 directly follows from Theorem 2 by
noticing that

∑n+1
i=1 δ f (Di ) = n + 1 if and only if N f (Di , r) = o(T f (r)) for each i .

To establish the truncated defect relation for n = 2, we relax the assumption
to N (1)

g (Hi , r) = o(Tg(r)) for 0 ≤ i ≤ 2. In order to apply this relaxed condition (b)
in Theorem 15, one must assume that the hypersurface [G = 0] and the n + 1
coordinate hyperplanes are in weakly general position in Pn . Unfortunately, this
geometric condition does not persist under the induction process. We state a
modified version of Theorem 1 below to demonstrate that Theorem 2 remains valid
under these relaxed assumptions.
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Theorem 17. Let K be a subfield of the field M of meromorphic functions. Let
G be a nonconstant homogeneous polynomial in K [x0, x1, x2] with no monomial
factors and no repeated factors. Let Hi = [xi−1 = 0], 1 ≤ i ≤ 3, be the coordinate
hyperplane divisors of P2. Assume that the plane curve [G = 0] and Hi , 1 ≤ i ≤ 3,
are in weakly general position. Then for any ϵ > 0, there exists a proper Zariski
closed subset Z of P2 defined over K such that for any nonconstant holomorphic
curve g = (g0, g1, g2) : C → P2(C) such that N (1)

g (Hi , r) = o(Tg(r)) for 0 ≤ i ≤ 2
with g not contained in Z , we have

(5-12) NG(g)(0, r) − N (1)
G(g)(0, r) ≤exc ϵTg(r)

and

(5-13) N (1)
G(g)(0, r) ≥exc (deg G − ϵ) · Tg(r).

Furthermore, the exceptional set Z is a finite union of closed subsets given by
homogenization equations of the form xn1

1 xn2
2 = λ, where λ ∈ K ∗ and (n1, n2)

is a pair of integers with max{|n1|, |n2|} bounded from above by an effectively
computable integer m.

Proof of Corollary 3. Since 0 ≤ δ f (Di ) ≤ 1 for 1 ≤ i ≤ n + 1, it is clear
that

∑n+1
i=1 δ f (Di ) = n + 1 if and only if δ f (Di ) = 1 for each i . On the other

hand, δ f (Di ) = 1 if and only if N f (Di , r) = o(T f (r)). Therefore, we have either∑n+1
i=1 δ f (Di )< n+1 or there exists a homogeneous polynomial B ∈ K [x0, . . . , xn]

as described Theorem 2 such that B( f ) is identically zero.
When n = 2, the conclusion of Theorem 2 holds under a weaker assumption

that N (1)

f (Di , r) = o(T f (r)) for i = 0, 1, 2 by replacing the use of Theorem 1 with
Theorem 17. Therefore, the above arguments show that

∑3
i=1 δ

(1)

f (Di ) < 3 or there
exists a homogeneous polynomial B ∈ K [x0, x1, x2] as described Theorem 2 such
that B( f ) is identically zero. □

Proof of Theorem 17. Let g = (g0, g1, g2) with N (1)
gi (0, r) = o(Tg(r)), 0 ≤ i ≤ 2,

where g0, g1, g2 have no common zeros. We prove (5-12) first. Under our assump-
tion, the condition (b) in Theorem 15 holds. Hence, by Theorem 15, we only need
to consider the case that

(5-14) T(g1/g0)
n1 (g2/g0)

n2 (r) = o(Tg(r)).

We may assume that n1 and n2 are coprime. Consequently, there exist integers
a and b such that n1a + n2b = 1. Consider the variables

(5-15) 3 = Xn1Y n2 and T = XbY −a.

Then, we may express

(5-16) X = 3aT n2 and Y = 3bT −n1 .
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Let G1(X, Y ) = G(1, X, Y ). Define B(3, T ) ∈ K [3, T ] as the polynomial with
no monomial factors and such that

(5-17) G1(X, Y ) = G1(3
aT n2, 3bT −n1) = T M13M2 B(3, T )

for some integers M1 and M2.
Let u1 = g1/g0, u2 = g2/g0, and λ := un1

1 un2
2 . Then we have

(5-18) Tλ(r) = o(Tg(r)).

To prove (5-12), we will reduce the problem to one-variable polynomials B(λ, T )

for all possible λ ∈ K that satisfy (5-18) but not (5-12). Our objective is to eliminate
those λ values with B(λ, T ) containing a factor of T or having repeated factors,
so that we can apply the GCD theorem after eliminating those λ. Since T is
not a factor of B(3, T ), it follows that B(3, 0) ∈ K [3] is not identically zero.
Consequently, there exist at most finite γ1, . . . , γs ∈ K such that B(γi , 0) = 0
for 1 ≤ i ≤ s. Therefore, T is not a factor of B(λ, T ) if λ ̸= γi , 1 ≤ i ≤ s.
Regarding repeated factors, let’s express B(3, T ) = B3(T ) ∈ K [3][T ]. Since the
transformation in (5-15) establishes to a bijection between the sets {X t1Y t2 : t1, t2 ∈Z}

and {3a1 T a2 : a1, a2 ∈ Z}, it is evident that B(3, T ) ∈ K [3, T ] is square free, given
that G is square free. Consequently, the resultant R(B3, B ′

3) of B3 and B ′

3(T ) is
a polynomial in K [3], which is not identically zero. Let

(5-19) αi ∈ K , 1 ≤ i ≤ t , be the zeros of the resultant R(B3, B ′

3).

It is clear that B(λ, T ) has no multiple factors in K [λ][T ] if λ ̸=αi for any 1 ≤ i ≤ t .
Therefore, it is clear that we need to consider those λ with λ ̸= αi for any 1 ≤ i ≤ t
and λ ̸= γ j for any 1 ≤ j ≤ s. Assuming such, let B(T ) := λM2 B(λ, T ) as
in (5-17). Let β := ub

1u−a
2 and define Dβ(B) ∈ K g[T ] as in (4-3). By Lemma 14,

the polynomials B and Dβ(B) are coprime in K g[T ]. Let B̃ ∈ K (λ)[Z , U ] and
D̃β(B) be the homogenization of B and Dβ(B), respectively. Write β = β1/β0,
where β0 and β1 are entire functions without common zeros. Then by Proposition 10

(5-20) Ngcd(B̃(β0, β1), D̃β(B)(β0, β1), r) ≤ o(Tg(r))

since β is not constant. On the other hand, from the proof of [4, Proposition 5.3],
there exists a proper Zariski closed set W of P2(C), independent of g, such that,
if image of g is contained in W ,

(5-21) NG(g)(0, r) − N (1)
G(g)(0, r) ≤exc Ngcd(B̃(β0, β1), D̃β(B)(β0, β1), r).

Furthermore, W can be described in Theorem 17. We conclude the proof of (5-12)
by combining (5-20) and (5-21).

We now proceed to prove (5-13). Let G =
∑

i∈IG
αi x i

∈ K [x0, x1, x2]. Since the
hypersurface [G = 0] and the coordinate hyperplanes in P2 are in weakly general
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position, may write

(5-22) G(g) =

∑
0≤i≤2

αii g
d
i +

∑
i∈IG\I

αi g i ,

where αii ̸= 0 for 0 ≤ i ≤ 2 and I = {(d, 0, 0), (0, d, 0), (0, 0, d)}.
Let’s express B(3, T ) in the form

(5-23) B(3, T ) =

∑
i∈IB

bi (3)T i
∈ K [3][T ],

where bi ̸= 0 if i ∈ IB . We define J ⊂ K [3] as the finite set containing all bi (3)

for i ∈ IB and all of their proper subsums. Set R :={r ∈ K |h(r)=0 for some h ∈ J }.
It is crucial that the proof of Theorem 1 has already demonstrated that (5-13) holds
if neither G(g) nor any proper subsum of (5-22) is zero. Therefore, when evaluating
B(3, T ) at 3 = λ /∈ R and T = β, we need to consider equations of the type

(5-24)
∑
i∈IB

ai (λ)β i
= 0,

where ai (3) is a subsum of bi (3), and there are at least two nontrivial ai in the
left-hand side of (5-24) since λ /∈ R. Hence,

Tβ(r) ≤ c3Tλ(r) = o(Tg(r)).

This, however, leads to a contradiction. □
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THE TANGENT SPACES OF TEICHMÜLLER SPACE
FROM AN ENERGY-CONSCIOUS PERSPECTIVE

DIVYA SHARMA AND MICHAEL S. WEISS

The Teichmüller space of a closed oriented (real) surface of genus at least 2 is
a moduli space of complex structures on the surface, but can also be defined
as a space of certain representations of the fundamental group of the surface
in the group of orientation-preserving isometries of the hyperbolic plane.
As a consequence the tangent spaces of Teichmüller space admit two rather
different descriptions. We use harmonic vector fields (defined as infinitesimal
analogs of harmonic maps) on the hyperbolic plane to make a bridge between
these descriptions.

1. Introduction

1.1. Teichmüller space. Let 6 be an oriented, connected, closed and smooth
surface of genus ≥ 2. Write diff0(6) for the group of diffeomorphisms 6 → 6

which are isotopic to the identity. By the Korn–Lichtenstein theorem, the choice
of a complex structure on 6 is equivalent to the choice of a complex structure
J : T6 → T6 on the tangent bundle. (J is a smooth vector bundle automorphism
covering id :6 →6, and it satisfies J 2

= −id. Such a J can be called an almost
complex structure on 6.)

Definition 1.1.1. Teichmüller space T (6) is the space of complex structures J
on T6, modulo the right action of diff0(6) given by (J · f )x := (d fx)

−1
◦ J f (x)◦d fx

for f ∈ diff0(6) and x ∈6.

We will rely more on the “metric” definition of T (6). Let6′
→6 be a universal

covering with deck transformation group 0. We also refer to 0 as the fundamental
group of6. A complex structure on6 determines a complex structure on6′, and an
embedding of 0 into the group of complex automorphisms of6′. By uniformization

Sharma held an Ada Lovelace PhD studentship awarded by the University of Münster, 2017–2021.
In the early stages, this work was supported by the Alexander von Humboldt Foundation through a
Humboldt Professorship award to Weiss; in the later stages, 2019–2022, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC
2044-390685587, Mathematics Münster: Dynamics–Geometry–Structure.
MSC2020: 30F60.
Keywords: Teichmüller space, harmonic, quadratic differential, Poisson kernel.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2025.338-2
https://doi.org/10.2140/pjm.2025.338.373
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


374 DIVYA SHARMA AND MICHAEL S. WEISS

theory, 6′ is isomorphic as a complex manifold to the open unit disk D ⊂ C. In
this way, a complex structure on 6 gives us an embedding ρ of 0 into the group
of complex automorphisms of D, which we can also view as the group isom+(D)

of orientation-preserving isometries of D equipped with the Poincaré metric. The
homomorphism ρ :0→ isom+(D) is not well defined as such, but it is well defined
up to conjugation by an element of isom+(D). This leads us to the metric definition
of T (6).

Definition 1.1.2. Teichmüller space T (6) is the space of injective homomorphisms
ρ :0→ isom+(D) with discrete and cocompact image ρ(0), modulo the left action
of isom+(D) by conjugation.

The equivalence of the two definitions of T (6) is well known. The metric defi-
nition does not use uniformization theory, although it is explained by uniformization
theory. One has to do some work to show that T (6), according to that definition,
is a smooth manifold of real dimension −3χ(6).

1.2. The tangent spaces of Teichmüller space. We continue in the notation of the
previous section. In particular, 6′

→ 6 is a universal covering, J is a complex
structure on T6 and ρ :0→ isom+(D) is an injective homomorphism with discrete
and cocompact image.

