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Recently, D. Kazhdan and A. Yom Din conjectured the validity of an asymp-
totic form of Schur orthogonality for tempered, irreducible, unitary rep-
resentations of semisimple groups defined over local fields. In the non-
Archimedean case, they established it for K -finite matrix coefficients. In this
article we prove the analogous result in the Archimedean case.
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1. Introduction

Let G be a semisimple group over a local field and let K be a maximal compact
subgroup of G. We fix a Haar measure on G, denoted by dg. If H is the Hilbert
space underlying a unitary representation of G, let HK denote the space of K -finite
vectors and H∞ the space of smooth vectors.

Recently, D. Kazhdan and A. Yom Din [10] conjectured the validity of an
asymptotic version of Schur orthogonality relations. It should hold for matrix
coefficients of tempered, irreducible, unitary representations of G, generalising
well-known Schur orthogonality relations for discrete series.
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Following [10], we fix a norm on the Lie algebra g of G. By [10, Claim 5.2],
we can choose it so that Ad K acts unitarily on g. We define the function

r : G → R≥0, r(g)= log max
{
∥Ad(g)∥op, ∥Ad(g−1)∥op

}
so that, given r ∈ R>0, we can introduce the corresponding ball

G<r := {g ∈ G | r(g) < r}.

Given this setup, we can state their conjecture.

Conjecture 1.1 (Kazhdan–Yom Din, asymptotic Schur orthogonality relations).
Let G be a semisimple group over a local field F and let (π, H) be a tempered,
irreducible, unitary representation of G. Then there are d(π)∈ Z≥0 and f (π)∈ R>0

such that, for all v1, v2, v3, v4 ∈ H ,

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

Assuming that the matrix coefficients involved are K -finite, one has the following:

Theorem 1.2 [10, Theorem 1.7]. Let G be a semisimple group defined over a local
field F and let K be a maximal compact subgroup of G. Let (π, H) be a tempered,
irreducible, unitary representation of G and let HK denote the space of K -finite
vectors in H. Then there exists d(π) ∈ Z≥0 such that:

(1) If F is non-Archimedean, there is f (π)∈R>0 such that, for all v1, v2, v3, v4∈HK ,

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

(2) If F is Archimedean, for any given nonzero v1, v2 ∈ HK , there is C(v1, v2) > 0
such that

lim
r→∞

1
r d(π)

∫
G<r

|⟨π(g)v1, v2⟩|
2 dg = C(v1, v2).

In the non-Archimedean case, the proof of (1) is achieved by first establishing
the validity of the analogous version of (2). The polarisation identity allows the
authors of [10] to define a form

D( · , · , · , · ) : HK × HK × HK × HK → C

via the prescription

D(v1, v2, v3, v4) := lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg.

In [10, Section 4.1], this form is shown to be G-invariant and one would like to
invoke an appropriate form of the Schur lemma to argue as in the standard proof of
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Schur orthogonality relations. That is, for fixed v2, v4 ∈ HK , one defines the form

D( · , v2, · , v4) : HK × HK → C,

and, for fixed v1, v3 ∈ HK , the form

D(v1, · , v3, · ) : HK × HK → C.

One applies the Schur lemma to these forms, which implies that each such form is
a scalar multiple of the inner product on H . Upon comparing them, one obtains the
desired orthogonality relations.

In the non-Archimedean case, it seems to us that the representations considered
in [10] are implicitly assumed to be smooth [16, Définition III.1.1], otherwise it is
not clear how the theory of asymptotic expansion can be applied.

The appropriate version of the Schur lemma in this case is a consequence of
Dixmier’s lemma [18, Lemma 0.5.2], which can be applied since in the non-
Archimedean setting the subspace of K -finite vectors HK and the subspace of
smooth vectors H∞ coincide: the latter is irreducible since H itself is irreducible.
The required countability of the dimension of HK follows from the admissibility
[16, Théorème VI.2.2] of the irreducible smooth unitary representation (π, H) and
by invoking [18, Lemma 0.5.2] in the proof of [16, III.1.9].

The purpose of this article is to prove that the analogue of (1) in Theorem 1.2
holds in the Archimedean case. As explained in [10, Section 4.2], it suffices to
prove the result for real semisimple groups (Theorem 4.6).

Theorem 1.3. Let (π, H) be a tempered, irreducible, unitary representation of a
connected, semisimple Lie group G with finite centre. Let K be a maximal compact
subgroup of G. Then there exists f (π) ∈ R>0 such that, for all v1, v2, v3, v4 ∈ HK ,

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

Remark 1.4. It is well known that an irreducible, tempered representation as in
Theorem 1.3 is unitarisable. We have chosen the somewhat redundant formulation
above to emphasise that the unitarity of the representation plays a crucial role in
the following. From now on, if (π, H) is a tempered, irreducible representation we
will implicitly assume that π acts unitarily with respect to the inner product on H .

We need to modify the strategy above to account for the fact that the space of
K -finite vectors of a unitary representation (π, H) of a real semisimple group does
not afford a representation of G. It is, however, an admissible (g, K )-module.

Our approach relies crucially on the admissibility of irreducible, unitary represen-
tations of reductive Lie groups, a foundational theorem proved by Harish-Chandra.
The theory of admissible (g, K )-modules then provides us with the appropriate
version of the Schur lemma for (g, K )-invariant forms (Definition 2.11).
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Hence, we are reduced to verifying that D( · , v2, · , v4) and D(v1, · , v3, · )

are, indeed, (g, K )-invariant. Having established this, to conclude the proof of
Theorem 1.3, we can argue as in [10, Section 4].

From now on, to make the notation look more compact, given a unitary repre-
sentation (π, H) of G and vectors v,w ∈ H , we set

φv,w(g) := ⟨π(g)v,w⟩.

For connected, semisimple Lie groups with finite centre, K -invariance is a conse-
quence of g-invariance (Proposition 2.14). Therefore, the problem is establishing
the g-invariance. Explicitly, we prove the following (Proposition 4.2).

Proposition 1.5. Let G be a connected, semisimple Lie group with finite centre and
let (π, H) be a tempered, irreducible, unitary representation of G. Then, for all
X ∈ g, and for all v1, v2, v3, v4 ∈ HK , we have

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φπ̇(X)v3,v4(g)dg

and

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,π̇(X)v4(g)dg.

The key observation is that, by exploiting the theory of asymptotic expansions
of matrix coefficients of tempered representations both with respect to a minimal
parabolic subgroup P = MAN and with respect to the standard (for P) parabolic
subgroups of G, the expression

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g) dg

reduces, roughly, to a sum of finitely many terms of the form∫
K

〈
0λ,l(mλ, π(k)π̇(X)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk.

Here, Mλ comes from a standard parabolic subgroup Pλ = MλAλ0 Nλ0 of G. We
denote by mλ, aλ0 , nλ0 the Lie algebras of Mλ, Aλ0 , Nλ0 , respectively. The pairs
(λ, l) and (µ,m) will be introduced precisely in Theorem 3.3; we can think of λ,µ
as n-tuples of complex numbers and of l,m as n-tuples of integers. The functions
0λ,l , 0µ,m are defined in (3.6). As functions of mλ, they are analytic and square-
integrable and they arise from the asymptotic expansion of the matrix coefficients
φπ̇(X)v1,v2 and φv3,v4 , respectively, relative to Pλ (see Theorem 3.3). The subscript
in Pλ is meant to indicate that the parabolic subgroup is obtained, in an appropriate
sense, from the datum of λ. Moreover, (λ, l) and (µ,m) are related in a precise way
(see the discussion after Theorem 3.1 and the proof of Proposition 4.2 after (4.4)).
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We shall elaborate on these points later on. For the moment, let us point out that
we reduced the initial problem to showing that, for every X ∈ g, and for all relevant
pairs (λ, l) and (µ,m), the integral∫

K

〈
0λ,l(mλ, π(k)π̇(X)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk

equals

−

∫
K

〈
0λ,l(mλ, π(k)v1, w2), 0µ,m(mλ, π(k)π̇(X)v3, w4)

〉
L2(Mλ)

dk.

We will prove that, if (λ, l) and (µ,m) satisfy a certain condition (to be explained
below), the functions 0λ,l( · , v1, w2) and 0µ,m( · , v3, w4) are, in fact, Z(gC)-finite,
with Z(gC) denoting the centre of the universal enveloping algebra of the com-
plexification gC of g, and K ∩ Mλ-finite. It will then follow from a theorem of
Harish-Chandra (Theorem 2.17) that they are smooth vectors in the right-regular
representation (R, L2(Mλ)) of Mλ.

The idea is to combine this observation with an appropriate form of the Frobenius
reciprocity (Theorem 2.27), due to Casselman, to construct (g, K )-invariant maps

Tw2 : HK → IndPλ,Kλ
(Hσ , λ|aλ0

), Tw2(v)(k)(mλ) := 0λ,l(mλ, π(k)v,w2)

and

Tw2 : HK → IndPλ,Kλ
(Hσ , λ|aλ0

), Tw4(v
′)(k)(mλ) := 0λ,l(mλ, π(k)v′, w4).

Here, the subgroup Pλ is the parabolic subgroup opposite to Pλ. The notation
IndPλ,K (Hσ , λ|aλ0

) stands for the space of K -finite vectors in the representation
induced from the (mλ ⊕ aλ0, K ∩ Mλ)-module

Hσ ⊗ Cλ|aλ0
−ρλ0

,

where (σ, Hσ ) is an appropriately chosen admissible, unitary, subrepresentation
of (R, L2(Mλ)).

To apply the required form of the Frobenius reciprocity, we need to show that
the maps

Sw2 : HK → Hσ ⊗ Cλ|aλ0
−ρλ0

, Sw2(v)(mλ) := 0λ,l(mλ, v, w2),

and

Sw2 : HK → Hσ ⊗ Cλ|aλ0
−ρλ0

, Sw4(v
′)(mλ) := 0λ,l(mλ, v

′, w4),

descend to (mλ⊕aλ0, Kλ)-equivariant maps on HK /nλ0 HK . Establishing this result
is the technical heart of the article.
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Assuming it, the integral∫
K

〈
0λ,l(mλ, π(k)π̇(X)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk

is nothing but〈
˙IndPλ(σ, λ|aλ0

)(X)0λ,l(mλ, v1, w2), 0µ,m(mλ, v3, w4)
〉
IndPλ

(σ,λ|aλ0
)
,

where
⟨ · , · ⟩IndPλ

(σ,λ|aλ0
)

is the inner product on IndPλ(σ, λ|aλ0
). We will see that this makes sense since

the inducing data ensure unitarity. The sought equality will then follow from the
skew-invariance of the inner product on a unitary representation with respect to the
action of the Lie algebra.

To explain how the functions 0λ,l( · , v1, v2) and 0µ,m( · , v3, v4) arise, we need to
recall the main features of the asymptotic expansions of K -finite matrix coefficients
of tempered representations. If φv,w is such a matrix coefficient, then its restriction
to a certain region of the subgroup A of a minimal parabolic subgroup P = MAN
of G admits an asymptotic expansion which can be thought of as a sum indexed by
a countable collection

3 := {(λ, l)}λ∈E, l∈Zn
≥0:|l|≤l0 .

The set E is a collection of complex-valued real-linear functionals on Lie(A) depend-
ing on (π, H) and not on the particular choice of v,w∈ HK . It is the set of exponents
of (π, H). The number n is the rank of G and l0, too, depends on (π, H) only.

The term indexed by (λ, l) is multiplied by a complex coefficient cλ,l(v,w). The
choice of v,w ∈ HK determines the pairs in C for which cλ,l(v,w) ̸= 0. If λ ∈ E ,
there exists at least a pair of v,w ∈ HK such that, for some l ∈ Zn

≥0 with |l| ≤ l0,
we have cλ,l(v,w) ̸= 0.

For any standard (for P) parabolic subgroup P ′
= M ′ A′N ′ of G, the restriction of

the matrix coefficient φv,w to an appropriate region of A′ admits a similar asymptotic
expansion. It can be thought of as a sum indexed by a countable collection

3′
:= {(ν, q)}ν∈E ′, q∈Zr

≥0:|q|≤q0 .

Here, r ≤ n is the dimension of A′, the set E ′ consists of complex-valued real-linear
functionals on Lie(A′). On regions on which both the expansion relative to P and
the expansion relative to P ′ are meaningful, by comparing the two it turns out
that the element in E ′ are precisely the restrictions to Lie(A′) of the elements in E
and, making the appropriate identifications following from A′

⊂ A, each q is the
projection to Zr

≥0 of an l appearing in the expansion relative to P .
While in the expansion relative to P the term indexed by (λ, l) is multiplied

by the complex coefficient cλ,l(v,w), the term indexed by (ν, q) in the expansion
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relative to P ′ is multiplied by a real-analytic function

(1.6) cP ′

ν,q( · , v, w) : M ′
→ C.

We require one more piece of information to explain how 0λ,l( · , v1, v2) and
0µ,m( · , v3, v4) arise: the construction of d(π) in [10]. The idea is as follows.
We can think of λ ∈ E as an n-tuple of complex numbers (λ1, . . . , λn). It can be
shown that there exist a finite subcollection E0 ⊂ E such that, for every λ ∈ E , there
exists λ̂ ∈ E0 such that

λ̂− λ ∈ Zn
≥0.

