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GROMOV–WITTEN THEORY OF HILBERT SCHEMES OF
POINTS ON ELLIPTIC SURFACES WITH MULTIPLE FIBERS

MAZEN M. ALHWAIMEL AND ZHENBO QIN

We study the Gromov–Witten theory of Hilbert schemes of points on elliptic
surfaces with multiple fibers. We prove a vanishing theorem for the Gromov–
Witten invariants of these Hilbert schemes, and compute the exceptional
genus-0 case for the Hilbert schemes of two points on elliptic surfaces with
exactly one multiple fiber. The strategy is to use the theory of cosection
localization and compute a certain obstruction sheaf.

1. Introduction

Hilbert schemes are classical objects in algebraic geometry [11]. It is well-known
[7; 14] that the Hilbert schemes of points on a smooth projective surface are smooth
and irreducible. The investigation of the Gromov–Witten theory of these Hilbert
schemes is important and has been extremely active. It began with the computation
of 1-point genus-0 extremal Gromov–Witten invariants in [19]. Motivated by the
Gromov–Witten and Donaldson–Thomas correspondence [24; 25], Okounkov and
Pandharipande [29] studied the equivariant Gromov–Witten theory of the Hilbert
schemes of points in the affine plane. More generally, Maulik and Oblomkov [23]
determined the equivariant quantum cohomology of the Hilbert scheme of points
on surface resolutions associated to type An singularities. For the Hilbert schemes
of points on K3 surfaces, Oberdieck [27] considered the reduced Gromov–Witten
theory. Via cosection localization [15; 16; 17], the quantum boundary operator and
the 2-point genus-0 extremal Gromov–Witten invariants of the Hilbert schemes
of points on an arbitrary smooth projective surface are obtained in [18], and the
structure of the 3-point genus-0 extremal Gromov–Witten invariants are analyzed in
[20; 12]. Moreover, when the surface admits a nontrivial holomorphic differential
two-form, a vanishing theory for the Gromov–Witten invariants is proved in [13].
For the Hilbert schemes of points on elliptic surfaces without multiple fibers, the
Gromov–Witten invariants are calculated in [1; 28].

MSC2020: 14C05, 14N35.
Keywords: Gromov–Witten invariant, Hilbert scheme, cosection localization, elliptic surface, stable

map.
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2 MAZEN M. ALHWAIMEL AND ZHENBO QIN

In this paper, we continue our previous work [1], and study the Gromov–Witten
theory of the Hilbert schemes of points on an elliptic surface X with multiple fibers.
Let X [n] denote the Hilbert schemes of n points on X . For β ∈ H2(X [n], Z), let
Mg,r (X [n], β) be the moduli space parametrizing the degree-β r-pointed genus-
g stable maps to X [n]. For a smooth curve C in X and for fixed distinct points
x1, . . . , xn−1 ∈ X , define the following two curves in X [n]:

βn =
{
ξ + x2 + · · · + xn−1 ∈ X [n]

| Supp(ξ) = {x1}
}
,

βC =
{

x + x1 + · · · + xn−1 ∈ X [n]
| x ∈ C

}
which, by abuse of notation, also denote their corresponding homology classes.

Our first result generalizes [13, Corollary 3.5] from the case of elliptic surfaces
without multiple fibers to the case of elliptic surfaces with multiple fibers.

Theorem 3.3. Let X be a regular elliptic surface with pg ≥ 1 such that every
singular fiber is either irreducible reduced or a multiple fiber with smooth reduction.
Let f be a smooth fiber in X and β ∈ H2(X [n], Z). Then all the Gromov–Witten
invariants of X [n] defined via the moduli space Mg,r (X [n], β) vanish except possibly
when g ≤ 1 and β = d0β f + dβn for some integer d and rational number d0 ≥ 0.

When n = 2 and the elliptic surface X contains exactly one multiple fiber with
smooth reduction, the theorem can be strengthened.

Theorem 4.5. Let X be a regular elliptic surface with pg ≥ 1 and exactly one
multiple fiber such that every singular fiber is either irreducible reduced or the
unique multiple fiber with smooth reduction F. Let β ∈ H2(X [2], Z). Then all
the Gromov–Witten invariants of X [2] defined via the moduli space Mg,r (X [2], β)

vanish except possibly when g ≤ 1 and β = d0βF + dβ2 for some integers d0 and d
satisfying d0 ≥ 0 and d ≥ −2d0.

Next, we compute the 1-point genus-0 Gromov–Witten invariants ⟨α⟩
X [2]

0,d(βF −2β2)

for d ≥1 and α∈ H 4(X [2], C), which are among the exceptional cases in Theorem 4.5.
Let [

M0,1
(
X [2], d(βF − 2β2)

)]vir

be the virtual fundamental class of the moduli space M0,1
(
X [2], d(βF −2β2)

)
. The

computation of the invariants ⟨α⟩
X [2]

0,d(βF −2β2)
is equivalent to determining the cycle

ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir)
where ev1 is the evaluation map from M0,1

(
X [2], d(βF − 2β2)

)
to X [2].

Theorem 4.8. Let X be a regular elliptic surface with pg ≥ 1 and exactly one
multiple fiber such that every singular fiber is either irreducible reduced or the
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unique multiple fiber with smooth reduction F. Let m be the multiplicity of the
unique multiple fiber, and 1 ≤ d < m. Then,

(1-1) ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir
)

=
1
d2 ·

[
F (2)

]
∈ A2(X [2]).

The proof of Theorem 3.3 involves cosection localization and a modification of
the proof of [13, Corollary 3.5]. The modification takes care of the presence of
the multiple fibers in the elliptic surface X . To prove Theorem 4.5, we analyze the
homology classes of curves contained in

M2(F) = {ξ ∈ X [2]
| Supp(ξ) is a point in F}.

When 1 ≤ d < m, we show that the images of the stable maps parametrized by
Mg,r

(
X [2], d(βF − 2β2)

)
must be contained in the symmetric product F (2)

⊂ X [2].

After expressing
[
M0,1

(
X [2], d(βF −2β2)

)]vir in terms of the Chern class of certain
tautological bundle over M0,1

(
X [2], d(βF − 2β2)

)
, we verify Theorem 4.8.

To put Theorems 4.5 and 4.8 into perspective, we propose the following regarding
the 1-point genus-0 Gromov–Witten invariants and the 0-point genus-1 Gromov–
Witten invariants respectively.

Conjecture 1.1. Keep the notation from Theorem 4.8. Then (1-1) holds for every
integer d ≥ 1.

Problem 1.2. Keep the notation from Theorem 4.8. For every integer d ≥1, compute
the genus-1 Gromov–Witten invariant ⟨ ⟩

X [2]

1,d(βF −2β2)
.

In order to confirm Conjecture 1.1, one has to understand the homology classes
of curves in ( fs)

(2) and M2( fs) for a singular non-multiple fiber fs in the elliptic
surface X . As for Problem 1.2, the genus-1 invariants ⟨⟩

X [2]

1,d(βF −2β2)
are among the

exceptional cases in Theorem 4.5. Partial progress has been made in Remark 4.9.
We will leave Conjecture 1.1 and Problem 1.2 to interested readers.

Finally, the paper is organized as follows. In Section 2, we collect basic facts
about stable maps, Gromov–Witten invariants, the Hilbert schemes of points on
surfaces, and the Heisenberg operators of Grojnowski and Nakajima. We prove
Theorem 3.3 in Section 3, and Theorems 4.5 and 4.8 in Section 4.

Conventions. In this paper, an elliptic surface means a smooth projective complex
surface which is minimal and admits an elliptic fibration over a smooth curve. For
a smooth projective surface X , let K X be the canonical divisor of X and

q = h1(X,OX ), pg = h2(X,OX ) = h0(X,OX (K X )
)
.
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2. Preliminaries

In this section, we will recall the standard concepts and notions regarding stable
maps, Gromov–Witten invariants, the Hilbert schemes of points on surfaces, and
the Heisenberg operators of Grojnowski [10] and Nakajima [26]. We will use these
operators to describe the (co)homology groups of the Hilbert schemes and the
homology classes of certain special curves in the Hilbert schemes.

2.1. Stable maps and Gromov–Witten invariants. Let Y be a smooth projective
variety. An r -pointed stable map to Y consists of a complete nodal curve D with r
distinct ordered smooth points p1, . . . , pr and a morphism µ : D → Y such that
the data (µ, D, p1, . . . , pr ) has only finitely many automorphisms. In this case,
the stable map is denoted by

[µ : (D; p1, . . . , pr ) → Y ],

or simply by [µ : D → Y ]. For β ∈ H2(Y, Z), let Mg,r (Y, β) be the coarse moduli
space parametrizing the stable maps [µ : (D; p1, . . . , pr )→Y ] such that µ∗[D]=β

and the arithmetic genus of D is g. Then, we have the i-th evaluation map:

(2-1) evi : Mg,r (Y, β) → Y

defined by evi ([µ : (D; p1, . . . , pr ) → Y ]) = µ(pi ). It is known [21; 22; 5] that
the coarse moduli space Mg,r (Y, β) is projective and has a virtual fundamental
class [Mg,r (Y, β)]vir

∈ Ad(Mg,r (Y, β)), where

(2-2) d = −(KY · β) + (dim(Y ) − 3)(1 − g) + r

is the expected complex dimension of Mg,r (Y, β), and Ad(Mg,r (Y, β)) is the Chow
group of d-dimensional cycles in the moduli space Mg,r (Y, β).

The Gromov–Witten invariants are defined by using the virtual fundamental class
[Mg,r (Y, β)]vir. Recall that an element

α ∈ H∗(Y, C)
def
=

2 dimC(Y )⊕
j=0

H j (Y, C)

is homogeneous if α ∈ H j (Y, C) for some j ; in this case, we take |α| = j . Let
α1, . . . , αr ∈ H∗(Y, C) such that every αi is homogeneous and

(2-3)
r∑

i=1

|αi | = 2d.
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Then, we have the r -point genus-g Gromov–Witten invariant defined by

(2-4) ⟨α1, . . . , αr ⟩
Y
g,β =

∫
[Mg,r (Y,β)]vir

ev∗

1(α1) ⊗ · · · ⊗ ev∗

r (αr ).

In particular, when r = 1, we see from the projection formula that

(2-5) ⟨α⟩
Y
g,β =

∫
ev1∗([Mg,1(Y,β)]vir)

α.

Next, we recall that the excess dimension is the difference between the dimension
of Mg,r (Y, β) and the expected dimension d in (2-2). Let TY stand for the tangent
sheaf of Y . For 0 ≤ i < r , we shall use

(2-6) fr,i : Mg,r (Y, β) → Mg,i (Y, β)

to stand for the forgetful map obtained by forgetting the last (r − i) marked points
and contracting all the unstable components. It is known that fr,i is flat when β ̸= 0
and 0 ≤ i < r . The following can be found in [9, Proposition 2.5].

Proposition 2.1. Let β ∈ H2(Y, Z) and β ̸= 0. Let e be the excess dimension of
Mg,r (Y, β). If R1( fr+1,r )∗(evr+1)

∗TY is a rank-e locally free sheaf , then

[Mg,r (Y, β)]vir
= ce

(
R1( fr+1,r )∗(evr+1)

∗TY
)
.

Finally, the fundamental class axiom of Gromov–Witten theory states that

(2-7) [Mg,r (Y, β)]vir
= ( fr,r−1)

∗
[Mg,r−1(Y, β)]vir

if either r + 2g ≥ 4 or β ̸= 0 and r ≥ 1. The Divisor Axiom states that

(2-8) ⟨α1, . . . , αr−1, αr ⟩
Y
g,β =

∫
β

αr · ⟨α1, . . . , αr−1⟩
Y
g,β

if αr ∈ H 2(Y, C), and if either r + 2g ≥ 4 or β ̸= 0 and r ≥ 1.

2.2. Hilbert schemes of points on surfaces. Let X be a smooth projective complex
surface, and X [n] be the Hilbert scheme of n-points in X . An element in X [n] is
represented by a length-n 0-dimensional closed subscheme ξ of X . For ξ ∈ X [n], let
Iξ and Oξ be the corresponding sheaf of ideals and structure sheaf respectively. It
is known from [7; 14] that X [n] is a smooth irreducible variety of dimension 2n. In
fact, the Hilbert-Chow morphism X [n]

→ X (n), mapping an element in X [n] to its
support in the n-th symmetric product X (n), is a crepant resolution. The universal
codimension-2 subscheme is

(2-9) Zn = {(ξ, x) ∈ X [n]
× X | x ∈ Supp(ξ)} ⊂ X [n]

× X.
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The boundary of X [n] is defined to be the subset

Bn =
{
ξ ∈ X [n]

| |Supp(ξ)| < n
}
.

Let C be a real-surface in X , and fix distinct points x1, . . . , xn−1 ∈ X which are not
contained in C . Define the subsets

βn =
{
ξ + x2 + · · · + xn−1 ∈ X [n]

∣∣ Supp(ξ) = {x1}
}
,(2-10)

βC =
{

x + x1 + · · · + xn−1 ∈ X [n]
∣∣ x ∈ C

}
,(2-11)

DC =
{
ξ ∈ X [n]

∣∣ Supp(ξ) ∩ C ̸= ∅
}
.(2-12)

Note that βC (respectively, DC ) is a curve (respectively, a divisor) in X [n] when
C is a smooth algebraic curve in X . We extend the notions βC and DC to all the
divisors C in X by linearity. For a subset Y ⊂ X , define

(2-13) Mn(Y ) = {ξ ∈ X [n]
| Supp(ξ) is a point in Y }.

Grojnowski [10] and Nakajima [26] geometrically constructed a Heisenberg alge-
bra action on the cohomology of the Hilbert schemes X [n]. Denote the Heisenberg
operators by am(α) where m ∈ Z and α ∈ H∗(X, C). Put

HX =

+∞⊕
n=0

H∗(X [n], C).

The operators am(α) ∈ End(HX ) satisfy the commutation relation

(2-14) [am(α), an(β)] = −m · δm,−n · ⟨α, β⟩ · IdHX

where we have used δm,−n to denote 1 if m = −n and 0 otherwise. The space HX is
an irreducible representation of the Heisenberg algebra generated by the operators
am(α) with the highest weight vector being

|0⟩ = 1 ∈ H∗(X [0], C) = C.

Let {α1, . . . , αs} be a basis of

H even(X, C) = H 0(X, C) ⊕ H 2(X, C) ⊕ H 4(X, C)

and {αs+1, . . . , αs+t } be a basis of

H odd(X, C) = H 1(X, C) ⊕ H 3(X, C)

where every αi is homogeneous. Then, a basis of the n-th component H∗(X [n], C)

in HX consists of the Heisenberg monomial classes

(2-15)
(s+t∏

i=1

a−ni,1(αi ) · · · a−ni,ki
(αi )

)
|0⟩
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where ki ≥ 0 for each i , every ni, j is a positive integer,
∑

i, j ni, j = n, and the
integers ni,1, . . . , ni,ki are mutually distinct for every i ∈ {s + 1, . . . , s + t}. In
particular, a basis of the H 4n−2(X [n], C) in HX consists of the classes

(2-16) a−2(x)a−1(x)n−2
|0⟩, a−1(αi )a−1(x)n−1

|0⟩, a−1(α j )a−1(αk)a−1(x)n−2
|0⟩,

where |αi | = 2, |α j | = |αk | = 3 with j < k, and by abusing notation, we have used
x to denote the cohomology class Poincaré dual to a point x ∈ X . Also,

βn = a−2(x)a−1(x)n−2
|0⟩,(2-17)

βC = a−1(C)a−1(x)n−1
|0⟩,(2-18)

Bn =
1

(n−2)!
a−1(1X )n−2a−2(1X )|0⟩,(2-19)

DC =
1

(n−1)!
a−1(1X )n−1a−1(C)|0⟩(2-20)

where 1X denotes the fundamental cohomology class of X , and for simplicity, we
do not distinguish a homology class and its Poincaré dual.

Definition 2.2. Let n ≥ 2. We define H̃2(X [n], C) to be the linear subspace of
H2(X [n], C) spanned by the Poincaré duals of the basis classes

a−1(α j )a−1(αk)a−1(x)n−2
|0⟩

in (2-16), where |α j | = |αk | = 3 with j < k.

Next, we recall the homology class of an irreducible curve in the Hilbert scheme
X [n]. Let 0 be an irreducible curve in X [n]. Define

(2-21) Z0 = 0 ×X [n] Zn.

Then, Z0 ⊂ Zn ⊂ X [n]
× X . By [13, Lemma 5.1] and its proof there, we have the

following (see also [27, Lemma 1] and [30, Lemma 3.19]).

Lemma 2.3. Let n ≥ 2. Let 0 be an irreducible curve in X [n]. Then,

(2-22) 0 ≡ βπ2∗[Z0] + dβn (mod H̃2(X [n], C))

for some integer d, where π2 is the second projection of X [n]
× X.

Finally, let C be a smooth irreducible curve in X with genus gC . Let C (n) denote
the n-th symmetric product of C . We regard C (n)

⊂ X [n] whenever necessary. For
a fixed point p ∈ C , let 4 denote the divisor p + C (n−1)

⊂ C (n). Let

AJ : C (n)
→ Jacn(C)

be the Abel–Jacobi map sending ξ ∈ C (n) to the corresponding degree-n divisor
class in Jacn(C). For an element δ ∈ Jacn(C), the fiber AJ−1(δ) is the complete
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line system |δ|. Let 2 be the pullback via AJ of a theta divisor on Jacn(C). It is
well-known that theta divisors on Jacn(C) are ample.

Lemma 2.4 [30, Lemma 3.20]. Let n ≥ 2, and H̃2(X [n], C) be from Definition 2.2.
Let C be a smooth curve in X , and 0 ⊂ C (n) be a curve. Then,

(2-23) 0 ≡ (4 ·0)βC +
(
−(n + gC − 1)(4 ·0)+ (2 ·0)

)
βn (mod H̃2(X [n], C)).

In addition, for every line 00 in a positive-dimensional fiber AJ−1(δ), we have

(2-24) 00 ≡ βC − (n + gC − 1)βn (mod H̃2(X [n], C)).

3. The vanishing of certain Gromov–Witten invariants of the Hilbert schemes
of points on elliptic surfaces with multiple fibers

The goal of this section is to show that certain Gromov–Witten invariants of the
Hilbert schemes of points on elliptic surfaces with multiple fibers are equal to 0.
Theorem 3.3 below generalizes [13, Corollary 3.5] to the case when the surface is
an elliptic surface with multiple fibers. We prove our Theorem 3.3 by modifying
the cosection localization method in the proof of [13, Theorem 3.3].

Let X be a (minimal) elliptic surface. By [8, Corollary 7.5 on p. 113], up to
deformation, we may assume that every singular fiber of X is either an irreducible
reduced rational curve with one node or a multiple fiber with smooth reduction.
If pg = h0

(
X,OX (K X )

)
≥ 1, then by [17, Proposition 6.1 and Remark 6.2], up to

deformation, we may further assume that |K X | contains a member of the form

(3-1)
s∑

i=1

fi +

t∑
j=1

(m j − 1)F j

where f1, . . . , fs are distinct smooth fibers, and F1, . . . , Ft are distinct smooth
multiple fibers with multiplicities m1, . . . , mt respectively. Therefore, we fix the
following assumption throughout this section unless otherwise specified.

Assumption 3.1. X is an elliptic surface with pg ≥ 1 and with the elliptic fibration
π : X → C over a smooth curve C such that

(i) every singular fiber of π is either irreducible reduced or a multiple fiber with
smooth reduction;

(ii) H 0(X, �2
X ) = H 0(X,OX (K X )) contains a holomorphic differential two-form

θ whose zero-set is of the form (3-1).

By the results of Beauville [3; 4], the holomorphic differential two-form θ

induces a holomorphic two-form θ [n] of the Hilbert scheme X [n] which can also be
regarded as a map θ [n]

: TX [n] → �X [n] . For simplicity, put

M = Mg,r (X [n], β).
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Define the degeneracy locus M(θ) to be the subset of M consisting of all the stable
maps u : 0 → X [n] such that the composite

(3-2) u∗(θ [n]) ◦ du : T0reg → u∗TX [n] |0reg → u∗�X [n] |0reg

is trivial over the regular locus 0reg of 0. By the results of Kiem–Li [15; 16], θ [n]

defines a regular cosection of the obstruction sheaf of M:

(3-3) η : ObM −→ OM

where ObM is the obstruction sheaf and OM is the structure sheaf of M. Moreover,
the cosection η is surjective away from the degeneracy locus M(θ), and there exists
a localized virtual cycle [M]

vir
loc ∈ A∗(M(θ)) such that

(3-4) [M]
vir

= ι∗[M]
vir
loc ∈ A∗(M)

where ι : M(θ) → M stands for the inclusion map.

Lemma 3.2. Let X be an elliptic surface satisfying Assumption 3.1. Let f be a
smooth fiber in X , and let H̃2(X [n], C) ⊂ H2(X [n], C) be from Definition 2.2. If the
subset M(θ) of M = Mg,r (X [n], β) is nonempty, then

(3-5) β ≡ d0β f + dβn (mod H̃2(X [n], C))

for some integer d and some rational number d0 ≥ 0.

Proof. Let u : 0 → X [n] be a stable map in M(θ), and let 00 be any irreducible
component of 0. By Assumption 3.1(ii), the zero-set of θ is supported on( s⋃

i=1
fi
)
∪

( t⋃
j=1

F j
)
.

By [13, Lemma 3.1], there exists ξ1 ∈ X [n0] for some n0 such that

Supp(ξ1) ∩

(( s⋃
i=1

fi
)
∪

( t⋃
j=1

F j
))

= ∅,

(3-6) u(00) ⊂ ξ1 +

{
ξ2 | Supp(ξ2) ⊂

( s⋃
i=1

fi
)
∪

( t⋃
j=1

F j
)}

.

By Lemma 2.3, there exist integers a fi ≥ 0, aF j ≥ 0 and d ′ such that

(3-7) u(00) ≡

s∑
i=1

a fi β fi +

t∑
j=1

aF j βF j + d ′βn (mod H̃2(X [n], C)).

Since f = fi = m j F j as divisors, we conclude that

(3-8) u(00) ≡ d ′

0β f + d ′βn (mod H̃2(X [n], C))
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for some rational number d ′

0 ≥ 0. Since β = u∗[0] =
∑

00⊂0 u∗[00], our lemma
follows from (3-8). □

Theorem 3.3. Let X be a regular elliptic surface with pg ≥ 1 such that every
singular fiber is either irreducible reduced or a multiple fiber with smooth reduction.
Let f be a smooth fiber in X and β ∈ H2(X [n], Z). Then all the Gromov–Witten
invariants of X [n] defined via the moduli space Mg,r (X [n], β) vanish except possibly
when g ≤ 1 and β = d0β f + dβn for some integer d and rational number d0 ≥ 0.

Proof. Since X is regular, the elliptic fiberation is of the form π : X → P1.
So Assumption 3.1(ii) holds. Again, since X is regular, H̃2(X [n], C) = 0 by
Definition 2.2. Moreover, by (2-15), all odd cohomology groups of X [n] vanish.

If β ̸= d0β f + dβn for some integer d and rational number d0 ≥ 0, then we see
from Lemma 3.2 that M(θ) = ∅ and [M]

vir
loc = 0. By (3-4), [Mg,r (X [n], β)]vir

= 0
and all the Gromov–Witten invariants defined via Mg,r (X [n], β) vanish.

Next, assume that g > 1 and β = d0β f + dβn for some integer d and rational
number d0 ≥ 0. Since K X [n] = DK X , we see from (2-2) that the expected dimension
of Mg,r (X [n], β) is equal to (2n −3)(1− g)+r < r . By (2-3) and the fundamental
class axiom (2-7), we conclude that all the Gromov–Witten invariants of X [n]

defined via the moduli space Mg,r (X [n], β) vanish. □

Remark 3.4. For an arbitrary smooth projective surface X , the case g = 0 and
β = dβn is studied in [20], and the case g = 1 and β = dβn is discussed in [12].

If the regular elliptic surface X in Theorem 3.3 has exactly one multiple fiber,
then we can prove that the rational number d0 in Theorem 3.3 is an integer.

Corollary 3.5. Let X be a regular elliptic surface with pg ≥ 1 and exactly one
multiple fiber such that every singular fiber is either irreducible reduced or the
unique multiple fiber with smooth reduction F. Let β ∈ H2(X [n], Z). Then all
the Gromov–Witten invariants of X [n] defined via the moduli space Mg,r (X [n], β)

vanish except possibly when g ≤ 1 and β = d0βF + dβn for some integers d and
d0 ≥ 0.

Proof. By [8, Corollary 2.3 on p.158], X must be simply connected. Let m denote
the multiplicity of the unique multiple fiber F . Then fi = m F in (3-7), and (3-8)
becomes u(00) = d ′

0βF + d ′βn for some integers d ′

0 ≥ 0 and d ′. Accordingly, (3-5)
becomes β = d0βF + dβn for some integers d and d0 ≥ 0. Now the same proof of
Theorem 3.3 yields our corollary. □

4. The exceptional cases for X [2]

In this section, we will investigate the exceptional cases in Corollary 3.5 when
n = 2. First of all, we strengthen Corollary 3.5 by proving that the integers d and
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d0 ≥ 0 in Corollary 3.5 must satisfy d ≥ −2d0. Then, we compute the exceptional
1-point genus-0 Gromov–Witten invariants

(4-1) ⟨α⟩
X [2]

0,d(βF −2β2)

where α ∈ H 4(X [2], C), F is the reduction of the unique multiple fiber in X , and
1 ≤ d < m with m being the multiplicity of the unique multiple fiber. By (2-5), the
computation of (4-1) is equivalent to determining the cycle

ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir)
∈ A2(X [2]).

4.1. The homology classes of certain curves in X [2]. In this subsection, X stands
for an arbitrary elliptic surface. We will investigate the homology classes of certain
curves in X [2] related to a smooth multiple fiber f in the elliptic surface X . These
include curves in M2( f ) (see (2-13) for the notation) and the fibers of the Abel–
Jacobi map AJ : f (2)

→ Jac2( f ) ∼= f . The results here generalize [1, Lemma 4.1
and Lemma 4.3].

Lemma 4.1. Let X be an elliptic surface with f being a smooth fiber or the
reduction of a smooth multiple fiber, and H̃2(X [2], C) ⊂ H2(X [2], C) be from
Definition 2.2. Let 0 ⊂ M2( f ) be an irreducible curve in X [2]. Then, there exist
nonnegative integers d and d0 not both zero such that

(4-2) 0 ≡ 2dβ f + d0β2 (mod H̃2(X [2], C)).

Proof. When f is a smooth fiber of X , this is [1, Lemma 4.1]. In the following,
assume that f is the reduction of a smooth multiple fiber with multiplicity m. We
will modify the proof of [1, Lemma 4.1]. Note that

B2 = M2(X) ∼= P(T ∨

X ).

For convenience, we simply write B2 = M2(X) = P(T ∨

X ). Then, we have

M2( f ) = P
(
(TX | f )

∨
)
∼= P

(
(TX | f )

∨
⊗O f ( f )

)
.

From 0 → O f → TX | f → O f ( f ) → 0, we obtain the exact sequence

0 → O f → (TX | f )
∨

⊗O f ( f ) → O f ( f ) → 0,

where O f ( f ) is a torsion of order m. Therefore, we conclude that

(4-3) 0 = d ′σ̃ + d ′

0 f ′
∈ H2(M2( f ), C),

where f ′ is a fiber of the ruling M2( f ) → f , σ̃ is a section to the ruling with

(4-4) σ̃ 2
= deg

(
(TX | f )

∨
⊗O f ( f )

)
= degO f ( f ) = 0,
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and d ′ and d ′

0 are nonnegative integers. In addition, we have

(4-5) OM2( f )(σ̃ ) = OM2( f )(1) ⊗ φ∗O f ( f ),

where φ : M2( f ) → f denotes the ruling on M2( f ).
Since f ′

= β2 ∈ H2(X [2], C), we see from (4-3) that it remains to show

(4-6) σ̃ ≡ 2β f (mod H̃2(X [2], C)).

Indeed, by Lemma 2.3, we have

(4-7) σ̃ ≡ 2β f + d2β2 (mod H̃2(X [2], C))

for some integer d2. Since OB2(B2) = OB2(−2) and O f ( f ) is a torsion,

B2 · σ̃ = B2|M2( f ) · σ̃ = OM2( f )(−2) · σ̃ = −2σ̃ · σ̃ = 0

where we have used (4-5) and (4-4) in the last two steps. On the other hand, since

B2 · β f = B2 · w = 0

for every class w ∈ H̃2(X [2], C) and B2 · β2 = −2, we obtain B2 · σ̃ = −2d2 from
(4-7). Therefore, we have d2 = 0 and (4-6) follows from (4-7). □

Let f be a smooth fiber in the elliptic surface X . Since f is an elliptic curve,
we see that the Abel–Jacobi map

AJ : f (2)
→ Jac2( f ) ∼= f

exhibits f (2) as a ruled surface over f . The fiber AJ−1(δ) over an element δ ∈

Jac2( f ) is the complete linear system |δ| ∼= P1. The following is [1, Lemma 4.3].

Lemma 4.2. Let X be an elliptic surface with f being a smooth fiber. Let 0 =

AJ−1(δ) be a fiber of the ruling AJ : f (2)
→ Jac2( f ). Regard 0 as a curve in X [2]

via 0 ⊂ f (2)
⊂ X [2]. Let N0⊂X [2] be the normal bundle of 0 in X [2]. Then,

(i) N0⊂X [2] = O0(−2) ⊕O0 ⊕O0;

(ii) TX [2] |0 = O0(2) ⊕O0(−2) ⊕O0 ⊕O0;

(iii) 0 = β f − 2β2 ∈ H2(X [2], C).

Our next goal is to prove an analogue of Lemma 4.2 when the smooth fiber f in
Lemma 4.2 is replaced by the reduction of a smooth multiple fiber of the elliptic
surface X . We begin with an elementary lemma.

Lemma 4.3. Let f be a smooth elliptic curve and φ : f → P1 be a double cover. If
L is a non-trivial degree-0 invertible sheaf over f , then

φ∗L = OP1(−1) ⊕OP1(−1).
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Proof. Note that both φ∗O f and φ∗L are rank-2 locally free sheaf over P1. By the
Grothendieck–Riemann–Roch Theorem, deg φ∗L = deg φ∗O f . Since φ is branched
over exactly 4 points in P1, we obtain

(4-8) φ∗O f = OP1(−2) ⊕OP1 .

It follows that deg φ∗L = deg φ∗O f = −2. The rank-2 locally free sheaf φ∗L is the
direct sum of two invertible sheaves on P1. Since deg φ∗L =−2 and H 0(P1, φ∗L)∼=

H 0( f, L) = 0, we must have φ∗L = OP1(−1) ⊕OP1(−1). □

Lemma 4.4. Let X be an elliptic surface and f be the reduction of a smooth
multiple fiber in X. Let 0 = AJ−1(δ) be a fiber of the ruling AJ : f (2)

→ Jac2( f ).
Regard 0 as a curve in X [2] via 0 ⊂ f (2)

⊂ X [2]. Then,

(i) N0⊂X [2] = O0(−1) ⊕O0(−1) ⊕O0;

(ii) TX [2] |0 = O0(2) ⊕O0(−1) ⊕O0(−1) ⊕O0;

(iii) 0 = β f − 2β2 ∈ H2(X [2], C).

Proof. (i) We prove first that N f (2)⊂X [2] |0 =O0(−1)⊕O0(−1). Recall the universal
subscheme Z2 ⊂ X [2]

× X from (2-9). Let π1 : Z2 → X [2] and π2 : Z2 → X be the
natural projections. It is known from [2] that

(4-9) N f (2)⊂X [2] = π1∗π
∗

2OX ( f )| f (2) .

Let Z0 = π−1
1 (0) ⊂ Z2. Note that π2

(
Z0

)
= f . Put π̃1 = π1|Z0

: Z0 → 0 and
π̃2 = π2|Z0

: Z0 → f . Then, π̃2 is an isomorphism. Up to an isomorphism, π̃1 is
the double cover f → P1 corresponding to the complete linear system |δ|. Since
OX ( f )| f is a non-trivial torsion, we see from Lemma 4.3 that

(4-10) N f (2)⊂X [2] |0 = π1∗π
∗

2OX ( f )|0

= π̃1∗π̃
∗

2
(
OX ( f )| f

)
= O0(−1) ⊕O0(−1).

Next, the normal bundle of 0 in f (2) is N0⊂ f (2) = O0. So the exact sequence

0 → T0 → T f (2) |0 → N0⊂ f (2) → 0

becomes 0 → O0(2) → T f (2) |0 → O0 → 0 which splits. Thus,

(4-11) T f (2) |0 = O0(2) ⊕O0.

Similarly, the exact sequence

0 → N0⊂ f (2) → N0⊂X [2] → N f (2)⊂X [2] |0 → 0

becomes 0 → O0 → N0⊂X [2] → O0(−1) ⊕O0(−1) → 0, which splits. It follows
that N0⊂X [2] = O0(−1) ⊕O0(−1) ⊕O0.
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(ii) From T0 = O0(2), the exact sequence

0 → T0 → TX [2] |0 → N0⊂X [2] → 0

and N0⊂X [2] = O0(−1) ⊕O0(−1) ⊕O0, we obtain

TX [2] |0 = O0(2) ⊕O0(−1) ⊕O0(−1) ⊕O0.

(iii) This follows from the same proof (given in [1]) of Lemma 4.2(iii). □

4.2. Calculation of the 1-point Gromov–Witten invariants ⟨α⟩X [2]

0,d(βF−2β2)
. In this

subsection, our surface X is from Corollary 3.5, i.e., X is a regular elliptic surface
with pg ≥ 1 and exactly one multiple fiber such that every singular fiber is either
irreducible reduced or the unique multiple fiber with smooth reduction F . We
will compute the Gromov–Witten invariants ⟨α⟩

X [2]

0,d(βF −2β2)
when 1 ≤ d < m where

m is the multiplicity of the unique multiple fiber in the elliptic surface X . These
invariants belong to the exceptional cases in Corollary 3.5.

We begin with a theorem which strengthens Corollary 3.5 in the case n = 2.

Theorem 4.5. Let X be a regular elliptic surface with pg ≥ 1 and exactly one
multiple fiber such that every singular fiber is either irreducible reduced or the
unique multiple fiber with smooth reduction F. Let β ∈ H2(X [2], Z). Then all
the Gromov–Witten invariants of X [2] defined via the moduli space Mg,r (X [2], β)

vanish except possibly when g ≤ 1 and β = d0βF + dβ2 for some integers d0 and d
satisfying d0 ≥ 0 and d ≥ −2d0.

Proof. Recall from the proofs of Theorem 3.3 and Corollary 3.5 that the elliptic
fibration is of the form π : X → P1 and X is simply connected. Let m be the
multiplicity of the unique multiple fiber in X . Fix a holomorphic differential
two-form θ in H 0(X, �2

X ) = H 0(X,OX (K X )) such that the zero-set of θ is equal to

(4-12)
pg−1∑
i=1

fi + (m − 1)F,

where f1, . . . , f pg−1 are distinct smooth fibers of π . Then Assumption 3.1 is
satisfied. In view of the proof of Corollary 3.5, it remains to prove that if the subset
M(θ) of M = Mg,r (X [2], β) is nonempty, then

(4-13) β = d0βF + dβ2

for some integers d0 and d satisfying d0 ≥ 0 and d ≥ −2d0.
Note that (4-13) is an improvement of Lemma 3.2. We will modify the proof of

Lemma 3.2 by adopting the notation from there. Let u : 0 → X [2] be a stable map
in M(θ) ⊂ M = Mg,r (X [2], β), and let 00 denote any irreducible component of 0.
By (3-6), we have the following six cases.
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Case 1: u(00) is a point in X [2]. In this case, we get

(4-14) [u(00)] = 0.

Case 2: u(00) = x + fi for some 1 ≤ i ≤ pg − 1 and some fixed point x ∈ X not
lying in any fi (1 ≤ i ≤ pg − 1) or in F . In this case, we obtain

(4-15) [u(00)] = β fi = mβF .

Case 3: u(00) = x + F for some fixed point x ∈ X −
((pg−1⋃

i=1
fi
)
∪ F

)
. In this case,

(4-16) [u(00)] = βF .

Case 4: u(00)⊂ M2( fi )∪( fi )
(2) for some 1≤ i ≤ pg−1. If u(00)⊂ M2( fi ), then

(4-17) [u(00)] = diβ fi + d̃iβ2 = di mβF + d̃iβ2

by Lemma 4.1, where di and d̃i are nonnegative integers not both zero. If u(00) ⊂

( fi )
(2), then we see from (2-23) that

(4-18) [u(00)] = d ′

iβ fi + (−2d ′

i +2 ·u(00))β2 = d ′

i mβF + (−2d ′

i +2 ·u(00))β2,

where 2 is the pullback of a theta divisor via AJ : ( fi )
(2)

→ Jac2( fi ) and d ′

i is a
nonnegative integer.

Case 5: u(00) ⊂ M2(F) ∪ F (2). If u(00) ⊂ M2(F), then by Lemma 4.1 again,

(4-19) [u(00)] = dFβF + d̃Fβ2

where dF and d̃F are nonnegative integers not both zero. If u(00) ⊂ F (2), then

(4-20) [u(00)] = d ′

FβF + (−2d ′

F + 2 · u(00))β2

where 2 is the pullback of a theta divisor via AJ : F (2)
→ Jac2(F) and d ′

F is a
nonnegative integer.

Case 6: u(00) ⊂ fi + f j or u(00) ⊂ fi + F for some 1 ≤ i ̸= j ≤ pg − 1. In this
case, u(00) · B2 = 0 since u(00) ∩ B2 = ∅. By (2-22),

(4-21) [u(00)] = βπ2∗[Z0] = d̃ ′

iβ fi + d̃ ′

FβF = (d̃ ′

i m + d̃ ′

F )βF

for some nonnegative integers d̃ ′

i and d̃ ′

F not both zero.
Finally, since β = u∗[0]=

∑
00⊂0 u∗[00], (4-13) follows from (4-14)–(4-21). □

For g ≤ 1 and β = d0βF + dβ2 where the integers d0 and d satisfy d0 ≥ 0 and
d ≥ −2d0, the expected dimension of Mg,r (X [2], β) is equal to 1 − g + r . By
the Divisor Axiom (2-8), the exceptional cases in Theorem 4.5 for X [2] can be
reduced to the computation of the following two types of invariants: (i) ⟨α⟩

X [2]

0,β ,

with α ∈ H 4(X [2], C), and (ii) ⟨ ⟩
X [2]

1,β .
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Our next goal is to calculate the 1-point genus-0 Gromov–Witten invariants

(4-22) ⟨α⟩
X [2]

0,d(βF −2β2)

with α ∈ H 4(X [2], C) and 1 ≤ d < m where m is the multiplicity of the unique
multiple fiber in X . By (2-5), this is equivalent to determining

ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir)
.

The lemma below deals with the stable maps in Mg,r (X [2], d(βF − 2β2)).

Lemma 4.6. Let m be the multiplicity of the unique multiple fiber in X. Let

[µ : D → X [2]
] ∈ Mg,r (X [2], d(βF − 2β2))

with 1 ≤ d < m. Then, µ(D) is a fiber of the ruling AJ : F (2)
→ Jac2(F), and the

degree of the morphism µ : D → µ(D) is equal to d.

Proof. Let 01, . . . , 0t be the irreducible components of µ(D). Recall that X
is simply connected. By Lemma 2.3, re-ordering 01, . . . , 0t if necessary, there
exists some t0 with 0 ≤ t0 ≤ t such that for 1 ≤ i ≤ t0, 0i = βπ2∗[Z0i ]

+ d̃iβ2 with
π2∗[Z0i ] ̸= 0, and that 0 j = β2 for t0 + 1 ≤ j ≤ t . For 1 ≤ i ≤ t , let mi be the
degree of the restriction µ|µ−1(0i ) : µ−1(0i ) → 0i . Then,

(4-23) d(βF − 2β2) = µ∗[D] =

t∑
i=1

mi [0i ]

=

t0∑
i=1

mi (βπ2∗[Z0i ]
+ d̃iβ2) +

t∑
i=t0+1

miβ2.

So d F =
∑t0

i=1 mi · π2∗[Z0i ], t0 ≥ 1, and f · π2∗[Z0i ] = 0 for 1 ≤ i ≤ t0. Since
1 ≤ d < m and every fiber in X is either irreducible reduced or the unique multiple
fiber, we conclude that for 1 ≤ i ≤ t0, the only 1-dimensional irreducible component
in π2(Z0i ) is F . If π2(Z0i ) contains an isolated point x ∈ X − F , then π2(Z0i ) =

F ⨿ {x}, 0i = F + x and

(4-24) [0i ] = βF .

Assume that π2(Z0i ) does not contain any isolated point in X −F . Then, π2(Z0i )=

F and Supp(ξ) ⊂ F for every ξ ∈ 0i . So

0i ⊂ M2(F) ∪ F (2).

If 0i ⊂ M2(F), then by Lemma 4.1, we obtain

(4-25) [0i ] = 2diβF + di,0β2
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for some integers di ≥ 1 and di,0 ≥ 0. If 0i ⊂ F (2), then we see from (2-23) that

(4-26) [0i ] = di (βF − 2β2) + (2 · 0i )β2

where 2 is the pullback of a theta divisor via AJ : F (2)
→ Jac2(F). Combining

(4-24), (4-25), (4-26) and

d(βF − 2β2) =

t∑
i=1

mi [0i ]

from (4-23), we deduce that t0 = t and that for every 1 ≤ i ≤ t , 0i ⊂ F (2) and
2 · 0i = 0. Thus, every 0i is a fiber of the ruling AJ : F (2)

→ Jac2(F). Since
01, . . . , 0t are the irreducible components of µ(D) and µ(D) is connected, we
conclude that t = 1, µ(D) = 01 is a fiber of the ruling AJ : F (2)

→ Jac2(F), and

d(βF − 2β2) = m1[01].

By Lemma 4.4(iii), [01] = βF − 2β2. It follows that m1 = d , i.e., the degree of the
morphism µ : D → µ(D) = 01 is equal to d . □

Let 1 ≤ d < m. By Lemma 4.6, we obtain the commutative diagram

(4-27)

Mg,r+1(X [2], d(βF − 2β2))
evr+1

//

fr+1,r
��

F (2)
⊂ X [2]

AJ
��

Mg,r (X [2], d(βF − 2β2))
8r
// Jac2(F)

where fr+1,r is the forgetful map forgetting the last marked point, and 8r maps
[µ : D → X [2]

] ∈ Mg,r (X [2], d(βF − 2β2)) to AJ(µ(D)). We have

(4-28) 8−1
r (δ) ∼= Mg,r (AJ−1(δ), d) ∼= Mg,r (P

1, d)

for δ ∈ Jac2(F). So the dimension of Mg,r (X [2], d(βF − 2β2)) is equal to

(4-29) dimMg,r (P
1, d) + 1 = 2d + 2g + r − 1.

Next, when 1 ≤ d < m, we determine the virtual fundamental class

[Mg,r (X [2], d(βF − 2β2))]
vir.

Lemma 4.7. Let m be the multiplicity of the unique multiple fiber in the elliptic
surface X from Theorem 4.5. Let 1 ≤ d < m and 0 ≤ g ≤ 1. Then,

(i) R1( fr+1,r )∗(evr+1)
∗TX [2] is a rank-(2d + 3g − 2) locally free sheaf.

(ii) [Mg,r (X [2], d(βF − 2β2))]
vir

= c2d+3g−2
(
R1( fr+1,r )∗(evr+1)

∗TX [2]

)
.
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Proof. (i) Let [µ : D → X [2]
] ∈ Mg,r (X [2], d(βF − 2β2)). By Lemma 4.6, µ(D) is

a fiber of the ruling AJ : F (2)
→ Jac2(F). By Lemma 4.4(ii),

TX [2] |µ(D) = Oµ(D)(2) ⊕Oµ(D)(−1) ⊕Oµ(D)(−1) ⊕Oµ(D).

Since d ≥ 1 and 0 ≤ g ≤ 1, we conclude that

h1(D, µ∗TX [2]) = 2h1(D, µ∗Oµ(D)(−1)) + h1(D,OD) = 2d + 3g − 2.

Hence R1( fr+1,r )∗(evr+1)
∗TX [2] is a rank-(2d + 3g − 2) locally free sheaf.

(ii) By (2-2), the expected dimension of Mg,r (X [2], d(βF − 2β2)) is equal to
1−g+r . By (4-29), the excess dimension of Mg,r (X [2], d(βF −2β2)) is 2d+3g−2.
So our result follows immediately from (i) and Proposition 2.1. □

Finally, we determine the cycle ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir).

Theorem 4.8. Let X be a regular elliptic surface with pg ≥ 1 and exactly one
multiple fiber such that every singular fiber is either irreducible reduced or the
unique multiple fiber with smooth reduction F. Let m be the multiplicity of the
unique multiple fiber, and 1 ≤ d < m. Then,

ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir)
=

1
d2 ·

[
F (2)

]
∈ A2(X [2]).

Proof. By (2-2), the expected dimension of M0,1(X [2], d(βF − 2β2)) is equal to 2.
By Lemma 4.6, ev1

(
M0,1

(
X [2], d(βF − 2β2)

))
⊂ F (2). So

(4-30) ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir)
= κ ·

[
F (2)

]
for some number κ . To determine κ , we take a complex 2-dimensional cycle
W ⊂ X [2] and pretend that W and F (2) intersect transversally at a unique point
ξ ∈ F (2). Let δ = AJ(ξ) and 0 = AJ−1(δ). Then ξ ∈ 0 ∼= P1. Intersecting both
sides of (4-30) with [W ], we get

(4-31) κ = ev1∗

([
M0,1

(
X [2], d(βF − 2β2)

)]vir)
· [W ]

=
[
M0,1

(
X [2], d(βF − 2β2)

)]vir
· ev∗

1[W ]

=
[
M0,1

(
X [2], d(βF − 2β2)

)]vir
· ev∗

1[ξ ]

=
[
M0,1

(
X [2], d(βF − 2β2)

)]vir
|M0,1(0,d) · (ẽv1)

∗
[ξ ]

where in the last step, we have used

(ev1)
−1(ξ) ⊂ M0,1(0, d) ⊂ M0,1

(
X [2], d(βF − 2β2)

)
,

and ẽv1 : M0,1(0, d) → 0 is the evaluation map.
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By Lemma 4.7(i), R1( f1,0)∗(ev1)
∗TX [2] is a rank-(2d − 2) locally free sheaf on

M0,0
(
X [2], d(βF −2β2)

)
where f1,0 and ev1 are the forgetful map and the evaluation

map on M0,1
(
X [2], d(βF − 2β2)

)
respectively. For simplicity, put

� = R1( f1,0)∗(ev1)
∗TX [2] .

By (2-7) and Lemma 4.7(ii), we conclude that[
M0,1

(
X [2], d(βF − 2β2)

)]vir
= ( f1,0)

∗
([
M0,0

(
X [2], d(βF − 2β2)

)]vir)
= ( f1,0)

∗
(
c2d−2(�)

)
.

Combining with (4-31), we see that

(4-32) κ = ( f1,0)
∗
(
c2d−2(�)

)
|M0,1(0,d) · (ẽv1)

∗
[ξ ]

= ( f̃1,0)
∗
(
c2d−2(�|M0,0(0,d))

)
· (ẽv1)

∗
[ξ ],

where f̃1,0 : M0,1(0, d) → M0,0(0, d) is the forgetful map. Note that

�|M0,0(0,d)
∼= R1( f̃1,0)∗(ẽv1)

∗(TX [2] |0).

By Lemma 4.4(ii), TX [2] |0 = O0(2) ⊕O0(−1) ⊕O0(−1) ⊕O0. Thus,

�|M0,0(0,d)
∼= R1( f̃1,0)∗(ẽv1)

∗(O0(−1) ⊕O0(−1)).

By [6, Theorem 9.2.3],

c2d−2(�|M0,0(0,d)) =
1
d3 · [η]

where [η] denotes the class of a generic stable map η ∈ M0,0(0, d). By (4-32),

κ =
1
d3 · ( f̃1,0)

∗
[η] · (ẽv1)

∗
[ξ ] =

1
d2

since for a generic η = [µ : D → 0] ∈ M0,0(0, d), the map µ is d to 1. □

Remark 4.9. As for the exceptional genus-1 invariant ⟨⟩
X [2]

1,d(βF −2β2)
, we see from

Lemma 4.7(ii) that if 1 ≤ d < m where m is the multiplicity of the unique multiple
fiber in the elliptic surface X from Theorem 4.5, then

⟨⟩
X [2]

1,d(βF −2β2)
= c2d+1

(
R1( f1,0)∗(ev1)

∗TX [2]

)
.

where f1,0 and ev1 are the forgetful map and the evaluation map on the moduli
space M1,1

(
X [2], d(βF −2β2)

)
respectively. However, it is unclear how to compute

the right-hand side explicitly.
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FOR K -FINITE MATRIX COEFFICIENTS

OF TEMPERED REPRESENTATIONS
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Recently, D. Kazhdan and A. Yom Din conjectured the validity of an asymp-
totic form of Schur orthogonality for tempered, irreducible, unitary rep-
resentations of semisimple groups defined over local fields. In the non-
Archimedean case, they established it for K -finite matrix coefficients. In this
article we prove the analogous result in the Archimedean case.
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1. Introduction

Let G be a semisimple group over a local field and let K be a maximal compact
subgroup of G. We fix a Haar measure on G, denoted by dg. If H is the Hilbert
space underlying a unitary representation of G, let HK denote the space of K -finite
vectors and H∞ the space of smooth vectors.

Recently, D. Kazhdan and A. Yom Din [10] conjectured the validity of an
asymptotic version of Schur orthogonality relations. It should hold for matrix
coefficients of tempered, irreducible, unitary representations of G, generalising
well-known Schur orthogonality relations for discrete series.
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Following [10], we fix a norm on the Lie algebra g of G. By [10, Claim 5.2],
we can choose it so that Ad K acts unitarily on g. We define the function

r : G → R≥0, r(g)= log max
{
∥Ad(g)∥op, ∥Ad(g−1)∥op

}
so that, given r ∈ R>0, we can introduce the corresponding ball

G<r := {g ∈ G | r(g) < r}.

Given this setup, we can state their conjecture.

Conjecture 1.1 (Kazhdan–Yom Din, asymptotic Schur orthogonality relations).
Let G be a semisimple group over a local field F and let (π, H) be a tempered,
irreducible, unitary representation of G. Then there are d(π)∈ Z≥0 and f (π)∈ R>0

such that, for all v1, v2, v3, v4 ∈ H ,

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

Assuming that the matrix coefficients involved are K -finite, one has the following:

Theorem 1.2 [10, Theorem 1.7]. Let G be a semisimple group defined over a local
field F and let K be a maximal compact subgroup of G. Let (π, H) be a tempered,
irreducible, unitary representation of G and let HK denote the space of K -finite
vectors in H. Then there exists d(π) ∈ Z≥0 such that:

(1) If F is non-Archimedean, there is f (π)∈R>0 such that, for all v1, v2, v3, v4∈HK ,

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

(2) If F is Archimedean, for any given nonzero v1, v2 ∈ HK , there is C(v1, v2) > 0
such that

lim
r→∞

1
r d(π)

∫
G<r

|⟨π(g)v1, v2⟩|
2 dg = C(v1, v2).

In the non-Archimedean case, the proof of (1) is achieved by first establishing
the validity of the analogous version of (2). The polarisation identity allows the
authors of [10] to define a form

D( · , · , · , · ) : HK × HK × HK × HK → C

via the prescription

D(v1, v2, v3, v4) := lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg.

In [10, Section 4.1], this form is shown to be G-invariant and one would like to
invoke an appropriate form of the Schur lemma to argue as in the standard proof of
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Schur orthogonality relations. That is, for fixed v2, v4 ∈ HK , one defines the form

D( · , v2, · , v4) : HK × HK → C,

and, for fixed v1, v3 ∈ HK , the form

D(v1, · , v3, · ) : HK × HK → C.

One applies the Schur lemma to these forms, which implies that each such form is
a scalar multiple of the inner product on H . Upon comparing them, one obtains the
desired orthogonality relations.

In the non-Archimedean case, it seems to us that the representations considered
in [10] are implicitly assumed to be smooth [16, Définition III.1.1], otherwise it is
not clear how the theory of asymptotic expansion can be applied.

The appropriate version of the Schur lemma in this case is a consequence of
Dixmier’s lemma [18, Lemma 0.5.2], which can be applied since in the non-
Archimedean setting the subspace of K -finite vectors HK and the subspace of
smooth vectors H∞ coincide: the latter is irreducible since H itself is irreducible.
The required countability of the dimension of HK follows from the admissibility
[16, Théorème VI.2.2] of the irreducible smooth unitary representation (π, H) and
by invoking [18, Lemma 0.5.2] in the proof of [16, III.1.9].

The purpose of this article is to prove that the analogue of (1) in Theorem 1.2
holds in the Archimedean case. As explained in [10, Section 4.2], it suffices to
prove the result for real semisimple groups (Theorem 4.6).

Theorem 1.3. Let (π, H) be a tempered, irreducible, unitary representation of a
connected, semisimple Lie group G with finite centre. Let K be a maximal compact
subgroup of G. Then there exists f (π) ∈ R>0 such that, for all v1, v2, v3, v4 ∈ HK ,

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

Remark 1.4. It is well known that an irreducible, tempered representation as in
Theorem 1.3 is unitarisable. We have chosen the somewhat redundant formulation
above to emphasise that the unitarity of the representation plays a crucial role in
the following. From now on, if (π, H) is a tempered, irreducible representation we
will implicitly assume that π acts unitarily with respect to the inner product on H .

We need to modify the strategy above to account for the fact that the space of
K -finite vectors of a unitary representation (π, H) of a real semisimple group does
not afford a representation of G. It is, however, an admissible (g, K )-module.

Our approach relies crucially on the admissibility of irreducible, unitary represen-
tations of reductive Lie groups, a foundational theorem proved by Harish-Chandra.
The theory of admissible (g, K )-modules then provides us with the appropriate
version of the Schur lemma for (g, K )-invariant forms (Definition 2.11).
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Hence, we are reduced to verifying that D( · , v2, · , v4) and D(v1, · , v3, · )

are, indeed, (g, K )-invariant. Having established this, to conclude the proof of
Theorem 1.3, we can argue as in [10, Section 4].

From now on, to make the notation look more compact, given a unitary repre-
sentation (π, H) of G and vectors v,w ∈ H , we set

φv,w(g) := ⟨π(g)v,w⟩.

For connected, semisimple Lie groups with finite centre, K -invariance is a conse-
quence of g-invariance (Proposition 2.14). Therefore, the problem is establishing
the g-invariance. Explicitly, we prove the following (Proposition 4.2).

Proposition 1.5. Let G be a connected, semisimple Lie group with finite centre and
let (π, H) be a tempered, irreducible, unitary representation of G. Then, for all
X ∈ g, and for all v1, v2, v3, v4 ∈ HK , we have

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φπ̇(X)v3,v4(g)dg

and

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,π̇(X)v4(g)dg.

The key observation is that, by exploiting the theory of asymptotic expansions
of matrix coefficients of tempered representations both with respect to a minimal
parabolic subgroup P = MAN and with respect to the standard (for P) parabolic
subgroups of G, the expression

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g) dg

reduces, roughly, to a sum of finitely many terms of the form∫
K

〈
0λ,l(mλ, π(k)π̇(X)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk.

Here, Mλ comes from a standard parabolic subgroup Pλ = MλAλ0 Nλ0 of G. We
denote by mλ, aλ0 , nλ0 the Lie algebras of Mλ, Aλ0 , Nλ0 , respectively. The pairs
(λ, l) and (µ,m) will be introduced precisely in Theorem 3.3; we can think of λ,µ
as n-tuples of complex numbers and of l,m as n-tuples of integers. The functions
0λ,l , 0µ,m are defined in (3.6). As functions of mλ, they are analytic and square-
integrable and they arise from the asymptotic expansion of the matrix coefficients
φπ̇(X)v1,v2 and φv3,v4 , respectively, relative to Pλ (see Theorem 3.3). The subscript
in Pλ is meant to indicate that the parabolic subgroup is obtained, in an appropriate
sense, from the datum of λ. Moreover, (λ, l) and (µ,m) are related in a precise way
(see the discussion after Theorem 3.1 and the proof of Proposition 4.2 after (4.4)).



ON KAZHDAN–YOM DIN ASYMPTOTIC ORTHOGONALITY 27

We shall elaborate on these points later on. For the moment, let us point out that
we reduced the initial problem to showing that, for every X ∈ g, and for all relevant
pairs (λ, l) and (µ,m), the integral∫

K

〈
0λ,l(mλ, π(k)π̇(X)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk

equals

−

∫
K

〈
0λ,l(mλ, π(k)v1, w2), 0µ,m(mλ, π(k)π̇(X)v3, w4)

〉
L2(Mλ)

dk.

We will prove that, if (λ, l) and (µ,m) satisfy a certain condition (to be explained
below), the functions 0λ,l( · , v1, w2) and 0µ,m( · , v3, w4) are, in fact, Z(gC)-finite,
with Z(gC) denoting the centre of the universal enveloping algebra of the com-
plexification gC of g, and K ∩ Mλ-finite. It will then follow from a theorem of
Harish-Chandra (Theorem 2.17) that they are smooth vectors in the right-regular
representation (R, L2(Mλ)) of Mλ.

The idea is to combine this observation with an appropriate form of the Frobenius
reciprocity (Theorem 2.27), due to Casselman, to construct (g, K )-invariant maps

Tw2 : HK → IndPλ,Kλ
(Hσ , λ|aλ0

), Tw2(v)(k)(mλ) := 0λ,l(mλ, π(k)v,w2)

and

Tw2 : HK → IndPλ,Kλ
(Hσ , λ|aλ0

), Tw4(v
′)(k)(mλ) := 0λ,l(mλ, π(k)v′, w4).

Here, the subgroup Pλ is the parabolic subgroup opposite to Pλ. The notation
IndPλ,K (Hσ , λ|aλ0

) stands for the space of K -finite vectors in the representation
induced from the (mλ ⊕ aλ0, K ∩ Mλ)-module

Hσ ⊗ Cλ|aλ0
−ρλ0

,

where (σ, Hσ ) is an appropriately chosen admissible, unitary, subrepresentation
of (R, L2(Mλ)).