Definition 1.2.1. A quadratic differential on (6, J ) is a (continuous) section of the
complex line bundle homC(T6⊗C T6,C) on 6.

In one description, the tangent space of T (6) at a point J (complex structure
on T6) “is” the vector space of holomorphic quadratic differentials on 6. This
can be justified as follows. There is an R-linear injective map φ 7→ Re(φ) from
the complex 1-dimensional vector bundle homC(T6⊗C T6,C) on 6 to the real
3-dimensional vector bundle of symmetric R-bilinear forms on T6. We have
already seen that J determines a complex structure on 6′ ∼= D and so a hyperbolic
metric on 6′ invariant under the action of 0, and so a hyperbolic (Riemannian)
metric g on 6 itself. A holomorphic section φ of homC(T6⊗C T6,C), indeed
any smooth section φ of that vector bundle, determines a 1-parameter family of
Riemannian metrics on 6 by t 7→ g + tRe(φ) for t ∈ R close enough to 0. Each of
the Riemannian metrics g + tRe(φ) determines a conformal structure on 6, hence
a complex structure Jt on T6. This gives a (germ of a) smooth curve t 7→ Jt in the
Teichmüller space, with J0 = J . The velocity vector of that curve at t = 0 is the
tangent vector which we associate to φ. This procedure gives an isomorphism from
the vector space of holomorphic quadratic differentials on 6 to that tangent space.
It uses Definition 1.1.1. See [Imayoshi and Taniguchi 1992] for more details.

The other popular description of the tangent spaces of T (6) relies on the metric
definition of T (6). Instead of selecting a datum J , we begin with ρ :0→ isom+(D).
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Let g be the tangent space of isom+(D) at the identity element, a.k.a. the Lie
algebra of isom+(D). The homomorphism ρ determines a left action of 0 on g by
conjugation, γ · v := ad(ρ(γ ))(v) for γ ∈ 0 and v ∈ g. We may write gρ to specify
this action.

We select a tangent vector to T (6) at ρ by choosing a smooth 1-parameter
family (ρt)t∈[−ε,+ε] of homomorphisms 0 → isom+(D) such that ρ0 = ρ. (We
could insist that the homomorphisms ρt are all injective with discrete and cocompact
image, like ρ0, but by [Weil 1960] this is automatically satisfied for t close enough
to 0.) Then we can form

d(ρt · ρ−1
0 )

dt

∣∣∣
t=0
,

which gives us a map from 0 to gρ . It turns out to be a 1-cocycle. Its class in
H 1(0; gρ) is well defined. We arrive at the following description of the tangent
space of T (6) at the point determined by the homomorphism ρ: it is H 1(0; gρ).
It is a small disadvantage of this description that H 1(0; gρ) seems to depend
on ρ itself, not just on the representation (conjugacy class of homomorphisms)
determined by ρ. We leave it to the reader to come to terms with this.

1.3. Harmonic vector fields on the hyperbolic plane. Let f : M → N be a smooth
map between Riemannian manifolds. The map f has a “Laplacian” τ( f ) which
is a section, defined on M , of the vector bundle f ∗(T N ). It has a coordinate-free
definition as the “trace” of the total second derivative of f . (The total second
derivative is a fiberwise bilinear map over M from T M ×M T M to f ∗(T N ).) This
definition comes from [Eells and Sampson 1964]. The letter τ stands for tension
more than for trace. Following [loc. cit.], the map f is considered harmonic if τ( f )
is everywhere zero. There is also a characterization of harmonic maps as critical
points of the energy functional

(1.3.1) f 7→

∫
M

1
2∥d f ∥

2 dµ,

where µ is the measure on M determined by the Riemannian metric. That character-
ization needs exegesis if M is not compact. In the case N = R, the Eells–Sampson
definition of a harmonic map agrees with the standard definition of a harmonic
function on M , and in the case M = R, the harmonic maps are the geodesics in N .

Let ξ be a smooth vector field on M , where M is still a Riemannian manifold. It
is always possible to find a smooth flow (φt : M → M)t∈R such that

dφt

dt

∣∣∣
t=0

= ξ.

The vector field
τ(ξ) :=

dτ(φt)

dt

∣∣∣
t=0
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depends only on ξ , and we may view it as an infinitesimal variant of the Eells–
Sampson Laplacian for maps. Consequently we say that ξ is harmonic if τ(ξ) is
everywhere zero. (Warning: Harmonic vector field can mean very different things
to different people, but here we use it in the spirit of [Eells and Sampson 1964].
See [Dodson et al. 2002] for some foundational results on harmonic vector fields.)

For us the case where M is an oriented Riemannian 2-manifold with Riemannian
metric g is important. In that case M is also a complex 1-manifold. The 3-
dimensional real vector bundle E of symmetric R-bilinear forms on T M has a
canonical splitting

E = E1 + E2,

where E1 is a real line bundle and E2 has a preferred structure of complex (holomor-
phic) line bundle. Namely, E1 is the real line subbundle spanned by the everywhere
nonzero section g of E , and E2 is the image of the vector bundle monomorphism
which was mentioned before: homC(T M ⊗C T M,C)→ E given by φ 7→ Re(φ).
We like to call E1 the scalar summand of E , and E2 the trace-free summand. The
following recognition principle for harmonic vector fields appears to be well known,
and so we state it without proof. It has an analog for smooth maps between 2-
dimensional oriented Riemannian manifolds [Jost 1984, Lemma 1.1; Gerstenhaber
and Rauch 1954a; 1954b].

Proposition 1.3.1. A smooth vector field ξ on the 2-dimensional oriented Riemann-
ian manifold (M, g) is harmonic if and only if the trace-free component of the Lie
derivative Lξ (g) is holomorphic; i.e., if it is Re(φ) for a holomorphic section φ of
homC(T M ⊗C T M,C).

Remark 1.3.2. The complex line bundle homC(T M⊗CT M,C) in Proposition 1.3.1
comes with a preferred hermitian metric. We use this to equip each fiber with a norm.
(It is well known that a hermitian inner product on a finite-dimensional complex
vector space is determined by its real part, and so by the associated norm. For z ∈ M ,
the preferred norm on homC(Tz M ⊗C Tz M,C) is given by ∥ f ∥ := | f (v⊗ v)| for
f ∈ homC(Tz M ⊗C Tz M,C) and v ∈ Tz M such that ∥v∥ = 1. This does not depend
on the choice of v.)

Now we specialize by letting M = D (with the Poincaré metric, which will still
be called g). In order to state our first main result, Theorem I, we introduce some
more vocabulary. In the definition that follows, λ is the ordinary Lebesgue measure
on R2 and λ0 is the unnormalized Haar measure on S1, so that λ0(S1)= 2π .

Definition 1.3.3. Let ξ be a continuous vector field on D and let ζ be an L2-vector
field (with values in R2) along S1. (For the purposes of this definition, ξ and ζ
could be regarded as functions from D and S1, respectively, to R2.) We say that ζ
is a distributional boundary for ξ if for every continuous vector field α on D ∪ S1
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the function

(1.3.2) s 7→

∫
z∈D, |z|≤s

ξ(z) ·α(z) dλ

defined on [0, 1) has an extension to all of [0, 1] which is differentiable at s = 1,
with derivative there equal to ∫

S1
ζ(z) ·α(z) dλ0.

In this situation, ζ is determined by ξ . If in addition ζ is tangential, which means
that ζ(z) · z = 0 for (almost) all z ∈ S1, then we say that ξ is boundary controlled.

The matching condition relating ξ and ζ in Definition 1.3.3 is invariant under
the preferred right action(s) of diff(D ∪ S1). See Proposition A.2.2. The preferred
right action of diff(D ∪ S1) on the space of continuous vector fields on D is given
by (ξ · h)(x) := (dh(x))−1

(
ξ(h(x))

)
for x ∈ D and h ∈ diff(D ∪ S1). The preferred

right action of diff(D ∪ S1) on the space of L2-vector fields on S1 is similar. It can
be enlightening to write h∗ξ and h∗ζ instead of ξ · h and ζ · h.

Definition 1.3.4. A smooth vector field ξ on D is conformal, respectively quasi-
conformal, if the trace-free component of Lξ (g) is zero everywhere, respectively
uniformly bounded in the norm of Remark 1.3.2.

Examples. The conformal vector fields on D are the holomorphic vector fields. See
Lemma A.2.1. Every conformal vector field is harmonic. Every Killing vector field
ξ on D (element of g) is conformal and boundary controlled. Indeed, ξ has a smooth
extension to a vector field on D ∪ S1 whose restriction to S1 is tangential to S1.

Theorem I. For every holomorphic quadratic differential φ on D which is uniformly
bounded in the norm of Remark 1.3.2, there exists a smooth and boundary controlled
vector field ξ on D such that the trace-free component of Lξ (g) is Re(φ). In the
case where φ ≡ 0, the vector field ξ must be a Killing vector field.

The theorem can be reformulated as follows. There is a short exact sequence of
real vector spaces and R-linear maps

(1.3.3) 0 → g
(a)
−→ U∞

(b)
−→ V∞ → 0,

where V∞ is the space of all holomorphic quadratic differentials on D which are
bounded in the norm of Remark 1.3.2, and U∞ is the space of all harmonic, boundary
controlled and quasiconformal smooth vector fields on D. The map (b) takes ξ ∈U∞

to φ, where Re(φ) is the trace-free component of Lξ (g). The map (a) is an inclusion.
The proof of Theorem I takes up most of Section 2. Using the theorem, we can

explain (without relying on uniformization theory) how the two descriptions of the
tangent space to T (6) at the point determined by some ρ : 0 → isom+(D) are
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related. We identify 6 with the orbit space D/ρ = D/ρ(0), so that a holomorphic
quadratic differential on 6 is tantamount to a holomorphic quadratic differential φ
on D which is invariant under the subgroup ρ(0) of isom+(D). Such a φ is
automatically bounded! Choose ξ as in Theorem I such that the trace-free component
of Lξ (g) is Re(φ). Then the formula h 7→ h∗ξ − ξ (for h ∈ ρ(0) ∼= 0) defines
a 1-cocycle on 0 with values in gρ . Its class in H 1(0; gρ) does not depend on
the choice of ξ . In the case where that class is zero, it is easy to see that we can
reconsider the choice of ξ so as to make it invariant under ρ(0). Then ξ descends
to a harmonic vector field on 6. By [Dodson et al. 2002, Theorem 3.1] this implies
ξ ≡ 0 and so φ ≡ 0. In other words, we have an injective linear map from the
vector space of holomorphic quadratic differentials on 6 = D/ρ to H 1(0; gρ). By
dimension counting, it must be a linear isomorphism.

The interesting aspect of Theorem I is that it makes only a boundedness assump-
tion on φ, not an assumption of invariance under a discrete subgroup of isom+(D).
It is reminiscent of universal Teichmüller theory. See, for example, [Markovic and
Šarić 2009; Markovic 2017].

1.4. Vector fields from boundary data. We have a partial converse to Theorem I
which is inspired by the Poisson formula, as in [Ransford 1995, Theorem 1.2.4]. It
is our second main result.

Theorem II. There is a unique continuous linear map F from the vector space of
continuous tangential vector fields on S1 to the vector space of continuous vector
fields on D satisfying the following conditions.

(i) F(ξ) is harmonic, for every continuous tangential vector field ξ on S1.

(ii) ξ and F(ξ) together make up a continuous vector field on D ∪ S1.

(iii) F is equivariant for the actions of isom(D) on domain and codomain.