Moreover, any two distinct elements in E0 are integrally inequivalent: their difference
does not belong to Zn . By a result of Casselman (Theorem 3.2), for every λ̂ ∈ E0

and for every i ∈ {1, . . . , n}, we have

Re λ̂i ≤ 0,

and it is clear that this holds for every λ ∈ E .
For (λ, l) ∈3, we introduce the set Iλ := {i ∈ {1, . . . , n} | Re λi < 0}, we define

(1.7) dP(λ, l) := |I c
λ | +

∑
i∈I c

λ

2li ,

and we take the maximum, dP , as (λ, l) ranges over all the pairs with λ ∈ E0.
We can proceed analogously for every standard parabolic P ′ and obtain a non-

negative integer dP ′ . The maximum over all P ′ is d(π).
Now, given λ∈ E0, identifying Iλ with a subset of the simple roots determined by

an order on the root system attached to the pair (g, a), we can construct a standard
(for P) parabolic subgroup Pλ = MλAλ0 Nλ0 associated to Iλ. We will show that
if (λ, l) ∈3 satisfies λ ∈ E0 and dP(λ, l)= d(π), then 0λ,l( · , v1, v2) is precisely
the function cP ′

ν,q( · , v1, v2) with ν := λ|aλ0
, where aλ0 := Lie(Aλ0), and q equal to

the projection of l to Z
I c
λ

≥0.
Finally, we mentioned that in the integral∫

K

〈
0λ,l(mλ, π(k)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk

the pairs (λ, l) and (µ,m) must be related in a precise way. First of all, (µ,m) ∈3
satisfies µ∈E0 and dP(µ,m)= d(π). Also, we must have Iλ= Iµ (so that Pλ= Pµ)
and λ|aλ0

=µ|aλ0
. The last condition, together with the unitarity of the representation

(σ, Hσ ) introduced above, is precisely what ensures that IndPλ(σ, λ|aλ0
) is unitary.

Implementing the strategy sketched above requires gathering a number of inter-
mediate results. Several are inspired from the chapter in [11] on the Langlands classi-
fication of tempered representations. Here is a more detailed outline of the article.

Section 2: The first part includes a discussion of the (g, K )-module version of
the Schur lemma (Corollary 2.13). In the second part, we recall the result of
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Harish-Chandra establishing that smooth, Z(gC)-finite, K -finite, square-integrable
functions on reductive groups are smooth vectors in the right-regular representation
(Theorem 2.17). As a consequence, we prove that, on such a function, the action
of g through differentiation is the same as the action of the Lie algebra through
the right-regular representation (Proposition 2.20). After stating the basic facts on
parabolically induced representations that we need, we discuss Casselman’s version
of the Frobenius reciprocity (Theorem 2.27).

Section 3: In the first part, we recall the theory of asymptotic expansions of matrix
coefficients of tempered representations both with respect to a minimal parabolic
subgroup and with respect to standard parabolic subgroups. We then explain in detail
how the functions 0λ,l( · , v1, v2), 0µ,m( · , v3, v4) arise. We begin by introducing
an equivalence relation on the data indexing the asymptotic expansion relative
to P of the K -finite matrix coefficients of a tempered, irreducible, representa-
tion (π, H). This equivalence relation is motivated by the construction of d(π)
in [10] and it is meant to exploit the criteria for the computation of asymptotic
integrals in [10, Appendix A]. Imposing the conditions on (λ, l) and (µ,m) that
we discussed above, we identify the functions 0λ,l( · , v1, v2) and 0µ,m( · , v3, v4)

with the coefficient functions in the asymptotic expansion relative to Pλ of φv1,v2

and φv3,v4 (Proposition 3.12). We then prove that they are smooth vectors in
(R, L2(Mλ)) (Proposition 3.14). Combining Proposition 3.14 with the technical
Lemmas 3.15 and 3.16, we can construct unitary, admissible, finitely generated
representations (σ1, Hσ1) and (σ2, Hσ2) whose direct sum is the unitary, admissible,
finitely generated representation (σ, Hσ ) introduced above (Proposition 3.19).

Section 4: Having gathered the results we need, we are able to prove Proposition 1.5
(Proposition 4.2). This consists in an application of the considerations in [10,
Appendix A] to show that the integral

lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,v4(g) dg

can be computed in terms of a sum of integrals of the form∫
K

〈
0λ,l(mλ, π(k)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
dk

with the pairs (λ, l) and (µ,m) both belonging to 3 with λ,µ ∈ E0, Iλ = Iµ,
λ|aλ0

= µ|aλ0
and

dP(λ, l)= dP(µ,m)= d(π).

At this point, the representation-theoretic arguments explained in the Introduction
and proved in Section 3 conclude the proof of Proposition 1.5.

Finally, we proceed as explained in the first part of the Introduction to prove
Theorem 1.3 (Theorem 4.6).
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2. Recollections on representation theory

Our presentation of the theory of (g, K )-modules follows [18]. To discuss its basic
features, we need to gather some results on unitary representations of compact
groups. We begin by recalling the basic notions in the study of representations of
topological groups, which we always assume to be Hausdorff.

First, following [18, Section 1.1], let G denote a second-countable, locally
compact group, equipped with a left Haar measure dg, and let V denote a complex
topological vector space. We denote by GL(V ) the group of invertible continuous
endomorphisms of V . A representation of G on V is a strongly continuous ho-
momorphism π : G → GL(V ). Let (π, V ) denote the datum of a representation
of G. A subspace of V which is stable under the action of G through π is called an
invariant subspace. A representation (π, V ), with V ̸= 0, is said to be irreducible
if the only closed invariant subspaces are the trivial subspace and V itself.

If (H, ⟨ · , · ⟩) is a separable Hilbert space, a representation π of G on H is termed
a Hilbert representation. If, in addition, G acts by unitary operators through π , the
representation is said to be unitary.

Next, following [14, Section 10], we introduce the basic features of the theory
of vector-valued integration.

Let (X, dx) be a Radon measure space, let H be a Hilbert space and assume that

f : X → H

is measurable. The function f is integrable if it satisfies these two conditions:

(1) For all v ∈ H , ∫
X
|⟨ f (x), v⟩| dx <∞.

(2) The map

v 7→

∫
X
⟨ f (x), v⟩ dx

is a bounded conjugate-linear functional.

If f : X → H is integrable, then, by the Riesz representation theorem, there
exists a unique element in H , denoted by∫

X
f (x) dx,

such that, for all v ∈ H , we have〈 ∫
X

f (x) dx, v
〉
=

∫
X
⟨ f (x), v⟩ dx .
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Proposition 2.1. Let (X, dx) be as above. Let H , E be Hilbert spaces, f : X → H
a measurable function and T : H → E a bounded linear operator.

(1) If ∫
X
∥ f (x)∥ dx <∞,

then f : X → H is integrable.

(2) If f : X → H is integrable, then so is T f : X → E. Moreover,

T
( ∫

X
f (x) dx

)
=

∫
X

T f (x) dx .

Proof. See [14, Propositions 10.8 and 10.9]. □

Now, let (π, H) be a unitary representation of G. Let v ∈ H and f : G → H be
such that the map

g 7→ f (g)π(g)v

is integrable. Let π( f )v denote the unique element in H such that, for all w ∈ H ,

⟨π( f )v,w⟩ =

∫
G

f (g)⟨π(g)v,w⟩ dg.

Proposition 2.2. Let (π, H) be as above. If f ∈ L1(G), then, for all v ∈ H , the
map g 7→ f (g)π(g)v is integrable and the prescription

π( f ) : H → H, v 7→ π( f )v,

defines a bounded linear operator.

Proof. See [14, Proposition 10.20]. □

With the integral operators introduced in Proposition 2.2 at our disposal, we
have all the tools needed to state the main results on the unitary representations of
compact groups.

Let K be a compact group. Let K̂ denote the set of equivalence classes of
irreducible unitary representations of K . If (π, H) is a unitary representation, for
each [γ ] ∈ K̂ let H(γ ) denote the closure of the sum of all the closed invariant
subspaces of H in the equivalence class of γ . We refer to H(γ ) as the γ -isotypic
component of H . This notion is independent of the choice of representative for the
equivalence class.

Proposition 2.3. Let K be a compact group. Let (π, H) be an irreducible unitary
representation of K . Then H is finite-dimensional.

Proof. See [18, Proposition 1.4.2]. □
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Given Proposition 2.3, we can associate, to each irreducible representation γ
of K , the function

χγ : K → C, χγ (g) := tr γ (g),

the character of γ . A standard argument proves that equivalent representations
have the same character.

Recall that if {(πi , Hi ) | i ∈ I } is a countable family of unitary representations
of a topological group G, we can construct a new unitary representation of G, the
direct sum, on the Hilbert space completion of the algebraic direct sum of the Hi ’s.
We refer the reader to [18, Section 1.4.1], for the details of this construction. We let⊕

i∈I

Hi

denote the direct sum of the family {(πi , Hi ) | i ∈ I }, dropping explicit reference to
the πi ’s.

Proposition 2.4. Let K be a compact group. Let (π, H) be a unitary representation
of K . Then (π, H) is the direct sum representation of its K -isotypic components:

H =

⊕
[γ ]∈K̂

H(γ ).

Moreover, let αγ denote the function

αγ (k) := dim(γ )χγ (k).

Then
H(γ )= π(αγ )H.

Proof. See [18, Lemma 1.4.7]. □

Proposition 2.5. Let K be a compact group. If (π, H) is a Hilbert space repre-
sentation of K , then there exists an inner product on H that induces the original
topology on H and for which K acts unitarily through π .

Proof. See [18, Lemma 1.4.8]. □

We are finally ready to introduce (g, K )-modules.

Definition 2.6. Let G be a connected, semisimple Lie group with finite centre. Let
g denote its Lie algebra. Let K be a maximal compact subgroup of G, which we fix
from now on, with Lie algebra k. A vector space V , equipped with the structure of
g-module and K -module, is called a (g, K )-module if the following conditions hold:

(1) For all v ∈ V , for all X ∈ g, for all k ∈ K ,

k Xv = Ad(k)Xkv.
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(2) For all v ∈ V , the span of the set

Kv := {kv | k ∈ K }

is a finite-dimensional subspace of V , on which the action of K is continuous.

(3) For all v ∈ V , for all Y ∈ k,

d
dt

exp(tY )v|t=0 = Yv.

We remark that (3) implicitly uses the smoothness of the action of K on the span
of Kv. This follows from the fact that a continuous group homomorphism between
Lie groups is automatically smooth.

Let V and W be (g, K )-modules and let Homg,K (V,W ) denote the space of
g-morphisms that are also K -equivariant. Then V and W are said to be equivalent
if Homg,K (V,W ) contains an invertible element.

A (g, K )-module V is called irreducible if the only subspaces that are invariant
under the actions of g and K are the trivial subspace and V itself. In this case, we
have the following theorem:

Theorem 2.7. Let V be an irreducible (g, K )-module. Then Homg,K (V, V ) is
1-dimensional.

Proof. This is the result actually proved in [18, Lemma 3.3.2], although the statement
there says Homg,K (V,W ), for an unspecified W . We believe it is a typo. □

Let V be a (g, K )-module. Since, given each v ∈ V , the span of Kv, say Wv , is
a finite-dimensional continuous representation of K , we can use Proposition 2.5
and then apply Proposition 2.4, thus decomposing Wv into a finite sum of finite-
dimensional K -invariant subspaces of V . For γ ∈ K̂ , we let V (γ ) denote the sum
of all the K -invariant finite-dimensional subspaces in the equivalence class of γ .
Then the discussion above implies that

V =
⊕
γ∈K̂

V (γ )

as a K -module, with the direct sum indicating the algebraic direct sum. A (g, K )-
module V is called admissible if, for all γ ∈ K̂ , V (γ ) is finite-dimensional.

Given a unitary representation (π, H), there exists a (g, K )-module naturally
associated to it. To define it, recall that a vector v ∈ H is called smooth if the map

g 7→ π(g)v

is smooth. Let H∞ denote the subspace of smooth vectors of H . It is a standard
fact that the prescription

π̇(X) :=
d
dt
π(exp(t X))v|t=0,
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for v ∈ H∞ and X ∈ g, defines an action of g on H∞. Recall that a vector v ∈ H
is K -finite if the span of the set

π(K )v := {π(k)v | k ∈ K }

is finite-dimensional. Let HK denote the subspace of K -finite vectors of H . By [18,
Lemma 3.3.5], with the action of g so defined and with the action of K through π ,
the space HK ∩ H∞ is a (g, K )-module. The representation (π, H) is said to be
admissible if HK ∩ H∞ is admissible as a (g, K )-module and (π, H) is called
infinitesimally irreducible if HK ∩ H∞ is irreducible as a (g, K )-module. It is in
general not true that a K -finite vector is smooth. However, if (π, H) is admissible,
we have the following result:

Theorem 2.8. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an admissible representation of G. Then every K -finite vector is smooth.

Proof. See the proof [18, Theorem 3.4.10]. □

In light of the following fundamental result of Harish-Chandra, Theorem 2.8
will play an important role in this article.

Theorem 2.9. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an irreducible, Hilbert representation of G. Then (π, H) is admissible.

Proof. See [13, Theorem 7.204]. □

In the following, given a unitary representation (π, H), we will write HK for the
(g, K )-module HK ∩ H∞ even if (π, H) is not admissible. We believe it will not
cause any confusion.

We are now in position to prove the version of the Schur lemma for sesquilinear
forms that we will use in Section 3. It is given as Corollary 2.13. First, we need:

Theorem 2.10. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an admissible Hilbert representation of G. Then (π, H) is irreducible if
and only if it is infinitesimally irreducible.

Proof. See [18, Theorem 3.4.11]. □

Definition 2.11. Let V and W be (g, K )-modules. A sesquilinear form

B( · , · ) : V × W → C

is (g, K )-invariant if it satisfies the following two conditions:

(i) For all k1, k2 ∈ K and all v,w ∈ V we have

B(k1v, k2w)= B(v,w).