To apply the required form of the Frobenius reciprocity, we need to show that
the maps

Sw2 : HK → Hσ ⊗ Cλ|aλ0
−ρλ0

, Sw2(v)(mλ) := 0λ,l(mλ, v, w2),

and

Sw2 : HK → Hσ ⊗ Cλ|aλ0
−ρλ0

, Sw4(v
′)(mλ) := 0λ,l(mλ, v

′, w4),

descend to (mλ⊕aλ0, Kλ)-equivariant maps on HK /nλ0 HK . Establishing this result
is the technical heart of the article.
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Assuming it, the integral∫
K

〈
0λ,l(mλ, π(k)π̇(X)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk

is nothing but〈
˙IndPλ(σ, λ|aλ0

)(X)0λ,l(mλ, v1, w2), 0µ,m(mλ, v3, w4)
〉
IndPλ

(σ,λ|aλ0
)
,

where
⟨ · , · ⟩IndPλ

(σ,λ|aλ0
)

is the inner product on IndPλ(σ, λ|aλ0
). We will see that this makes sense since

the inducing data ensure unitarity. The sought equality will then follow from the
skew-invariance of the inner product on a unitary representation with respect to the
action of the Lie algebra.

To explain how the functions 0λ,l( · , v1, v2) and 0µ,m( · , v3, v4) arise, we need to
recall the main features of the asymptotic expansions of K -finite matrix coefficients
of tempered representations. If φv,w is such a matrix coefficient, then its restriction
to a certain region of the subgroup A of a minimal parabolic subgroup P = MAN
of G admits an asymptotic expansion which can be thought of as a sum indexed by
a countable collection

3 := {(λ, l)}λ∈E, l∈Zn
≥0:|l|≤l0 .

The set E is a collection of complex-valued real-linear functionals on Lie(A) depend-
ing on (π, H) and not on the particular choice of v,w∈ HK . It is the set of exponents
of (π, H). The number n is the rank of G and l0, too, depends on (π, H) only.

The term indexed by (λ, l) is multiplied by a complex coefficient cλ,l(v,w). The
choice of v,w ∈ HK determines the pairs in C for which cλ,l(v,w) ̸= 0. If λ ∈ E ,
there exists at least a pair of v,w ∈ HK such that, for some l ∈ Zn

≥0 with |l| ≤ l0,
we have cλ,l(v,w) ̸= 0.

For any standard (for P) parabolic subgroup P ′
= M ′ A′N ′ of G, the restriction of

the matrix coefficient φv,w to an appropriate region of A′ admits a similar asymptotic
expansion. It can be thought of as a sum indexed by a countable collection

3′
:= {(ν, q)}ν∈E ′, q∈Zr

≥0:|q|≤q0 .

Here, r ≤ n is the dimension of A′, the set E ′ consists of complex-valued real-linear
functionals on Lie(A′). On regions on which both the expansion relative to P and
the expansion relative to P ′ are meaningful, by comparing the two it turns out
that the element in E ′ are precisely the restrictions to Lie(A′) of the elements in E
and, making the appropriate identifications following from A′

⊂ A, each q is the
projection to Zr

≥0 of an l appearing in the expansion relative to P .
While in the expansion relative to P the term indexed by (λ, l) is multiplied

by the complex coefficient cλ,l(v,w), the term indexed by (ν, q) in the expansion
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relative to P ′ is multiplied by a real-analytic function

(1.6) cP ′

ν,q( · , v, w) : M ′
→ C.

We require one more piece of information to explain how 0λ,l( · , v1, v2) and
0µ,m( · , v3, v4) arise: the construction of d(π) in [10]. The idea is as follows.
We can think of λ ∈ E as an n-tuple of complex numbers (λ1, . . . , λn). It can be
shown that there exist a finite subcollection E0 ⊂ E such that, for every λ ∈ E , there
exists λ̂ ∈ E0 such that

λ̂− λ ∈ Zn
≥0.

Moreover, any two distinct elements in E0 are integrally inequivalent: their difference
does not belong to Zn . By a result of Casselman (Theorem 3.2), for every λ̂ ∈ E0

and for every i ∈ {1, . . . , n}, we have

Re λ̂i ≤ 0,

and it is clear that this holds for every λ ∈ E .
For (λ, l) ∈3, we introduce the set Iλ := {i ∈ {1, . . . , n} | Re λi < 0}, we define

(1.7) dP(λ, l) := |I c
λ | +

∑
i∈I c

λ

2li ,

and we take the maximum, dP , as (λ, l) ranges over all the pairs with λ ∈ E0.
We can proceed analogously for every standard parabolic P ′ and obtain a non-

negative integer dP ′ . The maximum over all P ′ is d(π).
Now, given λ∈ E0, identifying Iλ with a subset of the simple roots determined by

an order on the root system attached to the pair (g, a), we can construct a standard
(for P) parabolic subgroup Pλ = MλAλ0 Nλ0 associated to Iλ. We will show that
if (λ, l) ∈3 satisfies λ ∈ E0 and dP(λ, l)= d(π), then 0λ,l( · , v1, v2) is precisely
the function cP ′

ν,q( · , v1, v2) with ν := λ|aλ0
, where aλ0 := Lie(Aλ0), and q equal to

the projection of l to Z
I c
λ

≥0.
Finally, we mentioned that in the integral∫

K

〈
0λ,l(mλ, π(k)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
L2(Mλ)

dk

the pairs (λ, l) and (µ,m) must be related in a precise way. First of all, (µ,m) ∈3
satisfies µ∈E0 and dP(µ,m)= d(π). Also, we must have Iλ= Iµ (so that Pλ= Pµ)
and λ|aλ0

=µ|aλ0
. The last condition, together with the unitarity of the representation

(σ, Hσ ) introduced above, is precisely what ensures that IndPλ(σ, λ|aλ0
) is unitary.

Implementing the strategy sketched above requires gathering a number of inter-
mediate results. Several are inspired from the chapter in [11] on the Langlands classi-
fication of tempered representations. Here is a more detailed outline of the article.

Section 2: The first part includes a discussion of the (g, K )-module version of
the Schur lemma (Corollary 2.13). In the second part, we recall the result of
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Harish-Chandra establishing that smooth, Z(gC)-finite, K -finite, square-integrable
functions on reductive groups are smooth vectors in the right-regular representation
(Theorem 2.17). As a consequence, we prove that, on such a function, the action
of g through differentiation is the same as the action of the Lie algebra through
the right-regular representation (Proposition 2.20). After stating the basic facts on
parabolically induced representations that we need, we discuss Casselman’s version
of the Frobenius reciprocity (Theorem 2.27).

Section 3: In the first part, we recall the theory of asymptotic expansions of matrix
coefficients of tempered representations both with respect to a minimal parabolic
subgroup and with respect to standard parabolic subgroups. We then explain in detail
how the functions 0λ,l( · , v1, v2), 0µ,m( · , v3, v4) arise. We begin by introducing
an equivalence relation on the data indexing the asymptotic expansion relative
to P of the K -finite matrix coefficients of a tempered, irreducible, representa-
tion (π, H). This equivalence relation is motivated by the construction of d(π)
in [10] and it is meant to exploit the criteria for the computation of asymptotic
integrals in [10, Appendix A]. Imposing the conditions on (λ, l) and (µ,m) that
we discussed above, we identify the functions 0λ,l( · , v1, v2) and 0µ,m( · , v3, v4)

with the coefficient functions in the asymptotic expansion relative to Pλ of φv1,v2

and φv3,v4 (Proposition 3.12). We then prove that they are smooth vectors in
(R, L2(Mλ)) (Proposition 3.14). Combining Proposition 3.14 with the technical
Lemmas 3.15 and 3.16, we can construct unitary, admissible, finitely generated
representations (σ1, Hσ1) and (σ2, Hσ2) whose direct sum is the unitary, admissible,
finitely generated representation (σ, Hσ ) introduced above (Proposition 3.19).

Section 4: Having gathered the results we need, we are able to prove Proposition 1.5
(Proposition 4.2). This consists in an application of the considerations in [10,
Appendix A] to show that the integral

lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,v4(g) dg

can be computed in terms of a sum of integrals of the form∫
K

〈
0λ,l(mλ, π(k)v1, w2), 0µ,m(mλ, π(k)v3, w4)

〉
dk

with the pairs (λ, l) and (µ,m) both belonging to 3 with λ,µ ∈ E0, Iλ = Iµ,
λ|aλ0

= µ|aλ0
and

dP(λ, l)= dP(µ,m)= d(π).

At this point, the representation-theoretic arguments explained in the Introduction
and proved in Section 3 conclude the proof of Proposition 1.5.

Finally, we proceed as explained in the first part of the Introduction to prove
Theorem 1.3 (Theorem 4.6).
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2. Recollections on representation theory

Our presentation of the theory of (g, K )-modules follows [18]. To discuss its basic
features, we need to gather some results on unitary representations of compact
groups. We begin by recalling the basic notions in the study of representations of
topological groups, which we always assume to be Hausdorff.

First, following [18, Section 1.1], let G denote a second-countable, locally
compact group, equipped with a left Haar measure dg, and let V denote a complex
topological vector space. We denote by GL(V ) the group of invertible continuous
endomorphisms of V . A representation of G on V is a strongly continuous ho-
momorphism π : G → GL(V ). Let (π, V ) denote the datum of a representation
of G. A subspace of V which is stable under the action of G through π is called an
invariant subspace. A representation (π, V ), with V ̸= 0, is said to be irreducible
if the only closed invariant subspaces are the trivial subspace and V itself.

If (H, ⟨ · , · ⟩) is a separable Hilbert space, a representation π of G on H is termed
a Hilbert representation. If, in addition, G acts by unitary operators through π , the
representation is said to be unitary.

Next, following [14, Section 10], we introduce the basic features of the theory
of vector-valued integration.

Let (X, dx) be a Radon measure space, let H be a Hilbert space and assume that

f : X → H

is measurable. The function f is integrable if it satisfies these two conditions:

(1) For all v ∈ H , ∫
X
|⟨ f (x), v⟩| dx <∞.

(2) The map

v 7→

∫
X
⟨ f (x), v⟩ dx

is a bounded conjugate-linear functional.

If f : X → H is integrable, then, by the Riesz representation theorem, there
exists a unique element in H , denoted by∫

X
f (x) dx,

such that, for all v ∈ H , we have〈 ∫
X

f (x) dx, v
〉
=

∫
X
⟨ f (x), v⟩ dx .
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Proposition 2.1. Let (X, dx) be as above. Let H , E be Hilbert spaces, f : X → H
a measurable function and T : H → E a bounded linear operator.

(1) If ∫
X
∥ f (x)∥ dx <∞,

then f : X → H is integrable.

(2) If f : X → H is integrable, then so is T f : X → E. Moreover,

T
( ∫

X
f (x) dx

)
=

∫
X

T f (x) dx .

Proof. See [14, Propositions 10.8 and 10.9]. □

Now, let (π, H) be a unitary representation of G. Let v ∈ H and f : G → H be
such that the map

g 7→ f (g)π(g)v

is integrable. Let π( f )v denote the unique element in H such that, for all w ∈ H ,

⟨π( f )v,w⟩ =

∫
G

f (g)⟨π(g)v,w⟩ dg.

Proposition 2.2. Let (π, H) be as above. If f ∈ L1(G), then, for all v ∈ H , the
map g 7→ f (g)π(g)v is integrable and the prescription

π( f ) : H → H, v 7→ π( f )v,

defines a bounded linear operator.

Proof. See [14, Proposition 10.20]. □

With the integral operators introduced in Proposition 2.2 at our disposal, we
have all the tools needed to state the main results on the unitary representations of
compact groups.

Let K be a compact group. Let K̂ denote the set of equivalence classes of
irreducible unitary representations of K . If (π, H) is a unitary representation, for
each [γ ] ∈ K̂ let H(γ ) denote the closure of the sum of all the closed invariant
subspaces of H in the equivalence class of γ . We refer to H(γ ) as the γ -isotypic
component of H . This notion is independent of the choice of representative for the
equivalence class.

Proposition 2.3. Let K be a compact group. Let (π, H) be an irreducible unitary
representation of K . Then H is finite-dimensional.

Proof. See [18, Proposition 1.4.2]. □
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Given Proposition 2.3, we can associate, to each irreducible representation γ
of K , the function

χγ : K → C, χγ (g) := tr γ (g),

the character of γ . A standard argument proves that equivalent representations
have the same character.

Recall that if {(πi , Hi ) | i ∈ I } is a countable family of unitary representations
of a topological group G, we can construct a new unitary representation of G, the
direct sum, on the Hilbert space completion of the algebraic direct sum of the Hi ’s.
We refer the reader to [18, Section 1.4.1], for the details of this construction. We let⊕

i∈I

Hi

denote the direct sum of the family {(πi , Hi ) | i ∈ I }, dropping explicit reference to
the πi ’s.

Proposition 2.4. Let K be a compact group. Let (π, H) be a unitary representation
of K . Then (π, H) is the direct sum representation of its K -isotypic components:

H =

⊕
[γ ]∈K̂

H(γ ).

Moreover, let αγ denote the function

αγ (k) := dim(γ )χγ (k).

Then
H(γ )= π(αγ )H.

Proof. See [18, Lemma 1.4.7]. □

Proposition 2.5. Let K be a compact group. If (π, H) is a Hilbert space repre-
sentation of K , then there exists an inner product on H that induces the original
topology on H and for which K acts unitarily through π .

Proof. See [18, Lemma 1.4.8]. □

We are finally ready to introduce (g, K )-modules.

Definition 2.6. Let G be a connected, semisimple Lie group with finite centre. Let
g denote its Lie algebra. Let K be a maximal compact subgroup of G, which we fix
from now on, with Lie algebra k. A vector space V , equipped with the structure of
g-module and K -module, is called a (g, K )-module if the following conditions hold:

(1) For all v ∈ V , for all X ∈ g, for all k ∈ K ,

k Xv = Ad(k)Xkv.
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(2) For all v ∈ V , the span of the set

Kv := {kv | k ∈ K }

is a finite-dimensional subspace of V , on which the action of K is continuous.

(3) For all v ∈ V , for all Y ∈ k,

d
dt

exp(tY )v|t=0 = Yv.

We remark that (3) implicitly uses the smoothness of the action of K on the span
of Kv. This follows from the fact that a continuous group homomorphism between
Lie groups is automatically smooth.

Let V and W be (g, K )-modules and let Homg,K (V,W ) denote the space of
g-morphisms that are also K -equivariant. Then V and W are said to be equivalent
if Homg,K (V,W ) contains an invertible element.

A (g, K )-module V is called irreducible if the only subspaces that are invariant
under the actions of g and K are the trivial subspace and V itself. In this case, we
have the following theorem:

Theorem 2.7. Let V be an irreducible (g, K )-module. Then Homg,K (V, V ) is
1-dimensional.

Proof. This is the result actually proved in [18, Lemma 3.3.2], although the statement
there says Homg,K (V,W ), for an unspecified W . We believe it is a typo. □

Let V be a (g, K )-module. Since, given each v ∈ V , the span of Kv, say Wv , is
a finite-dimensional continuous representation of K , we can use Proposition 2.5
and then apply Proposition 2.4, thus decomposing Wv into a finite sum of finite-
dimensional K -invariant subspaces of V . For γ ∈ K̂ , we let V (γ ) denote the sum
of all the K -invariant finite-dimensional subspaces in the equivalence class of γ .
Then the discussion above implies that

V =
⊕
γ∈K̂

V (γ )

as a K -module, with the direct sum indicating the algebraic direct sum. A (g, K )-
module V is called admissible if, for all γ ∈ K̂ , V (γ ) is finite-dimensional.

Given a unitary representation (π, H), there exists a (g, K )-module naturally
associated to it. To define it, recall that a vector v ∈ H is called smooth if the map

g 7→ π(g)v

is smooth. Let H∞ denote the subspace of smooth vectors of H . It is a standard
fact that the prescription

π̇(X) :=
d
dt
π(exp(t X))v|t=0,
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for v ∈ H∞ and X ∈ g, defines an action of g on H∞. Recall that a vector v ∈ H
is K -finite if the span of the set

π(K )v := {π(k)v | k ∈ K }

is finite-dimensional. Let HK denote the subspace of K -finite vectors of H . By [18,
Lemma 3.3.5], with the action of g so defined and with the action of K through π ,
the space HK ∩ H∞ is a (g, K )-module. The representation (π, H) is said to be
admissible if HK ∩ H∞ is admissible as a (g, K )-module and (π, H) is called
infinitesimally irreducible if HK ∩ H∞ is irreducible as a (g, K )-module. It is in
general not true that a K -finite vector is smooth. However, if (π, H) is admissible,
we have the following result:

Theorem 2.8. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an admissible representation of G. Then every K -finite vector is smooth.

Proof. See the proof [18, Theorem 3.4.10]. □

In light of the following fundamental result of Harish-Chandra, Theorem 2.8
will play an important role in this article.

Theorem 2.9. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an irreducible, Hilbert representation of G. Then (π, H) is admissible.

Proof. See [13, Theorem 7.204]. □

In the following, given a unitary representation (π, H), we will write HK for the
(g, K )-module HK ∩ H∞ even if (π, H) is not admissible. We believe it will not
cause any confusion.

We are now in position to prove the version of the Schur lemma for sesquilinear
forms that we will use in Section 3. It is given as Corollary 2.13. First, we need:

Theorem 2.10. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an admissible Hilbert representation of G. Then (π, H) is irreducible if
and only if it is infinitesimally irreducible.

Proof. See [18, Theorem 3.4.11]. □

Definition 2.11. Let V and W be (g, K )-modules. A sesquilinear form

B( · , · ) : V × W → C

is (g, K )-invariant if it satisfies the following two conditions:

(i) For all k1, k2 ∈ K and all v,w ∈ V we have

B(k1v, k2w)= B(v,w).

(ii) For all X ∈ g and all v,w ∈ V we have

B(Xv,w)= −B(v, Xw).
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Theorem 2.12. Let G be a connected, semisimple Lie group with finite centre. Let
V be an admissible (g, K )-module. Suppose that there exist a (g, K )-module W
and a nondegenerate (g, K )-invariant sesquilinear form

B( · , · ) : V × W → C.

Then W is (g, K )-isomorphic to V .

Proof. This is [18, Lemma 4.5.1], except for the fact that our form is sesquilinear.
To account for it, we modify the definition of the map T in the reference by setting,
for a given w ∈ W , T (w)(v)= B(w, v) for all v ∈ V . This defines a map from W
to V obtained by sending w to T (w) which, by the argument in the reference, is a
(g, K )-isomorphism. □

The next corollary is proved by adapting to our case the argument in [4, Proposi-
tion 8.5.12] and using the beginning of the proof of [11, Proposition 9.1].

Corollary 2.13. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be an irreducible, Hilbert representation of G. Then, up to a constant, there
exists at most one nonzero (g, K )-invariant sesquilinear form on HK . In particular,
if (π, H) is irreducible unitary, then every such form is a constant multiple of ⟨ · , · ⟩.

Proof. The irreducibility of (π, H) implies that of HK , by Theorems 2.10 and 2.8.
Let B( · , · ) be a (g, K )-invariant sesquilinear form. Consider the linear subspace V0

of HK defined as

V0 := {v ∈ HK | B(v,w)= 0 for all w ∈ HK }.

Since B( · , · ) is nonzero, V0 is a proper subspace of HK . Since B( · , · ) is more-
over (g, K )-invariant, it follows that V0 is a (g, K )-invariant subspace of HK , and
hence, by the irreducibility of HK , it must be zero. Analogous considerations for
the subspace

V 0
:= {w ∈ HK | B(v,w)= 0 for all v ∈ HK }

imply that B( · , · ) is nondegenerate. By Theorem 2.12, the map v 7→ T (v),
T (v)( · ) := B(v, · ), is a (g, K )-isomorphism. Since HK is irreducible, the space
Homg,K (HK , HK ) is 1-dimensional by Theorem 2.7. Now, let B ′( · , · ) be another
such form, with associated isomorphism T ′. Then T (T ′)−1

=cI , for some c∈C. For
the last statement, the unitarity of (π, H) implies that ⟨ · , · ⟩ is a (g, K )-invariant
nondegenerate sesquilinear form and Theorem 2.9, with the discussion above,
implies the result. □

Since we are assuming that G is connected, proving (g, K )-invariance reduces
to proving g-invariance. Indeed, by [9, Theorem 2.2, p. 256], any maximal compact
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subgroup K of G is connected. Therefore, by [12, Corollary 4.48], the exponen-
tial map

exp : k → K
is surjective.

Proposition 2.14. Let G be a connected, semisimple Lie group with finite centre.
Let V be a (g, K )-module, let

B( · , · ) : V × V → C

be a g-invariant sesquilinear form. Then B( · , · ) is K -invariant.

Proof. Given any pair of vectors v,w∈ V , we can find a finite-dimensional subspace
of V , say W , which contains both and on which K acts continuously through a
representation π . The restriction of the bilinear form B( · , · ) to W is continuous.
To prove that B(π(k)v, π(k)w) = B(v,w) for all k ∈ K , it suffices to prove that
B(π(k)v,w)= B(v, π(k−1)w) for all k ∈ K . Given k ∈ K , let X ∈ k be such that
k = exp X . We begin by writing

B(π(k)v,w)= B(π(exp X)v,w).

Since π(exp X)= exp π̇(X)v, we obtain

B(π(exp X)v,w)= B(exp π̇(X)v,w).

The continuity of B( · , · ) on V gives

B(exp π̇(X)v,w)= exp B(π̇(X)v,w).

By the g-invariance of B( · , · ), we have

exp B(π̇(X)v,w)= exp B(v, π̇(−X)w)

and, finally,
exp B(v, π̇(−X)w)= B(v, π(exp(−X))w).

This is precisely
B(π(k)v,w)= B(v, π(k−1)w). □

Let us recall that any locally compact Hausdorff group G acts on the Hilbert
space L2(G) by the prescription

R(g) f (x) := f (xg).

The representation so obtained is unitary and if G is a Lie group the notion of
smooth vectors in L2(G) makes sense. In the next section, we will need a criterion
to establish that certain functions are smooth vectors in L2(G). We will make use
of the following notion:
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Definition 2.15. Let G be a Lie group and let (π, H) be a Hilbert representation
of G. The Gårding subspace of H is the vector subspace of H spanned by the set

{π( f )v | v ∈ H, f ∈ C∞

c (G)}.

Proposition 2.16. Let G be a Lie group with finitely many connected components,
let (π, H) be a Hilbert representation of G. Then every vector in the Gårding
subspace of H is a smooth vector in H.

Proof. See [18, Lemma 1.6.1]. □

Recall that f ∈ C∞(G) is called Z(gC)-finite if it is annihilated by an ideal
of Z(gC) of finite codimension. The criterion we need is the following result of
Harish-Chandra:

Theorem 2.17. Let G be a group in the class H as in [17, p. 192]. Let f ∈ C∞(G)
be K -finite and Z(gC)-finite. Then there exists a function h ∈ C∞

c (G) which satisfies
h(kgk−1) = h(g) for all k ∈ K and for all g ∈ G and such that f ∗ h = f . If
f ∈ C∞(G), in addition, is square-integrable, then f is a smooth vector in L2(G).

Proof. The first statement is [17, Proposition 14, p. 352]. The second conclusion
follows from the observation found at the beginning of the proof of [11, Corol-
lary 8.42] that f is in the Gårding subspace of L2(G) and it is therefore smooth by
Proposition 2.16. That f is indeed in the Gårding subspace of L2(G) follows from
the standard fact that

(2.18) R(ψ̃) f = f ∗ψ,

for every ψ ∈ C∞
c (G). Here, ψ̃(x) := ψ(x−1). The first statement then gives

(2.19) R(h̃) f = f ∗ h = f. □

Proposition 2.20. Let G be a group in the class H. Let f ∈ C∞(G) be K -finite,
Z(gC)-finite and square-integrable. Then, for every X ∈ g, we have

X f = Ṙ(X) f,

where X f : G → C is defined as

(2.21) X f (g) :=
d
dt

[
f (g exp(t X))

]
|t=0.

Proof. By Theorem 2.17, there exists h ∈ C∞
c (G) such that

f = f ∗ h.
From

X f = X ( f ∗ h)= f ∗ Xh and f ∗ Xh = Ṙ(
∼

Xh) f,
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the latter being an application of (2.18), we obtain

X f = Ṙ(
∼

Xh) f.
Since

Ṙ(
∼

Xh) f = Ṙ(X)R(h̃) f and R(h̃) f = f ∗ h = f,

we conclude
X f = Ṙ(X) f. □

We will apply Proposition 2.20 to the group M in the Langlands decomposition
of a parabolic subgroup P = MAN of a connected semisimple Lie group with
finite centre. A group M of this form will not be connected, semisimple in general.
However, it belongs to the class H by [5, Lemma 9, p. 108].

We briefly recall the construction of parabolically induced representations. We
refer the reader to [13, Chapter XI], for a more thorough account.

Let G be a connected, semisimple Lie group with finite centre and let P = MAN
be a parabolic subgroup of G. The group KM := K ∩ M is a maximal compact
subgroup of M . Let λ be a complex-valued real-linear functional on a and let (σ, Hσ )
be a Hilbert representation of M . We define an action of G on the space of functions

{ f ∈ C(K , Hσ ) | f (mk)= σ(m) f (k) for all m ∈ KM and all k ∈ K }

by declaring

IndP(σ, λ, g) f (k) := e(λ+ρ)(h(kg))σ(m(kg)) f (k(kg)),

where, if g = kman for some k ∈ K , m ∈ M , a ∈ A, n ∈ N , we set k(g) := k,
m(g) := m, h(g) := log(a), n(g) := n. The symbol ρ denotes half of the sum of
the positive restricted roots determined by a counted with multiplicities. On this
space of functions, we introduce the norm

∥ f ∥IndP (σ,λ) :=

( ∫
K
∥ f (k)∥2

σ dk
)1/2

and, upon completing, we obtain a Hilbert representation of G which we denote
by IndP(σ, λ). We will denote by IndP,KM (σ, λ) the space of KM -finite vectors
in IndP(σ, λ).

Proposition 2.22. Let G be a connected, semisimple Lie group with finite centre
and let P = MAN be a parabolic subgroup of G. Let λ be a complex-valued, real-
linear, totally imaginary functional on a and let (σ, Hσ ) be a unitary representation
of M. Then IndP(σ, λ) is a unitary representation of G.

Proof. See [13, Corollary 11.39]. □
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Corollary 2.23. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. Let λ be a complex-valued, real-linear,
totally imaginary functional on a and let (σ, Hσ ) be a unitary representation of M.
Then, for every f1, f2 ∈ IndP,KM (σ, λ) and for every X ∈ g, we have

⟨ ˙IndP(σ, λ, X) f1, f2⟩IndP (σ,λ) = −⟨ f1, ˙IndP(σ, λ, X) f2⟩IndP (σ,λ).

Proof. This is a consequence of Proposition 2.22 and the skew-invariance of the
inner product on a unitary representation with respect to the action of the Lie algebra
on the space of smooth vectors [19, p. 266]. □

Next, we recall a form of the Frobenius reciprocity originally observed by
Casselman. We first need some preparation.

First of all, we record the following.

Lemma 2.24. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. If V is a (g, K )-module, then the
(g, K )-module structure on V induces a structure of (m⊕a, KM)-module on V \nV
in such a way that the quotient map

q : V → V/nV

is (m⊕ a, KM)-equivariant.

Proof. It suffices to show that if v ∈ V is of the form

v = Xw

for some w ∈ V and X ∈ n, then, for all ξ ∈ KM , we have

ξv ∈ nV,

and, for all Y ∈ m⊕ a, we have

Yv ∈ nV .

Let ξ ∈ KM . We have

ξv = ξ Xw = Ad(ξ)Xξw

and, since KM , being contained in M , normalises n by [12, Proposition 7.83],
it follows that Ad(ξ)X ∈ n.

Let Y ∈ m⊕ a. We have

Yv = Y Xw = [Y, X ]w+ XYw.

The second term in the right-hand side belongs to nV because X ∈ n and the first
belongs to nV because n is an ideal in p = m⊕ a⊕ n by [12, Proposition 7.78]. □
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Let us recall that a (g, K )-module is finitely generated if it is a finitely gener-
ated U (gC)-module. We say that a Hilbert representation (π, H) of G is finitely
generated if HK is finitely generated. We record the following result of Casselman.

Theorem 2.25. Let G be a connected, semisimple Lie group with finite centre and let
P = MAN be a parabolic subgroup of G. Let V be an admissible, finitely generated
(g, K )-module. Then V/nV is an admissible, finitely generated (m ⊕ a, KM)-
module.

Proof. See [18, Lemma 4.3.1]. □

If V is an irreducible (g, K )-module, we say that V admits an infinitesimal
character if the centre Z(gC) of the universal enveloping algebra U (gC) of the
complexification gC of g acts on V by a character, that is, for every Z ∈ Z(gC) and
for every v ∈ V , we have

Zv = χ(Z)v,

where χ : Z(gC)→ C is a morphism of complex, unital algebras. The action of
Z(gC) on V in question is the one obtained by first extending the action of g to an
action of gC and then to an action of U (gC) using the PBW theorem.

Corollary 2.26. Let G be a connected, semisimple Lie group with finite centre and
let P = MAN be a parabolic subgroup of G. If V is an irreducible (g, K )-module
admitting an infinitesimal character, then V/nV is an admissible, finitely generated
(m⊕ a, KM)-module.

Proof. By [9, Theorem 2.2, p. 256], K is connected. By [13, Theorem 7.204], V is
admissible. Combining [13, Example 1, p. 442] and [13, Corollary 7.207], it follows
that V is finitely generated. The result now follows from Theorem 2.25. □

Let p, m, a and n denote the Lie algebras of P , M , A and N , respectively.
Let (σ, Hσ ) be an admissible and finitely generated Hilbert representation of M

which is unitary when restricted to KM . Let λ be a complex-valued real-linear
functional on a. Consider the (m⊕ a, KM)-module Hλ

σ,KM
defined as

Hλ
σ,KM

:= Hσ,KM ⊗ Cλ+ρ,

where the pair (m, KM) acts on Hσ,KM and a acts on Cλ+ρ via the functional λ+ρ.
If V is a (g, K )-module and T ∈ Homg,K (V, IndP,KM (σ, λ)), then we can define

an element T̂ ∈ Homm⊕a,KM (V/nV , Hλ
σ,KM

) by setting

T̂ (v) := T (v)(1).

Theorem 2.27. Let G be a connected, semisimple Lie group with finite centre. Let
V be a (g, K )-module. Let (σ, Hσ ) be an admissible and finitely generated Hilbert
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representation of M which is unitary when restricted to KM and let λ be a complex-
valued real-linear functional on a. Consider the (m⊕ a, KM)-module Hλ

σ,KM
. Then

the map

Homg,K (V, IndP,KM (σ, λ))→ Homm⊕a,KM (V/nV , Hλ
σ,KM

), T 7→ T̂ ,

is a bijection.

Proof. See [18, Lemma 5.2.3] and the discussion preceding it. □

For clarity, we point out that the formulation in [18] seems to contain some typos
and so we modified it following [8, Theorem 4.9].

The inverse of the map T 7→ T̂ is constructed as follows (see [18, Lemmas 5.2.3
and 3.8.2] or, alternatively, [8, Theorem 4.9]). Let S ∈ Homm⊕a,KM (V/nV , Hλ

σ,KM
).

Then we obtain an element

S̃ ∈ Homg,K (V, IndP,KM (σ, λ))

by setting
S̃(v)(k) := S(q(kv)),

where q : V → V/nV denotes the quotient map. Then the inverse of T 7→ T̂ is
given by the map

Homm⊕a,KM (V/nV , Hλ
σ,KM

)→ Homg,K (V, IndP,KM (σ, λ)), S 7→ S̃.

3. Asymptotic behaviour of representations

3.1. Asymptotic expansions of matrix coefficients. We begin by collecting the
fundamental facts concerning asymptotic expansions of matrix coefficients of tem-
pered representations. We refer the reader to [11, Chapter VIII] for a more thorough
exposition of the topic.

Let G be a connected, semisimple Lie group with finite centre, let K be a fixed
maximal compact subgroup of G and let k be its Lie algebra. Let P = MAN denote
the minimal parabolic subgroup of G with Lie algebra p. Given a maximal abelian
subspace a of p, we call A the corresponding subgroup of P and M the centraliser
of A in K . We fix a system 1 of simple roots of the restricted root system attached
to (g, a), and we use 1+ to denote the corresponding set of positive roots.

Let a+ denote the set {H ∈ a | α(H) > 0 for all α ∈ 1}. Then the subset of
regular elements Greg of G admits a decomposition as Greg

= K exp(a+)K and G
itself admits a decomposition G = K exp(a+)K .

We write 1= {α1, . . . , αn} and we identify it with the ordered set {1, . . . , n} in
the obvious way. We adopt the following notation to simplify the appearance of the
expansions we are going to work with.

For H ∈ a and l ∈ Zn
≥0, we set α(H)l :=

∏n
i=1 αi (H)li .
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If λ is a real-linear complex-valued functional on a, since, for every H ∈ a,

λ(H)=

n∑
i=1

λiαi (H)

for some λ1, . . . , λn ∈ C, we will often identify λ with the n-tuple (λ1, . . . , λn).
The next result is concerned with the expansion of K -finite matrix coefficients

relative to P .

Theorem 3.1. Let G be a connected, semisimple Lie group with finite centre
and let (π, H) be an irreducible, Hilbert representation of G. Then there exist a
nonnegative integer l0 and a finite set of real-linear complex-valued functionals
on a, denoted by E0, such that, for every v,w ∈ HK , the restriction to exp(a+) of
the matrix coefficient

φv,w(g)= ⟨π(g)v,w⟩

admits a uniformly and absolutely convergent expansion as

φv,w(exp H)= e−ρ(H)
∑
λ∈E0

∑
l∈Zn

≥0
|l|≤l0

∑
k∈Zn

≥0

α(H)le(λ−k)(H)
⟨cλ−k,l(v), w⟩,

where each cλ−k,l : HK → HK is a complex-linear map and ρp denotes half of
the sum of the elements in 1+ counted with multiplicities. The maps cλ−k,l are
completely determined by the representation (π, H).

Proof. By Theorem 2.9, (π, H) is admissible and therefore has an infinitesimal
character. By [11, Theorem 8.32], we have the stated expansion for any τ -spherical
function (in the sense of [11, p. 215]) F on G of the form

F(g)= E2π(g)E1,

where τ1 and τ2 are subrepresentations of

π |K ∼=

⊕
γ∈K̃

nγ γ

of the form
τ1 :=

⊕
γ∈21

nγ γ and τ2 :=

⊕
γ∈22

nγ γ

for finite collections21,22 ∈ K̂ , and E1, E2 are the orthogonal projections to τ1, τ2,
respectively. In this expansion, the set E0, the maps cλ−k,l and the number l0 depend
on τ = (τ1, τ2) and we can expand φv,w provided that v ∈ τ1 and w ∈ τ2. To obtain
an expansion valid for every v,w ∈ HK and with E0, l0 and the cλ−k,l independent
of τ , we appeal to the theory developed in [2, Section 8], which we can apply
since (π, H) is finitely generated by [13, Corollary 7.207] (for clarity, we should
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mention that the setup in [11] is different, but entirely equivalent to that in [2],
translating between the two is just bookkeeping). First, by [2, Theorem 8.7], the
representation (π, H) has a unique matrix coefficient map in the sense of [2, p. 907].
The required expansion on the region exp(a+) of the matrix coefficient map is
given by [2, Theorem 8.8]. For completeness, the relation between the τ -dependent
expansion and the expansion in our statement is given in [2, Lemma 8.3]. □

We recall that if ν, ν ′ are real-linear complex-valued functionals on a such that
ν− ν ′ is an integral linear combination of the simple roots, then we say that ν and
ν ′ are integrally equivalent.

The set E0 has the property that if λ, λ′
∈ E0 with λ ̸= λ′, then λ and λ′ are not

integrally equivalent.
If ν and ν ′ are integrally equivalent and ν−ν ′ is a nonnegative integral combina-

tion of the simple roots, we write ν ≥ ν ′, thus introducing an order relation among
integrally equivalent functionals on a.

If k ∈ Zn
≥0 is such that the term

α(H)le(λ−k)(H)
⟨cλ−k,l(v), w⟩

is nonzero for some λ ∈ E0 and for some v,w ∈ HK , then we say that ν := λ− k
is an exponent and we let E denote the set of exponents. The exponents which
are maximal with respect to the order relation introduced above are called leading
exponents: E0 is precisely the set of leading exponents.

The following result is used crucially in [10] and in the following.

Theorem 3.2. Let (π, H) be an irreducible, tempered, Hilbert representation of G.
Then every λ ∈ E0 satisfies

Re λi ≤ 0
for every i ∈ {1, . . . , n}.

Proof. See [11, Theorem 8.53]. Strictly speaking, in [loc. cit.] the theorem is
formulated under some restrictions on G, but it is a convenient reference since we
are adopting the same normalisation of the exponents. See [1, Proposition 3.7, p. 83]
or [2, Corollary 8.12], for proofs for more general groups. □

We now turn to asymptotic expansions of matrix coefficients of (π, H) relative to
standard (for P) parabolic subgroups of G. We follow [11, Chapter VIII, Section 12].

Given a subset I ⊂ {1, . . . , n}, and recalling that we identified1 with {1, . . . , n},
we can associate to it a parabolic subgroup

PI = MI AI c NI c

of G containing P in such a way that the restricted root space g−α satisfies g−α ⊂mI

if and only if α ∈ I (with mI denoting the Lie algebra of MI ). For the details, we
refer the reader to [11, Proposition 5.23; 12, Chapter VII].



ON KAZHDAN–YOM DIN ASYMPTOTIC ORTHOGONALITY 45

First, we introduce the basis {H1, . . . , Hn} of a dual to 1. We define the Lie
algebra aI as

aI :=

∑
i∈I

RHi

and the group AI as

AI := exp
( ∑

i∈I

Rαi

)
.

We can then write

a = aI ⊕ aI c and A = AI AI c .

The groups NI and NI c are the analytic subgroups of G corresponding to the Lie
algebras

nI :=

∑
β∈1+

β|aI c =0

gβ and nI c :=

∑
β∈1+

β|aI c ̸=0

gβ .

We have

ρ = ρI + ρI c

with

ρI :=
1
2

∑
β∈1+

β|aI c =0

(dim gβ)β

and analogously for ρI c . Denoting by M0,I the analytic subgroup of G correspond-
ing to the Lie algebra

mI = m⊕ aI ⊕ nI ⊕ nI ,

the group MI is then given as

MI := Z K (aI c)M0,I .

Finally, K I := K ∩ MI is a maximal compact subgroup of MI and M AI NI is a
minimal parabolic subgroup of MI .

Theorem 3.3. Let G be a connected, semisimple Lie group with finite centre and let
(π, H) be an irreducible, Hilbert representation of G. Let C be a compact subset of
MI satisfying K I C K I = C. Then there exists a positive real number R depending
on C such that, for every m ∈ C and for every a = exp H ∈ AI c which satisfies
αi (H) > log R for every i ∈ I c, we have

φv,w(m exp H)= e−ρI c (H)
∑
ν∈EI

∑
q∈ZI c

≥0
|q|≤q0

α(H)qeν(H)cPI
ν,q(m, v, w)
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for every v,w ∈ HK . Here, EI is a countable set of real-linear complex-valued
functionals on aI c , each cPI

ν,q extends to a real-analytic function on MI and satisfies

cPI
ν,q(ξ2mξ1, v, w)= cPI

ν,q(m, π(ξ1)v, π(ξ
−1
2 )w)

for every ξ1, ξ2 ∈ K I . Moreover, for every m ∈ MI and w ∈ HK , the map

HK → C, v 7→ cPI
ν,q(m, v, w),

is complex-linear and, for every m ∈ MI and v ∈ HK , the map

HK → C, w 7→ cPI
ν,q(m, v, w),

is conjugate-linear. The maps cPI
ν,q : MI × HK × HK → C are completely determined

by the representation (π, H).

Proof. For a τ -spherical function F as in the proof of Theorem 3.1, the result follows
from [11, Theorem 8.45]. To obtain an expansion independent of τ , it suffices to
prove that each Fν−ρI c

λ
is independent of τ . Let m ∈ MI and write m = ξ2aI ξ2 for

some aI ∈ A+

I , where A+

I is the positive Weyl chamber, and some ξ1, ξ2 ∈ K I . Since

Fν−ρI c (ma, v, w)= Fν−ρI c (aI a, π(ξ1)v, π(ξ
−1
2 )w),

relabelling things, it suffices to prove that Fν−ρI c ( · , v, w) is independent of τ as a
function on A+

I AI c . By [11, Corollary 8.46], the functional ν ∈ EI is the restriction
of an element in the set of exponents E in the expansion relative to P and this
set is independent of τ by [2, Theorem 8.8]. Therefore, it remains to prove that
each cPλ

ν,q is independent of τ . Since cPλ
ν,q is analytic on MI , it suffices to prove that

cPλ
ν,q( · , v, w) as a function on A+

I is independent of τ . Given aI ∈ A+

I , we can find
a compact subset C of MI containing and aI such that K I C K I = C , and a positive
R depending on C , such that for every H ∈ aI c satisfying αi (H) > log R for every
i ∈ I c, the expansion of φv,w(aI a) relative to P and the expansion relative to PI

are both valid. Comparing them as in [11, p. 251], it follows that expansion relative
to PI is completely determined by the expansion relative to P and the latter is
independent of τ by Theorem 3.1. □

For every ν ∈ EI , the term

α(H)qe(ν−ρI c )(H)cPI
ν,q(m, v, w)

is nonzero for some v,w ∈ HK and some m ∈ M . The set EI is the set of exponents
relative to PI .

To define the functions of the form 0λ,l discussed in the Introduction, the first step
consists in associating a standard (for P) parabolic subgroup of G to each λ ∈ E0.
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Let (π, H) be an irreducible, tempered, Hilbert representation of G and let λ∈ E0.
We set Iλ := {i ∈ {1, . . . , n} | Re λi < 0} which we identify with the subset 1λ of 1
defined as

1λ := {αi ∈1 | i ∈ Iλ}.

The construction of standard parabolic subgroups from the datum of a subset of 1
assigns to Iλ the standard parabolic subgroup Pλ defined as

Pλ := PIλ .

It admits a decomposition
Pλ = MλAλ0 Nλ0,

where
Aλ0 := AI c

λ
.

The subgroup M admits a decomposition

Mλ = KλAλKλ,

where
Aλ := AIλ and Kλ := K ∩ Mλ.

The group A decomposes as A = AλAλ0 . We write aλ and aλ0 for aIλ and aI c
λ
,

respectively. Similarly, we write ρλ and ρλ0 for ρIλ and ρI c
λ
, respectively.

Remark 3.4. The theory recalled so far is sufficient to prove that tempered, irre-
ducible, Hilbert representations are unitarisable. From now on, given a tempered,
irreducible, Hilbert representation (π, H), we will implicitly assume that it is unitary
and we will refer to it simply as a tempered, irreducible representation.

3.2. The functions 0λ,l . We are going to introduce an equivalence relation on the
data indexing the expansion of φv,w relative to P . The definition is motivated by
the construction of d(π) in [10]. Let v,w ∈ HK . We have

φv,w(exp H)= e−ρ(H)
∑
λ∈E0

∑
l∈Zn

≥0
|l|≤l0

α(H)leλ(H)8v,wλ,l (H),

where
8
v,w
λ,l (H) :=

∑
k∈Zn

≥0

e−k(H)
⟨cλ−k,l(v1), v2⟩.

The terms in this expansion are indexed by the finite set

C := {(λ, l)} λ∈E0
l∈Zn

≥0
|l|≤l0

.
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We introduce a relation on C by declaring that (λ, l)∼ (µ,m) if Iλ= Iµ, λ|aλ0
=µ|aλ0

and resI c
λ

l = resI c
µ

m. To define this relation we have implicitly used the identification
of Iλ with the subset 1λ of 1 at the end of the previous subsection.

It is clear that ∼ is an equivalence relation. We denote by [λ, l] the equivalence
class containing (λ, l).

We can therefore regroup the expansion of φv,w as

φv,w(exp H)= e−ρ(H)
∑

[λ,l]∈C/∼

α(Hλ0)
lλ0 eλ|aλ0

(Hλ0 )
∑

(λ′,l ′)∈[λ,l]

α(Hλ)l
′

λeλ
′
|aλ (Hλ)8

v,w
λ′,l ′(H),

where

lλ0 := resI c
λ

l, α(Hλ0)
lλ0 :=

∏
i∈I c

λ

αi (Hλ0)
li , l ′λ := resIλ l ′, α(Hλ)l

′

λ :=

∏
i∈Iλ

α(Hλ)l
′

i

and H = Hλ0 + Hλ corresponds to the decomposition

a+
= a+

λ0
⊕ a+

λ .

We are also implicitly using the fact that α(H)l = α(Hλ)lλα(Hλ0)
lλ0 which

follows from writing H with respect to the basis dual to 1.
To proceed, we need to isolate certain equivalence classes in C/∼. First, we

recall from the Introduction how the quantity dP(λ, l), for (λ, l) ∈ C and P a fixed
minimal parabolic subgroup of G, and the quantity d(π) are defined.

For (λ, l) ∈ C, we set

dP(λ, l) := |I c
λ | +

∑
i∈I c

λ

2li

and we observe that this number only depends on the equivalence class of (λ, l).
Then we take the maximum, dP , as (λ, l) ranges over C. We can proceed analogously
for every standard (for P) parabolic subgroup of P ′ of G to obtain a nonnegative in-
teger dP ′ . Then d(π) is defined to be the maximum over all P ′ of the quantities dP ′ .

Definition 3.5. Let [λ, l] ∈ C/∼. We say that [λ, l] is relevant if it satisfies

dP(λ, l)= d(π),

where dP(λ, l) is defined by (1.7).

Let [λ, l] ∈ C/∼ be a relevant equivalence class. For Hλ ∈ a+

λ , we set

(3.6) 0λ,l(exp Hλ, v, w) := e−ρ(H)
∑

(λ′,l ′)∈[λ,l]

α(Hλ)l
′

λeλ
′
|aλ0

(Hλ)
8
v,w
λ′,l ′(Hλ).

Before establishing the properties of 0λ,l , let us pause to explain the motivation
behind the definitions above. The discussion that follows will be used only in
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Section 4. The reader who prefers to do so can skip to Proposition 3.12 without
any loss of continuity.

Let v1, v2, v3, v4 ∈ HK . We will be considering integrals of the form

lim
r→∞

1
r d(π)

∫
a+
<r

φv1,v2(exp H)φv3,v4(exp H)
∏
β∈1+

(eβ(H) − e−β(H))dim gβ d H,

where

(3.7) a+

<r := a+
∩ {H ∈ a | β(H) < r for all β ∈1+

}.

Treating these is the content of [10, Appendix A ]. We remark that our region of
integration is defined as to exclude the subset of a+ where at least one of the simple
roots vanishes. It is a set of measure zero.

We want to interpret [10, Lemma A.5] in group-theoretic terms.
Let us consider the matrix coefficients φv1,v2 and φv3,v4 . On A+

:= exp(a+), they
can be expanded as

φv1,v2(exp H)= e−ρ(H)
∑

[λ,l]∈C/∼

α(Hλ0)
lλ0 eλ|aλ0

(Hλ0 )
∑

(λ′,l ′)∈[λ,l]

9
v1,v2
λ′,l ′ (H)

and

φv3,v4(exp H)= e−ρ(H)
∑

[µ,m]∈C/∼

α(Hµ0)
mµ0 eµ|aµ0

(Hµ0 )
∑

(µ′,m′)∈[µ,m]

9
v3,v4
µ′,m′(H),

where, for (λ′, l ′) ∈ [λ, l], we set

9
v1,v2
λ′,l ′ (H) := α(Hλ)l

′

λeλ
′
|aλ (Hλ)8

v1,v2
λ′,l ′ (H)

and similarly for (µ′,m′) ∈ [µ,m]. Let [λ, l] ∈ C/∼ and [µ,m] ∈ C/∼ be such
that Iλ = Iµ, λ|aλ0

= µ|aλ0
and

d(π)= |Iλ| +
∑
i∈Iλ

(li + mi ).

In view of the first condition, the third is equivalent to the requirement

dP(λ, l)= d(π) and dP(µ,m)= d(π).

Consider the summand

e−2ρ(H)α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m′(H)

in the expansion of the product φv1,v2φv3,v4 on A+. Taking into account the factor
e−2ρ(H) and the fact that the term

(3.8) �(H) :=

∏
β∈1+

(eβ(H) − e−β(H))dim gβ
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is incorporated in the function φ in [10, Lemma A.5] (compare with Section 4.7
in [loc. cit.]), this lemma shows that, as r → ∞, the integral

1
r d(π)

∫
a+
<r

e−2ρ(H)α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m′(H)�(H) d H

tends to

C(λ, l,m)
∫
a+

λ

e−2ρλ(Hλ)[9
v1,v2
λ′,l ′ 9

v3,v4
µ′,m′]|aλ(Hλ)�λ(Hλ) d Hλ,

where

(3.9) �λ(Hλ) :=

∏
β∈1+

λ

(eβ(Hλ) − e−β(Hλ))dim gβ ,

with
1+

λ := {β ∈1+
| β|aλ0

= 0},

and the quantity C(λ, l,m) is given by

(3.10) C(λ, l,m) :=

∫
{H∈aλ0 |extI c

λ (H)∈a+

<1}

α(Hλ0)
lλ0+mµ0 d Hλ0 .

Now, summing over all (λ′, l ′) ∈ [λ, l] and over all (µ′,m′) ∈ [µ,m], we obtain
that the integral over a+

<r of

e−2ρ(H)
∑

(λ′,l ′)∈[λ,l]

∑
(µ′,m′)∈[µ,m]

α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m (H)�(H),

upon multiplying by 1/r d(π) and letting r → ∞, equals

C(λ, l,m)
∫
a+

λ

e−2ρλ(Hλ)
∑

(λ′,l ′)∈[λ,l]

∑
(µ′,m′)∈[µ,m]

[9
v1,v2
λ′,l ′ 9

v3,v4
µ′,m′]|aλ(Hλ)�λ(Hλ) d Hλ.

Finally, since

8
v1,v2
λ′,l ′ |aλ(Hλ)=

∑
k∈Z

Iλ
≥0

e−k(Hλ)⟨cλ′−k,l ′(v1), v2⟩,

and similarly for 8v3,v4
µ′,m,, the integral above equals

(3.11) C(λ, l,m)
∫
a+

λ

0λ,l(exp Hλ, v, w)0µ,m(exp Hλ, v, w)�λ(Hλ) d Hλ.

If [λ, l], [µ,m] ∈C/∼ fail to satisfy any of the three conditions Iλ= Iµ, λ|aλ0
=µ|aλ

and
dP(λ, l)= d(π)= dP(µ,m),
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then, for every (λ′, l ′)∈ [λ, l] and for every (µ′,m′)∈ [µ,m], by the considerations
in the proof of Claim A.6 and Lemma A.5 in [10], the integral

1
r d(π)

∫
A+
<r

e−2ρ(H)α(H)l
′
+m′

e(λ
′
+µ′)(H)8

v1,v2
λ′,l ′ 8

v3,v4
µ′,m′(H)�(H) d H

vanishes as r → ∞.
Therefore, the relevant equivalence classes [λ, l] ∈ C/∼, those for which the

functions of the form 0λ,l are defined, are precisely the ones that may contribute a
nonzero term to the expression

lim
r→∞

1
r d(π)

∫
a+
<r

φv1,v2(exp H)φv3,v4(exp H)�(H) d H.

Throughout the rest of this section, we fix a tempered, irreducible representation of
a connected, semisimple Lie group G with finite centre.

3.3. Some properties of the functions 0λ,l . To study the properties of 0λ,l , we be-
gin by showing that it is equal to a function of the form cPλ

ν,q . More precisely, we have:

Proposition 3.12. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Set ν := λ|aλ0

and q := lλ0 . Then, for every Hλ ∈ a+

λ , we have

0λ,l(exp Hλ, v, w)= cPλ
ν,q(exp Hλ, v, w).

Proof. For every Hλ ∈ a+

λ , we can find a compact subset C of Mλ such that
KλC Kλ= C and which contains Hλ, and a positive real R> 0 such that if Hλ0 ∈ a+

λ0

satisfies αi (Hλ0) > log R for every i ∈ I c
λ , then the expansion of φv,w with respect

to P and the expansion with respect to Pλ are both valid at H = Hλ+Hλ0 . Comparing
them as in [11, p. 251], we see that

cPλ
ν,q(exp Hλ, v, w)=

∑
λ′

∈E0
λ′

|aλ0
=ν

∑
l ′

|l ′|≤l0
l ′λ0

=q

e−ρλ(Hλ)9
v,w
λ′,l ′(Hλ).

Since, by definition of 0λ,l( · , v, w), we have

0λ,l(exp Hλ, v, w)= e−ρ(Hλ)
∑

(λ′,l ′)∈[λ,l]

9
v,w
λ′,l ′(Hλ),

recalling the definition of the equivalence relation that we imposed on C, we only
need to show that the set

{λ′
∈ E0 | λ′

|aλ0
= ν}

is equal to the set
{λ ∈ E0 | Iλ′ = Iλ and λ′

|aλ0
= λ|aλ0

}.
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Because of the assumption on [λ, l], for every λ′
∈ E0 such that λ′

|aλ0
= ν, we have

Re λ′

j ̸= 0 for every j ∈ Iλ. Indeed, if there existed a j ∈ Iλ for which Re λ′

j = 0,
we would have

|I c
λ′ | ≥ 1 + |I c

λ |

and, since l ′λ0
= lλ0 , this would imply

dP(λ
′, l ′) > |I c

λ | +

∑
i∈I c

λ′

2l ′i ≥ dP(λ, l)= d(π),

contradicting the maximality of d(π). Since, by Theorem 3.2, we have Re λ′

i ≤ 0
for every i ∈ {1, . . . , n}, this concludes the proof. □

Theorem 8.45 in [11] and the discussion at the beginning of p. 251 in [loc. cit.]
now show that 0λ,l( · , v, w), being equal to cPλ

ν,q , extends to an analytic function
on Mλ, which we denote again by 0λ,l( · , v, w). If we decompose Mλ as

Mλ = Kλ exp(a+

λ )Kλ,

and if we write m ∈ Mλ as m = ξ2 exp Hλξ1 for some ξ1, ξ2 ∈ Kλ and some Hλ ∈ a+

λ ,
then we have

0λ,l(m, v, w)= 0λ,l(exp Hλ, π(ξ1)v, π(ξ2)
−1w)

because cPλ
ν,q( · , v, w) exhibits the same behaviour.

We want to prove that 0λ,l( · , v, w) belongs to L2(Mλ) and it is Z(mλC)-finite.
An application of Theorem 2.17 will imply that 0λ,l( · , v, w) is a smooth vector
in L2(Mλ). Similar ideas appear in [11, Chapter VIII; 15].

Proposition 3.13. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then 0λ,l( · , v, w) belongs to L2(Mλ).

Proof. We argue as in the proof of [15, Lemma 4.10]. By the proof of Proposition 3.12,
we have Re λ′

i <0 for every λ′ appearing in the expansion of0λ,l( · , v, w) on A+

λ and
for every i ∈ Iλ. Since 0λ,l( · , v, w) is analytic on A+

λ , we can apply [7, Theorem 4]
and then argue as in [2, Theorem 7.5] to establish the desired square-integrability
on A+

λ . The square-integrability on Mλ follows from combining the decomposition
of Mλ as Mλ = KλA+

λ Kλ, the corresponding integral formula and the fact that if
m = ξ2 exp Hλξ2, for some Hλ ∈ a+

λ and some ξ1, ξ2 ∈ Kλ, then

0λ,l(m, v, w)= 0λ,l(exp Hλ, π(ξ1)v, π(ξ2)
−1w). □

We recall that there exists an injective algebra homomorphism

µPλ : Z(gC)→ Z((mλ ⊕ aλ0)C)
∼= Z(mλC)⊗ U (aλ0C),

which turns Z(mλC)⊗ U (aλ0C) into a free module of finite rank over µPλ(Z(gC))

by [6, Lemma 21].



ON KAZHDAN–YOM DIN ASYMPTOTIC ORTHOGONALITY 53

Proposition 3.14. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then, for every X ∈ U (mλC) and for every m ∈ Mλ, we have

X0λ,l(m, v, w)= 0λ,l(m, π̇(X)v,w).

Moreover, the function 0λ,l( · , v, w) is a smooth vector in the right-regular repre-
sentation (R, L2(Mλ)) of Mλ.

Proof. For a given X ∈ U (mλC) and every g ∈ G, we have

Xφv,w(g)= φπ̇(X)v,w(g).

Therefore, the restriction of Xφv,w( · ) to MλAλ0 satisfies

Xφv,w(ma)= φπ̇(X)v,w(ma).

Given m ∈ Mλ we can find a compact subset C of Mλ containing m such that
KλC Kλ = C and a positive R depending on C such that if a = exp H ∈ A+

λ0

satisfies αi (H) > log R for every i ∈ I c
λ , then φπ̇(X)v,w(ma) may be expanded with

respect to Pλ. Since X ∈ U (mλC), the restriction of Xφv,w( · ) to MλAλ0 can also be
computed as the action of the differential operator X on the restriction of φv,w( · )
to MλAλ0 . For m ∈ Mλ and a ∈ A+

λ0
as above, we expand the function so obtained

with respect to Pλ and, as in the proof of (4.8) in [15], because of the convergence
of the series, we can apply the differential operator term by term. By comparing
the resulting expansion with the expansion of φπ̇(X)v,w(ma), and invoking [11,
Corollary B.26], we obtain

XcPλ
ν,q(m, v, w)= cPλ

ν,q(m, π̇(X)v,w)

for every ν ∈ EI and every q ∈ Z
I c
λ

≥0. The first statement now follows from choosing
ν and q as in Proposition 3.12.