Moreover F extends uniquely to a continuous linear map from the vector space of
tangential L2-vector fields on S1 to the vector space of continuous vector fields on D.
In this setting property (ii) turns into the following: F(ξ) is boundary controlled
with distributional boundary ξ . Properties (i) and (iii) remain intact.

Remark. In the first part of the statement (before “Moreover. . . ”), the vector
space W of continuous tangential vector fields on S1 is equipped with the compact-
open C0 topology. The vector space Y of continuous vector fields on D is also
equipped with the compact-open C0 topology (throughout). In the second part of
the statement, the vector space X of tangential L2-vector fields on S1 is viewed
as a Hilbert space. The statement “Moreover F extends. . . ” is slightly imprecise
because W is not a subspace of X . There is an inclusion W ↪→ X of sets which
is linear and continuous as a map of topological vector spaces. The image of W
in X is dense; therefore the “extension” of F from W to X is certainly unique,
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if it exists. Properties (i) and (iii) are enough to characterize F : W → Y up to
multiplication by a real scalar. We do not know whether properties (i) and (ii) are
enough to characterize F : W → Y .

Lemma 1.4.1. Let ξ ∈ g be a Killing vector field on D. Let ζ be the matching
tangential vector field on S1, so that ξ and ζ together define a smooth vector field
on D ∪ S1. Then F(ζ )= ξ .

See the Appendix for the proof.
As before, let W be the vector space of continuous vector fields on D. If we have

ρ : 0 → isom+(D), then we have a preferred right action of 0 on W determined
by ρ, and we may write Wρ to specify the action. The following is again well
known, and we omit the proof.

Lemma 1.4.2. The map H 1(0; gρ)→ H 1(0; Wρ) induced by the inclusion of the
Killing vector fields, g ↪→ W , is zero.

Proposition 1.4.3. Let ψ be a continuous vector field on D such that h∗ψ −ψ is
in g, for all h ∈ ρ(0). Then ψ is boundary controlled. The distributional boundary
depends only on the 1-cocycle h 7→ h∗ψ −ψ .

Proof. (This uses Theorem I.) Let C be the cochain complex normally used to define
the cohomology groups H j (0; Wρ) for j ≥ 0, and write δ : C j

→ C j+1 for the
differential in C . Let D ⊂C be the cochain subcomplex corresponding to g⊂ W . We
have ψ ∈ C0 and we are assuming δψ ∈ D1. Theorem I and the dimension-counting
argument at the end of Section 1.3 imply that for the 1-cocycle δψ in D there exists
ξ ∈C0, harmonic and boundary controlled, such that δξ = δψ . Therefore ξ−ψ ∈C0

is a 0-cocycle. This means that it is invariant under 0. It follows by inspection that
ξ −ψ is boundary controlled with distributional boundary zero. Therefore ψ is
boundary controlled and has the same distributional boundary as ξ . □

Now we explain very briefly how Theorem II can help us to make the passage
from H 1(0; gρ) to the vector space of holomorphic quadratic differentials on
6 = D/ρ. We begin with some v ∈ H 1(0; gρ). By Lemma 1.4.2, and in the
notation used in the proof of Proposition 1.4.3, the class v can be represented by a
cocycle (with values in gρ) of the form δψ , where ψ is a continuous vector field
on D. By Proposition 1.4.3, the vector field ψ is boundary controlled. Let ζ be its
distributional boundary. Then ξ := F(ζ ) is a harmonic vector field on D. On the
basis of Lemma 1.4.1 and Theorem II it is easy to verify that δξ is a 1-cocycle with
values in g. Moreover it agrees with δψ since both δξ and δψ are “matches” for δζ .
Therefore ξ can be viewed as an improvement on ψ . The trace-free component
of Lξ (g) is Re(φ) for a quadratic differential φ on D which is holomorphic by
Proposition 1.3.1. The quadratic differential φ is also invariant under the group
ρ(0) ⊂ isom+(D) because of Lemma 1.4.1 and condition (iii) in Theorem II.
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(Remember that δξ = δψ .) Therefore we have a holomorphic quadratic differential
on 6 = D/ρ.

The above procedure based on Theorem II which takes us from H 1(0; gρ) to
the vector space of holomorphic quadratic differentials on D/ρ is the inverse of the
other one, based on Theorem I. The verification should be mechanical.

2. Constructing harmonic vector fields from quadratic differentials

2.1. Harmonic vector fields in isothermal coordinates. Suppose that ξ is defined
on U ⊂ R2 and U is equipped with a Riemannian metric of the form ds2

=

λ(x, y)(dx2
+ dy2).

If the flow (φt)t∈[0,ε) and the vector field ξ are related as above, then we can
describe φt to first order in terms of ξ :

φt(z)≈ z + tξ(z) for z ∈ U.

We define a family of Riemannian metrics on U as follows:

(2.1.1) t 7→ ρt = φ∗

t g.

More precisely the map in (2.1.1) has the form

(2.1.2) t 7→ (Dφt : TpU → Tφt (p)H)
∗g.

To the first order, (2.1.2) can be expressed as follows:

t 7→
(
id + t · Dξ : TpU → Tφt (p)H

)∗g,

where Dξ is the total derivative of ξ (the latter being viewed as a smooth map from
an open set in R or C to R2 or C). Continuing in this manner, we get

ρt ≈ (id + t · Dξ)T (g + t · Dg(ξ)) (id + t · Dξ)

≈ g + t · Dξ T g + t Dg(ξ)+ t · Dξ · g

= g + (t · Dξ T
+ t · Dξ) · g + t Dg(ξ).

Calculating
dρt

dt

∣∣∣
t=0

gives us a section of the vector bundle of (real) symmetric bilinear forms on T U
and this is denoted by Lξ (g), the Lie derivative of g along ξ . Therefore,

(2.1.3) Lξg = (Dξ T
+ Dξ)g + Dg(ξ)

in our preferred coordinates. We can write Dξ in matrix form,

Dξ =

[
ξ 1

x ξ 1
y

ξ 2
x ξ 2

y

]
.



TANGENT SPACES OF TEICHMÜLLER SPACE 381

Then (2.1.3) turns into

Lξ (g)= λ

[
2ξ 1

x ξ 1
y + ξ 2

x

ξ 2
x + ξ 1

y 2ξ 2
y

]
+

[
⟨Dλ, ξ⟩ 0

0 ⟨Dλ, ξ⟩

]

= λ

[
ξ 1

x − ξ 2
y ξ 1

y + ξ 2
x

ξ 1
y + ξ 2

x ξ 2
y − ξ 1

x

]
︸ ︷︷ ︸

TF

+λ

[
ξ 1

x + ξ 2
y 0

0 ξ 1
x + ξ 2

y

]
+

[
⟨Dλ, ξ⟩ 0

0 ⟨Dλ, ξ⟩

]
.

Recall from Section 1.3 that the vector bundle E of (real) symmetric R-bilinear
forms on T U splits into a 1-dimensional real vector subbundle (the scalar summand)
spanned by the everywhere nonzero section g and a 1-dimensional complex line
bundle (the trace-free summand) which is the image of the embedding

homC(T U ⊗C T U,C)→ E

taking φ to Re(φ). Since the local coordinates that we are using here are in
agreement with the conformal structure determined by the Riemannian metric g,
our calculation implies that the trace-free component of Lξ (g) is the summand
with the label TF,

(2.1.4) λ

[
ξ 1

x − ξ 2
y ξ 1

y + ξ 2
x

ξ 1
y + ξ 2

x ξ 2
y − ξ 1

x

]
.

Indeed, TF is Re( f · (dz ⊗ dz)), for f := TF11 − ιTF12, where ι=
√

−1.

Proposition 2.1.1. Let ξ be a smooth vector field on U ⊂ R2, and let g be a
Riemannian metric on U of the form ds2

= λ(x, y)(dx2
+dy2). Then the trace-free

component of Lξ (g) is Re( f · (dz ⊗C dz)), where f : U → C is determined by

(2.1.5) f (z)= 2λ
∂ξ

∂ z̄
(z).

Proof. Most of this has already been established. The formula for f (z) needs to be
unraveled. The Wirtinger derivative (for differentiable functions from U to C) is

(2.1.6) ∂/∂ z̄ =
1
2(∂/∂x + ι ∂/∂y),

where we allow ourselves to write z = x + ιy. In particular

2λ
∂ξ

∂ z̄
= λ · (ξx + ιξy).

It is understood that ξx = ξ 1
x + ιξ 2

x and ξy = ξ 1
y + ιξ 2

y , so that we obtain

2λ
∂ξ

∂ z̄
= λ(ξ 1

x + ιξ 2
x − ξ 2

y + ιξ
y
1 )= λ(ξ 1

x − ξ 2
y + ι(ξ 2

x + ξ 1
y ))= TF11 + ιTF12,

which is conjugate to TF11 − ιTF12, our definition of f , given just after (2.1.4). □
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Remark 2.1.2. Think of Proposition 2.1.1 as a complement to Proposition 1.3.1.

2.2. Solving the potential equation. Taking U = H and λ(x, y)= y−2 in (2.1.5),
we obtain

(2.2.1) f (z)=
−8

(z − z̄)2
∂ξ

∂ z̄
(z).

This is well known in Teichmüller theory. Scott Wolpert [1987, §2.1] calls it the
potential equation. He has it in the form

(2.2.2) (z − z̄)2 f (z)= −8
∂ξ

∂ z̄
(z)

except for the factor −8 in the right-hand side, which he does not have. (One may
ask why he does not have it. We believe this is explained by different conventions,
e.g., regarding the preferred metric on H.) He calls the left-hand side a harmonic
Beltrami differential, and probably he views both sides as Beltrami differentials,
consciously or unconsciously multiplying both sides with a standard Beltrami
differential denoted dz̄/dz for better or worse.

Wolpert [1987, §2.3] has a very elegant solution for the potential equation. (Here
we assume that f is “known”, defined on all of H and holomorphic. The vector
field ξ on H is the unknown. By Proposition 2.1.1 it must be a harmonic vector
field.) His solution, in our notation, is

(2.2.3) ξ(z)= −
1
8

∫ z

z0

(z̄ − s)2 f (s) ds,

where z0 ∈ H is fixed. The integral is a complex path integral, along some path
in H from z0 to z. Since the integrand is holomorphic, the value of the integral is
independent of the path selected. He writes: the potential equation (2.2.2) is an
immediate consequence of differentiation under the integral. He is right.

For us, (2.2.3) is not the perfect solution. We need a solution which extends to
the ideal boundary of H under conditions on f which we find reasonable. Therefore
we will adopt a more laborious method to solve (2.2.2).

Let η be the constant vector field on H defined by η(z)= 1 ∈ C for all z.

Lemma 2.2.1. Let f : H → C be a holomorphic function and let c be a positive
real number. The vector field ξc defined by

ξc(z)=

( ∫ c

Im(z)
ιt2 f (z̄ + 2ιt) dt

)
η(z)

for z subject to Im(z) < 2c solves (2.2.2).

We have to assume Im(z) < 2c in the definition of ξc(z) to ensure that f (z̄ +2ιt)
is defined for all t ∈ [c, Im(z)].
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Proof. Write ξ instead of ξc in this proof (and drop the constant factor η, so that ξ
becomes a function with values in C). Write D for the total derivative acting on
such functions, so that the values of D are real 2 × 2-matrices. Write 8(z, t) for
the integrand in the definition of ξ .

The function ξ is a composition u ◦ v, where v(z)= (Im(z), z) for z ∈ H and u
is a function of a real and a complex variable:

u(r, z)=

∫ c

r
8(z, t) dt.