(ii) For all X ∈ g and all v,w ∈ V we have

B(Xv,w)= −B(v, Xw).
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Theorem 2.12. Let G be a connected, semisimple Lie group with finite centre. Let
V be an admissible (g, K )-module. Suppose that there exist a (g, K )-module W
and a nondegenerate (g, K )-invariant sesquilinear form

B( · , · ) : V × W → C.

Then W is (g, K )-isomorphic to V .

Proof. This is [18, Lemma 4.5.1], except for the fact that our form is sesquilinear.
To account for it, we modify the definition of the map T in the reference by setting,
for a given w ∈ W , T (w)(v)= B(w, v) for all v ∈ V . This defines a map from W
to V obtained by sending w to T (w) which, by the argument in the reference, is a
(g, K )-isomorphism. □

The next corollary is proved by adapting to our case the argument in [4, Proposi-
tion 8.5.12] and using the beginning of the proof of [11, Proposition 9.1].

Corollary 2.13. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an irreducible, Hilbert representation of G. Then, up to a constant, there
exists at most one nonzero (g, K )-invariant sesquilinear form on HK . In particular,
if (π, H) is irreducible unitary, then every such form is a constant multiple of ⟨ · , · ⟩.

Proof. The irreducibility of (π, H) implies that of HK , by Theorems 2.10 and 2.8.
Let B( · , · ) be a (g, K )-invariant sesquilinear form. Consider the linear subspace V0

of HK defined as

V0 := {v ∈ HK | B(v,w)= 0 for all w ∈ HK }.

Since B( · , · ) is nonzero, V0 is a proper subspace of HK . Since B( · , · ) is more-
over (g, K )-invariant, it follows that V0 is a (g, K )-invariant subspace of HK , and
hence, by the irreducibility of HK , it must be zero. Analogous considerations for
the subspace

V 0
:= {w ∈ HK | B(v,w)= 0 for all v ∈ HK }

imply that B( · , · ) is nondegenerate. By Theorem 2.12, the map v 7→ T (v),
T (v)( · ) := B(v, · ), is a (g, K )-isomorphism. Since HK is irreducible, the space
Homg,K (HK , HK ) is 1-dimensional by Theorem 2.7. Now, let B ′( · , · ) be another
such form, with associated isomorphism T ′. Then T (T ′)−1

=cI , for some c∈C. For
the last statement, the unitarity of (π, H) implies that ⟨ · , · ⟩ is a (g, K )-invariant
nondegenerate sesquilinear form and Theorem 2.9, with the discussion above,
implies the result. □

Since we are assuming that G is connected, proving (g, K )-invariance reduces
to proving g-invariance. Indeed, by [9, Theorem 2.2, p. 256], any maximal compact
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subgroup K of G is connected. Therefore, by [12, Corollary 4.48], the exponen-
tial map

exp : k → K
is surjective.

Proposition 2.14. Let G be a connected, semisimple Lie group with finite centre.
Let V be a (g, K )-module, let

B( · , · ) : V × V → C

be a g-invariant sesquilinear form. Then B( · , · ) is K -invariant.

Proof. Given any pair of vectors v,w∈ V , we can find a finite-dimensional subspace
of V , say W , which contains both and on which K acts continuously through a
representation π . The restriction of the bilinear form B( · , · ) to W is continuous.
To prove that B(π(k)v, π(k)w) = B(v,w) for all k ∈ K , it suffices to prove that
B(π(k)v,w)= B(v, π(k−1)w) for all k ∈ K . Given k ∈ K , let X ∈ k be such that
k = exp X . We begin by writing

B(π(k)v,w)= B(π(exp X)v,w).

Since π(exp X)= exp π̇(X)v, we obtain

B(π(exp X)v,w)= B(exp π̇(X)v,w).

The continuity of B( · , · ) on V gives

B(exp π̇(X)v,w)= exp B(π̇(X)v,w).

By the g-invariance of B( · , · ), we have

exp B(π̇(X)v,w)= exp B(v, π̇(−X)w)

and, finally,
exp B(v, π̇(−X)w)= B(v, π(exp(−X))w).

This is precisely
B(π(k)v,w)= B(v, π(k−1)w). □

Let us recall that any locally compact Hausdorff group G acts on the Hilbert
space L2(G) by the prescription

R(g) f (x) := f (xg).

The representation so obtained is unitary and if G is a Lie group the notion of
smooth vectors in L2(G) makes sense. In the next section, we will need a criterion
to establish that certain functions are smooth vectors in L2(G). We will make use
of the following notion:
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Definition 2.15. Let G be a Lie group and let (π, H) be a Hilbert representation
of G. The Gårding subspace of H is the vector subspace of H spanned by the set

{π( f )v | v ∈ H, f ∈ C∞

c (G)}.

Proposition 2.16. Let G be a Lie group with finitely many connected components,
let (π, H) be a Hilbert representation of G. Then every vector in the Gårding
subspace of H is a smooth vector in H.

Proof. See [18, Lemma 1.6.1]. □

Recall that f ∈ C∞(G) is called Z(gC)-finite if it is annihilated by an ideal
of Z(gC) of finite codimension. The criterion we need is the following result of
Harish-Chandra:

Theorem 2.17. Let G be a group in the class H as in [17, p. 192]. Let f ∈ C∞(G)
be K -finite and Z(gC)-finite. Then there exists a function h ∈ C∞

c (G) which satisfies
h(kgk−1) = h(g) for all k ∈ K and for all g ∈ G and such that f ∗ h = f . If
f ∈ C∞(G), in addition, is square-integrable, then f is a smooth vector in L2(G).

Proof. The first statement is [17, Proposition 14, p. 352]. The second conclusion
follows from the observation found at the beginning of the proof of [11, Corol-
lary 8.42] that f is in the Gårding subspace of L2(G) and it is therefore smooth by
Proposition 2.16. That f is indeed in the Gårding subspace of L2(G) follows from
the standard fact that

(2.18) R(ψ̃) f = f ∗ψ,

for every ψ ∈ C∞
c (G). Here, ψ̃(x) := ψ(x−1). The first statement then gives

(2.19) R(h̃) f = f ∗ h = f. □

Proposition 2.20. Let G be a group in the class H. Let f ∈ C∞(G) be K -finite,
Z(gC)-finite and square-integrable. Then, for every X ∈ g, we have

X f = Ṙ(X) f,

where X f : G → C is defined as

(2.21) X f (g) :=
d
dt

[
f (g exp(t X))

]
|t=0.

Proof. By Theorem 2.17, there exists h ∈ C∞
c (G) such that

f = f ∗ h.
From

X f = X ( f ∗ h)= f ∗ Xh and f ∗ Xh = Ṙ(
∼

Xh) f,
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the latter being an application of (2.18), we obtain

X f = Ṙ(
∼

Xh) f.
Since

Ṙ(
∼

Xh) f = Ṙ(X)R(h̃) f and R(h̃) f = f ∗ h = f,

we conclude
X f = Ṙ(X) f. □

We will apply Proposition 2.20 to the group M in the Langlands decomposition
of a parabolic subgroup P = MAN of a connected semisimple Lie group with
finite centre. A group M of this form will not be connected, semisimple in general.
However, it belongs to the class H by [5, Lemma 9, p. 108].

We briefly recall the construction of parabolically induced representations. We
refer the reader to [13, Chapter XI], for a more thorough account.

Let G be a connected, semisimple Lie group with finite centre and let P = MAN
be a parabolic subgroup of G. The group KM := K ∩ M is a maximal compact
subgroup of M . Let λ be a complex-valued real-linear functional on a and let (σ, Hσ )
be a Hilbert representation of M . We define an action of G on the space of functions

{ f ∈ C(K , Hσ ) | f (mk)= σ(m) f (k) for all m ∈ KM and all k ∈ K }

by declaring

IndP(σ, λ, g) f (k) := e(λ+ρ)(h(kg))σ(m(kg)) f (k(kg)),

where, if g = kman for some k ∈ K , m ∈ M , a ∈ A, n ∈ N , we set k(g) := k,
m(g) := m, h(g) := log(a), n(g) := n. The symbol ρ denotes half of the sum of
the positive restricted roots determined by a counted with multiplicities. On this
space of functions, we introduce the norm

∥ f ∥IndP (σ,λ) :=

( ∫
K
∥ f (k)∥2

σ dk
)1/2

and, upon completing, we obtain a Hilbert representation of G which we denote
by IndP(σ, λ). We will denote by IndP,KM (σ, λ) the space of KM -finite vectors
in IndP(σ, λ).

Proposition 2.22. Let G be a connected, semisimple Lie group with finite centre
and let P = MAN be a parabolic subgroup of G. Let λ be a complex-valued, real-
linear, totally imaginary functional on a and let (σ, Hσ ) be a unitary representation
of M. Then IndP(σ, λ) is a unitary representation of G.

Proof. See [13, Corollary 11.39]. □
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Corollary 2.23. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. Let λ be a complex-valued, real-linear,
totally imaginary functional on a and let (σ, Hσ ) be a unitary representation of M.
Then, for every f1, f2 ∈ IndP,KM (σ, λ) and for every X ∈ g, we have

⟨ ˙IndP(σ, λ, X) f1, f2⟩IndP (σ,λ) = −⟨ f1, ˙IndP(σ, λ, X) f2⟩IndP (σ,λ).

Proof. This is a consequence of Proposition 2.22 and the skew-invariance of the
inner product on a unitary representation with respect to the action of the Lie algebra
on the space of smooth vectors [19, p. 266]. □

Next, we recall a form of the Frobenius reciprocity originally observed by
Casselman. We first need some preparation.

First of all, we record the following.

Lemma 2.24. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. If V is a (g, K )-module, then the
(g, K )-module structure on V induces a structure of (m⊕a, KM)-module on V \nV
in such a way that the quotient map

q : V → V/nV

is (m⊕ a, KM)-equivariant.

Proof. It suffices to show that if v ∈ V is of the form

v = Xw

for some w ∈ V and X ∈ n, then, for all ξ ∈ KM , we have

ξv ∈ nV,

and, for all Y ∈ m⊕ a, we have

Yv ∈ nV .

Let ξ ∈ KM . We have

ξv = ξ Xw = Ad(ξ)Xξw

and, since KM , being contained in M , normalises n by [12, Proposition 7.83],
it follows that Ad(ξ)X ∈ n.

Let Y ∈ m⊕ a. We have

Yv = Y Xw = [Y, X ]w+ XYw.

The second term in the right-hand side belongs to nV because X ∈ n and the first
belongs to nV because n is an ideal in p = m⊕ a⊕ n by [12, Proposition 7.78]. □
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Let us recall that a (g, K )-module is finitely generated if it is a finitely gener-
ated U (gC)-module. We say that a Hilbert representation (π, H) of G is finitely
generated if HK is finitely generated. We record the following result of Casselman.

Theorem 2.25. Let G be a connected, semisimple Lie group with finite centre and let
P = MAN be a parabolic subgroup of G. Let V be an admissible, finitely generated
(g, K )-module. Then V/nV is an admissible, finitely generated (m ⊕ a, KM)-
module.

Proof. See [18, Lemma 4.3.1]. □

If V is an irreducible (g, K )-module, we say that V admits an infinitesimal
character if the centre Z(gC) of the universal enveloping algebra U (gC) of the
complexification gC of g acts on V by a character, that is, for every Z ∈ Z(gC) and
for every v ∈ V , we have

Zv = χ(Z)v,

where χ : Z(gC)→ C is a morphism of complex, unital algebras. The action of
Z(gC) on V in question is the one obtained by first extending the action of g to an
action of gC and then to an action of U (gC) using the PBW theorem.

Corollary 2.26. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. If V is an irreducible (g, K )-module
admitting an infinitesimal character, then V/nV is an admissible, finitely generated
(m⊕ a, KM)-module.

Proof. By [9, Theorem 2.2, p. 256], K is connected. By [13, Theorem 7.204], V is
admissible. Combining [13, Example 1, p. 442] and [13, Corollary 7.207], it follows
that V is finitely generated. The result now follows from Theorem 2.25. □

Let p, m, a and n denote the Lie algebras of P , M , A and N , respectively.
Let (σ, Hσ ) be an admissible and finitely generated Hilbert representation of M

which is unitary when restricted to KM . Let λ be a complex-valued real-linear
functional on a. Consider the (m⊕ a, KM)-module Hλ

σ,KM
defined as

Hλ
σ,KM

:= Hσ,KM ⊗ Cλ+ρ,

where the pair (m, KM) acts on Hσ,KM and a acts on Cλ+ρ via the functional λ+ρ.
If V is a (g, K )-module and T ∈ Homg,K (V, IndP,KM (σ, λ)), then we can define

an element T̂ ∈ Homm⊕a,KM (V/nV , Hλ
σ,KM

) by setting

T̂ (v) := T (v)(1).

Theorem 2.27. Let G be a connected, semisimple Lie group with finite centre. Let
V be a (g, K )-module. Let (σ, Hσ ) be an admissible and finitely generated Hilbert
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representation of M which is unitary when restricted to KM and let λ be a complex-
valued real-linear functional on a. Consider the (m⊕ a, KM)-module Hλ

σ,KM
. Then

the map

Homg,K (V, IndP,KM (σ, λ))→ Homm⊕a,KM (V/nV , Hλ
σ,KM

), T 7→ T̂ ,

is a bijection.

Proof. See [18, Lemma 5.2.3] and the discussion preceding it. □

For clarity, we point out that the formulation in [18] seems to contain some typos
and so we modified it following [8, Theorem 4.9].

