ON KAZHDAN-YOM DIN ASYMPTOTIC ORTHOGONALITY
FOR K-FINITE MATRIX COEFFICIENTS
OF TEMPERED REPRESENTATIONS

ANNE-MARIE AUBERT AND ALFIO FABIO LA RoSA

Volume 339 No. 1 November 2025






PACIFIC JOURNAL OF MATHEMATICS
Vol. 339, No. 1, 2025

https://doi.org/10.2140/pjm.2025.339.23

ON KAZHDAN-YOM DIN ASYMPTOTIC ORTHOGONALITY
FOR K-FINITE MATRIX COEFFICIENTS
OF TEMPERED REPRESENTATIONS

ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

Recently, D. Kazhdan and A. Yom Din conjectured the validity of an asymp-
totic form of Schur orthogonality for tempered, irreducible, unitary rep-
resentations of semisimple groups defined over local fields. In the non-
Archimedean case, they established it for K -finite matrix coefficients. In this
article we prove the analogous result in the Archimedean case.
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1. Introduction

Let G be a semisimple group over a local field and let K be a maximal compact
subgroup of G. We fix a Haar measure on G, denoted by dg. If H is the Hilbert
space underlying a unitary representation of G, let Hgx denote the space of K -finite
vectors and H the space of smooth vectors.

Recently, D. Kazhdan and A. Yom Din [10] conjectured the validity of an
asymptotic version of Schur orthogonality relations. It should hold for matrix
coefficients of tempered, irreducible, unitary representations of G, generalising
well-known Schur orthogonality relations for discrete series.
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Following [10], we fix a norm on the Lie algebra g of G. By [10, Claim 5.2],
we can choose it so that Ad K acts unitarily on g. We define the function

r:G—Re,  r(g) =logmax{[|Ad(g)llop. [Ad(s™)llop}
so that, given r € R. o, we can introduce the corresponding ball
G, ={geG|r(g <r}.
Given this setup, we can state their conjecture.

Conjecture 1.1 (Kazhdan—Yom Din, asymptotic Schur orthogonality relations).
Let G be a semisimple group over a local field F and let (;r, H) be a tempered,
irreducible, unitary representation of G. Then there are d(;7) € Z>¢ and f () € R-g
such that, for all vy, v, v3,v4 € H,

1
S

Assuming that the matrix coefficients involved are K -finite, one has the following:

(v1, v3){V2, V4).

r—0o0

. 1 (D) vr. va)
lim ;T(ﬂ)/ (m(g)vr, v2)(w (g3, v4) dg =
G<r

Theorem 1.2 [10, Theorem 1.7]. Let G be a semisimple group defined over a local
field F and let K be a maximal compact subgroup of G. Let (i, H) be a tempered,
irreducible, unitary representation of G and let Hg denote the space of K -finite
vectors in H. Then there exists d(mw) € Zq such that:

(1) If F is non-Archimedean, there is f (1) € R~ such that, for all v\, v, v3, v4€ Hg,
S (@)

(2) If F is Archimedean, for any given nonzero vy, vy € Hg, there is C(vy, v3) > 0
such that

. 1 I TESYRE
lim Tes) / (m (g1, v2)((g)v3, va) dg v1, v3)(v2, v4).
G,

r—o0

r—00

) 1
lim / ()1, v} P dg = C vy, va).
G

In the non-Archimedean case, the proof of (1) is achieved by first establishing
the validity of the analogous version of (2). The polarisation identity allows the
authors of [10] to define a form

D(-,-,-,):Hy x Hx x Hx x Hx — C

via the prescription

1 S
D(vy, va, v3, 14) := lim W/ (m(g)vy, va){m(g)v3, v4) dg.
G<r

r—oo r

In [10, Section 4.1], this form is shown to be G-invariant and one would like to
invoke an appropriate form of the Schur lemma to argue as in the standard proof of
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Schur orthogonality relations. That is, for fixed v, v4 € Hg, one defines the form
D(-,vy,-,v4): Hx x Hy — C,

and, for fixed vy, v3 € Hg, the form
Dy, -,v3,-): Hy x Hk — C.

One applies the Schur lemma to these forms, which implies that each such form is
a scalar multiple of the inner product on H. Upon comparing them, one obtains the
desired orthogonality relations.

In the non-Archimedean case, it seems to us that the representations considered
in [10] are implicitly assumed to be smooth [16, Définition III.1.1], otherwise it is
not clear how the theory of asymptotic expansion can be applied.

The appropriate version of the Schur lemma in this case is a consequence of
Dixmier’s lemma [18, Lemma 0.5.2], which can be applied since in the non-
Archimedean setting the subspace of K-finite vectors Hx and the subspace of
smooth vectors H* coincide: the latter is irreducible since H itself is irreducible.
The required countability of the dimension of Hg follows from the admissibility
[16, Théoreme VI.2.2] of the irreducible smooth unitary representation (7, H) and
by invoking [18, Lemma 0.5.2] in the proof of [16, I1I.1.9].

The purpose of this article is to prove that the analogue of (1) in Theorem 1.2
holds in the Archimedean case. As explained in [10, Section 4.2], it suffices to
prove the result for real semisimple groups (Theorem 4.6).

Theorem 1.3. Let (r, H) be a tempered, irreducible, unitary representation of a
connected, semisimple Lie group G with finite centre. Let K be a maximal compact
subgroup of G. Then there exists f () € R.q such that, for all vy, vy, v3, v4 € Hg,

1
—
S @)
Remark 1.4. It is well known that an irreducible, tempered representation as in
Theorem 1.3 is unitarisable. We have chosen the somewhat redundant formulation
above to emphasise that the unitarity of the representation plays a crucial role in

the following. From now on, if (7, H) is a tempered, irreducible representation we
will implicitly assume that 7 acts unitarily with respect to the inner product on H.

) 1 y Py v—
lim 0 / ((g)vy, v2)(m(Q)vs, v4) dg = vy, v3){v2, v4).
r G,

r—-o0

We need to modify the strategy above to account for the fact that the space of
K -finite vectors of a unitary representation (;r, H) of a real semisimple group does
not afford a representation of G. It is, however, an admissible (g, K)-module.

Our approach relies crucially on the admissibility of irreducible, unitary represen-
tations of reductive Lie groups, a foundational theorem proved by Harish-Chandra.
The theory of admissible (g, K)-modules then provides us with the appropriate
version of the Schur lemma for (g, K)-invariant forms (Definition 2.11).
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Hence, we are reduced to verifying that D(-, v, -, v4) and D(vy, -, v3, )
are, indeed, (g, K)-invariant. Having established this, to conclude the proof of
Theorem 1.3, we can argue as in [10, Section 4].

From now on, to make the notation look more compact, given a unitary repre-
sentation (7, H) of G and vectors v, w € H, we set

¢v,w(g) = (r(gv, w).

For connected, semisimple Lie groups with finite centre, K -invariance is a conse-
quence of g-invariance (Proposition 2.14). Therefore, the problem is establishing
the g-invariance. Explicitly, we prove the following (Proposition 4.2).

Proposition 1.5. Let G be a connected, semisimple Lie group with finite centre and
let (r, H) be a tempered, irreducible, unitary representation of G. Then, for all
Xeg, andfor all vy, vy, v3, v4 € Hg, we have

lim —— / ¢n(X)v1 vy (g)¢m Vs (g)dg= hm / d’v] vg(g)({bn(x)vg v4(g) dg

r—00 rd(”) —00 rd(”)
and
rll)n;o ) / by, ﬂ(X)vz(g)¢v3 wu(g)dg=— d( ) / Pvy0,(8)Pus 7 (x)0, (8) dg.-

The key observation is that, by exploiting the theory of asymptotic expansions
of matrix coefficients of tempered representations both with respect to a minimal
parabolic subgroup P = MAN and with respect to the standard (for P) parabolic
subgroups of G, the expression

lim / ¢7r(X)v1 v (g)(l)vz Vg (g) dg

r—00 rd(”)

reduces, roughly, to a sum of finitely many terms of the form

JAFms 2 Q0 COw1 03D, T 7103, 09y,
K

Here, M) comes from a standard parabolic subgroup P, = M, A, N,, of G. We
denote by my, a,,, ny, the Lie algebras of M,, A,,, N,,, respectively. The pairs
(A, 1) and (u, m) will be introduced precisely in Theorem 3.3; we can think of A, u
as n-tuples of complex numbers and of /, m as n-tuples of integers. The functions
I'y.1, T')m are defined in (3.6). As functions of m;,, they are analytic and square-
integrable and they arise from the asymptotic expansion of the matrix coefficients
@7 (X)vy v, a0d @y, o, , TESpECtively, relative to P, (see Theorem 3.3). The subscript
in P, is meant to indicate that the parabolic subgroup is obtained, in an appropriate
sense, from the datum of A. Moreover, (X, /) and (u, m) are related in a precise way
(see the discussion after Theorem 3.1 and the proof of Proposition 4.2 after (4.4)).
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We shall elaborate on these points later on. For the moment, let us point out that
we reduced the initial problem to showing that, for every X € g, and for all relevant
pairs (A, /) and (u, m), the integral

f(rx,l(mx, (k) (X)vi, wa), Ty m(ms, w(k)vs, w4)>L2(MA) dk
K

equals

_/ (F}»,l(m)w 7T(k)vlv w2)7 F,bt,m(m}w T[(k)]:l'(X)U:;, w4))L2(M)L) dk
K

We will prove that, if (1, ) and (u, m) satisfy a certain condition (to be explained
below), the functions I'y ; (-, vy, wa) and 'y, (-, v3, wy) are, in fact, Z(gc)-finite,
with Z(gc) denoting the centre of the universal enveloping algebra of the com-
plexification g¢ of g, and K N M, -finite. It will then follow from a theorem of
Harish-Chandra (Theorem 2.17) that they are smooth vectors in the right-regular
representation (R, L2(M,)) of M.

The idea is to combine this observation with an appropriate form of the Frobenius
reciprocity (Theorem 2.27), due to Casselman, to construct (g, K )-invariant maps

Tw, : Hx — Indp, k, (Ho, Moy )y Tw, (V) (k) (my) = Ty (my, w(k)v, w)

and
Tw, : Hx — Indp, &, (Hy, Ma,,), Ty (V) (k) (my) := T i (my, w(k)v', wy).

Here, the subgroup P; is the parabolic subgroup opposite to P,. The notation
Inda x (Hs, )»|%) stands for the space of K-finite vectors in the representation
induced from the (m; @ a;,,, K N M) )-module

’

*0

Hy ® Cyq, —p,

where (o, H,) is an appropriately chosen admissible, unitary, subrepresentation
of (R, L*(M,)).
To apply the required form of the Frobenius reciprocity, we need to show that
the maps
Sw2 Hyx - H, ® C}‘If‘xo_pko’ Swz(v)(m)\) = Fk,l(m)u v, W),

and
Swz Hxk — H, ® C}Llako —Pig? Sw4(v/)(m}») = F)L,l(m)\.7 U/a W4),

descend to (m), @, K, )-equivariant maps on Hg /n,, Hx . Establishing this result
is the technical heart of the article.
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Assuming it, the integral

J om0 01020, s 603, 0],
K
is nothing but

<Indp“,\ (0, A V(XD T a1 (my, w1, w2), Ty (M, v3, w4)>lndp*(” Mayy)’
)
where
( A )Il’ldpfk(o'v)hlu;to)

is the inner product on Ind,Tx (o, )»|%). We will see that this makes sense since
the inducing data ensure unitarity. The sought equality will then follow from the
skew-invariance of the inner product on a unitary representation with respect to the
action of the Lie algebra.

To explain how the functions I'y ; (-, vi, v2) and I, ,,, (-, v3, v4) arise, we need to
recall the main features of the asymptotic expansions of K-finite matrix coefficients
of tempered representations. If ¢, ,, is such a matrix coefficient, then its restriction
to a certain region of the subgroup A of a minimal parabolic subgroup P = MAN
of G admits an asymptotic expansion which can be thought of as a sum indexed by
a countable collection

A=A, Dlreg, 1 111y

The set £ is a collection of complex-valued real-linear functionals on Lie(A) depend-
ing on (7, H) and not on the particular choice of v, w € Hg. Itis the set of exponents
of (;r, H). The number 7 is the rank of G and [y, too, depends on (v, H) only.