Applying the chain rule in this situation gives

(2.2.4) Dξ(z)= −8(z, Im(z)) ·
[
0 1

]
+

∫ c

Im(z)
D(8(z, t)) dt ·

[
1 0
0 1

]
,

where 8(z, Im(z)) must be viewed as a real 2×1-matrix. The Wirtinger derivative
∂/∂ z̄ is Q(D) for a certain linear map W2 acting on real 2×2-matrices,[

a b
c d

]
7→

1
2

[
a − d
b + c

]
.

Therefore
∂ξ

∂ z̄
(z)= W2

(
−8(z, Im(z)) ·

[
0 1

])
+

∫ c

Im(z)
W2(D(8(z, t)) dt.

But 8(z, t) is a holomorphic function of z, so that W2(D(8(z, t)) is everywhere
zero. So we obtain

W2(Dξ(z))= W2
(
−8(z, Im(z)) ·

[
0 1

])
.

Now 8(z, Im(z))= ιy2 f (z), where we have written y for Im(z). Therefore

−8(z, Im(z)) ·
[
0 1

]
= y2

[
0 −Im( f (z))
0 −Re( f (z))

]
,

and so

∂ξ

∂ z̄
(z)= W2(Dξ(z))=

1
2

y2
[

Re( f (z))
−Im( f (z))

]
=

1
2

y2 f (z)= −
1
8
(z − z̄)2 f (z). □

Theorem 2.2.2. Let f be a holomorphic function on H which satisfies the condition
| f (z)| · Im(z)2 ≤ b0, where b0 is a positive constant, z ∈ H arbitrary. Then the
formula

(2.2.5) ξ reg(z) := lim
c→∞

(
ξc(z)−

(
ξc(ι)+

∂ξc

∂z
(ι) · (z − ι)

))
,

where ξc is as in Lemma 2.2.1, defines a smooth vector field ξ reg on H which solves
(2.2.2).
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Remarks. The superscript reg is for regularization, the art of making divergent
things convergent. The formula for ξ reg uses the Wirtinger derivative ∂/∂z =
1
2(∂/∂x − ι ∂/∂y). The “regularizing” term ξc(ι)+ (∂ξc/∂z)(ι) · (z − ι) which we
subtract from ξc(z) can be regarded as the holomorphic part of the first Taylor
approximation to ξc at z = ι.

The function z 7→ | f (z)| · Im(z)2 on H is bounded if and only if the quadratic
differential f · (dz ⊗C dz) on H is bounded in the metric of H and Remark 1.3.2.
Indeed the pointwise norm of the 1-form dz at z0 ∈ H is Im(z0), and the pointwise
norm of dz ⊗C dz at z0 is therefore Im(z0)

2.
The vector field ξ reg is automatically harmonic if it solves (2.2.2), since f is

holomorphic by assumption.

The proof of Theorem 2.2.2 is quite long. We begin by isolating some technical-
ities and generalities.

Lemma 2.2.3. If f : H → C is holomorphic and satisfies | f (z)| · Im(z)2 ≤ b0

for all z ∈ H, where b0 is a positive constant, then there exist positive constants
b1, b2, b3, . . . such that | f (n)(z)| · Im(z)n+2

≤ bn for all z ∈ H and n = 1, 2, 3, . . . .

Proof. Fix z0 ∈ H and let γ be a smooth curve describing (counterclockwise) a
circle of radius r = Im(z0)/2 about z0. Then by the Cauchy integral formulas,

f (n)(z0)=
n!

2πι

∮
γ

f (z)
(z − z0)n+1 dz.

The values of | f | on the circle are bounded by b0 ·(Im(z0)/2)−2. The circumference
of the circle is π Im(z0). Therefore

| f (n)(z0)| ≤
n!

2π
(π Im(z0)) · b0(Im(z0)/2)−2

· (Im(z0)/2)−(n+1)

= 2n+2n!πb0(Im(z0))
−(n+2).

We can take bn = 2n+2 n!πb0. □

Lemma 2.2.4 (notation of Lemma 2.2.1). The Wirtinger derivative ∂/∂ z̄ of ξc is
independent of c, where defined.

Proof. Make two choices for c, say c1 and c2, where c2 > c1 >
1
2 . Then

ξc2(z)− ξc1(z)=

( ∫ c2

c1

ιt2 f (z̄ + 2ιt) dt
)
η(z)

is a holomorphic vector field. It is defined for z with Im(z) < 2c1. □

Remark 2.2.5. Let λ : U → C be a differentiable function, where U is open
in C. The Wirtinger derivatives ∂/∂z and ∂/∂ z̄ of λ together determine the total
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derivative Dλ. The relationship is

Dλ=
∂λ

∂z
+
∂λ

∂ z̄
·

[
1 0
0 −1

]
.

This is meant as an equation between functions taking values in the algebra of real
2×2-matrices. (A complex number determines a real 2×2-matrix since multiplica-
tion by that number is an R-linear operator on R2.)

Proposition 2.2.6. Let (ζn)n≥0 be a sequence of harmonic vector fields defined on
an open set U ⊂ H, and converging in the compact-open C0 topology to a vector
field ζ∞. Suppose that the trace-free component of Lζn (g) is the same for all n.
Then the sequence (ζn) converges to ζ∞ in the compact-open C∞-topology. Hence
ζ∞ is harmonic, and the trace-free component of Lζ∞(g) agrees with the trace-free
component of Lζn (g) for all n.

Proof. The sequence (ζn − ζ0)n≥0 is a sequence of holomorphic vector fields
which can also be viewed as a sequence of holomorphic functions. Therefore the
Weierstrass convergence theorem applies. □

Proof of Theorem 2.2.2. Write D for total derivatives (of C-valued functions, with
respect to a variable z ∈ H or z ∈ C). Write κ(z)= max{1, Im(z)}. As in the proof
of Lemma 2.2.1 write

8(z, t) := ιt2 f (z̄ + 2ιt).

We do not insist on the distinction between vector fields (on open subsets of H) and
C-valued functions, because it is irrelevant here. In particular ξc will be viewed as
a function. The first step is to show

(2.2.6) ξc(z)−
(
ξc(ι)+

∂ξc

∂z
(ι) · (z − ι)

)
=

∫ c

κ(z)
8(z, t)−8(ι, t)− D8(ι, t) · (z − ι) dt + F(z),

where F is a continuous function of the variable z, independent of c. As a matter
of language, we might say (in this proof) that two continuous functions of z and c
are equivalent if their difference is a function of z only. Then (z, c) 7→ ξc(z) is
equivalent to

(z, c) 7→

∫ c

κ(z)
8(z, t) dt

and (z, c) 7→ ξc(ι) is equivalent to

(z, c) 7→

∫ c

κ(z)
8(ι, t) dt.
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By Lemma 2.2.4 and Remark 2.2.5, the function (z, c) 7→ (∂ξc/∂z)(ι) · (z − ι) is
equivalent to (z, c) 7→ Dξc(ι) · (z − ι). As in the proof of Lemma 2.2.1 we have

Dξc(ι)= −8(ι, 1) ·
[
0 1

]
+

∫ c

1
D(8(ι, t)) dt,

so that (z, c) 7→ Dξc(ι) · (z − ι) is equivalent to

(z, c) 7→

∫ c

κ(z)
D(8(ι, t)) · (z − ι) dt.

Using all these equivalences, we obtain (2.2.6). And now the second step is clearly
to show that the improper integral

(2.2.7)
∫

∞

κ(z)
8(z, t)−

(
8(ι, t)+ D8(ι, t) · (z − ι)

)
dt

exists. It is a good idea to think of the expression 8(ι, t)+ D8(ι, t) · (z − ι) as
the first Taylor polynomial at z = ι of the function z 7→ 8(z, t), for fixed t . The
“integral form of the remainder” in Taylor’s formula gives us

8(z, t)−
(
8(ι, t)+ D8(ι, t) · (z − ι)

)
=

1
2

∫ 1

0
u′′(s) · (1 − s) ds,

where u(s) :=8(ι+ s(z − ι), t)= ιt2 f (−ι+ s(z̄ + ι)+ 2ιt) for fixed t and z. Now
Lemma 2.2.3 gives the estimate

|u′′(s)| ≤ t2 b2|z − ι|2

|ι+ s(z − ι)− 2ιt |4
.

Here s ∈ [0, 1], and z is fixed, and b2 is a positive constant. If t ≥ 1 + |z|, then we
may conclude

|u′′(s)| ≤
b2|z − ι|2

t2 .

Therefore if 1 + |z| ≤ A1 ≤ A2, then∣∣∣∣∫ A2

A1

8(z, t)−
(
8(ι, t)+ D8(ι, t) · (z − ι)

)
dt

∣∣∣∣
≤

∫ A2

A1

1
2

∫ 1

0

b2|z − ι|2

t2 · (1 − s) ds dt

=
1
4

b2|z − ι|2
∫ A2

A1

t−2 dt =
1
4

b2|z − ι|2(A−1
1 − A−1

2 )≤
b2|z − ι|2

4A1
.

This means that the improper integral (2.2.7) converges. In other words, ξ reg(z)
is well defined by means of formula (2.2.5) for every z ∈ H. But we have shown
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more: the convergence is uniform on compact sets. More precisely, writing

V (c, z) := ξc(z)−
(
ξc(ι)+

∂ξc

∂z
(ι) · (z − ι)

)
,

we have shown that

(2.2.8) |V (c1, z)− V (c, z)| ≤
b2|z − ι|2

4c
under the condition c1 ≥ c > 1 + |z|. Now Proposition 2.2.6 can be applied. It
follows that ξ reg is a harmonic vector field on H and a solution to (2.2.2). □

2.3. Boundary values. The standard isometry from the upper half-plane model H

of the hyperbolic plane to the disk model D is the Cayley transform C , defined by
C(z) := (z − ι)/(z + ι). The (complex) derivative of C is z 7→ (z + ι)−2.

Theorem 2.3.1. The vector field C∗(ξ
reg) on D obtained by applying the Cayley

transform to ξ reg of Theorem 2.2.2 admits a continuous extension to D ∪ S1. The
value of the extended vector field at 1 ∈ S1 is 0.

Remark 2.3.2. The restriction to S1 of the extended vector field on D ∪ S1 is not
claimed to be tangential to S1. From our point of view this is an issue. It will be
addressed in Section 2.4, which has no other purpose.

As a preparation for the proof, we translate the statement so that we can continue
to work in the upper half-plane setting. It is convenient to show first that ξ reg

extends to a continuous vector field defined on all of H ∪ R. Under the Cayley
transform this corresponds to a continuous vector field on D ∪ S1 ∖ {1}. We extend
this to all of D ∪ S1 by defining the missing value (at 1 ∈ S1) to be 0. Then we still
have to establish continuity at 1 ∈ D ∪ S1. By the formula for the derivative of C ,
this is equivalent to the following statement:

(2.3.1) lim
z∈H, |z|→∞

ξ reg(z)
|z|2

= 0.

Proof of Theorem 2.3.1. First we show that ξ reg extends to a continuous vector field
on H ∪ R. Select some z ∈ R. The integral

(2.3.2)
∫ c

Im(z)
ιt2 f (z̄ + 2ιt) dt

is an improper integral because the integrand is not defined for t = 0 = Im(z). But
for t > 0 the integrand is defined and moreover

|ιt2 f (z̄ + 2ιt)| ≤ |z̄ + 2ιt |2| f (z̄ + 2ιt)| ≤ b0

by our condition on f . It follows that, for z ∈ R, the improper integral (2.3.2)
converges. So ξc(z) is defined or definable for all z such that 0 ≤ Im(z) < 2c, and
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is continuous as a function of z. Inequality (2.2.8) remains meaningful and valid if
we allow z ∈ H ∪ R. Therefore ξ reg(z) has a continuous extension to all of H ∪ R.