The inverse of the map T 7→ T̂ is constructed as follows (see [18, Lemmas 5.2.3
and 3.8.2] or, alternatively, [8, Theorem 4.9]). Let S ∈ Homm⊕a,KM (V/nV , Hλ

σ,KM
).

Then we obtain an element

S̃ ∈ Homg,K (V, IndP,KM (σ, λ))

by setting
S̃(v)(k) := S(q(kv)),

where q : V → V/nV denotes the quotient map. Then the inverse of T 7→ T̂ is
given by the map

Homm⊕a,KM (V/nV , Hλ
σ,KM

)→ Homg,K (V, IndP,KM (σ, λ)), S 7→ S̃.

3. Asymptotic behaviour of representations

3.1. Asymptotic expansions of matrix coefficients. We begin by collecting the
fundamental facts concerning asymptotic expansions of matrix coefficients of tem-
pered representations. We refer the reader to [11, Chapter VIII] for a more thorough
exposition of the topic.

Let G be a connected, semisimple Lie group with finite centre, let K be a fixed
maximal compact subgroup of G and let k be its Lie algebra. Let P = MAN denote
the minimal parabolic subgroup of G with Lie algebra p. Given a maximal abelian
subspace a of p, we call A the corresponding subgroup of P and M the centraliser
of A in K . We fix a system 1 of simple roots of the restricted root system attached
to (g, a), and we use 1+ to denote the corresponding set of positive roots.

Let a+ denote the set {H ∈ a | α(H) > 0 for all α ∈ 1}. Then the subset of
regular elements Greg of G admits a decomposition as Greg

= K exp(a+)K and G
itself admits a decomposition G = K exp(a+)K .

We write 1= {α1, . . . , αn} and we identify it with the ordered set {1, . . . , n} in
the obvious way. We adopt the following notation to simplify the appearance of the
expansions we are going to work with.

For H ∈ a and l ∈ Zn
≥0, we set α(H)l :=

∏n
i=1 αi (H)li .
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If λ is a real-linear complex-valued functional on a, since, for every H ∈ a,

λ(H)=

n∑
i=1

λiαi (H)

for some λ1, . . . , λn ∈ C, we will often identify λ with the n-tuple (λ1, . . . , λn).
The next result is concerned with the expansion of K -finite matrix coefficients

relative to P .

Theorem 3.1. Let G be a connected, semisimple Lie group with finite centre
and let (π, H) be an irreducible, Hilbert representation of G. Then there exist a
nonnegative integer l0 and a finite set of real-linear complex-valued functionals
on a, denoted by E0, such that, for every v,w ∈ HK , the restriction to exp(a+) of
the matrix coefficient

φv,w(g)= ⟨π(g)v,w⟩

admits a uniformly and absolutely convergent expansion as

φv,w(exp H)= e−ρ(H)
∑
λ∈E0

∑
l∈Zn

≥0
|l|≤l0

∑
k∈Zn

≥0

α(H)le(λ−k)(H)
⟨cλ−k,l(v), w⟩,

where each cλ−k,l : HK → HK is a complex-linear map and ρp denotes half of
the sum of the elements in 1+ counted with multiplicities. The maps cλ−k,l are
completely determined by the representation (π, H).

Proof. By Theorem 2.9, (π, H) is admissible and therefore has an infinitesimal
character. By [11, Theorem 8.32], we have the stated expansion for any τ -spherical
function (in the sense of [11, p. 215]) F on G of the form

F(g)= E2π(g)E1,

where τ1 and τ2 are subrepresentations of

π |K ∼=

⊕
γ∈K̃

nγ γ

of the form
τ1 :=

⊕
γ∈21

nγ γ and τ2 :=

⊕
γ∈22

nγ γ

for finite collections21,22 ∈ K̂ , and E1, E2 are the orthogonal projections to τ1, τ2,
respectively. In this expansion, the set E0, the maps cλ−k,l and the number l0 depend
on τ = (τ1, τ2) and we can expand φv,w provided that v ∈ τ1 and w ∈ τ2. To obtain
an expansion valid for every v,w ∈ HK and with E0, l0 and the cλ−k,l independent
of τ , we appeal to the theory developed in [2, Section 8], which we can apply
since (π, H) is finitely generated by [13, Corollary 7.207] (for clarity, we should
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mention that the setup in [11] is different, but entirely equivalent to that in [2],
translating between the two is just bookkeeping). First, by [2, Theorem 8.7], the
representation (π, H) has a unique matrix coefficient map in the sense of [2, p. 907].
The required expansion on the region exp(a+) of the matrix coefficient map is
given by [2, Theorem 8.8]. For completeness, the relation between the τ -dependent
expansion and the expansion in our statement is given in [2, Lemma 8.3]. □

We recall that if ν, ν ′ are real-linear complex-valued functionals on a such that
ν− ν ′ is an integral linear combination of the simple roots, then we say that ν and
ν ′ are integrally equivalent.

The set E0 has the property that if λ, λ′
∈ E0 with λ ̸= λ′, then λ and λ′ are not

integrally equivalent.
If ν and ν ′ are integrally equivalent and ν−ν ′ is a nonnegative integral combina-

tion of the simple roots, we write ν ≥ ν ′, thus introducing an order relation among
integrally equivalent functionals on a.

If k ∈ Zn
≥0 is such that the term

α(H)le(λ−k)(H)
⟨cλ−k,l(v), w⟩

is nonzero for some λ ∈ E0 and for some v,w ∈ HK , then we say that ν := λ− k
is an exponent and we let E denote the set of exponents. The exponents which
are maximal with respect to the order relation introduced above are called leading
exponents: E0 is precisely the set of leading exponents.

The following result is used crucially in [10] and in the following.

Theorem 3.2. Let (π, H) be an irreducible, tempered, Hilbert representation of G.
Then every λ ∈ E0 satisfies

Re λi ≤ 0
for every i ∈ {1, . . . , n}.

Proof. See [11, Theorem 8.53]. Strictly speaking, in [loc. cit.] the theorem is
formulated under some restrictions on G, but it is a convenient reference since we
are adopting the same normalisation of the exponents. See [1, Proposition 3.7, p. 83]
or [2, Corollary 8.12], for proofs for more general groups. □

We now turn to asymptotic expansions of matrix coefficients of (π, H) relative to
standard (for P) parabolic subgroups of G. We follow [11, Chapter VIII, Section 12].

Given a subset I ⊂ {1, . . . , n}, and recalling that we identified1 with {1, . . . , n},
we can associate to it a parabolic subgroup

PI = MI AI c NI c

of G containing P in such a way that the restricted root space g−α satisfies g−α ⊂mI

if and only if α ∈ I (with mI denoting the Lie algebra of MI ). For the details, we
refer the reader to [11, Proposition 5.23; 12, Chapter VII].
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First, we introduce the basis {H1, . . . , Hn} of a dual to 1. We define the Lie
algebra aI as

aI :=

∑
i∈I

RHi

and the group AI as

AI := exp
( ∑

i∈I

Rαi

)
.

We can then write

a = aI ⊕ aI c and A = AI AI c .

The groups NI and NI c are the analytic subgroups of G corresponding to the Lie
algebras

nI :=

∑
β∈1+

β|aI c =0

gβ and nI c :=

∑
β∈1+

β|aI c ̸=0

gβ .

We have

ρ = ρI + ρI c

with

ρI :=
1
2

∑
β∈1+

β|aI c =0

(dim gβ)β

and analogously for ρI c . Denoting by M0,I the analytic subgroup of G correspond-
ing to the Lie algebra

mI = m⊕ aI ⊕ nI ⊕ nI ,

the group MI is then given as

MI := Z K (aI c)M0,I .

Finally, K I := K ∩ MI is a maximal compact subgroup of MI and M AI NI is a
minimal parabolic subgroup of MI .

Theorem 3.3. Let G be a connected, semisimple Lie group with finite centre and let
(π, H) be an irreducible, Hilbert representation of G. Let C be a compact subset of
MI satisfying K I C K I = C. Then there exists a positive real number R depending
on C such that, for every m ∈ C and for every a = exp H ∈ AI c which satisfies
αi (H) > log R for every i ∈ I c, we have

φv,w(m exp H)= e−ρI c (H)
∑
ν∈EI

∑
q∈ZI c

≥0
|q|≤q0

α(H)qeν(H)cPI
ν,q(m, v, w)



46 ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

for every v,w ∈ HK . Here, EI is a countable set of real-linear complex-valued
functionals on aI c , each cPI

ν,q extends to a real-analytic function on MI and satisfies

cPI
ν,q(ξ2mξ1, v, w)= cPI

ν,q(m, π(ξ1)v, π(ξ
−1
2 )w)

for every ξ1, ξ2 ∈ K I . Moreover, for every m ∈ MI and w ∈ HK , the map

HK → C, v 7→ cPI
ν,q(m, v, w),

is complex-linear and, for every m ∈ MI and v ∈ HK , the map

HK → C, w 7→ cPI
ν,q(m, v, w),

is conjugate-linear. The maps cPI
ν,q : MI × HK × HK → C are completely determined

by the representation (π, H).

Proof. For a τ -spherical function F as in the proof of Theorem 3.1, the result follows
from [11, Theorem 8.45]. To obtain an expansion independent of τ , it suffices to
prove that each Fν−ρI c

λ
is independent of τ . Let m ∈ MI and write m = ξ2aI ξ2 for

some aI ∈ A+

I , where A+

I is the positive Weyl chamber, and some ξ1, ξ2 ∈ K I . Since

Fν−ρI c (ma, v, w)= Fν−ρI c (aI a, π(ξ1)v, π(ξ
−1
2 )w),

relabelling things, it suffices to prove that Fν−ρI c ( · , v, w) is independent of τ as a
function on A+

I AI c . By [11, Corollary 8.46], the functional ν ∈ EI is the restriction
of an element in the set of exponents E in the expansion relative to P and this
set is independent of τ by [2, Theorem 8.8]. Therefore, it remains to prove that
each cPλ

ν,q is independent of τ . Since cPλ
ν,q is analytic on MI , it suffices to prove that

cPλ
ν,q( · , v, w) as a function on A+

I is independent of τ . Given aI ∈ A+

I , we can find
a compact subset C of MI containing and aI such that K I C K I = C , and a positive
R depending on C , such that for every H ∈ aI c satisfying αi (H) > log R for every
i ∈ I c, the expansion of φv,w(aI a) relative to P and the expansion relative to PI

are both valid. Comparing them as in [11, p. 251], it follows that expansion relative
to PI is completely determined by the expansion relative to P and the latter is
independent of τ by Theorem 3.1. □

For every ν ∈ EI , the term

α(H)qe(ν−ρI c )(H)cPI
ν,q(m, v, w)

is nonzero for some v,w ∈ HK and some m ∈ M . The set EI is the set of exponents
relative to PI .

To define the functions of the form 0λ,l discussed in the Introduction, the first step
consists in associating a standard (for P) parabolic subgroup of G to each λ ∈ E0.
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Let (π, H) be an irreducible, tempered, Hilbert representation of G and let λ∈ E0.
We set Iλ := {i ∈ {1, . . . , n} | Re λi < 0} which we identify with the subset 1λ of 1
defined as

1λ := {αi ∈1 | i ∈ Iλ}.

The construction of standard parabolic subgroups from the datum of a subset of 1
assigns to Iλ the standard parabolic subgroup Pλ defined as

Pλ := PIλ .

It admits a decomposition
Pλ = MλAλ0 Nλ0,

where
Aλ0 := AI c

λ
.

The subgroup M admits a decomposition

Mλ = KλAλKλ,

where
Aλ := AIλ and Kλ := K ∩ Mλ.

The group A decomposes as A = AλAλ0 . We write aλ and aλ0 for aIλ and aI c
λ
,

respectively. Similarly, we write ρλ and ρλ0 for ρIλ and ρI c
λ
, respectively.

Remark 3.4. The theory recalled so far is sufficient to prove that tempered, irre-
ducible, Hilbert representations are unitarisable. From now on, given a tempered,
irreducible, Hilbert representation (π, H), we will implicitly assume that it is unitary
and we will refer to it simply as a tempered, irreducible representation.

3.2. The functions 0λ,l . We are going to introduce an equivalence relation on the
data indexing the expansion of φv,w relative to P . The definition is motivated by
the construction of d(π) in [10]. Let v,w ∈ HK . We have

φv,w(exp H)= e−ρ(H)
∑
λ∈E0

∑
l∈Zn

≥0
|l|≤l0

α(H)leλ(H)8v,wλ,l (H),

where
8
v,w
λ,l (H) :=

∑
k∈Zn

≥0

e−k(H)
⟨cλ−k,l(v1), v2⟩.

The terms in this expansion are indexed by the finite set

C := {(λ, l)} λ∈E0
l∈Zn

≥0
|l|≤l0

.
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We introduce a relation on C by declaring that (λ, l)∼ (µ,m) if Iλ= Iµ, λ|aλ0
=µ|aλ0

and resI c
λ

l = resI c
µ

m. To define this relation we have implicitly used the identification
of Iλ with the subset 1λ of 1 at the end of the previous subsection.

It is clear that ∼ is an equivalence relation. We denote by [λ, l] the equivalence
class containing (λ, l).

We can therefore regroup the expansion of φv,w as

φv,w(exp H)= e−ρ(H)
∑

[λ,l]∈C/∼

α(Hλ0)
lλ0 eλ|aλ0

(Hλ0 )
∑

(λ′,l ′)∈[λ,l]

α(Hλ)l
′

λeλ
′
|aλ (Hλ)8

v,w
λ′,l ′(H),

where

lλ0 := resI c
λ

l, α(Hλ0)
lλ0 :=

∏
i∈I c

λ

αi (Hλ0)
li , l ′λ := resIλ l ′, α(Hλ)l

′

λ :=

∏
i∈Iλ

α(Hλ)l
′

i

and H = Hλ0 + Hλ corresponds to the decomposition

a+
= a+

λ0
⊕ a+

λ .