For the last statement, we need to show that 0λ,l( · , v, w) is annihilated by an
ideal of finite codimension in Z(mλC); the result will then follow from Theorem 2.17.
Let J be the kernel of the infinitesimal character of (π, H). Then J is an ideal
of finite codimension in Z(gC). As observed in [5, p. 182], the inverse image Jmλ
along the inclusion

Z(mλC)→ Z(mλC)⊗ U (aλ0C), X 7→ X ⊗ 1,

of the ideal generated by µPλ(J ) in Z(mλC)⊗U (aλ0C) is an ideal of finite codimen-
sion in Z(mλC). This follows from the fact that the ideal generated by µPλ(J ) is of
finite codimension in Z(mλC)⊗U (aλ0C), since Z(mλC)⊗U (aλ0C) is a free module
of finite type over µPλ(Z(gC)) by [6, Lemma 21]. Denoting by µPλ(J )

e the ideal
generated by µPλ(J ), we see that Jmλ is precisely the kernel of the homomorphism

Z(mλC)→ (Z(mλC)⊗ U (aλ0C))/µPλ(J )
e, X 7→ (X ⊗ 1)+µPλ(J )

e.
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This exhibits Jmλ as an ideal of finite codimension in Z(mλC). Now, if X ∈ Jmλ ,
then X ⊗ 1 belongs to µPλ(J )

e. Hence X ⊗ 1 can be written as

X ⊗ 1 =

r∑
i=1

YiµPλ(Zi ),

with Yi ∈ Z(mλC)⊗ U (aλ0C) and Zi ∈ J . For every i ∈ {1, . . . , r}, by (8.68) in
[11, p. 251], the differential operator µPλ(Zi ) annihilates the function

Fν−ρλ0
(ma, v, w) :=

∑
q:|q|≤q0

cPλ
ν,q(m, v, w)α(H)

qe(ν−ρλ0 )(H).

Therefore, X ⊗ 1 annihilates it, as well. On the other hand, by the first part of the
proof, we have

(X ⊗ 1)Fν−ρλ0
(ma, v, w)=

∑
q:|q|≤q0

cPλ
ν,q(m, π̇(X)v,w)α(H)

qe(ν−ρλ0 )(H).

Since the left-hand side vanishes identically on MλAλ0 , it follows that

cPλ
ν,q(m, π̇(X)v,w)= 0

for every m ∈ Mλ. Choosing ν and q as in Proposition 3.12, we find that0λ,l( · , v, w)
is annihilated by Jmλ . □

3.4. The functions 0λ,l as intertwining operators. Let w ∈ HK . The following
two technical lemmata, together with Proposition 3.14, will be used to prove the
(mλ ⊕ a, Kλ)-equivariance of the map

Sw : HK → L2(Mλ)⊗ Cλ|aλ0
−ρλ0

, Sw(v)(m) := 0λ,l(m, v, w).

We are not claiming that for every w ∈ HK this map is nonzero: the only thing we
need to know is that, whenever w ∈ HK is such that Sw is not identically zero, then
Sw is (mλ ⊕ a, Kλ)-equivariant. In the final part of this subsection, we show the
existence of an admissible, finitely generated, unitary representation of Mλ which
will allow us to apply Theorem 2.27 in the way we explained in the Introduction.

Lemma 3.15. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then, for every X ∈ aλ0 and every m ∈ Mλ, we have

0λ,l(m, π̇(X)v,w)= (λ|aλ0
− ρλ0)(X)0λ,l(m, v, w).

Proof. We write m ∈ Mλ as m = ξ2aλξ2 for some ξ1, ξ2 ∈ Kλ and some aλ ∈ A+

λ .
Then we have

0λ,l(m, π̇(X)v,w)= 0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w).
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Recalling that

π(ξ1)π̇(X)v = π̇(Ad(ξ1)X)π(ξ1)v,

since Mλ centralises aλ0 [12, Proposition 7.82], and Kλ is contained in Mλ, we have

0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w)= 0λ,l(aλ, π̇(X)π(ξ1)v, π(ξ

−1
2 )w).

Therefore, relabelling things, it suffices to prove that for every X ∈ aλ0 and for
every aλ ∈ A+

λ , we have

0λ,l(aλ, π̇(X)v,w)= (λ|aλ0
− ρλ0)(X)0λ,l(aλ, v, w).

Moreover, since 0λ,l( · , v, w) is analytic, it suffices to prove the identity for ev-
ery aλ ∈ A+

λ . Let aλ = exp Hλ ∈ A+

λ . Then there exist a compact subset C
of Mλ containing aλ and such that KλC Kλ = C , and a positive R depending
on C such that, for all Hλ0 ∈ a+

λ0
satisfying αi (Hλ0) > log R for every i ∈ I c

λ ,
the expansion of φπ̇(X)v,w(aλ exp Hλ0) relative to P (Theorem 3.1) and the expan-
sion of φπ̇(X)v,w(aλ exp Hλ0) relative to Pλ (Theorem 3.3) are both valid. Setting
H := Hλ + Hλ0 for Hλ0 as above, the expansion in Theorem 3.1 gives

φπ̇(X)v,w(H)=

∑
λ̃∈E

∑
l̃∈Zn

≥0

|l̃|≤l0

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(π̇(X)v), w⟩

By linearity we can assume that X = Hi for some i ∈ I c
λ , where Hi , we recall, is

the element in aλ0 dual to the simple root αi .
Differentiating term by term and taking into account the computation

Hi [α(H)l̃e(λ̃−ρ)(H)] = l̃iα(H)l̃−ei e(λ̃−ρ)(H) + (λ̃|aλ0
− ρ)(Hi )α(H)l̃e(λ̃−ρ)(H),

where ei is the element in Zn
≥0 having 1 as its i-th coordinate and 0 as every other

coordinate, we observe that the only terms in the expansion

φv,w(H)=

∑
λ̃∈E

∑
l̃∈Zn

≥0

|l̃|≤l0

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩

that after differentiation by Hi ∈ aλ0 can contribute a term of the form

cα(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩,

with c ∈ C, to the expansion of φπ̇(X)v,w(H), is precisely

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩.
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This reasoning shows that in the expansion

φπ̇(Hi )v,w(aλ exp Hλ0)=

∑
ν∈EI

∑
q∈Z

I c
λ

≥0
|q|≤q0

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(Hi )v,w)

relative to Pλ, the term indexed by (ν, q) with ν = λ|aλ0
and q = lλ0 satisfies

cPλ
ν,q(aλ, π̇(Hi )v,w)= (λ|aλ0

− ρλ0)(Hi )cPλ
ν,q(aλ, v, w).

Indeed, the comparison in [11, p. 251] shows that

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(Hi )v,w)

is the sum of all the terms in the expansion of φπ̇(Hi )v,w(H) relative to P which
are indexed by couples (λ̃, l̃) satisfying

λ̃|aλ0
= λ|aλ0

and l̃λ0 = lλ0

and, as we saw, these are the terms of the form

(λ|aλ0
− ρλ0)(Hi )α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(v), w⟩.

Finally, since

0λ,l(aλ, v, w)= cPλ
ν,q(aλ, v, w)

by Proposition 3.12, we obtain

0λ,l(aλ, v, w)= (λ|aλ0
− ρλ0)(Hi )0λ,l(aλ, π̇(Hi )v,w). □

Lemma 3.16. Let v,w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class.
Then, for every X ∈ nλ0 and every m ∈ Mλ, we have

0λ,l(m, π̇(X)v,w)= 0.

Proof. We write m ∈ Mλ as m = ξ2aλξ2 for some ξ1, ξ2 ∈ Kλ and some aλ ∈ A+

λ .
Then we have

0λ,l(m, π̇(X)v,w)= 0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w).

Recalling that

π(ξ1)π̇(X)v = π̇(Ad(ξ1)X)π(ξ1)v,

since Mλ normalises nλ0 [12, Proposition 7.83], and Kλ is contained in Mλ, we have

0λ,l(aλ, π(ξ1)π̇(X)v, π(ξ−1
2 )w)= 0λ,l(aλ, π̇(X ′)π(ξ1)v, π(ξ

−1
2 )w)
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for some X ′
∈ nλ0 . Therefore, relabelling things, it suffices to prove that for every

X ∈ aλ0 and for every aλ ∈ A+

λ , we have

0λ,l(aλ, π̇(X)v,w)= 0.

Since 0λ,l( · , v, w) is analytic, it suffices to prove the identity for every aλ ∈ A+

λ .
As in the previous proof, we set H := Hλ+ Hλ0 for Hλ0 in an appropriate region

and the expansion in Theorem 3.1 gives

φπ̇(X)v,w(H)=

∑
λ̃∈E

∑
l̃∈Zn

≥0

|l̃|≤l0

α(H)l̃e(λ̃−ρ)(H)⟨cλ̃,l̃(π̇(X)v), w⟩.

The expansion in Theorem 3.3 gives

φπ̇(X)v,w(aλ exp Hλ0)=

∑
ν∈EI

∑
q∈Z

I c
λ

≥0
|q|≤q0

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(X)v,w).

By [11, Corollary 8.46], each ν− ρλ0 in the second expansion is of the form
λ̃|aλ0

− ρλ0 for some exponent λ̃ in the first expansion. Therefore, it suffices to
prove that if λ ∈ E0 and l ∈ Zn

≥0 with |l| ≤ l0 satisfy

dP(λ, l)= d(π),

then no term with exponent λ̃−ρ for which λ̃|aλ0
= λ|aλ0

appears in the first expan-
sion. Indeed, if we can show this, since by the comparison in [11, p. 251], the term

α(Hλ0)
qe(ν−ρλ0 )(Hλ0 )cPλ

ν,q(aλ, π̇(X)v,w),

for ν=λ|aλ0
and qλ0 = lλ0 is the sum of all the terms in the expansion of φπ̇(X)v,w(H)

relative to P which are indexed by couples (λ̃, l̃) satisfying

λ̃|aλ0
= λ|aλ0

and l̃λ0 = lλ0,

it would follow that

cPλ
ν,q(aλ, π̇(X)v,w)= 0,

and therefore

0λ,l(aλ, π̇(X)v,w)= 0.

By linearity we can assume that X ∈ g−αi for some i ∈ I c
λ [11, Proposition 5.23].

Computing as in [2, Lemma 8.16], we have

φπ̇(X)v,w(a)=
〈
π̇(Ad(a)X)π(a)v,w

〉
= −e−αi (H)φv,π̇(X)w(a).
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Hence every exponent in the expansion of φπ̇(X)v,w(a) relative to P is of the form
λ̃= λ′

− ei for some λ′
∈ E . Now, if there existed λ′

∈ E with

(λ′
− ei )|aλ0

= λ|aλ0
,

we would have
Re(λ′

− ei )i = Re λi = 0

since i ∈ I c
λ . This means that Re λ′

i > 0, a contradiction. Indeed, since (π, H) is
tempered, the real part of every coordinate of each leading exponent is at most zero
by Theorem 3.2 and it follows that the same property holds for every element in E . □

Lemma 3.17. Let w ∈ HK . Let [λ, l] ∈ C/∼ be a relevant equivalence class. Then
the prescription

Sw : HK → L2(Mλ), Sw(v)(m) := 0λ,l(m, v, w),

is a well-defined, (mλ, Kλ)-equivariant map with image contained in L2(Mλ)Kλ
.

Proof. The map Sw is well defined by Proposition 3.14. For every ξ ∈ Kλ and
every m ∈ Mλ, we have

Sw(π(ξ)v)(m)= 0λ,l(m, π(ξ)v,w)= 0λ,l(mξ, v,w)= R(ξ)Sw(v)(m).

By Proposition 3.14, for all X ∈ mλ and for all m ∈ Mλ, we have

Sw(π̇(X)v)(m)= X0λ,l(m, v, w)

and, by Proposition 2.20, we have

X0λ,l(m, v, w)= Ṙ(X)0λ,l(m, v, w).

Therefore
Sw(π̇(X)v)(m)= Ṙ(X)Sw(v)(m)

and this concludes the proof that Sw is (mλ, Kλ)-equivariant. To prove that the
image of Sw is contained in L2(Mλ)Kλ

, we observe that, for every v ∈ HK , the
Kλ-finiteness of v implies the existence of finitely many v1, . . . , vr ∈ HK such that

R(Kλ)0λ,l( · , v, w) ∈ span{0λ,l( · , vi , w) | i ∈ {1, . . . , r}}.

Hence, 0λ,l( · , v, w) is Kλ-finite and, since it is a smooth vector in (R, L2(Mλ))

by Proposition 3.14, it belongs to L2(Mλ)Kλ
. □

We now construct a subrepresentation (2, H2) of (R, L2(Mλ)) which, as we
will show in the next two results, has precisely those properties that we need to
proceed with the strategy outlined in the Introduction. We will show that (2, H2) is
an admissible, finitely generated, unitary (this follows since it is a subrepresentation
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of L2(Mλ)) representation of Mλ such that the image of the (mλ, Kλ)-equivariant
map Sw is precisely the (mλ, Kλ)-module H2,Kλ

and such that the map

Sw : HK → H2,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sw(v)(m) := 0λ,l(m, v, w),

is (mλ ⊕ aλ0, Kλ)-equivariant.
The representation (2, H2) depends on the choice of w ∈ HK and of a rele-

vant [λ, l] ∈ C/∼. However, and this is the important point, the construction can be
formed for every choice of w̃ ∈ Hk and for every choice of relevant [λ̃, l̃] ∈ C/∼.
In Proposition 3.21 below, we will use this construction to define the representation
(σ, Hσ ) discussed in the Introduction.

We adopt the notation of the previous lemma. In the proof of Proposition 3.14,
we showed that, for each v ∈ HK , the function 0λ,l( · , v, w) is a Z(mλ)-finite
function in L2(Mλ). By [11, Corollary 8.42], there exist finitely many orthogonal
irreducible subrepresentations of (R, L2(Mλ)) such that 0λ,l( · , v, w) is contained
in their direct sum. It follows that there exists a (not necessarily finite) collection
{(θ, Hθ )}θ∈2 of orthogonal irreducible subrepresentations of (R, L2(Mλ)) such that
Sw(HK ) is contained in their direct sum. Let (2, H2) denote the direct sum of the
subrepresentations in this collection.

Lemma 3.18. The (mλ, Kλ)-module H2,Kλ
is precisely the image of the (mλ, Kλ)-

equivariant map

Sw : HK → L2(Mλ), Sw(v)(m) := 0λ,l(m, v, w).

Proof. By Lemma 3.17, Sw(HK ) ⊂ H2 ∩ L2(Mλ)Kλ
= H2,Kλ

. For the reverse
inclusion, the irreducibility of each (θ, Hθ ) implies that Sw(HK )∩ Hθ,Kλ

= Hθ,Kλ
.

Therefore H2,Kλ
is contained in the image of Sw, completing the proof. □

Proposition 3.19. The representation (2, H2) of Mλ is admissible, finitely gener-
ated and unitary. Moreover, the map

Sw : HK → H2,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sw(v)(m) := 0λ,l(m, v, w),

is (mλ ⊕ aλ0, Kλ)-equivariant.

Proof. By Lemma 3.18 we have Sw(HK )= H2,Kλ
. By Lemma 3.15, for all X ∈ aλ0

and for all m ∈ Mλ, we have

Sw(π̇(X)v)(m)= (λ|aλ0
− ρλ0)(X)0λ,l(m, v, w)= (λ|aλ0

− ρλ0)(X)Sw(v).

By Lemma 3.16, for all X ∈ nλ0 and for all m ∈ Mλ, we have

Sw(π̇(X)v)(m)= 0λ,l(m, π̇(X)v,w)= 0.
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We thus obtained an (mλ ⊕ aλ0, Kλ)-equivariant map

Sw : HK → H2,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sw(v)(m) := 0λ,l(m, v, w),

which factors through the quotient map

q : HK → HK /nλ0 HK ,

which is (mλ ⊕ aλ0, Kλ)-equivariant by Lemma 2.24.
Since HK , being irreducible (and hence admissible by Theorem 2.9), has an

infinitesimal character, by Corollary 2.26 the (mλ⊕ aλ0, Kλ)-module HK /nλ0 HK

is admissible and finitely generated. It follows that

Sw(HK )= H2,Kλ
⊗ Cλ|aλ0

−ρλ0

is an admissible and finitely generated (mλ ⊕ aλ0, Kλ)-module. The fact that aλ0

acts by scalars implies that H2,Kλ
itself is finitely generated (as U (mλC)-module)

and admissible. □

In the next corollary, we apply Casselman’s version of the Frobenius reciprocity
to construct (g, K )-intertwining operators from the functions 0λ,l . We recall that
Pλ denotes the parabolic subgroup opposite to Pλ and that the half-sum of positive
roots determined by Pλ is precisely −ρλ0 .

Corollary 3.20. The map

Tw : HK → IndPλ,Kλ
(2, λ|aλ0

), Tw(v)(k)(m) := 0λ,l(m, π(k)v,w),

is (g, K )-equivariant.

Proof. The equivariance follows from Proposition 3.19, in combination with
Theorem 2.27 and the discussion following it. More precisely, we have Tw = S̃w in
the notation of the discussion following Theorem 2.27. □

The next proposition is the core of the article: it allows us to prove an identity of
certain integrals using representation-theoretic methods. In the final section, it will
be shown that the identity in question implies Proposition 1.5.

Proposition 3.21. Let [λ, l], [µ,m] ∈ C/∼ be relevant equivalence classes such
that Iλ = Iµ, λ|aλ0

= µ|aλ0
and dP(λ, l) = dP(µ,m). Then, for all X ∈ g, for

all k ∈ K , and for all v1, v2, v3, v4 ∈ HK , the integral∫
K

〈
0λ,l(mλ, π(k)π̇(X)v1, v2), 0µ,m(mλ, π(k)v3, v4)

〉
L2(Mλ)

dk

is equal to the integral

−

∫
K

〈
0λ,l(mλ, π(k)v1, v2), 0µ,m(mλ, π(k)π̇(X)v3, v4)

〉
L2(Mλ)

dk.
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Proof. By Proposition 3.19 and the discussion before Lemma 3.17, we can construct
a representation (σ1, Hσ1) of Mλ that is finitely generated, unitary and such that the
image of the (mλ ⊕ aλ0, Kλ)-equivariant map

Sv2 : HK → L2(Mλ)Kλ
⊗ Cλ|aλ0

−ρλ0
, Sv2(v)(m) := 0λ,l(m, v, v2),

is precisely Hσ1,Kλ
⊗ Cλ|aλ0

−ρλ0
. Similarly, we can construct an admissible, finitely

generated, unitary representation (σ2, Hσ2) such that the image of the (mλ⊕aλ0, Kλ)-
equivariant map

Sv4 : HK → L2(Mλ)Kλ
⊗ Cµ|aλ0

−ρλ0
, Sv4(v)(m) := 0µ,m(m, v, v4),

is precisely Hσ2,Kλ
⊗ Cµ|aλ0

−ρλ0
. Let (σ, Hσ ) denote the direct sum of (σ1, Hσ1)

and (σ2, Hσ2). It is an admissible, finitely generated, unitary representation which
restricts to a unitary representation of Kλ. Since λ|aλ0

= µ|aλ0
, by the same

computations as in Lemma 3.17 and Proposition 3.19 we obtain (mλ ⊕ aλ0, Kλ)-
equivariant maps

Sv2 : HK → Hσ,Kλ
⊗ Cλ|aλ0

−ρλ0
, Sv2(v)(m) := 0λ,l(m, v, v2),

and
Sv4 : HK → Hσ,Kλ

⊗ Cλ|aλ0
−ρλ0

, Sv4(v)(m) := 0µ,m(m, v, v4),

factoring through the (mλ ⊕ aλ0, Kλ)-equivariant quotient map

q : HK → HK /nλ0 HK .

From Corollary 3.20, we obtain (g, K )-equivariant maps

Tv2 : HK → IndPλ,Kλ
(σ, λ|aλ0

), Tv2(v)(k)(m) := 0λ,l(m, π(k)v, v2),

and

Tv4 : HK → IndPλ,Kλ
(σ, λ|aλ0

), Tv4(v)(k)(m) := 0µ,m(m, π(k)v, v4).

By definition of the inner product on IndPλ(σ, λ|aλ0
), we see that proving the sought

identity is equivalent to proving that〈
Tv2(π̇(X)v1), Tv4(v3)

〉
IndPλ

(σ,λ|aλ0
)
= −

〈
Tv2(v1), Tv4(π̇(X)v3)

〉
IndPλ

(σ,λ|aλ0
)
.

By the (g, K )-equivariance of Tv2 , we have〈
Tv2(π̇(X)v1),Tv4(v3)

〉
IndPλ

(σ,λ|aλ0
)
=

〈
˙IndPλ(σ,λ|aλ0

, X)Tv2(v1),Tv4(v3)
〉
IndPλ

(σ,λ|aλ0
)

and, since λ|aλ0
is totally imaginary, from Corollary 2.23 we deduce〈

˙IndPλ(σ, λ|aλ0
, X)Tv2(v1), Tv4(v3)

〉
IndPλ

(σ,λ|aλ0
)

= −
〈
Tv2(v1), ˙IndPλ(σ, λ|aλ0

, X)Tv4(v3)
〉
IndPλ

(σ,λ|aλ0
)
.

The result follows from the (g, K )-equivariance of Tv4 . □
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4. Asymptotic orthogonality

For a tempered, irreducible representation (π, H) of G, for v,w ∈ H , let

φv,w(g) := ⟨π(g)v,w⟩

denote the associated matrix coefficient. By (2) of Theorem 1.2, there exists
d(π) ∈ Z≥0 such that

lim
r→∞

1
r d(π)

∫
G<r

|φv,w(g)|2 dg <∞

for all v,w ∈ HK .
As in [10, Section 4.1], by the polarisation identity and by (2) of Theorem 1.2,

the prescription

D(v1, v2, v3, v4) := lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,v4(g) dg

is a well-defined form on HK that is linear in the first and fourth variable and
conjugate-linear in the second and the third.

We explained in the Introduction that the crucial point is the proof of Proposition 1.5.
We begin with the following reduction.

Lemma 4.1. Let G be a connected, semisimple Lie group with finite centre and let
(π, H) be a tempered, irreducible representation of G. If for all X ∈ g and for all
v1, v2, v3, v4 ∈ HK we have

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φπ̇(X)v3,v4(g)dg,

then

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g)dg=− lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,π̇v4(g)dg

holds for every X ∈ g and for every v1, v2, v3, v4 ∈ HK .

Proof. We write

φv1,π̇(X)v2(g)φv3,v4(g)= ⟨v1, π(g−1)π̇(X)v2⟩⟨v3, π(g−1)v4⟩

and since ⟨ · , · ⟩ is Hermitian we have

⟨v1, π(g−1)π̇(X)v2⟩⟨v3, π(g−1)v4⟩ = φv4,v3(g
−1)φπ̇(X)v2,v1(g−1).

Now, since G<r is invariant under ι(g)= g−1 and G is unimodular, we have∫
G<r

φv4,v3(g
−1)φπ̇(X)v2,v1(g−1) dg =

∫
G<r

φv4,v3(g)φπ̇(X)v2,v1(g) dg
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and therefore∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg =

∫
G<r

φv4,v3(g)φ ˙π(X)v2,v1
(g) dg.

Applying complex conjugation, we obtain∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg =

∫
G<r

φπ̇(X)v2,v1(g)φv4,v3(g) dg.

Assuming the validity of the first identity in the statement, we can write

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v2,v1(g)φv4,v3(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv2,v1(g)φπ̇(X)v4,v3(g)dg.

Now, since∫
G<r

φπ̇(X)v2,v1(g)φv4,v3(g) dg =

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg,

it follows that

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g) dg = − lim
r→∞

∫
G<r

φv2,v1(g)φπ̇(X)v4,v3(g) dg.

Observing that∫
G<r

φv2,v1(g)φπ̇(X)v4,v3(g) dg =

∫
G<r

φπ̇(X)v4,v3(g)φv2,v1(g) dg

and that, using the invariance of G<r under ι(g)= g−1 and the unimodularity of G,∫
G<r

φπ̇(X)v4,v3(g)φv2,v1(g) dg =

∫
G<r

φv1,v2(g)φv3,π̇(X)v4(g) dg,

we finally obtain

lim
r→∞

1
r d(π)

∫
G<r

φv1,π̇(X)v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φv3,π̇(X)v4(g)dg.

This completes the proof. □

Proposition 4.2. Let G be a connected, semisimple Lie group with finite centre and
let (π, H) be a tempered, irreducible representation of G. Then, for all X ∈ g and
for all v1, v2, v3, v4 ∈ HK , we have

lim
r→∞

1
r d(π)

∫
G<r

φπ̇(X)v1,v2(g)φv3,v4(g)dg = − lim
r→∞

1
r d(π)

∫
G<r

φv1,v2(g)φπ̇(X)v3,v4(g)dg.

Remark 4.3. Some of the integral manipulations in the proof require careful justifi-
cation. We decided to provide this in Lemma 4.5 after the proof of Proposition 4.2.
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Proof. The integral formula for the Cartan decomposition, taking into account
the fact that, except for a set of measure zero, every g ∈ G<r can be written as
g = k2 exp H k1, for some k1, k2 ∈ K and some H ∈ a+

<r , with a+
<r as in (3.7), gives∫

G<r

φπ̇(X)v1,v2(g)φv3,v4(g) dg

=

∫
K

∫
a+
<r

∫
K
φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) dk1 d H dk2,

with �(H) defined in (3.8).
Arguing as in [10, p. 258], we can interchange the two innermost integrals in the

right-hand side and, upon multiplying both sides by 1/r d(π) and taking the limit
as r → ∞, the right-hand side can be computed as the integral over K × K of

lim
r→∞

1
r d(π)

∫
a+
<r

φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) d H.

We expand φv1,v2 and φv3,v4 as

φv1,v2(k2 exp H k1)= e−ρp(H)
∑

[λ,l]∈C/∼

α(Hλ0)
lλ0 eλ|aλ0

(Hλ0 )
∑

(λ′,l ′)∈[λ,l]

9
π(k1)v1,π(k−1

2 )v2
λ′,l ′ (H)

and

φv3,v4(k2 exp H k1)

= e−ρp(H)
∑

[µ,m]∈C/∼

α(Hµ0)
mµ0 eµ|aµ0

(Hµ0 )
∑

(µ′,m′)∈[µ,m]

9
π(k1)v1,π(k−1

2 )v2
µ′,m′ (H).

By [10, Lemma A.5 and Claim A.6], the only nonzero contributions to

(4.4) lim
r→∞

1
r d(π)

∫
a+
<r

φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) d H

may come from those [λ, l] ∈ C/∼ and those [µ,m] ∈ C/∼ for which

Iλ = Iµ, λ|aλ0
= µ|aλ0

, d(π)= |Iλ| +
∑
i∈Iλ

(li + mi ).

In view of the first condition, the third is equivalent to requiring that

d(π)= dP(λ, l)= dP(µ,m),

where dP(λ, l) and dP(µ,m) are defined by (1.7).
By the discussion in Section 3 and by Proposition 3.12,

lim
r→∞

1
r d(π)

∫
a+
<r

φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) d H
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is equal to a finite sum of terms of the form

C(λ, l,m)
∫
a+

λ

0λ,l(exp Hλ, π(k1)π̇(X)v1, π(k−1
2 )v2)

0µ,m(exp Hλ, π(k1)v3, π(k−1
2 )v4)�λ(Hλ) d Hλ,

with C(λ, l,m) as in (3.10), the functions 0λ,l and 0µ,m defined as in (3.6) and
�λ(Hλ) defined as in (3.9).

Taking into account the integration over K × K , we proved that

lim
r→∞

1
r d(π)

∫
K

∫
a+
<r

∫
K
φπ̇(X)v1,v2(k2 exp H k1)φv3,v4(k2 exp H k1)�(H) dk1 d H dk2

is equal to a finite sum of terms of the form

C(λ, l,m)
∫

K

∫
K

∫
a+

λ

0λ,l(exp Hλ, π(k1)π̇(X)v1, π(k−1
2 )v2)

·0µ,m(exp Hλ, π(k1)v3, π(k−1
2 )v4)�λ(Hλ) d Hλ dk1 dk2.

By (1) of Lemma 4.5 and applying the Fubini–Tonelli theorem, we can interchange
the two innermost integral and we therefore need to prove that∫

K

∫
a+

λ

∫
K
0λ,l(exp Hλ, π(k1)π̇(X)v1, π(k−1

2 )v2)

·0µ,m(exp Hλ, π(k1)v3, π(k−1
2 )v4)�λ(Hλ) dk1 d Hλ dk2

is equal to

−

∫
K

∫
a+

λ

∫
K
0λ,l(exp Hλ, π(k1)v1, π(k−1

2 )v2)

·0µ,m(exp Hλ, π(k1)π̇(X)v3, π(k−1
2 )v4)�λ(Hλ) dk1 d Hλ dk2.

Set

I(exp Hλ, k1, k−1
2 )

:= 0λ,l(expλ, π(k1)π̇(X)v1, π(k−1
2 )v2)0µ,m(exp Hλ, π(k1)v3, π(k−1

2 )v4).

We apply the quotient integral formula [3, Theorem 2.51], to write the integral∫
K

∫
a+

λ

∫
K
I(exp Hλ, k1, k−1

2 )�(Hλ) dk1 d Hλ dk2

as ∫
K

∫
a+

λ

∫
Kλ\K

∫
Kλ

I(exp Hλ, ξ1k1, k−1
2 )�λ(Hλ) dξ1 dk̇1 d Hλ dk2
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and again to write it as∫
K/Kλ

∫
Kλ

∫
a+

λ

∫
Kλ\K

∫
Kλ

I(exp Hλ, ξ1k1, ξ
−1
2 k−1

2 )�λ(Hλ) dξ1 dk̇1 d Hλ dξ2 dk̇2.

By (3) of Lemma 4.5, we can appeal to the Fubini–Tonelli theorem to interchange
the two innermost integrals and to obtain∫

K/Kλ

∫
Kλ

∫
a+

λ

∫
Kλ

∫
Kλ\K

I(exp Hλ, ξ1k1, ξ
−1
2 k−1

2 )�λ(Hλ) dk̇1 dξ1 d Hλ dξ2 dk̇2.

Now, combining the fact that M reg
λ = KλA+

λ Kλ, the relevant integral formula and the
fact that the complement of M reg has measure zero in M , it follows that the integral∫

Kλ

∫
a+

λ

∫
Kλ

∫
Kλ\K

I(exp Hλ, ξ1k1, ξ
−1
2 k−1

2 )�λ(Hλ) dk̇1 dξ1 d Hλ dξ2

is equal to∫
Mλ

∫
Kλ\K

0λ,l(mλ, π(k1)π̇(X)v1, π(k−1
2 )v2)0µ,m(mλ, π(k1)v3, π(k−1

2 )v4) dk̇1 dmλ.

For k1 ∈ K , we define

f (k1) :=
〈
0λ,l(mλ,π(k1)π̇(X)v1,π(k−1

2 )v2),0µ,m(mλ,π(k1)v3,π(k−1
2 )v4)

〉
L2(Mλ)

.

The function f is invariant under left-multiplication by Kλ. Indeed, if ξ ∈ Kλ, then

0λ,l(mλ, π(ξk1)π̇(X)v1, π(k2)v2)= 0λ,l(mλξ, π(k1)π̇(X)v1, π(k2)v2)

and similarly for the 0µ,m-term. Since the right-regular representation of Mλ is
unitary, we have〈
0λ,l(mλξ, π(k1)π̇(X)v1, π(k−1

2 )v2), 0µ,m(mλξ, π(k1)v3, π(k−1
2 )v4)

〉
L2(Mλ)

= f (k).

An application of the quotient integral formula [3, Theorem 2.51] gives∫
K

f (k1) dk1 =

∫
Kλ\K

∫
K

f (ξk1) dξ dk̇1 = vol(Kλ)

∫
Kλ\K

f (k1) dk̇1.

By (2) in Lemma 4.5 and appealing again to the Fubini–Tonelli theorem, we
interchange the integrals over Mλ and Kλ\K to obtain that∫

K/Kλ

∫
Mλ

∫
Kλ\K

0λ,l(mλ, π(k1)π̇(X)v1, π(k−1
2 )v2)

·0µ,m(mλ, π(k1)v3, π(k−1
2 )v4) dξ1 dmλ dξ2

equals
1

vol(Kλ)

∫
K/Kλ

∫
K

f (k1) dk1 dk̇2,
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which, in turn, equals

1
vol(Kλ)

∫
K/Kλ

∫
K

〈
0λ,l(mλ, π(k1)π̇(X)v1, π(k−1

2 )v2),

0µ,m(mλ, π(k1)v3, π(k−1
2 )v4)

〉
L2(Mλ)

dk1 dk̇2.

For fixed k2 ∈ K , set w2 :=π(k−1
2 )v2 and w4 :=π(k−1

2 )v4. We reduced the problem
to proving that∫

K

〈
0λ,l(mλ, π(k1)π̇(X)v1, w2), 0µ,m(mλ, π(k1)v3, w4)

〉
L2(Mλ)

dk1

equals

−

∫
K

〈
0λ,l(mλ, π(k1)v1, w2), 0µ,m(mλ, π(k1)π̇(X)v3, w4)

〉
L2(Mλ)

dk1.

The result is therefore a consequence of Proposition 3.21. □

Lemma 4.5. Let v1, w2, v3, w4 ∈ HK . Let [λ, l], [µ,m] ∈ C/∼ be such that Iλ= Iµ,
λ|aλ0

= µ|aλ0
and d(π)= |Iλ| +

∑
i∈Iλ(li + mi ). Then the following holds:

(1)
∫

K

∫
a+

λ

∣∣0λ,l(exp Hλ, π(k1)v1, w2)0µ,m(exp Hλ, π(k1)v3, w4)
∣∣ d Hλ dk1 <∞.

(2)
∫

Kλ\K

∫
Mλ

∣∣0λ,l(mλ, π(k)v1, w2)0µ,m(mλ, π(k)v3, w4)
∣∣ dmλ dk̇ <∞.

(3) For any fixed Hλ ∈ a+

λ , we have∫
Kλ\K

∫
Kλ

∣∣0λ,l(exp Hλ, π(ξk)v1, w2)0µ,m(exp Hλ, π(ξk)v3, w4)
∣∣ dξ dk̇ <∞.

Proof. To prove (1), we begin by observing that, for a fixed element k of K ,
the functions 0λ,l(exp Hλ, π(k)v1, v2) and 0µ,m(exp Hλ, π(k)v3, v4) are square-
integrable on a+

λ by Proposition 3.13. Therefore, we have∫
a+

λ

∣∣0λ,l(exp Hλ, π(k)v1, w2)0µ,m(exp Hλ, π(k)v3, w4)
∣∣ dmλ <∞.

Hence, we can define the function

h :K →R≥0, h(k)=
∫
a+

λ

∣∣0λ,l(exp Hλ,π(k)v1,w2)0µ,m(exp Hλ,π(k)v3,w4)
∣∣d Hλ,

and the result will follow if we establish the continuity of h. The K -finiteness of v1

and v3 implies the existence of finitely many K -finite vectors v(1)1 , . . . , v
(p)
1 and
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finitely many K -finite vectors v(1)3 , . . . , v
(q)
3 such that

π(k)v1 =

p∑
i=1

ai (k)v
(i)
1 and π(k)v3 =

q∑
j=1

b j (k)v
( j)
3

for continuous complex-valued functions ai and b j . Let k0 ∈ K . Then

|h(k)− h(k0)|

is majorised by the integral over a+

λ of∣∣∣∣0λ,l(exp Hλ, π(k)v1, w2)0µ,m(exp Hλ, π(k)v3, w4)
∣∣

−
∣∣0λ,l(exp Hλ, π(k0)v1, w2)0µ,m(exp Hλ, π(k0)v3, w4)

∣∣∣∣.
By reverse triangle inequality, the integrand is majorised by∣∣0λ,l(expλ, π(k)v1, w2)0µ,m(exp Hλ, π(k)v3, w4)

−0λ,l(exp Hλ, π(k0)v1, w2)0µ,m(exp Hλ, π(k0)v3, w4)
∣∣,

which, in turn, is less than or equal to

p∑
i=1

q∑
j=1

|ai (k)b j (k)−ai (k0)b j (k0)| |0λ,l(exp Hλ, v
(i)
1 , w2)0µ,m(exp Hλ, v

( j)
3 , w4)|.

We obtained

|h(k)− h(k0)| ≤

p∑
i=1

q∑
j=1

|ai (k)b j (k)− ai (k0)b j (k0)|

·

∫
a+

λ

|0λ,l(exp Hλ, v
(i)
1 , w2)0µ,m(exp Hλ, v

( j)
3 , w4)| d Hλ,

and the continuity follows from the continuity of the ai ’s and b j ’s.
For (2), we first observe that for fixed k ∈ K , the functions 0λ,l(mλ, π(k)v1, w2)

and 0µ,m(mλ, π(k)v3, w4) are square-integrable on Mλ by Proposition 3.13. There-
fore, we have∫

Mλ

∣∣0λ,l(mλ, π(k)v1, w2)0µ,m(mλ, π(k)v3, w4)
∣∣ dmλ <∞.

Hence, we can define the function

h : K → R≥0, h(k)=

∫
Mλ

∣∣0λ,l(mλ, π(k)v1, w2)0µ,m(mλ, π(k)v3, w4)
∣∣ dmλ.

Arguing as for (1), we obtain that h is continuous.
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By the right-invariance of the Haar measure on Mλ and since

0λ,l(mλ, π(ξk)v1, w2)= 0λ,l(mλξ, π(k)v1, w2)

for every ξ ∈ Kλ (and similarly for the 0µ,m-term), the function h is invariant
under multiplication on the left by elements in Kλ and it therefore descends to a
continuous function on Kλ\K , concluding the proof of (2).

For (3), given a fixed Hλ ∈ a+

λ the function

Kλ → C, ξ 7→ 0λ,l(exp Hλ, π(ξk)v1, w2),

is continuous. Indeed, let ξ0 ∈ Kλ. Since π(k)v1 is K -finite, it is in particular
Kλ-finite. Hence, there exist finitely many Kλ-finite vectors v(1)1 , . . . , v

(r)
1 such that

π(ξ)π(k)v =

r∑
i=1

ci (ξ)v
(i)
1 ,

where each ci is a complex-valued continuous function on Kλ. Therefore,∣∣0λ,l(exp Hλ, π(ξk)v1, w2)−0λ,l(exp Hλ, π(ξ0k)v1, w2)
∣∣

is bounded by
r∑

i=1

|ci (ξ)− ci (ξ0)| |0λ,l(exp Hλ, v
(i)
1 , w2)|

and the claim follows from the continuity of the ci ’s.
The same argument shows that, for fixed Hλ ∈ a+

λ , the function

Kλ → C, ξ 7→ 0µ,m(exp Hλ, π(ξ)v3, w4),

is continuous and it follows that∫
Kλ

∣∣0λ,l(exp Hλ, π(ξk)v1, w2)0µ,m(exp Hλ, π(ξk)v3, w4)
∣∣ dξ <∞.

Hence, we can define the function

f :K →R≥0, f (k)=
∫

Kλ

∣∣0λ,l(exp Hλ,π(ξk)v1,w2)0µ,m(exp Hλ,π(ξk)v3,w4)
∣∣dξ

and argue as in the proof of (2). □

We now complete the strategy outlined in the Introduction. For fixed v2, v4∈HK ,
we define

Av2,v4 := D( · , v2, · , v4),

which is linear in the first variable and conjugate linear in the second. For fixed
v1, v3 ∈ HK , we define

Bv1,v3 := D(v1, · , v3, · ),

which is conjugate-linear in the first variable and linear in the second.
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Theorem 4.6. Let G be a connected, semisimple Lie group with finite centre. Let
(π, H) be a tempered, irreducible representation of G. Then there exists f (π)∈R>0

such that, for all v1, v2, v3, v4 ∈ HK , we have

lim
r→∞

1
r d(π)

∫
G<r

⟨π(g)v1, v2⟩⟨π(g)v3, v4⟩ dg =
1

f (π)
⟨v1, v3⟩⟨v2, v4⟩.

Proof. Fix v2, v4 ∈ HK . By Proposition 4.2, we can apply Corollary 2.13 to the
form Av2,v4 . Hence there exists cv2,v4 ∈ C such that for all v1, v3 ∈ HK we have

Av2,v4(v1, v3)= cv2,v4⟨v1, v3⟩.

Similarly, fixing v1, v3 ∈ HK , by Proposition 4.2 and Lemma 4.1 there exists a
dv1,v3 ∈ C such that

Bv3,v1(v4, v2)= dv1,v3⟨v4, v2⟩,

since the left-hand side is conjugate-linear in the first variable. Hence, since

Bv3,v1(v4, v2)= Bv1,v3(v2, v4),

we obtain
Bv1,v3(v2, v4)= dv1,v3⟨v2, v4⟩.

By definition, we have

D(v1, v2, v3, v4)= Av2,v4(v1, v3)= Bv1,v3(v2, v4),

so, for a vector v0 ∈ HK of norm 1, using (2) of Theorem 1.2, we obtain a real
number C(v0, v0) > 0 such that

D(v0, v0, v0, v0)= C(v0, v0)= cv0,v0 = dv0,v0 .

Computing D(v1, v0, v3, v0), we have

dv1,v3 = cv0,v0⟨v1, v3⟩.

Therefore, we obtained

D(v1, v2, v3, v4)= cv0,v0⟨v1, v3⟩⟨v2, v4⟩,

showing that f (π) :=
1

C(v0,v0)
does not depend on the choice of v0, as required. □
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1. Introduction

Let G be a connected reductive algebraic group defined over a nonarchimedean
local field F . The local Langlands correspondence (LLC) is a conjectural map

ϕ 7→5ϕ

from L-parameters to L-packets [Borel 1979, Chapter III]. The latter are finite sets
of (equivalence classes of) irreducible representations of the group of F-points, G(F).
The LLC is expected to satisfy numerous additional properties which give it con-
tent. We focus on only two properties. The first property concerns supercuspidal
representations. A large class of supercuspidal representations have been grouped
into L-packets by Kaletha [2019; 2021]. We shall exclusively be dealing with
these supercuspidal representations. The second property concerns functoriality for
homomorphisms with central kernel and abelian cokernel. This form of functoriality
was introduced by Borel [1979, Desideratum 10.3(5)] and was later refined by
Solleveld [2020, Corollary 2].

To describe the expected properties for supercuspidal representations, we recall
that an L-parameter is an L-homomorphism

ϕ :WF ×SL2→
L G

from the Weil–Deligne group into the L-group of G [Borel 1979, Section 8.2]. Fol-
lowing [Kaletha 2021, Section 4.1], the L-parameter ϕ is defined to be supercuspidal
if it is trivial on SL2, i.e.,

ϕ :WF →
L G,

and its image is not contained in a proper parabolic subgroup of L G [Borel 1979,
Section 3.3]. As observed in [Kaletha 2021, Section 4.1], “compound” L-packets
(or L-packets when G is quasisplit) consisting entirely of supercuspidal repre-
sentations are conjectured to correspond precisely to supercuspidal L-parameters
[DeBacker and Reeder 2009, Section 3.5; Aubert et al. 2018]. Kaletha [2019;
2021] provided an explicit construction for these conjectured L-packets, under the
additional assumptions that G splits over a tamely ramified extension, and that the
residual characteristic p of F does not divide the order of the Weyl group of G. He
further proved that the L-packets satisfy some important properties (e.g., stability).

The first goal of this paper is to show that these L-packets satisfy the desired func-
torial property [Borel 1979, Desideratum 10.3(5)]. For this reason, and from now on,
we work under the assumptions on G and the residual characteristic of F given in the
previous paragraph. For the sake of simplicity, we also assume that G is quasisplit
over F (see the discussion surrounding (1)). Let 8sc(G) denote the set (of conjugacy
classes) of supercuspidal L-parameters of G. Given ϕ ∈8sc(G), we let 5ϕ denote
the associated supercuspidal L-packet obtained via Kaletha’s construction.
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Theorem (Theorem 4.1). Suppose G is quasisplit and splits over a tamely ramified
extension. Suppose further that the residual characteristic p of F does not divide
the order of the Weyl group of G. Let η : G→ G be an F-morphism of connected
reductive F-groups such that

(i) the kernel of dη : Lie(G)→ Lie(G) is central,

(ii) the cokernel of η is an abelian F-group.

Let ϕ ∈8sc(G) and set ϕ = Lη ◦ϕ. Then for all π ∈5ϕ , π ◦ η is the direct sum of
finitely many irreducible supercuspidal representations belonging to 5ϕ .

Here, the map Lη : L G → L G takes the form Lη(g, w) = (η̂(g), w) for all
g ∈ Ĝ, w ∈WF . The map η̂ : Ĝ→ Ĝ on the Langlands dual groups is recalled in
Section 4.1.

The above theorem is a modified version of [Borel 1979, Desideratum 10.3(5)],
in which η is required to have abelian kernel and cokernel. The hypothesis on η is
precisely [Solleveld 2020, Condition 1], and is stronger [Solleveld 2020, Lemma 5.1]
than that of [Borel 1979, Desideratum 10.3(5)]. It ensures that the root systems
of G and G are identified through η in arbitrary characteristic (see [SGA 3 III 1970,
Sections 6.8, 7.5]).

In addition to proving Theorem 4.1, we provide a description of the compo-
nents of π ◦ η. The supercuspidal representations that make up the L-packets of
Theorem 4.1 are constructed from tame F-nonsingular elliptic pairs, which consist
of a particular kind of torus and a character thereof [Kaletha 2021, Definition 3.4.1].
Given such a pair (S, θ) of G, we let π(S,θ) denote the attached supercuspidal
representation of G(F), which is obtained from the Kaletha–Yu construction. This
construction consists of applying the J.-K. Yu construction [2001] after unfolding
(S, θ) into an appropriate G-datum [Kaletha 2019; 2021]. The representation π(S,θ)

may be reducible, and its irreducible components form part of an L-packet. The
first big result of this paper is writing a decomposition formula for π(S,θ) ◦ η.

Theorem (Theorem 3.1). Let (S, θ) and (S, θ) be tame F-nonsingular elliptic
pairs for G and G, respectively. Assume that η(S)⊂ S and θ = θ ◦ η. Then

π(S,θ) ◦ η ≃
⊕
c∈C

π(S,θ) ◦Ad(c−1),

where C is a set of coset representatives of η(G(F))\G(F)/S(F) and Ad is the
G(F)-action on G(F) described in Section 2.3.

The following three paragraphs sketch the main ideas required to prove this
theorem, and its complete proof is given in Section 4.2.

The composition π(S,θ) ◦η can be viewed as the restriction of π(S,θ) to η(G(F)).
Having abelian cokernel implies that η(G) is a subgroup of G which contains the
derived subgroup [G, G]. The kernel of η, which we denote by Z , is a central
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(π(S,θ), G(F)) (π(S,θ)|G Z (F), G Z (F)) (π(S,θ) ◦ η, G(F))
[Bourgeois 2021] Theorem 3.17

Figure 1. Illustration of the two-step process required to compute π(S,θ) ◦ η.

subgroup by [Solleveld 2020, Lemma 5.1]. We will write G Z for η(G) and use
the Z in subscript for all objects attached to G Z . In this notation, G Z ≃ G/Z and
G = G Z Z(G), where Z(G) denotes the center of G. We compute the restriction
of π(S,θ) to η(G(F))≃G(F)/Z(F) in two steps (as illustrated in Figure 1). First, by
restricting to η(G)(F)= G Z (F), and second, by further restricting to G(F)/Z(F).
The group η(G(F)) is a normal subgroup of G Z (F) (Corollary 2.7) and the quotient
is parameterized by a subgroup of a Galois cohomology group H 1(F, Z) [Springer
2009, Proposition 12.3.4], which may be nontrivial. The restriction of supercuspi-
dal representations to algebraic subgroups that contain the derived subgroup was
extensively studied in [Bourgeois 2021]. We can apply the results therein to obtain a
description for π(S,θ)|G Z (F) (Theorem 3.19). The second restriction (Theorem 3.17)
can be computed via Mackey theory, as the quotient G Z (F)/(G(F)/Z(F)) is
compact and abelian [Silberger 1979].

In order to describe the supercuspidal representations in the L-packets 5ϕ

and 5ϕ , one must know which tame F-nonsingular elliptic pairs to use. These
pairs are provided by supercuspidal L-packet data [Kaletha 2021, Definition 4.1.4].
The supercuspidal L-packet data for ϕ and ϕ consist of tuples (S, ȷ̂ , χ0, θ) and
(S, ȷ̂ , χ0, θ), respectively. Unlike the previous paragraph, S and S are not subtori
of G and G. Rather, they are embedded into subtori of the respective groups. The
elements ȷ̂ and ȷ̂ specify families of admissible embeddings S(F)→ G(F) and
S(F)→ G(F), denoted by JF and J F , respectively. Each embedding j ∈ JF

( j ∈J F ) is used to generate a tame F-nonsingular elliptic pair ( j S, jθ) (( j S, jθ)).
We let the components of π( j S, jθ) (π( j S, jθ)) be elements of 5ϕ (5ϕ).

In order to apply our decomposition formula for π( j S, jθ) ◦ η and relate it to
representations in 5ϕ , we must first establish an appropriate relationship between
the supercuspidal L-packet data and the admissible embeddings. This is given to
us by Theorem 4.2, another key result of this paper, in which we show that for
all j ∈ J F , there exists j ∈ JF such that η( j S) ⊂ j S and jθ = jθ ◦ η. As such,
we obtain a decomposition formula for π( j S, jθ) ◦ η in terms of certain conjugates
of π( j S, jθ). This completes the proof of Theorem 4.1.

The second goal of this paper is to provide a more detailed description of the
decomposition of π ◦ η in Theorem 4.1 in the special case that both ϕ and ϕ

are regular supercuspidal L-parameters [Kaletha 2019, Definition 5.2.3]. The
regularity assumptions on the L-parameters have several pleasant consequences.
We list them for ϕ, with the understanding that their analogs hold for ϕ. First, the
representations π( j S, jθ) are irreducible for all j ∈ JF . From this it follows that the
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set JF parameterizes the representations in 5ϕ . Second, the set JF is in bijection
with characters of the usual component group that one is accustomed to seeing in
Langlands correspondences. More precisely, the component group of the centralizer
of the image of ϕ is in bijection with the Galois-fixed subgroup of some torus Ŝ
[Kaletha 2019, Lemma 5.3.4], and certain characters of this component group are
in bijection with JF (see (17)). Since Ŝ is abelian, so too is the component group.

The regularity assumptions consequently allow us to write

π = π( j S, jθ) = π(ϕ,ϱ),

where j ∈ J F corresponds to a character ϱ of the component group for ϕ. The
map η̂ sends the component group for ϕ to the one for ϕ. The precise description
of π ◦ η is given in Proposition 5.12. We summarize it here as follows.

Theorem 1.1. Let η : G→ G, ϕ and ϕ = Lη ◦ϕ be as in Theorem 4.1. Assume that
ϕ and ϕ are regular. Then

π(ϕ,ϱ) ◦ η ≃
⊕
ϱ

Hom(ϱ, (ϱ ◦ η̂))⊗π(ϕ,ϱ),

where ϱ and ϱ are characters of the Langlands component groups.

Theorem 1.1 is the proof of a conjecture of Solleveld for regular supercuspidal
L-parameters [2020, Conjecture 2]. Solleveld proved his conjecture in a variety
of cases [2020, Theorem 3]. The only overlap of Theorem 1.1 with these cases is
when G and G are inner forms of GLn , SLn or PGLn .

One might hope that the regularity of ϕ = Lη ◦ ϕ in Theorem 1.1 would fol-
low from the regularity of ϕ. While this is not true in general, as illustrated
with a counterexample at the end of Section 5.1, the converse implication holds
(Corollary 5.3). Furthermore, as explained after [Kaletha 2019, Definition 3.7.3],
regular L-parameters are typical among all supercuspidal L-parameters.

Let us discuss how one might extend Theorem 1.1 to nonregular supercuspidal
L-parameters. In this case, J F is no longer a parameterizing set for 5ϕ since
the representations π( j S, jθ), j ∈ J F , may be reducible. For each j ∈ J F , the
irreducible components of π( j S, jθ) are parameterized by certain representations
of N ( j S, G)(F) jθ , the stabilizer of the pair ( j S, jθ) in N ( j S, G)(F) [Kaletha
2021, Corollary 3.4.7]. It appears that [Kaletha 2021, Proposition 4.3.2] serves
as a bridge between {N ( j S, G)(F) jθ : j ∈ J F } and the component group of the
centralizer of the image of ϕ. Another key step in the proof of Theorem 1.1 is
the decomposition formula for π( j S, jθ) ◦ η. Removing the regularity hypothesis
means one would need to derive the decomposition formula of π ◦η, where π is an
irreducible component of π( j S, jθ). This would require a deeper study of the results
in [Kaletha 2021, Section 3]. Once one has such a decomposition formula, we
believe that similar arguments as the ones in Section 5.2 could be applied.
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Let us briefly indicate what is required to extend Theorems 4.1 and 1.1 to
nonquasisplit groups. Every connected reductive algebraic F-group G ′ is an inner
form of a quasisplit form G. When char F = 0, the group G ′ may be assigned to
a class of rigid inner twists for G [Kaletha 2016, Corollary 3.8 and Section 5.1].
This class is an element in a set of the form H 1(u→W, Z ′→ G) which we shall
not describe. For any j ∈ JF , there is a natural surjection

(1) H 1(u→W, Z ′→ j S)→ H 1(u→W, Z ′→ G),

where j S is a maximal torus of G. The elements in a supercuspidal L-packet of G ′

are indexed by the fiber in H 1(u→W, Z ′→ j S) over the class in H 1(u→W, Z ′→G)

corresponding to G ′ [Kaletha 2019, Section 5.3]. If one is only interested in the
quasisplit form, that is, G ′ = G, the classes of rigid inner twists may be chosen to
equal the usual Galois cohomology sets (which we recall more precisely below),
and a supercuspidal L-packet is indexed by the fiber of the more familiar map

(2) H 1(F, j S)→ H 1(F, G)

over the trivial class. This fiber is in bijection with the set of admissible embed-
dings JF above. In general, the fiber of (1) corresponding to G ′ is in bijection
with the set J ′F of admissible embeddings into (the rigid inner twist for) G ′(F).
When char F ̸= 0, a parallel picture is given in [Dillery 2023]. The constructions
and results of Sections 3 and 4 apply to G ′(F) and J ′F in exactly the same man-
ner as they do to G(F) and JF . More work is required to accommodate G ′(F)

and J ′F in the constructions of Section 5. Rather than working with characters
of π0(Ŝ 0/Z(Ĝ)0), one works with the characters of the larger group π0([̂S]+)
which appear in [Kaletha 2019, Lemma 5.3.4; 2016, Corollary 5.4]. The admissible
embeddings J ′F correspond to certain characters of π0([̂S]+) and these characters
correspond to the representations in the L-packet for G ′. A discussion of such
matters may be found in [Kaletha 2016, Section 5.4]. In view of the length of
this paper, which deals only with quasisplit groups, it seems prudent to leave the
treatment of nonquasisplit groups to some future work.

The paper is organized as follows. Section 2 contains preliminaries, begin-
ning with an outline of the notation and conventions used throughout this paper
(Section 2.1). We also present results concerning the structure theory of G, G Z

and G (Sections 2.2 and 2.3), and provide summaries for the Kaletha–Yu construc-
tion of supercuspidal representations (Section 2.4) as well as Kaletha’s construction
of supercuspidal L-packets (Section 2.5). In Section 3, we prove Theorem 3.1, which
describes the decomposition of π(S,θ) ◦η. Most of the section (Sections 3.1 and 3.2)
focuses on proving the second part of the two-step restriction illustrated in Figure 1,
that is, describing restrictions from G Z (F) to G(F)/Z(F). In particular, a deep
analysis of the Kaletha–Yu construction is required, and we show that the J.-K. Yu
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construction essentially commutes with η. In Section 4, we prove the functoriality of
Kaletha’s supercuspidal L-packets (Theorem 4.1). We first establish the relationship
between the supercuspidal L-packet data associated to ϕ and ϕ (Section 4.1) and end
with the proof of Theorem 4.1 (Section 4.2). In Section 5, we start by describing the
regular supercuspidal L-parameters and their corresponding L-packet structure, as
well as a discussion on when one might expect both parameters ϕ and ϕ to be regular
(Section 5.1). We then proceed to reparameterize the L-packets in terms of characters
of their corresponding component groups and proving Theorem 1.1 (Section 5.2).

2. Preliminaries

We set up results concerning the structure theory of G, G Z and G, and summarize
the constructions that will be needed in this paper. We begin with notation and
conventions in Section 2.1, after which we discuss how the structure theory of G Z

and that of G relate in Section 2.2. In Section 2.3, we describe an action of G(F) on
representations of G(F). In Section 2.4, we summarize the Kaletha–Yu construction,
which produces supercuspidal representations from F-nonsingular elliptic pairs.
We summarize Kaletha’s construction of supercuspidal L-packets in Section 2.5.

2.1. Notation and conventions. Given the nonarchimedean local field F , we denote
by OF its ring of integers, pF the unique maximal ideal of OF and f its residue
field of prime characteristic p. Let Fun be a maximal unramified extension of F .
The residue field of Fun is an algebraic closure of f, so we denote it by f̄. The
Galois group Gal(Fun/F) is canonically isomorphic to Gal(f̄/ f), and we denote
the Frobenius automorphism by Fr. Let 0=Gal(F sep/F) denote the Galois groups
of F , where F sep is a separable closure of F . We use the notation IF and PF for
the inertia subgroup and wild inertia subgroup of the Weil group WF , respectively.
We also let E denote the tamely ramified extension of F over which G splits.

In this paper, we will encounter different types of cohomology groups. Given an
algebraic group G ′ that is defined over a field F ′, we take G ′(F ′) to be the set of
F ′-points in the sense of [Springer 2009, Section 2.1]. For G ′ defined over F we
write H 1(F, G ′) for H 1(0, G ′(F sep)). Similarly, given an algebraic group G′ that
is defined over f, we write H 1(f,G′) for H 1(Gal(f̄/ f),G′(f̄)). Furthermore, given
a group G̃ with Gal(Fun/F)-action, we write H 1(Fr, G̃) for H 1(Gal(Fun/F), G̃)

and G̃Fr for G̃Gal(Fun/F).
Given a maximal torus T of G, we let R(G, T ) denote the root system of G

with respect to T . Given α ∈ R(G, T ), we denote the associated root subgroup
by Uα . Letting T denote the maximal torus of G such that η(T )= T ∩η(G) (given
by [Bourgeois 2021, Theorem 2.2]), the root systems R(G, T ) and R(G, T ) are
identified by η, and the Weyl groups of G and G coincide. We use g and g for the
Lie algebras of G and G, respectively.
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Furthermore, given groups H1⊂ H2, h ∈ H2 and a representation γ of H1, we let
hH1 := Ad(h)(H1)= h H1h−1 and hγ := γ ◦Ad(h−1).