It remains to prove the claim (2.3.1). Fix some z ∈ H. We will use (2.2.8), but
we have some freedom in choosing c, and we decide c = 2 + |z|. This gives∣∣∣∣ξ reg(z)− ξc(z)−

(
ξc(ι)+

∂ξc

∂z
(ι) · (z − ι)

)∣∣∣∣ ≤
b2|z − ι|2

4c
=

b2|z − ι|2

8 + 4|z|
.

Since the right-hand side of this, divided by |z|2, tends to zero for |z| → ∞, the
same is true for the left-hand side. Therefore it is enough to show that the fraction

(2.3.3)
ξc(z)−

(
ξc(ι)+ (∂ξc/∂z)(ι) · (z − ι)

)
|z2|

,

evaluated only on pairs (c, z) where c = 2 + |z|, tends to zero for |z| → ∞. By
Lemma 2.2.3 and elementary integration (see Remark 2.3.3 for more details), the
following estimates are available:

|ξc(z)|< A · |z|, |ξc(ι)|< A · |z|,
∣∣∣∣∂ξc

∂z
(ι)

∣∣∣∣< A ln |z| + B

for some positive constants A and B. Therefore∣∣∣∣∂ξc

∂z
(ι) · (z − ι)

∣∣∣∣< (A ln |z| + B) · (|z| + 1).

Using these estimates in (2.3.3), we see that it does tend to zero for |z| → ∞. □

Remark 2.3.3. Estimate for ξc(z): We have

ξc(z)=

∫ c

Im(z)
ιt2 f (z̄ + 2ιt) dt,

where | f (z̄ +2ιt)| ≤ b0|z̄ +2ιt |−2. Since t ∈ [Im(z), c], where c = 2+|z|, we have
t ≥ Im(z) and so |z̄ + 2ιt | ≥ Im(z̄ + 2ιt)= 2t − Im(z)≥ t . Therefore

|ξc(z)| ≤

∫ c

Im(z)
t2b0|z̄ + 2ιt |−2 dt ≤ b0

∫ c

Im(z)
1 dt = b0(c − Im(z))≤ b0(2 + |z|).

Estimate for ξc(ι): It must be remembered that c = 2 + |z|, where z has little to do
with ι. We have

ξc(ι)=

∫ c

1
ιt2 f (ῑ+ 2ιt) dt,

where | f (ῑ+ 2ιt)| ≤ b0|2t − 1|
−2. Since t ≥ 1 we have |2t − 1| ≥ t and so

|ξc(ι)| ≤

∫ c

1
t2b0|ῑ+ 2ιt |−2 dt ≤ b0

∫ c

1
1 dt = b0(c − 1)= b0(1 + |z|).
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Estimate for (∂ξc/∂z)(ι): Again it must be remembered that c = 2 + |z|, where z
has little to do with ι. We try the total derivative Dξc first. In the notation and
conventions of (2.2.4) we have

Dξc(ι)= −8(ι, 1) ·
[
0 1

]
+

∫ c

1
D(8(ι, t)) dt,

which means

(2.3.4) Dξc(ι)= −ι f (ι) ·
[
0 1

]
+

∫ c

1
ιt2(D ft)(ι) dt,

where ft is the (holomorphic) function z 7→ f (z̄ + 2ιt). We note therefore that
the second summand in the right-hand side of (2.3.4) will contribute in full to
(∂ξc/∂z)(ι); the other one may not contribute in full but it will make a constant
contribution (independent of c). Therefore we have to estimate the second summand
only. By the chain rule, (D ft)(ι)= (D f0)(ι−2ιt). This is a complex number (which
can also be viewed as a real 2×2-matrix). Now |(D f0)(ι− 2ιt)| = |D f (2ιt − ι)|

and by Lemma 2.2.3 we have |D f (2ιt − ι)| =≤ b1|2t − 1|
−3

≤ b1t−3. Therefore∣∣∣∣∫ c

1
ιt2(D ft)(ι) dt

∣∣∣∣ ≤

∫ c

1
b1t−1 dt = b1 ln c = b1 ln(2 + |z|).

Remark 2.3.4. It seems to us that Wolpert’s solution (2.2.3) of (2.2.2) admits a
continuous extension to H ∪ R if f satisfies the conditions of Theorem 2.2.2. But
we were unable to show that it has good growth behavior for z → ∞, e.g., similar
to (2.3.1), especially where z approaches ∞ on a horizontal through z0.

2.4. Hardy space to the rescue. Let H = L2(S1,C) be the complex Hilbert space
of square integrable complex valued functions on S1. The hermitian inner product is

⟨v,w⟩ =
1

2π

∫ 2π

0
⟨v(eιt), w(eιt)⟩ dt

for v,w ∈H. Consequently H has a standard Hilbert basis consisting of the vectors
vk := (z 7→ zk) for k ∈ Z. It has an orthogonal splitting H = H1 ⊕H2, where H1 is
the closure of the span of the vk for k ≥ 0, and H2 is the closure of the span of the vk

for k < 0. The closed subspace H1 is known as the Hardy space. Each w ∈ H1

has a canonical “extension” to a function we
: D ∪ S1

→ C which is holomorphic
in D. Namely, if w=

∑
∞

k=0 akvk in H1, then the power series
∑

∞

k=0 akzk converges
locally uniformly in D and represents a holomorphic function there. Note that w
can be recovered from the restriction of we to D. It is the limit (in the metric of H1)
of the functions z 7→ we(sz), for z ∈ S1, as s ∈ [0, 1) tends to 1.

Let X ⊂ H be the closed R-linear subspace consisting of the functions on S1

which have the form z 7→ ιz · u(z), where u is a real-valued square-integrable
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function on S1. It is an exercise in linear algebra to show that X +H1 = H and
dimR(X ∩H1) = 3. In fact X ∩H1 has an orthonormal (real) basis consisting of
the functions

z 7→ ιz, z 7→
1
2 ιz · ι(z−1

− z), z 7→
1
2 ιz · (z−1

+ z).

This fact has a more illuminating formulation if we think of H as the vector space
of L2-vector fields on S1 (where the vectors in the vector fields are elements of C).
Then X is precisely the space of tangential L2-vector fields on S1. The more
illuminating formulation is as follows.

Lemma 2.4.1. X +H1 = H and X ∩H1 = g, where g is the space of Killing vector
fields on S1 (see explanation below).

It makes sense to speak of Killing vector fields on D; these are the “infinitesimal
isometries” of D with the Poincaré metric. They form a 3-dimensional Lie algebra g
under the Lie product, which we identify with the Lie algebra of isom+(D). It is
well known that the Killing vector fields extend to smooth vector fields on D ∪ S1

which are tangential to S1. Restricting these to S1 is a faithful operation, and so
we may allow ourselves occasionally to think of g as a 3-dimensional Lie algebra
of tangential smooth vector fields on S1. (The Lie product will not be of any
importance here.)

Proof of Theorem I in Section 1. Let h be the Poincaré metric on D. Let φ be a
quadratic differential on D which is uniformly bounded in the norm of Remark 1.3.2.
By Theorems 2.2.2 and 2.3.1, there exists a continuous vector field ζ on D ∪ S1

which is smooth on D, and such that the trace-free component of Lζ (h) is φ.
(In more detail: Let C∗(φ) be the pullback of φ under the Cayley transform C , a
holomorphic quadratic differential on H. Write C∗(φ)= f · (dz ⊗C dz), so that f
is holomorphic and satisfies the conditions of Theorem 2.2.2. Find ξ reg as in the
said theorem. Let C∗(ξ

reg) be the corresponding vector field on D. Let ζ be the
extension of C∗(ξ

reg) to D ∪ S1 which exists by Theorem 2.3.1.)
The vector field ζ need not be tangential along S1. But by Lemma 2.4.1 there

exists ψ ∈ H1 such that
ζ |S1 −ψ ∈ X .

Because ψ belongs to the Hardy space H1, it has a canonical extension ψe to
D ∪ S1 which is holomorphic on D. It turns out that ξ := ζ −ψe, restricted to D,
is a smooth and boundary-controlled vector field on D such that the trace-free
component of Lξ (g) is Re(φ). We will verify the conditions one by one.

(i) The trace-free component of the Lie derivative of the Riemannian metric h
along ζ −ψe is φ because the trace-free component of Lζ (h) is φ and ψe is
holomorphic on D.



TANGENT SPACES OF TEICHMÜLLER SPACE 391

(ii) The vector field ζ −ψe (restricted to D) is boundary controlled because we
have the extension to D ∪ S1 by construction, and the extension is tangential
along S1 by construction. The matching condition which must be satisfied by
the restrictions of ζ −ψ to D and S1, respectively, is indeed satisfied because
it is satisfied separately for ζ and ψe.

It remains to understand what happens if φ ≡ 0. In this case, ξ must be a holo-
morphic vector field on D. It can be written uniquely as a power series

∑
∞

k=0 akzk

which converges locally uniformly in D. Since ξ is boundary controlled, it has a
distributional boundary β ∈X . The matching condition relating ξ and β means that
the Fourier coefficients of β are precisely the numbers a0, a1, a2, . . . , the Taylor
coefficients of ξ . It follows that β ∈ H1, and so β ∈ H1 ∩ X . Therefore β is a
Killing vector field on S1 by Lemma 2.4.1. This has consequences for the Fourier
coefficients a0, a1, . . . of β (for example, only a0, a1, a2 can be nonzero). Then we
can conclude ξ ∈ g. □

3. Constructing harmonic vector fields from boundary data

3.1. Symmetry properties of the classical Poisson formula. The symmetry group
that we have in mind is isom(D), where D has the Poincaré metric as usual. Of
course this acts on D, but it also acts on S1 and (continuously) on the compact
manifold with boundary D ∪ S1. It acts (on the right, by precomposition) on the
vector spaces C0(S1

; R) and C0(D; R). (Both C0(S1
; R) and C0(D; R) are to be

equipped with the compact-open C0-topology. One of them is a Banach space, the
other is just a topological vector space.)

Let F be the real vector space of continuous, R-linear and isom(D)-equivariant
maps from C0(S1

; R) to C0(D; R)

Proposition 3.1.1. dimR(F )= 1.

Proof. Let F be a nonzero element of F . For each z ∈ D, let evz from C0(D; R) to R

be the map evaluation at z, a linear functional. Because isom(D) acts transitively
on D, the isom(D)-equivariant map F is determined by the composition ev0 ◦ F .
The map ev0 ◦ F can no longer be claimed to be equivariant for the action(s) of
isom(D), but it is equivariant w.r.t. the subgroup O(2)⊂ isom(D) consisting of the
elements which fix 0 ∈ D. Therefore ev0 ◦ F is an O(2)-invariant linear functional
on C0(S1

; R). It is well known that the real vector space of these is 1-dimensional,
generated by the Haar integral. Therefore dimR(F )≤ 1.

On the other hand, we can use the equivariance condition to construct P ∈ F

such that ev0 ◦ P is the nonzero linear functional taking v ∈ C0(S1
; R) to

1
2π

∫ 2π

0
v(eιt) dt.
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Choose h ∈ isom(D). By equivariance we must have (P(v))(h(0))= (P(v ◦h))(0),
which comes down to

(3.1.1) P(v)(h(0))=
1

2π

∫ 2π

0
v(h(eιt)) dt.