We are also implicitly using the fact that α(H)l = α(Hλ)lλα(Hλ0)
lλ0 which

follows from writing H with respect to the basis dual to 1.
To proceed, we need to isolate certain equivalence classes in C/∼. First, we

recall from the Introduction how the quantity dP(λ, l), for (λ, l) ∈ C and P a fixed
minimal parabolic subgroup of G, and the quantity d(π) are defined.

For (λ, l) ∈ C, we set

dP(λ, l) := |I c
λ | +

∑
i∈I c

λ

2li

and we observe that this number only depends on the equivalence class of (λ, l).
Then we take the maximum, dP , as (λ, l) ranges over C. We can proceed analogously
for every standard (for P) parabolic subgroup of P ′ of G to obtain a nonnegative in-
teger dP ′ . Then d(π) is defined to be the maximum over all P ′ of the quantities dP ′ .

Definition 3.5. Let [λ, l] ∈ C/∼. We say that [λ, l] is relevant if it satisfies

dP(λ, l)= d(π),

where dP(λ, l) is defined by (1.7).

Let [λ, l] ∈ C/∼ be a relevant equivalence class. For Hλ ∈ a+

λ , we set

(3.6) 0λ,l(exp Hλ, v, w) := e−ρ(H)
∑

(λ′,l ′)∈[λ,l]

α(Hλ)l
′

λeλ
′
|aλ0

(Hλ)
8
v,w
λ′,l ′(Hλ).

Before establishing the properties of 0λ,l , let us pause to explain the motivation
behind the definitions above. The discussion that follows will be used only in
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Section 4. The reader who prefers to do so can skip to Proposition 3.12 without
any loss of continuity.

Let v1, v2, v3, v4 ∈ HK . We will be considering integrals of the form

lim
r→∞

1
r d(π)

∫
a+
<r

φv1,v2(exp H)φv3,v4(exp H)
∏
β∈1+

(eβ(H) − e−β(H))dim gβ d H,

where

(3.7) a+

<r := a+
∩ {H ∈ a | β(H) < r for all β ∈1+

}.

Treating these is the content of [10, Appendix A ]. We remark that our region of
integration is defined as to exclude the subset of a+ where at least one of the simple
roots vanishes. It is a set of measure zero.

We want to interpret [10, Lemma A.5] in group-theoretic terms.
Let us consider the matrix coefficients φv1,v2 and φv3,v4 . On A+

:= exp(a+), they
can be expanded as

φv1,v2(exp H)= e−ρ(H)
∑

[λ,l]∈C/∼

α(Hλ0)
lλ0 eλ|aλ0

(Hλ0 )
∑

(λ′,l ′)∈[λ,l]

9
v1,v2
λ′,l ′ (H)

and

φv3,v4(exp H)= e−ρ(H)
∑

[µ,m]∈C/∼

α(Hµ0)
mµ0 eµ|aµ0

(Hµ0 )
∑

(µ′,m′)∈[µ,m]

9
v3,v4
µ′,m′(H),

where, for (λ′, l ′) ∈ [λ, l], we set

9
v1,v2
λ′,l ′ (H) := α(Hλ)l

′

λeλ
′
|aλ (Hλ)8

v1,v2
λ′,l ′ (H)

and similarly for (µ′,m′) ∈ [µ,m]. Let [λ, l] ∈ C/∼ and [µ,m] ∈ C/∼ be such
that Iλ = Iµ, λ|aλ0

= µ|aλ0
and

d(π)= |Iλ| +
∑
i∈Iλ

(li + mi ).

In view of the first condition, the third is equivalent to the requirement

dP(λ, l)= d(π) and dP(µ,m)= d(π).

Consider the summand

e−2ρ(H)α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m′(H)

in the expansion of the product φv1,v2φv3,v4 on A+. Taking into account the factor
e−2ρ(H) and the fact that the term

(3.8) �(H) :=

∏
β∈1+

(eβ(H) − e−β(H))dim gβ
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is incorporated in the function φ in [10, Lemma A.5] (compare with Section 4.7
in [loc. cit.]), this lemma shows that, as r → ∞, the integral

1
r d(π)

∫
a+
<r

e−2ρ(H)α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m′(H)�(H) d H

tends to

C(λ, l,m)
∫
a+

λ

e−2ρλ(Hλ)[9
v1,v2
λ′,l ′ 9

v3,v4
µ′,m′]|aλ(Hλ)�λ(Hλ) d Hλ,

where

(3.9) �λ(Hλ) :=

∏
β∈1+

λ

(eβ(Hλ) − e−β(Hλ))dim gβ ,

with
1+

λ := {β ∈1+
| β|aλ0

= 0},

and the quantity C(λ, l,m) is given by

(3.10) C(λ, l,m) :=

∫
{H∈aλ0 |extI c

λ (H)∈a+

<1}

α(Hλ0)
lλ0+mµ0 d Hλ0 .

Now, summing over all (λ′, l ′) ∈ [λ, l] and over all (µ′,m′) ∈ [µ,m], we obtain
that the integral over a+

<r of

e−2ρ(H)
∑

(λ′,l ′)∈[λ,l]

∑
(µ′,m′)∈[µ,m]

α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m (H)�(H),

upon multiplying by 1/r d(π) and letting r → ∞, equals

C(λ, l,m)
∫
a+

λ

e−2ρλ(Hλ)
∑

(λ′,l ′)∈[λ,l]

∑
(µ′,m′)∈[µ,m]

[9
v1,v2
λ′,l ′ 9

v3,v4
µ′,m′]|aλ(Hλ)�λ(Hλ) d Hλ.

Finally, since

8
v1,v2
λ′,l ′ |aλ(Hλ)=

∑
k∈Z

Iλ
≥0

e−k(Hλ)⟨cλ′−k,l ′(v1), v2⟩,

and similarly for 8v3,v4
µ′,m,, the integral above equals

(3.11) C(λ, l,m)
∫
a+

λ

0λ,l(exp Hλ, v, w)0µ,m(exp Hλ, v, w)�λ(Hλ) d Hλ.

If [λ, l], [µ,m] ∈C/∼ fail to satisfy any of the three conditions Iλ= Iµ, λ|aλ0
=µ|aλ

and
dP(λ, l)= d(π)= dP(µ,m),
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then, for every (λ′, l ′)∈ [λ, l] and for every (µ′,m′)∈ [µ,m], by the considerations
in the proof of Claim A.6 and Lemma A.5 in [10], the integral

1
r d(π)

∫
A+
<r

e−2ρ(H)α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m′(H)�(H) d H

vanishes as r → ∞.
Therefore, the relevant equivalence classes [λ, l] ∈ C/∼, those for which the

functions of the form 0λ,l are defined, are precisely the ones that may contribute a
nonzero term to the expression

lim
r→∞

1
r d(π)

∫
a+
<r

φv1,v2(exp H)φv3,v4(exp H)�(H) d H.

Throughout the rest of this section, we fix a tempered, irreducible representation of
a connected, semisimple Lie group G with finite centre.

3.3. Some properties of the functions 0λ,l . To study the properties of 0λ,l , we be-
gin by showing that it is equal to a function of the form cPλ

ν,q . More precisely, we have:

Proposition 3.12. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Set ν := λ|aλ0

and q := lλ0 . Then, for every Hλ ∈ a+

λ , we have

0λ,l(exp Hλ, v, w)= cPλ
ν,q(exp Hλ, v, w).

Proof. For every Hλ ∈ a+

λ , we can find a compact subset C of Mλ such that
KλC Kλ= C and which contains Hλ, and a positive real R> 0 such that if Hλ0 ∈ a+

λ0

satisfies αi (Hλ0) > log R for every i ∈ I c
λ , then the expansion of φv,w with respect

to P and the expansion with respect to Pλ are both valid at H = Hλ+Hλ0 . Comparing
them as in [11, p. 251], we see that

cPλ
ν,q(exp Hλ, v, w)=

∑
λ′

∈E0
λ′

|aλ0
=ν

∑
l ′

|l ′|≤l0
l ′λ0

=q

e−ρλ(Hλ)9
v,w
λ′,l ′(Hλ).

Since, by definition of 0λ,l( · , v, w), we have

0λ,l(exp Hλ, v, w)= e−ρ(Hλ)
∑

(λ′,l ′)∈[λ,l]

9
v,w
λ′,l ′(Hλ),

recalling the definition of the equivalence relation that we imposed on C, we only
need to show that the set

{λ′
∈ E0 | λ′

|aλ0
= ν}

is equal to the set
{λ ∈ E0 | Iλ′ = Iλ and λ′

|aλ0
= λ|aλ0

}.
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Because of the assumption on [λ, l], for every λ′
∈ E0 such that λ′

|aλ0
= ν, we have

Re λ′

j ̸= 0 for every j ∈ Iλ. Indeed, if there existed a j ∈ Iλ for which Re λ′

j = 0,
we would have

|I c
λ′ | ≥ 1 + |I c

λ |

and, since l ′λ0
= lλ0 , this would imply

dP(λ
′, l ′) > |I c

λ | +

∑
i∈I c

λ′

2l ′i ≥ dP(λ, l)= d(π),

contradicting the maximality of d(π). Since, by Theorem 3.2, we have Re λ′

i ≤ 0
for every i ∈ {1, . . . , n}, this concludes the proof. □

Theorem 8.45 in [11] and the discussion at the beginning of p. 251 in [loc. cit.]
now show that 0λ,l( · , v, w), being equal to cPλ

ν,q , extends to an analytic function
on Mλ, which we denote again by 0λ,l( · , v, w). If we decompose Mλ as

Mλ = Kλ exp(a+

λ )Kλ,

and if we write m ∈ Mλ as m = ξ2 exp Hλξ1 for some ξ1, ξ2 ∈ Kλ and some Hλ ∈ a+

λ ,
then we have

0λ,l(m, v, w)= 0λ,l(exp Hλ, π(ξ1)v, π(ξ2)
−1w)

because cPλ
ν,q( · , v, w) exhibits the same behaviour.

We want to prove that 0λ,l( · , v, w) belongs to L2(Mλ) and it is Z(mλC)-finite.
An application of Theorem 2.17 will imply that 0λ,l( · , v, w) is a smooth vector
in L2(Mλ). Similar ideas appear in [11, Chapter VIII; 15].

Proposition 3.13. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then 0λ,l( · , v, w) belongs to L2(Mλ).

Proof. We argue as in the proof of [15, Lemma 4.10]. By the proof of Proposition 3.12,
we have Re λ′

i <0 for every λ′ appearing in the expansion of0λ,l( · , v, w) on A+

λ and
for every i ∈ Iλ. Since 0λ,l( · , v, w) is analytic on A+

λ , we can apply [7, Theorem 4]
and then argue as in [2, Theorem 7.5] to establish the desired square-integrability
on A+

λ . The square-integrability on Mλ follows from combining the decomposition
of Mλ as Mλ = KλA+

λ Kλ, the corresponding integral formula and the fact that if
m = ξ2 exp Hλξ2, for some Hλ ∈ a+

λ and some ξ1, ξ2 ∈ Kλ, then

0λ,l(m, v, w)= 0λ,l(exp Hλ, π(ξ1)v, π(ξ2)
−1w). □

We recall that there exists an injective algebra homomorphism

µPλ : Z(gC)→ Z((mλ ⊕ aλ0)C)
∼= Z(mλC)⊗ U (aλ0C),

which turns Z(mλC)⊗ U (aλ0C) into a free module of finite rank over µPλ(Z(gC))

by [6, Lemma 21].
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Proposition 3.14. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then, for every X ∈ U (mλC) and for every m ∈ Mλ, we have

X0λ,l(m, v, w)= 0λ,l(m, π̇(X)v,w).

Moreover, the function 0λ,l( · , v, w) is a smooth vector in the right-regular repre-
sentation (R, L2(Mλ)) of Mλ.

Proof. For a given X ∈ U (mλC) and every g ∈ G, we have

Xφv,w(g)= φπ̇(X)v,w(g).

Therefore, the restriction of Xφv,w( · ) to MλAλ0 satisfies

Xφv,w(ma)= φπ̇(X)v,w(ma).

Given m ∈ Mλ we can find a compact subset C of Mλ containing m such that
KλC Kλ = C and a positive R depending on C such that if a = exp H ∈ A+

λ0

satisfies αi (H) > log R for every i ∈ I c
λ , then φπ̇(X)v,w(ma) may be expanded with

respect to Pλ. Since X ∈ U (mλC), the restriction of Xφv,w( · ) to MλAλ0 can also be
computed as the action of the differential operator X on the restriction of φv,w( · )
to MλAλ0 . For m ∈ Mλ and a ∈ A+

λ0
as above, we expand the function so obtained

with respect to Pλ and, as in the proof of (4.8) in [15], because of the convergence
of the series, we can apply the differential operator term by term. By comparing
the resulting expansion with the expansion of φπ̇(X)v,w(ma), and invoking [11,
Corollary B.26], we obtain

XcPλ
ν,q(m, v, w)= cPλ

ν,q(m, π̇(X)v,w)

for every ν ∈ EI and every q ∈ Z
I c
λ

≥0. The first statement now follows from choosing
ν and q as in Proposition 3.12.