The reader is assumed to be familiar with the structure theory of p-adic groups.
Following the notation from [Kaletha 2019], we write B(G, F) for the reduced
building of G over F and A(G, T, F) for the apartment associated to any maximal
torus T of G which is maximally split. For each x ∈ B(G, F), we set G(F)x

to be the stabilizer of x in G(F). Furthermore, for r > 0, G(F)x,r denotes the
Moy–Prasad filtration subgroup of the parahoric subgroup G(F)x,0. We will be
using Kaletha and Prasad’s definitions [2023, Definition 13.2.1], which coincide
with the ones of Moy and Prasad given our tameness assumption [2023, p. XXV]. In
particular, we have E×r = 1+p⌈er⌉

E , where e denotes the ramification degree of E/F .
We also set G(F)x,r+ =

⋃
t>r G(F)x,t . We use colons to abbreviate quotients,

that is G(F)x,r :t = G(F)x,r/G(F)x,t for t > r . We have analogous filtrations of
OF -submodules at the level of the Lie algebra.

For all r > 0, the quotient G(F)x,r :r+ is an abelian group and is isomorphic to
its Lie algebra analog g(F)x,r :r+ via Adler’s mock exponential map [1998]. The
quotient G(F)x,0:0+ is also very important, as it results in the f-points of a reductive
group G, which we refer to as the reductive subquotient of G at x .

The construction of G is summarized in [Kaletha and Prasad 2023, Section 8.4.2].
One starts with the relative identity component Gx of a OF -group scheme associated
to x , whose existence is guaranteed by [Kaletha and Prasad 2023, Proposition 8.3.1
and Section 9.2.5]. One then takes the special fiber Gx of Gx , and defines G to be the
quotient by its unipotent radical, G := Gx/Ru(Gx). By [Kaletha and Prasad 2023,
Theorem 8.3.13], G(Fun)x,0 = Gx(OFun). The projection map

(3) G(Fun)x,0 = Gx(OFun)→ Gx(f̄)

is surjective, and the preimage of Ru(Gx)(f̄) under this map is equal to G(Fun)x,0+

[Kaletha and Prasad 2023, Corollary 8.4.12], whence G(f̄)≃ G(Fun)x,0:0+ .
There is a natural action of Gal(Fun/F) on Gx(OFun) and a natural action of

Gal(f̄/ f) on Gx(f̄) and the map (3) is Galois-equivariant with respect to these actions.
The Galois-equivariance passes to the isomorphism G(Fun)x,0:0+ ≃ G(f̄).

All of the objects described above have their analogs in G Z and G, which we
will denote using the subscript Z and the underline, respectively.

2.2. Structure theory of GZ in relation to G. In this section, η is the map on G,
as stated in the introduction (Theorem 4.1) and G Z = η(G)≃ G/Z . We let (S, θ)

and (SZ , θZ ) be tame F-nonsingular elliptic pairs of G and G Z , respectively, which
satisfy η(S) = SZ and θ = θZ ◦ η. The goal of this section is to compare certain
subgroups of G(F) to their analogs in G Z (F). In particular, we focus on Moy–
Prasad filtration subgroups and reductive subquotients of G and G Z , respectively.
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These results will be useful when computing a decomposition formula for π(S,θ) ◦η

in Section 3.
First, we note that η : G → G Z induces an equivariant isomorphism ηB :

B(G, F)→ B(G Z , F) by [Kaletha and Prasad 2023, Axiom 4.1.1]. In particular,
this map satisfies ηB(gx) = η(g) · ηB(x) for all g ∈ G(F), x ∈ B(G, F), where ·
refers to the action of G(F) on B(G, F). For the rest of this section, let us fix
y ∈ B(G, F) and set yZ = ηB(y). We begin with a result stating a relationship
between G Z (F)yz and G(F)y .

Lemma 2.1. We have η(G(F)y)= G Z (F)yZ ∩ η(G(F)). Furthermore, η(G(F)y)

is normal in G Z (F)yZ .

Proof. We start by showing that η(G(F)y) is a normal subgroup of G Z (F)yZ .
Let g ∈ G(F)y . Then g · y = y by definition. It follows that ηB(g · y) = ηB(y),
or equivalently η(g) · yZ = yZ . Thus η(G(F)y) ⊂ G Z (F)yZ . For normality, take
g ∈ G(F)y and gZ ∈ G Z (F)yZ . Since η(G(F)) is a normal subgroup of G Z (F), it
follows that gZ η(g)g−1

Z = η(g′) for some g′ ∈ G(F). By what precedes, we also
have η(g′) ∈G Z (F)yZ , or equivalently η(g′) · yZ = yZ . Since the map ηB is a bijec-
tion, it follows that g′ · y = y. Thus, g′ ∈ G(F)y and gZ η(g)g−1

Z ∈ η(G(F)y). For
the intersection, it is clear that G Z (F)yZ ∩ η(G(F))⊃ η(G(F)y). Conversely, take
gZ ∈G Z (F)yZ ∩η(G(F)). Then gZ =η(g′) for some g′ ∈G(F) and η(g′)·yZ = yZ .
Using the bijectivity of ηB, it follows that g′ ∈G(F)y , and thus gZ ∈ η(G(F)y). □

Next, we describe the relationship between the Moy–Prasad filtration subgroups.

Lemma 2.2. For all r > 0 we have η(G(F)y,r )= G Z (F)yZ ,r .

Proof. Let r > 0. Following the proof of [Kaletha 2019, Lemma 3.3.2], use [Bruhat
and Tits 1972, Lemma 6.4.48] to write G(F)y,r as the direct product of (topological
spaces) T (F)r and the appropriate affine root subgroups. Here T is a maximally
unramified maximally split maximal torus, whose existence is guaranteed by [Bruhat
and Tits 1984, Corollary 5.1.12]. Since η induces an isomorphism on the affine root
subgroups, it suffices to show that η(T (F)r )= TZ (F)r , where TZ = η(T )≃ T/Z .
To do so, let Z◦ denote the identity component of Z . The map η factors as follows:

T TZ ≃ (T/Z◦)/(Z/Z◦)

T/Z◦

η

η◦ η̄

We have that Z◦ is a torus by [Humphreys 1975, Theorem 16.2] as it is a closed and
connected subgroup of the torus Z(G)◦. By [Kaletha 2019, Lemma 3.1.3], we have
an exact sequence

1→ Z◦(F)r → T (F)r → (T/Z◦)(F)r → 1,
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implying that (T/Z◦)(F)r ≃ T (F)r/Z◦(F)r ≃ η◦(T (F)r ). Furthermore, since
η̄ : T/Z◦→ TZ is an isogeny, [Kaletha 2019, Lemma 3.1.3] tells us that

η̄((T/Z◦)(F)r )= TZ (F)r .

Combining these two equations allows us to conclude that η(T (F)r )= TZ (F)r . □

Remark 2.3. For all r >0, the map η induces a surjection G(F)y,r :r+→G Z (F)yZ ,r :r+ ,
0 ≤ i ≤ d. At the depth-zero level, we can only guarantee an inclusion. In other
words, η(G(F))y,0 ⊂ G Z (F)yZ ,0. This induces a homomorphism G(F)y,0:0+ →

G Z (F)yZ ,0:0+ .

Now, let G and GZ denote the reductive subquotients of G and G Z at y and yZ ,
respectively (see discussion surrounding (3)). In light of Remark 2.3, the map η

induces a map between G and GZ , which we describe as follows.
Since η induces a homomorphism G(Fun)y,0→ G Z (Fun)yZ ,0, we can compose

with the quotient map to obtain a homomorphism

G(Fun)y,0→ G Z (Fun)yZ ,0:0+,

g 7→ η(g)G Z (Fun)y,0+ .

The kernel of this homomorphism is (Z ∩G(Fun)y,0)G(Fun)y,0+ , resulting in an
embedding

G(Fun)y,0/(Z ∩G(Fun)y,0)G(Fun)y,0+ ↪→ G Z (Fun)yZ ,0:0+ .

By the third isomorphism theorem, the domain of the previous embedding is
isomorphic to

G(Fun)y,0:0+/
(
(Z ∩G(Fun)y,0)G(Fun)y,0+/G(Fun)y,0+

)
.

Given that Z ⊂ Z(G), it follows that (Z ∩G(Fun)y,0)G(Fun)y,0+/G(Fun)y,0+ is a
closed central subgroup of G(Fun)y,0:0+ . As such, it corresponds to a closed central
subgroup of G(f̄), which we denote by Z(f̄). Given that we identify reductive groups
with their f̄-points, what we have just described is an embedding

η̄ : G/Z ↪→ GZ .

We expect this embedding to be surjective when the groups are split. Even though
we do not have a counterexample, it is not clear to us whether it is surjective in
general. Note that the groups of the embedding are defined over f. The embedding
is Gal(f̄/ f)-equivariant, as η is Gal(Fun/F)-equivariant. Furthermore, Z is defined
over f by [Springer 2009, Corollary 12.1.3]. Thus, the map between G and GZ
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(which is defined over f) is given by

(4)
G G/Z GZ

G(Fun)y,0:0+ G(Fun)y,0/(Z ∩G(Fun)y,0)G(Fun)y,0+ G Z (Fun)yZ ,0:0+

gG(Fun)y,0+ η(g)G Z (Fun)yZ ,0+

q

≃

η̄

≃ ≃

where q is the obvious quotient map. To alleviate notation, we will keep the
isomorphisms implicit and say that an element of G(f̄) (or G(f)) is of the form
gG(Fun)y,0+ for some g ∈ G(Fun)y,0 (or gG(F)y,0+ for some g ∈ G(F)y,0).

Remark 2.4. The map η̄ ◦ q as defined above corresponds to the restriction of the
map

G(Fun)y/G(Fun)y,0+→ G Z (Fun)yZ /G Z (Fun)yZ ,0+,

gG(Fun)y,0+ 7→ η(g)G Z (Fun)yZ ,0+ .

We will abuse notation and also denote this map by η̄ ◦ q when called upon.

We now prove two elementary results involving the maps η̄ and q .

Lemma 2.5. Let η̄ and Z be as above. Then η̄(G/Z)⊇ [GZ ,GZ ].

Proof. We identify the reductive groups with their f̄-points. Based on the definitions
above, we have

η̄(G(f̄)/Z(f̄))= η(G(Fun)y,0)G Z (Fun)yZ ,0+/G Z (Fun)yZ ,0+ .

Let S′Z be a maximal Fun-split torus of G Z and let TZ be its centralizer in G Z .
By definition (see, for example, [Fintzen 2021, Section 2.4] or [Kaletha and Prasad
2023, Definition 13.2.1]),

G Z (Fun)y,0 = ⟨TZ (Fun)0, Uα(Fun) : α ∈ Raff
Fun, ⟨α, yZ ⟩ ≥ 0⟩,

where Raff
Fun ={λ+k :λ∈ R(G Z , TZ ) such that λ|S′Z ̸= 1, k ∈R}, and Uα(Fun) is the

affine root subgroup associated to the affine root α. Given that root subgroups are
normalized by toral elements, it follows that [G Z (Fun)yZ ,0, G Z (Fun)yZ ,0] consists
only of products of root subgroup elements. Since η induces an isomorphism on the
affine root subgroups of G and G Z , we conclude that [G Z (Fun)yZ ,0, G Z (Fun)yZ ,0]⊆

η(G(Fun)y,0). It follows that

[GZ (f̄),GZ (f̄)] = [G Z (Fun)yZ ,0, G Z (Fun)yZ ,0]G Z (Fun)yZ ,0+/G Z (Fun)yZ ,0+

⊆ η̄(GZ (f̄)/Z(f̄)). □
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2.3. The action of G(F) on G(F). The decomposition formula for π(S,θ) ◦ η

involves an action of G(F) on representations of G(F). The purpose of this section
is to describe this action.

Let g∈G(F). Using G=G Z Z(G), write g= gZ z for some gZ ∈ G Z , z ∈ Z(G).
Since G Z is the image of η, there exists g ∈ G such that gZ = η(g). It follows that
Ad(g)= Ad(η(g)). We also set Ad(g) := Ad(g), an automorphism of G.

Lemma 2.6. For all g∈G(F), Ad(g)∈Aut(G(F)) is defined over F. Furthermore,

Ad : G(F)→ Aut(G(F)),

g 7→ Ad(g),

is a well-defined homomorphism.

Proof. It is clear that Ad(g) maps G to G. We first prove that Ad(g) is defined
over F sep. According to [Springer 2009, 12.3.3], a quotient map carries the F sep-
points of its domain surjectively onto the F sep-points of its image. Now, the group
G is the quotient of G Z × Z(G) by G Z ∩ Z(G). Therefore g = gZ z where gZ ∈

G Z (F sep) and z ∈ Z(G)(F sep). Our map η is also a quotient map so gZ can be writ-
ten as η(g) where g ∈ G(F sep). Consequently Ad(g)=Ad(g) is defined over F sep.

To conclude that Ad(g) is defined over F (and therefore maps G(F) to G(F)),
we show that Ad(g) ◦ σ = σ ◦Ad(g) for all σ ∈ 0. Recall that Ad(g) = Ad(g),
where g ∈ G is such that g = η(g)z for some z ∈ Z(G). Since η is defined over
F and g ∈ G(F), we have

η ◦ σ ◦Ad(g)= σ ◦Ad(η(g)) ◦ η

= σ ◦Ad(g) ◦ η

= Ad(g) ◦ η ◦ σ

= Ad(η(g)) ◦ η ◦ σ

= η ◦Ad(g) ◦ σ.

Given x ∈ G, the previous equality implies (σ ◦Ad(g))(x)= (Ad(g) ◦ σ)(x)zx

for some zx ∈ Z . Define the map

f : G→ Z ,

x 7→ zx .

This is a homomorphism, and is trivial on Z(G). Furthermore, because Z is
abelian, f is also trivial on [G, G]. Thus, f is trivial on G = [G, G]Z(G), and
zx = 1 for all x ∈ G. We conclude that Ad(g) ◦ σ = σ ◦Ad(g), as desired. To
show that the map Ad is well defined, assume g = η(g1)z1 = η(g2)z2, where
g1, g2∈G, z1, z2∈Z(G). It follows that η(g1g−1

2 )=z−1
1 z2∈Z(G)∩G Z⊂Z(G Z ),

and therefore g1g−1
2 ∈Z(G). We conclude that Ad(g1)=Ad(g2), and thus Ad(g)

is well defined. It is straightforward to show that Ad is a homomorphism. □
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Corollary 2.7. The group η(G(F)) is normal in G(F).

Proof. Let h ∈ G(F) and g ∈ G(F). We show that Ad(g)(η(h)) ∈ η(G(F)).
Following the notation above, we have that Ad(g) = Ad(η(g)) for some g ∈ G.
It follows that

Ad(g)(η(h))= (η ◦Ad(g))(h)= (η ◦Ad(g))(h).

By the previous lemma, Ad(g) is defined over F , which implies Ad(g)(h) ∈ G(F).
Thus, we conclude that

Ad(g)(η(h)) ∈ η(G(F)). □

The following lemma will also be useful in proving the main statements of this
section.

Lemma 2.8. Let πZ be a representation of G Z (F) and g ∈ G(F). Then

gπZ ◦ η = πZ ◦ η ◦Ad(g−1).

Proof. We have Ad(g)=Ad(g), where g ∈G satisfies g=η(g)z for some z ∈ Z(G).
For all h ∈ G(F),

(πZ ◦ η ◦Ad(g−1))(h)= (πZ ◦ η)(g−1hg)

= πZ (η(g)−1η(h)η(g))

= (η(g)πZ ◦ η)(h)

= (gπZ ◦ η)(h). □

2.4. Summary of the Kaletha–Yu construction. Let us recall the construction of
supercuspidal representations from tame F-nonsingular elliptic pairs as per [Kaletha
2019; 2021], which we refer to as the Kaletha–Yu construction. For simplicity
of notation, we will describe the construction over G, though it is also applied
to G Z ≃ G/Z and G.

The construction of the supercuspidal representation π(S,θ) of G starts from
a tame F-nonsingular elliptic pair (S, θ) in the sense of [Kaletha 2021, Defini-
tion 3.4.1]. The representation π(S,θ) is obtained in two steps. One starts by
unfolding the pair (S, θ) into a G-datum 9(S,θ) = (G⃗, y, r⃗ , ρ, φ⃗) in the sense
of [Yu 2001, Section 3]. We will refer to 9(S,θ) as the corresponding G-datum
of (S, θ). The properties of S and θ provided by [Kaletha 2021, Definition 3.4.1]
allow us to go to the reductive subquotient and use the theory of Deligne–Lusztig
cuspidal representations in order to construct ρ, the so-called depth-zero part of the
datum 9(S,θ). The second step consists of applying the J.-K. Yu construction [2001]
on the obtained G-datum. The unfolding of the tame F-nonsingular elliptic pair
into a G-datum is given as follows.
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2.4.1. The twisted Levi sequence G⃗ and the sequence r⃗ . We recall how to construct
a Levi sequence from S as per [Kaletha 2019, Section 3.6]. We consider the set
Rr :=

{
α ∈ R(G, S) : θ

(
NE/F (α̌(E×r ))

)
= 1

}
,where α̌ is the coroot associated to α

and NE/F is the norm of E/F , and set Rr+ =
⋂

s>r Rs . There will be breaks in
this filtration, rd−1 > rd−2 > · · ·> r0 > 0. We set r−1 = 0 and rd = depth(θ). For
all 0≤ i ≤ d , Gi

:= ⟨S, Uα : α ∈ Rr+i−1
⟩ is a tamely ramified twisted Levi subgroup

of G [Kaletha 2019, Lemma 3.6.1]. These twisted Levi subgroups are what we
use to form the twisted Levi sequence G⃗ = (G0, . . . , Gd). We also set G−1

= S
and r⃗ = (r0, . . . , rd).

2.4.2. The character sequence φ⃗. By [Kaletha 2019, Proposition 3.6.7], given
the character θ of S(F), there exists a Howe factorization, that is, a sequence of
characters φi

: Gi (F)→ C× for i =−1, . . . , d such that:

(1) θ =
∏d

i=−1 φi
|S(F).

(2) For all 0≤ i ≤ d , φi is trivial on the simply connected cover of Gi .

(3) For all 0≤ i < d, φi is a Gi+1(F)-generic character of depth ri in the sense
of [Hakim and Murnaghan 2008, Definition 3.9]. For i = d, φd is trivial if
rd = rd−1 and has depth rd otherwise. For i = −1, φ−1 is trivial if G0

= S
and otherwise satisfies φ−1

|S(F)0+
= 1.

Given such a factorization, we set φ⃗ = (φ0, . . . , φd).

2.4.3. The point y. Since (S, θ) is a tame F-nonsingular elliptic pair, the torus S is a
maximally unramified elliptic maximal F-torus of G0 in the sense of [Kaletha 2019,
Definition 3.4.2]. As such, we can associate to it a vertex y of B(G0, F)⊂B(G, F)

[Kaletha 2019, Lemma 3.4.3], which is the unique Gal(Fun/F)-fixed point of
A(G0, S, Fun) [Kaletha and Prasad 2023, Section 17.8].

2.4.4. The representation ρ. Let G0 denote the reductive subquotient of G0 at y,
that is, the connected reductive f-group such that G0(f̄) ≃ G0(Fun)y,0:0+ and
G0(f)≃ G0(F)y,0:0+ , as recalled at the end of Section 2.1.

By [Kaletha 2019, Lemma 3.4.4], there exists an elliptic maximal f-torus S of G0

such that for every unramified extension F ′ of F , the image of S(F ′)0 in G(F ′)y,0:0+

is isomorphic to S(f′). For every character χ of S(f), one can construct a virtual
character of G(f) as per [Deligne and Lusztig 1976], which we denote by RS,χ .
When χ is nonsingular in the sense of [Deligne and Lusztig 1976, Definition 5.15],
±RS,χ is a Deligne–Lusztig cuspidal representation of G(f) [1976, Proposition 7.4,
Theorem 8.3]. The sign ± refers to (−1)rf(G0)−rf(S), where rf(G0) and rf(S) denote
the f-split ranks of G0 and S, respectively. The character φ−1 factors through
to a character φ−1 of S(F)/S(F)0+ , which restricts to a character of S(f). By
[Kaletha 2019, Lemma 3.4.14], this character of S(f) is nonsingular, meaning that
the virtual character ±RS,φ−1 is a (possibly reducible) Deligne–Lusztig cuspidal
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(±RS,φ−1 ,G0(f)) (κ(S,φ−1), S(F)G0(F)y,0) (ρ, G0(F)y)
pullback, extend induce

Figure 2. Summary of the construction of ρ.

representation of G0(f). The pullback of ±RS,φ−1 to G0(F)y,0 then gets extended
to a representation κ(S,φ−1) of S(F)G0(F)y,0. This extension process is explained
in [Kaletha 2019, Section 3.4.4] as well as [Kaletha 2021, Remark 2.6.5, p. 35],
and will be recalled when needed in Corollary 3.12. We then define

ρ := IndG0(F)y

S(F)G0(F)y,0
κ(S,φ−1).

The construction of ρ is summarized in Figure 2. Note that we are following the
notation from [Kaletha 2019] in the paragraph above. What we have denoted by ρ

is denoted by κ(S,φ−1) in [Kaletha 2021, Section 3.3].
Once we have the G-datum 9(S,θ) = (G⃗, y, r⃗ , ρ, φ⃗), we apply the J.-K. Yu

construction to obtain the supercuspidal representation π(S,θ). We do not recall all
the details of this construction, but provide a summary in the form of a diagram
(Figure 3). We invite the reader to consult [Bourgeois 2021, Section 3] for a brief
description of the steps involved. We point out that it is sometimes convenient to
write κG(9(S,θ)) for κ(S,θ) and πG(9(S,θ)) for π(S,θ) to indicate that we are applying
the J.-K. Yu construction on the G-datum 9(S,θ).

The representation ρ above may be reducible, and its irreducible components are
given by [Kaletha 2021, Theorem 2.7.7]. While the definition of a G-datum in [Yu
2001] requires ρ to be irreducible, we may still apply the steps of the J.-K. Yu con-
struction on (G⃗, y, r⃗ , ρ, φ⃗) to obtain π(S,θ), which is a completely reducible super-
cuspidal representation independent of the chosen Howe factorization [Kaletha 2021,
Corollary 3.4.7]. We write [π(S,θ)] for the set of irreducible components of π(S,θ).

(φ0, K 0) · · · (φd−2, K d−2) (φd−1, K d−1) (φd , K d)

(ρ, K 0) (φ0′, K 1) · · · (φd−2′, K d−1) (φd−1′, K d) (φd ′, K d)

(κ−1, K d) (κ0, K d) · · · (κd−2, K d) (κd−1, K d) (κd , K d)

enlarge enlarge enlarge =

inflate inflate inflate = =

π(S,θ) := IndG
K d κ(S,θ), where

κ(S,θ) = κ−1
⊗ κ0
⊗ κ1
⊗ κ2
· · · ⊗ κd−2

⊗ κd−1
⊗ κd

Figure 3. Summary of the J.-K. Yu construction for π(S,θ), where
K 0
=G0(F)y and K i+1

= K 0G1(F)y,r0/2 · · ·G i+1(F)y,ri /2, 0≤ i ≤ d−1.
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From the pair (S, θ), one may also perform what we call a twisted J.-K. Yu
construction. Indeed, following [Fintzen et al. 2023, Section 4.1 page 2259], let
ϵ =

∏d
i=1 ϵGi /Gi−1

, where ϵGi /Gi−1
is the quadratic character of K d that is trivial

on G1(F)y,r0/2 · · ·Gd(F)y,rd−1/2 and whose restriction to K 0 is given by ϵ
Gi /Gi−1

y

defined in [Fintzen et al. 2023, Definition 4.1.10]. The so-called twisted representa-
tion then refers to IndG

K d (κ(S,θ) · ϵ), which is equivalent to constructing π(S,θ ·ϵ) via
the above steps. Since one obtains the Levi sequence G⃗ from S, we simply say that
ϵ is constructed from S.

2.5. The construction of supercuspidal L-packets. Recall that 8sc(G) denotes
the set (of conjugacy classes) of supercuspidal L-parameters of G. Given our
hypothesis on p, every ϕ ∈ 8sc(G) has the property that ϕ(PF ) is contained in
a maximal torus of Ĝ [Kaletha 2021, Lemma 4.1.3]. Such parameters are called
torally wild in [Kaletha 2021]. Since all supercuspidal parameters we consider in
this paper are torally wild, we will omit these adjectives.

Given ϕ ∈8sc(G), we let 5ϕ denote the associated L-packet of [Kaletha 2021].
Kaletha provides an explicit parameterization for 5ϕ , and elements therein consist
entirely of supercuspidal representations obtained from the construction outlined
in Section 2.4. Thus, when ϕ ∈8sc(G), we shall refer to 5ϕ as a supercuspidal
L-packet.

In order to describe Kaletha’s construction of supercuspidal L-packets, we
must first familiarize ourselves with his notion of a supercuspidal L-packet datum.
We start this section by recalling the definition below.

Definition 2.9 [Kaletha 2021, Definition 4.1.4]. A supercuspidal L-packet datum
of G is a tuple (S, ȷ̂ , χ0, θ), where

(1) S is a torus of dimension equal to the absolute rank of G, defined over F and
split over a tame extension of F ;

(2) ȷ̂ : Ŝ→ Ĝ is an embedding of complex reductive groups whose Ĝ-conjugacy
class is 0-stable;

(3) χ0 = (χα0)α0 is tamely ramified χ -data for R(G, S0), where S0 is a particular
subtorus of S defined from R0+ as explained in [Kaletha 2021, p. 41];

(4) and θ : S(F)→ C× is a character;

subject to the condition that (S, θ) is a tame F-nonsingular elliptic pair in the sense
of [Kaletha 2021, Definition 3.4.1].

Despite appearances, the torus S does not actually live inside G. It is an abstract
torus that will be embedded into G below.

The notion of χ-data was introduced in [Langlands and Shelstad 1987] and is
recalled in [Kaletha 2019, Section 4.6]. It is not necessary for the reader to be
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familiar with χ-data in what follows. For our purposes, one can think of χ-data
for R(G, S0) simply as a set of characters of unit groups of finite extensions of F
which are indexed by roots.

By [Kaletha 2021, Proposition 4.1.8], there is a one-to-one correspondence
between the Ĝ-conjugacy classes of supercuspidal L-parameters for G and isomor-
phism classes of supercuspidal L-packet data. Following the proof of [Kaletha 2021,
Proposition 4.1.8], given ϕ ∈8sc(G), one constructs a representative (S, ȷ̂ , χ0, θ)

of the corresponding isomorphism class of supercuspidal L-packet data as follows:

• S: Let M̂ = Cent(ϕ(PF ), Ĝ)◦, Ĉ = Cent(ϕ(IF ), Ĝ)◦ and Ŝ = Cent(Ĉ, M̂).
By [Kaletha 2019, Lemma 5.2.2; 2021, Lemma 4.1.3], M̂ is Levi subgroup of Ĝ,
Ĉ is a torus of Ĝ and Ŝ is a maximal torus of Ĝ. The action of WF (which extends
to 0) on Ŝ is defined as Ad(ϕ(−)). The torus S is then the torus dual to Ŝ.

• ȷ̂ : One simply takes ȷ̂ to be the set inclusion Ŝ ↪→ Ĝ.

• χ0: One chooses tame χ -data χ0 for S0, which extends to χ -data for S by [Kaletha
2021, Remark 4.1.5].

• θ : Following [Langlands and Shelstad 1987, Section 2.6], the χ-data allow one
to extend ȷ̂ to an embedding L j : LS→ L G. The image of L j contains the image
of ϕ so that we may write ϕ = L j ◦ϕS for some L-parameter ϕS of S. We let θ be
the corresponding character of S(F) via the LLC for tori.

We will say that (S, ȷ̂ , χ0, θ) is the supercuspidal L-packet datum associated
to ϕ ∈ 8sc(G). The embedding ȷ̂ belongs to a 0-stable Ĝ-conjugacy class Ĵ
of embeddings Ŝ → Ĝ, and from Ĵ we obtain a 0-stable G(F sep)-conjugacy
class J of embeddings S→ G (called admissible embeddings) as per [Kaletha
2019, Section 5.1; Dillery 2023, Sections 6.1 and 7.1]. We denote by JF the
set of G(F)-conjugacy classes of elements of J which are defined over F . For
each j ∈ JF , we consider the torus j S = j (S) and let jθ = θ ◦ j−1

· ϵ j , where ϵ j is
the specific character from [Fintzen et al. 2023, Section 4.1] constructed from j S,
described at the end of Section 2.4. Each pair ( j S, jθ) is a tame F-nonsingular
elliptic pair from which we can construct a supercuspidal representation π( j S, jθ) as
described in Section 2.4. The supercuspidal L-packet 5ϕ is then defined as

5ϕ := {[π( j S, jθ)] : j ∈ JF },

where j is identified with its G(F)-conjugacy class and π( j S, jθ) is identified with
its equivalence class. Similarly, given ϕ ∈8sc(G), we denote the associated super-
cuspidal L-packet datum by (S, ȷ̂ , χ0, θ), and let J F be the set of G(F)-conjugacy
classes of admissible embeddings obtained from the 0-stable Ĝ-conjugacy class
of ȷ̂ which are defined over F , so that

5ϕ = {[π( j S, jθ)] : j ∈ J F }.
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What we have denoted by 5ϕ is what Kaletha [2021] denotes as 5ϕ(G). Kaletha
assigns the notation 5ϕ to his “compound L-packet” which encompasses rigid
inner forms of G.

3. The decomposition of π(S,θ) ◦ η

Kaletha [2019; 2021] described a way to construct a supercuspidal representa-
tion π(S,θ) of G from a tame F-nonsingular elliptic pair (S, θ) [2021, Defini-
tion 3.4.1] (recalled above in Section 2.4). Here S is a maximally unramified elliptic
maximal torus and θ is a character of S(F) satisfying a certain nonsingularity con-
dition. As seen in Section 2.5, the irreducible components of these representations
are what make up the supercuspidal L-packets. As such, finding a decomposition
formula for π(S,θ) ◦ η is crucial in proving Theorem 4.1.

The main result of this section is precisely this decomposition formula, and is
given by the following theorem.

Theorem 3.1. Let (S, θ) and (S, θ) be tame F-nonsingular elliptic pairs for G
and G, respectively. Assume that η(S)⊂ S and θ = θ ◦ η. Then

π(S,θ) ◦ η ≃
⊕
c∈C

π(S,θ) ◦Ad(c−1),

where C is a set of coset representatives of η(G(F))\G(F)/S(F) and Ad is the
G(F)-action on G(F) described in Section 2.3.

The proof of Theorem 3.1 is done in two steps (as illustrated in Figure 1). Indeed,
by noting that

π(S,θ) ◦ η =
(
ResG(F)

G Z (F) π(S,θ)

)
◦ η,

we first seek a decomposition formula for ResG(F)

G Z (F) π(S,θ). The results from [Bour-
geois 2021] grant us such a formula, as G Z is a normal subgroup of G that con-
tains [G, G]. This is stated in Theorem 3.19. The second step is describing the
composition of a supercuspidal representation of G Z (F) with η. More specifically,
we prove the following theorem.

Theorem (Theorem 3.17). Let (S, θ) and (SZ , θZ ) be tame F-nonsingular elliptic
pairs of G and G Z , respectively. Assume that η(S)= SZ and θ = θZ ◦ η. Then

π(SZ ,θZ ) ◦ η ≃
⊕

dZ∈DZ

π(S,θ) ◦Ad(d−1
Z ),

where DZ is a set of coset representatives of η(G(F))\G Z (F)/SZ (F) and Ad is
the G(F)-action on G(F) described in Section 2.3.
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(SZ , θZ ) (S, θ)

(G⃗ Z , yZ , r⃗ , ρZ φ⃗Z ) (G⃗, y, r⃗ , ρ, φ⃗)

◦η

η

◦η ◦η

η ηB

Figure 4. Relationship between the corresponding J.-K. Yu data given
the relationship between the tame F-nonsingular elliptic pairs.

The strategy that we use to prove Theorem 3.17 is similar to the one from
[Bourgeois 2021] in the sense that we go through the constructions of π(S,θ) and
π(SZ ,θZ ) step-by-step to make comparisons along the way.

Recall that the Kaletha–Yu construction involves two steps: producing a datum (in
the sense of [Yu 2001, Section 3]) from the F-nonsingular elliptic pair, and then ap-
plying the J.-K. Yu construction to this datum. As such, the first thing we do is estab-
lish the relationship between the G-datum 9(S,θ) and G Z -datum 9(SZ ,θZ ) produced
from (S, θ) and (SZ , θZ ), respectively. In particular, these data are related via the
map η, a statement we will make precise with Theorem 3.2 and illustrate in Figure 4.

Once the relationship between 9(S,θ) and 9(SZ ,θZ ) is established, we start com-
paring the representations at each step of the J.-K. Yu construction. What we
show is that the steps of the construction commute with the composition with η

(Propositions 3.14 and 3.15), as illustrated in Figure 5.
Establishing these relationships between the data and representations is a lengthy

process. However, once complete, the proof of Theorem 3.17 reduces to an applica-
tion of Mackey theory.

The rest of this section is organized as follows. Most of its contents are dedi-
cated to the proof of Theorem 3.17. In Section 3.1, we establish the relationship
between 9(S,θ) and 9(SZ ,θZ ). In Section 3.2, we go through the steps of the J.-K. Yu

(φi
Z , K i

Z ) (φi , K i )

⟲

(ρZ , K 0
Z )

(⊕
cZ∈CZ

ρ ◦Ad(c−1
Z ), K 0

)
(φi

Z
′
, K i+1

Z ) (φi ′, K i+1)

⟲ ⟲

(κ−1
Z , K d

Z )
(⊕

cZ∈CZ
κ−1
◦Ad(c−1

Z ), K d
)

(κ i
Z , K d

Z ) (κ i , K d)

inflate inflate

◦η

enlarge

◦η

enlarge

inflate inflate

◦η

◦η

◦η

Figure 5. Commutativity of the composition with η with the steps of the
J.-K. Yu construction. Here, CZ denotes a set of coset representatives
of η(K 0)\K 0

Z/SZ (F).
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construction to show that it commutes with the composition with η, and prove the
statement of Theorem 3.17. Finally, in Section 3.3, we restate the results from
[Bourgeois 2021] in the context of the Kaletha–Yu construction and provide the
proof of Theorem 3.1.

3.1. Relationship between the G-datum and the GZ-datum. In this section, η is
the map on G, as stated in the introduction (Theorem 4.1) and G Z = η(G)≃ G/Z .
We let (S, θ) and (SZ , θZ ) be tame F-nonsingular elliptic pairs of G and G Z ,
respectively, which satisfy η(S) = SZ and θ = θZ ◦ η. The goal of this section
is to show that the corresponding G-datum and G Z -datum are also related via
the map η, a statement we illustrated in Figure 4 and will make precise with
Theorem 3.2. First, we note that η : G→ G Z induces an equivariant isomorphism
ηB :B(G, F)→B(G Z , F) by [Kaletha and Prasad 2023, Axiom 4.1.1]. In particular,
this map satisfies ηB(gx) = η(g) · ηB(x) for all g ∈ G(F), x ∈ B(G, F), where ·
refers to the action of G(F) on B(G, F).

Theorem 3.2. Let (S, θ) and (SZ , θZ ) be tame F-nonsingular elliptic pairs of G
and G Z , respectively, such that η(S)= SZ and θ=θZ◦η. Let 9(S,θ)= (G⃗, y, r⃗ ,ρ, φ⃗)

and 9(SZ ,θZ ) = (G⃗ Z , yZ , r⃗Z , ρZ , φ⃗Z ) be the corresponding J.-K. Yu data as de-
scribed in Section 2.4. Then,

(a) r⃗ = r⃗Z and η(G⃗)= G⃗ Z ,

(b) yZ = ηB(y),

(c) φ⃗ = φ⃗Z ◦ η, and

(d) ρZ ◦ η ≃
⊕

cZ∈CZ
ρ ◦ Ad(c−1

Z ), where CZ is a set of coset representatives
of η(K 0)\K 0

Z/SZ (F).

The proof of this theorem will be divided into four parts. Lemma 3.3 shows that
η(G⃗)= G⃗ Z and r⃗ = r⃗Z . Lemma 3.4 gives us yZ = ηB(y). Proposition 3.8 allows
us to set φ⃗ = φ⃗Z ◦ η. Finally, we obtain the decomposition formula of ρZ ◦ η from
Proposition 3.13. We note that proving part (d) is itself a multistep process, having
to work over the reductive subquotients and call on Deligne–Lusztig theory.

Lemma 3.3 (Theorem 3.2(a)). Let G⃗= (G0, . . . , Gd) and G⃗ Z = (G0
Z , . . . , GdZ

Z ) be
the twisted Levi sequences obtained from S and SZ , respectively, as per Section 2.4.
Then d = dZ and η(Gi )= Gi

Z for all 0≤ i ≤ d.

The previous lemma easily follows from the fact that the root systems R(G, S)

and R(G Z , SZ ) are identified by η. Furthermore, the induced sequence of numbers r⃗
is the same for both S and SZ .

Lemma 3.4 (Theorem 3.2(b)). Let y be the vertex of B(G, F) associated to S and
yZ be the vertex of B(G Z , F) associated to SZ as per [Kaletha 2019, Lemma 3.4.3].
Then yZ = ηB(y).
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Proof. The bijection ηB maps A(G, S, Fun) to A(G Z , SZ , Fun). Recall that y is
fixed by Gal(Fun/F) by definition. Since ηB is also defined over F , ηB(y) is a
Gal(Fun/F)-fixed point. Since SZ is elliptic, this fixed point is unique [Kaletha
and Prasad 2023, Section 17.8], and thus yZ = ηB(y). □

Remark 3.5. Given that η(Gi ) = Gi
Z and that Z is a central subgroup of Gi

for all 0 ≤ i ≤ d, the results of Lemma 2.2 and Remark 2.3 apply to G and
G Z replaced by Gi and Gi

Z . In particular, η(Gi (F)y,ri ) = Gi
Z (F)yZ ,ri , which

induces a surjection Gi (F)y,ri :r+i → Gi
Z (F)yZ ,ri :r+i , 0 ≤ i ≤ d. Using a similar

argument, we also have η(J i+1)= J i+1
Z and η(J i+1

+ )= J i+1
Z+ for all 0≤ i ≤ d − 1,

where J i+1
= (Gi , Gi+1)(F)y,(ri ,ri /2) and J i+1

+ = (Gi , Gi+1)(F)y,(ri ,ri /2+) as per
[Yu 2001, Section 1], and J i+1

Z and J i+1
Z+ are defined analogously. Furthermore,

one sees from [Yu 2001, Section 1] that J i+1
∩ Z = J i+1

+ ∩ Z so that we have an
isomorphism J i+1/J i+1

+ ≃ J i+1
Z /J i+1

Z+ for all 0≤ i ≤ d − 1.

Lemma 3.6. Let K 0
Z = G0

Z (F)yZ and K i
Z = K 0

Z G1
Z (F)yZ ,r0/2 · · ·Gi

Z (F)yZ ,ri−1/2

for all 0≤ i ≤ d − 1. Then η(K i )= K i
Z ∩ η(G(F)) for all 0≤ i ≤ d. Furthermore,

η(K i ) is normalized by K 0
Z for all 0≤ i ≤ d.

Proof. The case of i = 0 is given by Lemma 2.1, in which we replace G by G0.
For 0 < i ≤ d, we proceed as follows. Let J = G1(F)y,r0/2 · · ·Gi (F)y,ri−1/2

and JZ = G1
Z (F)yZ ,r0/2 · · ·Gi

Z (F)yZ ,ri−1/2. By Remark 3.5, we have η(J ) = JZ .
It follows that K i

Z = K 0
Z JZ = K 0

Z η(J ), and therefore

K i
Z ∩ η(G(F))=

(
K 0

Z ∩ η(G(F))
)
η(J )= η(K 0)η(J )= η(K i ).

Using the fact that gG j
Z (F)yZ ,r = G j

Z (F)g·yZ ,r for all g ∈ G j
Z (F), one sees that

η(J )= JZ is normalized by K 0
Z . We conclude, with what precedes for i = 0, that

η(K i ) is normalized by K 0
Z . □

Corollary 3.7. Let 0≤ i ≤ d. Then Ad(kZ )(K i )= K i for all kZ ∈ K 0
Z .

Proof. By the previous lemma, we have kZ η(K i )k−1
Z =η(K i ) for all kZ ∈K 0

Z . Given
kZ ∈ K 0

Z ⊂ G0
Z (F), kZ = η(g) for some g ∈ G0(F sep) such that σ(g)g−1

∈ Z for
all σ ∈0. It follows that η(gK i g−1)=η(K i ), with gK i g−1

⊂G(F) (or equivalently,
σ(gK i g−1)= gK i g−1 for all σ ∈ 0). As a map on G(F), the kernel of η is Z(F),
which implies gK i Z(F)g−1

= K i Z(F). By [Yu 2001, Lemma 3.3], one has
K 0
= NG0(F)(G0(F)y,0), and hence Z(F) ⊂ K 0

⊂ K i . Thus, we conclude that
gK i g−1

= K i , or equivalently, Ad(kZ )(K i )= K i . □

Proposition 3.8 (Theorem 3.2(c)). Let (φ−1
Z , φ0

Z , . . . , φd
Z ) be a Howe factorization

for θZ . For each −1≤ i ≤ d , set φi
= φi

Z ◦ η. Then (φ−1, φ0, . . . , φd) is a Howe
factorization for θ .
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Proof. One sees that (φ−1, φ0, . . . , φd) satisfies the two first axioms to be a Howe
factorization of θ , so it remains to verify the third axiom. Let 0≤ i < d . By [Kaletha
2019, Lemma 3.6.8], proving genericity is equivalent to showing that

φi(NE/F (α̌(E×r ))
)
̸= 1

for all α ∈ R(Gi+1, S)\R(Gi , S). Since the character φi
Z is generic, we have that

φi
Z
(
NE/F (α̌Z (E×r ))

)
̸= 1

for all αZ ∈ R(Gi+1
Z , S)\R(Gi

Z , S). Since η is defined over F , we have that

φi(NE/F (α̌(E×r ))
)
= (φi

Z ◦ η)
(
NE/F (α̌(E×r ))

)
= φi

Z
(
NE/F ((η ◦ α̌)(E×r ))

)
.

Since the root systems of G and G Z are identified by η, we conclude from the
genericity of φi

Z that φi is generic.
For i = d , we see that φd is trivial whenever φd

Z is. When φd
Z ̸= 1, φd must be of

the same depth, as a consequence of the surjection G(F)y,rd :r+d
→ G Z (F)yZ ,rd :r+d

.
Finally, for i =−1, it is clear that φ−1 is trivial in the case where φ−1

Z is trivial,
and that φ−1

|S(F)0+
= 1 whenever φ−1

Z |SZ (F)0+
= 1 as η(S(F)0+)⊂ SZ (F)0+ . □

It now remains to prove part (d) of Theorem 3.2. Recall from Figure 2 that
ρ = IndG0(F)y

S(F)G0(F)y,0
κ(S,φ−1), where κ(S,φ−1) is Kaletha’s extension of the Deligne–

Lusztig cuspidal representation ±RS,φ−1 of G0(f) with S a maximal torus of G0

which satisfies S(f)≃ S(F)0:0+ . Adopting similar notation for G0
Z , we have that

ρZ = Ind
G0

Z (F)yZ

G0
Z (F)yZ ,0

κ(SZ ,φ−1
Z ),

where κ(SZ ,φ−1
Z ) is Kaletha’s extension of the Deligne–Lusztig cuspidal represen-

tation ±RSZ ,φ−1
Z

of G0
Z (f), the reductive subquotient of G0

Z at yZ , with SZ a max-
imal torus of G0

Z which satisfies SZ (f) ≃ SZ (F)0:0+ . To understand the relation-
ship between ρ and ρZ , we start by studying the relationship between ±RS,φ−1

and ±RSZ ,φ−1
Z

.
Given that η(G0) = G0

Z and that Z is a central subgroup of G0 (Lemma 3.3),
the map η induces a map

G0 q
−→ G0/Z0 η̄

−→ G0
Z ,

where Z0 is such that Z0(f̄) = (Z ∩ G0(Fun)y,0)G0(Fun)y,0+ . This is precisely
the map illustrated in (4), with G and G Z replaced by G0 and G0

Z , respectively.
The tori S and SZ are related via this map, as per the following lemma.

Lemma 3.9. One has (η̄ ◦ q)(S)= SZ ∩ η̄(G0/Z0).
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Proof. We identify the reductive groups with their f̄-points. Combining the lower
map of (4) with the definitions above, we have

(η̄◦q)(S(f̄))= (η̄◦q)
(
S(Fun)0G0(Fun)y,0+/G0(Fun)y,0+

)
= η(S(Fun)0)G0

Z (Fun)yZ ,0+/G0
Z (Fun)yZ ,0+

⊆
(
SZ (Fun)0G0

Z (Fun)yZ ,0+/G0
Z (Fun)yZ ,0+

)
∩

(
η(G0(Fun)y,0)G0

Z (Fun)yZ ,0+/G0
Z (Fun)yZ ,0+

)
= SZ (f̄)∩ η̄(G0/Z0)(f̄).

Given that both tori are maximal, the equality follows. □

Lemma 3.10. We have G0
Z (F)yZ ,0 = SZ (F)0 η(G0(F)y,0).

Proof. Using Lemma 2.5, we have that G0
Z = SZ η̄(G0/Z0). Furthermore, the

intersection of SZ with η̄(G0/Z0) is a maximal torus of η̄(G0/Z0). As a consequence
of Lang’s theorem, H 1(f,SZ∩η̄(G0/Z0))=1. Combining this with the usual Galois
cohomology sequence,

(5) G0
Z (f)= SZ (f)η̄(G0/Z0)(f)= SZ (f)η̄((G0/Z0)(f)).

We have that (G0/Z0)(f)=C(G0(f)/Z0(f)), where C is a set of coset representatives
of (G0/Z0)(f)/(G0(f)/Z0(f)).

Without loss of generality, we may assume that C ⊆q(S)(f). To see this, consider
the exact sequences

1→ Z0
→ G0

→ G0/Z0
→ 1

and
1→ Z0

→ S→ q(S)→ 1.

Given that G0 and S are connected, Lang’s theorem implies H 1(f,G0) = 1 =
H 1(f,S), giving us exact cohomology sequences [Springer 2009, Theorem 12.3.4]

1→ Z0(f)→ G0(f)→ (G0/Z0)(f)→ H 1(f,Z0)→ 1
and

1→ Z0(f)→ S(f)→ q(S)(f)→ H 1(f,Z0)→ 1.

The exactness of the sequences implies

(G0/Z0)(f)/(G0(f)/Z0(f))≃ H 1(f,Z0)≃ q(S)(f)/(S(f)/Z0(f)).

The definitions of the connecting homomorphisms (G0/Z0)(f)→ H 1(f,Z0) and
q(S)(f)→ H 1(f,Z0) from [Springer 2009, Section 12.3.3] allow us to conclude
that we may choose C ⊂ q(S)(f).

Having C ⊆ q(S)(f) allows us to rewrite (5) as

(6) G0
Z (f)= SZ (f)η̄(C)η̄(G0(f)/Z0(f))= SZ (f)η̄(G0(f)/Z0(f)).
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Given that G0(f)= G0(F)y,0:0+ , it follows that

Z0(f)= (Z ∩G0(F)y,0)G0(F)y,0+/G0(F)y,0+ .

Therefore,

η̄(G0(f)/Z0(f))= η(G0(F)y,0)G0
Z (F)yZ ,0+/G0

Z (F)yZ ,0+ .

Using G0
Z (f) ≃ G0

Z (F)yZ ,0:0+ and SZ (f) ≃ SZ (F)0G0
Z (F)yZ ,0+/G0

Z (F)yZ ,0+ , we
rewrite (6) as

G0
Z (F)yZ ,0:0+ =(

SZ (F)0G0
Z (F)yZ ,0+/G0

Z (F)yZ ,0+
)(

η(G0(F)y,0)G0
Z (F)yZ ,0+/G0

Z (F)yZ ,0+
)
,

from which we conclude that

G0
Z (F)yZ ,0 = SZ (F)0 η(G0(F)y,0)G0

Z (F)yZ ,0+ .

Finally, we have that G0
Z (F)yZ ,0+ = η(G0(F)y,0+). Indeed, using Lemma 2.2,

G0
Z (F)yZ ,0+ =

⋃
r>0

G0
Z (F)yZ ,r =

⋃
r>0

η(G0(F)y,0)

= η
( ⋃

r>0
G0(F)y,0

)
= η(G0(F)y,0+).

Thus, we conclude that

G0
Z (F)yZ ,0 = SZ (F)0 η(G0(F)y,0). □

Using the map η̄◦q , and Lemma 2.5, we can establish the following relationship
between the virtual characters ±RS,φ−1 and ±RSZ ,φ−1

Z
.

Proposition 3.11. Given the above notation, one has±RS,φ−1 =±RSZ ,φ−1
Z
◦ (η̄ ◦ q).

Proof. Let us recall the construction of±RS,φ−1 . Following the notation of [Kaletha
2019, Section 3.4.4; 2021, Section 2.4], let U be the unipotent radical of a Borel sub-
group B of G0 which contains S and define Y G0

U ={g ∈G
0/U : g−1 Fr(g)∈U Fr(U)},

where Fr is a generator of Gal(f̄/ f). Let dU denote the number of hyperplanes
separating the Weyl chambers of U and Fr(U), and consider the ℓ-adic cohomology
group H dU

c (Y G0

U , Qℓ). The virtual character ±RS,φ−1 is then defined to be the
action of G0(f) on H dU

c (Y G0

U , Qℓ)φ−1 , the φ−1-isotypic component of H dU
c (Y G0

U , Qℓ).
Similarly, ±RSZ ,φ−1

Z
is the action of G0

Z (f) on H dUZ
c (Y G0

Z
UZ

, Qℓ)φ−1
Z

, where UZ is the
unipotent radical of a Borel subgroup BZ of G0

Z containing SZ .
Using Lemma 3.9, we have that η̄ ◦ q(S) = SZ ∩ η̄(G0/Z0). Since the virtual

characters do not depend on the choice of Borel subgroup (see, e.g., [Deligne and
Lusztig 1976, Corollary 4.3; Carter 1993, Proposition 7.3.6; Kaletha 2021, Sec-
tion 2.5]), we may assume without loss of generality that η̄◦q(B)=BZ ∩ η̄(G0/Z0),
and therefore η̄ ◦ q(U)= UZ ∩ η̄(G0/Z0). Thus, η̄ ◦ q induces a map Y G0

U → Y G0
ZUZ
.
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Furthermore, since we are setting φ−1
Z ◦ η = φ−1 (Proposition 4.5), we have that

φ−1
Z ◦ (η̄ ◦ q)= φ−1. Indeed, for all g ∈ G0(F)y,0, we obtain

φ−1
Z ◦ (η̄ ◦ q)(gG0(F)y,0+)= φ−1

Z (η(g)G0
Z (F)y,0+)= φ−1

Z (η(g))

= φ−1(g)= φ−1(gG0(F)y,0+).

By [Kaletha 2021, D.4], η̄ ◦ q induces an isomorphism

(η̄ ◦ q)∗ : H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z
→ H dU

c (Y G0

U , Qℓ)φ−1 .

Now, for all g ∈ G0(f), letting L(g) : Y G0

U → Y G0

U be the map corresponding to
left multiplication by g, one sees that the following diagram commutes:

Y G0

U Y
G0

Z
UZ

Y G0

U Y
G0

Z
UZ

L(g)

η̄◦q

L Z ((η̄◦q)(g))

η̄◦q

Given that ℓ-adic cohomology is functorial, we have that the following diagram
also commutes for all g ∈ G0(f):

(7)

H dU
c (Y G0

U , Qℓ)φ−1 H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z

H dU
c (Y G0

U , Qℓ)φ−1 H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z

(η̄◦q)∗

±RS,φ−1 (g)

(η̄◦q)∗

±RSZ ,φ
−1
Z

((η̄◦q)(g))

Thus, we conclude that ±RS,φ−1 =±RSZ ,φ−1
Z
◦ (η̄ ◦ q). □

Corollary 3.12. Let κ(S,φ−1) and κ(SZ ,φ−1
Z ) be the representations of S(F)G0(F)y,0

and SZ (F)G0
Z (F)yZ ,0 (as in [Kaletha 2019, Section 3.4.4]) which extend the pull-

backs of ±RS,φ−1 and ±RSZ ,φ−1
Z

, respectively. Then κ(S,φ−1) ≃ κ(SZ ,φ−1
Z ) ◦ η.

Proof. Since we are building up from Proposition 3.11, let us follow the notation
within its proof.

As in [Kaletha 2021, Section 3], we have an f-group scheme S ′, which satisfies
S ′(f) = S(F)/S(F)0+ . Every s ′ ∈ S ′(f) acts on Y G0

U by conjugation, and induces
an action on H dU

c (Y G0

U , Qℓ)φ−1 , denoted by Ad(s ′). As explained in [Kaletha 2019,
Section 3.4.4; 2021, Remark 2.6.5], this allows us to define an action of S ′(f)G0(f)

on H dU
c (Y G0

U , Qℓ)φ−1 , denoted by κ, as

κ(s ′g)(v)= φ−1(s ′) · (±RS,φ−1(g) ◦Ad(s ′))(v)

for all s ′ ∈ S ′(f), g ∈ G0(f), v ∈ H dU
c (Y G0

U , Qℓ)φ−1 . The action pulls back to an
action of S(F)G0(F)y,0 on H dU

c (Y G0

U , Qℓ)φ−1 , which is the representation κ(S,φ−1).
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Similarly, κ(SZ ,φ−1
Z ) is the action of SZ (F)G0

Z (F)yZ ,0 on H dUZ
c (Y G0

Z
UZ

, Qℓ)φ−1
Z

,
obtained by pulling back the action

κZ (s ′Z gZ )(vZ )= φ−1
Z (s ′Z ) · (±RSZ ,φ−1

Z
(gZ ) ◦Ad(s ′Z ))(vZ )

for all s ′Z ∈ S
′

Z (f)= SZ (F)/SZ (F)0+ , gZ ∈ G0
Z (f), vZ ∈ H dUZ

c (Y
G0

Z
UZ

, Qℓ)φ−1
Z

.
Using Remark 2.4, one sees that the following diagram commutes for all s ′∈S ′(f):

Y G0

U Y
G0

Z
UZ

Y G0

U Y
G0

Z
UZ

Ad(s′)

η̄◦q

Ad((η̄◦q)(s′))

η̄◦q

Given that ℓ-adic cohomology is functorial, we have that the following diagram
also commutes for all s ′ ∈ S ′(f):

(8)

H dU
c (Y G0

U , Qℓ)φ−1 H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z

H dU
c (Y G0

U , Qℓ)φ−1 H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z

(η̄◦q)∗

Ad(s′)

(η̄◦q)∗

Ad((η̄◦q)(s′))

where (η̄ ◦ q)∗ is an isomorphism.
Combining the diagrams (7) and (8), we obtain a final commutative diagram

H dU
c (Y G0

U , Qℓ)φ−1 H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z

H dU
c (Y G0

U , Qℓ)φ−1 H dUZ
c (Y

G0
Z

UZ
, Qℓ)φ−1

Z

(η̄◦q)∗

κ(s′g)

(η̄◦q)∗

(κZ◦(η̄◦q))(s′g)

for all s ′ ∈ S ′(f), g ∈ G0(f).
As such, we conclude that κ≃ κZ ◦ (η̄ ◦ q), and thus κ(S,φ−1) ≃ κ(SZ ,φ−1

Z ) ◦ η. □

Proposition 3.13 (Theorem 3.2(d)). Let ρ and ρZ be the representations of G0(F)y

and G0
Z (F)yZ constructed from (S, θ) and (SZ , θZ ), respectively, as per Section 2.4.

Then
ρZ ◦ η =

⊕
cZ∈CZ

ρ ◦Ad(c−1
Z ),

where CZ is a set of coset representatives of η(K 0)\K 0
Z/SZ (F).

By Corollary 3.7, we have that Ad(c−1
Z )(K 0)= K 0 for all cZ ∈ K 0

Z . Therefore,
the direct sum decomposition above makes sense as a representation of K 0.
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Proof of Proposition 3.13. From the Mackey decomposition, we have

ρZ ◦η=
(
IndK 0

Z

SZ (F)G0
Z (F)yZ ,0

κ(SZ ,φ−1
Z )

)
◦η

=
(
ResK 0

Z
η(K 0)

IndK 0
Z

SZ (F)G0
Z (F)yZ ,0

κ(SZ ,φ−1
Z )

)
◦η

=

⊕
cZ∈CZ

[(
Indη(K 0)

η(K 0)∩cZ (SZ (F)G0
Z (F)yZ ,0)

Res
cZ (SZ (F)G0

Z (F)yZ ,0)

η(K 0)∩cZ (SZ (F)G0
Z (F)yZ ,0)

cZκ(SZ ,φ−1
Z )

)
◦η

]
,

where CZ is a set of coset representatives of η(K 0)\K 0
Z/SZ (F)G0

Z (F)yZ ,0, which is
equal to η(K 0)\K 0

Z/SZ (F) by Lemma 3.10. Given that η(K 0) is a normal subgroup
of K 0

Z (Lemma 3.6) and that η(K 0)∩ SZ (F)G0
Z (F)yZ ,0 = η(S(F)G0(F)y,0) (as a

consequence of Lemma 3.10), it follows that

η(K 0)∩ cZ (SZ (F)G0
Z (F)yZ ,0)=

cZ(η(K 0)∩ SZ (F)G0
Z (F)yZ ,0)

=
cZη(S(F)G0(F)y,0)

= η(Ad(cZ )(S(F)G0(F)y,0)).

Thus, we may simplify the above expression and apply Proposition A.2 to obtain

ρZ ◦ η =
⊕

cZ∈CZ

[(
Indη(K 0)

η(Ad(cZ )(S(F)G0(F)y,0))
Res

cZ (SZ (F)G0
Z (F)yZ ,0)

η(Ad(cZ )(S(F)G0(F)y,0))
cZκ(SZ ,φ−1

Z )

)
◦ η

]
≃

⊕
cZ∈CZ

IndAd(cZ )(K 0)

Ad(cZ )(S(F)G0(F)y,0)
(cZκ(SZ ,φ−1

Z ) ◦ η).

Applying Lemma 2.8, followed by Corollary 3.12 on the previous expression,

ρZ ◦ η ≃
⊕

cZ∈CZ

IndAd(cZ )(K 0)

Ad(cZ )(S(F)G0(F)y,0)
[(κ(SZ ,φ−1

Z ) ◦ η) ◦Ad(c−1
Z )]

=

⊕
cZ∈CZ

IndAd(cZ )(K 0)

Ad(cZ )(S(F)G0(F)y,0)
(κ(S,φ−1) ◦Ad(c−1

Z )).