The value of the integral depends only on h(0), since h is determined by h(0) up to
precomposition with an element of O(2)⊂ isom(D). Therefore we have a definition
of P in (3.1.1). It follows that dim(F )≥ 1. □

Remark 3.1.2. It is not obvious from (3.1.1) that P(v) is harmonic, and that v
and P(v) together define a continuous function on D ∪ S1. We are not going to
justify these statements fully here (because they are well known). But in Section 3.2
we will encounter similar statements in a slightly different setup, and we will have
to justify those. Therefore we sketch an argument. Let us try to make sense of
K := P(δ1), where δ1 is a Dirac distribution at 1 ∈ S1. Think of δ1 as the limit of a
sequence of step functions wn for n ≥ 2, where wn is zero outside the short arc In

in S1 with endpoints e−ι/2n and eι/2n , and has the constant value n for points in the
arc. Then P(δ1) should be the limit of the P(wn), and for P(wn) we expect

P(wn)(h(0))=
1

2π

∫ 2π

0
wn(h(eιt)) dt

although wn is not continuous. Here we may assume h ∈ isom+(D), which implies
that h is holomorphic so that we can use complex calculus notation. Since wn ◦ h
is constant on h−1(In) with constant value n, and zero elsewhere, the integral
is n times the length of h−1(In). The length of h−1(In) is well approximated by the
modulus of the complex number (h−1)′(1), times the length of In , which is 2π/n.
We arrive at

K (h(0))= P(δ1)(h(0))= |(h−1)′(1)| =
1

|h′(h−1(1))|
.

This is well defined, which means: dependent only on h(0). Next, it is an interesting
exercise to show that the map taking v ∈ C0(S1

; R) to the convolution of v and K is
an element of F . Therefore we have found another definition of P . The two claims
about P can now be reformulated as claims about K . In other words it remains to
show that K is harmonic, and that for each v ∈ C0(S1

; R), the Hilbert space inner
product of v and the function z 7→ K (sz) (for z ∈ S1 variable and s ∈ [0, 1) fixed)
tends to v(1) as s tends to 1.

3.2. Vector fields on the circle as boundary data. Let C0
v (S

1
; T S1) be the topolog-

ical real vector space (with the compact-open topology) of continuous tangential
vector fields on S1, a.k.a. the space of continuous sections of T S1

→ S1. An
element ψ of C0

v (S
1
; T S1) can also be viewed as a continuous map from S1 to C,
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subject to some conditions, because S1 is a smooth submanifold of C. This point of
view is used in the next lemma. Note that U(1) acts on the right of C0

v (S
1
; T S1) by

(ψ, A) 7→ A∗ψ = A−1
·(ψ ◦ A) for A ∈ U(1). (Of course A is nothing but a complex

number of modulus 1, but we are tend to think of it as a C-linear endomorphism
of C. And although it is sometimes convenient to view ψ as a function with values
in C, the formula for A∗ψ is what it is because ψ is a vector field after all.)

Lemma 3.2.1. Every continuous and R-linear map 3 : C0
v (S

1
; T S1)→ C which

has 3(A∗ψ)= A−13(ψ) for all ψ ∈ C0
v (S

1
; T S1) and A ∈ U(1) is of the form

(3.2.1) 3(ψ)= a ·

∫ 2π

0
ψ(eιt) dt

for some a ∈ C.

Proof. Given such3, we extend it to a map3C
: C0

v (S
1
; T S1

⊗R C)→ C as follows.
Elements of C0

v (S
1
; T S1

⊗R C) can be written uniquely in the form ψ = ψ1 + ιψ2,
where both ψ1 and ψ2 are tangential to S1. Then we let

3C(ψ1 + ιψ2) :=3(ψ1)+ ι3(ψ2).

There are now two commuting actions of U(1) on C0
v (S

1
; T S1

⊗R C). One is given
by (ψ, A) 7→ A∗ψ . The other is pointwise, (ψ, A) 7→ A ·ψ . By our assumption
on 3, the map 3C intertwines the first action with the conjugate of the standard
action of U(1) on C. By construction, it intertwines the second action with the
standard action of U(1) on C. It follows that 3C is invariant under the operation

ψ 7→ A · A∗ψ,

whereψ ∈C0
v (S

1
; T S1

⊗RC) and A ∈U(1). Here we can also write A· A∗ψ=ψ◦ A
if we think of ψ as a function with values in C. (The inclusion of the tangent
space Tz S1 in C extends uniquely to a C-linear isomorphism Tz S1

⊗R C → C.)
Briefly, 3C satisfies 3C(ψ ◦ A)=3C(ψ) for all ψ and all A ∈ U(1). Because it is
also C-linear by construction, it must have the form

ψ 7→ a ·

∫ 2π

0
ψ(eιt) dt

for some a ∈ C. In particular this is valid for ψ ∈ C0
v (S

1
; T S1). □

Remark 3.2.2. Clearly 3 : C0
v (S

1
; T S1)→ C satisfies the condition 3(A∗ψ) =

A−13(ψ) for all ψ ∈ C0
v (S

1
; T S1) and A ∈ U(1) if it is of the form (3.2.1). But if

the complex number a in (3.2.1) is a real number, and only then, it will satisfy the
same condition for all A ∈ O(2). The proof is by direct verification.

Let C0
v (D; T D) be the real vector space of continuous vector fields on D,

equipped with the compact-open C0 topology. The group isom(D) acts on the
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right of C0
v (D; T D) by (ξ, h) 7→ h∗ξ , which means (h∗ξ)(z)= Dh(z)−1

(
ξ(h(z))

)
for z ∈ D. The action is R-linear.

Let Fvf be the real vector space of continuous, R-linear and isom(D)-equivariant
maps from C0

v (S
1
; T S1) to C0

v (D; T D).

Corollary 3.2.3. dimR(Fvf )= 1.

Proof. Let F be a nonzero element of Fvf . For each z ∈ D, let evz from C0
v (D; T D)

to C = T0D be the map evaluation at z, an R-linear map. Because isom(D) acts
transitively on D, the isom(D)-equivariant map F is determined by the composition
ev0◦F . The map3 := ev0◦F can no longer claim to be equivariant for the action(s)
of isom(D), but it satisfies the condition of Lemma 3.2.1 for A ∈ U(1), and the
stronger condition of Remark 3.2.2 which allows A ∈ O(2). Therefore 3= ev0 ◦ F
has the form (3.2.1) for some real number a. It follows that dimR(Fvf )≤ 1.

We can use the equivariance condition to construct an F ∈ Fvf such that ev0 ◦ F
is the nonzero linear functional taking ψ ∈ C0

v (S
1
; T S1) to

1
2π

∫ 2π

0
ψ(eιt) dt.

Choose h ∈ isom(D). By equivariance we must have (Dh(0))−1
(
(F(ψ))(h(0))

)
=

(F(h∗ψ))(0), which comes down to

(3.2.2) F(ψ)(h(0))=
1

2π
(Dh(0))

( ∫ 2π

0
(h∗ψ)(eιt) dt

)
.

It is easy to see that the right-hand side depends only on h(0), because h is de-
termined by h(0) up to precomposition with an element of O(2) ⊂ isom(D)).
Therefore F in (3.2.2) is well defined. It is easily seen to be nonzero. It follows
that dim(Fvf )≥ 1. □

We want to show that F(ψ), with the definition of F in (3.2.2), is always a
harmonic vector field and that ψ and c · F(ψ) together define a continuous vector
field on D∪S1, where c is a positive real constant factor independent of ψ . Imitating
the strategy outlined in Remark 3.1.2, we begin by making sense of

Kvf := F(δ1 ·ω),

where δ1 is the Dirac distribution and ω ∈ C0
v (S

1, T S1) is the tangential vector field
defined by ω(z)= ιz for z ∈ S1. To simplify this, we remark that for every z ∈ D

there exists a unique h ∈ isom+(D) such that h(0) = z and h(1) = 1. For such
an h ∈ isom+(D) we first need to make sense of h∗(δ1 ·ω)= h∗δ1 · h∗ω. It is not
hard to see (and the calculation of h∗δ1 can be seen in Remark 3.1.2) that this is
(h′(1))−2δ1 ·ω. Therefore we make the definition

(3.2.3) Kvf (h(0))= ιh′(0) · (h′(1))−2
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on the understanding that h ∈ isom+(D) and h(1)= 1. If we specify z = h(0), then
we can write

h(w)=
yw+ z
ywz̄ + 1

,

where y = (1−z)/(1− z̄)= (1−z2)/|1−z|2. Then h′(w)= y(1−|z|2)/(ywz̄+1)2.
Therefore h′(0)= y(1 − |z|2) and

h′(1)=
y(1 − |z|2)
(yz̄ + 1)2

=
y(1 − |z|2)
(z + y)2

(where we have used h(w)= 1, so that yz̄ + 1 = z + y) and

h′(0)/(h′(1))2 = y(1 − |z|2) ·
(z + y)4

y2(1 − |z|2)2
=

(z + y)4

y(1 − |z|2)
=

|1 − z|2(z + y)4

(1 − z)2(1 − |z|2)
.

Now we use z + y = (z − |z|2 + 1 − z)/(1 − z̄)= (1 − |z|2)/(1 − z̄) and obtain

h′(0)/(h′(1))2 =
(1 − |z|2)3

(1 − z̄)2|1 − z|2
,

so that

(3.2.4) Kvf (z)= ι ·
(1 − |z|2)3

(1 − z̄)2|1 − z|2
.

Lemma 3.2.4. Suppose that h ∈ isom+(D) satisfies h(1)= 1. Then

h∗Kvf = c · Kvf ,

where c = (h′(1))−2.

Proof. Loosely and provisionally we defined ξ as F(δ1 · ω). Therefore h∗ξ =

h∗F(δ1 ·ω)= F(h∗(δ1 ·ω)) by the equivariance property of F . Here we can see that
h∗(δ1 ·ω)= c · δ1 ·ω for some constant c, which turns out to be (h′(1))−2. A more
orderly proof can be given using the definition (3.2.3) and the chain rule. Then we
have to allow two h1, h2 ∈ isom+(D) such that h1(1)= h2(1)= 1. We obtain

(h∗

2ξ)(h1(0))=
(
Dh2(h1(0))

)−1 F
(
h2(h1(0))

)
=

(
Dh2(h1(0))

)−1
ι(h2h1)

′(0)/((h2h1)
′(1))2

= ιh′

1(0)/((h2h1)
′(1))2

= c · ιh′

1(0)/(h
′

1(1))
2

= c · ξ(h1(0)),

where c = (h′

2(1))
−2. □

Theorem 3.2.5. The vector field Kvf is harmonic on D.



396 DIVYA SHARMA AND MICHAEL S. WEISS

Proof. The first step will be to show that ξ := Kvf is harmonic at the origin in D.
For that we can use the second order Taylor approximation of ξ at the origin:

ξ(z)=
ι(1 − |z|2)3

|1 − z̄|2 · (1 − z̄)2

= ι(1 − |z|2)3(1 − z̄)−3(1 − z)−1

≈ ι(1 − 3|z|2)(1 + z̄ + z̄2)3(1 + z + z2)

≈ ι(1 − 3|z|2)(1 + 3z̄ + 3z̄2
+ 3z̄2)(1 + z + z2)

≈ ι(1 + 3z̄ + 6z̄2
− 3|z|2)(1 + z + z2)

≈ ι(1 + 3z̄ + 6z̄2
− 3|z|2 + z + 3|z|2 + z2)

= ι(1 + z + 3z̄ + z2
+ 6z̄2)

= ι
(
1 + (x + ιy)+ 3(x − ιy)+ x2

− y2
+ 2ιxy + 6(x2

− y2)− 12ιxy
)

= ι(1 + 4x − 2ιy + 7x2
− 7y2

− 10ιxy)

= (2y + 10xy, 1 + 4x + 7x2
− 7y2).