The term indexed by (X, /) is multiplied by a complex coefficient ¢, ; (v, w). The
choice of v, w € Hx determines the pairs in C for which ¢, ;(v, w) #0. If A € €,
there exists at least a pair of v, w € Hg such that, for some [ € 72, with || <,
we have ¢, ;(v, w) #0. -

For any standard (for P) parabolic subgroup P'=M'A’N’ of G, the restriction of
the matrix coefficient ¢, ,, to an appropriate region of A’ admits a similar asymptotic
expansion. It can be thought of as a sum indexed by a countable collection

A= {(V’ Q)}UES’,qGZ’ZO:quo-

Here, r < n is the dimension of A’, the set £’ consists of complex-valued real-linear
functionals on Lie(A’). On regions on which both the expansion relative to P and
the expansion relative to P’ are meaningful, by comparing the two it turns out
that the element in £’ are precisely the restrictions to Lie(A’) of the elements in £
and, making the appropriate identifications following from A’ C A, each ¢ is the
projection to Z” ; of an [ appearing in the expansion relative to P.

While in the expansion relative to P the term indexed by (A, /) is multiplied
by the complex coefficient c; ;(v, w), the term indexed by (v, ¢) in the expansion
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relative to P’ is multiplied by a real-analytic function

(1.6) cf’,q(-,v, w): M — C.

We require one more piece of information to explain how TI'; ;(-, vy, v2) and
[um(-, v3, v4) arise: the construction of d(r) in [10]. The idea is as follows.
We can think of A € £ as an n-tuple of complex numbers (A, ..., A,). It can be
shown that there exist a finite subcollection & C £ such that, for every A € &£, there
exists A € &p such that

A—xe 7%.

Moreover, any two distinct elements in & are integrally inequivalent: their difference
does not belong to Z". By a result of Casselman (Theorem 3.2), for every A € &
and for every i € {1, ..., n}, we have

Reii <0,

and it is clear that this holds for every A € €.

For (A,[) € A, we introduce the set I, :={i € {1, ...,n} | Re A; <0}, we define

.7 dp(A 1) = |I{|+ ) 2I;,
ielf
and we take the maximum, dp, as (X, [) ranges over all the pairs with A € &.

We can proceed analogously for every standard parabolic P’ and obtain a non-
negative integer dp/. The maximum over all P’ is d (7).

Now, given A € &, identifying I, with a subset of the simple roots determined by
an order on the root system attached to the pair (g, a), we can construct a standard
(for P) parabolic subgroup P, = M) A,,N,, associated to I,. We will show that
if (A,[]) € A satisfies A € & and dp(X,]) =d(m), then ['; ;(-, vy, vp) is precisely
the function ci;(- , U1, yg) with v := Al%, where a,, := Lie(4,,), and g equal to
the projection of / to Z,,.

Finally, we mentioned that in the integral

[ TCostoma 7w yvr, wa). Ty 7wz, wa)) 2y, dk

the pairs (X, /) and (u, m) must be related in a precise way. First of all, (i, m) € A
satisfies u € & and dp (u, m) =d (). Also, we must have I, = I, (so that P, = P,,)
and A|q, = pla, - The last condition, together with the unitarity of the representation
(o, Hy) introduced above, is precisely what ensures that Indp, (o, )»|%) is unitary.

Implementing the strategy sketched above requires gathering a number of inter-
mediate results. Several are inspired from the chapter in [11] on the Langlands classi-
fication of tempered representations. Here is a more detailed outline of the article.

Section 2: The first part includes a discussion of the (g, K)-module version of
the Schur lemma (Corollary 2.13). In the second part, we recall the result of



30 ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

Harish-Chandra establishing that smooth, Z(gc)-finite, K -finite, square-integrable
functions on reductive groups are smooth vectors in the right-regular representation
(Theorem 2.17). As a consequence, we prove that, on such a function, the action
of g through differentiation is the same as the action of the Lie algebra through
the right-regular representation (Proposition 2.20). After stating the basic facts on
parabolically induced representations that we need, we discuss Casselman’s version
of the Frobenius reciprocity (Theorem 2.27).

Section 3: In the first part, we recall the theory of asymptotic expansions of matrix
coefficients of tempered representations both with respect to a minimal parabolic
subgroup and with respect to standard parabolic subgroups. We then explain in detail
how the functions I'y ; (-, v1, v2), Iy m (-, v3, v4) arise. We begin by introducing
an equivalence relation on the data indexing the asymptotic expansion relative
to P of the K-finite matrix coefficients of a tempered, irreducible, representa-
tion (7, H). This equivalence relation is motivated by the construction of d (i)
in [10] and it is meant to exploit the criteria for the computation of asymptotic
integrals in [10, Appendix A]. Imposing the conditions on (A, /) and (u, m) that
we discussed above, we identify the functions I'; ;(-, vi, v2) and I'y (-, v3, v4)
with the coefficient functions in the asymptotic expansion relative to P; of ¢y, ,,
and ¢,, ,, (Proposition 3.12). We then prove that they are smooth vectors in
(R, L*(M,)) (Proposition 3.14). Combining Proposition 3.14 with the technical
Lemmas 3.15 and 3.16, we can construct unitary, admissible, finitely generated
representations (o1, Hy,) and (02, Hy,) whose direct sum is the unitary, admissible,
finitely generated representation (o, H,) introduced above (Proposition 3.19).

Section 4: Having gathered the results we need, we are able to prove Proposition 1.5
(Proposition 4.2). This consists in an application of the considerations in [10,
Appendix A] to show that the integral

. 1 —

lim m fG<,¢vl , U2 (g)¢v3,v4 (g) dg

r—0o0

can be computed in terms of a sum of integrals of the form

]K<rx,l<mx, (kY1 w2), Ty (my, w(K)v3, wa)) dk

with the pairs (A,[) and (u, m) both belonging to A with A, u € &, I, = 1,
)\'|u;\0 = :u'|Cl)LO and
dp(A, 1) =dp(un, m)=d(r).

At this point, the representation-theoretic arguments explained in the Introduction
and proved in Section 3 conclude the proof of Proposition 1.5.

Finally, we proceed as explained in the first part of the Introduction to prove
Theorem 1.3 (Theorem 4.6).
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2. Recollections on representation theory

Our presentation of the theory of (g, K)-modules follows [18]. To discuss its basic
features, we need to gather some results on unitary representations of compact
groups. We begin by recalling the basic notions in the study of representations of
topological groups, which we always assume to be Hausdorff.

First, following [18, Section 1.1], let G denote a second-countable, locally
compact group, equipped with a left Haar measure dg, and let V denote a complex
topological vector space. We denote by GL(V') the group of invertible continuous
endomorphisms of V. A representation of G on V is a strongly continuous ho-
momorphism 7 : G — GL(V). Let (7, V) denote the datum of a representation
of G. A subspace of V which is stable under the action of G through 7 is called an
invariant subspace. A representation (ir, V), with V # 0, is said to be irreducible
if the only closed invariant subspaces are the trivial subspace and V itself.

If (H, (-, -)) is a separable Hilbert space, a representation 7 of G on H is termed
a Hilbert representation. If, in addition, G acts by unitary operators through 7, the
representation is said to be unitary.

Next, following [14, Section 10], we introduce the basic features of the theory
of vector-valued integration.

Let (X, dx) be a Radon measure space, let H be a Hilbert space and assume that

f:X—H
is measurable. The function f is integrable if it satisfies these two conditions:
(1) Forallve H,
/|(f(x), v)| dx < o0.
X
(2) The map
V> /X(f(x), v)dx

is a bounded conjugate-linear functional.

If f: X — H is integrable, then, by the Riesz representation theorem, there
exists a unique element in H, denoted by

/f(X)dx,
X

such that, for all v € H, we have

</f(X)a’x,v>:/(f(x),v>dx.
X X
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Proposition 2.1. Let (X, dx) be as above. Let H, E be Hilbert spaces, f : X — H
a measurable function and T : H — E a bounded linear operator.
) 1f
[ireonar <ce,
X

then f : X — H is integrable.
(2) If f: X — H isintegrable, then sois Tf : X — E. Moreover,

T(/Xf(x)dx) :/;(Tf(x)dx.

Proof. See [14, Propositions 10.8 and 10.9]. O
Now, let (;r, H) be a unitary representation of G. Let ve H and f : G — H be
such that the map
g f(@mr(v

is integrable. Let 7w (f)v denote the unique element in H such that, for all w € H,
r(few) = [ F@)m(v,u)dg.
G

Proposition 2.2. Let (m, H) be as above. If f € L'(G), then, for all v € H, the
map g +— f(g)m(g)v is integrable and the prescription

n(f):H— H, v a(f)v,
defines a bounded linear operator.

Proof. See [14, Proposition 10.20]. ([

With the integral operators introduced in Proposition 2.2 at our disposal, we
have all the tools needed to state the main results on the unitary representations of
compact groups.

Let K be a compact group. Let K denote the set of equivalence classes of
irreducible unitary representations of K. If (;r, H) is a unitary representation, for
each [y] € K let H (y) denote the closure of the sum of all the closed invariant
subspaces of H in the equivalence class of y. We refer to H(y) as the y-isotypic
component of H. This notion is independent of the choice of representative for the
equivalence class.

Proposition 2.3. Let K be a compact group. Let (w, H) be an irreducible unitary
representation of K. Then H is finite-dimensional.

Proof. See [18, Proposition 1.4.2]. O
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Given Proposition 2.3, we can associate, to each irreducible representation y
of K, the function

Xy K —>C,  xy(g):=try(g),
the character of y. A standard argument proves that equivalent representations
have the same character.

Recall that if {(;r;, H;) | i € I} is a countable family of unitary representations
of a topological group G, we can construct a new unitary representation of G, the
direct sum, on the Hilbert space completion of the algebraic direct sum of the H;’s.
We refer the reader to [18, Section 1.4.1], for the details of this construction. We let

D
iel
denote the direct sum of the family {(sr;, H;) | i € I}, dropping explicit reference to

the 7;’s.

Proposition 2.4. Let K be a compact group. Let (7, H) be a unitary representation
of K. Then (7, H) is the direct sum representation of its K -isotypic components:

H= P H(y).
[yleK
Moreover, let o, denote the function
ay (k) :=dim(y) x, (k).
Then
H(y)=mn(a,)H.
Proof. See [18, Lemma 1.4.7]. O

Proposition 2.5. Let K be a compact group. If (, H) is a Hilbert space repre-
sentation of K, then there exists an inner product on H that induces the original
topology on H and for which K acts unitarily through .

Proof. See [18, Lemma 1.4.8]. O
We are finally ready to introduce (g, K)-modules.

Definition 2.6. Let G be a connected, semisimple Lie group with finite centre. Let
g denote its Lie algebra. Let K be a maximal compact subgroup of G, which we fix
from now on, with Lie algebra €. A vector space V, equipped with the structure of
g-module and K-module, is called a (g, K )-module if the following conditions hold:

(1) Forallve V,forall X e g, forallk € K,
kXv=Ad(k)Xkv.



34 ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

(2) For all v € V, the span of the set
Kv:={kv|ke K}

is a finite-dimensional subspace of V, on which the action of K is continuous.
(3) Forallve V, forall Y €&,

d
Eexp(tY)vb:o =Yv.

We remark that (3) implicitly uses the smoothness of the action of K on the span
of Kv. This follows from the fact that a continuous group homomorphism between
Lie groups is automatically smooth.

Let V and W be (g, K)-modules and let Homg x (V, W) denote the space of
g-morphisms that are also K-equivariant. Then V and W are said to be equivalent
if Homg x (V, W) contains an invertible element.

A (g, K)-module V is called irreducible if the only subspaces that are invariant
under the actions of g and K are the trivial subspace and V itself. In this case, we
have the following theorem:

Theorem 2.7. Let V be an irreducible (g, K)-module. Then Homg x(V, V) is
1-dimensional.