For the last statement, we need to show that 0λ,l( · , v, w) is annihilated by an
ideal of finite codimension in Z(mλC); the result will then follow from Theorem 2.17.
Let J be the kernel of the infinitesimal character of (π, H). Then J is an ideal
of finite codimension in Z(gC). As observed in [5, p. 182], the inverse image Jmλ
along the inclusion

Z(mλC)→ Z(mλC)⊗ U (aλ0C), X 7→ X ⊗ 1,

of the ideal generated by µPλ(J ) in Z(mλC)⊗U (aλ0C) is an ideal of finite codimen-
sion in Z(mλC). This follows from the fact that the ideal generated by µPλ(J ) is of
finite codimension in Z(mλC)⊗U (aλ0C), since Z(mλC)⊗U (aλ0C) is a free module
of finite type over µPλ(Z(gC)) by [6, Lemma 21]. Denoting by µPλ(J )

e the ideal
generated by µPλ(J ), we see that Jmλ is precisely the kernel of the homomorphism

Z(mλC)→ (Z(mλC)⊗ U (aλ0C))/µPλ(J )
e, X 7→ (X ⊗ 1)+µPλ(J )

e.



54 ANNE-MARIE AUBERT AND ALFIO FABIO LA ROSA

This exhibits Jmλ as an ideal of finite codimension in Z(mλC). Now, if X ∈ Jmλ ,
then X ⊗ 1 belongs to µPλ(J )

e. Hence X ⊗ 1 can be written as

X ⊗ 1 =

r∑
i=1

YiµPλ(Zi ),

with Yi ∈ Z(mλC)⊗ U (aλ0C) and Zi ∈ J . For every i ∈ {1, . . . , r}, by (8.68) in
[11, p. 251], the differential operator µPλ(Zi ) annihilates the function

Fν−ρλ0
(ma, v, w) :=

∑
q:|q|≤q0

cPλ
ν,q(m, v, w)α(H)

qe(ν−ρλ0 )(H).

Therefore, X ⊗ 1 annihilates it, as well. On the other hand, by the first part of the
proof, we have

(X ⊗ 1)Fν−ρλ0
(ma, v, w)=

∑
q:|q|≤q0

cPλ
ν,q(m, π̇(X)v,w)α(H)

qe(ν−ρλ0 )(H).

Since the left-hand side vanishes identically on MλAλ0 , it follows that

cPλ
ν,q(m, π̇(X)v,w)= 0

for every m ∈ Mλ. Choosing ν and q as in Proposition 3.12, we find that0λ,l( · , v, w)
is annihilated by Jmλ . □

3.4. The functions 0λ,l as intertwining operators. Let w ∈ HK . The following
two technical lemmata, together with Proposition 3.14, will be used to prove the
(mλ ⊕ a, Kλ)-equivariance of the map

Sw : HK → L2(Mλ)⊗ Cλ|aλ0
−ρλ0

, Sw(v)(m) := 0λ,l(m, v, w).

We are not claiming that for every w ∈ HK this map is nonzero: the only thing we
need to know is that, whenever w ∈ HK is such that Sw is not identically zero, then
Sw is (mλ ⊕ a, Kλ)-equivariant. In the final part of this subsection, we show the
existence of an admissible, finitely generated, unitary representation of Mλ which
will allow us to apply Theorem 2.27 in the way we explained in the Introduction.

Lemma 3.15. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then, for every X ∈ aλ0 and every m ∈ Mλ, we have

0λ,l(m, π̇(X)v,w)= (λ|aλ0
− ρλ0)(X)0λ,l(m, v, w).

Proof. We write m ∈ Mλ as m = ξ2aλξ2 for some ξ1, ξ2 ∈ Kλ and some aλ ∈ A+

λ .
Then we have

0λ,l(m, π̇(X)v,w)= 0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w).
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Recalling that

π(ξ1)π̇(X)v = π̇(Ad(ξ1)X)π(ξ1)v,

since Mλ centralises aλ0 [12, Proposition 7.82], and Kλ is contained in Mλ, we have

0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w)= 0λ,l(aλ, π̇(X)π(ξ1)v, π(ξ

−1
2 )w).

Therefore, relabelling things, it suffices to prove that for every X ∈ aλ0 and for
every aλ ∈ A+

λ , we have

0λ,l(aλ, π̇(X)v,w)= (λ|aλ0
− ρλ0)(X)0λ,l(aλ, v, w).

Moreover, since 0λ,l( · , v, w) is analytic, it suffices to prove the identity for ev-
ery aλ ∈ A+

λ . Let aλ = exp Hλ ∈ A+

λ . Then there exist a compact subset C
of Mλ containing aλ and such that KλC Kλ = C , and a positive R depending
on C such that, for all Hλ0 ∈ a+

λ0
satisfying αi (Hλ0) > log R for every i ∈ I c

λ ,
the expansion of φπ̇(X)v,w(aλ exp Hλ0) relative to P (Theorem 3.1) and the expan-
sion of φπ̇(X)v,w(aλ exp Hλ0) relative to Pλ (Theorem 3.3) are both valid. Setting
H := Hλ + Hλ0 for Hλ0 as above, the expansion in Theorem 3.1 gives

φπ̇(X)v,w(H)=

∑
λ̃∈E

∑
l̃∈Zn

≥0

|l̃|≤l0

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(π̇(X)v), w⟩

By linearity we can assume that X = Hi for some i ∈ I c
λ , where Hi , we recall, is

the element in aλ0 dual to the simple root αi .
Differentiating term by term and taking into account the computation

Hi [α(H)l̃e(λ̃−ρ)(H)] = l̃iα(H)l̃−ei e(λ̃−ρ)(H) + (λ̃|aλ0
− ρ)(Hi )α(H)l̃e(λ̃−ρ)(H),

where ei is the element in Zn
≥0 having 1 as its i-th coordinate and 0 as every other

coordinate, we observe that the only terms in the expansion

φv,w(H)=

∑
λ̃∈E

∑
l̃∈Zn

≥0

|l̃|≤l0

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩

that after differentiation by Hi ∈ aλ0 can contribute a term of the form

cα(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩,

with c ∈ C, to the expansion of φπ̇(X)v,w(H), is precisely

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩.
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This reasoning shows that in the expansion

φπ̇(Hi )v,w(aλ exp Hλ0)=

∑
ν∈EI

∑
q∈Z

I c
λ

≥0
|q|≤q0

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(Hi )v,w)

relative to Pλ, the term indexed by (ν, q) with ν = λ|aλ0
and q = lλ0 satisfies

cPλ
ν,q(aλ, π̇(Hi )v,w)= (λ|aλ0

− ρλ0)(Hi )cPλ
ν,q(aλ, v, w).

Indeed, the comparison in [11, p. 251] shows that

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(Hi )v,w)

is the sum of all the terms in the expansion of φπ̇(Hi )v,w(H) relative to P which
are indexed by couples (λ̃, l̃) satisfying

λ̃|aλ0
= λ|aλ0

and l̃λ0 = lλ0

and, as we saw, these are the terms of the form

(λ|aλ0
− ρλ0)(Hi )α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩.

Finally, since

0λ,l(aλ, v, w)= cPλ
ν,q(aλ, v, w)

by Proposition 3.12, we obtain

0λ,l(aλ, v, w)= (λ|aλ0
− ρλ0)(Hi )0λ,l(aλ, π̇(Hi )v,w). □

Lemma 3.16. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then, for every X ∈ nλ0 and every m ∈ Mλ, we have

0λ,l(m, π̇(X)v,w)= 0.

Proof. We write m ∈ Mλ as m = ξ2aλξ2 for some ξ1, ξ2 ∈ Kλ and some aλ ∈ A+

λ .
Then we have

0λ,l(m, π̇(X)v,w)= 0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w).

Recalling that

π(ξ1)π̇(X)v = π̇(Ad(ξ1)X)π(ξ1)v,

since Mλ normalises nλ0 [12, Proposition 7.83], and Kλ is contained in Mλ, we have

0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w)= 0λ,l(aλ, π̇(X ′)π(ξ1)v, π(ξ

−1
2 )w)
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for some X ′
∈ nλ0 . Therefore, relabelling things, it suffices to prove that for every

X ∈ aλ0 and for every aλ ∈ A+

λ , we have

0λ,l(aλ, π̇(X)v,w)= 0.

Since 0λ,l( · , v, w) is analytic, it suffices to prove the identity for every aλ ∈ A+

λ .
As in the previous proof, we set H := Hλ+ Hλ0 for Hλ0 in an appropriate region

and the expansion in Theorem 3.1 gives

φπ̇(X)v,w(H)=

∑
λ̃∈E

∑
l̃∈Zn

≥0

|l̃|≤l0

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(π̇(X)v), w⟩.

The expansion in Theorem 3.3 gives

φπ̇(X)v,w(aλ exp Hλ0)=

∑
ν∈EI

∑
q∈Z

I c
λ

≥0
|q|≤q0

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(X)v,w).

By [11, Corollary 8.46], each ν− ρλ0 in the second expansion is of the form
λ̃|aλ0

− ρλ0 for some exponent λ̃ in the first expansion. Therefore, it suffices to
prove that if λ ∈ E0 and l ∈ Zn

≥0 with |l| ≤ l0 satisfy

dP(λ, l)= d(π),

then no term with exponent λ̃−ρ for which λ̃|aλ0
= λ|aλ0

appears in the first expan-
sion. Indeed, if we can show this, since by the comparison in [11, p. 251], the term

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(X)v,w),

for ν=λ|aλ0
and qλ0 = lλ0 is the sum of all the terms in the expansion of φπ̇(X)v,w(H)

relative to P which are indexed by couples (λ̃, l̃) satisfying

λ̃|aλ0
= λ|aλ0

and l̃λ0 = lλ0,

it would follow that

cPλ
ν,q(aλ, π̇(X)v,w)= 0,

and therefore

0λ,l(aλ, π̇(X)v,w)= 0.

By linearity we can assume that X ∈ g−αi for some i ∈ I c
λ [11, Proposition 5.23].

Computing as in [2, Lemma 8.16], we have

φπ̇(X)v,w(a)=
〈
π̇(Ad(a)X)π(a)v,w

〉
= −e−αi (H)φv,π̇(X)w(a).
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Hence every exponent in the expansion of φπ̇(X)v,w(a) relative to P is of the form
λ̃= λ′

− ei for some λ′
∈ E . Now, if there existed λ′

∈ E with

(λ′
− ei )|aλ0

= λ|aλ0
,

we would have
Re(λ′

− ei )i = Re λi = 0

since i ∈ I c
λ . This means that Re λ′

i > 0, a contradiction. Indeed, since (π, H) is
tempered, the real part of every coordinate of each leading exponent is at most zero
by Theorem 3.2 and it follows that the same property holds for every element in E . □

Lemma 3.17. Let w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class. Then
the prescription

Sw : HK → L2(Mλ), Sw(v)(m) := 0λ,l(m, v, w),

is a well-defined, (mλ, Kλ)-equivariant map with image contained in L2(Mλ)Kλ
.

Proof. The map Sw is well defined by Proposition 3.14. For every ξ ∈ Kλ and
every m ∈ Mλ, we have

Sw(π(ξ)v)(m)= 0λ,l(m, π(ξ)v,w)= 0λ,l(mξ, v,w)= R(ξ)Sw(v)(m).

By Proposition 3.14, for all X ∈ mλ and for all m ∈ Mλ, we have

Sw(π̇(X)v)(m)= X0λ,l(m, v, w)

and, by Proposition 2.20, we have

X0λ,l(m, v, w)= Ṙ(X)0λ,l(m, v, w).

Therefore
Sw(π̇(X)v)(m)= Ṙ(X)Sw(v)(m)

and this concludes the proof that Sw is (mλ, Kλ)-equivariant. To prove that the
image of Sw is contained in L2(Mλ)Kλ

, we observe that, for every v ∈ HK , the
Kλ-finiteness of v implies the existence of finitely many v1, . . . , vr ∈ HK such that

R(Kλ)0λ,l( · , v, w) ∈ span{0λ,l( · , vi , w) | i ∈ {1, . . . , r}}.

Hence, 0λ,l( · , v, w) is Kλ-finite and, since it is a smooth vector in (R, L2(Mλ))

by Proposition 3.14, it belongs to L2(Mλ)Kλ
. □

We now construct a subrepresentation (2, H2) of (R, L2(Mλ)) which, as we
will show in the next two results, has precisely those properties that we need to
proceed with the strategy outlined in the Introduction. We will show that (2, H2) is
an admissible, finitely generated, unitary (this follows since it is a subrepresentation
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of L2(Mλ)) representation of Mλ such that the image of the (mλ, Kλ)-equivariant
map Sw is precisely the (mλ, Kλ)-module H2,Kλ

and such that the map

Sw : HK → H2,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sw(v)(m) := 0λ,l(m, v, w),

is (mλ ⊕ aλ0, Kλ)-equivariant.
The representation (2, H2) depends on the choice of w ∈ HK and of a rele-

vant [λ, l] ∈ C/∼. However, and this is the important point, the construction can be
formed for every choice of w̃ ∈ Hk and for every choice of relevant [λ̃, l̃] ∈ C/∼.
In Proposition 3.21 below, we will use this construction to define the representation
(σ, Hσ ) discussed in the Introduction.

We adopt the notation of the previous lemma. In the proof of Proposition 3.14,
we showed that, for each v ∈ HK , the function 0λ,l( · , v, w) is a Z(mλ)-finite
function in L2(Mλ). By [11, Corollary 8.42], there exist finitely many orthogonal
irreducible subrepresentations of (R, L2(Mλ)) such that 0λ,l( · , v, w) is contained
in their direct sum. It follows that there exists a (not necessarily finite) collection
{(θ, Hθ )}θ∈2 of orthogonal irreducible subrepresentations of (R, L2(Mλ)) such that
Sw(HK ) is contained in their direct sum. Let (2, H2) denote the direct sum of the
subrepresentations in this collection.