Let g be the Poincaré metric on D, which we regard as a function from D to the
vector space of symmetric 2×2-matrices. It has the form g(w)= u(w) · gE , where
u : D → R is a smooth function which has u(0) = 2 and gE is the Euclidean
(Riemannian) metric, i.e., a constant, the constant value being the identity 2×2-
matrix. The product rule gives us

Lξ (g)= Lξ (u) · gE
+ u · Lξ (gE).

The first summand is a contribution to the scalar summand. We may neglect it. As
to the second summand, we are only interested in the first Taylor approximation
at 0, and since the first Taylor approximation of u at 0 is a constant 2, we can
replace the second summand by 2Lξ (gE). Now we can use (2.1.3):

Lξ (gE)= (Dξ T
+ Dξ)gE

+ Dg(ξ)= Dξ T
+ Dξ,

which in terms of the above Taylor approximation turns into[
20y 6 + 24x

6 + 24x −28y

]
.

The trace-free part is [
24y 6 + 24x

6 + 24x −24y

]
,

which, as a symmetric bilinear form, agrees with Re((24y − ι(6 + 24)x) dz ⊗C dz).
This completes the verification that ξ = Kvf is harmonic at the origin, because the
first order polynomial map z 7→ 24y − ι(6 + 24)x (for z = x + ιy) is holomorphic.
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To finish the proof, we want to argue that “harmonic at the origin” is enough. For
other z ∈ D we can find h ∈ isom+(D) such that h(0)= z and h(1)= 1. Showing
that ξ is harmonic at z is equivalent to showing that h∗ξ is harmonic at 0. By
Lemma 3.2.4, we can write h∗ξ = c · ξ . □

Our next goal is to show that the linear map F in (3.2.2) has another description as
something very close to convolution with Kvf . Let Mt : C → C be the multiplication
by eιt ∈ S1; we will also view this as an element of isom+(D). Let ψ be a tangential
vector field on S1. Write ψ = u ·ω, where ω is the standard tangential vector field
z 7→ ιz and u : S1

→ R is a continuous function. (It is allowed to write u := ψ/ω.)
Write η(t) := eιt for t ∈ R. The new formula for F that we have in mind is

(3.2.5) (F(ψ))(z) ?
=

1
2π

∫ 2π

0
(M∗

−t Kvf )(z) · u(eιt) dt.

Unraveling the right-hand side, we obtain

1
2π

∫ 2π

0
eιt · Kvf (e−ιt z) · u(eιt) dt =

1
2π

∫ 2π

0
Kvf (e−ιt z) · eιt u(eιt) dt.

But eιt u(eιt) is the same as −ι ·ψ(eιt). So we may write

−ι
1

2π

∫ 2π

0
Kvf (e−ιt z) ·ψ(eιt) dt

and then also −ι · (Kvf ∗ψ)(z), where the star is for convolution.

Proposition 3.2.6. The linear map F in (3.2.2) has the alternative description

ψ 7→ −ι · (Kvf ∗ψ).

Proof. Take z ∈ D. Then

−ι · (Kvf ∗ψ)(z)= −ι
1

2π

∫ 2π

0
Kvf (e−ιt z) ·ψ(eιt z) dt.

Choose h such that h(0) = z and h(1) = 1. If we choose s ∈ R appropriately,
depending on t , then M−t hMs(0)= M−t(z)= e−ιt z and M−t hMs(1)= 1. (We can
determine s later.) Therefore by (3.2.3),

Kvf (e−ιt z)= ι(M−t hMs)
′(0) · (M−t hMs)

′(1))−2

= ιeι(s−t)h′(0) · (h′(eιs))−2
· e−2ι(s−t)

= ιeι(t−s)h′(0) · (h′(eιs))−2,

so that the formula for −ι · (Kvf ∗ψ)(z) simplifies to

1
2π

∫ 2π

0
eι(t−s)h′(0) · (h′(eιs))−2

·ψ(eιt) dt.
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Now is the moment to observe that s and t are related by h(eιs)= eιt . Therefore it
is “locally” justified to write t = −ι · ln(h(eιs)) and in any case

dt
ds

= −ι
h′(eιs) · eιs · ι

h(eιs)
=

h′(eιs) · eιs

h(eιs)
= h′(eιs) · eι(s−t).

With the substitution of h(eιs) for eιt and h′(eιs) ·eι(s−t) ds for dt the above integral
turns into

1
2π

∫ 2π

0
h′(0) · (h′(eιs))−1

·ψ(h(eιs)) ds.

This agrees with F(ψ)(z)= (F(ψ))(h(0)) according to (3.2.2). □

Corollary 3.2.7. F(ψ) is harmonic, for every ψ ∈ C0
v (S

1
; T S1).

Proof. By Proposition 3.2.6 and the discussion preceding it, (3.2.5) is correct. By
Theorem 3.2.5, the “kernel” Kvf is harmonic and so M∗

−t Kvf is also harmonic, for
arbitrary t ∈ R. Hence the right-hand side of (3.2.5) is harmonic. □

Lemma 3.2.8. Let ψ be a continuous tangential vector field on S1. Then F(ψ)
and ψ together make up a continuous vector field on the closed unit disk D ∪ S1.

Proof. For s ∈ [0, 1), we define a continuous (but not tangential) vector field κs

on S1 by κs(z) := Kvf (sz). Then for ε ∈ (0, 1] and z ∈ S1 we have

κ1−ε(z)=
ι(1 − (1 − ε)2)3

(1 − (1 − ε)z̄)3 · (1 − (1 − ε)z)

=
ιz3(1 − (1 − ε)2)3

(z − (1 − ε))3 · (1 − (1 − ε)z)

=
8ιz3ε3V (ε)

(1 − (1 − ε)z) · (z − (1 − ε))3
,

where V is a real polynomial of degree 3 with constant coefficient 1.
Let λz = |z − (1 − ε)|. Then λz ≥ ε and

(3.2.6) |κ1−ε(z)| =
8ε3V (ε)
λ4

z
≤

8V (ε)
ε

.

This gives us an upper bound for |κ1−ε(z)| which is independent of z, but more
importantly it tells us that κ1−ε is very small outside the arc of length (2ε)1/2

centered at 1. Therefore it is enough to show that

lim
ε→0

(
1

2π

∫ 2π

0
κ1−ε(eιt) dt

)
= ι.
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Since κ1−ε is so very small outside the arc of length
√

2ε centered at 1, we may
replace the ordinary integral by the complex path integral∮

γ

κ1−ε(z) dz

(where γ is a smooth curve describing the unit circle) at the price of dividing by ι.
We may also write s for 1 − ε. Then

lim
ε→0

(
1

2π

∫ 2π

0
κ1−ε(eιt) dt

)
= lim
ε→0

(
1

2πι

∮
γ

κ1−ε(z) dz
)

= lim
ε→0

(
1

2πι

∮
γ

8ιz3ε3V (ε)
(1 − sz) · (z − s)3

dz
)

= lim
ε→0

(
8ιε3V (ε)

2πι

(
2πι · Res( f, s)

))
= lim
ε→0

(
8ιε3(Res( f, s))

)
,

where f (z)= (z3)(1 − sz)−1(z − s)−3. Now

Res( f, s)=
6s − 12s3

+ 8s5
− 2s7

2(1 − s2)4
=

4ε+ 2ε2
+ 2ε3

− 30ε4
+ 34ε5

− 14ε6
+ 2ε7

2(16ε4 − 32ε5 + 20ε6 − 8ε7 + ε8)
.

Therefore

lim
ε→0

(
ι8ε3(Res( f, s))

)
= lim
ε→0

(
8ι ·

4ε+ 2ε2
+ 2ε3

− 30ε4
+ 34ε5

− 14ε6
+ 2ε7

2(16ε− 32ε2 + 20ε3 − 8ε4 + ε5)

)
= ι. □

Lemma 3.2.9. The map F in (3.2.2) has a Lipschitz property. More precisely, there
is c > 0 such that the following holds: if ψ ∈ C0(S1

; T S1) satisfies ∥ψ(z)∥ ≤ 1 for
all z ∈ S1, in the euclidean norm, then ∥F(ψ)(z)∥ ≤ c for all z ∈ D, again in the
euclidean norm.

Proof. In the proof of Lemma 3.2.8 we learned

lim
s→1

1
2π

∫ 2π

0
|κs(eιt)| dt = 1.

This implies that the function

s 7→
1

2π

∫ 2π

0
|κs(eιt)| dt

is defined and continuous for s ∈ [0, 1]. Then it has a maximum c > 0 on the
interval. Now let ψ be a continuous tangential vector field on S1 and suppose that
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∥ψ(z)∥ ≤ 1 for all z ∈ S1. By Proposition 3.2.6 we have, for z ∈ S1 and s ∈ [0, 1):

(F(ψ))(sz)= −ι
1

2π

∫ 2π

0
κs(e−ιt z) ·ψ(eιt) dt.

Therefore

∥(F(ψ))(sz)∥ ≤
1

2π

∫ 2π

0
|κs(e−ιt z)| dt ≤ c. □

We come to the last part of Theorem II (in the introduction). This is about
extending F in (3.2.2) and Proposition 3.2.6 to a continuous map defined on the
Hilbert space X of tangential L2-vector fields on S1. The extension formula as such
is obvious: both (3.2.2) and the formula in Proposition 3.2.6 tolerate a tangential
L2-vector field ψ instead of a continuous one. Both of these extensions are clearly
continuous, and because they agree on a dense subspace of X they agree on all of X .

Lemma 3.2.10. For ζ ∈ X , let ξ := F(ζ ) ∈ C0
v (D; T D). Then ξ is boundary

controlled and ζ is the distributional boundary of ξ ; see Definition 1.3.3.

Proof. We use a method from [Shubin 2020, Section 5.3]. Fix α, continuous vector
field on D ∪ S1. Write

w(s) :=
1

2π

∫ 2π

0
s · ξ(seιt) ·α(seιt) dt

for s ∈ [0, 1). It is more than enough to show that

lim
s→1−

w(s)=
1

2π

∫ 2π

0
ζ(eιt) ·α(eιt) dt,

because w is, except for the constant factor (2π)−1, the derivative of the function
in (1.3.2). Write αs : S1

→ R2 for the map z 7→ α(sz), where s ∈ [0, 1], and write
κs : S1

→ R2 for the map z 7→ Kvf (sz) as in the proof of Lemma 3.2.8, assuming
s ∈ [0, 1). By (3.2.2) in the general form which allows a tangential L2-vector field
as input for F , we can write

w(s)= ⟨−ιs(κs ∗ ζ ), αs⟩.

This notation uses the standard real L2 inner product (based on the standard inner
product in R2, a.k.a. real part of the hermitian inner product in C). Therefore

w(s)= ⟨ζ,−ιs(κs ∗αs)⟩.

Here we can say that

lim
s→1−

−ιs(κs ∗αs)= lim
s→1−

−ι(κs ∗α1)= α1
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by Lemmas 3.2.9 and 3.2.8. (These limits take place in C0
v (D, T D) or in C0(D,R2)

depending on point of view.) It follows that

lim
s→1−

w(s)= ⟨ζ, α1⟩. □

Appendix: Odds and ends

A.1. Connections on the Teichmüller bundle. A connection on a smooth fiber
bundle f : E → M with vertical tangent bundle T vE is a smooth vector sub-
bundle T h E (the horizontal tangent bundle) of the tangent bundle T E such that
T h E ⊕ T vE = T E . Equivalently, a connection on f : E → M is a smooth vector
bundle homomorphism f ∗T M → T E such that the composition

f ∗T M → T E → T E/T vE

is the identity. We are interested in connections on the Teichmüller surface bundle,
a.k.a. universal Teichmüller curve (the fibers can either be viewed as real surfaces
or as complex curves). To describe the bundle we fix 0 = 0g (fundamental group
of a surface 6 of genus g ≥ 2) and G = isom+(H) as usual. Let hom0(0,G) be
the space of injective homomorphisms with discrete image and compact quotient
space G/ρ(0). Let rep0(0,G) be the quotient of hom0(0,G) obtained by passing
to orbits for the conjugation action of G. (This was called T (6) in Definition 1.1.2.)
There are two commuting left actions of 0 and G, respectively, on the product
hom0(0,G)× H.