Proof. This is the result actually proved in [18, Lemma 3.3.2], although the statement
there says Homg g (V, W), for an unspecified W. We believe it is a typo. U

Let V be a (g, K)-module. Since, given each v € V, the span of Kv, say W, is
a finite-dimensional continuous representation of K, we can use Proposition 2.5
and then apply Proposition 2.4, thus decomposing W, into a finite sum of finite-
dimensional K -invariant subspaces of V. For y € K, we let V (y) denote the sum
of all the K-invariant finite-dimensional subspaces in the equivalence class of y.
Then the discussion above implies that

V=@ V()

yek

as a K-module, with the direct sum indicating the algebraic direct sum. A (g, K)-

module V is called admissible if, for all y € K, V(y) is finite-dimensional.
Given a unitary representation (7, H), there exists a (g, K)-module naturally

associated to it. To define it, recall that a vector v € H is called smooth if the map

gr>m(gv

is smooth. Let H* denote the subspace of smooth vectors of H. It is a standard
fact that the prescription

70X = L (exp(t X)) olio,
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for v e H* and X € g, defines an action of g on H. Recall that a vector v € H
is K -finite if the span of the set

m(K)v:={m(k)v| ke K}

is finite-dimensional. Let Hx denote the subspace of K -finite vectors of H. By [18,
Lemma 3.3.5], with the action of g so defined and with the action of K through 7,
the space Hx N H* is a (g, K)-module. The representation (;r, H) is said to be
admissible if Hx N H* is admissible as a (g, K)-module and (r, H) is called
infinitesimally irreducible it Hx N H is irreducible as a (g, K)-module. It is in
general not true that a K -finite vector is smooth. However, if (;r, H) is admissible,
we have the following result:

Theorem 2.8. Let G be a connected, semisimple Lie group with finite centre. Let
(r, H) be an admissible representation of G. Then every K -finite vector is smooth.

Proof. See the proof [18, Theorem 3.4.10]. O

In light of the following fundamental result of Harish-Chandra, Theorem 2.8
will play an important role in this article.

Theorem 2.9. Let G be a connected, semisimple Lie group with finite centre. Let
(r, H) be an irreducible, Hilbert representation of G. Then (7, H) is admissible.

Proof. See [13, Theorem 7.204]. O

In the following, given a unitary representation (7, H), we will write Hg for the
(g, K)-module Hx N H* even if (7, H) is not admissible. We believe it will not
cause any confusion.

We are now in position to prove the version of the Schur lemma for sesquilinear
forms that we will use in Section 3. It is given as Corollary 2.13. First, we need:

Theorem 2.10. Let G be a connected, semisimple Lie group with finite centre. Let
(r, H) be an admissible Hilbert representation of G. Then (7, H) is irreducible if
and only if it is infinitesimally irreducible.

Proof. See [18, Theorem 3.4.11]. O
Definition 2.11. Let V and W be (g, K)-modules. A sesquilinear form

B(-,)):VxW-—>C
is (g, K)-invariant if it satisfies the following two conditions:
(1) For all k1, k, € K and all v, w € V we have
B(kjv, kyw) = B(v, w).
(i) For all X € g and all v, w € V we have

B(Xv,w)=—-Bw, Xw).



36 ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

Theorem 2.12. Let G be a connected, semisimple Lie group with finite centre. Let
V be an admissible (g, K)-module. Suppose that there exist a (g, K )-module W
and a nondegenerate (g, K )-invariant sesquilinear form

B(-,-):VxW-—C.
Then W is (g, K)-isomorphic to V.

Proof. This is [18, Lemma 4.5.1], except for the fact that our form is sesquilinear.
To account for it, we modify the definition of the map T in the reference by setting,
for a given w € W, T (w)(v) = B(w, v) for all v € V. This defines a map from W
to V obtained by sending w to T'(w) which, by the argument in the reference, is a
(g, K)-isomorphism. (]

The next corollary is proved by adapting to our case the argument in [4, Proposi-
tion 8.5.12] and using the beginning of the proof of [11, Proposition 9.1].

Corollary 2.13. Let G be a connected, semisimple Lie group with finite centre. Let
(mr, H) be an irreducible, Hilbert representation of G. Then, up to a constant, there
exists at most one nonzero (g, K)-invariant sesquilinear form on Hg. In particular,
if (w, H) is irreducible unitary, then every such form is a constant multiple of (-, - ).

Proof. The irreducibility of (;r, H) implies that of Hg, by Theorems 2.10 and 2.8.
Let B(-, ) be a (g, K)-invariant sesquilinear form. Consider the linear subspace Vj
of Hg defined as

Vo:={ve Hg | B(v,w)=0 forall we Hg}.

Since B(-, -) is nonzero, Vj is a proper subspace of Hg. Since B(-, -) is more-
over (g, K)-invariant, it follows that Vj is a (g, K )-invariant subspace of Hg, and
hence, by the irreducibility of Hk, it must be zero. Analogous considerations for
the subspace

V0:={we Hg | B(v, w) =0 forall ve Hg}

imply that B(-,-) is nondegenerate. By Theorem 2.12, the map v — T (v),
T(w)(-):=B(v,-),is a (g, K)-isomorphism. Since H is irreducible, the space
Homgy x (Hg, Hi) is 1-dimensional by Theorem 2.7. Now, let B(-, -) be another
such form, with associated isomorphism 7”. Then T (T")~' =cI, for some ¢ € C. For
the last statement, the unitarity of (;r, H) implies that (-, -) is a (g, K)-invariant
nondegenerate sesquilinear form and Theorem 2.9, with the discussion above,
implies the result. ([

Since we are assuming that G is connected, proving (g, K)-invariance reduces
to proving g-invariance. Indeed, by [9, Theorem 2.2, p. 256], any maximal compact
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subgroup K of G is connected. Therefore, by [12, Corollary 4.48], the exponen-
tial map

exp:t— K
is surjective.

Proposition 2.14. Let G be a connected, semisimple Lie group with finite centre.
Let V be a (g, K)-module, let

B(-,):VxV—>C
be a g-invariant sesquilinear form. Then B( -, -) is K -invariant.
Proof. Given any pair of vectors v, w € V, we can find a finite-dimensional subspace
of V, say W, which contains both and on which K acts continuously through a
representation . The restriction of the bilinear form B( -, -) to W is continuous.
To prove that B(rr (k)v, m(k)w) = B(v, w) for all k € K, it suffices to prove that
B(r(k)v, w) = B(v, 7 (k~ ") w) for all k € K. Given k € K, let X € ¢ be such that
k = exp X. We begin by writing
B(m(k)v, w) = B(mw(exp X)v, w).
Since m(exp X) = exp 7 (X)v, we obtain
B(m(exp X)v, w) = B(expw (X)v, w).
The continuity of B(-,-) on V gives
Bexpm (X)v, w) =exp B(mw (X)v, w).
By the g-invariance of B( -, -), we have
exp B (X)v, w) =exp B(v, 1 (—X)w)
and, finally,
exp B(v, 7 (—X)w) = B(v, w(exp(—X))w).
This is precisely
B(rw(k)v, w) = B(v, t (k" Hw). O
Let us recall that any locally compact Hausdorff group G acts on the Hilbert
space L?(G) by the prescription
R(g) f(x) == f(xg).

The representation so obtained is unitary and if G is a Lie group the notion of
smooth vectors in L?(G) makes sense. In the next section, we will need a criterion
to establish that certain functions are smooth vectors in L>(G). We will make use
of the following notion:
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Definition 2.15. Let G be a Lie group and let (7, H) be a Hilbert representation
of G. The Gdrding subspace of H is the vector subspace of H spanned by the set

{m(fHvlveH, feCF(G)}

Proposition 2.16. Let G be a Lie group with finitely many connected components,
let (r, H) be a Hilbert representation of G. Then every vector in the Gdrding
subspace of H is a smooth vector in H.

Proof. See [18, Lemma 1.6.1]. U

Recall that f € C°°(G) is called Z(gc)-finite if it is annihilated by an ideal
of Z(gc) of finite codimension. The criterion we need is the following result of
Harish-Chandra:

Theorem 2.17. Let G be a group in the class H as in [17, p. 192]. Let f € C*(G)
be K -finite and Z(gc)-finite. Then there exists a function h € C>°(G) which satisfies
h(kgk™") = h(g) for all k € K and for all g € G and such that f xh = f. If
f € C*®(G), in addition, is square-integrable, then f is a smooth vector in L?(G).

Proof. The first statement is [17, Proposition 14, p. 352]. The second conclusion
follows from the observation found at the beginning of the proof of [11, Corol-
lary 8.42] that f is in the Garding subspace of L?(G) and it is therefore smooth by
Proposition 2.16. That f is indeed in the Garding subspace of L2(G) follows from
the standard fact that

(2.18) R f =[xy,
for every ¥ € C2°(G). Here, W (x) := ¥ (x~1). The first statement then gives
(2.19) R f=fxh=f O

Proposition 2.20. Let G be a group in the class H. Let f € C°(G) be K -finite,
Z(gc)-finite and square-integrable. Then, for every X € g, we have

Xf=RX)f,
where Xf : G — C is defined as
d
(2.21) Xf(g):= E[f(g exp(tX))]li=o.
Proof. By Theorem 2.17, there exists & € C2°(G) such that

f=fx*h.
From
Xf=X(fxh)=f+«Xh and fxXh=R(Xh)/,
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the latter being an application of (2.18), we obtain

Xf=RXh)7.
Since
RXh)f =RX)R(AW)f and RM)f=fxh=f,

we conclude
Xf=R(X)f. O

We will apply Proposition 2.20 to the group M in the Langlands decomposition
of a parabolic subgroup P = MAN of a connected semisimple Lie group with
finite centre. A group M of this form will not be connected, semisimple in general.
However, it belongs to the class H by [5, Lemma 9, p. 108].

We briefly recall the construction of parabolically induced representations. We
refer the reader to [13, Chapter XI], for a more thorough account.

Let G be a connected, semisimple Lie group with finite centre and let P = MAN
be a parabolic subgroup of G. The group K := K N M is a maximal compact
subgroup of M. Let A be a complex-valued real-linear functional on a and let (o, Hy)
be a Hilbert representation of M. We define an action of G on the space of functions

{feC(K,Hy)| f(mk)=0(@m)f(k) for all m € Ky; and all k € K}
by declaring
Indp (0, A, 8) f (k) := e*TPBED 5 (m(kg)) f (k(kg)),

where, if ¢ = kman for some k € K, me M,a € A, n € N, we set k(g) :=k,
m(g) :=m, h(g) :=1log(a), n(g) := n. The symbol p denotes half of the sum of
the positive restricted roots determined by a counted with multiplicities. On this
space of functions, we introduce the norm

12
I f ltndp (0,2) == (Allf(k)llg dk)

and, upon completing, we obtain a Hilbert representation of G which we denote
by Indp (o, A). We will denote by Indp g,, (o, 1) the space of K,-finite vectors
in Indp (o, A).

Proposition 2.22. Let G be a connected, semisimple Lie group with finite centre
and let P = MAN be a parabolic subgroup of G. Let A be a complex-valued, real-
linear, totally imaginary functional on a and let (o, H,) be a unitary representation
of M. Then Indp (o, 1) is a unitary representation of G.

Proof. See [13, Corollary 11.39]. O
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Corollary 2.23. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. Let A be a complex-valued, real-linear,
totally imaginary functional on a and let (o, H,) be a unitary representation of M.
Then, for every f1, f2 € Indp k,, (o, L) and for every X € g, we have

(Indp (0, &, X) f1, )indpor) = —(f1, Indp (0, &, X) f2)Indp(0.2)-

Proof. This is a consequence of Proposition 2.22 and the skew-invariance of the
inner product on a unitary representation with respect to the action of the Lie algebra
on the space of smooth vectors [19, p. 266]. U

Next, we recall a form of the Frobenius reciprocity originally observed by
Casselman. We first need some preparation.
First of all, we record the following.

Lemma 2.24. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. If V is a (g, K)-module, then the
(g, K)-module structure on 'V induces a structure of (mé@ a, Kr)-module on V\nV
in such a way that the quotient map

q:V—>V/nv
is (m & a, Ky)-equivariant.
Proof. It suffices to show that if v € V is of the form
v=Xw
for some w € V and X € n, then, for all £ € Kj;, we have
EvenV,
and, for all Y €e m @ a, we have

YvenV.
Let £ € K);. We have

fv=EXw=AdE)XEw

and, since Ky, being contained in M, normalises n by [12, Proposition 7.83],
it follows that Ad(§) X € n.
Let Y €e m @ a. We have

Yv=YXw=1[Y, X]lw+ XYw.