Lemma 3.18. The (mλ, Kλ)-module H2,Kλ
is precisely the image of the (mλ, Kλ)-

equivariant map

Sw : HK → L2(Mλ), Sw(v)(m) := 0λ,l(m, v, w).

Proof. By Lemma 3.17, Sw(HK ) ⊂ H2 ∩ L2(Mλ)Kλ
= H2,Kλ

. For the reverse
inclusion, the irreducibility of each (θ, Hθ ) implies that Sw(HK )∩ Hθ,Kλ

= Hθ,Kλ
.

Therefore H2,Kλ
is contained in the image of Sw, completing the proof. □

Proposition 3.19. The representation (2, H2) of Mλ is admissible, finitely gener-
ated and unitary. Moreover, the map

Sw : HK → H2,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sw(v)(m) := 0λ,l(m, v, w),

is (mλ ⊕ aλ0, Kλ)-equivariant.

Proof. By Lemma 3.18 we have Sw(HK )= H2,Kλ
. By Lemma 3.15, for all X ∈ aλ0

and for all m ∈ Mλ, we have

Sw(π̇(X)v)(m)= (λ|aλ0
− ρλ0)(X)0λ,l(m, v, w)= (λ|aλ0

− ρλ0)(X)Sw(v).

By Lemma 3.16, for all X ∈ nλ0 and for all m ∈ Mλ, we have

Sw(π̇(X)v)(m)= 0λ,l(m, π̇(X)v,w)= 0.
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We thus obtained an (mλ ⊕ aλ0, Kλ)-equivariant map

Sw : HK → H2,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sw(v)(m) := 0λ,l(m, v, w),

which factors through the quotient map

q : HK → HK /nλ0 HK ,

which is (mλ ⊕ aλ0, Kλ)-equivariant by Lemma 2.24.
Since HK , being irreducible (and hence admissible by Theorem 2.9), has an

infinitesimal character, by Corollary 2.26 the (mλ⊕ aλ0, Kλ)-module HK /nλ0 HK

is admissible and finitely generated. It follows that

Sw(HK )= H2,Kλ
⊗ Cλ|aλ0

−ρλ0

is an admissible and finitely generated (mλ ⊕ aλ0, Kλ)-module. The fact that aλ0

acts by scalars implies that H2,Kλ
itself is finitely generated (as U (mλC)-module)

and admissible. □

In the next corollary, we apply Casselman’s version of the Frobenius reciprocity
to construct (g, K )-intertwining operators from the functions 0λ,l . We recall that
Pλ denotes the parabolic subgroup opposite to Pλ and that the half-sum of positive
roots determined by Pλ is precisely −ρλ0 .

Corollary 3.20. The map

Tw : HK → IndPλ,Kλ
(2, λ|aλ0

), Tw(v)(k)(m) := 0λ,l(m, π(k)v,w),

is (g, K )-equivariant.

Proof. The equivariance follows from Proposition 3.19, in combination with
Theorem 2.27 and the discussion following it. More precisely, we have Tw = S̃w in
the notation of the discussion following Theorem 2.27. □

The next proposition is the core of the article: it allows us to prove an identity of
certain integrals using representation-theoretic methods. In the final section, it will
be shown that the identity in question implies Proposition 1.5.

Proposition 3.21. Let [λ, l], [µ,m] ∈ C/∼ be relevant equivalence classes such
that Iλ = Iµ, λ|aλ0

= µ|aλ0
and dP(λ, l) = dP(µ,m). Then, for all X ∈ g, for

all k ∈ K , and for all v1, v2, v3, v4 ∈ HK , the integral∫
K

〈
0λ,l(mλ, π(k)π̇(X)v1, v2), 0µ,m(mλ, π(k)v3, v4)

〉
L2(Mλ)

dk

is equal to the integral

−

∫
K

〈
0λ,l(mλ, π(k)v1, v2), 0µ,m(mλ, π(k)π̇(X)v3, v4)

〉
L2(Mλ)

dk.
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Proof. By Proposition 3.19 and the discussion before Lemma 3.17, we can construct
a representation (σ1, Hσ1) of Mλ that is finitely generated, unitary and such that the
image of the (mλ ⊕ aλ0, Kλ)-equivariant map

Sv2 : HK → L2(Mλ)Kλ
⊗ Cλ|aλ0

−ρλ0
, Sv2(v)(m) := 0λ,l(m, v, v2),

is precisely Hσ1,Kλ
⊗ Cλ|aλ0

−ρλ0
. Similarly, we can construct an admissible, finitely

generated, unitary representation (σ2, Hσ2) such that the image of the (mλ⊕aλ0, Kλ)-
equivariant map

Sv4 : HK → L2(Mλ)Kλ
⊗ Cµ|aλ0

−ρλ0
, Sv4(v)(m) := 0µ,m(m, v, v4),

is precisely Hσ2,Kλ
⊗ Cµ|aλ0

−ρλ0
. Let (σ, Hσ ) denote the direct sum of (σ1, Hσ1)

and (σ2, Hσ2). It is an admissible, finitely generated, unitary representation which
restricts to a unitary representation of Kλ. Since λ|aλ0

= µ|aλ0
, by the same

computations as in Lemma 3.17 and Proposition 3.19 we obtain (mλ ⊕ aλ0, Kλ)-
equivariant maps

Sv2 : HK → Hσ,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sv2(v)(m) := 0λ,l(m, v, v2),

and
Sv4 : HK → Hσ,Kλ

⊗ Cλ|aλ0
−ρλ0

, Sv4(v)(m) := 0µ,m(m, v, v4),

factoring through the (mλ ⊕ aλ0, Kλ)-equivariant quotient map

q : HK → HK /nλ0 HK .

From Corollary 3.20, we obtain (g, K )-equivariant maps

Tv2 : HK → IndPλ,Kλ
(σ, λ|aλ0

), Tv2(v)(k)(m) := 0λ,l(m, π(k)v, v2),

and

Tv4 : HK → IndPλ,Kλ
(σ, λ|aλ0

), Tv4(v)(k)(m) := 0µ,m(m, π(k)v, v4).

By definition of the inner product on IndPλ(σ, λ|aλ0
), we see that proving the sought

identity is equivalent to proving that〈
Tv2(π̇(X)v1), Tv4(v3)

〉
IndPλ

(σ,λ|aλ0
)
= −

〈
Tv2(v1), Tv4(π̇(X)v3)

〉
IndPλ

(σ,λ|aλ0
)
.

By the (g, K )-equivariance of Tv2 , we have〈
Tv2(π̇(X)v1),Tv4(v3)

〉
IndPλ

(σ,λ|aλ0
)
=

〈
˙IndPλ(σ,λ|aλ0

, X)Tv2(v1),Tv4(v3)
〉
IndPλ

(σ,λ|aλ0
)

and, since λ|aλ0
is totally imaginary, from Corollary 2.23 we deduce〈

˙IndPλ(σ, λ|aλ0
, X)Tv2(v1), Tv4(v3)

〉
IndPλ

(σ,λ|aλ0
)

= −
〈
Tv2(v1), ˙IndPλ(σ, λ|aλ0

, X)Tv4(v3)
〉
IndPλ

(σ,λ|aλ0
)
.

The result follows from the (g, K )-equivariance of Tv4 . □
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4. Asymptotic orthogonality

For a tempered, irreducible representation (π, H) of G, for v,w ∈ H , let

φv,w(g) := ⟨π(g)v,w⟩

denote the associated matrix coefficient. By (2) of Theorem 1.2, there exists
d(π) ∈ Z≥0 such that

lim
r→∞

1
r d(π)

∫
G<r

|φv,w(g)|2 dg <∞

for all v,w ∈ HK .
As in [10, Section 4.1], by the polarisation identity and by (2) of Theorem 1.2,

the prescription

D(v1, v2, v3, v4) := lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,v4(g) dg

is a well-defined form on HK that is linear in the first and fourth variable and
conjugate-linear in the second and the third.

We explained in the Introduction that the crucial point is the proof of Proposition 1.5.
We begin with the following reduction.

Lemma 4.1. Let G be a connected, semisimple Lie group with finite centre and let
(π, H) be a tempered, irreducible representation of G. If for all X ∈ g and for all
v1, v2, v3, v4 ∈ HK we have

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φπ̇(X)v3,v4(g)dg,

then

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g)dg=− lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,π̇v4(g)dg

holds for every X ∈ g and for every v1, v2, v3, v4 ∈ HK .

Proof. We write

φv1,π̇(X)v2(g)φv3,v4(g)= ⟨v1, π(g−1)π̇(X)v2⟩⟨v3, π(g−1)v4⟩

and since ⟨ · , · ⟩ is Hermitian we have

⟨v1, π(g−1)π̇(X)v2⟩⟨v3, π(g−1)v4⟩ = φv4,v3(g
−1)φπ̇(X)v2,v1(g−1).

Now, since G<r is invariant under ι(g)= g−1 and G is unimodular, we have∫
G<r

φv4,v3(g
−1)φπ̇(X)v2,v1(g−1) dg =

∫
G<r

φv4,v3(g)φπ̇(X)v2,v1(g) dg
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and therefore∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg =

∫
G<r

φv4,v3(g)φ ˙π(X)v2,v1
(g) dg.

Applying complex conjugation, we obtain∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg =

∫
G<r

φπ̇(X)v2,v1(g)φv4,v3(g) dg.

Assuming the validity of the first identity in the statement, we can write

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v2,v1(g)φv4,v3(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv2,v1(g)φπ̇(X)v4,v3(g)dg.

Now, since∫
G<r

φπ̇(X)v2,v1(g)φv4,v3(g) dg =

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg,

it follows that

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg = − lim
r→∞

∫
G<r

φv2,v1(g)φπ̇(X)v4,v3(g) dg.

Observing that∫
G<r

φv2,v1(g)φπ̇(X)v4,v3(g) dg =

∫
G<r

φπ̇(X)v4,v3(g)φv2,v1(g) dg

and that, using the invariance of G<r under ι(g)= g−1 and the unimodularity of G,∫
G<r

φπ̇(X)v4,v3(g)φv2,v1(g) dg =

∫
G<r

φv1,v2(g)φv3,π̇(X)v4(g) dg,

we finally obtain

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,π̇(X)v4(g)dg.

This completes the proof. □

Proposition 4.2. Let G be a connected, semisimple Lie group with finite centre and
let (π, H) be a tempered, irreducible representation of G. Then, for all X ∈ g and
for all v1, v2, v3, v4 ∈ HK , we have

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φπ̇(X)v3,v4(g)dg.

Remark 4.3. Some of the integral manipulations in the proof require careful justifi-
cation. We decided to provide this in Lemma 4.5 after the proof of Proposition 4.2.
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Proof. The integral formula for the Cartan decomposition, taking into account
the fact that, except for a set of measure zero, every g ∈ G<r can be written as
g = k2 exp H k1, for some k1, k2 ∈ K and some H ∈ a+

<r , with a+
<r as in (3.7), gives∫

G<r

φπ̇(X)v1,v2(g)φv3,v4(g) dg

=

∫
K

∫
a+
<r

∫
K
φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) dk1 d H dk2,

with �(H) defined in (3.8).
Arguing as in [10, p. 258], we can interchange the two innermost integrals in the

right-hand side and, upon multiplying both sides by 1/r d(π) and taking the limit
as r → ∞, the right-hand side can be computed as the integral over K × K of

lim
r→∞

1
r d(π)

∫
a+
<r

φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) d H.

We expand φv1,v2 and φv3,v4 as

φv1,v2(k2 exp H k1)= e−ρp(H)
∑

[λ,l]∈C/∼

α(Hλ0)
lλ0 eλ|aλ0

(Hλ0 )
∑

(λ′,l ′)∈[λ,l]

9
π(k1)v1,π(k−1

2 )v2
λ′,l ′ (H)

and

φv3,v4(k2 exp H k1)

= e−ρp(H)
∑

[µ,m]∈C/∼

α(Hµ0)
mµ0 eµ|aµ0

(Hµ0 )
∑

(µ′,m′)∈[µ,m]

9
π(k1)v1,π(k−1

2 )v2
µ′,m′ (H).

By [10, Lemma A.5 and Claim A.6], the only nonzero contributions to

(4.4) lim
r→∞

1
r d(π)

∫
a+
<r

φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) d H

may come from those [λ, l] ∈ C/∼ and those [µ,m] ∈ C/∼ for which

Iλ = Iµ, λ|aλ0
= µ|aλ0

, d(π)= |Iλ| +
∑
i∈Iλ

(li + mi ).

In view of the first condition, the third is equivalent to requiring that

d(π)= dP(λ, l)= dP(µ,m),

where dP(λ, l) and dP(µ,m) are defined by (1.7).
By the discussion in Section 3 and by Proposition 3.12,

lim
r→∞

1
r d(π)

∫
a+
<r

φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) d H
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is equal to a finite sum of terms of the form

C(λ, l,m)
∫
a+

λ

0λ,l(exp Hλ, π(k1)π̇(X)v1, π(k−1
2 )v2)

0µ,m(exp Hλ, π(k1)v3, π(k−1
2 )v4)�λ(Hλ) d Hλ,

with C(λ, l,m) as in (3.10), the functions 0λ,l and 0µ,m defined as in (3.6) and
�λ(Hλ) defined as in (3.9).

Taking into account the integration over K × K , we proved that

lim
r→∞

1
r d(π)

∫
K

∫
a+
<r

∫
K
φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) dk1 d H dk2

is equal to a finite sum of terms of the form

C(λ, l,m)
∫

K

∫
K

∫
a+

λ

0λ,l(exp Hλ, π(k1)π̇(X)v1, π(k−1
2 )v2)

·0µ,m(exp Hλ, π(k1)v3, π(k−1
2 )v4)�λ(Hλ) d Hλ dk1 dk2.