Finally, we apply Proposition A.1 to extract the Ad map from the induction and get

ρZ ◦ η ≃
⊕

cZ∈CZ

(
IndK 0

S(F)G0(F)y,0
κ(S,φ−1)

)
◦Ad(c−1

Z )

=

⊕
cZ∈CZ

ρ ◦Ad(c−1
Z ). □

Proposition 3.13 completes the proof of Theorem 3.2.

3.2. Going through the steps of the J.-K. Yu construction. Let (S, θ) and (SZ , θZ )

be tame F-nonsingular elliptic pairs of G and G Z , respectively, such that η(S)= SZ

and θ = θZ ◦ η. In the previous section, we have established the relationship
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between the corresponding J.-K. Yu data, (G⃗, y, r⃗ , ρ, φ⃗) and (G⃗ Z , yZ , r⃗ , ρZ , φ⃗Z ),
respectively. It is from these data that we construct the representations π(S,θ) and
π(SZ ,θZ ) following the steps of the J.-K. Yu construction as outlined in Figure 3.
To be consistent with notation, we will keep using subscript Z to differentiate
between the construction over G Z from that of G. Since we have that φi

= φi
Z ◦ η

for all 0≤ i ≤ d and ρZ ◦η=
⊕

cZ∈CZ
ρ ◦Ad(c−1

Z ) with CZ a set of coset represen-
tatives of η(K 0)\K 0

Z/SZ (F), it is natural to expect that we also have φi ′
= φi

Z
′
◦ η,

κ−1
Z ◦ η =

⊕
cZ∈CZ

κ−1
◦Ad(c−1

Z ) and κ i
= κ i

Z ◦ η for all 0 ≤ i ≤ d, as illustrated
in Figure 5. Indeed, we prove these equalities and inclusion with Propositions 3.14
and 3.15. In particular, one can say that the J.-K. Yu construction commutes with
the map η. The above results allow us to complete the proof of Theorem 3.17 at
the end of this section.

In order to define the representation φi ′, we require the groups J i+1 and J i+1
+ ,

which were previously mentioned in Remark 3.5. The construction of φi ′ from φi

is divided into two steps: the first step consists of extending φi to a character φ̂i

of K i Gi+1(F)y,s+i
, where si = ri/2. The character φ̂i is the unique character of

K i Gi+1(F)y,s+i
that agrees with φi on K i and is trivial on (Gi , Gi+1)(F)y,(r+i ,s+i )

[Hakim and Murnaghan 2008, Section 3.1]. When J i+1
̸= J i+1
+ , a second step is

required to enlarge the character φ̂i a little further to a representation of K i+1 by
means of a Heisenberg–Weil lift. We adopt analogous notation to describe the
construction of φi

Z
′ from φi

Z . We note that J i+1
= J i+1
+ if and only if J i+1

Z = J i+1
Z+

(as a consequence of Remark 3.5), which ensures that the construction of φi ′ requires
a Heisenberg–Weil lift if and only if that of φi

Z
′ does.

Proposition 3.14. For all 0≤ i ≤ d we have φi ′
= φi

Z
′
◦ η.

Proof. We have that φ̂i = φ̂i
Z ◦ η. Indeed, given that

η(K i )⊂ K i
Z and η((Gi , Gi+1)(F)y,(r+i ,s+i ))= (Gi

Z , Gi+1
Z )(F)yZ ,(r+i ,s+i )

(Remark 3.5), one sees that φ̂i
Z ◦ η agrees with φi on K i and that it is trivial on

(Gi , Gi+1)(F)y,(r+i ,s+i ).
If J i+1

= J i+1
+ , we have φi ′

= φ̂i and φi
Z
′
= φ̂i

Z and we are done. If J i+1
̸= J i+1
+ ,

we have that φi ′ is constructed using a Heisenberg–Weil lift ωi , which is a repre-
sentation of K i ⋉Hi , where Hi

= J i+1/ ker(ξ i ) and ξ i
= φ̂i |J i+1

+
. We then have

φi ′(k j) = φ̂i (k)ωi (k, j ker(ξ i )) for all k ∈ K i , j ∈ J i+1. Since J i+1
̸= J i+1

+ if
and only if J i+1

Z ̸= J i+1
Z+ (Remark 3.5), we also require a Heisenberg–Weil lift ωi

Z ,
which is a representation of K i

Z ⋉Hi
Z , where Hi

Z = J i+1
Z / ker(ξ i

Z ) and ξ i
Z = φ̂i

Z |J i+1
Z+

,
and have that

φi
Z
′
(kZ jZ )= φ̂i

Z (k)ωi
Z (kZ , jZ ker(ξ i

Z ))

for all kZ ∈ K i
Z , jZ ∈ J i+1

Z .
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Since we already know that φ̂i = φ̂i
Z ◦η, it then suffices to show that ωi

=ωi
Z ◦η.

The map η induces isomorphisms Hi
≃ Hi

Z and W i
≃ W i

Z (Remark 3.5), where
W i
= J i+1/J i+1

+ and W i
Z = J i+1

Z /J i+1
Z+ . We then obtain that ωi

= ωi
Z ◦ η as an

application of [Nevins 2015, Proposition 3.2], in which we set H1 =Hi , H2 =Hi
Z ,

W1 = W i , W2 = W i
Z , T1 = K i , T2 = K i

Z , α = δ = η, ν1 and ν2 the corresponding
special isomorphisms from [Hakim and Murnaghan 2008, Lemma 2.35], and f1

and f2 the homomorphisms coming from the actions by conjugation of K i and K i
Z

on J i+1 and J i+1
Z , respectively. □

Proposition 3.15. For all 0≤ i ≤ d we have κ i
= κ i

Z ◦ η. Furthermore,

κ−1
Z ◦ η =

⊕
cZ∈CZ

κ−1
◦Ad(c−1

Z ),

where CZ is a set of coset representatives of η(K 0)\K 0
Z/SZ (F).

Proof. Let 0≤ i ≤ d− 1. Let us briefly recall the process of inflation. We have that
K d
= K i+1 J , where J = J i+2

· · · J d . Then, for all k ∈ K i+1, j ∈ J , κ i (k j)=φi ′(k).
Similarly, we have K d

Z =K i+1
Z JZ , where JZ = J i+2

Z · · · J d
Z , and κ i

Z (kZ jZ )=φi
Z
′
(kZ )

for all kZ ∈ K i+1
Z , jZ ∈ JZ .

Using these definitions, for all k ∈ K i+1, j ∈ J , we have

κ i (k j)= φi ′(k)= φi
Z
′
(η(k)).

By Remark 3.5, we have that η(k) ∈ K i+1
Z and η( j) ∈ JZ . Therefore,

φi
Z
′
(η(k))= κ i

Z (η(k)η( j))= κ i
Z ◦ η(k j).

Thus, we conclude that κ i
= κ i

Z ◦ η.
By a similar argument, we have that

κ−1
Z ◦ η =

⊕
cZ∈CZ

κ−1
◦Ad(c−1

Z )

as a consequence of having (Proposition 3.13)

ρZ ◦ η =
⊕

cZ∈CZ

ρ ◦Ad(c−1
Z ),

where CZ is a set of coset representatives of η(K 0)\K 0
Z/SZ (F). □

Combining the previous proposition with the Mackey decomposition formula,
we obtain the following relationship between κ(S,θ) and κ(SZ ,θZ ).

Proposition 3.16. Let (S, θ) and (SZ , θZ ) be tame F-nonsingular elliptic pairs
of G and G Z , respectively. Assume that η(S) = SZ and θ = θZ ◦ η. Then,
κ(SZ ,θZ ) ◦ η =

⊕
lZ∈L Z

κ(S,θ) ◦Ad(l−1
Z ), where L Z is a set of coset representatives

of η(K 0)\K 0
Z/SZ (F).
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By Corollary 3.7, we have that Ad(l−1
Z )(K d)= K d for all lZ ∈ L Z ⊆ K 0

Z . There-
fore, the direct sum decomposition above makes sense as a representation of K d .

Proof of Proposition 3.16. For all lZ ∈ L Z , we have that lZφi
Z =φi

Z , as K 0
Z ⊂Gi

Z (F)

for all i . It follows that lZκ i
Z ≃ κ i

Z , which implies lZκ i
Z ◦ η ≃ κ i

Z ◦ η. Using
Proposition 3.15, we conclude that κ i

◦Ad(l−1
Z )≃ κi for all lZ ∈ L Z . Furthermore,

Proposition 3.15 also tells us that κ−1
Z ◦η=

⊕
lZ∈L Z

κ−1
◦Ad(l−1

Z ). We thus obtain

κ(SZ ,θZ ) ◦ η =
[
κ−1

Z ⊗

( d⊗
i=0

κ i
Z

)]
◦ η

= κ−1
Z ◦ η⊗

( d⊗
i=0

κ i
Z ◦ η

)
=

( ⊕
lZ∈L Z

κ−1
◦Ad(l−1

Z )
)
⊗

d⊗
i=0

κ i

=
⊕

lZ∈L Z

(
κ−1
◦Ad(l−1

Z )⊗
d⊗

i=0
κ i

)
≃

⊕
lZ∈L Z

(
κ−1
⊗

d⊗
i=0

κ i
)
◦Ad(l−1

Z )

=
⊕

lZ∈L Z

κ(S,θ) ◦Ad(l−1
Z ). □

We are now in a position to complete the proof of our main theorem.

Theorem 3.17. Let (S, θ) and (SZ , θZ ) be tame F-nonsingular elliptic pairs of G
and G Z , respectively. Assume that η(S)= SZ and θ = θZ ◦ η. Then

π(SZ ,θZ ) ◦ η ≃
⊕

dZ∈DZ

π(S,θ) ◦Ad(d−1
Z ),

where DZ is a set of coset representatives of η(G(F))\G Z (F)/SZ (F).

Proof. From the Mackey decomposition, we have

π(SZ ,θZ ) ◦ η =
(
IndG Z (F)

K d
Z

κ(SZ ,θZ )

)
◦ η

=
(
ResG Z (F)

η(G(F)) IndG Z (F)

K d
Z

κ(SZ ,θZ )

)
◦ η

=
⊕

ℓZ∈LZ

(
Indη(G(F))

η(G(F))∩ℓZ K d
Z

Res
ℓZ K d

Z

η(G(F))∩ℓZ K d
Z

ℓZκ(SZ ,θZ )

)
◦ η,

where LZ is a set of coset representatives of η(G(F))\G Z (F)/K d
Z . Given that

η(G(F)) is a normal subgroup of G Z (F) and η(G(F))∩K d
Z =η(K d) (Lemma 3.6),

η(G(F))∩ ℓZ K d
Z =

ℓZ(η(G(F))∩ K d
Z )= ℓZη(K d)= η(Ad(ℓZ )(K d)).
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As a result, we may simplify the above expression and apply Proposition A.2
to obtain

π(SZ ,θZ ) ◦ η =
⊕

ℓZ∈LZ

(
Ind

ℓZ η(G(F))

η(Ad(ℓZ )(K d ))
Res

ℓZ K d
Z

η(Ad(ℓZ )(K d ))
ℓZκ(SZ ,θZ )

)
◦ η

≃

⊕
ℓZ∈LZ

IndAd(ℓZ )(G(F))

Ad(ℓZ )(K d )

(
ℓZκ(SZ ,θZ ) ◦ η

)
.

We then apply Lemma 2.8, followed by Proposition A.1 on the previous expression
and get

π(SZ ,θZ ) ◦ η ≃
⊕

ℓZ∈LZ

IndAd(ℓZ )(G(F))

Ad(ℓZ )(K d )
[(κ(SZ ,θZ ) ◦ η) ◦Ad(ℓ−1

Z )]

≃

⊕
ℓZ∈LZ

(
IndG(F)

K d κ(SZ ,θZ ) ◦ η
)
◦Ad(ℓ−1

Z ).

Replacing κ(SZ ,θZ )◦η by its equivalent direct sum decomposition in Proposition 3.16,
with L Z a set of coset representatives of η(K 0)\K 0

Z/SZ (F), it follows that

π(SZ ,θZ ) ◦ η =
⊕

ℓZ∈LZ

IndG(F)

K d

( ⊕
lZ∈L Z

κ(S,θ) ◦Ad(l−1
Z )

)
◦Ad(ℓ−1

Z )

=

⊕
ℓZ∈LZ

⊕
lZ∈L Z

IndAd(lZ )(G(F))

Ad(lZ )(K d )
(κ(S,θ) ◦Ad(l−1

Z )) ◦Ad(ℓ−1
Z )

≃

⊕
ℓZ∈LZ

⊕
lZ∈L Z

(
IndG(F)

K d κ(S,θ)

)
◦Ad(l−1

Z ) ◦Ad(ℓ−1
Z )

=

⊕
ℓZ∈LZ

⊕
lZ∈L Z

π(S,θ) ◦Ad((ℓZ lZ )−1).

Finally, we claim that {ℓZ lZ : ℓZ ∈ LZ , lZ ∈ L Z } is a set of coset representatives
of η(G(F))\G Z (F)/SZ (F), which we denote by DZ , allowing us to write

π(SZ ,θZ ) ◦ η =
⊕

dZ∈DZ

π(S,θ) ◦Ad(d−1
Z ).

To prove this last claim, we set N = η(G(F)), A=G Z (F), B= K d
Z , N = η(K 0),

A = K 0
Z and B = SZ (F) and show that N , A, B, N , A, B satisfy the hypotheses of

Lemma A.4(1). It is clear that N and N are normal subgroups of A and A, respec-
tively, and that A⊆ B and N∩A⊆ N . It remains to show that B/(N∩B)B≃ A/NB.

Recall that K d
Z = K 0

Z JZ and η(K d)= η(K 0 J )= η(K 0)JZ , where J and JZ are
as in the proof of Lemma 3.6. Therefore,

B/(N ∩ B)B = K d
Z/η(K d)B = K 0

Z JZ/η(K 0)JZ B.
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Given that B is in the stabilizer of yZ , it follows that B normalizes JZ and
thus JZ B = B JZ . This, in combination with Lemma A.3, allows us to obtain

B/(N ∩ B)B ≃ K 0
Z/η(K 0)B(K 0

Z ∩ JZ )= K 0
Z/η(K 0)B,

where the last equality follows from the fact that K 0
Z ∩ JZ = K 0

Z ∩ η(J )⊂ η(K 0)

(Lemma 3.6). Thus, we conclude from Lemma A.4(1) that {ℓZ lZ :ℓZ ∈LZ , lZ ∈ L Z }

is a set of coset representatives of η(G(F))\G Z (F)/SZ (F). □

3.3. The proof of Theorem 3.1. As mentioned earlier in this section, and illustrated
in Figure 1, computing the decomposition of π(S,θ) ◦ η is done in two steps. So far,
this section has focused on the second step. The first step consists of applying the
results of [Bourgeois 2021] to compute the restriction of π(S,θ) to G Z (F). We begin
this section with a lemma on parahoric subgroups. We then summarize the results
of [Bourgeois 2021] in the context of the Kaletha–Yu construction, and end with a
proof of Theorem 3.1.

Lemma 3.18. Let G be a reductive F-group, and H be an F-subgroup that con-
tains [G, G]. Let S be a maximally unramified elliptic maximal torus of G, and
let SH = S ∩ H , so that SH is a maximally unramified elliptic maximal torus of H.
Denote by y the point of the reduced building associated to S (and SH ) via [Kaletha
2019, Lemma 3.4.3]. Let G0 and G0

H denote the smallest Levi subgroups of the Levi
sequences obtained from S and SH , respectively, and recall that G0

H =G0
∩H. Then

G0(F)y,0 = S(F)0 H 0(F)y,0.

Proof. By [Kaletha 2019, Lemma 3.4.2], we have that S is the centralizer of a
maximal Fun-split torus S′ of G0. It follows by definition (see, for example, [Fintzen
2021, Section 2.4] or [Kaletha and Prasad 2023, Definition 13.2.1]) that

G0(Fun)y,0 = ⟨S(Fun)0, Uα(Fun) : α ∈ Raff
Fun, ⟨α, y⟩ ≥ 0⟩,

where Raff
Fun = {λ+ k : λ ∈ R(G0, S) such that λ|S′ ̸= 1, k ∈R}, and Uα(Fun) is the

affine root subgroup associated to the affine root α. The affine root subgroups are
normalized by S(Fun)0, allowing us to write

G0(Fun)y,0 = S(Fun)0 ⟨SH (Fun)0, Uα(Fun) : α ∈ Raff
Fun, ⟨α, y⟩ ≥ 0⟩

= S(Fun)0 H 0(Fun)y,0,

and
G0(F)y,0 = (G0(Fun)y,0)

Fr
= (S(Fun)0 H 0(Fun)y,0)

Fr.

Using [Kaletha 2019, Lemma 3.4.6] and the definition of SH , we have that

S(Fun)0 ∩ H 0(Fun)y,0 = SH (Fun)0.
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Furthermore, H 1(Fr, SH (Fun)0) is trivial [Kaletha and Prasad 2023, Lemma 8.1.4].
It follows from the usual sequence of Galois cohomology [Springer 2009, Proposi-
tion 12.3.4] that

(S(Fun)0 H 0(Fun)y,0)
Fr
= S(Fun)Fr

0 (H 0(Fun)y,0)
Fr
= S(F)0 H 0(F)y,0,

and therefore
G0(F)y,0 = S(F)0 H 0(F)y,0. □

Theorem 3.19. Let (S, θ) be a tame F-nonsingular elliptic pair of G and let y be
the vertex of B(G, F) associated to S. Let H be a closed connected F-subgroup
of G that contains [G, G]. Set SH = S ∩ H and θH = θ |SH . Then (SH , θH ) is a
tame F-nonsingular elliptic pair of H and

π(S,θ)|H(F) =

⊕
d∈D

dπ(SH ,θH ),

where D is a set of coset representatives of H(F)\G(F)/S(F).

Proof. Let 9(S,θ) = (G⃗, y, r⃗ , ρ, φ⃗) be the G-datum obtained from the pair (S, θ)

as in Section 2.4. Recall that we may write πG(9(S,θ)) for π(S,θ) and κG(9(S,θ))

for κ(S,θ) to indicate that we are applying the J.-K. Yu construction to 9(S,θ). Set
K i

H = K i
∩ H for all 0≤ i ≤ d and 9H

(S,θ) = (H⃗ , y, ⃗̃r, ρ|K 0
H
, φ⃗H ), where H⃗ , ⃗̃r and

φ⃗H are as per [Bourgeois 2021, Theorem 4.1]. Then, it follows from [Bourgeois
2021, Theorems 5.7 and 5.8] that

π(S,θ)|H(F) = πG(9(S,θ))|H(F) ≃

⊕
l∈L

lπH (9H
(S,θ)),

where L is a set of coset representatives of H(F)\G(F)/K d .
We have that the elements H⃗ , y, ⃗̃r and φ⃗H from the datum 9H

(S,θ) also appear in
the datum 9(SH ,θH ). Indeed, H⃗ is the twisted Levi sequence associated to SH by
[Bourgeois 2021, Theorem 2.3] and the discussion preceding it, and the point y is the
vertex of B(H, F) associated to SH by [Bourgeois 2021, Lemma 7.1]. The character
sequence φ⃗H clearly satisfies the first two axioms to be a Howe factorization of θH ,
and genericity is given by [Bourgeois 2021, Proposition 4.7]. Therefore, assembling
these pieces along with the construction from Figure 2, we have

9(SH ,θH ) =
(
H⃗ , y, ⃗̃r, IndK 0

H
SH (F)H0(F)y,0

κ(SH ,θH ), φ⃗H
)
.

Applying the Mackey decomposition as in the proof of [Bourgeois 2021, Proposi-
tion 7.5], we have

ρ|K 0
H
≃

⊕
ℓ∈L

ℓ IndK 0
H

SH (F)H0(F)y,0
κ(SH ,θH ),



106 ADÈLE BOURGEOIS AND PAUL MEZO

where L is a set of coset representatives of K 0
H\K

0/S(F)G0(F)y,0. Therefore,

πH (9H
(S,θ))≃

⊕
ℓ∈L

ℓπH (9(SH ,θH ))=
⊕
ℓ∈L

ℓπ(SH ,θH ),

which implies

π(S,θ)|H(F) ≃

⊕
l∈L

⊕
ℓ∈L

lℓπ(SH ,θH ).

Using Lemma 3.18, one rewrites L as K 0
H\K

0/S(F). We claim that LL =
{lℓ : l ∈ L , ℓ ∈L} is a set of coset representatives of H(F)\G(F)/S(F), which we
denote by D, allowing us to write

π(S,θ) ≃

⊕
d∈D

dπ(SH ,θH ).

To prove this last claim, we set N = H(F), A = G(F), B = K d , N = K 0
H ,

A = K 0 and B = S(F), and show that N , A, B, N , A, B satisfy the hypotheses of
Lemma A.4(1). It is clear that N and N are normal subgroups of A and A, respec-
tively, and that A⊆ B and N∩A= N . It remains to show that B/(N∩B)B≃ A/NB.

Setting JH = H 1(F)y,r0/2 · · · H d(F)y,rd−1/2, we have K d
H = K 0

H JH by definition,
and K d

= K 0 JH as per [Bourgeois 2021, Proof of Proposition 5.1]. It follows that

B/(N ∩ B)B = K d/K d
H S(F)= K 0 JH/K 0

H JH S(F).

Given that S(F) is in the stabilizer of y, we have that sH i (F)y,r = H i (F)s·y,r =

H i (F)y,r for all s ∈ S(F), r ≥ 0, 0 ≤ i ≤ d. Therefore, S(F) normalizes JH and
JH S(F)= S(F)JH , allowing us to write

B/(N ∩ B)B = K 0 JH/(K 0
H S(F))JH .

Applying Lemma A.3, we obtain

B/(N ∩ B)B ≃ K 0/K 0
H S(F)(K 0

∩ JH )= K 0/K 0
H S(F),

where the last equality follows from the fact that K 0
∩ JH ⊂ K 0

H . Thus,

B/(N ∩ B)B ≃ A/NB. □

Proof of Theorem 3.1. Setting G = G and H = G Z in Theorem 3.19, we have

π(S,θ) ◦ η =
(
ResG(F)

G Z (F) π(S,θ)

)
◦ η ≃

( ⊕
c∈C

cπ(SZ ,θZ )

)
◦ η,

where SZ = S ∩G Z , θZ = θ |SZ and C is a set consisting of coset representatives
of G Z (F)\G(F)/S(F).
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By Lemma 2.8, cπ(SZ ,θZ ) ◦ η = π(SZ ,θZ ) ◦ η ◦Ad(c−1). Using this last equality,
and applying Theorem 3.17, it follows that

π(S,θ) ◦ η ≃
⊕
c∈C

(π(SZ ,θZ ) ◦ η) ◦Ad(c−1)

≃
⊕
c∈C

( ⊕
dZ∈DZ

π(S,θ) ◦Ad(d−1
Z )

)
◦Ad(c−1)

=
⊕
c∈C

⊕
dZ∈DZ

π(S,θ) ◦Ad((cdZ )−1),

where DZ is a set of coset representatives of η(G(F))\G Z (F)/SZ (F). Setting
N = G Z (F), A= G(F), B = S(F), N = η(G(F)), A= G Z (F), B = SZ (F), one
sees from Lemma A.4(2) that {cdZ : c∈C, dZ ∈ DZ } is a set of coset representatives
of η(G(F))\G(F)/S(F). The decomposition formula thus follows. □

4. Functoriality for supercuspidal L-packets

One of the main aims of this paper is to show that Kaletha’s supercuspidal L-packets
satisfy a certain functoriality property. More specifically, the goal of this section is
to prove the following theorem.

Theorem 4.1. Suppose G is quasisplit and splits over a tamely ramified extension.
Suppose further that the residual characteristic p of F does not divide the order
of the Weyl group of G. Let η : G→ G be an F-morphism of connected reductive
F-groups such that

(i) the kernel of dη : Lie(G)→ Lie(G) is central,

(ii) the cokernel of η is an abelian F-group.

Let ϕ ∈8sc(G) and set ϕ = Lη ◦ϕ. Then for all π ∈5ϕ , π ◦ η is the direct sum of
finitely many irreducible supercuspidal representations belonging to 5ϕ .

Recall from Section 2.5 that the packet 5ϕ is constructed from ϕ by first taking
its associated supercuspidal L-packet datum (S, ȷ̂ , χ0, θ), and then taking the irre-
ducible components of π( j S, jθ) as j varies over J F . Similarly, we let (S, j, χ0, θ)

be the supercuspidal L-packet datum associated to ϕ so that 5ϕ consists of the
irreducible components of π( j S, jθ) as j varies over JF

The strategy to prove Theorem 4.1 is to apply the decomposition formula from
Section 3 on the representation π( j S, jθ) ◦η. However, to do so, we must first find an
F-nonsingular elliptic pair of G that relates to ( j S, jθ) in the sense of Theorem 3.1.
To achieve this, we establish the relationship between the supercuspidal L-packet
data (S, ȷ̂ , χ0, θ) and (S, j, χ0, θ). In particular, the relationship between these
data is induced by the map Lη, a statement we will make precise with Theorem 4.2
and illustrate in Figure 6.
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ϕ ϕ

(S, ȷ̂ , χ0, θ) (S, ȷ̂ , χ0, θ)

=

Lη◦

η̂◦

◦ηSηS

◦η̂

Figure 6. Summary of the relationship between the supercuspidal
L-packet data associated to ϕ and ϕ. The map Lη is constructed from
a map η̂, dual to η, which we recall in Section 4.1. The map ηS is the
map dual to η̂|̂S .

In Section 4.1, we prove the relationship between the L-packet data, and then
prove Theorem 3.1 in Section 4.2.

4.1. Matching the supercuspidal L-packet data. Let ϕ ∈8sc(G) and ϕ = Lη ◦ϕ.
The goal of this section is to match the corresponding parameterizing data for ϕ and
ϕ through Lη. This matching is crucial for establishing the relationship between 5ϕ

and 5ϕ .
The map Lη is defined by Lη(g, w)= (η̂(g), w) for all g ∈ Ĝ and w ∈WF , and

so we begin with a review of the map η̂ : Ĝ→ Ĝ [Springer 1979, Sections 1 and 2].
Recall that we are assuming that G is quasisplit. We may therefore fix a Borel
subgroup B ⊂G defined over F , and fix a maximally F-split maximal torus T of G
with T ⊂ B. This choice of Borel pair (B, T ) is equivalent to fixing a based root
datum for G. The 0-equivariant map η carries T to a maximally F-split torus η(T )

of η(G)⊃ [G, G]. Set T = η(T )Z(G) and B = η(B)Z(G). Then (B, T ) is a Borel
pair for G which is defined over F [Springer 2009, Corollary 8.1.6]. Thus, we have
fixed based root data for both G and G, and η induces a homomorphism between
them, in the sense of [Jantzen 2003, II.1.13]. This homomorphism of root data
determines a homomorphism from the dual based root datum of G to the dual based
root datum of G. These two dual based data may be identified with the based root
data arising from 0-invariant Borel pairs (B̂, T̂ ) and (B̂, T̂ ) which are implicit in
the definition of LG and LG [Borel 1979, 2.3]. Under this identification and the
assumptions of Theorem 4.1, the homomorphism of dual based root data produces
the homomorphism η̂ : Ĝ→ Ĝ of algebraic groups with abelian kernel and cokernel
[Jantzen 2003, Proposition II.1.14]. It is only unique up to conjugation by T̂ .

A change in the choice of based root data above has the effect of conjugating η̂ by
an element of Ĝ. This change has no effect on the equivalence classes of the objects
under consideration. However, even for fixed based root data and a fixed choice of η̂,
there remains an ambiguity between η and η̂. Indeed, conjugating η by an element
t ∈ T such that t Z(G) ∈ (T /Z(G))(F) produces another F-homomorphism whose
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dual is identical to η̂. As observed in [Solleveld 2020, Section 3], this ambiguity is
consequential in matching the parameters of the L-packets under consideration.

In order to be more precise about these matters, we fix some pinnings. We
extend the 0-invariant Borel pair (B, T ) to a 0-invariant pinning (T, B, {Xα}) of G.
The application of η to this pinning fixes a 0-invariant pinning

(
T , B, {η(Xα)}

)
of G. It follows from [Solleveld 2020, Theorem 3.2] that η : G→ G is the unique
F-homomorphism in its (G/Z(G))(F)-conjugacy class which carries the former
pinning to the latter (see the discussion preceding [Solleveld 2020, Theorem 6.2]).
Underlying the definition of LG and LG are respective pinnings (T̂ , B̂, {Yα̂}) of Ĝ
and (T̂ , B̂, {Y α̂}) of Ĝ. The fixed pinnings determine η̂ uniquely by the requirement
that {η̂(Yα̂)} = {Y α̂}. Furthermore, if η′ : G → G is another F-homomorphism
satisfying the assumptions of Theorem 4.1 and η̂′= η̂, then there is a unique element
t ′Z(G) ∈ (T /Z(G))(F) such that η′ =Ad(t ′)◦η [Solleveld 2020, Proposition 3.4].

Having set the foundation for the comparison between G and G, let us return to
the matching of the apposite parameters. They are to be matched as in Figure 6.

Theorem 4.2. Let ϕ ∈8sc(G), ϕ= Lη◦ϕ and (S, ȷ̂ , χ0, θ) and (S, ȷ̂ , χ0, θ) be the
associated supercuspidal L-packet data. Let JF and J F be the sets of embeddings
which parameterize 5ϕ and 5ϕ , respectively. Then

(a) η̂(Ŝ)⊂ Ŝ, χ0 = χ0 and η̂ ◦ ȷ̂ = ȷ̂ ◦ η̂,

(b) θ = θ ◦ ηS , where ηS is the dual map of η̂|Ŝ : Ŝ→ Ŝ, and

(c) for all j ∈ J F , there exists j ∈ JF such that η( j S)⊂ j S and jθ = jθ ◦ η.

The proof of this theorem will be divided into three parts. Proposition 4.4 will
give the relationship between the tori, and consequently the embeddings and χ -data.
Proposition 4.5 will give the relationship between the characters and Proposition 4.7
will provide the statement regarding the sets JF and J F .

Before proceeding to the statements of these propositions, we begin with a
useful result, which can be shown using [Humphreys 1995, Theorem 2.2] and the
presentation of reductive groups in terms of generators from [Humphreys 1975,
Theorem 26.3].

Proposition 4.3. Let T be a maximal torus of a connected reductive group G ′,
and assume H is a subtorus of T . Then T = Cent(H, G ′) if and only if for every
α ∈ R(G ′, T ) there exists hα ∈ H such that α(hα) ̸= 1.

Proposition 4.4 (Theorem 4.2(a)). Let S and S be as in Theorem 4.2. Then η̂(Ŝ)⊂ Ŝ.

Proof. Recall that Ŝ = Cent(Ĉ, M̂), where M̂ = Cent(ϕ(PF ), Ĝ)◦ and Ĉ =
Cent(ϕ(IF ), Ĝ)◦. Similarly, Ŝ = Cent(Ĉ, M̂), where M̂ = Cent(ϕ(PF ), Ĝ)◦ and
Ĉ = Cent(ϕ(IF ), Ĝ)◦. We start by showing that

η̂(M̂)= M̂ ∩ η̂(Ĝ).
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We have that ϕ(PF ) is contained in some maximal torus T̂ of Ĝ [Kaletha 2021,
Lemma 4.1.3], and therefore ϕ(PF ) is contained in the maximal torus η̂(T̂ ) of η̂(Ĝ).
Since η̂(Ĝ) contains [Ĝ, Ĝ], we have that η̂(T̂ ) = T̂ ∩ η̂(Ĝ) for some maximal
torus T̂ of Ĝ [Bourgeois 2021, Theorem 2.2]. By definition, we have

M̂ = Cent(ϕ(PF ), Ĝ)◦ =

( ⋂
s∈ϕ(PF )

Cent(s, Ĝ)

)◦
.

Using the description from [Humphreys 1995, Theorem 2.2] for each set Cent(s, Ĝ),
s ∈ ϕ(PF ), it follows that

M̂ = ⟨T̂ , Uβ : β(s)= 1 for all s ∈ ϕ(PF )⟩,

where Uα denotes the root subgroup of Ĝ associated to the root α ∈ R(Ĝ, T̂ ).
Using a similar argument, and given that the root systems of Ĝ and Ĝ are

identified, we have that

M̂ = ⟨T̂ , η̂(Uβ) : β(s)= 1 for all s ∈ ϕ(PF )⟩.

We then deduce from [Bourgeois 2021, Section 2B] that η̂(M̂)= M̂ ∩ η̂(Ĝ). Anal-
ogously, one has η̂(Ĉ)= Ĉ ∩ η̂(Ĝ).

Since Ŝ = Cent(Ĉ, M̂) it follows from Proposition 4.3 that for all α ∈ R(M̂, Ŝ)

there exists cα ∈ Ĉ such that α(cα) ̸= 1. Applying η̂, we have that for all
α ∈ R(η̂(M̂), η̂(Ŝ)), there exists η̂(cα) ∈ η̂(Ĉ) such that α(η̂(cα)) ̸= 1. Reapplying
Proposition 4.3, we obtain η̂(Ŝ)= Cent(η̂(Ĉ), η̂(M̂)). It follows that

Ŝ ∩ η̂(Ĝ)= Cent(Ĉ, M̂)∩ η̂(Ĝ)= Cent(Ĉ, η̂(M̂))⊂ Cent(η̂(Ĉ), η̂(M̂))= η̂(Ŝ).

Since both Ŝ ∩ η̂(Ĝ) and η̂(Ŝ) are maximal tori of η̂(Ĝ), we conclude that they are
equal, and therefore η̂(Ŝ)⊂ Ŝ. □

Having η̂(Ŝ)⊂ Ŝ implies that the root systems R(Ĝ, Ŝ) and R(Ĝ, Ŝ), together
with their 0-actions, are identified, which allows us to choose χ0 = χ0, as the
χ-data are parameterized by roots. Also, ȷ̂ : Ŝ→ Ĝ and ȷ̂ : Ŝ→ Ĝ are simply
inclusions. This means we have the commutative diagram

Ŝ Ĝ

Ŝ Ĝ

ȷ̂

η̂ η̂

ȷ̂

Proposition 4.5 (Theorem 4.2(b)). Let θ, θ and ηS be as in Theorem 4.2. Then,
θ = θ ◦ ηS .
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Proof. Using the χ -data as in [Langlands and Shelstad 1987, Section 2.6], the above
diagram extends into the commutative diagram

Ŝ ⋊ WF Ĝ ⋊ WF

Ŝ ⋊ WF Ĝ ⋊ WF

L j

Lη Lη

L j

where Lη(g, w)= (η̂(g), w) for all g ∈ Ĝ, w ∈WF .
Following [Kaletha 2021, Proposition 4.1.8], Im(ϕ)⊂Im(L j) and Im(φ)⊂Im(L j),

meaning that ϕ = L j ◦ϕS and ϕ = L j ◦ϕS for some L-parameters ϕS and ϕS of S
and S, respectively. We claim that ϕS =

Lη ◦ϕS . Indeed, by definition, ϕ = Lη ◦ϕ,
which implies L j ◦ ϕS =

Lη ◦ L j ◦ ϕS . Using the commutative diagram above,
it follows that L j ◦ϕS =

L j ◦ Lη ◦ϕS . Given that L j is an embedding, it is injective
by definition, which implies that ϕS =

Lη ◦ϕS as claimed.
By definition, θ and θ are the characters which correspond to ϕS and ϕS , respec-

tively, under the LLC for tori. Since L-packets of tori are singletons, we apply the
functoriality property for the LLC of tori to conclude that θ = θ ◦ ηS . □

We now arrive to the final statement of Theorem 4.2 which matches the embed-
dings in JF and J F . The description of these embeddings depends on our fixed
pinnings. We will require the following lemma for our proof.

Lemma 4.6. Let (S, θ) and (S, θ) be tame F-nonsingular elliptic pairs of G and G,
respectively, which satisfy η(S)⊂ S and θ = θ ◦η. Let ϵ and ϵ be the characters from
[Fintzen et al. 2023, Section 4.1] (recalled at the end of Section 2.4) constructed
from S and S, respectively. Then ϵ = ϵ ◦ η.

Proof. Let (G0, . . . , Gd) and (G0, . . . , Gd) be the twisted Levi sequences obtained
from S and S, respectively. As defined in [Fintzen et al. 2023, p.2259], we have that
ϵ =

∏d
i=1 ϵGi /Gi−1

, where ϵGi /Gi−1
is the quadratic character of K d that is trivial

on G1(F)y,r0/2 · · ·Gd(F)y,rd/2 and whose restriction to K 0 is given by ϵ
Gi /Gi−1

y de-
fined in [Fintzen et al. 2023, Definition 4.1.10]. The character ϵ

Gi /Gi−1

y is essentially
just a composition of a sign character constructed from the adjoint groups of Gi

and Gi−1, and the adjoint map of Gi . The character ϵ is defined similarly. Given
that η(Gi )= Gi

∩η(G) (Lemma 3.3 and Theorem 3.19), it follows that Gi and Gi

have the same adjoint group and that the adjoint map of Gi is the composition of the
adjoint map of Gi with η. It follows that ϵGi /Gi−1

y = ϵGi /Gi−1

y ◦ η for all 1≤ i ≤ d
and therefore ϵ = ϵ ◦ η. □

Proposition 4.7 (Theorem 4.2(c)). For all j ∈ J F , there exists j ∈ JF such that
η( j S)⊂ j S and jθ = jθ ◦ η.
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Proof. Our fixed 0-invariant pinnings satisfy η(T )=T∩η(G) and η̂(T̂ )= T̂∩ η̂(Ĝ).
Following [Kaletha 2019, Section 5.1], we may describe J and J as follows.
Choose ı̂ in Ĵ such that ı̂(Ŝ)= T̂ and define i to be the inverse of the isomorphism
T → S induced by ı̂ . We have that ı̂ = Ad(ĝ) ◦ ȷ̂ for some ĝ ∈ Ĝ. Let ı̂ ∈ Ĵ be
defined by ı̂ =Ad(η̂(ĝ))◦ ȷ̂ . Since η̂◦ ȷ̂ = ȷ̂ ◦ η̂, we have the commutative diagram

(9)
Ŝ T̂

Ŝ T̂

ı̂

η̂ η̂

ı̂

It follows that

T̂ ∩ η̂(Ĝ)= η̂(T̂ )= η̂(ı̂(Ŝ))= ı̂(η̂(Ŝ))⊂ ı̂(Ŝ).

Since we know ı̂(Ŝ) has to be a maximal torus of Ĝ, we conclude from [Bourgeois
2021, Theorem 2.2] that ı̂(Ŝ) = T̂ . Therefore, J corresponds to the G(F sep)-
conjugacy class of i , and J corresponds to the G(F sep)-conjugacy class of i .

Now, given j ∈J F , we have that j =Ad(g)◦ i for some g ∈G(F sep). Using the
fact that G= Z(G)G Z , we may assume without loss of generality that g∈G Z (F sep).
Let g be any preimage of g in G(F sep) by η and set j = Ad(g) ◦ i . By taking the
dual of diagram (9), we have

(10)
S T

S T

i

i

ηS η

Here, ηS is the dual map of η̂|Ŝ : Ŝ→ Ŝ. It follows that

η( j S)= η(gi Sg−1)= η(g)η(i S)η(g)−1
= gi(ηS(S))g−1

= j(ηS(S))⊂ j S.

Since j and η are defined over F , we have that j ∈ JF . Indeed, by [Dillery
2023, Lemma 6.2], which generalizes [Kottwitz 1982, Corollary 2.2] to arbitrary
local fields, there exists h ∈ G(F sep) such that Ad(h) ◦ j is defined over F . Then
Ad(η(h))◦ j is also defined over F , implying σ

(
Ad(η(h))◦ j

)
σ−1
=Ad(η(h))◦ j

for all σ ∈ 0. Equivalently, η(h)−1σ(η(h)) = η(h−1σ(h)) ∈ j S for all σ ∈ 0.
This implies h−1σ(h) ∈ j S, and therefore Ad(h) ◦ j = Ad(σ (h)) ◦ j for all σ ∈ 0.
Using the fact that Ad(h) ◦ j is defined over F , we rewrite this last equality as
σ(Ad(h)◦ j)σ−1

=Ad(σ (h))◦ j for all σ ∈0. It follows that Ad(σ (h))◦σ jσ−1
=

Ad(σ (h)) ◦ j , and therefore σ jσ−1
= j for all σ ∈ 0.

It remains to show that jθ = jθ ◦ η. We have that jθ = θ ◦ j−1
· ϵ j and

jθ = θ ◦ j−1
· ϵ j , where ϵ j and ϵ j are the characters from [Fintzen et al. 2023,

Section 4.1] constructed from j S and j S, respectively, which we briefly recalled at
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the end of Section 2.4. By what precedes, we have that η( j S)⊂ j S and θ ◦ j−1
◦η=

θ◦ηS◦ j−1
= θ◦ j−1. Using Lemma 4.6, we have ϵ j = ϵ j ◦η, and thus jθ= jθ◦η. □

4.2. The proof of Theorem 4.1. In this section, we begin with the statement of a
lemma, after which we will combine the results of the previous section with the
decomposition formula from Section 3 to prove Theorem 4.1.

Lemma 4.8. Let (S, θ) be a tame F-nonsingular elliptic pair of G, and let c ∈ G
be such that Ad(c) is defined over F. Then, the following statements hold.

(1) cπ(S,θ) ≃ π(c S,cθ).

(2) If ϵ is the character from [Fintzen et al. 2023, Section 4.1] constructed from S,
then cϵ is the character from [Fintzen et al. 2023, Section 4.1] constructed from cS.

Proof. We have that Ad(c) : G→ G is a map which satisfies hypotheses (i) and (ii)
of Theorem 4.1, having trivial kernel and trivial cokernel.

For (1), we apply Theorem 3.17, in which we set η=Ad(c), SZ =Ad(c)(S)= cS
and θZ = θ ◦ Ad(c−1) = cθ . We obtain as a result π(c S,cθ) ◦ Ad(c) ≃ π(S,θ), or
equivalently, π(c S,cθ) ≃

cπ(S,θ).
For (2), we apply Lemma 4.6, in which we set η=Ad(c), S = cS and θ = cθ . □

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let (S, ȷ̂ , χ0, θ) and (S, ȷ̂ , χ0, θ) be the supercuspidal L-
packet data associated to ϕ and ϕ, respectively. By construction of 5ϕ , we have
that π ⊂ π( j S, jθ) for some j ∈ J F . By Theorem 4.2, there exists j ∈ JF such that
η( j S)⊂ j S and jθ = jθ ◦ η. By Theorem 3.1, it follows that

(11) π ◦ η ⊂ π( j S, jθ) ◦ η =
⊕
c∈C

π( j S, jθ) ◦Ad(c−1),

where C is a set of coset representatives of η(G(F))\G(F)/ j S(F). Recall from
Section 2.3 that Ad(c−1) = Ad(c−1), where c ∈ G satisfies c = η(c)z for some
z ∈ Z(G). Using Lemma 4.8(1) one sees that

π( j S, jθ) ◦Ad(c−1)= cπ( j S, jθ) ≃ π(cj S,cjθ),

where cj S = (Ad(c) ◦ j)S and
c jθ = jθ◦Ad(c−1)= ((θ◦ j−1)·ϵ j )◦Ad(c−1)= (θ◦ j−1

◦Ad(c−1))·(ϵ j◦Ad(c−1)).

By Lemma 4.8(2), ϵ j ◦Ad(c−1)= ϵAd(c)◦ j so that
cjθ =

(
θ ◦ (Ad(c) ◦ j)−1)

· ϵAd(c)◦ j = (Ad(c) ◦ j)θ.

Since Ad(c) is defined over F (Lemma 2.6), Ad(c) ◦ j ∈ JF , and therefore

[π( j S, jθ) ◦Ad(c−1)] = [π((Ad(c)◦ j)S,(Ad(c)◦ j)θ)] ⊂5ϕ

for all c ∈ C . Thus, all irreducible components of π ◦ η belong to 5ϕ . □
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5. Specializing to regular supercuspidal parameters

Part of the local Langlands conjectures is a correspondence between the irreducible
representations in an L-packet 5ϕ and the irreducible representations of the com-
ponent group of Cent(ϕ(WF ), Ĝ) [Vogan 1993, Conjecture 1.15]. In this section,
we review this correspondence for regular supercuspidal L-parameters.

The regular supercuspidal L-parameters [Kaletha 2019, Definition 5.2.3] are an
important subclass of the supercuspidal L-parameters. They are also easier to study,
as their corresponding L-packets are simpler to describe (see (12) below), and their
corresponding component groups are abelian [Kaletha 2019, Lemma 5.3.4].

Under the assumption that ϕ and ϕ are both regular, we show how to repa-
rameterize the elements of 5ϕ and 5ϕ in terms of characters of their respective
component groups. From this reparameterization, we obtain an alternate formulation
for the decomposition formula for π ◦η, π ∈5ϕ , obtained from Theorem 3.1. This
reformulation amounts to a proof of [Solleveld 2020, Conjecture 2] for regular
supercuspidal L-packets of quasisplit groups (Theorem 1.1, Proposition 5.12).

First we explicitly describe the regular supercuspidal L-parameters, their corre-
sponding L-packet structure, and the relationship between the regularity of ϕ and ϕ.

5.1. Regular L-Packets and conditions for regularity of ϕ and ϕ. One way to de-
scribe the regular supercuspidal L-parameters is via the notion of regular supercuspi-
dal L-packet data [Kaletha 2019, Definition 5.2.4]. A regular supercuspidal L-packet
datum of G is a supercuspidal L-packet datum (S, ȷ̂ , χ0, θ) (see Definition 2.9),
with the stronger condition that (S, θ) is an extra regular elliptic pair in the sense of
[Kaletha 2019, Definition 3.7.5]. In particular, this means that the character θ |S(F)0

has trivial stabilizer for the action of �(S, G)(F) := (NG(S)/S)(F).
By [Kaletha 2019, Proposition 5.2.7], there is a one-to-one correspondence

between the Ĝ-conjugacy classes of regular supercuspidal L-parameters for G
and isomorphism classes of regular supercuspidal L-packet data. Given a regular
supercuspidal L-parameter ϕ of G with associated regular supercuspidal L-packet
datum (S, ȷ̂ , χ0, θ), the representations π( j S, jθ) are irreducible for all j ∈ JF

[Kaletha 2019, Lemma 3.4.20]. Thus, the corresponding L-packet is

(12) 5ϕ = {π( j S, jθ) : j ∈ JF },

where j is identified with its G(F)-conjugacy class and π( j S, jθ) is identified with
its equivalence class. Furthermore, as stated in [Kaletha 2019, Section 5.3; 2021,
Section 4.2], the elements of 5ϕ are in one-to-one correspondence with the elements
of JF . The following lemma is a proof of this statement.

Lemma 5.1. Let ϕ be a regular supercuspidal L-parameter of G with associ-
ated regular L-packet datum (S, ȷ̂ , χ0, θ). Then the map j 7→ π( j S, jθ) induces a
bijection JF →5ϕ .
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Proof. We prove an equivalent statement: π( j1 S, j1θ) ≃ π( j2 S, j2θ) if and only if j1 and
j2 are G(F)-conjugate.

Assume π( j1 S, j1θ) ≃ π( j2 S, j2θ). Then, by [Kaletha 2019, Corollary 3.7.10], there
exists g ∈ G(F) such that j1S = Ad(g) j2S and j1θ = gj2θ . Using [Kaletha 2019,
Lemmas 3.4.10 and 3.4.12], there exists j ′ ∈JF such that ( j ′S, j ′θ) is extra regular
in the sense of [Kaletha 2019, Definition 3.7.5]. As in the proof of Proposition 4.7,
j1=Ad(h1)◦ j ′ and j2=Ad(h2)◦ j ′ for some h1, h2∈G(F sep) such that Ad(h1) and
Ad(h2) (as maps of j ′S) are defined over F . Thus, j1S=Ad(g) j2S and j1θ= gj2θ if
and only if h−1

1 gh2 ∈ NG( j ′S) and j ′θ = h−1
1 gh2 j ′θ . Because Ad(h−1

1 gh2) is defined
over F , it is an easy exercise to show that σ(h−1

1 gh2)
−1(h−1

1 gh2) ∈CG( j ′S)= j ′S
for all σ ∈ 0. It follows that (h−1

1 gh2) j ′S ∈ �( j ′S, G)(F) = (NG( j ′S)/j ′S)(F).
By the extra regularity of j ′θ , we conclude that h−1

1 gh2 ∈ j ′S, and therefore
Ad(h−1

1 gh2) ◦ j ′ = j ′. Thus, Ad(g) ◦ j2 = j1.
The converse is a direct consequence of [Kaletha 2019, Corollary 3.7.10], and is

built into the definition of 5ϕ . □

Suppose as usual that ϕ ∈8sc(G) and ϕ = Lη ◦ϕ ∈8sc(G). It is natural to ask
under what conditions ϕ and ϕ are both regular. The following lemma and corollary
address this question from the perspective of regular supercuspidal L-packet data.

Lemma 5.2. Let (S, θ) and (S, θ) be F-nonsingular elliptic pairs of G and G,
respectively, satisfying η(S)⊂ S and θ = θ ◦η. If (S, θ) is extra regular, then (S, θ)

is also extra regular.

Corollary 5.3. Let ϕ be a supercuspidal L-parameter of G and let ϕ = Lη ◦ϕ. If ϕ

is regular, then ϕ is also regular.

Before proving Lemma 5.2, recall from Section 2.5 that S is not a subtorus of G.
Rather, as in [Kaletha 2019, p. 1145], we have a structure on S that is given to
us by ȷ̂ . This means that the action of �(S, G) on S corresponds to the action
of �(T, G) twisted by i : S→ T . More precisely, given w ∈�(S, G)=�(T, G),
ws = i−1(wi(s)) for all s ∈ S. Here, T is the maximal torus from our fixed 0-
invariant pinning, and i is as per the proof of Proposition 4.7. The same is also true
of S, for which we adopt analogous notation. Furthermore, since η(T )= η(G)∩ T
and η(G) ⊃ [G, G], one sees from [Bourgeois 2020, Proposition 2.1.24] that η

induces a 0-equivariant isomorphism

η� :�(T, G)
η
−→�(η(T ), η(G))→�(T , G),

which sends gT to η(g)T for all g ∈ NG(T ).

Proof of Lemma 5.2. It is clear that the first two conditions in the definition of extra
regularity [Kaletha 2019, Definition 3.7.5] are satisfied for (S, θ) if and only if
they are satisfied for (S, θ). We focus our attention on the third and final condition.
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That is, we assume that θ |S(F)0 has trivial stabilizer for the action of �(S, G)(F)

and show that θ |S(F)0 has trivial stabilizer for the action of �(S, G)(F).
Recall from Proposition 4.5 and (10) that θ = θ̃ ◦ ηS and i ◦ ηS = η ◦ i . Using

these equalities in combination with the definitions of the actions of �(S, G)

and �(S, G), we obtain

(13) wθ = η�(w)θ̃ ◦ ηS for all w ∈�(S, G)(F).

Assume that wθ |S(F)0 = θ |S(F)0 for some w ∈�(S, G)(F). By the above discus-
sion, w = η�(w) for some w ∈�(S, G)(F). Using (13), it follows that

θ |S(F)0 = (θ ◦ ηS)|S(F)0 = (wθ ◦ ηS)|S(F)0 =
wθ |S(F)0 .

Given the assumption on θ , we conclude that w = 1. Thus w = 1 and θ |S(F)0 has
trivial stabilizer for the action of �(S, G)(F). □

The converse of Lemma 5.2 and Corollary 5.3 is not true in general. Con-
sider the case of G = SL2 and G = GL2, with η being the inclusion map. Then,
all irreducible supercuspidal representations of G(F) are extra regular [Kaletha
2019, Lemma 3.7.7], whereas there exist irreducible supercuspidal representations
of G(F) which are not regular (e.g., the four exceptional supercuspidal representa-
tions from [Adler et al. 2011]). Given one such representation of G(F), say π , the
irreducible components of IndG(F)

G(F) π are all extra regular, and thus correspond to
extra regular elliptic pairs of G(F). We claim that the restrictions of these extra
regular elliptic pairs to G(F) can not be extra regular (or even regular). Indeed,
given π = π(S,θ)⊂ IndG(F)

G(F) π , with (S, θ) extra regular, Theorem 3.1 says that π ◦η

is a sum of conjugates of π(S,θ), where S = S ∩G and θ = θ ◦ η. Assuming (S, θ)

is extra regular (or even regular) contradicts the nonregularity of π ⊂ π ◦ η, and
thus (S, θ) cannot be extra regular.

It is worth pointing out that the instances for which the converse holds are not
extremely rare. Indeed, assume that θ is extra regular and that wθ |S(F)0 = θ |S(F)0

for some w ∈ �(S, G0)(F). Then (13) tells us η�(w)θ ◦ ηS|S(F)0 = θ ◦ ηS|S(F)0 ,
or equivalently, η�(w)θ |ηS(S(F)0) = θ |ηS(S(F)0). In order to conclude that w = 1 (i.e.,
θ is extra regular), we must have η�(w)θ |S(F)0 = θ |S(F)0 . If the difference between
S(F)0 and ηS(S(F)0) is centralized by �(S, G)(F), then we can conclude that
w = 1, and so θ is extra regular when θ is extra regular. This happens, for example,
if the equality T = Z(G)η(T ) (or equivalently, S = i−1(Z(G))ηS(S)) remains true
at the level of the F-points.

5.2. Functoriality and the characters of the dual component group. Let ϕ ∈

8sc(G) be a regular supercuspidal L-parameter. Up until now in this section, the
elements of 5ϕ have been parameterized by regular elliptic pairs. However, in
Solleveld’s conjecture [2020, Conjecture 2], the elements of the L-packets are
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parameterized by ϕ and characters of the associated component group. Thus, the
first step in proving Theorem 1.1 is to reconcile the two parameterizations.

As discussed in Section 5.1, the L-parameter ϕ corresponds to a regular super-
cuspidal L-packet datum (S, ȷ̂ , χ0, θ), and the (equivalence classes of) irreducible
representations in 5ϕ correspond bijectively to the (G(F)-conjugacy classes of)
admissible embeddings in JF

(14) 5ϕ←→ JF .

Thus far, there has been no need to specify a particular irreducible representation
or admissible embedding in (14) as being special. However, it shall be necessary
to specify a particular representation and embedding to correspond to the identity
character of the dual component group. Kaletha [2019, Sections 5.3, 6.2; 2021,
Lemma 4.2.1] discusses what the particular choice of representation and embedding
should be upon fixing a Whittaker datum, and when F is of characteristic zero the
particular representation and embedding is fixed on [Fintzen et al. 2023, page 2273].
For F of characteristic zero we may fix a Whittaker datum for G and thereby
an embedding j ∈ JF as on [Fintzen et al. 2023, page 2273]. At the time of
writing, a preferred choice of embedding does not appear to be available for regular
supercuspidal L-packets in positive characteristic. In this case, we arbitrarily fix
j ∈ JF and thereby its corresponding irreducible representation π( j S, jθ) ∈5ϕ . The
bijection in (14) is now an isomorphism of pointed sets.

The dual group attached to ϕ ∈ 8sc(G) is Cent(ϕ(WF ), Ĝ), and according
to [Kaletha 2019, Lemma 5.3.4], it is naturally isomorphic to the fixed-point
subgroup Ŝ 0 . We denote the finite abelian component group Ŝ 0/(Ŝ 0)◦ by π0(Ŝ 0),
and denote its group of characters by π0(Ŝ 0)D. What we wish to do here is
supplement (14) with an inclusion

(15) 5ϕ←→ JF ↪→ π0(Ŝ 0)D

and to describe the image of this inclusion.
Recall from (2) that JF is in bijection with ker(H 1(F, j S)→ H 1(F, G)). An

arbitrary element of ker(H 1(F, j S)→ H 1(F, G)) is represented by a cocycle

zg(σ )= g−1σ(g), σ ∈ 0,

for some g ∈ G(F sep). By fixing j ∈ JF as we have above, we fix a bijection from
ker(H 1(F, j S)→ H 1(F, G)) to JF given by

(16) zg 7→ Ad(g) ◦ j.

The desired inclusion of (15) is given through this fixed bijection and the com-
mutative diagram

(17)
H 1(F, j S) //

��

π0(Ŝ 0)D

��

H 1(F, G) // π0(Z(Ĝ)0)D
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of [Kottwitz 1986, Theorem 1.2; Thang 2011, Theorem 2.1]. In this diagram the
upper and lower maps are bijections which arise from perfect pairings in Tate–
Nakayama duality. The map on the left is given by the inclusion j S ⊂ G, and the
map on the right is given by restriction to Z(Ĝ)0 ⊂ Ŝ 0 . Since (17) is commutative,
ker(H 1(F, j S) → H 1(F, G)) is in bijection with the kernel of the restriction
map on the right of the diagram. The kernel of the restriction map is isomorphic
to π0(Ŝ 0/Z(Ĝ)0)D .

Combining these observations with (16), we obtain a bijection between JF and
π0(Ŝ 0/Z(Ĝ)0)D given by the map

(18) Ad(g) ◦ j 7→ τg

in which Ad(g) ◦ j is a representative of a G(F)-conjugacy class in JF and τg ∈

π0(Ŝ 0/Z(Ĝ)0)D is obtained through zg and Tate–Nakayama duality.
In summary, the desired arrangement of (15) takes the shape of three bijections

(19) 5ϕ←→ JF ←→
(
ker(H 1(F, j S)→ H 1(F, G))

)
←→ π0(Ŝ 0/Z(Ĝ)0)D.

On the level of elements, the bijections have the form

π(g j S,g jθ)←→ Ad(g) ◦ j←→ zg←→ τg,

where g ∈ G(F sep) and zg ∈ Z1(F, j S). We can go one step further and obtain an
alternative description for ker(H 1(F, j S)→ H 1(F, G)) as follows.

Given a maximal torus S′ of G which is defined over F , we have in particular that
S′ is a closed subgroup of G. The quotient G/S′ is therefore a variety defined over F .
An element gS′ ∈ (G/S′)(F sep) belongs to (G/S′)(F) if and only if gS′ = σ(g)S′

for all σ ∈ 0. The group G(F) acts on (G/S′)(F) by left multiplication. Let
G(F)\(G/S′)(F) denote the set of G(F)-orbits. The following lemma is a special
case of [Serre 2002, I.5.4 Corollary 1].

Lemma 5.4. Let gS′ ∈ (G/S′)(F). Then the map zg : 0→ S′ defined by

zg(σ )= g−1σ(g), σ ∈ 0,

is a cocycle in Z1(F, S′). In addition, the map g 7→ zg induces a bijection from
G(F)\(G/S′)(F) to ker(H 1(F, S′)→ H 1(F, G)).