The second term in the right-hand side belongs to nV because X € n and the first
belongs to nV because n is an ideal in p = m & a @ n by [12, Proposition 7.78]. [
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Let us recall that a (g, K)-module is finitely generated if it is a finitely gener-
ated U (gc)-module. We say that a Hilbert representation (;r, H) of G is finitely
generated if Hy is finitely generated. We record the following result of Casselman.

Theorem 2.25. Let G be a connected, semisimple Lie group with finite centre and let
P = MAN be a parabolic subgroup of G. Let V be an admissible, finitely generated
(g, K)-module. Then V /nV is an admissible, finitely generated (m @ a, Kyy)-
module.

Proof. See [18, Lemma 4.3.1]. O

If V is an irreducible (g, K)-module, we say that V admits an infinitesimal
character if the centre Z(gc) of the universal enveloping algebra U (gc) of the
complexification gc of g acts on V by a character, that is, for every Z € Z(gc) and
for every v € V, we have

Zv = x(Z)v,

where x : Z(gc) — C is a morphism of complex, unital algebras. The action of
Z(gc) on V in question is the one obtained by first extending the action of g to an
action of g¢ and then to an action of U (g¢) using the PBW theorem.

Corollary 2.26. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. If V is an irreducible (g, K)-module
admitting an infinitesimal character, then V /nV is an admissible, finitely generated
(m @ a, Ky)-module.

Proof. By [9, Theorem 2.2, p. 256], K is connected. By [13, Theorem 7.204], V is
admissible. Combining [13, Example 1, p. 442] and [13, Corollary 7.207], it follows
that V is finitely generated. The result now follows from Theorem 2.25. U

Let p, m, a and n denote the Lie algebras of P, M, A and N, respectively.

Let (o, H,) be an admissible and finitely generated Hilbert representation of M
which is unitary when restricted to Kjy;. Let A be a complex-valued real-linear
functional on a. Consider the (m & a, Kj7)-module H ; Ky defined as

A .
HU,KM = HU»KM ® C/\er’

where the pair (m, Kj) acts on H, ,, and a acts on C; 4, via the functional A + p.
If Vis a (g, K)-module and T € Homg g (V, Indp k,, (0, 1)), then we can define
an element 7 € Hompgq k,, (V/0V, H;}KM) by setting

T ) :=Tw)().

Theorem 2.27. Let G be a connected, semisimple Lie group with finite centre. Let
V be a (g, K)-module. Let (o, Hy) be an admissible and finitely generated Hilbert
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representation of M which is unitary when restricted to Ky and let A be a complex-
valued real-linear functional on a. Consider the (m @ a, K y7)-module H ;‘ Ky Then
the map

Homg (V. Indp k,, (0, 1)) = Hommga k, (V/0V, H} ), T T,

is a bijection.
Proof. See [18, Lemma 5.2.3] and the discussion preceding it. ([

For clarity, we point out that the formulation in [18] seems to contain some typos
and so we modified it following [8, Theorem 4.9].

The inverse of the map T +— T is constructed as follows (see [18, Lemmas 5.2.3
and 3.8.2] or, alternatively, [8, Theorem 4.9]). Let S € Hompgq x,, (V/0V, H(’;KM).
Then we obtain an element

S € Homg x (V, Indp k,, (o, 1))
by setting
S()(k) := S(g(kv)),

where g : V — V/nV denotes the quotient map. Then the inverse of T T is
given by the map

Homuega k), (V/nV, H} x ) — Homg x (V,Indp g, (0, 1)), S+ S.

3. Asymptotic behaviour of representations

3.1. Asymptotic expansions of matrix coefficients. We begin by collecting the
fundamental facts concerning asymptotic expansions of matrix coefficients of tem-
pered representations. We refer the reader to [11, Chapter VIII] for a more thorough
exposition of the topic.

Let G be a connected, semisimple Lie group with finite centre, let K be a fixed
maximal compact subgroup of G and let £ be its Lie algebra. Let P = MAN denote
the minimal parabolic subgroup of G with Lie algebra p. Given a maximal abelian
subspace a of p, we call A the corresponding subgroup of P and M the centraliser
of A in K. We fix a system A of simple roots of the restricted root system attached
to (g, a), and we use A™ to denote the corresponding set of positive roots.

Let a™ denote the set {H € a | «(H) > 0 for all « € A}. Then the subset of
regular elements G™¢ of G admits a decomposition as G™¢ = K exp(a™)K and G
itself admits a decomposition G = Kexp(at)K.

We write A ={ay, ..., «,} and we identify it with the ordered set {1, ..., n} in
the obvious way. We adopt the following notation to simplify the appearance of the
expansions we are going to work with.

For H caand ! € 7% ), we set a(H) =[], i (H)".
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If X is a real-linear complex-valued functional on a, since, for every H € a,

n
MH) = diey (H)
i=1
for some Ap, ..., A, € C, we will often identify A with the n-tuple (A1, ..., A,).
The next result is concerned with the expansion of K -finite matrix coefficients
relative to P.

Theorem 3.1. Let G be a connected, semisimple Lie group with finite centre
and let (7w, H) be an irreducible, Hilbert representation of G. Then there exist a
nonnegative integer ly and a finite set of real-linear complex-valued functionals
on a, denoted by &y, such that, for every v, w € Hg, the restriction to exp(a®) of
the matrix coefficient

bv.w(g) = (m(gHv, w)

admits a uniformly and absolutely convergent expansion as

Gow(exp H)y=e?H " 3" 3" a(H) e ie, 11 (0), w),
A€o lels kel
111=lo
where each ¢y : Hx — Hg is a complex-linear map and p, denotes half of
the sum of the elements in A counted with multiplicities. The maps c; i, are
completely determined by the representation (7w, H).

Proof. By Theorem 2.9, (7, H) is admissible and therefore has an infinitesimal
character. By [11, Theorem 8.32], we have the stated expansion for any t-spherical
function (in the sense of [11, p.215]) F on G of the form

F(g) = Exn(g)E,

where 7, and 1, are subrepresentations of
”|K'::€£>ny}’
yek

of the form

T = @ nyy and 1:= @ ny,y

Y€ Y€,

for finite collections ®;, ©, € K ,and E1, E; are the orthogonal projections to 7y, 77,
respectively. In this expansion, the set &, the maps c)—_x ; and the number [y depend
on T = (71, 72) and we can expand ¢, ,, provided that v € 7; and w € 7. To obtain
an expansion valid for every v, w € Hg and with &, ly and the c;_ ; independent
of t, we appeal to the theory developed in [2, Section 8], which we can apply
since (i, H) is finitely generated by [13, Corollary 7.207] (for clarity, we should
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mention that the setup in [11] is different, but entirely equivalent to that in [2],
translating between the two is just bookkeeping). First, by [2, Theorem 8.7], the
representation (7, H) has a unique matrix coefficient map in the sense of [2, p. 907].
The required expansion on the region exp(a®t) of the matrix coefficient map is
given by [2, Theorem 8.8]. For completeness, the relation between the 7-dependent
expansion and the expansion in our statement is given in [2, Lemma 8.3]. (|

We recall that if v, v are real-linear complex-valued functionals on a such that
v — V' is an integral linear combination of the simple roots, then we say that v and
V' are integrally equivalent.

The set & has the property that if A, A" € & with A # A, then A and A" are not
integrally equivalent.

If v and v’ are integrally equivalent and v — v’ is a nonnegative integral combina-
tion of the simple roots, we write v > V', thus introducing an order relation among
integrally equivalent functionals on a.

If k € 7%, is such that the term

a(H) e* P e, 4 1(v), w)

is nonzero for some A € & and for some v, w € Hg, then we say that v:=A —k
is an exponent and we let £ denote the set of exponents. The exponents which
are maximal with respect to the order relation introduced above are called leading
exponents: & is precisely the set of leading exponents.

The following result is used crucially in [10] and in the following.

Theorem 3.2. Let (7w, H) be an irreducible, tempered, Hilbert representation of G.
Then every ) € & satisfies

ReXx; <0
foreveryie{l,..., n}.

Proof. See [11, Theorem 8.53]. Strictly speaking, in [loc. cit.] the theorem is
formulated under some restrictions on G, but it is a convenient reference since we
are adopting the same normalisation of the exponents. See [1, Proposition 3.7, p. 83]
or [2, Corollary 8.12], for proofs for more general groups. U

We now turn to asymptotic expansions of matrix coefficients of (7, H) relative to
standard (for P) parabolic subgroups of G. We follow [11, Chapter VIII, Section 12].

Given a subset I C {1, ..., n}, and recalling that we identified A with {1, ..., n},
we can associate to it a parabolic subgroup

of G containing P in such a way that the restricted root space g_,, satisfies g_, C m;
if and only if @ € I (with m; denoting the Lie algebra of M;). For the details, we
refer the reader to [11, Proposition 5.23; 12, Chapter VII].
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First, we introduce the basis {Hj, ..., H,} of a dual to A. We define the Lie
algebra a; as
ay = Z RH,‘
iel
and the group A; as
A= exp( Z [Ra,).
iel

We can then write
a=a;Pa;e and A=AjAj.

The groups N; and Nj. are the analytic subgroups of G corresponding to the Lie

algebras
ny = Z g and nje:= Z 9s-
BeAt BeAt
ﬂlO.[c:O ﬁlalc#o
We have
P = pr+pre
with
pri=1 Y (@imgp)p
BeAt
,3|a1c:0

and analogously for p;c. Denoting by My ; the analytic subgroup of G correspond-
ing to the Lie algebra

m;=m®a; Sn; Sy,
the group M| is then given as
My = Zg(aje)Mo ;.

Finally, K; := K N M; is a maximal compact subgroup of M; and MA; Ny is a
minimal parabolic subgroup of M;.

Theorem 3.3. Let G be a connected, semisimple Lie group with finite centre and let
(r, H) be an irreducible, Hilbert representation of G. Let C be a compact subset of
M satisfying K;C K = C. Then there exists a positive real number R depending
on C such that, for every m € C and for every a = exp H € Ajc which satisfies
o;(H) > log R for everyi € I°, we have

v (mexp H) = e PreH) a(H)Y1e" el (m v, w)
, p v.q
UEgquZQB
lg1=q0
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for every v, w € Hg. Here, &1 is a countable set of real-linear complex-valued
functionals on ajc, each ¥ I, extends to a real-analytic function on M| and satisfies

el (Emér, v, w) =cl (m, w(E)v, (& Hw)
for every &, & € K. Moreover, for every m € M; and w € Hg, the map
Hyk —-C, v ci’q(m, v, W),
is complex-linear and, for every m € M; and v € Hg, the map
Hy - C, w— cf?q(m, v, W),

is conjugate-linear. The maps ci ' M x Hg x Hg — C are completely determined
by the representation (7w, H).

Proof. For a t-spherical function F as in the proof of Theorem 3.1, the result follows
from [11, Theorem 8.45]. To obtain an expansion independent of t, it suffices to
prove that each F,_, . is independent of 7. Let m € M; and write m = &a;§; for
some a; € A;r, where AA}F is the positive Weyl chamber, and some &1, & € K. Since

Fopje(ma, v, w) = Fy_,,.(ara, m(E)v, w(E; Hw),

relabelling things, it suffices to prove that F,_,,. (-, v, w) is independent of T as a
function on A;FA 7e. By [11, Corollary 8.46], the functional v € £7 is the restriction
of an element in the set of exponents £ in the expansion relative to P and this
set is independent of T by [2, Theorem 8.8]. Therefore, it remains to prove that
each ci ’, 1s independent of 7. Since cfy , 1s analytic on My, it suffices to prove that
ci *q( -, v, w) as a function on A;r is independent of t. Given a; € A;“, we can find
a compact subset C of M containing and a; such that K;C K; = C, and a positive
R depending on C, such that for every H € a;c satisfying «; (H) > log R for every
i € I¢, the expansion of ¢,y (aya) relative to P and the expansion relative to Py
are both valid. Comparing them as in [11, p. 251], it follows that expansion relative
to P; is completely determined by the expansion relative to P and the latter is
independent of T by Theorem 3.1. U

For every v € &, the term
a(H)qe(V*PIC)(H)Cilq (m, v, w)

is nonzero for some v, w € Hg and some m € M. The set &; is the set of exponents
relative to Pj.