The action of 0 is given by γ · (ρ, z)) := (ρ, ρ(γ )(z)) for γ ∈ 0. The action
of G is given by A · (ρ, z) := (AρA−1, A(z)) for A ∈ G. Therefore we obtain a
commutative diagram

(A.1.1)

E :=
hom0(0,G)× H

0

proj.
//

��

hom0(0,G)

��

EG :=
hom0(0,G)× H

G ×0

proj.
// rep0(0,G)

where the vertical arrows are quotient maps and the horizontal ones are appropriate
projections. The two horizontal arrows are surface bundle projections (or complex
curve bundle projections). The vertical arrows are principal G-bundle projections.
The diagram is a pullback diagram. In the top row, the fiber over ρ ∈ hom0(0,G)
is the surface H/ρ(0).

The lower horizontal arrow EG → rep0(0,G) in (A.1.1) is the Teichmüller
bundle. We take the view that we can construct connections on it by constructing
connections on the bundle defined by the upper horizontal arrow E → hom0(0,G)
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and imposing conditions which ensure that these connections descend to connections
on the bundle defined by the lower horizontal arrow.

By the general remarks on connections in smooth fiber bundles, choosing a
connection on the trivial bundle

(A.1.2) hom0(0,G)× H → hom0(0,G)

amounts to choosing a smooth vector field ξ(ρ, c,−) on H for every ρ∈hom0(0,G)
and 1-cocycle c ∈ Tρ(hom0(0,G)) ∼= Z1(0; gρ). (This should ideally depend
smoothly on ρ and c.) But we want to choose a connection that respects the
0-action on each fiber of the bundle in (A.1.2), since we want a connection for
E → hom0(0,G) in diagram (A.1.1). This translates into the following condition
on ξ(ρ, c,−):

(i) δξ(ρ, c,−) = c, where δ is the coboundary operator associated with the
R0-module of smooth vector fields on H. (The module structure depends on ρ.)

Proposition A.1.1. A connection ξ = (ξ(ρ, c,−)) for E → hom0(0,G) in (A.1.1)
descends to a connection for EG → rep0(0,G) if and only if it satisfies the following
additional conditions:

(ii) it is invariant under the left action of G;

(iii) ξ(ρ, δκ,−)= κ for every κ ∈ gρ .

Here κ ∈ gρ should be viewed as a Killing vector field on H. Condition (iii) does
not follow from (ii) and (i). It is easy to produce counterexamples.

Proof. Suppose the connection ξ for E → hom0(0,G) descends. Then condition (ii)
is satisfied. Let K be any G-orbit in hom0(0,G). Then the connection ξ restricted to
E |K → K is the connection determined by the trivialization of E |K → K produced
by the action of G on E |K (which is free). This translates into condition (iii).
Conversely, suppose that (ii) and (iii) are satisfied by a connection ξ = (ξ(ρ, c,−))
on E → hom0(0,G). Then, by (iii), the restricted connection on E |K → K reflects
the trivialization of E |K → K produced by the action of G on EK , or equivalently,
by the composition E |K ↪→ E → EG . Choose a smooth section

s : rep0(0,G)→ hom0(0,G)

of the projection hom0(0,G)→ rep0(0,G). The section s is covered uniquely by
a smooth map s̄ : EG → E which is a section of the projection E → EG . The
pullback along s and s̄ of the connection ξ on E → hom0(0,G) is a connection θ
on EG → rep0(0,G). Conditions (ii) and (iii) ensure that ξ is also the pullback
of θ along the projections E → EG and hom0(0,G)→ rep0(0,G). □

We can meet all of these conditions as follows. Given ρ and c, find a smooth
vector field ψ as promised in Lemma 1.4.2 such that δψ = c. Let ζ c be the
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distributional boundary of ψ as promised in Proposition 1.4.3 and let ξ(ρ, c,−) :=
F(ζ c), with F as in Theorem II. This is well defined and the conditions are easily
verified. We authors believe that ξ(ρ, c,−) depends continuously, indeed smoothly,
on ρ and c, but the proof could be laborious and perhaps it deserves a separate
treatment. (We also believe that this candidate for a connection ξ is identical with the
connection which is standard in Teichmüller theory. This can be seen, for example, in
[Wolpert 1986, §5]. Evidence for the suspected agreement was given in Section 2.2.)

A.2. Some postponed proofs.

Lemma A.2.1. The conformal vector fields on D or open subsets of D are precisely
the holomorphic vector fields.

Proof. By definition, a vector field ξ on D (or on an open subset of D) is conformal if
and only if the trace-free component of Lξ (g) is zero. By (2.1.3) and the calculations
immediately following it, this happens if and only if ξ 1

x = ξ 2
y and ξ 1

y = −ξ 2
x (where

the subscripts indicate partial derivatives). These are exactly the Cauchy–Riemann
equations for ξ . □

Proof of Lemma 1.4.1. Let F1 be the restriction of F in (3.2.2) to the 3-dimensional
real vector space of Killing vector fields on S1. Let F2 be the linear map which is
defined on the same vector space and which takes a Killing vector field on S1 to
the unique matching Killing vector field on D. We need to show F1 = F2. Since
both F1 and F2 are equivariant for the right actions of isom+(D), it is enough to
show that (F1(ψ))(0)= (F2(ψ))(0) for all Killing vector fields on S1. (Follow the
reasoning in the proof of Corollary 3.2.3.) By definition, (F1(ψ))(0) is

1
2π

∫ 2π

0
ψ(eιt) dt.

In other words it is the mean value of ψ on the circle. But (F2(ψ))(0) is also the
mean value of ψ on the circle. Indeed, ψ and F2(ψ) are the restrictions to S1 and D,
respectively, of one and the same holomorphic function (alias holomorphic vector
field) on C, and this must satisfy the Cauchy integral formula. □

Proposition A.2.2. The matching condition relating the vector fields ξ and ζ in
Definition 1.3.3 is invariant under the canonical right action(s) of the diffeomor-
phism group of D ∪ S1.

Proof. We will write S(ξ, ζ ) for the statement the matching condition holds for ξ
and ζ . Therefore we assume S(ξ, ζ ), and we have to show S(h∗ξ, h∗ζ ), where h
is an arbitrary diffeomorphism from D ∪ S1 to itself.

The diffeomorphism h can be written as a composition ha ◦ hn , where hn is
norm-preserving in a neighborhood of the boundary S1, and ha is argument-
preserving. (By argument-preserving, we mean that there is a smooth function
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N : S1
× [0, 1] → [0, 1] such that ha(sz) = N (z, s) · z for all (z, s) ∈ S1

× [0, 1].
For convenience we also require N (z, s) = s for s close to 0.) Using integration
by substitution, it is easy to show that S(h∗ξ, h∗ζ ) is equivalent to S(h∗

aξ, h∗
aζ ).

It is also obvious that h∗
aζ = ζ . Therefore we may assume from now on that h is

argument-preserving, and we have to show S(h∗ξ, ζ ), knowing that S(ξ, ζ ) holds.
Let Gξ : S1

× [0, 1)→ R2 be defined by (z, s) 7→
∫ s

0 t · ξ(t z) dt . Then we have∫
|z|=s

Gξ dλ0 =

∫
z∈Ds

ξ(z) dλ

for s < 1. We use this to reformulate S(ξ, ζ ). Namely, it is equivalent to the
following, which we denote by T (ξ, ζ ).

The map Gξ has an extension to S1
× [0, 1] which admits a distributional

partial derivative ∂/∂s along {(z, s) | s = 1}, and the latter is equal to ζ .

This is rather concise. To clarify, the map z 7→ Gξ (z, 1) from S1 to R2 has two
coordinate functions. They are meant to be Lebesgue measurable and integrable
functions, and a such defined for almost all z ∈ S1.

To show that S(ξ, ζ ) implies T (ξ, ζ ), we may use the coordinate functions ξ 1

and ξ 2. We can write ξ 1
= ξ 1

+
− ξ 1

−
, where ξ 1

+
and ξ 1

−
are nonnegative everywhere,

and similarly ξ 2
= ξ 2

+
− ξ 2

−
. For fixed s ∈ [0, 1), define a function g1

s,+ on S1 by

z 7→

∫ s

0
t · ξ 1

+
(t z) dt.

Its integral over S1 is equal to
∫

z∈Ds
ξ 1
+
(z) dλ. The limit of this for s → 1 exists

and is finite. In fact by S(ξ, ζ ) it is equal to∫
z∈S1

ζ 1
+
(z) dλ0.

Therefore we can apply the monotone convergence theorem (Beppo Levi) and
conclude that g1

s,+ is also defined for s = 1, as a measurable and Lebesgue integrable
nonnegative function on S1. We can proceed similarly for ξ 1

−
, ξ 2

+
and ξ 2

−
. Then we

define

Gξ (z, 1) :=

[
g1

s,+(z, 1)− g1
s,−(z, 1)

g2
s,+(z, 1)− g2

s,−(z, 1)

]
for z ∈ S1. The statement concerning the distributional partial derivative ∂/∂s along
{(z, s) | s = 1} is then clear. The implication T (ξ, ζ )⇒ S(ξ, ζ ) is also clear.

If h is an argument-preserving diffeomorphism D ∪ S1
→ D ∪ S1, we can write

h(sz) = N (z, s) · z as in the definition of argument-preserving. Let H be the
diffeomorphism from S1

× [0, 1] to S1
× [0, 1] defined by H(z, s)= (z, N (z, s)).

(This satisfies q◦H = h◦q , where q : S1
×[0, 1]→ D∪S1 is defined by (z, s) 7→ sz.)
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Integration by substitution implies that

Gh∗ξ = G f ·ξ ◦ H

for a “suitable” smooth map f : D ∪ S1
→ EndR(R

2). The formula for f is
complicated. It is easier to describe f ◦ h ◦ q: namely,

f
(
h(q(z, s))

)
=

s
N (z, s)

·

(
d N
ds
(z, s)

)−1

· (dh(sz))−1

for z ∈ S1 and s ∈ [0, 1]. (The first two factors in this product of three are real
numbers, but the third one is a linear map.) The important features are: f (z) is the
unit of EndR(R

2) for z close to the origin, f (z) always respects the linear subspace
of R2 spanned by z, and if |z| = 1 it also respects the linear subspace perpendicular
to z and restricts to the identity there.

This allows us to argue as follows: T (ξ, ζ ) implies T ( f · ξ, f · ζ ) easily, and
from there we can deduce T (h∗ξ, ζ ) by an application of the chain rule. □

A.3. Questions and suggestions.

A.3.1. Let ξ be a harmonic vector field on D (with the Poincaré metric) which is
boundary controlled (notation as in Definition 1.3.3). If the distributional boundary
is identically zero, does it follow that ξ is identically zero?

A.3.2. Find a more direct proof of Proposition 1.4.3, i.e., one which does not rely
on Theorem I. (Do use Lemma 1.4.2 and look up a proof of this.)

A.3.3. Find a practical characterization of the tangential L2-vector fields ζ on S1

such that the vector field F(ζ ) on D (as in Theorem II) is quasiconformal (Definition
1.3.4).
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