We may now rewrite (19) using the bijection of Lemma 5.4 with S′ = j S:

(20)
5ϕ
oo // JF oo // G(F)\(G/j S)(F) oo // π0(Ŝ 0/Z(Ĝ)0)D,

π
(g−1 j S,g−1 jθ)

oo // Ad(g) ◦ j oo // g j S oo // τg.
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Assume now that we have two regular supercuspidal L-parameters ϕ ∈8sc(G)

and ϕ = Lη ◦ϕ. In light of the discussion after Corollary 5.3, it is not sufficient
to assume that only ϕ is regular. Our next objective is to describe a commutative
diagram

(21)

5ϕ
oo // J F oo

Ad( · )◦ j
// G(F)\(G/ j S)(F) oo

τ
// π0(̂S 0

/Z(Ĝ)0)D

5ϕ
oo //

OOOO

JF ooAd( · )◦ j
//

η̄

OOOO

G(F)\(G/j S)(F) oo
τ
//

η̄

OOOO

π0(Ŝ 0/Z(Ĝ)0)D

◦η̂

OOOO

Once this diagram is in place, the decomposition formula for π ( j S, jθ) ◦ η that
one would obtain by applying Theorem 3.1 may be transferred to the right-hand
square of the diagram, which is key for proving Theorem 1.1.

The starting point is the top row of (21). Replacing G with G, we fix (the G(F)-
conjugacy class of) an admissible embedding j ∈ J F relative to a fixed Whittaker
datum for G when char F = 0. When char F ̸= 0 we fix j ∈ J F arbitrarily. The
top row is then the sequence of bijections in (20), in which S and j are replaced
by S and j . By Proposition 4.7, there exists j ∈ JF such that η( j S) ⊂ j S and
jθ = jθ ◦ η. The embedding j in Proposition 4.7 is specified by the alignment of
the 0-invariant pinnings of G and G through η. This alignment preserves the simple
root spaces and therefore transfers a fixed Whittaker datum of G to a Whittaker
datum for G. Consequently, when char F = 0, the embedding j may be chosen as
on [Fintzen et al. 2023, page 2273] relative to the latter Whittaker datum. Otherwise,
we fix j as in Proposition 4.7 arbitrarily. In any case, the bottom row is now given
by (20).

We continue by describing the middle two vertical maps of (21). Since η( j S)⊂

j S the map η̄ sending g j S ∈G/j S to η(g) j S ∈G/ j S is well defined. Furthermore,
η is defined over F so that, for g ∈ G(F sep),

σ(η̄(g j S))= η(σ (g)) j S = η̄(σ (g j S)), σ ∈ 0.

This means that the restriction of η̄ to G(F sep)/j S(F sep) is defined over F , and
passes to a map G(F)\(G/j S)(F)→ G(F)\(G/ j S)(F). This defines the second
map from the right in (21). We define the map JF→J F to its left as the map which
takes Ad(g) ◦ j to Ad(η(g)) ◦ j . In this way the middle square in (21) commutes.
The arguments in the proof of Proposition 4.7 imply the surjectivity of the two
vertical maps in the middle square.

The vertical map ◦ η̂ on the right of (21) is defined by composition with η̂

(see Proposition 4.4). The commutativity of the right-hand square of (21) may be
explained as follows. The functoriality of [Kottwitz 1986, Theorem 1.2; Thang
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2011, Theorem 2.1] imply that the following diagram commutes:

H 1(F, j S) // π0(̂S 0)D

H 1(F, j S) //

η◦

OO

π0(Ŝ 0)D

◦η̂

OO

Therefore, the restriction

ker(H 1(F, j S)→ H 1(F, G)) // π0(̂S 0/Z(Ĝ)0)D

ker(H 1(F, j S)→ H 1(F, G)) //

η◦

OO

π0(Ŝ 0/Z(Ĝ)0)D

◦η̂

OO

also commutes. Applying Lemma 5.4 then gives us the right-hand square of (21)
as a commutative diagram. As a consequence, the surjectivity of ◦ η̂ follows from
the surjectivity of η̄.

The leftmost vertical arrow of (21) is defined as the unique map which makes
the leftmost square of (21) commute. It is defined by

π(g j S,g jθ) 7→ π(η(g)j S,η(g)jθ)

for all Ad(g)◦ j ∈JF . This map is surjective, as η̄ is surjective. Given Ad(g)◦ j ∈J F

the preimage of π((Ad(g)◦ j)S,(Ad(g)◦ j)θ) ∈5ϕ under this map is

(22) {π(g j S,g jθ) : Ad(g) ◦ j ∈ η̄−1(Ad(g) ◦ j)}.

5.3. The proof of Theorem 1.1. The commutative diagram (21) from the previous
section will allow us to rewrite the decomposition formula provided in the proof
of Theorem 4.1 with respect to the parameterization in terms of characters of the
component groups.

Let ϕ, ϕ, j, j be as in the previous section. In the proof of Theorem 4.1, equa-
tion (11) takes the form

(23) π( j S, jθ) ◦ η ≃
⊕
c∈C

π((Ad(c−1)◦ j)S,(Ad(c−1)◦ j)θ),

where C is a set of coset representatives of η(G(F))\G(F)/ j S(F) and c∈G(F sep)

is such that c = η(c)z for some z ∈ Z(G)(F sep). Note that, by construction,
Ad(c−1) ◦ j ∈ η̄−1(Ad(c−1) ◦ j) and Ad(c−1) ◦ j and j belong to the same G(F)-
equivalence class.

The following proposition tells us that the set of representations (22) coincides
with the irreducible components of the decomposition formula (23).
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Proposition 5.5. Suppose g j S ∈ (G/ j S)(F). Then

(24) π(g j S,g jθ) ◦ η
∼=

⊕
g j S∈η̄−1(g j S)

π(g j S,g jθ).

Equivalently, an irreducible representation π of G(F) is a subrepresentation
of π(g j S,g jθ) ◦ η if and only if π ∼= π(g j S,g jθ) for g j S ∈ η̄−1(g j S) (i.e., Ad(g) ◦ j
in the fiber of η̄ over Ad(g) ◦ j).

The key to proving (24) is to identify the fiber over j with η(G(F))\G(F)/ j S(F)

in (23), which is done via the following lemma.

Lemma 5.6. Let η̄−1( j) be the fiber of JF
η̄
−→ J F over j . The map of Lemma 5.4

and the map η induce horizontal maps in the commutative diagram

JF // G(F)\(G/j S)(F) // η(G(F))\(G/ j S)(F)

η̄
−1

( j) //

?�

OO

G(F)\η̄−1({g j S : g ∈ G(F)})
?�

OO

// η(G(F))\G(F)/ j S
?�

OO

In addition, the horizontal maps are bijections.

Proof. We first prove the assertion for the square on the left. The upper map
is bijective by Lemma 5.4 and the vertical maps are inclusions. For the lower
horizontal map, suppose Ad(g) ◦ j ∈ J is a representative of some G(F)-orbit
in JF where g j S ∈ (G/j S)(F), and η̄(Ad(g) ◦ j)=Ad(g) ◦ j for some g ∈ G(F).
The bijectivity of the lower horizontal map follows from the equivalences

Ad(g−1η(g)) ◦ j = j ⇐⇒ g−1η(g) ∈ j S

⇐⇒ η(g) j S = g j S ⇐⇒ g j S ∈ η̄−1(Ad(G(F)) j).

We continue by examining the upper horizontal map in the square on the right. This
map may be described as

G(F)g j S 7→ η(G(F))η̃(g j S), where η̃(g j S)= η(g) j S, g j S ∈ G/j S.

Clearly, the upper horizontal map is bijective if η̃ : G/j S → G/ j S yields an
isomorphism on F-points. Let us prove that η̃ is an isomorphism. The injectivity
of η̃ follows from j S = η−1( j S). Suppose g j S ∈ G/ j S. We may assume that
g ∈ [G, G] [Springer 2009, Corollary 8.1.6]. Since η(G) ⊃ [G, G], there exists
g ∈ G such that η(g) = g and η̃(g j S) = g j S. This proves the surjectivity of η̃.
It also proves that η induces a transitive G-action on G/ j S. In other words, G/ j S
is a homogeneous space for G. Thus, η̃ is a bijective G-equivariant morphism of
homogeneous spaces. According to [Springer 2009, Theorem 5.3.2 (ii)], the bijective
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morphism η̃ is an isomorphism if and only if its differential dη̃ : g/d js→ g/d js is
an isomorphism. We observe that

dη̃(X + d js)= dη(X)+ d js, X ∈ g.

By hypothesis (Theorem 4.1(i)), the kernel of dη is central in g. The one-dimensional
root space gα, α ∈ R(G, S), is not central in g. Consequently dη carries gα onto
the root space gα of g. As the diagram

g/d js

∼=

��

dη̃
// g/d js

∼=

��⊕
α gα dη

∼=
//
⊕

α gα

commutes, we see in turn that dη̃ is an isomorphism and that η̃ is an isomorphism.
Since η is defined over F , so is η̃, and it follows that η̃ yields an isomorphism
(G/j S)(F)∼= (G/ j S)(F). This proves the bijectivity of the upper horizontal map.

Finally, the lower horizontal map on the right of the main diagram is defined by
restricting the upper right horizontal map. This yields a bijection

G(F)\η̄−1({g j S : g ∈ G(F)})→ η(G(F))\G(F) j S/ j S,

and the set on the right is η(G(F))\G(F)/ j S(F). □

The following lemma is an immediate consequence of Lemma 5.6 and decompo-
sition formula (23).

Lemma 5.7. An irreducible representation π of G(F) is a subrepresentation
of π( j S, jθ) ◦ η if and only if π ∼= π(g j S,g jθ) for g j S ∈ η̄−1( j S) (Ad(g) ◦ j is in
the fiber of η̄ over j). In particular, (24) holds for g = 1.

We are now ready to prove Proposition 5.5

Proof of Proposition 5.5. Let j ′ = Ad(g) ◦ j . Arguing as in the proof of
Proposition 4.7 there exists g′S ∈ (G/S)(F) such that j ′ = Ad(g′) ◦ j is sent
to j ′ under η̄. We may replace j with j ′, and j with j ′ in the earlier results.
Lemma 5.7 then tells us that the irreducible subrepresentations of

π(g j S,g jθ) ◦ η = π( j ′S, j ′θ) ◦ η

are π(h j ′S,h j ′θ)=π(hg j S,hg jθ), where hj ′S ∈ η̄−1( j ′S). The corollary now follows from

hj ′S ∈ η̄−1( j ′S) ⇐⇒ η(hg′ j S(g′)−1)⊂ g j Sg−1

⇐⇒ η(hg′) j S = g j S ⇐⇒ (hg′) j S ∈ η̄−1(g j S)

and setting g = hg′. □
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A simple consequence of Proposition 5.5 and diagram (21) is the following
corollary, analogous to [Solleveld 2020, Corollary 5.8].

Corollary 5.8. The L-packet 5ϕ consists of the irreducible representations appear-
ing on the right of (24). More precisely,

5ϕ =

∐
Ad(g)◦ j∈J F

{π(g j S,g jθ) : Ad(g) ◦ j ∈ η̄−1(Ad(g) ◦ j)},

or equivalently, 5ϕ = {[π ◦ η] : π ∈5ϕ}.

Proof. The corollary follows from the commutativity of (21) and the partition

JF =
∐

Ad(g)◦ j∈J F

η̄−1(Ad(g) ◦ j). □

We continue by expressing Proposition 5.5, which concerns the left-hand side of
diagram (21), in terms of the characters of the dual groups, which appear on the
right of the diagram. Recall that the characters τ and τ on the right of the diagram
are defined in (18).

Corollary 5.9. Suppose g j S ∈ (G/ j S)(F) and g j S ∈ (G/j S)(F). Then π(g j S,g jθ)

is a subrepresentation of π(g j S,g jθ) ◦ η if and only if τg ◦ η̂ = τ g. In addition,

π(g j S,g jθ) ◦ η
∼=

⊕
g∈G(F)\(G/j S)(F)

Hom(τ g, τg ◦ η̂)⊗π(g j S,g jθ).

Remark 5.10. Since τ g and τg are characters, dim Hom(τ g, τg ◦ η̂) is either equal
to 1 or 0. As such, π(g j S,g jθ) ◦ η is multiplicity free for all g j S ∈ (G/ j S)(F).
One can also prove that the decomposition is multiplicity free using tools directly
from the classification theory of supercuspidal representations such as [Hakim and
Murnaghan 2008; Murnaghan 2011] (as done, for instance, in [Bourgeois 2021,
Section 6]).

Yet another manner of expressing the decompositions of the corollaries is to set
ϱ=τ g and set π(ϕ, ϱ)=π(g j S,g jθ). Then the decomposition of Corollary 5.9 reads as

(25) π(ϕ, ϱ) ◦ η ∼=
⊕

ϱ∈π0(Ŝ 0/Z(Ĝ)0)D

Hom(ϱ, ϱ ◦ η̂)⊗π(ϕ, ϱ),

thus completing the proof of Theorem 1.1.
This form of the decomposition is the one proposed by Solleveld [2020, Conjec-

ture 2] when η is chosen to preserve fixed pinnings of G and G as done in Section 4.1.
In Section 4.1 we also remarked that dropping the requirement of preserving the

pinnings, but keeping the dual homomorphism η̂ fixed, allows one to replace η with
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η′ = Ad(t ′) ◦ η where t ′Z(G) ∈ (T /Z(G))(F). It is convenient to write t = (t ′)−1,
for in this arrangement

π(g j S,g jθ) ◦ η
′
= π(g j S,g jθ) ◦Ad(t ′) ◦ η = π(tg j S,tg jθ) ◦ η

and Corollary 5.9 yields

(26) π(g j S,g jθ) ◦ η
′ ∼=

⊕
g∈G(F)\(G/j S)(F)

Hom(τ tg, τg ◦ η̂)⊗π(g j S,g jθ).

This decomposition can be rephrased in terms of characters on the dual group as
in (25). The introduction of Ad(t ′) on the left of (25) introduces the character τ t ′

on the right, as one sees in the following corollary.

Corollary 5.11. Suppose g ∈ (G/ j S)(F) and η′ = Ad(t ′) ◦ η, where t ′Z(G) ∈

(T /Z(G))(F). Set ϱ = τ g, π(ϕ, ϱ)= π(g j S,g jθ). Then

π(ϕ, ϱ) ◦ η′ ∼=
⊕

ϱ∈π0(Ŝ 0/Z(Ĝ)0)D

Hom(ϱ, (ϱ ◦ η̂)⊗ τ t ′)⊗π(ϕ, ϱ).

Proof. The character τ tg appearing in (26) corresponds to the element tg ∈ (G/ j S).
According to Lemma 5.4 (applied to G and j S), the element tg represents the
cocycle ztg defined by

ztg(σ )= (tg)−1 σ(tg), σ ∈ 0.

Since t Z(G) ∈ (T /Z(G))(F), we have in turn that t−1σ(t) ∈ Z(G) and

(tg)−1 σ(tg)= g−1 (t−1σ(t))σ (g)= t−1σ(t)g−1σ(g).

Therefore ztg = zt zg in the group Z1(F, j S). Applying τ , we obtain τ tg = τ t ⊗ τ g.
A similar argument leads to 1 = τ t ⊗ τt−1 , and so τ−1

t = τ t ′ . By setting ϱ = τg

in (26) we see that

Hom(τ tg, τg ◦ η̂)= Hom(τ tτ g, ϱ ◦ η̂)= Hom(ϱ, (ϱ ◦ η̂)⊗ τ t ′).

The corollary now follows from (26) and the commutativity of (21). □

The decomposition of Corollary 5.11 resembles the one appearing in Solleveld’s
conjecture [2020, Conjecture 2]. The only difference is that in place of the term
(ϱ◦ η̂)⊗τ t ′ in Corollary 5.11, Solleveld [2020, (5.4)] has a term Sη′

∗
(ϱ). Translated

into our setting, Solleveld’s term is expressed as

Sη′
∗
(ϱ)= (ϱ ◦ η̂′)⊗ τϕ(t ′)= (ϱ ◦ η̂)⊗ τϕ(t ′),

where τϕ : G(F)\(G/Z(G))(F)→ π0(̂S 0
/Z(Ĝ)0)D is a homomorphism defined

in [Solleveld 2020, (2.12), Lemma 2.1].
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Proposition 5.12. Under the regularity assumptions on ϕ and ϕ, Corollary 5.11
coincides with [Solleveld 2020, Conjecture 2]. That is, (ϱ ◦ η̂)⊗ τ t ′ =

Sη′
∗
(ϱ),

and therefore,

π(ϕ, ϱ) ◦ η′ ∼=
⊕

ϱ∈π0(Ŝ 0/Z(Ĝ)0)D

Hom(ϱ, (ϱ ◦ η̂)⊗ τ t ′)⊗π(ϕ, ϱ)

=

⊕
ϱ∈π0(Ŝ 0/Z(Ĝ)0)D

Hom(ϱ, Sη′
∗
(ϱ))⊗π(ϕ, ϱ).

Proof. All we need to show is

(27) τϕ(t ′)= τ t ′ .

Under the assumption that the characteristic of F is zero, this identity is given in
the proof of [2013, Lemma 4.2] in which Kaletha writes τϕ(t ′) as (w,w′) for a pair
of Whittaker data conjugate under t ′ [2013, pp. 2454–2455], and τ t ′ is expressed in
terms of the cocycle z = zt ′ and the Tate–Nakayama pairing (Lemma 5.4). His argu-
ment references the work in [Kottwitz and Shelstad 1999, Appendix A] on the hyper-
cohomology of complexes of tori of length two. The argument is the same in positive
characteristic, and to convince the reader that nothing runs awry we offer a sketch.

We write a complex of F-tori of length two simply as T → S, concentrated in
degrees 0 and 1. Let T be a maximal torus in G which is defined over F . Let Z =
Z(G) and Tad=T /Z . Then Tad is a maximal torus in Gad=G/Z , and its Langlands
dual is (T̂ )sc, a maximal torus in the simply connected dual group (Ĝ)sc= Ĝad. The
map (Ĝ)sc→ [Ĝ, Ĝ] → Ĝ induces a map (T̂ )sc→ T̂ with kernel denoted by Ẑ .

The sequence

0→ (0→ Tad)
(0,id)
−−−→ (T → Tad)

(id,0)
−−−→ (T → 0)→ 0

is a short exact sequence, and therefore gives rise to a long exact sequence of Galois
hypercohomology. The first hypercohomology portion of this long exact sequence
appears in the second row of the diagram

(28)

Tad(F) //

∼=

��

H 1(F, Z) //

∼=

��

H 1(F, T )

∼=

��

H 1(F, 0→ Tad) //

��

H 1(F, T → Tad) //

��

H 1(F, T → 0)

��

H 1(WF , (T̂ )sc→ 0)D //

∼=

��

H 1(WF , (T̂ )sc→ T̂ )D //

∼=

��

H 1(WF , 0→ T̂ )D

∼=

��

H 1(WF , (T̂ )sc)
D //H 1(WF , Ẑ)D //(T̂ WF )D
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The third row of the diagram is the Pontryagin dual of the analogous sequence of
the dual tori together with the action of the Weil group on the dual tori. The vertical
arrows between the second and third rows are given by the pairing [Kottwitz and
Shelstad 1999, (A.3.15)] (see [Dillery 2022, Proposition A.4]).

The first row of the diagram is defined as follows. Any element in Tad(F) may
be written as t ′Z where t ′ ∈ T . The first horizontal map sends t ′Z to the class of
the 1-cocycle zt ′ defined by

(29) zt ′(σ )= (t ′)−1 σ(t ′), σ ∈ 0.

The second horizontal map in the top row carries zt ′ to itself. The vertical isomor-
phisms between the first and second rows are canonical and left as exercises (see
[Kottwitz and Shelstad 1999, A.1]).

The maps of the fourth row and the isomorphisms with the third row follow just as
the ones for the first and second rows. Starting with h ∈ T̂ WF , we choose h′ ∈ (T̂ )sc

so that h = h′ Ẑ . We then define an element ch′ in H 1(WF , Ẑ) or H 1(WF , (T̂ )sc)

by imitating (29) (see [Solleveld 2020, (2.8)]). The maps in the fourth row are the
ones dual to those just defined.

Diagram (28) is commutative, due to the functoriality of the vertical morphisms
(see [Kottwitz and Shelstad 1999, (A.3.5)]). By making a comparison with the coho-
mology crossed modules, one can also see that the map H 1(F, Z)→ H 1(WF , Ẑ)D

in the middle of (28) is independent of the choice of maximal torus T (see the
proof of [Kaletha 2015, Proposition 5.19]). Combining these facts with T = T and
T = j S, we obtain the commutative diagram

T ad(F)

��

//H 1(F, Z) //

��

H 1(F, j S)

��

H 1(WF , (T̂ )sc)
D //H 1(WF , Ẑ)D // (̂S ϕ(WF )

)D

Consider the element t ′Z ∈ T ad(F) in the top left of this diagram. If we trace
t ′ ∈ T through the vertical map on the left and the lower horizontal maps, we
arrive at τϕ(t ′) [Kottwitz and Shelstad 1999, (A.3.13); Solleveld 2020, (2.11)].
Alternatively, tracing t ′ ∈ T through the upper horizontal maps followed by the
vertical map on the right we arrive at τt ′ [Kottwitz and Shelstad 1999, (A.3.14)].
The commutativity of the diagram yields the desired identity (27). □

Appendix: Intertwining maps and coset identities

This appendix groups together some important results that were cited in the main
text, but whose proofs did not necessarily fit with the flow of the main narrative.

Proposition A.1. Let G and G be as per Theorem 4.1, and let G1 ⊆ G2 ⊆ G(F).
Let g ∈G(F) and let Ad(g) be the automorphism of G(F) as defined in Section 2.3.
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Then, given a representation π of G1,

Ind
Ad(g)(G2)

Ad(g)(G1)
(π ◦Ad(g−1))≃ IndG2

G1
π ◦Ad(g−1).

Proof. Let V denote the vector space on which the representations π and π◦Ad(g−1)

act. Then, Ind
Ad(g)(G2)

Ad(g)(G1)
(π◦Ad(g−1)) and IndG2

G1
π◦Ad(g−1) act on the vector spaces

W = { f : Ad(g)(G2)→ V locally constant | f (gh)= (π ◦Ad(g))(h)−1 f (g)

for all h ∈ Ad(g)(G1)}

and

W = { f : G2→ V locally constant | f (gh)= π(h)−1 f (g) for all h ∈ G1},

respectively. Define a linear map F as

F :W →W , f 7→ f ◦Ad(g−1).

The map F is bijective as a consequence of Ad(g−1) : Ad(g)(G2)→ G2 being
bijective. It is then an easy computation to verify that F intertwines the representa-
tions Ind

Ad(g)(G2)

Ad(g)(G1)
(π ◦Ad(g−1)) and IndG2

G1
π ◦Ad(g−1). □

Proposition A.2. Let µ : H ′2 → H2 be a morphism of locally profinite groups,
H1 ⊂ H2 and H ′1 ⊂ H ′2 subgroups such that µ(H ′2)∩H1 =µ(H ′1) and ker(µ)⊂ H ′1.
Let π be a representation of H1. Then,

Ind
H ′2
H ′1

(π ◦µ)≃
(
Ind

µ(H ′2)
µ(H ′1)

ResH1
µ(H ′1)

π
)
◦µ.

Proof. Let V denote the vector space on which the representations π and π ◦µ

act. Then, the representations
(
Ind

µ(H ′2)
µ(H ′1)

ResH1
µ(H ′1)

π
)
◦µ and Ind

H ′2
H ′1

(π ◦µ) act on
the vector spaces

Wµ={ fµ :µ(H ′2)→V locally constant | fµ(gh)=π(h)−1 fµ(g) for all h∈µ(H ′1)}

and

W = { f : H ′2→ V locally constant | f (gh)= (π ◦µ)(h)−1 f (g) for all h ∈ H ′1},

respectively. Define a linear map F as

F :Wµ→W , fµ 7→ fµ ◦µ.

One sees that the map F is injective, as µ : H ′2→ µ(H ′2) is surjective.
Next, we show that F is surjective. Given f ∈ W , we have that f is constant

on the coset h ker µ for all h ∈ H ′2. Indeed, for all z ∈ ker µ ⊂ H ′1, we have
f (hz)= (π ◦µ)(z)−1 f (h)= f (h). This allows us to define a map

fµ : H ′2/ ker µ→ V , h ker µ 7→ f (h),
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which we view as an element of Wµ under the isomorphism µ(H ′2) ≃ H ′2/ ker µ.
By construction we have F( fµ)= f , which proves surjectivity.

It is then an easy computation to verify that F intertwines the representations(
Ind

µ(H ′2)
µ(H ′1)

ResH1
µ(H ′1)

π
)
◦µ and Ind

H ′2
H ′1

(π ◦µ). □

Lemma A.3. Let A, B, C be subgroups of a fixed group such that B ⊆ A, and both
A and B normalize C. Then there is a natural bijection

AC/BC ≃ A/B(A∩C).

Proof. Note that B ⊆ A normalizes both A and C , so that B normalizes A ∩C .
Consequently, B(A∩C) is a group, and A/B(A∩C) is a set of cosets. Consider
the map A/B(A∩C)→ AC/BC of cosets defined by

aB(A∩C) 7→ aBC, a ∈ A.

This map is clearly well defined and surjective. Furthermore, if a1 BC = a2 BC for
a1, a2 ∈ A, then a1 = a2bc, where b ∈ B and c = b−1a−1

2 a1 ∈ A∩C . This proves
that the map is injective. □

Lemma A.4. Let N , A, B, N , A, B be groups that satisfy the conditions

N A A N

B B

◁

⊇ ⊇

▷

⊇

Let L be a set of coset representatives of N\A/B, L be a set of coset representatives
of N\A/B, and suppose that both L and L are finite. Write LL={lℓ : l ∈ L , ℓ∈L}.

(1) Suppose A ⊆ B, N ∩ A ⊆ N , and B/(N ∩ B)B ≃ A/NB. Then LL is a set of
coset representatives of N\A/B.

(2) If N ⊆ N , N ∩ B = B, N = A and N is a normal subgroup of A, then LL is a
set of coset representatives of N\A/B.

Proof. Since N is normal in A, and N is normal in A, we note that N\A/B= A/NB,
N\A/B = A/NB and N\A/B = A/NB.

To prove (1), we use the normality of N , the inclusion B⊆ B and the isomorphism
B/(N ∩ B)B ≃ A/NB, along with the second and third isomorphism theorems to
show that

A/NB ≃ A/NB/A/NB.

As both L and L are finite it follows that

|A/NB| · |A/NB| = |A/NB|.
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We then use the inclusions A ⊆ B and N ∩ A ⊆ N to show that the map

µ : L ×L→ A/NB, (l, ℓ) 7→ lℓNB,

is injective.
The proof of (2) follows the exact same strategy as the proof of (1). □
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THE LOCAL GROSS–PRASAD CONJECTURE OVER
ARCHIMEDEAN LOCAL FIELDS
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Following the approach of C. Mœglin and J.-L. Waldspurger, this article
proves the local Gross–Prasad conjecture over R and C based on the tem-
pered cases of Luo and the author.
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1. Introduction

In [19; 20], B. Gross and D. Prasad formulated a conjecture on the local multiplicity
for Bessel models of special orthogonal groups over a local field of characteristic
0, known as the local Gross–Prasad conjecture. When the local field is non-
Archimedean, the conjecture was proved in [29] based on the tempered cases
proved in [36; 37; 38; 39; 40]. This paper proves the local Gross–Prasad conjecture
over Archimedean local fields. The proof over the real field follows Mœglin and
Waldspurger’s approach and is based on the tempered cases proved in [28; 10].

There are some recent applications of the local Gross–Prasad conjecture. The
paper [22] takes it as an input to prove one direction of the global Gross–Prasad
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conjecture, and the paper [24] uses the local Gross–Prasad conjecture to develop
the theory of arithmetic wavefront sets for irreducible admissible representations of
classical groups. We refer to the ICM report of R. Beuzart-Plessis [6] for a general
discussion of the significance of the local Gross–Prasad conjecture in arithmetic.

The local Gross–Prasad conjecture is set up as follows: Let F be a local field
of characteristic 0, and (W, V ) be a pair of nondegenerate quadratic spaces over
F such that the orthogonal complement W⊥ of W in V is odd-dimensional and
split over F . We let G be the algebraic group SO(W )× SO(V ) over F and take
its subgroup H = 1SO(W ) ⋉ N, where 1SO(W ) is the image of the diagonal
embedding SO(W ) ↪→ SO(W )× SO(V ) and N is the unipotent part of a parabolic
subgroup stabilizing a full totally isotropic flag on W⊥. We fix a generic character
ξN of N = N(F) that uniquely extends to a character ξ of H = H(F). For every
irreducible admissible representation π of G = G(F) (we require the representation
to be Casselman–Wallach when F is Archimedean), we define the multiplicity

m(π) := dim HomH (π |H , ξ).

It was proved in [1; 16; 40] over non-Archimedean fields and in [34; 23] over
Archimedean fields that

m(π)⩽ 1.

This result is known as the multiplicity-one theorem. The local Gross–Prasad
conjecture is a refinement of the multiplicity-one theorem that takes representations
of pure inner forms of G into consideration.

For every α ∈ H 1(F,H) ↪→ H 1(F,G), the inner twists of G,H by α give pure in-
ner forms Gα,Hα , respectively. Then Gα=SO(Wα)×SO(Vα) and Hα=1SO(Wα)⋉
N, where Wα is the inner twist of W by α ∈ H 1(F,H) = H 1(F, SO(Wα)) and
Vα =Wα ⊥ S. Let ξα be the character of Hα = Hα(F) obtained by the extension of
ξN . For every irreducible admissible representation π of Gα = Gα(F) (we require
the representation to be Casselman–Wallach when F is Archimedean), we extend
the definition of multiplicity by setting

m(π) := dim HomHα (π |Hα , ξα).

For every local L-parameter φ :WF →
LG, we denote by 5F,φ(G) the corre-

sponding L-packet, which consists of finitely many irreducible admissible repre-
sentations of G(F), which are Casselman–Wallach when F is Archimedean. For
every α ∈ H 1(F,G). the Langlands dual group LGα of Gα is isomorphic to that of
G, so φ also represents a local L-parameter of Gα. Following D. Vogan [35], we
can define the Vogan L-packet associated to φ as

5Vogan
F,φ :=

⊔
α∈H1(F,G)

5φ(Gα).
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The L-parameter φ is called tempered if Im(φ) is bounded. The L-parameter φ is
called generic if there is a generic representation in 5Vogan

F,φ . In particular, tempered
parameters are generic.

When φ is generic, it was conjectured by Vogan and known over Archimedean
local fields [35, Theorem 6.3], that, fixing a Whittaker datum of {Gα}α∈H1(F,G),
there is a bijection

π ∈5Vogan
F,φ ←→ ηπ ∈ Ŝφ.

Here Ŝφ is the set of (complex) characters of component group

Sφ := π0(CentĜ(Im(φ))),

where CentĜ(Im(φ)) is the centralizer of the image Im(φ) in the dual group Ĝ.
Gross and Prasad suggested that one may consider the relevant Vogan packet,
defined as

5Vogan
F,φ,rel :=

⊔
α∈H1(F,H)

5F,φ(Gα)⊂5
Vogan
F,φ .

In particular, the multiplicity m(π) is well-defined for representations in 5Vogan
F,φ,rel.

Conjecture 1 [19; 20]. With the notions above, the following two statements hold.

(1) (multiplicity one) For every generic parameter φ of G, we have∑
π∈5Vogan

F,φ,rel

m(π)= 1.

This implies that there is an unique representation π ∈ 5Vogan
F,φ,rel such that

m(π)= 1.

(2) (epsilon dichotomy) Fix the Whittaker datum of {Gα}α∈H1(F,G) as [20, (6.3)].
The unique representation π ∈5Vogan

F,φ,rel such that m(π)=1 can be characterized
as

ηπ = ηφ,

where ηφ is defined in (2.3.2).

When F is non-Archimedean and φ is tempered, Waldspurger proved the con-
jecture in [36; 37; 38; 39; 40]. Mœglin and Waldspurger completed the proof of
Conjecture 1 for generic parameters based on the results in the tempered cases.

When F =R and the parameter φ is tempered, Z. Luo proved the multiplicity-one
part of Conjecture 1 in [28] following the work of R. Beuzart-Plessis in [5]. The
author and Luo proved the epsilon-dichotomy part of Conjecture 1 in [10] by a
simplification of Waldspurger’s approach.

The main result of the paper is the following.

Theorem 1.0.1. When F = R or C, Conjecture 1 holds for generic parameters.
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The proof over C is done by construction based on results in [18] and the proof
over R follows the strategy in [29]. The proof consists of a structure theorem
(Proposition 4.0.5) for representations in generic packets and a multiplicity formula
(Theorem 5.0.1). With these results, we can reduce all situations of the conjecture
into the tempered cases.

In Section 4, we prove the structure theorem using the standard module conjecture.
The proof of the multiplicity formula, however, is more intricate. Following [29],
this requires a formula for reduction to basic cases and two multiplicity formulas
that establish inequalities needed to prove the basic cases.

In the basic case, one inequality of the multiplicity formula is proved using orbit
analysis (Section 5.3). The proof of the other inequality is expected to be completed
using harmonic analysis in Section 5.4. The formula for reduction to the basic cases,
which is an equality, can be established by proving two inequalities in a manner
similar to the inequalities in the basic case. The non-Archimedean counterpart is
discussed in [29, Section 2], [29, Sections 1.4 1.6], and [29, Sections 1.7 1.8].

There is a parallel conjecture for unitary groups, formulated by W. Gan, Gross,
and Prasad. Over non-Archimedean local fields, the conjecture for tempered param-
eters was treated by Beuzart-Plessis in [3; 4]; Based on the tempered cases, Gan and
A. Ichino proved the conjecture for generic parameters in [15]. Over Archimedean
local fields, Beuzart-Plessis proved the multiplicity-one part of the conjecture in [5]
for tempered parameters using local trace formula and endoscopy. Xue completed
the proof for tempered cases in [43] using theta correspondence and proved the
generic cases in [42].

Although it is not necessary for the proof for the local Gan–Gross–Prasad
conjecture, the multiplicity formula (Theorem 5.0.1) also works for reducible
representations obtained from parabolic induction. This result can be applied to the
study of local descents in my joint work with D. Jiang, D. Liu, L. Zhang [12].

Organization. In Section 2, we recall the statement of the local Gross–Prasad
conjecture following [19; 20]. In Section 3, we work over the complex field C. We
follow the observation in [19, §11] and prove the conjecture by constructing an
explicit functional of the representation πV ⊠πW using the results in [18].

In Sections 4 5, we work over the real field R. Section 4 provides a structure
theorem for representations in generic packets, using a sufficient condition for
irreducibility. In Section 5, we reduce the conjecture to the tempered cases by
employing a multiplicity formula, following the approach in [29].

For the basic case of the multiplicity formula, we prove one inequality using
representation theory and orbit analysis (Section 5.3) and the other using harmonic
analysis (Section 5.4). Additionally, in Sections 5.3 5.4, we establish a formula that
reduces the multiplicity to the basic cases.
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2. Local Gross–Prasad Conjecture

In this section, we review the local Gross–Prasad conjecture over Archimedean
local fields following [19] and [20].

2.1. Gross–Prasad triples. Let F =R or C and (W, V ) be a pair of nondegenerate
quadratic spaces over F . The pair (W, V ) is called relevant if and only if there
exists an anisotropic line D and a nondegenerate even-dimensional split quadratic
space Z over F such that

V =W⊥D ⊥ Z .

We set r = dim Z
2

. There exists a basis {zi }
±r
i=±1 of Z such that

q(zi , z j )= δi,− j , ∀i, j ∈ {±1, . . . ,±r},

where q is the quadratic form on V . We denote by PV the parabolic subgroup of
the special orthogonal group SO(V ) stabilizing the totally isotropic flag

(2.1.1) ⟨zr ⟩ ⊂ ⟨zr , zr−1⟩ ⊂ · · · ⊂ ⟨zr , . . . , z1⟩.

We take PV =MV ·N to be its Levi decomposition. In particular, the Levi subgroup
MV ≃ SO(W ⊕ D)×GLr

1.
Let G= SO(W )× SO(V ). We identify N as a subgroup of G via the embedding

SO(V ) ↪→ 1× SO(V ). We set 1SO(W ) as the image of the diagonal embedding
SO(W ) ↪→ G. Then 1SO(W ) acts on N by adjoint action of SO(W )⊂MV . We set

H=1SO(W )⋉N.

We define a morphism λ : N→ Ga by

λ(n)=
r−1∑
i=0

q(z−i−1, nzi ), n ∈ N.

Then λ is1SO(W )-conjugation invariant and hence λ admits an unique extension to
H that is trivial on1SO(W ). We still denote this character by λ. Let λF :H(F)→ F
be the induced morphism on F-rational points. We define an unitary character of
H = H(F) by

ξ(h)= λF (h), h ∈ H,

where ψ is a fixed additive (unitary) character ψ of F . The triple (G,H, ξ) is called
the Gross–Prasad triple associated with the relevant pair (W, V ).

2.2. Vogan L-packets. We now recall the notion of Vogan L-packets for special
orthogonal groups over Archimedean local fields following [35] and review the
definition of the relevant Vogan L-packet following [19; 16].



138 CHENG CHEN

For any reductive algebraic group G over a local field F , we denote by Ĝ the
dual group of G and by LG the Langlands dual group of G. It was established by
Langlands in [27] that every local L-parameter φ : LF→

LG gives a local L-packet
5F,φ(G), which consists of a finite set of irreducible admissible representations
of G = G(F). In particular, when F is Archimedean, the representations in the
packet are Casselman–Wallach [7; 41], which means that they are smooth Fréchet
representations of moderate growth and the associated Harish-Chandra modules
are admissible.

A pure inner form Gα is an inner twist of G by α ∈ H 1(F,G). Since pure inner
forms of G share the same dual group, every local L-parameter φ : LF →

LG of
G can be viewed as an L-parameter for any pure inner form Gα. Hence, one can
define the Vogan L-packet as

5Vogan
F,φ :=

⊔
α∈H1(F,G)

5F,φ(G
′).

Now we consider reductive group G with a quasisplit pure inner form. A Whittaker
datum w for G is a triple (G′,B′, ψ ′) where G′ is a quasisplit pure inner form of
G, B′ is a Borel subgroup of G′, and ψ ′ is a generic character of the unipotent
radical N ′ = N′(F) of B′(F). A representation π ′ of G′(F) is called w-generic
if HomN ′(π

′
|N ′, ξ

′) ̸= 0. An L-parameter φ is called (w-)generic if the Vogan
L-packet contains a generic representation. As argued in [16, §18], the genericity
of an L-parameter is independent of the choice of the Whittaker datum.

From [35], when F is Archimedean, fixing a generic L-parameter φ and a
Whittaker datum w of G, there is a bijection

(2.2.1) π ∈5Vogan
F,φ 7→ ηπ ∈5(Sφ),

where 5(Sφ) is the set of characters of the component group

Sφ := π0(CentĜ(Im(φ))).

Therefore, we can parametrize representations in Vogan packets with characters
η : Sφ→ {±1}.

Now we return to the setting in Section 2.1. For α ∈ H 1(F,H)= H 1(F, SO(W )),
we denote by Wα the inner twist of W by α and set Vα =Wα ⊥ D ⊥ Z . Then the
inner twists of G and H by α ∈ H 1(F,H)⊂ H 1(F,G) are

Gα = SO(Vα)× SO(Wα) and Hα =1SO(Wα)⋉N.

Together with the character ξα : N(F)→ C obtained by the extension of ξN , we
obtain the Gross–Prasad triple associated to the relevant pair (Wα, Vα). The relevant
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Vogan packet is defined by

(2.2.2) 5Vogan
F,φ,rel :=

⊔
α∈H1(F,H)

5φ(Gα).

It is a subset of 5Vogan
F,φ and thus can be parametrized with a subset of 5(Sφ) via

(2.2.1).

2.3. The conjecture. In this subsection, we review the statement of the local Gross–
Prasad conjecture formulated in [19; 20].

Let (W, V ) be a relevant pair over an Archimedean local field F and (G,H, ξ)
be the Gross–Prasad triple associate to it. For an irreducible Casselman–Wallach
representation π of G = G(F), we set H = H(F) and define the multiplicity

(2.3.1) m(π) := dim HomH (π, ξ).

From the multiplicity-one theorem established in [34; 23], we have

m(π)⩽ 1.

The local Gross–Prasad conjecture (Conjecture 1) studies the refinement behavior
of the multiplicity m(π) in a relevant Vogan L-packet, which shows that there is
exactly one representation πφ in 5Vogan

F,rel,φ with multiplicity equal to 1 and the
character ηπφ : Sφ→ {±1} attached to πφ is equal to an explicit character ηφ .

For a generic character φ = φV ×φW of G, the character

ηφ = η
W
φV
× ηV

φW
: SφV ×SφW → {±1}

was constructed explicitly in [19, §10]. For every element s ∈ SφW ×SφV , set

(2.3.2)

ηW
φV
(sV )= det(MsV=−1

V )(−1)
dim MW

2 det(MW )(−1)
dim M

sV =−1
V
2 ε

( 1
2 ,MsV=−1

V ⊗MW ,ψ
)
,

ηV
φW
(sW )=det(MsW=−1

W )(−1)
dim MV

2 det(MV )(−1)
dim M

sW=−1
W
2 ε

( 1
2 ,MsW=−1

W ⊗MV ,ψ
)
.

Here MV and MW are the spaces of the standard representation of LSO(V ) and
LSO(W ), respectively. The notion det( · ) makes a finite-dimensional representation
into a character and the det( · )(−1)means its value at−1∈Wab

R
∼=R×, equivalently,

det( · )( j) for j ∈WR. The space MsV=−1
V denotes the sV = (−1)-eigenspace of

MV and ε( . . . ) is the local root number defined by the Rankin–Selberg integral
[21].

When F = C, the relevant Vogan L-packet 5Vogan
F,φ,rel contains only one element.

Hence, part (1) of the conjecture implies part (2) of the conjecture. We will prove the
following theorem by constructing a nonzero element in HomH (π, ξ) in Section 3.

Theorem 2.3.1. When F = C, Conjecture 1 holds.
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When F = R, in [28], following the work of Waldspurger [36; 38] and Beuzart-
Plessis [5], Luo proved part (1) of Conjecture 1 when the parameter φ is tempered.
In [10], by simplifying Waldspurger’s approach [36; 37; 38; 39; 40], the author and
Luo proved part (2) of Conjecture 1 when the parameter φ is tempered. The main
result in Section 5 is to prove Theorem 5.0.1 that implies the following theorem
based on the Conjecture 1 for tempered parameters.

Theorem 2.3.2. When F = R, Conjecture 1 holds.

3. Integral method and the proof for the complex case

One of the main tools for proving Conjecture 1 is the integral method. In particular,
this is the only tool we would apply to prove Conjecture 1 when F = C. When
F = C and dim V = dim W + 1, Conjecture 1 was proved by J. Möllers in [14]
using an equivalent method. In Section 3, we use some computation in [14] and
present the proof using the integral method following [18].

Let F = R,C. Let G be a quasisplit group over F and H be a closed subgroup
of G such that G/H is absolutely spherical. Suppose there is a Borel subgroup B of
G such that

B∩H= 1.

Let T be the Levi component of B. We set

G = G(F), H = H(F), B = B(F), T = T(F).

Fix a unitary character ψ of F . For an algebraic character λ : H→ Ga , we set
ξ = ψ ◦ λF , which is a unitary character of H .

As a consequence of the integral method in [18], we have the following theorem.

Theorem 3.0.1. Let G, H, B, T as above. For every character σ of T , we have

dim HomH (IndG
B (σ ), ξ)⩾ 1.

First, we construct a measure µ on B ·H ⊂ G by setting µ= f (bh)dbdh where

f (bh) := δ−1/2
B (b)σ−1(b)ξ(h), b ∈ B, h ∈ H.

We can express the function f in the form of

f (bh)= tµ1 tµ2eis1Re(λ(h))+s2Im(λ(h))
∀b = t · n ∈ B = T · N , h ∈ H

for certain s1, s2 ∈ R and µ1, µ2 ∈ Hom(T,Gm). Hence, for every differential
operator D on B × H , the growth of |D f | can be controlled by a polynomial.
Therefore, µ is a tempered measure on B · H , which is left-(B, δ1/2

B σ)-equivariant
and right-(H(F), ξ)-equivariant. Because B is solvable, from [18, Theorem B], one
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can construct a left-(B, δ1/2
B σ)-equivariant and right-(H, ξ)-equivariant distribution

on G.
From [13] and the compactness of B\G, there is a one-to-one correspondence

between Hom(IndG
B (σ ), ξ) and the space of left-(B, δ1/2

B σ)-equivariant and right-
(H, ξ)-equivariant distributions on G.

Now we return to the Gross–Prasad conjecture over F = C. As argued in [19,
§11], since there is exactly one representation in the relevant Vogan L-packet and
this representation is a principal series, it suffices to verify that m(π)⩾ 1 for every
principal series representation π = IndG

B (σ ). For this purpose, we verify B∩H= 1
when (G,H, ξ) is the Gross–Prasad triple associated to a relevant pair (W, V ).

Set PV =MV ·N be the parabolic subgroup stabilizing the totally isotropic flag
(2.1.1) and the Levi subgroup MV can be decomposed as MV =

∏r
i=1 GL(C · zi )×

SO(V ⊕ D). Let PV =MV ·N be the opposite parabolic subgroup of PV .
Let (G′,H′,ξ ′) be the Gross–Prasad triple associated to the relevant pair (W,W⊕D).

From [14, §6.2.4], there exists a Borel subgroup B′ of G′ = SO(W ⊕ D)× SO(W )

such that B′ ∩H′ = 1. We set B= B′ ·
∏r

i=1 GL(C · zi ) ·B
′
· (N̄× 1). Consider the

parabolic subgroup P= PV ×SO(W )=M · (N× 1) of G. Since
∏r

i=1 GL(C · zi )B
′

and H′ are subgroups of M=MV ×SO(W ) such that
r∏

i=1
GL(C · zi )B

′
∩H′ = 1,

we have

B∩H= N ·
r∏

i=1
GL(C · zi )B

′
∩H′ ·N= GL(C · zi )B

′
∩H′ = 1.

This completes the proof for Theorem 2.3.1.

4. Representations in generic packets

In this section, we prove that, for every parameter φ of a special orthogonal group
over R, there is a tempered L-parameter φ0 of a smaller special orthogonal group
with decomposition φ = φGL

⊕φ0⊕ (φ
GL)∨, such that the parabolic induction

π0 7→ σ ⋉π0

induces isomorphism before 5Vogan
φ0

and 5Vogan
φ , where σ is the unique representa-

tion in the packet 5φGL .
Let V be a nondegenerate quadratic space over R. It is well-known that an L-

parameter φV of SO(V ) is generic if and only if the adjoint L-function L(s, φV ,Ad)
is holomorphic at s = 1 (see [19, Conjecture 2.6] and the remark after it). Based on
this property, we first compute an equivalent condition for φV to be generic.

Definition 4.0.1. Given a generic L-parameter φV :WR→
LSO(V ), we denote

by φss
V the semisimplification of φV , that is, the semisimple representation on MV
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defined by the composition φV with the standard representation stdV :
LSO(V )→

GL(MV ).

Given an L-parameter φV , its semisimplification φss
V can be decomposed as

(4.0.1) φss
V =

⊕
| · |

s1
V,iφ1

lV,i
+

⊕
| · |

s2
V,iφ2

mV,i
.

Here φ1
lV,i
(lV,i ∈Z) is a one-dimensional representation of WR=C∪C· j ( j2

=−1)
defined by

φ1
lV,i
(z)= 1, φ2

lV,i
(z · j)= (−1)lV,i , z ∈ C,

and φ2
mV,i

(mV,i ∈ N) is the two-dimensional representation of WR with basis u, v
satisfying

φ2
mV,i

(z)u = u, φ2
mV,i

(z · j)u = (−1)mV,iv,

φ2
mV,i

(z)v = v, φ2
mV,i

(z · j)v = u.

The adjoint L-function L(s, φV ,Ad)= L(s, φss
V ⊗φ

ss,∨
V ) is a product of factors

L(s, φV , | · |
s1

V,iφ1
lV,i
⊗ (| · |

s1
V, jφ1

lV, j
)∨), L(s, φV , | · |

s1
V,iφ1

lV,i
⊗ (| · |

s2
V, jφ2

mV, j
)∨),

L(s, φV , | · |
s2

V,iφ2
mV,i
⊗ (| · |

s1
V, jφ1

lV, j
)∨), L(s, φV , | · |

s2
V,iφ2

lV,i
⊗ (| · |

s2
V, jφ2

mV, j
)∨).

From [25], we can compute the value of these L-functions and obtain that:

(1) L(s, φV , | · |
s1

V,iφ1
lV,i
⊗ (| · |

s1
V, jφ1

lV, j
)∨) has a pole at s = 1 if and only if 1

2(1+
s1

V,i − s1
V, j + (1− (−1)lV,i+lV, j )/2) is a nonpositive integer.

(2) L(s, φV , | · |
s1

V,iφ1
mV,i
⊗ (| · |

s2
V, jφ2

mV, j
)∨) has a pole at s = 1 if and only if

1+ s1
V,i − s2

V, j +
1
2 mV, j is a nonpositive integer.

(3) L(s, φV , | · |
s2

V,iφ2
mV,i
⊗ (| · |

s1
V, jφ1

lV, j
)∨) has a pole at s = 1 if and only if

1+ s2
V,i − s1

V, j +
1
2 mV,i is a nonpositive integer.

(4) L(s, φV , | · |
s2

V,iφ2
mV,i
⊗ (| · |

s2
V, jφ2

mV, j
)∨) has a pole at s = 1 if and only if

1+ s2
V,i − s2

V, j +
1
2(m

2
V,i +mV, j ) or 1+ s2

V,i − s2
V, j +

1
2(|mV,i −mV, j |) is a

nonpositive integer.

Lemma 4.0.2. A parameter φV with semisimplification φss
V in (4.0.1) is generic if

and only if none of

1
2(1+ s1

V,i − s1
V, j + (1− (−1)lV,i+lV, j )/2), 1+ s1

V,i − s2
V, j +

1
2 mV, j ,

1+ s2
V,i − s1

V, j +
1
2 lV,i , 1+ s2

V,i − s2
V, j +

1
2(|mV,i −mV, j |)

is a nonpositive integer.
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Irreducibility criteria. B. Speh and D. Vogan gave a sufficient condition for the
irreducibility of limits of generalized principal series representations in [32, Theorem
6.19]. We apply this result to prove the irreducibility of standard models for
representations in generic packets.

Definition 4.0.3. Given σ1 ∈5(GLn1), . . . , σr ∈5(GLnr ) and πV0 ∈5(SO(p, q)).
We denote by

σ1× · · ·× σr ⋉πV0

the normalized parabolic induction

ISO(p+n,q+n)
Pn1,· ,nr ,p+q

(σ1⊗ · · ·⊗ σr ⊗πV0) ∈5(SO(p+ n, q + n)), n = n1+ · · ·+ nr .

Lemma 4.0.4. Fix a generic parameter φV = φ
GL
V ⊕ φV0 ⊕ (φ

GL
V )∨ of SO(p, q)

(p > q). For σ ∈5φGL
V

and πV0 ∈5
Vogan
φV0

, the representation σ ⋉πV0 is irreducible.

Proof. From [25, Theorem 14.2], we may write the tempered representation πV0 as
a parabolic induction from a limit of discrete series representations. Then we can
express σ ⋉πV0 as

(4.0.2) σ1× · · ·× σl ⋉πV ′0 σi ∈5(GLnV,i )

where π ′V0
∈5(SO(V ′0)) is a limit of discrete series representation and

σi = | · |
s1

V,i sgni or σi = |det|s
2
V,i DmV,i .

Following [32, Theorem 6.19], it suffices to check the following conditions:

(4.0.3) For every root α such that

nα = ⟨α, ν⟩/⟨α, α⟩ ∈ Z,

(1) if α is a complex root (α ̸= −θα), then ⟨α, ν⟩⟨θα, ν⟩⩾ 0;

(2) if α is a real root (α =−θα), then

(−1)nα+1
= ϵα · λ(mα)

Here λ is the central character of σ , mα is the image of ρα(−I2) in G for the
embedding ρα : SL2(R)→ G(R) determined by α and ϵα =−1.

Then we check them using Lemma 4.0.2.

(1) For every complex root α such that nα ∈ Z,

(a) if α is a root of SO(p− q), then ⟨α, ν⟩⟨θα, ν⟩ = 0;

(b) otherwise, θα = α, and then ⟨α, ν⟩⟨θα, ν⟩ = ⟨α, ν⟩2 ⩾ 0.

(2) For every real root βab = ea − eb such that nβab ∈ Z.
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(a) If Eaa is in the GL1-block GLnV,i and Ebb is the in a GL1-block GLnV, j (in the
inducing datum in (4.0.2)), then nβab =

1
2(s

1
V,i − s1

V, j ) is an integer, and both

1
2(1+s1

V,i−s1
V, j+(1−(−1)lV,i+lV, j )/2) and 1

2(1+s1
V, j−s1

V,i+(1−(−1)lV,i+lV, j )/2)

are not nonpositive integers. If lV,i + lV, j is odd, the sum is equal to 2, then
s1

V,i = s1
V, j or s1

V,i − s1
V, j is odd. If lV,i + lV, j is even, the sum is equal to 3/2,

then s1
V,i − s1

V, j is even.

(b) If Eaa is in the GL1-block GLnV,i and Ebb is the in a GL2-block GLnV, j ,
Lemma 4.0.2 implies

s2
V, j −

1
2 lV, j ⩽ s1

V,i ⩽ s2
V, j +

1
2 lV, j .

(c) If Eaa is in the GL2-block GLnV,i and Ebb is the in a GL2-block GLnV, j , we
may assume lV, j ⩾ lV,i , Lemma 4.0.2 implies

s2
V, j −

1
2 lV, j ⩽ s2

V,i −
1
2 lV,i ⩽ s2

V,i +
1
2 lV,i ⩽ s2

V, j +
1
2 lV, j .

Therefore, we have checked cases (b) and (c) following an understanding of the
parity condition in [30, Theorem 2]. For case (a), parity holds unless lV,i + lV, j is
odd and s1

V,i = s1
V, j . In this situation

| · |
s1

V,i sgnlV,i × | · |
s1

V, j sgnlV, j = | · |
s1

V,i sgnlV,i (1× sgn)

And 1×sgn is the limit of a discrete series representation with parameter φ2
0 , which

can be treated as in cases (b) and (c). □

Representations in generic packets. The classification of representations of WR

[25] shows the following factorization into irreducible representations:

(4.0.4) φss
V = φ

GL
V ⊕φV0 ⊕ (φ

GL
V )∨,

where φV0 is tempered and

φGL
V =

lV⊕
i=1

| · |
siφGL

V,i where Re(si ) > 0 for 1 ⩽ i ⩽ lV

for discrete series parameter φV,i (i.e., the image of φV,i is bounded and does not
lie in any proper Levi).

It is straightforward that φGL
V is unpaired. Let nV,i = dimφGL

V,i , nV = dimφGL
V

and σV,i be the unique representation of GLn in the L-packet 5φGL
V,i
(GLnV,i ), then

(4.0.5) 5φGL
V
(GLnV )= {σV } where σV = |det|s1σV,1× · · ·× |det|slV σV,lV
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By Lemma 4.0.4, there is an injective map

(4.0.6) 5Vogan
φV0
→5Vogan

φV
, πV0 7→ σV ⋉πV0 .

Since φGL
V is unpaired, |SφV0

| = |SφV | and thus |5Vogan
φV0
| = |5Vogan

φV
|. This implies

that the above map is an isomorphism and we have the following result.

Proposition 4.0.5. For a generic L-parameter φV = φ
GL
V ⊕ φV0 ⊕ (φ

GL
V )∨, every

representation πV in5Vogan
φV

can be expressed as πV = σV ⋉πV0 where πV0 ∈5
Vogan
φV0

and σV given in (4.0.5).

This result shows that representations in the generic packets are in the form

(4.0.7) πV = σV ⋉πV0, σV = |det|sV,1σV,1× · · ·× |det|sV,rσV,r , ,

where Re(sV,1)⩾ Re(sV,2)⩾ · · ·⩾ Re(sV,r ) > 0, and tempered π0 ∈ Irr(SO(V0)).
And σV,i = sgnlV,i for lV,i = 0, 1 or σVi = DmV,i for mi ∈ N+.

For πV in the form of (4.0.7), we define the following notions.

Definition 4.0.6. We parametrize the infinitesimal character of πV with the Harish-
Chandra parameter for πV in (4.0.7) is defined as

ν = (ν1, . . . , νr , νπV0
)

where νπV0
is the Harish-Chandra parameter of the tempered representation πV0 ,

νi = si when ρV,i = sgnlV,i , and νi =
(
sV,i+

1
2 mV,i , sV,i−

1
2 mV,i

)
when ρV,i = DmV,i .

Definition 4.0.7. We define the leading index of πV as the largest number among
Re(sV,i ). We denote it by LI(πV ).

5. Proof for the real case

We now complete the proof of the local Gross–Prasad conjecture (Conjecture 1)
over the real field based on the tempered cases. More specifically, following the
approach in [29], we prove a multiplicity formula for the reduction to the tempered
cases and conclude the conjecture with the tempered cases proved in [10].

The proof uses the idea of Mackey’s theory. Let G be a reductive group over
R, H is a closed subgroup of G and P is a parabolic subgroup of G with Levi
decomposition P = MN. We denote by G = G(R), H = H(R) and P = P(R).
For a representation σ of M =M(R), we study the space HomH (IndG

P (σ ), 1H ) by
analyzing the double coset P\G/H . Since P\G is compact, the smooth induction
IndG

P (σ ) is equal to the Schwartz induction in the sense of [13]. In order to use the
analytic tools established in [13] and [11], we work within the category of almost
linear Nash groups [33, Definition 1.1] and consider the category of Nash manifolds
[33, Definition 2.1], with the possible action of certain almost linear Nash groups.
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In particular, for a linear algebraic group G over R, G(R) can be treated as an almost
linear Nash group.

Let G be an almost linear Nash group. We denote by SF(G) the categories
of smooth Fréchet G-representations of moderate growth. We denote by CW(G)
the subcategory of SF(G) consisting of representations with admissible (gC, K )-
modules, that is, the category of Casselman–Wallach representations of G. We use
Irr(G) to denote the set of irreducible Casselman–Wallach representations of G.