To define the functions of the form I'; ; discussed in the Introduction, the first step
consists in associating a standard (for P) parabolic subgroup of G to each A € &.
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Let (;r, H) be an irreducible, tempered, Hilbert representation of G and let A € &.
Weset [, :={i € {1, ...,n}|Re}; <0} which we identify with the subset A, of A
defined as

AAIZ{OI,‘EAUEI)L}.

The construction of standard parabolic subgroups from the datum of a subset of A
assigns to I, the standard parabolic subgroup P, defined as

P)\ = Plx'

It admits a decomposition

where

The subgroup M admits a decomposition

M, = K; A, K;,
where
A)LZ:A])L and I(}L I:KQM)L.

The group A decomposes as A = A, A;,. We write a; and a,, for a;, and aye,
respectively. Similarly, we write p, and p;, for o, and pj¢, respectively.

Remark 3.4. The theory recalled so far is sufficient to prove that tempered, irre-
ducible, Hilbert representations are unitarisable. From now on, given a tempered,
irreducible, Hilbert representation (7, H), we will implicitly assume that it is unitary
and we will refer to it simply as a tempered, irreducible representation.

3.2. The functions T'y ;. We are going to introduce an equivalence relation on the
data indexing the expansion of ¢, ,, relative to P. The definition is motivated by
the construction of d () in [10]. Let v, w € Hg. We have

pow(exp H) =e* NN " a(H)' Do} (H),
re&ylezl,
111=lo

where

@5 (H) := Z e M (e i), v2).
keZl,

The terms in this expansion are indexed by the finite set

C:={(\, D}es -
lelgo
[11=<lo
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We introduce arelation on C by declaring that (A, [) ~ (u, m) if I, =1, M% = ,ud|ak0
andres;¢ [ =res;¢ m. To define this relation we have implicitly used the identification
of I, with the subset A, of A at the end of the previous subsection.

It is clear that ~ is an equivalence relation. We denote by [A, [] the equivalence
class containing (A, ).

We can therefore regroup the expansion of ¢, ,, as

— s May  (Hyg) vy ,
¢u,w(exp H)=e p(H) Z Ol(H)LO)ZAOE | 1o U Z (X(H)L)llek la, (H3) (DK/};’/(H)’
[Al]eC/~ W, 1e[r]
where

Ly ==respe L, a(Hy,) = 1_[ a;(Hy)', 1 :=res I, a(Hy)" = 1_[ a(H;)
ielf iel,
and H = H,,+ H, corresponds to the decomposition
o =a ®aj.

We are also implicitly using the fact that o (H )= a(HA)Z*a(HAO)Z*O which
follows from writing H with respect to the basis dual to A.

To proceed, we need to isolate certain equivalence classes in C/~. First, we
recall from the Introduction how the quantity dp (X, [), for (A,[) € C and P a fixed
minimal parabolic subgroup of G, and the quantity d(;r) are defined.

For (A, 1) € C, we set

dp .. 1) =I5+ ) 2
iely

and we observe that this number only depends on the equivalence class of (A, /).
Then we take the maximum, dp, as (%, [) ranges over C. We can proceed analogously
for every standard (for P) parabolic subgroup of P’ of G to obtain a nonnegative in-
teger dpr. Then d (7) is defined to be the maximum over all P’ of the quantities dp:.

Definition 3.5. Let [A,[] € C/~. We say that [A, [] is relevant if it satisfies
dp(A, 1) =d(n),
where dp (X, [) is defined by (1.7).
Let [A, I] € C/~ be a relevant equivalence class. For H) € a;f, we set
(3.6 TulexpHy,v,w)yi=e 3 a(Hhe ™okt (i),
041 e 1]

Before establishing the properties of I ;, let us pause to explain the motivation
behind the definitions above. The discussion that follows will be used only in
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Section 4. The reader who prefers to do so can skip to Proposition 3.12 without
any loss of continuity.
Let vy, v3, v3, v4 € Hx. We will be considering integrals of the form

Jim = f o (€xp H)ysu, (exp H) [ | (P — e PUIdme g,
BeAt
where
3.7) air =a"N{Hea|B(H) <rforall B e AT}.

Treating these is the content of [10, Appendix A ]. We remark that our region of
integration is defined as to exclude the subset of a+ where at least one of the simple
roots vanishes. It is a set of measure zero.

We want to interpret [10, Lemma A.5] in group-theoretic terms.

Let us consider the matrix coefficients ¢,, ,, and ¢y, ,,. On AT :=exp(a™), they
can be expanded as

¢v1,v2 (exp H) — e—p(H) Z Ol(H}LO)l)‘OeMu)‘O (Hyy) Z lp)lj/l’,ll/)z (H)

[A,11eC/~ ROV

and

Dras(exp H) =" 37 a(Hy Mot Tl 3T wi ),
[u,mleC/~ (W m’)e[w,m]

where, for (', l') € [A, I], we set
W (H) = () ) @12 (H)
and similarly for (u’, m’) € [, m]. Let [A,[] € C/~ and [, m] € C/~ be such
that I, = 1,,, )\|% = ,u|cu0 and
d(m)= L1+ Y li+m).
i€l

In view of the first condition, the third is equivalent to the requirement

dp(r,l)=d(m) and dp(un,m)=d(m).
Consider the summand

—2p(H)a(H)l +m’ (A —HU)(H)q)vl ;fz (Dvg U4 (H)

in the expansion of the product ¢y, y,¢u,.», 0n AT. Taking into account the factor
e~2°(H) and the fact that the term

(3.3) Q(H) = 1_[ (P _ o=UH) ydim g

BeAT
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is incorporated in the function ¢ in [10, Lemma A.5] (compare with Section 4.7
in [loc. cit.]), this lemma shows that, as r — oo, the integral

1 —2p(H) U4+m’ )L/+*, H , ~— 501
A /ﬁ P (H)! T W HOE @2 @ (H)Q(H ) d H

tends to

C(A,l, m)/ —ZPA(HA)[\yvllyij% v4]|a,\(HA)Q)L(H}L)dHA,
where
(3.9 Q. (Hy) = 1_[ (eﬂ(Hx) _ e—ﬂ(m))dimgﬂ’

BeaSs

with

Af i={B e AT |Blo, =0},
and the quantity C (A, [, m) is given by

(3.10) Ch,l,m) = f ) a(Hy,) ot d Hy,.
{Hea,lext's (H)eal,}

Now, summing over all (A’,1") € [A, [] and over all (', m’) € [, m], we obtain
that the integral over a®, of

e 20 (H) Z Z Ot(H)l +m’ (! +u/ )(H)q)vl »V2 q)lvf :Z(H)Q (H),
W elr 1 (wm')e[p,m]

upon multiplying by 1/r4™ and letting r — oo, equals

C(h, 1, m) / ey Y e, ()0 (H) d Hy
W, yelr ] (w' m")elp,m]

Finally, since

—k(H,
D50 o, (Hy) = Z e ey (1), v2),
kez2,

and similarly for d>v3 b4 , the integral above equals

3.11) C(r,l, m)/ [y i(exp Hy, v, w)I) (exp Hy, v, w)2, (Hy) d H;..
al

If (A, 1], [, m] € C/~ fail to satisfy any of the three conditions 1), = I, Ala, = itla,
and
dp(A, 1) =d(m) =dp(n, m),
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then, for every (A', I") € [, [] and for every (u', m’) € [,t, m], by the considerations
in the proof of Claim A.6 and Lemma A.5 in [10], the integral

1
rd(n)

f e_zp([-[)a(H)l/+m/e()»/+l7)(1‘1)@K}'IHZCDZ%’Z:,(H)Q(H)dH
AL ’ |

vanishes as r — oo.

Therefore, the relevant equivalence classes [A, [] € C/~, those for which the
functions of the form I'; ; are defined, are precisely the ones that may contribute a
nonzero term to the expression

lim f Bunus (€xp H) s v, (exp H)Q(H) d H.

o0 pd(T)

Throughout the rest of this section, we fix a tempered, irreducible representation of
a connected, semisimple Lie group G with finite centre.

3.3. Some properties of the functions T’ ;. To study the properties of I'; ;, we be-
gin by showing that it is equal to a function of the form c ;- More precisely, we have:

Proposition 3.12. Let v, w € Hk. Let [\, l] € C/~ be a relevant equivalence class.
Set v :=Alo, and q :=1,,. Then, for every H, € azr, we have

I's.i(exp Hy, v, w) =}’ ., (€xp Hy, v, w).

Proof. For every H, € af, we can find a compact subset C of M, such that
K, CK) = C and which contains H,, and a positive real R > 0 such that if H,, € a;fo
satisfies «; (H,,,) > log R for every i € I}, then the expansion of ¢, ,, with respect
to P and the expansion with respect to P, are both valid at H = H, 4 H),. Comparing
them as in [11, p.251], we see that

P; — o5 (H, v, w
¢,y (exp Hy, v, w) = E E e P A)\IIA,J,(H,\).
2e& 4
Wl =v I!1=lo
lo=4

Since, by definition of I'; ;( -, v, w), we have

Ta(exp Hy, v, w) = 7™ 3" Wi,
W, elrl]

recalling the definition of the equivalence relation that we imposed on C, we only
need to show that the set
(€& | Wy, =)
is equal to the set
{Ae& | L,=1, and )J|m0 = AMa,, }-
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Because of the assumption on [A, [], for every A" € & such that A/ |a~A0 = v, we have
Re; # 0 for every j € I;.. Indeed, if there existed a j € I, for which Re A, =0,
we would have
|5 > 1+ I
and, since ll/\0 =1, this would imply
dp( 1) > {1+ ) 26 = dp (1) = d (),
ieI.A‘ f

contradicting the maximality of d(;r). Since, by Theorem 3.2, we have Re A, <0
for every i € {1, ..., n}, this concludes the proof. U

Theorem 8.45 in [11] and the discussion at the beginning of p. 251 in [loc. cit.]

now show that I'; ;( -, v, w), being equal to Cffq,

on M,, which we denote again by I'; ;(-, v, w). If we decompose M, as

extends to an analytic function

M; = K; exp(a;) Ky,

and if we write m € M, as m =&, exp H, & for some &1, & € K, and some H) € af,
then we have

Tsi(m, v, w) =Ty (exp Hy, w(E1)v, m(6)~'w)

because Cf, Aq( -, v, w) exhibits the same behaviour.

We want to prove that I'y ;(-, v, w) belongs to L*(M,) and it is Z (m;,¢)-finite.
An application of Theorem 2.17 will imply that I"; ;(-, v, w) is a smooth vector
in L?(M;). Similar ideas appear in [11, Chapter VIII; 15].

Proposition 3.13. Let v, w € Hg. Let [A,l] € C/~ be a relevant equivalence class.
Then Ty ;(-, v, w) belongs to L*(M,).

Proof. We argue as in the proof of [15, Lemma 4.10]. By the proof of Proposition 3.12,
we have Re A, < 0 for every A’ appearing in the expansion of I'y ; (-, v, w) on Aj{ and
forevery i € I;. Since I'y ; (-, v, w) is analytic on A;, we can apply [7, Theorem 4]
and then argue as in [2, Theorem 7.5] to establish the desired square-integrability
on Azr. The square-integrability on M;, follows from combining the decomposition
of M, as M, = K, A;K »» the corresponding integral formula and the fact that if
m = & exp H, &, for some H, € ar and some &1, & € K, then

Tia(m, v, w) =T (exp Hy, m(EDv, 7(E2) ™ w). O
We recall that there exists an injective algebra homomorphism
wp,  Z(ge) = Z((m; @ azy)c) = Z(myc) @ U(az,e),

which turns Z(m,¢) ® U (a,,c) into a free module of finite rank over i p, (Z(gc))
by [6, Lemma 21].
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Proposition 3.14. Let v, w € Hk. Let [, [] € C/~ be a relevant equivalence class.
Then, for every X € U(m,¢) and for every m € M, we have

XDy (m, v, w) =T (m, 7 (X)v, w).

Moreover, the function 'y ;( -, v, w) is a smooth vector in the right-regular repre-
sentation (R, L>(M,)) of M;..

