Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 339: 1
Vol. 338: 1  2
Vol. 337: 1  2
Vol. 336: 1
Vol. 335: 1  2
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On Kazhdan–Yom Din asymptotic orthogonality for $K$-finite matrix coefficients of tempered representations

Anne-Marie Aubert and Alfio Fabio La Rosa

Vol. 339 (2025), No. 1, 23–72
Abstract

Recently, D. Kazhdan and A. Yom Din conjectured the validity of an asymptotic form of Schur orthogonality for tempered, irreducible, unitary representations of semisimple groups defined over local fields. In the non-Archimedean case, they established it for K-finite matrix coefficients. In this article we prove the analogous result in the Archimedean case.

Keywords
real Lie group, tempered representation, asymptotic Schur orthogonality
Mathematical Subject Classification
Primary: 22D10
Milestones
Received: 5 May 2023
Revised: 8 August 2025
Accepted: 8 August 2025
Published: 1 September 2025
Authors
Anne-Marie Aubert
Institut de Mathématiques de Jussieu - Paris Rive Gauche
CNRS, Sorbonne Université and Université de Paris
Paris
France
Alfio Fabio La Rosa
Institute for the Advanced Study of Mathematics
Zhejiang University
Hangzhou
China

Open Access made possible by participating institutions via Subscribe to Open.