Our main result in this section is the following theorem.

Theorem 5.0.1 (multiplicity formula). Let V,W be quadratic spaces with decom-
positions V = V0 ⊥ (XV + X∨V ), W = W0 ⊥ (XW + X∨W ). Let πV0 ∈ Irr(SO(V0)),
πW0 ∈ Irr(SO(W0)) be tempered representations and σV ∈ CW(SO(V )), σW ∈

CW(SO(W )) such that

(5.0.1)
σV = |det|sV,1σV,1× · · ·× |det|sV,rV σV,rV ,

σW = |det|sW,1σW,1× · · ·× |det|sW,rW σW,rW ,

for Re(sV,i ),Re(sW,i ) > 0 and tempered representations σV,i ∈ Irr(GLnV,i (F))
(i = 1, . . . , rV ), σW,i ∈ Irr(GLnW,i (F)) ( j = 1, . . . , rW ); here nV,i , nW,i are integers
such that

∑rV
i=1 nV,i = dim XV and

∑rW
i=1 nW,i = dim XW . Then we have

m((σV ⋉πV0)⊠ (σW ⋉πW0))= m(πV0 ⊠πW0).

Note that in the theorem, the representations σV ⋉ πV0 and σW ⋉ πW0 can be
reducible. The reducible case of the multiplicity formula is actually necessary
when it is applied in [12]. In this article, to complete the proof for the real case
of the Gross–Prasad conjecture, we only use the formula when both σV ⋉πV0 and
σW ⋉πW0 are irreducible.

Proof of Theorem 2.3.2 given Theorem 5.0.1. Given generic parameters φV , φW ,
from Proposition 4.0.5, we can express the parameters as

(5.0.2) φV = φ
GL
V +φV0 + (φ

GL
V )∨, φW = φ

GL
W +φW0 + (φ

GL
W )∨

such that φGL
V has no self-dual subrepresentation.

Let σV be the unique representation in5Vogan
φGL

V
and σW be the unique representation

in 5Vogan
φGL

W
. For every πV ⊠πW ∈5

Vogan
φV×φW

, there exists πV0 ⊠πW0 ∈5
Vogan
φV×φW

such
that

πV = σV ⋉πV0, πW = σW ⋉πW0 .

Therefore, the maps

5Vogan
φV0
→5Vogan

φV
, πV0 7→ σV ⋉πV0, and

5Vogan
φW0
→5Vogan

φW
, πW0 7→ σW ⋉πW0
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are isomorphisms. Hence, we can identify the component group SφV0×φW0
with

SφV×φW . Under this identification, it can be easily verified that for φV , φW , φV0, φW0 ,
we have

ηφV0×φW0
= ηφV×φW .

Theorem 5.0.1 reduces Conjecture 1 for φV , φW to that for φV0, φW0 , which is a
tempered case proved in [28; 10]. □

Following [29], there are three steps in our proof for Theorem 5.0.1: reduction
to basic cases, the first inequalities, and the second inequalities.

A relevant pair (W, V ) is called basic if dim V = dim W + 1. For a general
relevant pair (W, V ) with decomposition V = W ⊥ Z ⊥ D, we let D+ be the
anisotropic line with the opposite signature to D. We set Z+ = Z ⊥ (D+ D+) and
set (V,W+)= (V, Z+⊕W ) and we call (V,W+) the basic relevant pair associate
to (W, V ).

Definition 5.0.2. Let s1, s2, . . . , sr+1 be complex numbers. We say the (r+1)-tuple
s = (s1, . . . , sr+1) are in general position, if s ∈Ct+1 does not lie in the set of zeros
of countably many polynomial functions on Ct+1.

For the (r + 1)-tuple s = (s1, . . . , sr+1), we denote by σs the spherical principal
series representation | · |s1 × · · ·× | · |

sr+1 .

Lemma 5.0.3 (reduction to basic cases). For every πV ∈ Irr(SO(V )) and πW ∈

Irr(SO(W )), we have

m(πV ⊠πW )= m((σs ⋉πW )⊠πV )

for s = (s1, . . . , sr+1) ∈ Cr+1 in general position.

With this, we find such a spherical principal series σs and reduce Theorem 5.0.1
to the case for a relevant pair (V,W ⊕ Z+) and representations σs ⋉πW , πV that
can be expressed in the parabolic induction form as in (4.0.7), which is a basic case.

Proposition 5.0.4 (basic case of the multiplicity formula). Given a basic relevant
pair (W, V ), let πV ∈ CW(SO(V )) and πW ∈ CW(SO(W )) as in Theorem 5.0.1,
we have

m(πV ⊠πW )= m(πV0 ⊠πW0).

The inequalities m(πV ⊠πW )⩾ m(πV0 ⊠πW0) and m(πV ⊠πW )⩽ m(πV0 ⊠πW0)

are called “the first inequality” and “the second inequality” in [29]. Using a similar
approach as [29], we prove the first inequality using mathematical induction with
the following lemma as the building block (Section 5.3).

Lemma 5.0.5. Let πV be a representation in a generic packet and πW ∈ Irr(SO(W )).
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(1) When dim V = dim W + 1 and Re(s)⩾ LI(πV ), we have

m(πV ⊠πW )⩾ m((| · |ssgnm ⋉πW )⊠πV ).

(2) When dim V = dim W + 3 and Re(s)⩾ LI(πV ), we have

m(πV ⊠ (| · |s+
m
2 sgnm+1 ⋉πW ))⩾ m((|det|s Dm ⋉πW )⊠πV ),

where Dm is the Langlands quotient of the induction | · |−
m
2 × | · |

m
2 sgnm+1.

The second inequality holds in a more general setup.

Lemma 5.0.6. For πV ∈ CW(SO(V )), πW ∈ CW(SO(W )) and σX+ is a generic
representation in CW(GL(X+)), we have

m(πV ⊠πW )⩽ m((σX+ ⋉πW )⊠πV )

We prove one inequality of Lemma 5.0.3 and Lemma 5.0.5 in Section 5.3 and
prove the other inequality of Lemma 5.0.3 and Lemma 5.0.6 in Section 5.4. It is
worth mentioning that Lemma 5.0.3 can also be proved with Schwartz homology
as in [43].

5.1. Some functors and vanishing theorems. In this section, we review some
analytic tools established in [13] and [11] to study certain Fréchet spaces of moderate
growth.

Schwartz induction. Let G be an almost linear Nash group.

Proposition 5.1.1. For π ∈ CW(G), the projective tensor product · ⊗̂π is an exact
functor in SF(G).

Proof. From [2], the underlying Fréchet space of π is nuclear and the proposition
follows from [8, Lemma A.3]. □

Let H be a Nash subgroup of G and πH ∈ SF(H). We denote by H\(G×πH )

the vector bundle over H\G obtained by G×πH quotient by left H -action

(5.1.1) h.(g, v)= (h · g, πH (h).v) for h ∈ H, g ∈ G and v ∈ πH .

This vector bundle is tempered. We define the Schwartz induction as the functor

IndS,G
P : SF(H)→ SF(G), πH 7→ 0S(H\G, πH ),

where 0S(H\G, πH ) stands for the space of Schwartz sections over the tempered
vector bundle H\(G × πH ). In particular, when G is reductive and P ⊂ G is
a parabolic subgroup of it, P\G is compact, so the Schwartz induction IndS,G

P
coincides with the smooth induction, and we denote by IG

P the normalized induction
IndS,G

P (δ
1/2
P · ), where δP is the modular characters of P . We will use the following

properties of Schwartz inductions.



THE LOCAL GROSS–PRASAD CONJECTURE OVER ARCHIMEDEAN LOCAL FIELDS 149

Proposition 5.1.2. (1) [11, Propositon 7.1] IndS,G
H is an exact functor SF(H)→

SF(G).

(2) [11, Proposition 7.2] For a closed subgroup H ′ of H , we have

IndS,G
H ◦ IndS,H

H ′ = IndS,G
H ′ .

(3) [11; 2, Proposition 7.4] For πG ∈ CW(G) and πH ∈ SF(H), then

IndS,G
H (πH ⊗̂πG |H )= IndS,G

H (πH ) ⊗̂πG .

The Hom-functor. For any category C and object M , it is well-known that the
functor Hom(−,M) is left exact and invariant under projective limit. We first apply
this result to the category SF(G) and obtain the following result.

Lemma 5.1.3. (1) For an exact sequence 0→ π1→ π2→ π3→ 0 in SF(G),
suppose HomG(π1, 1G)= HomG(π3, 1G)= 0. Then

HomG(π2, 1G)= 0.

(2) For a directed set I and projective system (πα, fαβ)α,β∈I in SF(G), and for
I ′ ⊂ I , suppose HomG(πα, 1G)= 0 for all α ∈ I ′. Then

Hom(lim
←−−
i∈I
πα, 1G)= 0.

Definition 5.1.4. (1) For a countable directed set I and a Fréchet space V , a set
{Vk}k∈I of subspaces of V is called a complete decreasing filtration of π if

(a) V j ⊂ Vi for i < j , and, denoting by f j i the injection maps,
(b) {Vi , f j i }i< j∈I is a complete projective system, that is,

lim
←−−
i∈I

V/Vi = V .

(2) The composition factors of a complete decreasing filtration are

Vα/Vα+, α ∈ I,

where α+ is the successor of α in I .

Corollary 5.1.5. For an almost linear Nash group G, π ∈ SF(G) and a complete
decreasing filtration {πk}k∈I of π , suppose HomG(Vα/Vα+, 1G)= 0 for all α ∈ I .
Then we have

HomG(π, 1G)= 0.

Proof. This can be obtained from Lemma 5.1.3 with the arguments in [42]. □

Propositions 8.2 and 8.3 of [11] provide a complete decreasing filtration that is
helpful for distributional analysis.
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Theorem 5.1.6. Let X be a Nash manifold, Z be a closed Nash manifold of X and
U = X − Z. There is a decreasing complete filtration on 0S

Z(X , E), denoted by
0S
Z(X , E)k , whose composition factors are isomorphic to

(5.1.2) 0S(Z,Symk N∨Z/X ⊗ E|Z), k = 0, 1, . . . ,

where N∨Z/X is the conormal bundle over Z (see [11, Section 6.1].)

Vanishing by infinitesimal characters.

Definition 5.1.7. For an infinitesimal character χ : Z(U(gC))→ C, we denote by
χ∨ the infinitesimal character generated by the relation

χ∨(X)= χ(−X), X ∈ gC.

Theorem 5.1.8. For representations π1, π2 of G with infinitesimal characters
χπ1, χπ2 , satisfying χπ1 ̸= χ

∨
π2

, we have

HomG(π1 ⊗̂π2, 1G)= 0.

Proof. The existence of elements in HomG(π1 ⊗̂π2, 1G) implies the existence of a
homomorphism on (gC, K )-modules. This contradicts the relation of infinitesimal
characters. □

We apply the above theorem in the following setup:

Corollary 5.1.9. Suppose πV0 ∈ SF(SO(V0)) and πV ∈ Irr(SO(V )).

(σs ⋉πV0) ⊗̂πV

for σs = | · |
s1 × · · ·× | · |

sr and s = (s1, . . . , sr ) in general positions.

Vanishing by leading index.

Definition 5.1.10. By the Langlands classification, for every πV ∈ Irr(SO(V )), we
can express πV as the Langlands quotient of a certain induction

(5.1.3) |det|s1ρ1× · · ·× |det|srρr ⋉πV0

for Re(s1)⩾ · · ·⩾ Re(ar ) > 0 and tempered representations ρ1, . . . , ρr , πV0 . We
define the leading index for Langlands quotient as LI(πV )=Re(s1). This definition
is compatible with Definition 4.0.7 when the standard module (5.1.3) is irreducible.
In particular, the definitions are compatible when πV is in a generic packet.

Theorem 5.1.11 [9, Theorem A.1.1]. If Re(s) > LI(πV ), then

Hom1SO(V )((|det|sρ⋉πV0)⊠πV , 11SO(V ))= 0

for πV0 ∈ SF(SO(V0)) and πV ∈ Irr(SO(V )).
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5.2. The restriction of principal series to mirabolic subgroups. We now turn to
the graded structure of the restriction of certain principal series of GLn to the
mirabolic subgroup Rn−1,1 as in [42, §5], that is, the subgroup of GLn leaving
Vn/Vn−1 invariant, where Vn is the space of the standard representation of GLn and
Vn−1 is an (n− 1)-dimensional subspace of Vn . These results will be used in the
distributional analysis of the open orbit in Section 5.3.

Graded structure of | · |−
m
2 ×|· |

m
2 sgnm+1. By definition, the discrete series Dm of

GL2(R) is the unique quotient of the induction πI =|·|
−

m
2 ×|·|

m
2 sgnm+1. We denote

πF the unique subrepresentation of this induction πI , then πm is an m-dimensional
irreducible representation of GL2(R).

• Let B2 be the (upper-triangular) Borel subgroup of GL2 with Levi decomposi-
tion B2 = T2N2. Let K = SO2(R), B2 = B2(R), T2 = T2(R), N2 = N2(R) and
R1,1 = R1,1(R).

• We write

nx =

(
1 x

1

)
kθ =

(
cos θ sin θ
−sin θ cos θ

)
w2 =

(
1

1

)
,

then N2 = {nx : x ∈ R} and K = {kθ : θ ∈ [0, 2π)}.

• We write X2 = B2\GL2(R), U2 = B2\B2w2 B2 ⊂ X2 and Z2 = B2\B2.

• By definition,

πI = IndS,GL2(R)
B2

(| · |
m+1

2 ⊗ | · |
m−1

2 sgnm+1).

We write χ1 = | · |
−m+1sgnm+1 and χ2 = | · |

m−1
2 sgnm+1. Then

πI = IndS,GL2(R)
B2

(χ1χ2⊗χ2).

Lemma 5.2.1. (1) The representation πF is isomorphic to the n-dimensional
GL2(R)-representation

χ1χ2(det( · ))Symn−1(C2),

where C2 is the standard representation of GL2(R).

(2) The restriction πF |R1,1 has irreducible components

|det( · )|ksgnk(det( · )), for k = 0, 1, . . . ,m− 1.

Proof. Part (1) follows directly from [17, §2.3]. Part (2) follows from direct
computation based on (1). □

Using the left quotient in the sense of (5.1.1), we define

E2 := B2\(GL2(R)×χ1χ2⊗χ2).
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Extension by zero gives a natural embedding of R1,1-representations

(5.2.1) iU X : 0
S(U2, E2)→ 0S(X2, E2).

Lemma 5.2.2. There is a complete decreasing filtration {0S
Z(X2, E2)i }i∈N of sub-

modules of 0S(X2, E2)/0
S(U2, E2) such that the composition factors are R1,1-

isomorphic to

χ1χ2(det( · ))sgnk(det( · ))|det( · )|k
∣∣

R1,1
, k ∈ N.

Proof. This lemma follows from [11, Propositions 8.2, 8.3]. □

We identify 0S(U2, E2) as IndS,R1,1
R××1 (χ2) using the equation

0S(U2, E2)= 0
S(B2\B2w2 B2, E2)

= 0S(T2\B2, χ2⊗χ1χ2)

= 0S(R×× 1\R1,1, χ2)= IndS,R1,1
R××1 (χ2),

and then define an R1,1-homomorphism

Td : IndS,R1,1
R××1 (χ2)→ πD

by composing the embedding (5.2.1) and the quotient map πI to πF :

Td : IndS,R1,1
R××1 (χ2)= 0

S(U2, E2) ↪→ 0S(X2, E2)= πI → πI /πF = πD.

Lemma 5.2.3. The homomorphism Td is injective.

Proof. Suppose Td is not injective. Then there exist f̃ ∈ 0S(U, χ1χ2⊗χ2) whose
extension by zero f̃G in πI is contained in πF .

On the one hand, f (x) = f̃ (w2nx) is a Schwartz function. For θ ∈ (0, π), we
can compute f̃ with the decomposition

kθ =
(

1/sin θ cos θ
sin θ

)
w2

(
1 −cot θ

1

)
.

Then we have

f̃G(kθ )= f̃ (kθ )= χ1χ2(1/sin θ)χ2(sin θ) f (−cot θ)= o(θ l), for every l > 0.

Then
( d

dθ

)l f̃G(kθ )|θ=0 = 0 for every positive integer l.
On the other hand, from [17, Section 2.3], πF is generated by the functions

φ−m+1, φ−m+3, . . . , φm−1,

where φl (nx · t (a, b) · kθ )= χ1χ2(a)χ2(b)eilθ .
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Then f̃G ∈ πF is a linear combination of φk , that is, there is a nonzero n-tuple
(λ1, . . . , λn) ∈ Cn such that f̃G =

∑n
k=1 λkφ2k−n−1. Then we have( d

dθ

)l
f̃G(kθ )

∣∣∣
θ=0
=

n−1∑
k=0

λk((2k− n− 1)i)l,

Hence, there exists l such that
( d

dθ

)l
( f̃G(kθ ))|θ=0 ̸=0, which leads to a contradiction.

Therefore, the R1,1-homomorphism Td is injective. □

Proposition 5.2.4. Coker(Td) has a decreasing complete filtration 0S
Z(X2, E2)k

with composition factors isomorphic to

(5.2.2) |det( · )|k+
m−1

2 sgn( · )k
∣∣

R1,1
, for k = 1, 2, . . . .

Proof. From Lemma 5.2.2, 0S
Z(X2, E2)=πI /0

S(U2, E2) has a decreasing complete
filtration 0S

Z(X2, E2)k with composition factors isomorphic to

(5.2.3) |det( · )|ksgn( · )kχ1χ2(det( · ))
∣∣

R1,1
, for k = 0, 1, . . . .

From Lemma 5.2.1, the finite-dimensional representation πF in πI has R1,1-compo-
sition factors with irreducible pieces

|det( · )|ksgnk(det( · ))χ1χ2(det( · ))
∣∣

R1,1
, for k = 0, 1, . . . ,m− 1.

Then the projection πI → πI / iU X (0
S(U2, E2)) gives an isomorphism between πF

and π F = 0
S
Z(X2, E2)/0

S
Z(X2, E2)n , implying that

0S
Z2
(X2, E2)= πF ⊕0

S
Z2
(X2, E2)m .

Therefore,

Coker(Td)= πD/ iU X (0
S(U2, E2))= (πI /0

S(U2, E2))/πF = 0
S
Z2
(X2, E2)m,

and thus Coker(Td) has a decreasing complete filtration with composition factors
isomorphic to

σk = |det( · )|ksgnk(det( · ))χ2(det( · ))
∣∣

R1,1
= |det( · )|k+

m−1
2 sgn( · )k

∣∣
R1,1
,

for k = 1, 2, . . . . □

Graded structure of spherical principal series. Let (s1, . . . , sr+1) ∈ Cr+1, and set
σX+ = | · |

s1 × · · ·× | · |
sr+1 , which is a spherical principal series. The computation

in [42, Section 5.1] for the restriction of spherical principal series representations
to the mirabolic subgroup Rr,1 can be generalized over the real field verbatim and
we can obtain a proposition parallel to [42, Proposition 5.1].

Following [42, §5], we denote by Qa,b,c the intersection of the parabolic subgroup
Pa,b,c associated to the partition (a, b, c) in GLa+b+c and the mirabolic subgroup
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Ra+b+c−1. We let the “Levi part” La,b,c of Qa,b,c to be the image of GLa ×

GLb × Rc−1,1 diagonally embedded into GLa,b,c. Then Qa,b,c = La,b,cUa,b,c for
the unipotent group associated to the partition (a, b, c).

Proposition 5.2.5. When restricted to Rr,1, the representation σX+ has a subrepre-
sentation IndS,Rr,1

Nr+1
(ψ−1

r+1). Moreover, the quotient σX+/IndS,GLr+1
Nr+1

(ψ−1
r+1) admits an

Rr,1-stable complete filtration whose composition factors have the shape

IndS,Rr,1
Qa,b,c

(τa ⊠ τb ⊠ τc)

where a + b+ c = t + 1, a + b ̸= 0 and the tensor τa ⊠ τb ⊠ τc is regarded as a
Qa,b,c representation by trivial extension on Na,b,c.

(1) τa = IndS,GLa(R)
Ba

(sgnm1 | · |
si1+k1 ⊠ · · ·⊠ sgnma | · |

sia+ka ) where 1 ⩽ i1, . . . , ia ⩽

t + 1 are integers, l1, . . . , la ∈ Z and k1, . . . , ka ∈
1
2 Z;

(2) τb = τ
′

b ⊗ ρ where τ ′b is a representation of the same form as τa and ρ is a
finite-dimensional representation of GLb(R);

(3) τc = IndS,Rc−1,1
Nc

(ψ−1
c ).

5.3. Multiplicity formula: first inequality. In this section, we prove Lemma 5.0.5
and one inequality of Lemma 5.0.3. More precisely, in the setting of Theorem 5.0.1,
we prove the inequality

m(πV ⊠πW )⩾ m((|det|sσX+ ⋉πW )⊠πV )

for a basic relevant pair (W+, V ) when

(1) σX+ = sgnl and s ⩾ LI(πV ), or

(2) σX+ = σs for s in general positions.

With a similar approach, we show that

m(πV ⊠ (| · |s+
m
2 sgnm+1 ⋉πW ))⩾ m((|det|sσX+ ⋉πW )⊠πV )

when σX+ = Dm and s ⩾ LI(πV ).
For a relevant pair (W, V ) and we let (V,W+) be the associated basic relevant

pair with the decomposition W+ =W ⊥ (X+⊕ Y+). We denote by (G+,H+, ξ+)
the Gross–Prasad triple associated to (V,W+).

Let PX+ be the parabolic subgroup of SO(W+) stabilizing X+. For σX+ ∈

SF(GL(X+)) and πW ∈ SF(SO(W )), from Definition 4.0.3,

σX+ ⋉πW = IndS,G
PX+
(|det|sσX+ ⋉πW )= 0

S(PX+\SO(W+), E)

where

(5.3.1) E = EσX+ ,πW = PX+\
(
SO(W+)× (δ1/2

PX+
|det|sσX+ ⊠πW )

)
.
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We first study the structure of the right-SO(V )-orbits of X = PW+\SO(W+).

(1) When dim W+ > 2(r + 1), X consists of all k-dimensional totally isotropic
subspaces of V . When dim W+ = 2(r + 1), there are exactly two maximal
totally isotropic spaces and X is exactly one of them.

(2) When dim W+> 2(r+1), there is an open SO(V )-orbit U consisting of (r+1)-
dimensional totally isotropic spaces that are not contained in V . Its complement
Z is the space of (r + 1)-dimensional totally isotropic spaces contained in V .
When dim V = 2(r + 1) and X+.g0 ⊂ V for some g0 ∈ SO(W+), Z has two
orbits and both of them are singletons, more precisely, [X+.g0] and [X+.g0g]
for any g ∈ O(V )\SO(V ); when dim V = 2(r + 1) and if X+.g0 ̸⊆ V for all
g0 ∈ SO(W+), Z is empty; otherwise, Z has just one orbit.

We can draw the following conclusion:

Lemma 5.3.1. (1) Z is empty when dim W+ = 2(r + 1) or dim V = 2(r + 1) and
X+.g0 ̸⊆ V for all g0 ∈ SO(W+).

(2) Z has two SO(V )-orbits, when dim V ̸= 2(r + 1).

(3) Z has a single SO(V )-orbit, when dim V = 2(r +1) and X+.g0 ⊆ V for some
g0 ∈ SO(W+).

Let 0S
Z(X , E) = 0

S(X , E)/0S(U, E). From Proposition 5.1.1, there is a short
exact sequence

(5.3.2) 0→ 0S(U, E)⊠πV → 0S(X , E)⊠πV → 0S
Z(X , E)⊠πV → 0.

Hence, we have the short exact sequence

(5.3.3) 0→ HomH+(0
S
Z(X , E)⊠πV , 1H+)→ HomH+(0

S(X , E)⊠πV , 1H+)

→ HomH+(0
S(U, E)⊠πV , 1H+).

When HomH+(0
S
Z(X , E)⊠πV , 1H+)= 0, we have

m((σX+ ⋉πW )⊠πV )⩽ dim HomH+(0
S(U, E)⊠πV , 1H+).

We first analyze the closed orbits on Z to prove

HomH+(0
S
Z(X , E)⊠πV , 1H+)= 0

and then analyze the open orbit U to prove

dim HomH+(0
S(U, E)⊠πV , 1H+)⩽ m(πV ⊠πW ),

under the given conditions.
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Closed orbits. Suppose Z is nonempty. Let γ ∈ SO(W+) be a representative of
an orbit of Z such that X+.γ = X ′ where X ′ is a totally isotropic subspace of
V satisfying dim X+ = dim X ′. Then the stabilizer group Sγ at [X ] is equal to
γ−1 PW+γ∩SO(V ), which a parabolic subgroup of SO(V )with Levi decomposition
Sγ =Mγ Nγ and the Levi subgroup Mγ =GL(X ′)×SO(V0). The cotangent bundles
and their fibers at [X ′] are

T ∗Z = SO(V )×Sγ S⊥γ , Fib[X ′](T ∗Z)= S⊥γ
T ∗X = SO(W+)×PW+

P⊥W+, Fib[X ′](T ∗X )= P⊥W+

and Sγ acts by adjoint action. Then the fiber of the conormal bundle at [X ′]

Fib[X ′](N∨Z/X )= Fib[X ′](T ∗X )/Fib[X ′](T ∗Z)= P⊥W+/S⊥γ ,

which is dim(X ′)-dimensional. The SO(V0) and Nγ act trivially and GL(X ′) acts
as the standard representations. Then

0S(SO(V ).[X ],Symk N∨Z/X ⊗ E|Z)

= IndS,SO(V )
Sγ (Fib[X ](SymkNZ/X ⊗ E|Z))

= ISO(V )
Sγ ((|det( · )|s+

1
2σX+ ⊗Symkρstd

X ′ )⊠ (
γπW |SO(V0)))

Therefore,

(5.3.4) 0S(Z,Symk N∨Z/X ⊗ E|Z)

= (ISO(V )
Sγ ((|det( · )|s+

1
2σX+ ⊗Symkρstd

X ′ )⊠ (
γπW |SO(V0))))

⊕c

where ρstd
X ′ is the standard representation of GL(X ′) and c is the number of SO(V )-

orbits in Z .

Proposition 5.3.2. We have

HomH+(0
S
Z(X , E)⊠πV , 1H+)= 0

under any of the following conditions:

(1) σX+ = sgnl (l = 0, 1) or σX+ = Dm (m ∈ N+), and s ⩾ LI(πV ), or

(2) σX+ = σs ∈ Cr and s is in general position.

Proof. By (5.3.4), we have

0S(Z,SymkN∨Z/X ⊗ E|Z)⊠πV

= (ISO(V )
Sγ (|det( · )|s+

1
2 (σX+ ⊗Symkρstd

X ′ )⊠ (
γπW |SO(V0))))

⊕c⊠πV .
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• When σX+ = sgnm , we have σX+⊗Symkρ = |det|ksgnm . When Re(s)⩾ LI(πV ),
we have s+ 1

2 + k > LI(πV ), from Theorem 5.1.11, we have

HomH+(0
S(Z,SymkN∨Z/X ⊗ E|Z)⊠πV , 1H+)= 0.

• When σX+ = Dm , by computation with the base of Dm+2a in [17, §2.3], we have

σX+ ⊗Symkρ =
k⊕

a=0
Dm+2a.

When Re(s)⩾ LI(πV ), we have s+ 1
2 > LI(πV ), from Theorem 5.1.11, we have

HomH+(0
S(Z,SymkN∨Z/X ⊗ E|Z)⊠πV , 1H+)= 0.

• When σX+ = | · |
s1 × · · · × | · |

sr , from [26, Corollary 5.6], the Harish-Chandra
parameter of the infinitesimal character of σX+ ⊗Symkρ is

[(s1+ a1, . . . , sr+1+ ar+1)],

where the ai are nonnegative integers. From Corollary 5.1.9, we have

HomH+(0
S(Z,SymkN∨Z/X ⊗ E|Z)⊠πV , 1H+)= 0

for s ∈ Cr+1 in general positions.
From Corollary 5.1.5, we can conclude that, under the conditions given in the

proposition, we have

HomH+(0
S
Z(X , E)⊠πV , 1H+)= 0.

Hence, from (5.3.3), we have

dim HomH+(0
S(U, E)⊠πV , 1H+)⩽ dim HomH+(0

S(U, E)⊠πV , 1H+). □

The open orbit. We study0S(U, E) and show that dim HomH+(0
S(U, E)⊠πV ,1H+)

is less than or equal to m(πV ⊠πW ) under the given conditions.
We introduce the following notations just for this section:

• Let d=dim V, r = 1
2(dim V−dim W−1). We can compute the modular character

δPX+
((m× gW )⋉ n)= |det(m)|d−1−r , m ∈ GL(X+), gW ∈ SO(W ), n ∈ N .

• Let Nr+1 be the unipotent subgroup of GLr+1(R) consisting of upper-triangular
unipotent matrices, and let Rr,1 be the mirabolic subgroup of GLr+1. We denote by
Nr,1 the unipotent radical of Rr,1.

• We define a generic character πr+1 of Nr+1 by letting

ψr+1(n)= ψ
(r+1∑

i=1
ni,i+1

)
,
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where ni, j is the entry of matrix n at i-th row and j-th column.

Recall the decomposition V =W ⊥ D ⊥ Z in Section 2.1. Let X = X+∩ Z and
we have X is totally isotropic and dim X = dim X+− 1. Let N be the unipotent
radical of the parabolic subgroup PX of SO(V ) stabilizing X . We define N ′V the
subgroup of N stabilizing D, then H = (Nr+1×1SO(W ))⋉ N ′V .

From Frobenius reciprocity, we have

(5.3.5) HomH (ξ
−1
⊗(πV⊠πW ), 1H )=HomH+

(
IndS,H+

H (ξ−1
⊗(πV⊠πW )), 1H+

)
.

By definition, the dimension of the left-hand side of (5.3.5) is equal to m(πV ⊠πW ).
The right-hand side of (5.3.5) can be expressed as

(5.3.6) IndS,H+
H (ξ−1

⊗ (πV ⊠πW ))

= IndS,H+
(Nr+1×1SO(W ))⋉N ′V

(ξ−1
⊗ (πV ⊠πW ))

= IndS,H+
(Rr,1×1SO(W ))⋉N ′V

(IndS,Rr,1
Nr+1

(ψ−1
r+1)|Rr,1 ⊠πW ⊠πV ).

Recall that the open orbit U = PW+\PW+SO(V ) equals (PW+ ∩SO(V ))\SO(V )
and the stabilizer group can be decomposed as

(5.3.7) PW+ ∩SO(V )= (GL(X)× 1×SO(W ))⋉ N = SO(W )⋉ (Rr,1 ⋉ N ′V ).

By definition, we have

(5.3.8) 0S
Z(U, E)⊠πV = IndS,SO(V )

PW+∩SO(V )(|det|
d−1−r

2 σX+ ⊗πW |PW+∩SO(V ))⊠πV

= IndS,SO(V )
PW+∩SO(V )(|det|

d−1−r
2 σX+ |Rr,1 ⊠πW )⊠πV

= IndS,H+
(Rr,1×1SO(W ))⋉N ′V

(|det|
d−1−r

2 σX+ |Rr,1 ⊠πW ⊠πV )

• When r = 0 and σX+ = sgnl , we have

IndS,Rr,1
Nr+1

(ψ−1
r+1)|Rr,1 = |det|

d−1−r
2 σX+ |Rr,1,

so the right sides of (5.3.8) and (5.3.6) are the same. Hence, we have

m(πV ⊠πW )= dim HomH+(0
S(U, E)⊠πV , 1H+).

• When σX+ = | · |
s1 ×· · ·× | · |

sr+1 for (s1, . . . , sr+1) ∈ Cn , from Proposition 5.2.5,
there is an Rr,1-equivariant embedding

(5.3.9) IndS,Rr,1
Nr+1

(ψ−1
r+1) ↪→ |det|

d−1−r
2 σX+ .

Applying the quotient of (5.3.8) and (5.3.6), we obtain

(5.3.10) 0S
Z(U, E)⊠πV /IndS,H+

H (ξ−1
⊗ (πV ⊠πW ))=Q,
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where

Q= IndS,H+
(Rr,1×1SO(W ))⋉N ′V

(
(|det|

d−1−r
2 σX+ |Rr,1/IndS,Rr,1

Nr+1
ψ−1

r+1)⊠πW ⊠πV
)
.

Therefore, to conclude that dim HomH+(0
S(U, E)⊠πV , 1H+)⩽ m(πV ⊠πW ),

it suffices to prove that

(5.3.11) HomH+(Q, 1H+)= 0.

Using Proposition 5.2.5, from the exactness of Schwartz induction (Proposition
5.1.2) and projective tensor product (Proposition 5.1.1), we obtain that the quotient
Q has composition factors

(5.3.12) IndS,H+
(Rr,1×1SO(W ))⋉N ′V

(
IndS,Rr,1

Qa,b,c
(τa ⊠ τb ⊠ τc)⊠πW

)
,

where Qa,b,c = Pa,b,c ∩ Rr,1 and τa, τb, τc are defined in Proposition 5.2.5. Since
(5.3.12) can be expressed as the parabolic induction(

|det|−
d−1−r+c

2 (τa ⊠ τb)
)
⋉IndS,SO(W⊕D⊕Xc)

(Rc−1,1×SO(W ))⋉NW+,c
(ξ−1

c ⊗πW ),

based on Corollary 5.1.5 and the fact that a + b ⩾ 1, the Hom-space in (5.3.12)
vanishes for (s1, . . . , sr+1) ∈ Cn in general position.

• When r = 1 and σX+ = Dl , instead of (5.3.6), we use the equality

(5.3.13) IndS,H+
1SO(W⊕R)((| · |

s+m
2 sgnm+1 ⋉πW )⊠πV )

= IndS,H+
(R1,1×1SO(W ))⋉N ′V

(IndS,R1,1
R××1 (χ2)⊠πW ⊠πV ).

From Section 5.2, there is an injection Td : IndS,R1,1
R××1 (χ2) ↪→ Dm , and it induces

an injection
IndS,R1,1

R××1 (| · |
sχ2) ↪→ |det|s Dm .

Applying the quotient of (5.3.8) and (5.3.13), we obtain

(5.3.14) 0S
Z(U, E)⊠πV /IndS,H+

1SO(W⊕R)((| · |
s+m

2 sgnm+1 ⋉πW )⊠πV )

= IndS,H+
(Rr,1×1SO(W ))⋉N ′V

(
(|det|

d−2
2 σX+ |R1,1/IndS,R1,1

N2
(ψ−1

2 ))⊠πW ⊠πV
)
.

From Proposition 5.2.4, the quotient |det|sσX+ |R1,1/IndS,R1,1
R××1 (| · |

sχ2)|R1,1 has
composition factors

σk := |det( · )|s+k+m−1
2 sgn( · )k |R1,1, k = 1, 2, . . .

From the exactness of Schwartz induction (Proposition 5.1.2) and projective tensor
product (Proposition 5.1.1), there is a decreasing complete filtration of

IndS,H+
(Rr,1×1SO(W ))⋉N ′V

(
(|det|s+

d−2
2 σX+ |R1,1/IndS,R1,1

N2
(ψ−1

2 )|R1,1)⊠πW ⊠πV
)
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with composition factors

IndS,H+
(R1,1×1SO(W ))⋉N ′V

(σk ⊠πW ⊠πV ).

Notice that

IndS,H+
(R1,1×1SO(W ))⋉N ′V

(σk ⊠πW ⊠πV )= (| · |
s+m

2 +ksgnm ⋉ IndS,SO(W⊕R)
SO(W ) (πW ))⊠πV .

Since we have assumed that Re(s)⩾ LI(πV ) and k is a positive integer, we have

s+
m
2
+ k > LI(πV ).

Then, from Theorem 5.1.11, we have

HomH+
(
(| · |sgnm ⋉ IndS,SO(W⊕R)

SO(W ) (πW ))⊠πV , 1H+
)
= 0, k = 1, 2, . . .

From Corollary 5.1.5, this implies

HomH+
(
0S
Z(U, E)⊠πV /IndS,H+

1SO(W⊕R)((| · |
s+m

2 sgnm+1 ⋉πW )⊠πV ), 1H+
)
= 0.

Hence, Lemma 5.1.3, we have

m(πV ⊠ (| · |s+
m
2 sgnm+1 ⋉πW ))⩾ dim HomH+(0

S(U, E)⊠πV , 1H+).

Proof of the “first inequality”. We now make use of Lemma 5.0.5 to prove one side
of the equality in Proposition 5.0.4, namely

(5.3.15) m(πV ⊠πW )⩽ m(πV0 ⊠πW0).

We express πV = σV ⋉πV0, πW = σW ⋉πW0 in the form of (4.0.7) and prove the
inequality by induction on

N (σV , σW )=
∑

Re(sV,i )̸=0
nV,i +

∑
Re(sW,i ) ̸=0

nW,i ,

where sV,i , sW,i , nV,i , nW,i are defined as in (4.0.7).
If N (σV , σW ) = 0, both πV and πW are tempered; then the inequality follows

from Conjecture 1 for tempered parameters, which was proved in [28; 10].
In other cases, we may assume

Re(sV,1)⩾Re(sV,2)⩾ · · ·⩾ Re(sV,l) > 0,

Re(sW,1)⩾Re(sW,2)⩾ · · ·⩾ Re(sW,l) > 0.

Suppose the proposition holds when N (σV , σW )⩽ k, then when N (σV , σW )=

k+ 1, we consider the following cases.

Case 1: If lV ̸= 0 and Re(sV,1)⩾ Re(sW,1), then let σ̃V = |det( · )|sV,2σV,2× · · · ×

|det( · )|sV,lσV,l .
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(1) If nV,1 = 1, from Lemma 5.0.5(1) we have

m((σV ⋉πV0)⊠ (σW ⋉πW0))⩽ m((σW ⋉πW0)⊠ (̃σV ⋉πV0)).

(2) If nV,1 = 2, let σ̂V = | · |
sV,1+

mV,1
2 sgnmV,1+1 ⋉ σ̃V . From Lemma 5.0.5(2), we

have

m((σV ⋉πV0)⊠ (σW ⋉πW0))⩽ m((σW ⋉πW0)⊠ (̂σV ⋉πV0)).

Since N (̃σV , σW ), N (̂σV , σW )⩽ N (σV , σW )− 1= k, we have

m((σW ⋉πW0)⊠ (̃σV ⋉πV0))⩽ m(πV0 ⊠πW0),

m((σW ⋉πW0)⊠ (̂σV ⋉πV0))⩽ m(πV0 ⊠πW0).

Therefore, we have

m((σV ⋉πV0)⊠ (σW ⋉πW0))⩽ m(πV0 ⊠πW0),

Case 2: If lV = 0 or Re(sV,1) <Re(sW,1), we switch the order of V,W to reduce to
Case 1. More explicitly, we take σ (s

′)
W = | · |

s′
× σW0 . There is an s ′ ∈ iR such that

m((σV ⋉πV0)⊠ (σW ⋉πW0))= m((σ (s
′)

W ⋉πW0)⊠ (σV ⋉πV0))

From [32, Theorem 1.1] and Langlands classification, we may assume σ (s
′)

W ⋉πW0

is irreducible. Then the pair (σ (s
′)

W , σV ) belongs to Case 1 and N (σ (s
′)

W , σV ) =

N (σV , σW )= k+ 1, so

m((σ (s
′)

W ⋉πW0)⊠ (σV ⋉πV0))⩽ m(πV0 ⊠πW0).

Therefore, we have

m((σV ⋉πV0)⊠ (σW ⋉πW0))⩽ m(πV0 ⊠πW0).

The proposition now follows by induction on N (σV , σW ). □

5.4. Multiplicity formula: the second inequality. In this section, we complete the
proof for the “second inequality” of Proposition 5.0.4.

A construction. We prove Lemma 5.0.6 by construction. Recall that, for a relevant
pair (W, V ), we can construct a basic relevant pair (V,W+) by taking W+ =
W⊥(X+⊕Y+) for certain totally isotropic spaces X+ and Y+. Let G+=SO(W+)×
SO(V ), H+ =1SO(V ), P+ is the parabolic subgroup PX+ × SO(V ), where PX+

is the parabolic subgroup of SO(W+) stabilizing X+. We note

G+ = G+(R), H+ = H+(R), P+ = P+(R).

From the multiplicity-one theorem [34], we have m(πV ⊠πW )⩽ 1, so it suffices
to prove the following proposition.
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Proposition 5.4.1. When m(πV ⊠πW ) ̸= 0 and σX+ is a generic representation of
GL(X+), then one can construct a nonzero element in

HomH+((σX+ ⋉πW )⊠πV , 1H+).

The main idea for proving this proposition is from the following theorem.

Theorem 5.4.2 [18, Proposition 4.9]. For a Casselman–Wallach representation σ+

of P+, suppose:

(1) The complement G+− P+H+ is the zero set of a polynomial f + on G+ that is
left-H+-invariant and right-(P+, ψP+)-equivariant for an algebraic character
ψP+ of P+.

(2) H+ has finitely many orbits on the flag of a minimal parabolic subgroup of G+

(3) σ+ admits a nonzero (P+ ∩ H+, δP+∩H+δ
−1
H+)-equivariant continuous linear

functional, where δP+∩H+, δH+ are the modular characters of P+ ∩ H+ and
H+ respectively.

Then IndS,G+
P+ (σ+) admits a nonzero H+-invariant functional.

We first verify (1) and (2) in the setup of Proposition 5.4.1.

(1) Fix a basis v1, . . . , vn of V and a basis v+1 , . . . , v
+

r+1 of X+. For every
(gW+, gV ) ∈ G+, g ∈ G+ − P+H+ if and only if XgW+ ⊂ V , equivalently,
the (n+ 1)× (n+ 1+ r)-matrix

Ag =
[
v1gV , . . . , vngV , v

X
1 g−1

W+, . . . , v
X
r+1g−1

W+
]

is of rank n. We let

(5.4.1) f (g)= det(Ag At
g);

then f is left-(P+, ψP+)-equivariant and right-H+-invariant, where

ψP+(pX+, gV )=det(gX+)
2 for pX+=(gX+, gW )·nX+ ∈ PW+ and gV ∈SO(V ).

(2) Since G+/H+ is an absolutely spherical variety (Section 3), the Borel subgroup
has finitely many orbits, so the complexification of the minimal parabolic also
has finitely many orbits. Then condition (2) is a direct consequence of the
finiteness of the first Galois cohomology for groups over local fields.

Therefore, to complete the proof for Proposition 5.4.1, it suffices to construct a
nonzero (P+ ∩ H+, δP+∩H+δ

−1
H+)-equivariant continuous linear functional.

As computed in Section 5.3, we have

H\P+ ∩ H+ = Nr+1\Rr,1,
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where Nr+1 and Rr,1 are the unipotent group and mirabolic group defined in
Section 5.3. Hence, from [31], the Rankin–Selberg integral

Fs(vπV , vπW , vσX+
)

:=

∫
P+∩H+

µ(πV (pX+)vπV , vπW )λ(σX+(pX+)vσX+
)|det(gX+)|

sd(pX+, pX+)

is absolutely convergent when Re(s) is large enough and extends to a meromorphic
family in

Fs ∈ HomP+∩H+(πV ⊠πW ⊠ σX+, |det(gX )|
s−s0),

where s0 = dim W − dim X+, which is the real number satisfying δP+(pX+) =

|det(gX+)|
s0 . From [18], we know

Fs

(s− s0)
ns0

∣∣
s=s0

is a nonzero element

HomP+∩H+(πV ⊠πW ⊠ σX+, 1P+∩H+),

where ns0 is the order of poles of Fs at s = s0. This completes the proof for
Proposition 5.4.1.
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VOLUME BOUNDS FOR
HYPERBOLIC ROD COMPLEMENTS

IN THE 3-TORUS
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The study of rod complements is motivated by rod packing structures in crys-
tallography. We view them as complements of links comprised of Euclidean
geodesics in the 3-torus. Recently, Hui classified when such rod complements
admit hyperbolic structures, but their geometric properties are yet to be
well understood. In this paper, we provide upper and lower bounds for the
volumes of all hyperbolic rod complements in terms of rod parameters, and
show that these bounds may be loose in general. We introduce better and
asymptotically sharp volume bounds for a family of rod complements. The
bounds depend only on the lengths of the continued fractions formed from
the rod parameters.

1. Introduction

The present work is motivated by the notion of rod packing structures in crystal-
lography. In 1977, O’Keeffe and Andersson observed that many crystal structures
can be described as a packing of uniform cylinders, representing linear or zigzag
chains of atoms or connected polyhedra [24]. In 2001, O’Keeffe et al. classified
some of the simplest so-called rod packings in terms of arrangements in Euclidean
space [25]. Rod packings have also appeared in the biological science and materials
science literature [9; 11; 23; 27].

A rod packing structure exhibits translational symmetry along each dimension in a
three-dimensional Euclidean space; it is thus natural to view a rod packing structure
as a geodesic link in the 3-torus, whose covering space is the three-dimensional
Euclidean space. In this paper, we use tools from 3-manifold geometry and topol-
ogy to study the complements of these geodesic links, called rod complements.
In particular, Thurston’s geometrisation theorem implies that each rod complement
can be decomposed into geometric pieces. Indeed, each rod complement with three
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or more linearly independent rods is hyperbolic or has a unique hyperbolic rod
complement component in its JSJ decomposition [5; 20; 21]. This means that
geometric invariants such as the hyperbolic volume could be used to classify and
distinguish rod complements. However, we need to know how geometry relates to
the vector descriptions of rods in the 3-torus, which aligns with the descriptions of
rods in crystallography. This is still unknown in general.

Previously, Hui and Purcell used vector description and the theory of links in
the 3-sphere to identify an infinite family of rod complements that admit complete
hyperbolic structures [21]. Following this, Hui provided a complete classification of
the geometric structures on rod complements in the 3-torus [20]. As a consequence,
checking the hyperbolicity of a rod complement reduces to a linear algebra problem.
While [20; 21] provide a convenient characterisation of when a rod complement is
hyperbolic, they do not give further information on the metric. In this paper, we
provide more information on the hyperbolic structures of rod complements via the
study of their volumes.

The Mostow–Prasad rigidity theorem states that a complete hyperbolic metric on a
finite-volume hyperbolic 3-manifold is unique, so hyperbolic volume is a topological
invariant. In the crystallographic setting, the uniqueness of hyperbolic structures
allows us to associate each rod packing structure with a real number, namely the
volume. When volumes are distinct, this provides a simple way to distinguish rod
packing structures and avoid the more complicated symmetry descriptions that are
often used in chemistry; see [25] for examples.

For a rod complement in the 3-torus, each rod has an associated direction in the
unit cube fundamental region of the 3-torus. We encode the direction of each rod
by integer vector coordinates, which we call rod parameters. Our most general
result provides upper and lower volume bounds in terms of the number of rods and
their rod parameters.

Theorem 3.2. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose comple-
ment is a hyperbolic 3-manifold M. After applying a linear homeomorphism and
renumbering, if necessary, we may assume that there is a positive integer k < n
such that Rk+1, Rk+2, . . . , Rn are exactly the (0, 0, 1)-rods. Suppose that Ri has
direction vector (pi , qi , zi ), for i = 1, 2, . . . , n. Then

nvtet < Vol(M) ≤ 8vtet

( ∑
1≤i< j≤k

|pi q j − p j qi | +
∑

1≤i≤k
(gcd(pi , qi ) − 1)

)
,

where vtet ≈ 1.01494 is the volume of the regular ideal tetrahedron.

The lower bound is due to a result proved by Adams, which applies to any cusped
hyperbolic 3-manifold [1]. Such a bound can be loose in general; indeed, we find
families of rod complements for which the number of rods is fixed at n = 3, but for
which the volumes approach infinity.
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The upper bound uses more recent results of Cremaschi and Rodríguez-Migueles
[6, Theorem 1.5], which can be applied to many complements of geodesic links in
Seifert fibred spaces; see also [7]. Such a bound can be loose, even when restricted
to rod complements; there are families of rod complements for which the volumes
are bounded but for which the right side of the inequality above grows to infinity.

Thus, while Theorem 3.2 provides reasonable initial bounds that may be strong
in certain cases, they are somewhat unsatisfying in general. It would be desirable
to have upper and lower volume bounds that depend linearly on the same quantity.
For example, hyperbolic volumes of 2-bridge knots [18], alternating knots [22],
and highly twisted knots [16] are known to be bounded above and below by linear
functions of the number of twist regions. For all of these knot complements, the
upper bound is asymptotically sharp. The lower bound is asymptotically sharp in
the 2-bridge case [18], and sharp, realised by the Borromean rings, in the alternating
case [2, Theorem 2.2]. Similarly, there are upper and lower volume bounds for
adequate knots in terms of coefficients of coloured Jones polynomials [8; 16; 17].
There are also upper and lower volume bounds for fibred 3-manifolds in terms of a
quantity related to the action of the monodromy map [4], with analogous results for
cusp volumes [15]. One would like to obtain such results for rod complements.

While we have not obtained coarse volume bounds of this form in general, we
do find improved, asymptotically sharp volume bounds for infinite families of rod
complements in terms of the lengths of the continued fractions formed from their
rod parameters. These lengths of continued fractions can remain the same when
rod parameters increase significantly.

Theorem 5.7. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose complement
is M , where n ≥ 3. Suppose that Rn has direction vector (0, 0, 1) and for i < n,
Ri has direction vector (pi , qi , 0), with (pi , qi ) ̸= (pi+1, qi+1) for i =1, 2, . . . , n−2
and (pn−1, qn−1) ̸= (p1, q1). Suppose that R1, R2, . . . , Rn−1 are positioned from
top to bottom in the unit cube representation of the 3-torus. Let [ci1; ci2, . . . , cimi ]

be a continued fraction expansion for pi/qi . Then M is hyperbolic and its volume
satisfies the asymptotically sharp upper bound

Vol(M) ≤ 2voct

n−1∑
i=1

mi .

Suppose in addition that

C := min
1≤i≤n−1

j≥2

{|ci j |, |ci1 − c(i−1)1|} ≥ 6,

where c01 is interpreted as c(n−1)1. Then the volume satisfies the lower bound

Vol(M) ≥

(
1 −

4π2

C2 + 4

)3/2
2voct

n−1∑
i=1

mi .
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Theorem 5.7 leads to the following consequences.

Corollary 5.9. There exists a sequence of hyperbolic rod complements with bounded
volume, but for which the upper bound of Theorem 3.2 grows to infinity.

Corollary 5.10. There exists a sequence of hyperbolic rod complements, each with
three rods, whose volumes grow to infinity.

Other works related to geometry and periodic links include [12], in which Evans,
Robins, and Hyde studied 3-periodic links using energy functions. In [10], Evans and
Schröder-Turk used two-dimensional hyperbolic geometry to study triply periodic
links embedded in the three-dimensional Euclidean space.

The structure of the paper is as follows.

• In Section 2, we introduce some terminology, notation and foundational results
that are used throughout the paper. These pertain to rod complements, continued
fractions and homeomorphisms from the n-dimensional torus to itself.

• In Section 3, we provide general volume bounds for all hyperbolic rod com-
plements in the 3-torus (Theorem 3.2). The upper bound is in terms of the rod
parameters, while the lower bound is only in terms of the number of rods.

• In Section 4, we introduce the notion of nested annular Dehn filling in the 3-torus.

• In Section 5, we use the notion of nested annular Dehn filling to provide more
refined volume bounds for a particular class of rod complements (Theorem 5.7). This
is sufficient to exhibit a family of rod complements with bounded volumes for which
the upper bound of Theorem 3.2 grows to infinity (Corollary 5.9) and another family
with bounded number of rods whose volumes grow to infinity (Corollary 5.10).

• In Section 6, we conclude with brief discussion of open questions that are mo-
tivated by the present work.

2. Preliminaries

2.1. Rod complements. We consider the 3-torus T3 as the cube [0, 1]×[0, 1]×[0, 1]

in three-dimensional Euclidean space, with opposite faces glued identically, as
in [20; 21]. Its universal cover is R3 and it inherits the Euclidean metric from R3.

A rod is the projection of a Euclidean straight line with rational slope in R3 to T3

under the covering map.
For n a positive integer, an n-rod complement is the complement of n disjoint

rods in the 3-torus. When n is unspecified, we refer to such a manifold simply as a
rod complement.

Let p, q, z be integers, not all zero, with gcd(p, q, z) = 1. A (p, q, z)-rod is a
geodesic in T3 that has (p, q, z) as a tangent vector. We call (p, q, z) a direction
vector of the rod, where we consider (p, q, z) only up to a change of sign. We call
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the integers p, q, z the rod parameters of the rod. A standard rod is a (1, 0, 0)-rod,
a (0, 1, 0)-rod, or a (0, 0, 1)-rod.

A rod complement is said to be hyperbolic if it admits a complete hyperbolic
structure; for further details on hyperbolic geometry, see, for example, [26]. Previ-
ously, Hui classified exactly when rod complements are hyperbolic, Seifert fibred
or toroidal.

Theorem 2.1 (Hui, [20]). Let R1, R2, . . . , Rn be disjoint rods in T3. The rod
complement T3

\ (R1 ∪ R2 ∪ · · · ∪ Rn) is

(1) hyperbolic if and only if {R1, R2, . . . , Rn} contains three linearly independent
rods and each pair of disjoint parallel rods are not linearly isotopic in the comple-
ment of the other rods;

(2) Seifert fibred if and only if all rods have the same direction vector; and

(3) toroidal if

(a) the direction vectors of the rods all lie in the same plane; or

(b) there exist two distinct rods that are linearly isotopic in the complement of the
other rods.

In case (3)(b), suppose without loss of generality that Rn−1 and Rn are linearly
isotopic in the complement of the other rods. Then an essential torus encircling
the linearly isotopic rods will cut the rod complement into a solid torus containing
Rn−1 and Rn , and a new rod complement with rods R1, R2, . . . , Rn−1. So if
there were three linearly independent rods to begin with, there would be a unique
hyperbolic rod complement appearing as a component of the JSJ decomposition;
see [5, Theorem 19]. The upshot of this discussion is that rod complements are
very commonly hyperbolic, in a certain sense.

Observe that in a hyperbolic rod complement, there may be several rods with
the same direction vector, provided that for any two such rods, at least one other
rod intersects the linear annuli bound by them. Two or more rods with the same
direction vector are said to be parallel.

2.2. Continued fractions. Let p, q be nonzero relatively prime integers. Without
loss of generality, we may assume q > 0 unless otherwise specified. The rational
number p/q can be expressed as a finite continued fraction

p
q

= [c1; c2, . . . , cm] := c1 +
1

c2 +
1

c3 +
1

. . .
+

1
cm

,
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where c1 is an integer and c2, . . . ,cm are nonzero integers. The integers c1,c2, . . . ,cm

are called coefficients or terms of the continued fraction and the number m is called
the length of the continued fraction.

Observe that a continued fraction expansion for a given rational number is not
unique. For example, the rational number 7

4 can be expressed in several ways, includ-
ing [1; 1, 3], [1; 1, 2, 1] and [2; −4]. The upper bound of Theorem 5.7 is strength-
ened by using continued fraction expansions that have minimal length. In particular,
if m ≥ 2, we do not allow cm = 1 in the continued fraction expansion above.

The length of the continued fraction [0] =
0
1 is one. For convenience, we define

the “empty” continued fraction [ ] =
1
0 and consider its length to be zero.

The rational numbers whose continued fraction expansions we consider arise as
slopes on the 2-torus. We consider the 2-torus T2 as the unit square [0, 1]×[0, 1] in
two-dimensional Euclidean space, with opposite faces glued identically. Its universal
cover is R2 and it inherits the Euclidean metric from R2.

Let p and q be integers, not both zero, with gcd(p, q) = 1. A simple closed
geodesic on T2 is said to have slope p/q or to be a (p, q)-curve if it is isotopic to the
projection of a line in R2 with slope q/p. Observe that our definition of slope on the
torus is the reciprocal of the corresponding slope on the plane. We defined slope of
simple closed geodesics in this way because of our choices of notation in Section 4.

2.3. Homeomorphisms of the n-torus. The following are useful results concerning
homeomorphisms of the n-dimensional torus Tn . The statements are well known,
but short proofs have been provided for completeness.

Lemma 2.2. For n ≥ 2, an element A ∈ GL(n, Z) induces a homeomorphism
from Tn to itself.

Proof. The element A ∈ GL(n, Z) gives rise to a homeomorphism from Rn to itself
that sends the integer lattice Zn to itself. In particular, it takes the standard basis
of Rn to a basis formed by the columns of A, whose coordinates are integers. This
produces a new fundamental domain for the torus. The induced homeomorphism
simply maps the standard fundamental domain of the torus to this new fundamental
domain via A. □

In fact, it is known that when n = 2 or n = 3, GL(n, Z) is the mapping class
group of Tn . (The result for n = 2 appears in [13, Theorem 2.5] while the result for
n = 3 follows from work of Hatcher [19].)

Remark 2.3. Given a rod complement in the 3-torus that contains an (a, b, c)-
rod R, there exists an element of GL(3, Z) that sends (a, b, c) to (0, 0, 1). By
Lemma 2.2, we may change the fundamental region of the 3-torus to ensure that R
is a (0, 0, 1)-rod. In the rest of the paper, we often assume without loss of generality
that one of the rods in a rod complement has direction vector (0, 0, 1).
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Lemma 2.4 (Bézout’s lemma in n-dimensions). Let n ≥ 2 be an integer. Sup-
pose that an = (a1n, a2n, . . . , ann)

⊺ is a nonzero vector in Zn
⊂ Rn such that

gcd(a1n, a2n, . . . , ann) = 1. Then there exist vectors a1, a2, . . . , an−1 in Zn such
that det(a1, a2, . . . , an) = 1.

Proof. We prove the result by induction on n. Suppose that a2 = (a12, a22)
⊺ is

a nonzero vector in Z2 with gcd(a12, a22) = 1. By Bézout’s lemma, there exist
integers a11, a21 such that a11a22 − a21a12 = 1. So defining a1 = (a11, a21)

⊺ leads
to det(a1, a2) = 1. This proves the base case n = 2.

Now let n ≥ 3 be an integer. Suppose that an = (a1n, a2n, . . . , ann)
⊺ is a nonzero

vector in Zn with gcd(a1n, a2n, . . . , ann) = 1. Without loss of generality, suppose
that ann ̸= 0 so that the vector ãn := (a2n, a3n, . . . , ann)

⊺ is nonzero. Let

d := gcd(a2n, a3n, . . . , ann).