Proof. For a given X € U(m,¢) and every g € G, we have

Xd)v,w(g) = ¢7'1(X)v,w(g)-

Therefore, the restriction of X¢, ,,(-) to M) A,, satisfies

X¢v,w(ma) = ¢7'1’(X)v,w(ma)-

Given m € M, we can find a compact subset C of M, containing m such that
K;,CK; = C and a positive R depending on C such that if a = expH € Ajo
satisfies o;; (H) > log R for every i € I}, then ¢ (x)y,w» (ma) may be expanded with
respect to Py. Since X € U (m,¢), the restriction of X¢, ., (- ) to M, A, can also be
computed as the action of the differential operator X on the restriction of ¢, ,,(-)
to M, A,,. Form e M) and a € AIO as above, we expand the function so obtained
with respect to P, and, as in the proof of (4.8) in [15], because of the convergence
of the series, we can apply the differential operator term by term. By comparing
the resulting expansion with the expansion of ¢ (x)v,»(ma), and invoking [11,
Corollary B.26], we obtain

Xelt (m, v, w) = cl’ (m, 7 (X)v, w)

for every v € £; and every g € leo. The first statement now follows from choosing
v and ¢ as in Proposition 3.12.

For the last statement, we need to show that I'; ;( -, v, w) is annihilated by an
ideal of finite codimension in Z (m;¢); the result will then follow from Theorem 2.17.
Let J be the kernel of the infinitesimal character of (i, H). Then J is an ideal
of finite codimension in Z(gc). As observed in [5, p. 182], the inverse image Ji,
along the inclusion

Z(myc) > Z(me) @ U(ayc), X X1,

of the ideal generated by pp, (J) in Z(m,¢c) @ U (w),c) is an ideal of finite codimen-
sion in Z(m,¢). This follows from the fact that the ideal generated by 1 p, (J) is of
finite codimension in Z(m,¢) ® U (ay,c), since Z(m,c) ® U (ay,c) is a free module
of finite type over wp, (Z(gc)) by [6, Lemma 21]. Denoting by pp, (/)¢ the ideal
generated by pp, (J), we see that Ji,, is precisely the kernel of the homomorphism

Z(myc) = (Z(me) @ Uare))/mp (), X > (X Q1)+ pp, (J)°.
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This exhibits Jy,,, as an ideal of finite codimension in Z(m,c). Now, if X € Jy,,
then X ® 1 belongs to wp, (J)¢. Hence X ® 1 can be written as

X®1= Z Yip (Z;),

i=1

with ¥; € Z(m;c) @ U(ay,,c) and Z; € J. For every i € {1,...,r}, by (8.68) in
[11, p.251], the differential operator wp, (Z;) annihilates the function

Fy_p, (ma, v, w) = Z cixq (m, v, wya(H)4eV=r)H)
q:l91=qo
Therefore, X ® 1 annihilates it, as well. On the other hand, by the first part of the
proof, we have
(X® I)Fv—p,\o (ma,v,w) = Z Ci’\q(m, 7 (X)v, w)a(H)4eV P H)
q:lq1=<q0

Since the left-hand side vanishes identically on M) A;,, it follows that
b (m, 7t (X)v, w) =0

for every m € M. Choosing v and g as in Proposition 3.12, we find that I"; ; (-, v, w)
is annihilated by Jy, . g

3.4. The functions T, ; as intertwining operators. Let w € Hg. The following
two technical lemmata, together with Proposition 3.14, will be used to prove the
(my, @ a, K;)-equivariance of the map

Sw: Hy = LX(M;) ®Ciy, —pyye Sw(®)(m) =Ty (m, v, w).

We are not claiming that for every w € Hg this map is nonzero: the only thing we
need to know is that, whenever w € Hg is such that S, is not identically zero, then
Sy 1s (my, @ a, K )-equivariant. In the final part of this subsection, we show the
existence of an admissible, finitely generated, unitary representation of M, which
will allow us to apply Theorem 2.27 in the way we explained in the Introduction.

Lemma 3.15. Let v, w € Hg. Let [A,l] € C/~ be a relevant equivalence class.
Then, for every X € a,, and every m € M,, we have

F)u,l(m’ 7T(X)U, w) = (Mu)\o - /O)Lo)(X)F}x,l(m’ v, w)

Proof. We write m € M, as m = &a, &, for some &1, & € K, and some a, € A;’.
Then we have

Ty (m, 71 (X)v, w) = Ty g (a, 7€) (X)v, 7(E; Hw).
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Recalling that
(D (X)v =7 (AdEDX)7 (€D,

since M) centralises a,, [12, Proposition 7.82], and K, is contained in M, we have
5@, TENF(X)v, mE Hw) =Ty (@, 7 (X)mEDv, wE Hw).

Therefore, relabelling things, it suffices to prove that for every X € a;, and for
every a, € AI, we have

F)»,l(a)u f[(X)'U, w) = ()\lako - ,OAO)(X)FA,I(G)” v, w)

Moreover, since I'; (-, v, w) is analytic, it suffices to prove the identity for ev-
ery a, € Af. Let a, = exp H) € A;f. Then there exist a compact subset C
of M, containing a, and such that K, CK, = C, and a positive R depending
on C such that, for all H), € afo satisfying «;(H,,) > log R for every i € I,
the expansion of ¢ (x)v,w(ay exp Hy,) relative to P (Theorem 3.1) and the expan-
sion of @5 (x)v,w(a; exp H,,) relative to P, (Theorem 3.3) are both valid. Setting
H := H, + H,, for H,, as above, the expansion in Theorem 3.1 gives

b o (H) =D > a(H) e* P (s 1 (X)v), w)
re€ er’éO
1<y

By linearity we can assume that X = H; for some i € I}, where H;, we recall, is
the element in a,, dual to the simple root «;.
Differentiating term by term and taking into account the computation

Hila(H) e P = La(H)! eI 1 (i, — o) (Ha(H)' P,

where ¢; is the element in Z2 ) having 1 as its i-th coordinate and 0 as every other
coordinate, we observe that the only terms in the expansion

Gow(H) =Y Y a(H)' e P (c; (), w)
reg ZGZ’;()
1<l

that after differentiation by H; € a,, can contribute a term of the form
ca(H)'e*=P (¢; 1(v), w),
with ¢ € C, to the expansion of ¢y (x)y,w(H), is precisely

a(H) e P (e; 1(v), w).



56 ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

This reasoning shows that in the expansion

Gt (Howw (@ exp Hy) = D > a(Hy,) e 70l el (a7t (Hy)v, w)

ve&; i€
ez}

lg1=q0

relative to P, the term indexed by (v, ¢) with v = Alq, and g =1, satisfies
el (ay, 7 (H)v, w) = Moy, — o20) (Hiel (@, v, w).
Indeed, the comparison in [11, p.251] shows that
a(Hyy) e =700 el (ay, 7t (Hy)v, w)

is the sum of all the terms in the expansion of ¢ gy, (H) relative to P which
are indexed by couples (A, /) satisfying

)\.|a)\0 = Alaho and lko = lko
and, as we saw, these are the terms of the form

(Mayy — 010) (H)a(H)' e =P (e 5(v), w).
Finally, since

oi(an, v, w) = ¢’ (az, v, w)
by Proposition 3.12, we obtain
Dhi(an, v, w) = (e, — oag) (HD Ty i an, 7 (Hi)v, w). O

Lemma 3.16. Let v, w € Hg. Let [M,l] € C/~ be a relevant equivalence class.
Then, for every X € n,,, and every m € M,, we have

[y (m, w(X)v, w) =0.

Proof. We write m € M, as m = &a, &, for some &1, & € K, and some a, € A;.
Then we have

Toi(m, 7 (X)v, w) =Ty y(ax, 7(ED7(X)v, 7€ Hw).

Recalling that
(DT (X)v =7 (AdED X)7 (1),

since M) normalises n,, [12, Proposition 7.83], and K is contained in M, , we have

Thi(an, wEDF(X)v, w(E; Hw) = T; 1 (an, 7 (X ) (E)v, 7(E; Hw)
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for some X’ € n,,,. Therefore, relabelling things, it suffices to prove that for every
X € ay, and for every a, € A;, we have

Iy (ay, 1 (X)v, w) =0.

Since I'y ; (-, v, w) is analytic, it suffices to prove the identity for every a, € A,J{.
As in the previous proof, we set H := H) + H,, for H,, in an appropriate region
and the expansion in Theorem 3.1 gives

$rouw(H) =Y >~ a(H) e P (c; 1t (X)v), w).
reg er’;o
1<y

The expansion in Theorem 3.3 gives

Pixoww(@rexp Hyy) = Y Y a(Hy) e 0 Holels (a;, 7 (X)v, w).

ve&r I)f
quZo

l91<q0

By [11, Corollary 8.46], each v — p;, in the second expansion is of the form
Ma,, — P2, for some exponent A in the first expansion. Therefore, it suffices to
prove that if A € & and [ € ZZ, with |I| <y satisfy

dp(A, 1) =d(m),

then no term with exponent A — p for which Xl% = Ala,, appears in the first expan-
sion. Indeed, if we can show this, since by the comparison in [11, p.251], the term

a(Hyy) eV Mo el (ay, 7t (X, w),

forv= )»|% and g;,, =1, is the sum of all the terms in the expansion of ¢5 (x)y, v (H)
relative to P which are indexed by couples (A, [) satisfying

5‘|0x0 = )\.|a)\0 and iko :lko’

it would follow that
ey (ax, 7 (X)v, w) =0,
and therefore

[y i(an, 71 (X)v, w) =0.

By linearity we can assume that X € g_, for some i € Iy [11, Proposition 5.23].
Computing as in [2, Lemma 8.16], we have

b (xp.w(@) = (7 (Ad(@) X) 7 (a)v, w) = —e %M, + xyu(a).
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Hence every exponent in the expansion of ¢y (x)y,., (@) relative to P is of the form
A=A —e; for some A’ € £. Now, if there existed A’ € £ with

()"/ - ei)|aA0 - )\la,\o ’
we would have
Re(k’ — ei),- =Rel; = 0

since i € I{. This means that Re A, > 0, a contradiction. Indeed, since (7, H) is
tempered, the real part of every coordinate of each leading exponent is at most zero
by Theorem 3.2 and it follows that the same property holds for every elementin £. [

Lemma 3.17. Let w € Hg. Let [1,[] € C/~ be a relevant equivalence class. Then
the prescription

Sw:Hg — L*(My),  Su(v)(m) :=T;1(m, v, w),
is a well-defined, (m;, K;)-equivariant map with image contained in LZ(MA)KA.

Proof. The map S,, is well defined by Proposition 3.14. For every § € K, and
every m € M,, we have

Sw (@ (E)v)(m) =T (m, w(E)v, w) =Ty (m&, v, w) = R(E) Sy (v)(m).
By Proposition 3.14, for all X € m, and for all m € M,, we have
Sw @ X)v)(m) = XTy 1 (m, v, w)
and, by Proposition 2.20, we have
XT5 i (m, v, w) = R(X)Ty 1(m, v, w).

Therefore
S (7T (X)v)(m) = R(X) Sy (v)(m)

and this concludes the proof that S,, is (m,, K;)-equivariant. To prove that the
image of S, is contained in L*(M,) k,, we observe that, for every v € Hg, the
K, -finiteness of v implies the existence of finitely many vy, ..., v, € Hg such that

R(K)T;5. (-, v, w) € span{l’y ; (-, v;, w) [ i €{l,...,r}}.

Hence, I'; ;(-, v, w) is K, -finite and, since it is a smooth vector in (R, L3*(M,))
by Proposition 3.14, it belongs to L>(M,), . O

We now construct a subrepresentation (®, Hg) of (R, L?*(M,)) which, as we
will show in the next two results, has precisely those properties that we need to
proceed with the strategy outlined in the Introduction. We will show that (®, Hg) is
an admissible, finitely generated, unitary (this follows since it is a subrepresentation
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of L2(M,)) representation of M, such that the image of the (m;, K} )-equivariant
map S, is precisely the (m,, K, )-module Hg g, and such that the map

, o Sw)(m) =T ;(m, v, w),

0

Sw:Hg — He k, ®C)‘|ﬂxo_p"

is (m;, @ a,,, K))-equivariant.

The representation (®, Hg) depends on the choice of w € Hkx and of a rele-
vant [A, /] € C/~. However, and this is the important point, the construction can be
formed for every choice of w € H and for every choice of relevant [):, [ leC/~.
In Proposition 3.21 below, we will use this construction to define the representation
(0, H,) discussed in the Introduction.