By (1) of Lemma 4.5 and applying the Fubini–Tonelli theorem, we can interchange
the two innermost integral and we therefore need to prove that∫

K

∫
a+

λ

∫
K
0λ,l(exp Hλ, π(k1)π̇(X)v1, π(k−1

2 )v2)

·0µ,m(exp Hλ, π(k1)v3, π(k−1
2 )v4)�λ(Hλ) dk1 d Hλ dk2

is equal to

−

∫
K

∫
a+

λ

∫
K
0λ,l(exp Hλ, π(k1)v1, π(k−1

2 )v2)

·0µ,m(exp Hλ, π(k1)π̇(X)v3, π(k−1
2 )v4)�λ(Hλ) dk1 d Hλ dk2.

Set

I(exp Hλ, k1, k−1
2 )

:= 0λ,l(expλ, π(k1)π̇(X)v1, π(k−1
2 )v2)0µ,m(exp Hλ, π(k1)v3, π(k−1

2 )v4).

We apply the quotient integral formula [3, Theorem 2.51], to write the integral∫
K

∫
a+

λ

∫
K
I(exp Hλ, k1, k−1

2 )�(Hλ) dk1 d Hλ dk2

as ∫
K

∫
a+

λ

∫
Kλ\K

∫
Kλ

I(exp Hλ, ξ1k1, k−1
2 )�λ(Hλ) dξ1 dk̇1 d Hλ dk2
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and again to write it as∫
K/Kλ

∫
Kλ

∫
a+

λ

∫
Kλ\K

∫
Kλ

I(exp Hλ, ξ1k1, ξ
−1
2 k−1

2 )�λ(Hλ) dξ1 dk̇1 d Hλ dξ2 dk̇2.

By (3) of Lemma 4.5, we can appeal to the Fubini–Tonelli theorem to interchange
the two innermost integrals and to obtain∫

K/Kλ

∫
Kλ

∫
a+

λ

∫
Kλ

∫
Kλ\K

I(exp Hλ, ξ1k1, ξ
−1
2 k−1

2 )�λ(Hλ) dk̇1 dξ1 d Hλ dξ2 dk̇2.

Now, combining the fact that M reg
λ = KλA+

λ Kλ, the relevant integral formula and the
fact that the complement of M reg has measure zero in M , it follows that the integral∫

Kλ

∫
a+

λ

∫
Kλ

∫
Kλ\K

I(exp Hλ, ξ1k1, ξ
−1
2 k−1

2 )�λ(Hλ) dk̇1 dξ1 d Hλ dξ2

is equal to∫
Mλ

∫
Kλ\K

0λ,l(mλ, π(k1)π̇(X)v1, π(k−1
2 )v2)0µ,m(mλ, π(k1)v3, π(k−1

2 )v4) dk̇1 dmλ.

For k1 ∈ K , we define

f (k1) :=
〈
0λ,l(mλ,π(k1)π̇(X)v1,π(k−1

2 )v2),0µ,m(mλ,π(k1)v3,π(k−1
2 )v4)

〉
L2(Mλ)

.

The function f is invariant under left-multiplication by Kλ. Indeed, if ξ ∈ Kλ, then

0λ,l(mλ, π(ξk1)π̇(X)v1, π(k2)v2)= 0λ,l(mλξ, π(k1)π̇(X)v1, π(k2)v2)

and similarly for the 0µ,m-term. Since the right-regular representation of Mλ is
unitary, we have〈
0λ,l(mλξ, π(k1)π̇(X)v1, π(k−1

2 )v2), 0µ,m(mλξ, π(k1)v3, π(k−1
2 )v4)

〉
L2(Mλ)

= f (k).

An application of the quotient integral formula [3, Theorem 2.51] gives∫
K

f (k1) dk1 =

∫
Kλ\K

∫
K

f (ξk1) dξ dk̇1 = vol(Kλ)

∫
Kλ\K

f (k1) dk̇1.

By (2) in Lemma 4.5 and appealing again to the Fubini–Tonelli theorem, we
interchange the integrals over Mλ and Kλ\K to obtain that∫

K/Kλ

∫
Mλ

∫
Kλ\K

0λ,l(mλ, π(k1)π̇(X)v1, π(k−1
2 )v2)

·0µ,m(mλ, π(k1)v3, π(k−1
2 )v4) dξ1 dmλ dξ2

equals
1

vol(Kλ)

∫
K/Kλ

∫
K

f (k1) dk1 dk̇2,
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which, in turn, equals

1
vol(Kλ)

∫
K/Kλ

∫
K

〈
0λ,l(mλ, π(k1)π̇(X)v1, π(k−1

2 )v2),

0µ,m(mλ, π(k1)v3, π(k−1
2 )v4)

〉
L2(Mλ)

dk1 dk̇2.

For fixed k2 ∈ K , set w2 :=π(k−1
2 )v2 and w4 :=π(k−1

2 )v4. We reduced the problem
to proving that∫

K

〈
0λ,l(mλ, π(k1)π̇(X)v1, w2), 0µ,m(mλ, π(k1)v3, w4)

〉
L2(Mλ)

dk1

equals

−

∫
K

〈
0λ,l(mλ, π(k1)v1, w2), 0µ,m(mλ, π(k1)π̇(X)v3, w4)

〉
L2(Mλ)

dk1.

The result is therefore a consequence of Proposition 3.21. □

Lemma 4.5. Let v1, w2, v3, w4 ∈ HK . Let [λ, l], [µ,m] ∈ C/∼ be such that Iλ= Iµ,
λ|aλ0

= µ|aλ0
and d(π)= |Iλ| +

∑
i∈Iλ(li + mi ). Then the following holds:

(1)
∫

K

∫
a+

λ

∣∣0λ,l(exp Hλ, π(k1)v1, w2)0µ,m(exp Hλ, π(k1)v3, w4)
∣∣ d Hλ dk1 <∞.

(2)
∫

Kλ\K

∫
Mλ

∣∣0λ,l(mλ, π(k)v1, w2)0µ,m(mλ, π(k)v3, w4)
∣∣ dmλ dk̇ <∞.

(3) For any fixed Hλ ∈ a+

λ , we have∫
Kλ\K

∫
Kλ

∣∣0λ,l(exp Hλ, π(ξk)v1, w2)0µ,m(exp Hλ, π(ξk)v3, w4)
∣∣ dξ dk̇ <∞.

Proof. To prove (1), we begin by observing that, for a fixed element k of K ,
the functions 0λ,l(exp Hλ, π(k)v1, v2) and 0µ,m(exp Hλ, π(k)v3, v4) are square-
integrable on a+

λ by Proposition 3.13. Therefore, we have∫
a+

λ

∣∣0λ,l(exp Hλ, π(k)v1, w2)0µ,m(exp Hλ, π(k)v3, w4)
∣∣ dmλ <∞.

Hence, we can define the function

h :K →R≥0, h(k)=
∫
a+

λ

∣∣0λ,l(exp Hλ,π(k)v1,w2)0µ,m(exp Hλ,π(k)v3,w4)
∣∣d Hλ,

and the result will follow if we establish the continuity of h. The K -finiteness of v1

and v3 implies the existence of finitely many K -finite vectors v(1)1 , . . . , v
(p)
1 and
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finitely many K -finite vectors v(1)3 , . . . , v
(q)
3 such that

π(k)v1 =

p∑
i=1

ai (k)v
(i)
1 and π(k)v3 =

q∑
j=1

b j (k)v
( j)
3

for continuous complex-valued functions ai and b j . Let k0 ∈ K . Then

|h(k)− h(k0)|

is majorised by the integral over a+

λ of∣∣∣∣0λ,l(exp Hλ, π(k)v1, w2)0µ,m(exp Hλ, π(k)v3, w4)
∣∣

−
∣∣0λ,l(exp Hλ, π(k0)v1, w2)0µ,m(exp Hλ, π(k0)v3, w4)

∣∣∣∣.
By reverse triangle inequality, the integrand is majorised by∣∣0λ,l(expλ, π(k)v1, w2)0µ,m(exp Hλ, π(k)v3, w4)

−0λ,l(exp Hλ, π(k0)v1, w2)0µ,m(exp Hλ, π(k0)v3, w4)
∣∣,

which, in turn, is less than or equal to

p∑
i=1

q∑
j=1

|ai (k)b j (k)−ai (k0)b j (k0)| |0λ,l(exp Hλ, v
(i)
1 , w2)0µ,m(exp Hλ, v

( j)
3 , w4)|.

We obtained

|h(k)− h(k0)| ≤

p∑
i=1

q∑
j=1

|ai (k)b j (k)− ai (k0)b j (k0)|

·

∫
a+

λ

|0λ,l(exp Hλ, v
(i)
1 , w2)0µ,m(exp Hλ, v

( j)
3 , w4)| d Hλ,

and the continuity follows from the continuity of the ai ’s and b j ’s.
For (2), we first observe that for fixed k ∈ K , the functions 0λ,l(mλ, π(k)v1, w2)

and 0µ,m(mλ, π(k)v3, w4) are square-integrable on Mλ by Proposition 3.13. There-
fore, we have∫

Mλ

∣∣0λ,l(mλ, π(k)v1, w2)0µ,m(mλ, π(k)v3, w4)
∣∣ dmλ <∞.

Hence, we can define the function

h : K → R≥0, h(k)=

∫
Mλ

∣∣0λ,l(mλ, π(k)v1, w2)0µ,m(mλ, π(k)v3, w4)
∣∣ dmλ.

Arguing as for (1), we obtain that h is continuous.
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By the right-invariance of the Haar measure on Mλ and since

0λ,l(mλ, π(ξk)v1, w2)= 0λ,l(mλξ, π(k)v1, w2)

for every ξ ∈ Kλ (and similarly for the 0µ,m-term), the function h is invariant
under multiplication on the left by elements in Kλ and it therefore descends to a
continuous function on Kλ\K , concluding the proof of (2).

For (3), given a fixed Hλ ∈ a+

λ the function

Kλ → C, ξ 7→ 0λ,l(exp Hλ, π(ξk)v1, w2),

is continuous. Indeed, let ξ0 ∈ Kλ. Since π(k)v1 is K -finite, it is in particular
Kλ-finite. Hence, there exist finitely many Kλ-finite vectors v(1)1 , . . . , v

(r)
1 such that

π(ξ)π(k)v =

r∑
i=1

ci (ξ)v
(i)
1 ,

where each ci is a complex-valued continuous function on Kλ. Therefore,∣∣0λ,l(exp Hλ, π(ξk)v1, w2)−0λ,l(exp Hλ, π(ξ0k)v1, w2)
∣∣

is bounded by
r∑

i=1

|ci (ξ)− ci (ξ0)| |0λ,l(exp Hλ, v
(i)
1 , w2)|

and the claim follows from the continuity of the ci ’s.
The same argument shows that, for fixed Hλ ∈ a+

λ , the function

Kλ → C, ξ 7→ 0µ,m(exp Hλ, π(ξ)v3, w4),

is continuous and it follows that∫
Kλ

∣∣0λ,l(exp Hλ, π(ξk)v1, w2)0µ,m(exp Hλ, π(ξk)v3, w4)
∣∣ dξ <∞.

Hence, we can define the function

f :K →R≥0, f (k)=
∫

Kλ

∣∣0λ,l(exp Hλ,π(ξk)v1,w2)0µ,m(exp Hλ,π(ξk)v3,w4)
∣∣dξ

and argue as in the proof of (2). □

We now complete the strategy outlined in the Introduction. For fixed v2, v4∈HK ,
we define

Av2,v4 := D( · , v2, · , v4),

which is linear in the first variable and conjugate linear in the second. For fixed
v1, v3 ∈ HK , we define

Bv1,v3 := D(v1, · , v3, · ),

which is conjugate-linear in the first variable and linear in the second.
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Theorem 4.6. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be a tempered, irreducible representation of G. Then there exists f (π)∈R>0

such that, for all v1, v2, v3, v4 ∈ HK , we have

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

Proof. Fix v2, v4 ∈ HK . By Proposition 4.2, we can apply Corollary 2.13 to the
form Av2,v4 . Hence there exists cv2,v4 ∈ C such that for all v1, v3 ∈ HK we have

Av2,v4(v1, v3)= cv2,v4⟨v1, v3⟩.

Similarly, fixing v1, v3 ∈ HK , by Proposition 4.2 and Lemma 4.1 there exists a
dv1,v3 ∈ C such that

Bv3,v1(v4, v2)= dv1,v3⟨v4, v2⟩,

since the left-hand side is conjugate-linear in the first variable. Hence, since

Bv3,v1(v4, v2)= Bv1,v3(v2, v4),

we obtain
Bv1,v3(v2, v4)= dv1,v3⟨v2, v4⟩.

By definition, we have

D(v1, v2, v3, v4)= Av2,v4(v1, v3)= Bv1,v3(v2, v4),

so, for a vector v0 ∈ HK of norm 1, using (2) of Theorem 1.2, we obtain a real
number C(v0, v0) > 0 such that

D(v0, v0, v0, v0)= C(v0, v0)= cv0,v0 = dv0,v0 .

Computing D(v1, v0, v3, v0), we have

dv1,v3 = cv0,v0⟨v1, v3⟩.

Therefore, we obtained

D(v1, v2, v3, v4)= cv0,v0⟨v1, v3⟩⟨v2, v4⟩,

showing that f (π) :=
1

C(v0,v0)
does not depend on the choice of v0, as required. □
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