We adopt the notation of the previous lemma. In the proof of Proposition 3.14,
we showed that, for each v € Hg, the function I'y ;(-, v, w) is a Z(m,)-finite
function in L2(M,). By [11, Corollary 8.42], there exist finitely many orthogonal
irreducible subrepresentations of (R, L*(M,)) such that ['.0(-, v, w) is contained
in their direct sum. It follows that there exists a (not necessarily finite) collection
{(8, Hp)}pco of orthogonal irreducible subrepresentations of (R, L*(M,)) such that
Sw(Hg) is contained in their direct sum. Let (®, Hg) denote the direct sum of the
subrepresentations in this collection.

Lemma 3.18. The (m,, K, )-module Hg k, is precisely the image of the (m,, K)-
equivariant map

Sy : Hy — L2(My), S, (v)(m) :=T ;(m, v, w).

Proof. By Lemma 3.17, S,,(Hx) C He N LZ(M,\)K,A = Hg k,. For the reverse
inclusion, the irreducibility of each (6, Hp) implies that S,,(Hx) N Hp x, = Hp k, -
Therefore Hg g, is contained in the image of S,,, completing the proof. U

Proposition 3.19. The representation (®, Hg) of M, is admissible, finitely gener-
ated and unitary. Moreover, the map

Sw:Hg — He k, ®C)L|u10,p~

X0 ? Sw(v)(m) = F)L,l(m7 U, w)’
is (my, @ ay,, Ky)-equivariant.

Proof. By Lemma 3.18 we have S,,(Hgx) = Heg k,. By Lemma 3.15, for all X € a;,
and for all m € M,, we have

Sw (@@ (X)v)(m) = (Ao, — Pro) (X)T51(m, v, w) = (Ala,, — P2) (X)Sw (V).
By Lemma 3.16, for all X € n,, and for all m € M,, we have

Sw@X)v)(m) =T (m, 7 (X)v, w) =0.
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We thus obtained an (m;,, @ a,,, K, )-equivariant map
Sw:Hg — Hok, ®CA|%_%, Sw@)(m) =T ;(m, v, w),
which factors through the quotient map
q: Hx — Hg /ny Hkg,

which is (my @ a,,,, K;)-equivariant by Lemma 2.24.

Since Hg, being irreducible (and hence admissible by Theorem 2.9), has an
infinitesimal character, by Corollary 2.26 the (m; @ a,,, K))-module Hg /n,,Hg
is admissible and finitely generated. It follows that

SIU(HK) = H@,KA ® (]:)Llu)bo_p}»()

is an admissible and finitely generated (m; @ a,,, K, )-module. The fact that a,,
acts by scalars implies that Hg g, itself is finitely generated (as U (m;,c)-module)
and admissible. U

In the next corollary, we apply Casselman’s version of the Frobenius reciprocity
to construct (g, K )-intertwining operators from the functions I') ;. We recall that
P;, denotes the parabolic subgroup opposite to P and that the half-sum of positive
roots determined by P; is precisely — Oig-

Corollary 3.20. The map
Ty :Hkx — Indp ¢ (O, Alq, ), Tw@)(k)(m) :=T 1 (m, w(k)v, w),
is (g, K)-equivariant.

Proof. The equivariance follows from Proposition 3.19, in combination with
Theorem 2.27 and the discussion following it. More precisely, we have T,, = S,, in
the notation of the discussion following Theorem 2.27. ([

The next proposition is the core of the article: it allows us to prove an identity of
certain integrals using representation-theoretic methods. In the final section, it will
be shown that the identity in question implies Proposition 1.5.

Proposition 3.21. Let [, 1], [, m] € C/~ be relevant equivalence classes such
that I, = 1, )»|uk0 = ;Ll% and dp(A,l) = dp(u, m). Then, for all X € g, for
all k € K, and for all vy, vy, v3, v4 € Hg, the integral

/ (Dot 7007 (XD01, 02), Dy (i, 7 (K003, 00)) 2.,
K

is equal to the integral

_ f (Dot 700001, 02), Ty 13, 7RI (X3, 00 .
K



ON KAZHDAN-YOM DIN ASYMPTOTIC ORTHOGONALITY 61

Proof. By Proposition 3.19 and the discussion before Lemma 3.17, we can construct
a representation (o1, Hy,) of M, that is finitely generated, unitary and such that the
image of the (m; @ a,,, K, )-equivariant map

Su + Hx = LX(M3)k, ® Ca,, —p,

Ao ?

SU2(U)(m) = F)»,l(m9 U’ v2)9

is precisely Hy, k, ® Cy,, —p,,- Similarly, we can construct an admissible, finitely
. 0 . .

generated, unitary representation (o2, Hy,) such that the image of the (m; ®ay,, K, )-

equivariant map

Sut Hk = LX(M3)k, ® Cplyy —pye Sos (@) (m) 1= Tpp(m, v, va),

is precisely Hy, x, ® Cm% —py,- Let (0, Hy) denote the direct sum of (o1, Hy,)
and (o2, Hy,). It is an admissible, finitely generated, unitary representation which
restricts to a unitary representation of K. Since Ala, = lq,,, by the same
computations as in Lemma 3.17 and Proposition 3.19 we obtain (m; @ a;,,, K})-
equivariant maps

sz :Hg — HU,K)L ®CA|%0 —P1y sz(v)(m) = Fk,l(m, v, 12),
and
Sv4 Hg — Hy k, @ CM%O—,O;LOv Sv4(v)(m) = Fu,m(m, v, V4),
factoring through the (m; @ a,,, K, )-equivariant quotient map
q . HK —> HK/nAOHK.
From Corollary 3.20, we obtain (g, K)-equivariant maps
T,,: Hx — Indp g (0, Mla,)s  Tuy(0)(K)(m) := Ty y(m, w(k)v, v2),
and
Tv4 : HK g IndP:vKA (O.a )\’|ak0)’ TU4(U)(k)(m) = Fu,m(m’ JT(k)U, 1)4).

By definition of the inner product on Ind (0, Alq,, ), we see that proving the sought
identity is equivalent to proving that

<TU2(7:[(X)UI)’ TU4(U3))Ind§(O'»}»|aA ) — _<Tv2 (Ul)a TU4(jT(X)v3))

Ind (0. A0, )"

By the (g, K)-equivariance of Ty,,, we have
(T, (Gt (X)v1), Ty, (v3)) =(Indp (0, Ao, - X) T, (01). T, (v3))

Indp; (0.1 lay ) Indp; (0.2, )

and, since Alq,  is totally imaginary, from Corollary 2.23 we deduce
(Ind; (0. Aoy, » )T @1): Ty 0301,
A 0
= _(Tvz (U]), IndfT)\(o” )\’|a10’ X)TU4 (v3)>lndpf(a Al N )
PR

The result follows from the (g, K)-equivariance of T,. U
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4. Asymptotic orthogonality

For a tempered, irreducible representation (;r, H) of G, for v, w € H, let

bv.w(g) = (m(gHv, w)

denote the associated matrix coefficient. By (2) of Theorem 1.2, there exists
d(m) € Z>¢ such that

o0 pd(T)

1
lim —/ (o0 (e)P dg < 00
G,

for all v, w € Hg.
As in [10, Section 4.1], by the polarisation identity and by (2) of Theorem 1.2,
the prescription

D(Ul’ v27 U37 v4) = 11m d( ) / ¢v1 U2(g)¢v3 'U4(g) dg

r—>00 r

is a well-defined form on Hg that is linear in the first and fourth variable and
conjugate-linear in the second and the third.

We explained in the Introduction that the crucial point is the proof of Proposition 1.5.
We begin with the following reduction.

Lemma 4.1. Let G be a connected, semisimple Lie group with finite centre and let
(r, H) be a tempered, irreducible representation of G. If for all X € g and for all
V1, U2, U3, V4 € Hg we have

/ ¢7T(X)U1 Uz(g)(pvx U4(g)dg - d( ) / ¢v1 vz(g)f,bn(X)vz U4(g)dga

r—>oo rd( )

then

lim —— / ¢U1 7 (X)vy (8)¢v3 vy (g) dg— hnolo rd( ) / ¢U1 vy (g)¢v3 Vg (g) dg

F—00 rd(ﬂ)
holds for every X € g and for every vy, v, v3, v4 € Hg.
Proof. We write
P17 (X002 (§)Pus 04 (8) = (v1, (g™ N (X)v2) w3, (g~ )va)
and since (-, - ) is Hermitian we have
(1, (8™ (X)v2) (v3, (g1 v4) = Pug,3 (8™ b (w2, (871

Now, since G -, is invariant under ¢((g) = g_l and G is unimodular, we have

/G ¢v4,v3(g_l)¢fr(X)v2,v1(gil)dg = /G ¢v4,v3(g)¢7'r(X)vz,v1(g) dg
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and therefore
/ ¢v1,fr(X)v2(g)¢v3,v4(g) dg = f ¢v4,v3 (g)qbn(X).vz,ul(g) dg-
G<r G<r

Applying complex conjugation, we obtain

/(; ¢v1,7'r(X)v2(g)¢v3,v4(g) dg = '/(; ¢ﬁ(X)v2,v1(g)¢v4,v3 (g) dg-

Assuming the validity of the first identity in the statement, we can write

Jim / B (Xpun,v1 (&) Pus,us (8) dg = — e >/ Puy.v ()P (X)vs.05(8) d8-
Now, since
¢ﬁ(X)v2,v1 (g)¢v4,v3 (g) dg = / ¢v1,7'r(X)v2 (g)¢v3,v4 (g) dg,
G<r G<r

it follows that

lim / ¢v1 7 (X)vp (g)¢v3 v4(g) dg - hm / ¢v2 V1 (g)¢n(X)v4 v3 (g) dg

r>o0 A7)

Observing that

<r

L ¢v2,v1(g)¢fr(X)v4,v3(g) dg = f ¢7"{(X)v4,v3(g)¢v2,v1(g) dg

and that, using the invariance of G, under ((g) = g~' and the unimodularity of G,
¢7:[ (X)v4,v3 (g)¢v2,v1 (g) dg = ¢v1 ,U2 (g)¢vg,ﬁ(X)v4 (g) dg7
G<r G<r

we ﬁnally obtain

lim —— / ¢v1 ﬂ(X)vz(g)¢v3 v4(g) dg = - d( ) / ¢v1 v (g)¢v3 7 (X)vg (g) dg

r—o00 rd(”)
This completes the proof. ]

Proposition 4.2. Let G be a connected, semisimple Lie group with finite centre and
let (r, H) be a tempered, irreducible representation of G. Then, for all X € g and
for all vy, vy, v3, v4 € Hg, we have

lim —— / ‘Pn(X)vl vz(g)¢v3 v4(g) dg =— d(n) / ¢v1 A (g)¢n(X)v3 V4 €9 dg

r—00 rd(n’)

Remark 4.3. Some of the integral manipulations in the proof require careful justifi-
cation. We decided to provide this in Lemma 4.5 after the proof of Proposition 4.2.
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Proof. The integral formula for the Cartan decomposition, taking into account
the fact that, except for a set of measure zero, every g € G, can be written as
g =koexp H ki, for some k1, k, € K and some H € a’, with air as in (3.7), gives

<r’

¢J"[(X)U1 U2 (g)¢v3,v4 (g) dg
G,

/ / / D5 Xy, (k2 €xp H k1) Py, v, (ko exp H k)2 (H) dky d H dk,,
Cl<}’

with Q(H) defined in (3.8).

Arguing as in [10, p. 258], we can interchange the two innermost integrals in the
right-hand side and, upon multiplying both sides by 1/7¢™ and taking the limit
as r — 00, the right-hand side can be computed as the integral over K x K of

lim / Pr (x)v1.v, (k2 €Xp H k1) pus vy (ko exp H k1)SQ2(H) d H.

r—00 rd(ﬂ')

We expand ¢, v, and ¢y, ., as

3 i 3 kv, k!

Burnhaexp Hk) =e @037 (oo 05 gm0
[AlleC/~ W, 1elr,1]

and

Gvs, v, (ko exp H ky)

_ kv, (ky !
—e pp(H) Z a(HMO)mMOelLl"“O(H“O) Z \IJZ’(,W?UI 7 (ky )UZ(H).

[u,mleC/~ (W ,m")€e[pu,m]

By [10, Lemma A.5 and Claim A.6], the only nonzero contributions to

“4.4) lim / @ (X)v v, (ko exp H k1) Py, v, (kpexp H k1) Q2(H) dH

r—00 rd(”)

may come from those [X, /] € C/~ and those [u, m] € C/~ for which

L=l Mo, =ple,. d@) =L+ 0+m).

i€l
In view of the first condition, the third is equivalent to requiring that
d(m)=dp(h,l) =dp(n,m),

where dp (A, ) and dp (i, m) are defined by (1.7).
By the discussion in Section 3 and by Proposition 3.12,

lim / G (X)v1,v, (k2 €Xp H k1)pys,0, (k2 exp H k1)S2(H) dH

r—00 rd(ﬂ)
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is equal to a finite sum of terms of the form

C(h 1, m) / Tai(exp Hy (k) (X)vr, 7 (ky )va)
%

Tyum(exp Hy, m(ki)vs, w(ky Yva) 2 (H) d Hy,

with C(A, [, m) as in (3.10), the functions I'; ; and I';, ,, defined as in (3.6) and
Q; (H,) defined as in (3.9).
Taking into account the integration over K x K, we proved that

. 1
rll{go rd(n')

/ /+ / G (X)yv,v2 (k2 Xp H k1) oy v, (ka exp H k1)$2(H) dki d H dk
KJal,JK
is equal to a finite sum of terms of the form

COh1,m) / / f D 1(exp H, 7 (k)% (X)vr, (g ua)
kKJK Jaf

-Tym(exp Hy, w(k1)vs, w(ky ) va) 2. (Hy) d Hy, dky dks.

By (1) of Lemma 4.5 and applying the Fubini—Tonelli theorem, we can interchange
the two innermost integral and we therefore need to prove that

/ / / Ty (exp Hi, (k1) (X)vy, w(k; va)
kJaf JK

Ty m(exp Hy, w(ky)vs, 70 (ky )va) 2. (Hy) dky d Hy, dka
is equal to

—// fm(epoA,n(kl)vl,n(k;‘m)
KJaf JK

Ty m(exp Hy, (k) (X)vs, n(k;l)m)QA(H,\) dky dH, dk;.

Set

Z(exp Hk,lq,k;l)

= Do(expy, (k)7 (X)v1, w(ky Yo2)Tyum (€xp Hi, 7w (k)vs, 7 (k3 ' va).
We apply the quotient integral formula [3, Theorem 2.51], to write the integral
f / f Z(exp Hy, ki, ky )Q(H;) dky dHy, dk,
KJaf JK

as

f / / / T(exp Hy, &1k1, k5 Y (Hy) &1 diy dH, dko
kJaf JK\KJK;,
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and again to write it as

[ [ et en. e e m) d di dm, ds, i
K/K,JKJaf VKK JK;

By (3) of Lemma 4.5, we can appeal to the Fubini—Tonelli theorem to interchange
the two innermost integrals and to obtain

/ / f / f T(exp Hy., 1k1. & 15 )R (Hy) dio d&) dH, d&, dio.
K/KyJ K Jaf JK; J K\K

Now, combining the fact that M ;eg =K, A;K 2 the relevant integral formula and the
fact that the complement of M™2 has measure zero in M, it follows that the integral

/ / f f T(exp Hy, &rk1, & 'k DU (Hy) dky d&) d Hy, d&,
K. Jaf JK, JK\K

is equal to

[ [ Pstm i v )T ey ) e .

M JK\K

For k; € K, we define

(k) = (T (m, 70 )t (X)vr, 70 (kg v2), Ty (mi 70 (k)3 7w Gk Dva)) -

The function f is invariant under left-multiplication by K. Indeed, if & € K, then
Coi(my, w (k)T (X)vr, w(k2)v2) = T i(my &, (ki) (X) vy, w(ka)v2)

and similarly for the I, ,,-term. Since the right-regular representation of M, is
unitary, we have

(Do (ms, 7 ket (X)wr, 70 (ky D02), T (i, 7w (k) vs, 7w (ky D)) oy s = £ KD

An application of the quotient integral formula [3, Theorem 2.51] gives

/ ko) iy = / / Fek)dedi =volky) [ fik i,
K K)\K JK

K\K

By (2) in Lemma 4.5 and appealing again to the Fubini—Tonelli theorem, we
interchange the integrals over M, and K;\K to obtain that

/ / / Ty (ma, 7 (kp)7t (X )y, (ks Hva)
K/K;, J M, JK\K

Ty (i, 7w (ky)vs, 7w (ky Yvg) d&; dmy dé

equals
1

vol(Ky) Jk/k,

/ f(ky) dky dea,
K
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which, in turn, equals

1
vol(K,)

| [ i om.m e,
K/K;, JK
Fyum (mi, (k) vs, 7w (ky D)) oy, dky do.

For fixed k> € K, set wy :=m (k, 1)vz and wy :=m(k; l)v4. We reduced the problem
to proving that

/(Fx,l(mx, 7 (k)7 (X1, w2), Ty (i, 70 (k1) V3, wa)) 1y Ak
K
equals
—/(Fx,z(mx, m(k)vr, wa), Uy (m, 7w (k)7 (X)vs, w4)>Lz(MA) dk.
K

The result is therefore a consequence of Proposition 3.21. ([

Lemma 4.5. Let vy, wy, v3, wg € Hy. Let [A, ], [, m] € C/~ be such that I, =1,,,
Moy, = Moy, and d(z) = |I;] + > icr, Ui +m;). Then the following holds:

(1)/ Tws(exp Hy, (ki)vr, wo) Uy m (exp Hy, 7 (k1)v3, wa) | d Hy. dky < oo,
K Jay

(2) / D50 (ms, w k)1, wo)Tpm (my, (k) v3, wa) | dmy dk < oo.
K\K Jm,

(3) For any fixed H) € a;, we have

/ T3 (exp Hy, w(Ek)vi, wo) Ty (exp Hy, w(Ek)v3, wa)| dE dk < oc.
K\K JK;

Proof. To prove (1), we begin by observing that, for a fixed element £ of K,
the functions Iy ;(exp H,, w(k)vy, v2) and '), (exp Hy, m(k)v3, v4) are square-
integrable on af by Proposition 3.13. Therefore, we have

/ I s(exp Hy. w(kyvr. w2) T (exp Hy wRvs, wi)| dmy < 0.
ay

Hence, we can define the function

h:K — R, h(k):/JFA,I(eXPHA,”(k)vlyWZ)F;L,m(eXpHAJT(k)U’J"w4)|dH}u
a

and the result will follow if we establish the continuity of z. The K-finiteness of v,
and v3 implies the existence of finitely many K -finite vectors vf”, ey vfp ) and
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finitely many K -finite vectors v{", ..., v\’ such that

p q
rkyvy =Y ik’ and w3 =Y bik)vy’
i=1 j=1
for continuous complex-valued functions a; and b;. Let kg € K. Then
| (k) — h(ko)l

is majorised by the integral over a;{ of

||Tx.i(exp Hy, 7w (k)vi, wo) Ty m(exp Hy., 7 (k)v3, wy)|

— | i(exp Hy., 7 (ko)vi, w2) Ty (exp Hy., 7 (ko)v, wa)||.

By reverse triangle inequality, the integrand is majorised by

|FA,Z(eXpAv n(k)vl ’ w2)Fu,m (exp H}u n(k)v3v w4)

— Iy i(exp Hy, w(ko)vy, wa)Iy m(exp Hy, w(ko)vs, wa)

’

which, in turn, is less than or equal to

P q
Y > " lai(k)b; (k) —ai (ko)b; (ko) | T (exp Hi, vy, w)T i m(exp Hy, v5, wy).
i=1 j=I

We obtained
p

q
h(k) — hko)| <YY" lai(k)b, (k) — a; (ko)b; (ko)

i=1 j=1

: / Tas(exp Hy v, w) Uy (exp Hi, vy wa)| d Hy,
s

and the continuity follows from the continuity of the a;’s and b;’s.

For (2), we first observe that for fixed k € K, the functions Iy ;(m;, 7w (k)vi, wy)
and I', ,, (my, 7 (k)vs3, wy) are square-integrable on M, by Proposition 3.13. There-
fore, we have

/ Do (ms, T (v, wo) Ty (my, 7w (k) v3, wa)| dm;, < oo.
M,

Hence, we can define the function

h:K —Reo,  h(k)= [ |Crilmy, wkyvi, wa)Tpm(ma, w(k)vs, wa) | dm.
M,

Arguing as for (1), we obtain that 4 is continuous.



ON KAZHDAN-YOM DIN ASYMPTOTIC ORTHOGONALITY 69

By the right-invariance of the Haar measure on M, and since

Lo i(my, wEk)vy, wo) =Ty 1 (myé, w(k)vy, wa)

for every & € K, (and similarly for the I';, ,,-term), the function 4 is invariant
under multiplication on the left by elements in K, and it therefore descends to a
continuous function on K;\K, concluding the proof of (2).

For (3), given a fixed H, € af the function

K, —C, & T, (expH,, k)i, wr),

is continuous. Indeed, let & € K,. Since w(k)v; is K-finite, it is in particular
K, -finite. Hence, there exist finitely many K -finite vectors vil), e, vir) such that

-
r@Erkw =Y i),
i=1
where each c; is a complex-valued continuous function on K. Therefore,

|Ts.i(exp Hy, (k) v, wa) — Iy (exp Hy, 7 (Eok) vy, wo)|

is bounded by
> "lei(®) = ci(Go)l T (exp Hy, vy, w))|

i=1
and the claim follows from the continuity of the ¢;’s.
The same argument shows that, for fixed H) € a;f, the function

K}\. — Cv E = FM,m(eXp H)u T[(S)US, w4)7

is continuous and it follows that

/ IDs(exp Hy. 7 (€K)v1. w2) T (exp By, ()03, w3)| dE < 0.
K;

Hence, we can define the function

S K—Rxo, f(k)=/ |T;.1(exp Hy, w(§k)v1, w2) Ty (exp Hy, w(Ek)v3, wa) | dE
K;.

and argue as in the proof of (2). ([

We now complete the strategy outlined in the Introduction. For fixed v,, v4 € Hg,
we define
sz,v4 = D( 5 U2, 0, U4),

which is linear in the first variable and conjugate linear in the second. For fixed
v1, v3 € Hg, we define
BUl,U} = D(vlv T v37 : )1

which is conjugate-linear in the first variable and linear in the second.
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Theorem 4.6. Let G be a connected, semisimple Lie group with finite centre. Let
(r, H) be a tempered, irreducible representation of G. Then there exists f () € R=g
such that, for all vi, v, v3, v4 € Hg, we have

1
S
Proof. Fix vy, v4 € Hg. By Proposition 4.2, we can apply Corollary 2.13 to the
form A,, .,. Hence there exists ¢y, ,, € C such that for all vi, v3 € Hx we have

(v1, v3)(V2, v4).
r—0Q0

o __
tim s [ Gr(@yun. va) rgun, wrl dg =
G,

sz,v4(vl9 U3) - CUz,U4<vlv U3>~

Similarly, fixing vy, v3 € Hg, by Proposition 4.2 and Lemma 4.1 there exists a
dy, v; € C such that
BU},U] (v47 U2) = dv] ,U3 <v49 U2>,

since the left-hand side is conjugate-linear in the first variable. Hence, since

BU3,v1(v4a 0) = Bvl,v3 (v2, v4),
we obtain
By, vy (V2, V4) = dy, 5 (V2, V4).

By definition, we have
D(vy, v2, v3, v4) = Ay, 1, (V1, V3) = By 03 (V2, V4),

so, for a vector vg € Hg of norm 1, using (2) of Theorem 1.2, we obtain a real
number C (vg, vg) > 0 such that

D(vo, vo, vo, vo) = C(vo, Vo) = Cyy,uy = Ay, vy
Computing D(vy, vg, v3, vg), we have

dUlaUS = Cyg,v (U1, V3).
Therefore, we obtained

D(vla U2, v3a v4) = CUO,U() (vla v3><v2’ U4>,

showing that f () := m does not depend on the choice of vy, as required. [
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