Since gcd(a1n, d) = gcd(a1n, a2n, . . . , ann) = 1, by Bézout’s lemma, there exist
integers s and t such that sd − ta1n = 1.

Set a11 = s and

(a21, a31, . . . , an1) :=
t
d

ã⊺
n =

t
d

(a2n, a3n, . . . , ann).

Since 1
d ãn ∈ Zn−1 and gcd

( 1
d a2n,

1
d a3n, . . . ,

1
d ann

)
= 1, by induction there exist

ã2, ã3, . . . , ãn−1 in Zn−1 such that det
(
ã2, ã3, . . . , ãn−1,

1
d ãn

)
= 1.

Now define a1 :=
(
s, t

d ã⊺
n
)⊺

, a2 := (0, ã⊺
2 )⊺, . . . , an−1 := (0, ã⊺

n−1)
⊺. Then by

expanding along the first row, we find that

det(a1, a2, . . . , an−1, an)

= a11 det(ã2, . . . , ãn−1, ãn) + (−1)1+na1n det
(

t
d

ãn, ã2, . . . , ãn−1

)
= sd det

(
ã2, . . . , ãn−1,

1
d

ãn

)
+ (−1)(1+n)+(n−2)a1nt det

(
ã2, . . . , ãn−1,

1
d

ãn

)
= sd − a1nt

= 1. □

Proposition 2.5. For fixed n ≥ 2, all 1-rod complements in the n-torus are homeo-
morphic.

Proof. Let R be a rod in the n-torus whose fundamental region is [0, 1]
n . Suppose

an = (a1n, a2n, . . . , ann)
⊺ is the direction vector of R. We may translate the rod R

so that it intersects the origin. As R is a simple closed curve, we must have
gcd(a1n, a2n, . . . , ann) = 1. By Lemma 2.4, there exist vectors a1, a2, . . . , an−1 in
Zn

⊂ Rn such that
det(a1, a2, . . . , an) = 1.



174 NORMAN DO, CONNIE ON YU HUI AND JESSICA S. PURCELL

Hence, the matrix (a1, a2, . . . , an) lies in GL(n, Z) and by Lemma 2.2, it induces
a homeomorphism that maps the (0, 0, . . . , 0, 1)-rod to the an-rod. Therefore, any
1-rod complement Tn

\ R is homeomorphic to Tn
\ Rz , where Rz represents a

standard (0, 0, . . . , 0, 1)-rod. □

3. Volume bounds for all rod complements

In this section, we obtain upper and lower bounds on the volumes of all hyperbolic
rod complements.

Proposition 3.1. An n-rod complement in the 3-torus with k ≥ 1 parallel rods is an
(n−k)-rod complement in the Seifert fibred space T2

k × S1, where T2
k is a torus with

k punctures.

Proof. Let M be an n-rod complement in the 3-torus with parallel rods R1, R2, . . . , Rk .
Suppose that these parallel rods have direction vector (a, b, c), where a, b, c are
integers such that gcd(a, b, c) = 1. By Lemma 2.4, there exist integers f , g, h, p,
q , r such that

det

a f p
b g q
c h r

 = 1 ⇒

a f p
b g q
c h r

∈ GL(3, Z).

By Lemma 2.2, such a matrix represents an orientation-preserving homeomorphism
of T3 sending the rods with direction vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) to rods
with direction vectors (a, b, c), ( f, g, h), (p, q, r), respectively.

Define T ⊂ T3 to be a 2-torus spanned by the vectors ( f, g, h) and (p, q, r).
Note that T \ (R1 ∪ R2 ∪ · · · ∪ Rk) is a k-punctured torus. As the homeomor-
phism represented by the above matrix sends the standard fundamental region of
the 3-torus to the fundamental region spanned by the vectors (a, b, c), ( f, g, h),
and (p, q, r), M is homeomorphic to an (n−k)-rod complement in the Seifert fibred
space T \ (R1 ∪ R2 ∪ · · · ∪ Rk) × S1. □

Theorem 3.2. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose comple-
ment is a hyperbolic 3-manifold M. After applying a linear homeomorphism and
renumbering, if necessary, we may assume that there is a positive integer k < n
such that Rk+1, Rk+2, . . . , Rn are exactly the (0, 0, 1)-rods. Suppose that Ri has
direction vector (pi , qi , zi ), for i = 1, 2, . . . , n. Then

nvtet < Vol(M) ≤ 8vtet

( ∑
1≤i< j≤k

|pi q j − p j qi | +
∑

1≤i≤k

(gcd(pi , qi ) − 1)

)
,

where vtet ≈ 1.01494 is the volume of the regular ideal tetrahedron.
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Proof. From Theorem 2.1, we deduce that n ≥ 3. Adams proved that an n-cusped
hyperbolic 3-manifold M with n ≥ 3 satisfies Vol(M) > nvtet, which is the desired
lower bound [1, Theorem 3.4].

We obtain the upper bound using a result of Cremaschi and Rodríguez-Migueles
[6, Theorem 1.5]. They proved that for a link L in an orientable Seifert fibred
space N over a hyperbolic 2-orbifold O in which L projects injectively to a filling
geodesic multicurve L ⊆ O , one has the volume bound

Vol(N \L) < 8vteti(L,L).

Here, i(L,L) denotes the geometric self-intersection number of L.
In our particular setting, Proposition 3.1 asserts that M is homeomorphic to a

k-rod complement in the Seifert fibred space

N = T2
n−k × S1,

where T2
n−k := (T \ (Rk+1 ∪ Rk+2 ∪ · · · ∪ Rn)) with T ⊆ T3 being the 2-torus with

fundamental region equal to the unit square [0, 1]
2 in the xy-plane. Observe that T

is a 2-torus such that the intersection number between Rn and T is 1. Denote by L
the k-component link R1 ∪ R2 ∪ · · · ∪ Rk in N . Here, Ri is a (pi , qi , zi )-rod with
(pi , qi ) ̸= (0, 0) for i = 1, 2, . . . , k.

Let P : N → T2
n−k be the bundle projection map. Note that the link L projects

to L, a union of k rods in the base space T2
n−k , which is a 2-torus in T3 with n − k

punctures. The rod Ri projects to a (pi , qi )-curve on this punctured torus.
After a small deformation of the rods, we may ensure that their projections

intersect transversely, with at most two arcs meeting at each intersection point.
Since the number of rods is finite, we can also ensure, up to small deformation, that

(1) any pair of projections P(Ri ) and P(R j ) intersect exactly |pi q j − p j qi | times;
see, for example, [13, Section 1.2.3]; and

(2) the (pi , qi )-curve P(Ri ) intersects itself exactly gcd(pi , qi ) − 1 times.

Item (2) above can be seen as follows. Consider a (pi , qi )-curve γ with di :=

gcd(pi , qi ) > 1. Up to homeomorphism of the torus, γ is equivalent to the (di , 0)-
curve, for which a representative consists of di − 1 horizontal arcs connected by a
single arc running across, meeting di − 1 strands.

Hence, the total geometric intersection number of P(L) is∑
1≤i< j≤k

|pi q j − p j qi | +
∑

1≤i≤k

(gcd(pi , qi ) − 1).

Thus, applying the result of Cremaschi and Rodríguez-Migueles leads to the upper
bound. □
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Remark 3.3. The upper volume bound in Theorem 3.2 depends on the choice of
rod that is sent to the (0, 0, 1)-rod via a homeomorphism of T3. For example, if we
consider four rods R1, R2, R3, R4 with direction vectors (2, 4, 3), (5, 7, 1), (9, 8, 6),
(0, 0, 1), respectively, Theorem 3.2 will give us an upper volume bound 8vtet × 50.
Using the constructive proof of Lemma 2.4, we obtain the following matrices in
GL(3, Z) that map (0, 0, 1) to R1, R2, R3, respectively:1 0 2

0 −1 4
0 −1 3

,

1 0 5
0 1 7
0 0 1

,

−4 0 9
−4 −1 8
−3 −1 6

.

By taking the inverses of these matrices and computing the new rod parameters, we
now obtain upper volume bounds of 8vtet ×116, 8vtet ×114, and 8vtet ×132, respec-
tively. The minimum among all such choices naturally provides an upper bound.

4. Nested annular Dehn filling in the 3-torus

We will show that neither the upper nor lower bound of Theorem 3.2 can be part
of a two-sided coarse volume bound in terms of the given parameters. That is, we
exhibit a family of rod complements with fixed number of cusps whose volumes
grow to infinity as well as a family of rod complements with bounded volume for
which the intersection number in the upper bound of Theorem 3.2 grows to infinity.
For both of these results, we use the machinery of annular Dehn filling.

Definition 4.1 (annular Dehn filling). Let A be an annulus embedded in a 3-
manifold M , with boundary curves L+ and L−. Let µ± denote a meridian of
∂ N (L±) and let λ± denote a longitude of ∂ N (L±) that is parallel to ∂ A.

For an integer n, define (1/n)-annular Dehn surgery to be the process of drilling
N (L+) and N (L−) from M , performing (+1/n)-Dehn filling on ∂ N (L+) and
performing (−1/n)-Dehn filling on ∂ N (L−).

The surgery can be realised by cutting along A, performing n Dehn twists along
the core of A in the anticlockwise direction (where the induced orientation puts L+

on the right of the core of A), and then regluing; see, for example, [3, Section 2.3].

Figure 1. A (1, 1)-curve on the standard rods with direction vectors
(1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.
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If the curves L± are already drilled, such as in the case of a link complement,
define (1/n)-annular Dehn filling along A to be the process of performing (+1/n)-
Dehn filling on L+ and performing (−1/n)-Dehn filling on L−, where the framing
on the link components is as above.

In our case, we perform annular Dehn filling on an annulus bounded by a pair
of parallel rods in the 3-torus. This can be done by applying Dehn fillings along
slopes ±1/n on the parallel rods. For example, the slopes 1/1 on standard rods are
shown in Figure 1. Note that parallel rods bound many annuli in T3. The following
result confirms that the resulting link is well defined, regardless of our choice of
annulus.

Lemma 4.2. Let R+ and R− be parallel rods in T3 that form the boundary of
two nonisotopic annuli A+ and A− with disjoint interiors. Suppose that A+ is the
annulus oriented with R+ on the right of the core, under the induced orientation
from T3. Then (1/n)-annular Dehn filling on A+ and (−1/n)-annular Dehn filling
on A− result in homeomorphic manifolds.

More generally, suppose that A1 and A2 are disjoint annuli with A1 cobounded
by rods R0 and R1, with R1 to the right, and A2 cobounded by R1 and a rod R2,
with R1 to the left. Let M be the result of performing (1/n)-annular Dehn filling
on A1 followed by (1/m)-annular Dehn filling on A2. Then M is also the result of
performing (−1/n)-Dehn filling on R0, followed by (1/(n−m))-Dehn filling on R1,
followed by (1/m)-Dehn filling on R2, when R0 ̸= R2. If R0 = R2, then the Dehn
filling coefficient on R0 = R2 is 1/(m−n).

Proof. Let N+ be the manifold obtained by (1/n)-annular Dehn filling A+ and let
N− be the manifold obtained by (−1/n)-annular Dehn filling A−. The fact that
N+ and N− are homeomorphic follows from the fact that the link complements
have the same Dehn surgery coefficients. Thus, the results of the Dehn fillings must
be homeomorphic.

To prove the more general statement, we again consider the Dehn surgery coef-
ficients. Annular Dehn filling first along A1 gives surgery slope µ+ nλ on R1 and
µ−nλ on R0, where µ denotes a meridian and λ is parallel to ∂ A1. Then performing
(1/m)-annular Dehn filling along A2 adjusts the surgery slope on R1 by subtracting
m longitudes, giving µ + (n − m)λ. It gives a surgery slope of µ + mλ on R2

when R0 ̸= R2. When R0 = R2, the slopes combine as on R1 to give µ−(n−m)λ. □

Definition 4.3. Let m be an even positive integer. Consider a unit cube fundamental
region of T3. For each i = 1, 2, . . . , m/2, let (R+

2i−1, R−

2i−1) be a pair of (1, 0, 0)-
rods bounding a vertical xz-plane annulus within the unit cube, with R+

2i−1 above
and R−

2i−1 below. Let (R−

2i , R+

2i ) be a pair of (0, 1, 0)-rods bounding a vertical
yz-plane annulus with R−

2i above and R+

2i below. A rod R is said to be sandwiched
along the xy-plane by nested pairs of rods with order (R+

1 , R−

2 , . . . , R+

m−1, R−
m ) if
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−1
2

+1
2

(0, 1, 0)

+1
1

−1
1

(2, 1, 0)

−1
1

+1
1

(2, 3, 0) (5, 3, 0)

Figure 2. The (5, 3)-nested annular Dehn filling on the (0, 1, 0)-core rod.
The vector under each 3-torus is the direction vector of the corresponding
black rod (up to ambient isotopy).

and only if R lies in an xy-plane and the rods are positioned from top to bottom in
the unit cube in the order

(R+

1 , R−

2 , . . . , R+

m−1, R−

m , R, R+

m , R−

m−1, . . . , R+

2 , R−

1 ).

Similarly, for m an odd positive integer, we can say R is sandwiched along the
xy-plane by nested pairs of rods with order (R+

1 , R−

2 , . . . , R−

m−1, R+
m ) if and only

if R lies in an xy-plane and the rods are positioned from top to bottom in the unit
cube in the order

(R+

1 , R−

2 , . . . , R−

m−1, R+

m , R, R−

m , R+

m−1, . . . , R+

2 , R−

1 ).

See the top-right picture of Figure 2 for an example of a rod (black) sandwiched
by nested pairs of rods with m = 2.

Lemma 4.4. Let p and q be integers with gcd(p,q)=1. Suppose that [c1; c2, . . . , cm]

is a continued fraction expansion of p/q. If m is even, consider a (1, 0, 0)-rod Rx

sandwiched along the xy-plane by nested pairs of rods with order

(R+

1 , R−

2 , . . . , R+

m−1, R−

m ).

If m is odd, consider a (0, 1, 0)-rod Ry sandwiched along the xy-plane by nested
pairs of rods with order

(R+

1 , R−

2 , . . . , R−

m−1, R+

m ).
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Sequentially apply (1/ci )-annular Dehn filling to the pair (R+

i , R−

i ) of rods, starting
with i = m and ending with i = 1. Then the rod Rx for m is even (respectively,
Ry for m odd) is transformed to a (p, q, 0)-rod.

Proof. We will focus on the case when the length m of the continued fraction is
odd. The argument for m even follows similarly.

Starting with the (0, 1, 0)-rod Ry and applying (1/cm)-annular Dehn filling to
(R+

m , R−
m ) transforms the (0, 1, 0)-rod Ry to a (cm, 1, 0)-rod R(1). See the top row

of Figure 2 for an example.
The (cm, 1, 0)-rod R(1) intersects the annulus bounded by R−

m−1 and R+

m−1 a total
of cm times. Applying (1/cm−1)-annular Dehn filling to (R+

m−1, R−

m−1) transforms
the (cm, 1, 0)-rod R(1) into a (cm, 1+cmcm−1, 0)-rod R(2). See the transition from
the top right to the bottom left of Figure 2 for an example. Observe that the ratio of
the rod parameters satisfies

1 + cmcm−1

cm
= cm−1 +

1
cm

.

The (cm, 1+cmcm−1, 0)-rod R(2) intersects the annulus bounded by R+

m−2 and
R−

m−2 a total of 1 + cmcm−1 times. Applying (1/cm−2)-annular Dehn filling to
(R+

m−2, R−

m−2) transforms R(2) into a (cm+(1+cmcm−1)cm−2, 1+cmcm−1, 0)-rod R(3).
See the bottom row of Figure 2 for an example. Now observe that the ratio of the
rod parameters satisfies

cm + (1 + cmcm−1)cm−2

1 + cmcm−1
= cm−2 +

cm

1 + cmcm−1
= cm−2 +

1

cm−1 +
1

cm

.

Continuing in this way, we apply (1/cm−3)-annular Dehn filling, (1/cm−4)-
annular Dehn filling, and so on, until we finally apply (1/c1)-annular Dehn filling.
Each successive annular Dehn filling prepends a term to the continued fraction
expansion for the ratio of the rod parameters. Hence, the final rod R(m) has direction
vector (p, q, 0), where p/q = [c1; c2, . . . , cm]. □

Lemma 4.4 holds for any continued fraction expansion of p/q, without any
restriction on the signs of the terms.

Definition 4.5. Let p and q be integers such that gcd(p, q) = 1. Suppose that
[c1; c2, . . . , cm] is a continued fraction expansion of p/q. Define (p, q)-nested
annular Dehn filling to be the process of performing the sequence of (1/ci )-annular
Dehn fillings from i = m to i = 1 on the rod Rx or Ry , as described in Lemma 4.4.
The rod Rx or Ry is called the core rod of the nested annular Dehn filling. The
rods R+

i and R−

i for i = 1, 2, . . . , m are called the filling rods of the nested annular
Dehn filling.
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For example, consider (p, q)-nested annular Dehn filling with (p, q) = (5, 3),
using the continued fraction expansion p/q = 5/3 = [1; 1, 2]. Since the number
of terms is odd, we start with a (0, 1, 0)-rod Ry sandwiched along the xy-plane
by nested pairs of rods with order (R+

1 , R−

2 , R+

3 ), as shown in the top-left picture
of Figure 2. After applying (1/2)-annular Dehn filling to the pair of innermost
red rods (R+

3 , R−

3 ), we obtain the rod complement shown in the top-right picture
of Figure 2. Then after applying (1/1)-annular Dehn filling to the pair of green
rods (R+

2 , R−

2 ), we obtain the rod complement shown in the bottom-left picture of
Figure 2. Finally, after applying a (1/1)-annular Dehn filling to the outermost pair
of red rods (R+

1 , R−

1 ), we obtain the rod complement shown in the bottom-right
picture of Figure 2. The result is a single rod with direction vector (5, 3, 0).

Remark 4.6. Any rod that does not intersect the annulus used in annular Dehn
filling is unaffected by the filling. In particular, such rods maintain their direction
vectors. This straightforward observation is crucial for our use of annular Dehn
fillings below.

5. Asymptotically sharp volume bounds

With nested annular Dehn filling introduced in the last section, we can now proceed
to show some asymptotically sharp volume bounds for a family of rod complements.

Lemma 5.1. Let R1, R2, . . . , Rn be disjoint rods in T3 with n ≥ 3. Suppose that Rn

has direction vector (0, 0, 1) while each of the other rods Ri has direction vector of
the form (pi , qi , 0). If any two neighbouring rods, ordered by z-coordinate, are not
parallel, then the rod complement T3

\ (R1 ∪ R2 ∪ · · · ∪ Rn) is hyperbolic.

Proof. The direction vectors of rods R1, R2, Rn are linearly independent, since R1

and R2 are not parallel, and Rn is orthogonal to the plane spanned by the direction
vectors of R1 and R2. Since no two neighbouring rods are parallel, each pair of
disjoint parallel rods are not linearly isotopic in the complement of the other rods.
Thus, the result follows from Theorem 2.1. □

Definition 5.2. A standard rod complement is the complement of a finite number
of rods in T3, each with direction vector (1, 0, 0), (0, 1, 0) or (0, 0, 1).

A standard parent manifold of a rod complement T3
\ (R1 ∪ R2 ∪ · · · ∪ Rn) is a

standard rod complement from which T3
\ (R1 ∪ R2 ∪ · · · ∪ Rn) can be obtained

after a finite sequence of Dehn fillings.

Proposition 5.3 (standard parent manifolds exist). Let R1, R2, . . . , Rn be disjoint
rods in T3 with n ≥ 3. Suppose that Rn has direction vector (0, 0, 1) while each
of the other rods Ri has direction vector of the form (pi , qi , 0). Suppose that
pi/qi has a continued fraction expansion with mi terms. Let E denote the number
of (pi , qi , 0)-rods with even mi and let O denote the number of (pi , qi , 0)-rods
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Figure 3. An example of a standard parent manifold with essential annuli.

with odd mi . Then there exists a standard rod complement M with E (1, 0, 0)-
core rods and O (0, 1, 0)-core rods together with 2

∑n−1
i=1 mi filling rods such that

T3
\ (R1 ∪ R2 ∪· · ·∪ Rn) can be obtained by applying (pi , qi )-nested annular Dehn

filling to the core rods of M for i = 1, 2, . . . , n − 1.

Proof. For i = 1, 2, . . . , n −1, since gcd(pi , qi ) = 1, Lemma 4.4 and Definition 4.5
ensure that the (pi , qi , 0)-rod Ri can be obtained by applying a (pi , qi )-nested
annular Dehn filling to one of the E+O core rods. The 2mi filling rods sandwiching
the core rod will be removed in the process of Dehn filling. Observe that a (pi , qi )-
nested annular Dehn filling does not affect the isotopy classes of rods disjoint
from the associated annuli. Hence, after applying n − 1 nested annular Dehn
fillings on the E + O = n − 1 core rods, we obtain a 3-manifold homeomorphic
to T3

\ (R1 ∪ R2 ∪ · · · ∪ Rn). □

Proposition 5.3 provides an explicit procedure to obtain a standard parent
manifold of a rod complement with the particular form for which the result
applies. The manifold M in Proposition 5.3 is a standard parent manifold of
T3

\ (R1 ∪ R2 ∪ · · · ∪ Rn). Note that for each sandwich of a nested annular Dehn
filling, the outermost pair of filling rods are (1, 0, 0)-rods. Between each pair of
adjacent (possibly the same) sandwiches, the bottom filling rod of the top sandwich
is linearly isotopic to the top filling rod of the bottom sandwich, so there is a
natural choice of essential plane annulus between these two filling rods. To obtain
a hyperbolic standard parent manifold, we cut along any such essential plane annuli
in M . Observe this merges two parallel rods into a single rod.

An example of a standard parent manifold with essential annuli and two core
rods is shown in Figure 3. Figure 4 below shows a hyperbolic standard parent
manifold. For that example, black and pale green rods are both core rods, and the
outermost red rods correspond to the top and bottom filling rods of the sandwiches.
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Figure 4. The standard parent manifold of T3
\ (R(7)

1 ∪ R2 ∪ R3). The
black rod is the core rod with direction vector (0, 1, 0); the pale green
(0, 1, 0)-rod that lies on the boundary (top and bottom) of the unit cube
is R2; the blue (0, 0, 1)-rod is R3.

Lemma 5.4. Consider a standard parent manifold M with exactly one (0, 0, 1)-rod
and m ≥ 2 additional rods, which alternate between (1, 0, 0)-rods and (0, 1, 0)-rods.
Then M is hyperbolic and can be decomposed into m regular ideal octahedra. Thus,
its volume is Vol(M) = mvoct, where voct ≈ 3.66386 is the volume of the regular
ideal octahedron.

Proof. The fact that M is hyperbolic follows from Theorem 2.1. Alternatively, one
can construct the hyperbolic structure directly as follows. Cut M along an xz-plane
torus, a yz-plane torus, and all xy-plane tori that contain (1, 0, 0)-rods or (0, 1, 0)-
rods. We obtain m three-dimensional balls, each with six arcs removed from the
boundary. By shrinking these arcs, one obtains m ideal octahedra; see Figure 5.

We can assign a complete hyperbolic metric on M by setting each ideal octahedron
to be regular. Such a polyhedron has dihedral angles equal to π/2. The gluing of
the octahedra identifies four such dihedral angles around each edge and tiles each
cusp by Euclidean squares, so one obtains a complete hyperbolic structure; see
[26, Theorem 4.10]. The volume of M is then mvoct, the sum of the volumes of
the octahedra. □

Lemma 5.5. Let M be a hyperbolic standard parent manifold. The fundamental
region of the torus cusp boundary corresponding to each filling rod of M is a
Euclidean rectangle formed by gluing two squares corresponding to cusp neigh-
bourhoods of ideal vertices of octahedra. The meridian forms one of the sides of
the rectangle, running along one edge of each square. The longitude forms the
other side of the rectangle, running along an edge of one of the squares. Finally,
there exists a choice of horoball neighbourhoods with disjoint interiors for the rod
complement such that the meridian has length 2 and the longitude has length 1.
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µ
λ

m

Figure 5. Left: The complement of rods in a standard parent manifold
can be decomposed into ideal octahedra. Shown are the meridian µ and
the longitude λ for the green rod on the bottom. Right: The midpoint m
of an ideal edge in a hyperbolic ideal triangle.

Proof. Consider how the octahedra in the proof of Lemma 5.4 fit together. Since the
rod complement can be decomposed into ideal octahedra, the cusps corresponding
to the filling rods are tiled by Euclidean squares that are cusp neighbourhoods of
the ideal vertices of the octahedra.

Each horizontal rod R meets exactly two octahedra: one above the xy-plane
containing R, which we cut along to obtain the decomposition, and one below. The
meridian µ runs once through each and can be isotoped to run through the xz- or
yz-plane as in the left of Figure 5. Hence, it lies on faces of the two octahedra.
Thus, the meridian forms a closed curve running along one edge in each of the two
squares corresponding to the two octahedra.

The longitude may be isotoped to run through a single octahedron, say the one
above the xy-plane containing R, as in the left of Figure 5. Thus, it forms one
side of a cusp square. Finally, observe that the square is glued to itself by the
identity, with one side glued to the opposite side. The cusp is a Euclidean rectangle,
comprised of two squares, with the meridian running along the long edge of the
rectangle and the longitude running along the short edge.

It remains to argue that the lengths of the meridian and the longitude are 2 and 1,
respectively. To do so, we show that we can choose horoballs about the cusps of M
with disjoint interiors such that when we intersect with the ideal octahedra, the
boundary of the intersection is a collection of squares, each with side length 1. The
horoball expansion we use is the same as that appearing in [26, Lemma 7.22] or
[14, Lemma 3.7]. That is, each edge e of the octahedron borders two triangular
faces. The midpoint of the edge e with respect to one of the triangles is the unique
point on the edge e that lies on a perpendicular hyperbolic geodesic running from
the opposite vertex to e; see the right of Figure 5. Since our ideal octahedron
is regular, the midpoints obtained from either adjacent triangle agree. When the
vertices of the ideal triangle are placed at 0, 1 and ∞, the midpoint has height 1.
If we place a regular ideal octahedron containing a side with vertices at 0, 1, and ∞,
the midpoints of each of the edges meeting infinity also have height 1. This remains
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true after applying a Möbius transformation taking any vertex to infinity. Thus,
we may expand horoballs about each ideal vertex to the height of the midpoints
of the four edges meeting that vertex. This gives a collection of horoballs that are
tangent exactly at the midpoints of edges, with disjoint interiors. The boundary of
each horoball meets the octahedron in a square of side length 1. Finally, since the
octahedra are glued in such a way that cusp squares glue to cusp squares with the
same side lengths, this gluing must preserve this choice of horoballs. Hence, these
define horoball neighbourhoods with disjoint interiors and lengths as claimed. □

Lemma 5.6. Let M be a hyperbolic standard parent manifold, with slope 1/n
on one of the horizontal rods. Then in the horoball neighbourhood described in
Lemma 5.5, the length of the slope is

√
n2 + 4.

Proof. The slope 1/n runs once along a meridian and n times along the longitude.
In the universal cover of the cusp torus, it can be lifted to an arc with one endpoint
at (0, 0) and the other at (2, n). The meridian and longitude are orthogonal, with
the meridian of length 2 and the longitude of length 1. Hence, length of the slope
is

√
n2 + 22. □

We are now ready to prove the coarse volume bound discussed in the introduction.

Theorem 5.7. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose complement
is M , where n ≥ 3. Suppose that Rn has direction vector (0, 0, 1) and for i < n,
Ri has direction vector (pi , qi , 0), with (pi , qi ) ̸= (pi+1, qi+1) for i =1, 2, . . . , n−2
and (pn−1, qn−1) ̸= (p1, q1). Suppose that R1, R2, . . . , Rn−1 are positioned from
top to bottom in the unit cube representation of the 3-torus. Let [ci1; ci2, . . . , cimi ]

be a continued fraction expansion for pi/qi . Then M is hyperbolic and its volume
satisfies the asymptotically sharp upper bound

Vol(M) ≤ 2voct

n−1∑
i=1

mi .

Suppose in addition that

C := min
1≤i≤n−1

j≥2

{|ci j |, |ci1 − c(i−1)1|} ≥ 6,

where c01 is interpreted as c(n−1)1. Then the volume satisfies the lower bound

Vol(M) ≥

(
1 −

4π2

C2+4

)3/2
2voct

n−1∑
i=1

mi .

Proof. By Lemma 5.1, the manifold M must be hyperbolic.
We construct standard parent manifolds with ideal octahedral decompositions.

By Proposition 5.3, there exists a standard rod complement N with n − 1 core rods
and

∑n−1
i=1 2mi filling rods such that M can be obtained by applying a (pi , qi )-nested
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annular Dehn filling to each of the core rods of N . Observe that the outermost pair
of filling rods for each nested annular Dehn filling are (1, 0, 0)-rods. Each of the two
outermost filling rods for each nested annular Dehn filling will be linearly isotopic
to an outermost filling rod for another nested annular Dehn filling. By cutting along
the essential annuli arising from all of these linear isotopies, we obtain a standard
parent manifold Np with exactly one (0, 0, 1)-rod, namely Rn , and alternating
(1, 0, 0)-rods and (0, 1, 0)-rods.

By Lemma 5.4, Np has a decomposition into
∑n−1

i=1 2mi regular ideal octahedra
and it admits a complete hyperbolic structure.

We obtain M = T3
\ (R1 ∪ R2 ∪ · · · ∪ Rn) by Dehn filling the standard parent

manifold Np. Since Dehn filling decreases volume [29], we obtain the bound

Vol(M) < Vol(Np) = voct

n−1∑
i=1

2mi .

Furthermore, this bound is asymptotically sharp. Taking larger and larger values for
the coefficients ci j of the continued fraction expansion while fixing the lengths mi

will produce Dehn fillings of the same parent manifold whose volumes converge to
that of the parent manifold.

For the lower bound, we consider the slopes of the Dehn filling. These are of the
form 1/ci j for filling components with 2 ≤ j ≤ mi . For the outermost filling rods,
the coefficient of the Dehn filling combines the 1/ci1 from one side with −1/c(i−1)1

from the other side, as in Lemma 4.2. Thus, the slope is 1/(ci1 − c(i−1)1).
By Lemma 5.5, for any integer ℓ, the length of the slope 1/ℓ on a filling rod

is
√

ℓ2 + 4. So under the hypotheses required for the lower bound, the minimum
length slope will be at least

√
62 + 4 > 2π . We may now apply a theorem of Futer,

Kalfagianni and Purcell, which states that if the minimum slope length is larger
than 2π , then the volume change under Dehn filling is a multiple of the volume of
the unfilled manifold [16, Theorem 1.1]. In our case, this leads to

Vol(M) ≥

(
1 −

4π2

C2+4

)3/2
2voct

n−1∑
i=1

mi . □

Remark 5.8. The upper bound of Theorem 5.7 motivates one to seek an efficient
expression for such rod complements, with the complexity measured by

∑n−1
i=1 mi ,

the sum of the lengths of the continued fractions. One may simultaneously switch
each (pi , qi , 0)-rod to a (qi , pi , 0)-rod, which may change

∑n−1
i=1 mi . Recall that we

allow negative terms in our continued fractions, as per the discussion in Section 2.2.
Typically, one obtains shorter continued fractions this way than if one restricts to
using positive integers as terms.

Corollary 5.9. There exists a sequence of hyperbolic rod complements with bounded
volume, but for which the upper bound of Theorem 3.2 grows to infinity.
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Proof. For n a positive integer, let R(n)
1 be an (n, 1, 0)-rod, let R2 be a (0, 1, 0)-rod,

and let R3 be a (0, 0, 1)-rod. These rods satisfy the hypotheses of the first part of
Theorem 5.7. The continued fraction associated to the rod R(n)

1 is n/1 = [n]. Thus,
in the notation of Theorem 5.7, we have m1 = 1 for any choice of n and we also
have m2 = 1. So the upper bound of Theorem 5.7 implies that

Vol(T3
\ (R(n)

1 ∪ R2 ∪ R3)) ≤ 4voct.

On the other hand, (p1, q1) = (n, 1) and (p2, q2) = (0, 1), so |p1q2 − p2q1| = n,
which is unbounded as n grows to infinity. □

Corollary 5.10. There exists a sequence of hyperbolic rod complements, each with
three rods, whose volumes grow to infinity.

Proof. Define the sequence of rational slopes

pk
qk

= [k; k, k, . . . , k︸ ︷︷ ︸
k terms

].

for k ≥ 6. For example, we have

p6

q6
= [6; 6, 6, 6, 6, 6] =

53353
8658

,

p7

q7
= [7; 7, 7, 7, 7, 7, 7] =

927843
129949

,

p8

q8
= [8; 8, 8, 8, 8, 8, 8, 8] =

18674305
2298912

.

Let R(k)
1 be a (pk, qk, 0)-rod, let R2 be a (0, 1, 0)-rod, and let R3 be a (0, 0, 1)-

rod. Let Mk = T3
\ (R(k)

1 ∪ R2 ∪ R3) be the associated rod complement. Using the
notation of Theorem 5.7, we have m1 = k, m2 = 1, and C = k ≥ 6. Figure 4 shows
the standard parent manifold of T3

\ (R(7)
1 ∪ R2 ∪ R3). So Theorem 5.7 implies that

Vol(Mk) ≥

(
1 −

4π2

k2+4

)3/2
2voct(k + 1) >

(
1 −

4π2

62+4

)3/2
2voctk > 0.01091k.

Since the right side grows to infinity with k, the volume of Mk also grows to
infinity. □

6. Further discussion

Our results on the volumes of rod complements suggest various natural questions
worthy of further exploration, such as the following.

Question 6.1. Do there exist two-sided coarse volume bounds for all rod comple-
ments in terms of the rod parameters?
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By Corollaries 5.9 and 5.10, such bounds cannot depend only on the number
of rods nor on the number of intersections of the rods in a particular projection.
It would be natural to wonder whether two rod complements with the same rod
parameters have volumes with bounded ratio.

Question 6.2. Does hyperbolic volume distinguish rod complements up to homeo-
morphism?

It would be surprising if any two rod complements with the same hyperbolic
volume were necessarily homeomorphic. It is well known that hyperbolic volume
does not distinguish hyperbolic 3-manifolds in general. In particular, mutation of
cusped hyperbolic 3-manifolds can change its homeomorphism class, but necessarily
preserves the hyperbolicity and volume [28]. An example of mutation involves
cutting along an essential embedded 4-punctured sphere bounding a tangle in a
ball, rotating the ball via a certain involution, and then regluing. Mutation can also
be performed with respect to surfaces of other topologies that possess a suitable
involution. It is not immediately obvious whether rod complements contain such
embedded essential surfaces along which mutation can be performed.

Question 6.3. Does there exist a rod complement with a nontrivial mutation?
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[7] T. Cremaschi, J. A. Rodriguŕz-Migueles, and A. Yarmola, “On volumes and filling collections of
multicurves”, J. Topol. 15:3 (2022), 1107–1153. MR

https://doi.org/10.1112/jlms/s2-38.3.555
http://msp.org/idx/mr/972138
https://doi.org/10.1090/S0894-0347-07-00564-4
https://doi.org/10.1090/S0894-0347-07-00564-4
http://msp.org/idx/mr/2328715
https://doi.org/10.1142/S0218216508006518
http://msp.org/idx/mr/2457837
https://doi.org/10.4310/CAG.2003.v11.n5.a6
http://msp.org/idx/mr/2032506
http://msp.org/idx/arx/2403.11523
https://doi.org/10.2140/agt.2020.20.3561
https://doi.org/10.2140/agt.2020.20.3561
http://msp.org/idx/mr/4194288
https://doi.org/10.1112/topo.12246
https://doi.org/10.1112/topo.12246
http://msp.org/idx/mr/4442684


188 NORMAN DO, CONNIE ON YU HUI AND JESSICA S. PURCELL

[8] O. T. Dasbach and X.-S. Lin, “A volumish theorem for the Jones polynomial of alternating
knots”, Pacific J. Math. 231:2 (2007), 279–291. MR

[9] M. E. Evans and S. T. Hyde, “From three-dimensional weavings to swollen corneocytes”, J. R.
Soc. Interface 8:62 (2011), 1274–1280.

[10] M. E. Evans and G. E. Schröder-Turk, “In a material world: hyperbolic geometry in biological
materials”, Asia Pac. Math. Newsl. 5:2 (2015), 21–30.

[11] M. E. Evans, V. Robins, and S. T. Hyde, “Periodic entanglement, II: Weavings from hyperbolic
line patterns”, Acta Crystallogr. Sect. A 69:3 (2013), 262–275. MR

[12] M. E. Evans, V. Robins, and S. T. Hyde, “Ideal geometry of periodic entanglements”, Proc. A.
471:2181 (2015), art. id. 20150254. MR

[13] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series 49,
Princeton Univ. Press, 2012. MR

[14] D. Futer and J. S. Purcell, “Links with no exceptional surgeries”, Comment. Math. Helv. 82:3
(2007), 629–664. MR

[15] D. Futer and S. Schleimer, “Cusp geometry of fibered 3-manifolds”, Amer. J. Math. 136:2 (2014),
309–356. MR

[16] D. Futer, E. Kalfagianni, and J. S. Purcell, “Dehn filling, volume, and the Jones polynomial”,
J. Differential Geom. 78:3 (2008), 429–464. MR

[17] D. Futer, E. Kalfagianni, and J. Purcell, Guts of surfaces and the colored Jones polynomial,
Lecture Notes in Mathematics 2069, Springer, 2013. MR

[18] F. Guéritaud, “On canonical triangulations of once-punctured torus bundles and two-bridge link
complements”, Geom. Topol. 10 (2006), 1239–1284. MR

[19] A. Hatcher, “Homeomorphisms of sufficiently large P2-irreducible 3-manifolds”, Topology 15:4
(1976), 343–347. MR

[20] C. O. Y. Hui, “A geometric classification of rod complements in the 3-torus”, Proc. Amer. Math.
Soc. 153:1 (2025), 381–394. MR

[21] C. O. Y. Hui and J. S. Purcell, “On the geometry of rod packings in the 3-torus”, Bull. Lond.
Math. Soc. 56:4 (2024), 1291–1309. MR

[22] M. Lackenby, “The volume of hyperbolic alternating link complements”, Proc. London Math.
Soc. (3) 88:1 (2004), 204–224. MR

[23] L. Norlén and A. Al-Amoudi, “Stratum corneum keratin structure, function, and formation: the
cubic rod-packing and membrane templating model”, Journal of Investigative Dermatology
123:4 (2004), 715–732.

[24] M. O’Keeffe and S. Andersson, “Rod packings and crystal chemistry”, Acta Cryst. 33:6 (1977),
914–923.

[25] M. O’Keeffe, J. Plévert, Y. Teshima, Y. Watanabe, and T. Ogama, “The invariant cubic rod
(cylinder) packings: symmetries and coordinates”, Acta Cryst. Sect. A 57:1 (2001), 110–111.
MR

[26] J. S. Purcell, Hyperbolic knot theory, Graduate Studies in Mathematics 209, Amer. Math. Soc.,
Providence, RI, 2020. MR

[27] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, and O. M. Yaghi, “Rod packings and
metal-organic frameworks constructed from rod-shaped secondary building units”, J. Am. Chem.
Soc. 127:5 (2005), 1504–1518.

[28] D. Ruberman, “Mutation and volumes of knots in S3”, Invent. Math. 90:1 (1987), 189–215. MR
[29] W. P. Thurston, The geometry and topology of three-manifolds, IV, Amer. Math. Soc., Providence,

RI, 2022. MR

https://doi.org/10.2140/pjm.2007.231.279
https://doi.org/10.2140/pjm.2007.231.279
http://msp.org/idx/mr/2346497
https://doi.org/10.1098/rsif.2010.0722
http://www.asiapacific-mathnews.com/05/0502/0021_0030.pdf
http://www.asiapacific-mathnews.com/05/0502/0021_0030.pdf
https://doi.org/10.1107/S0108767313001682
https://doi.org/10.1107/S0108767313001682
http://msp.org/idx/mr/3047743
https://doi.org/10.1098/rspa.2015.0254
http://msp.org/idx/mr/3404281
https://www.jstor.org/stable/j.ctt7rkjw
http://msp.org/idx/mr/2850125
https://doi.org/10.4171/CMH/105
http://msp.org/idx/mr/2314056
https://doi.org/10.1353/ajm.2014.0012
http://msp.org/idx/mr/3188063
http://projecteuclid.org/euclid.jdg/1207834551
http://msp.org/idx/mr/2396249
https://doi.org/10.1007/978-3-642-33302-6
http://msp.org/idx/mr/3024600
https://doi.org/10.2140/gt.2006.10.1239
https://doi.org/10.2140/gt.2006.10.1239
http://msp.org/idx/mr/2255497
https://doi.org/10.1016/0040-9383(76)90027-6
http://msp.org/idx/mr/420620
https://doi.org/10.1090/proc/16949
http://msp.org/idx/mr/4840285
https://doi.org/10.1112/blms.12993
http://msp.org/idx/mr/4735618
https://doi.org/10.1112/S0024611503014291
http://msp.org/idx/mr/2018964
https://doi.org/10.1111/j.0022-202X.2004.23213.x
https://doi.org/10.1111/j.0022-202X.2004.23213.x
https://doi.org/10.1107/S0567739477002228
https://doi.org/10.1107/S010876730001151X
https://doi.org/10.1107/S010876730001151X
http://msp.org/idx/mr/1805573
https://doi.org/10.1090/gsm/209
http://msp.org/idx/mr/4249621
https://doi.org/10.1021/ja045123o
https://doi.org/10.1021/ja045123o
https://doi.org/10.1007/BF01389038
http://msp.org/idx/mr/906585
http://msp.org/idx/mr/4554426


VOLUME BOUNDS FOR HYPERBOLIC ROD COMPLEMENTS IN THE 3-TORUS 189

Received January 14, 2025. Revised August 3, 2025.

NORMAN DO

SCHOOL OF MATHEMATICS

MONASH UNIVERSITY

CLAYTON

AUSTRALIA

norm.do@monash.edu

CONNIE ON YU HUI

SCHOOL OF MATHEMATICS

MONASH UNIVERSITY

CLAYTON

AUSTRALIA

onyu.hui@monash.edu

JESSICA S. PURCELL

SCHOOL OF MATHEMATICS

MONASH UNIVERSITY

CLAYTON

AUSTRALIA

jessica.purcell@monash.edu

mailto:norm.do@monash.edu
mailto:onyu.hui@monash.edu
mailto:jessica.purcell@monash.edu




PACIFIC JOURNAL OF MATHEMATICS
Vol. 339, No. 1, 2025

https://doi.org/10.2140/pjm.2025.339.191

A REMARK ON THE LEWARK–ZIBROWIUS INVARIANT

MIHAI MARIAN

We prove a conjecture about the concordance invariant ϑ , defined in a
recent paper by Lewark and Zibrowius. This result simplifies the relation
between ϑ and Rasmussen’s s-invariant. The proof relies on Bar-Natan’s
tangle version of Khovanov homology or, more precisely, on its distillation
in the case of 4-ended tangles into the immersed curve theory of Kotelskiy,
Watson and Zibrowius.

1. Introduction

Lewark and Zibrowius [2024] defined two new families of smooth concordance
invariants,

{ϑc : Csm → Z} and {ϑ ′

c : Csm → Z ∪ {∞}},

parametrized by a prime c. These invariants exploit the following linearity property
of Rasmussen’s invariant in characteristic c. Given a knot K ⊂ S3 and a pattern
P ⊂ D2

× S1 of wrapping number 2, the function

t 7→ sc(Pt(K ))

is the restriction to Z of a piecewise affine function R → R of slope 1 or 0 that has
at most one jump discontinuity. If the winding number of P is ±2 then the function
has slope 1, otherwise the winding number and slope are 0 and, in this latter case,
the function does have a jump discontinuity. In the case of winding number ±2,
the invariant ϑ ′

c(K ) is defined to be the value of t for which

sc(Pϑ ′
c(K )(K )) = sc(Pϑ ′

c(K )−1(K )),

if it exists. If no such value exists because the piecewise affine function is affine,
then ϑ ′

c(K ) := ∞. Not only do Lewark and Zibrowius prove that ϑc and ϑ ′
c are

concordance invariants and that ϑc is a homomorphism Csm → Z, but they also
show that ϑc is a genuinely new invariant, in that it is not simply a multiple of sc,
in contrast to the τ -invariant [2024, §2.2].

The knots K with ϑ ′
c(K ) ̸= ∞ are of particular interest, and they are called

ϑc-rational. We establish here a conjecture on the expected simplicity of ϑ ′
c:
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Theorem 1.1 [Lewark and Zibrowius 2024, Conjecture 2.24]. If K is a ϑc-rational
knot, then ϑc(K ) = 0.

Since ϑc agrees with ϑ ′
c on the class of ϑc-rational knots [Lewark and Zibrowius

2024, Theorem 2.23], it follows that the second family of invariants {ϑ ′
c} contains

no more information than a single Z/2Z-valued invariant. A consequence noted
by Lewark and Zibrowius [2024, p. 250] is the following simplification of their
Theorem 2.23:

Corollary 1.2. Let K ⊂ S3 be a ϑc-rational knot and let P be a pattern with
wrapping number 2 and winding number ±2. Then

sc(P(K )) = sc(P−ϑc(K )(U )) = sc(P0(U )). □

Our argument uses the immersed curve theory of 4-ended tangles, constructed in
[Kotelskiy et al. 2019] as a specialization of the theory developed in [Bar-Natan
2005], and a property of Lee’s homology [2005].

2. Background

Tangles are considered modulo isotopy fixing the endpoints. Let (K , ∗) be a pointed
oriented knot and let TK be the 4-ended tangle obtained by taking a copy of the long
knot K \ {∗} together with its Seifert push-off, as in Figure 1. We generally also
orient our tangles and mark an endpoint, as required for the theory in [Kotelskiy
et al. 2019].

To specify notation for the cut-and-paste procedures used, let n ∈ Z ∪{∞}. First,
the rational n-tangle Qn is the one in Figure 2 for n > 0. If n < 0, then Qn = m Q−n ,
where m denotes the mirror. And if n = 0, ∞, we set Q0 = and Q∞ = .
Second, given two 4-ended tangles T1 and T2, the link L(T1, T2) is obtained by
identifying endpoints as in Figure 2 below. Finally, let the n-closure T (n) of a
4-ended tangle T be L(T, Q−n). By convention, diagrams for the tangle TK are
chosen so that their ∞-closure is the unknot, and the tangle is oriented compatibly
with the 0-closure, as in Figure 1.

Figure 1. A pointed oriented knot (K , ∗) and its associated double TK .
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Figure 2. Left: The tangle Qn . Right: The link L(T1, T2).

2.1. Bar-Natan homology. The Bar-Natan homology of a link is a version of
Khovanov homology [2000] defined in [Bar-Natan 2005] with coefficients in the
field with two elements F2, and later extended as a theory with coefficients in any
prime field in [Mackaay et al. 2007]. It has been observed that varying the field
characteristic results in interesting differences [Lewark and Zibrowius 2021], so let
Fc be the prime field of characteristic c (in particular, F0 = Q). We use the setup in
[Kotelskiy et al. 2019, §3].

Given a link L , its Bar-Natan homology is a bigraded Fc[H ]-module BN(L; Fc),
where H is a formal variable that lowers the secondary (quantum) grading by 2.
The shift operators for the homological and quantum gradings are denoted using
square and curly brackets, respectively. For example,

BN(L; Fc){−1}

is the Bar-Natan homology of L with coefficients in Fc, but with quantum gradings
formally reduced by 1.

If the link L is pointed, then there is a reduced theory
∼

BN(L; Fc), which is
related to unreduced Bar-Natan homology by a short exact sequence of bigraded
Fc[H ]-complexes:

(1) 0 →
∼

CBN(D; Fc){−1} → CBN(D; Fc) →
∼

CBN(D; Fc){1} → 0,

where D is a choice of diagram for L .

Notation. Free summands of the bigraded Fc[H ]-module
∼

BN(L; Fc) are called tow-
ers. The grading of a tower refers to the grading of a corresponding free generator.

2.2. Lee’s deformation. Rasmussen [2010] used the work in [Lee 2005] to define
the s-invariant of a knot. While the s-invariant can also be defined for links, as in
[Beliakova and Wehrli 2008; Pardon 2012], this construction is not used as much,
and Lewark and Zibrowius arranged so that their work only dealt with s-invariants
of knots. This subsection recalls an aspect of the definition of the s-invariant for
links in Lemma 2.1 below. This result is known to the experts and is the main
observation needed to prove Theorem 1.1. See also [Lee 2005, Proposition 4.3].

Lemma 2.1. Let L be an oriented 2-component pointed link. If lk(L) ̸= 0, then
there is a unique tower Fc[H ] ↪→

∼

BN(L; Fc) in homological grading 0. Otherwise,
if lk(L) = 0, then both towers have homological grading 0.
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Proof. The idea is that, by setting H = 1 in the chain complex CBN(L; Fc),
we obtain a chain complex fCBN(L; Fc) that is no longer bigraded, but rather
homologically graded and quantum filtered. Courtesy of the filtration, there is an
induced spectral sequence

fCBN(L; Fc) ⇒ H∗(fCBN(L; Fc)).

Theorem 2.2 of [Lipshitz and Sarkar 2014] establishes that the vector space
H∗(fCBN(L; Fc)) is 4-dimensional, and there is a canonical identification between
the set of orientations on L and a set of generators of H∗(fCBN(L; Fc)). To
understand this identification, note that each orientation on L determines an oriented
resolution of a diagram for L . Lee’s argument applies in this context to show that
each generator of H∗(fCBN(L; Fc)) is the homology class of an algebra element
assigned to an oriented resolution of L by the TQFT defining fCBN; see [Lee
2005, Theorem 4.2] or [Rasmussen 2010, §2.4] for the construction and [Lipshitz
and Sarkar 2014, Theorem 2.2] for the applicability of Lee’s work in this slightly
different context.

Now, as explained in [Kotelskiy et al. 2019, Proposition 3.8], the components of
the differential ∂CBN(L) that are given by 1 7→ H l induce differentials on the l-th
page of the spectral sequence above, and this implies that

BN(L; Fc) ∼= (Fc[H ])⊕4
⊕ Tors,

where the towers in BN(L; Fc) correspond to the generators of H∗(fCBN(L; Fc).
Moreover it follows from the short exact sequence (1) that there is a 2-to-1 corre-
spondence that preserves homological grading between the towers of BN(L) and
the towers of

∼

BN(L).
Finally, fix an oriented diagram (D, o0) for L , where o0 is the orientation on D

induced from L . Let n+(o0) and n−(o0) be the number of positive and negative
crossings in (D, o0). Pick a component K of L and let o1 be the orientation on D
which is obtained by reversing the orientation on K . Then the number of negative
crossings in (D, o1) is

n−(o1) = n−(o0) + 2 lk(L).

It follows that, while the oriented resolution of (D, o0) lies in homological grading 0,
the o1-oriented resolution Do1 lies in homological grading 2 lk(L). □

2.3. The immersed curve theory. In [Kotelskiy et al. 2019], two equivalent invari-
ants of pointed 4-ended oriented tangles are defined:

T 7→ D(T ; Fc) ∈ ModB and T 7→
∼

BN(T ; Fc) ∈ Fuk(S2
4,∗).

The first produces type-D structures over the Bar-Natan algebra B, which we will
describe in Section 4. The second lands in the (partially wrapped) Fukaya category
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of S2, punctured at four points, one of which is marked ∗. In other words,
∼

BN(T ; Fc)

is an immersed curve in S2
4,∗, possibly carrying a nontrivial local system. This

possibility does not occur for noncompact curves, which are the only curves of
interest in what follows. Moreover, the invariants are bigraded in an appropriate
sense. Our main tool is the following pairing theorem.

Theorem 2.2 [Kotelskiy et al. 2019, Theorem 7.2]. Let T1 and T2 be two pointed
4-ended tangles, and let L =L(T1, T2). Then the Bar-Natan homology is isomorphic
to the wrapped Lagrangian intersection Floer homology of the tangle invariants, as
bigraded Fc[H ]-modules:

∼

BN(L; Fc){−1} ∼= HF(
∼

BN(mT1; Fc),
∼

BN(T2; Fc)).

3. The proof of Theorem 1.1

Suppose now that K is a ϑc-rational knot. Lewark and Zibrowius identified ϑc(K )

with a certain slope of
∼

BN(TK ; Fc), and this allows us to reduce the proof to a
simple statement that can be checked using Lemma 2.1. Let

∼

BNa(T ; Fc) consist of
the noncompact component(s) of

∼

BN(T ; Fc).

Proposition 3.1 [Lewark and Zibrowius 2024, Proposition 6.18]. If K is ϑc-rational,
then the immersed curve

∼

BNa(TK ; Fc) is equal to the immersed curve of the rational
tangle Qn , for some choice of n ∈ 2Z, up to some grading shift.

We have then
∼

BNa(TK ; Fc) =
∼

BN(Qn; Fc), for some n ∈ 2Z, up to grading shift.
The immersed curve invariants

∼

BN(Qn; Fc) are calculated in [Kotelskiy et al. 2019].
It turns out that they are independent of the coefficient field, so we may drop it
from the notation. These invariants are best described in the following covering
space of the 4-punctured sphere:

R2
\
( 1

2 Z
)2 α

−→ T 2
4,∗

β
−→ S2

4,∗,

where β is the double cover given by hyperelliptic involution and α is the universal
Abelian cover of the punctured torus. The puncture ∗ lifts to the integer lattice
Z2

⊂
1
2 Z2. The lift of

∼

BN(Qn) is (isotopic to) a line of slope n, as depicted in
Figure 3 in the cases n = −2, 0, 2.

Proposition 3.2 [Lewark and Zibrowius 2024, Corollary 6.14]. Given a knot K
in S3, let σc be the slope of

∼

BNa(TK ; Fc) near the bottom-right tangle end. Then
ϑc(K ) = ⌈σc⌉.

Since the curve
∼

BN(Qn) lifts to a curve that is isotopic to a line of slope n,
the above two propositions reduce the proof of Theorem 1.1 to proving that
∼

BNa(TK ; Fc) =
∼

BN(Q0), up to grading shift. Consider the Bar-Natan homology of
the 0-closure TK (0). Since TK is obtained by taking the union of a long knot with its
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∼

BN(Q−2)
∼

BN(Q0)
∼

BN(Q2)

Figure 3. Some immersed curve invariants of Qn and their lifts to the
covering space R2

\ Z2.

Seifert push-off, the closure TK (0) has linking number 0. Thus, by Lemma 2.1, the
Bar-Natan homology

∼

BN(TK (0); Fc) has both Fc[H ] towers in grading 0. We may
compute this homology using Theorem 2.2:

∼

BN(TK (0)){−1} ∼= HF
(
∼

BN
(

m
)
,
∼

BN(TK )
)

∼= HF
(
∼

BN
(

m
)
,
∼

BNa(TK )[h]{q}

)
⊕ Tors

∼=
∼

BN(T (2, 2n); Fc)[h]{q} ⊕ Tors,

where Tors is a torsion Fc[H ]-module, T (2, 2n) is the (2, 2n)-torus link and [h]{q}

is a possible bigrading shift. Clearly both towers of
∼

BN(TK (0)) sit in a summand
of the homology that is isomorphic to

∼

BN(T (2, 2n)), up to a grading shift. But
the homology of 2-strand torus links is well understood — indeed, we will indicate
how to compute it in the next section. In particular, the only way for both towers of
∼

BN(T (2, 2n)) to be in the same homological grading is if n = 0. □

4. Epilogue

Let us now indicate how to compute
∼

BN(T (2, n); Fc), using a technique that applies
more generally and that is the honest source of the proof above. To that end, we will
need to look under the hood of Theorem 2.2 and use the bigraded type-D structures
D(Qn; Fc) ∈ ModB. First, we will write k instead of Fc in what follows, since the
characteristic does not matter and clutters the notation.

Definition 4.1. The Bar-Natan algebra B is the bigraded path algebra over k of the
quiver

• ◦D•

S•

S◦

D◦
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subject to the relations

D◦S• = S•D• = 0 and D•S◦ = S◦D◦ = 0,

and with bigrading given by

q(1 ) = 0, q(S ) = −1, q(D ) = −2, h(1 ) = h(S ) = h(D ) = 0,

where ∈ {◦, •}.

Remark. Alternatively, consider the quiver above as describing an additive category
with two objects and with four nonidentity morphisms indicated, and suppose that
the composites DS and SD vanish. Then the algebra B is the collection of all
morphisms of this category, where the algebra operation corresponds to composition
of morphisms, and we formally set the composite of noncomposable morphisms
to 0. This is a bigraded category in the sense of [Bar-Natan 2005].

Remark. By definition, path algebras have idempotent elements 1 : the constant
paths at each vertex. These correspond to identity morphisms in the categorical
perspective. The idempotents generate a subring I := k⟨1◦, 1•⟩

∼= k2, giving B the
additional structure of an I-algebra.

Now a type-D structure over B is, by definition, an I-module M together with a
map δ : M → M ⊗I B subject to an appropriate “d2

= 0” condition:

(IdM ⊗ m) ◦ (δ ⊗ IdB) ◦ δ = 0.

Notation. Type-D structures are described as labeled directed graphs, with vertices
labeled by • or ◦, and edges labeled with elements of B. The vertices correspond
to homogeneous generators (with respect to the action of I) and the edges are the
homogeneous components of the differential δ. To avoid heavy use of brackets,
we denote homological and quantum shifts by subscripts and left-superscripts,
respectively. For example, q

•h is a type-D structure generator fixed by 1• and in
(homological, quantum)-bigrading (h, q).

The D-invariants of Qn are explicitly computed as Example 4.27 of [Kotelskiy
et al. 2019] (where Qn is oriented compatibly with the 0-closure): D(Q0) =

0
•0

and, more generally,

D(Qn; k) =


3n−1

◦n
X

−→ · · ·
D

−→ ◦
SS

−→ ◦
D

−→ ◦
S

−→
n
•0︸ ︷︷ ︸

−n+1

if n < 0,

n
•0

S
−→ ◦

D
−→ ◦

SS
−→ ◦

D
−→ · · ·

X
−→

3n−1
◦n︸ ︷︷ ︸

n+1

if n > 0,

where the algebra element X is D if n is even and SS if n is odd.



198 MIHAI MARIAN

Finally, the following element is defined in B:

H := SS• − D• + SS◦ − D◦.

This gives the Bar-Natan algebra the structure of a k[H ]-algebra, and, by design,
this structure is compatible with the k[H ]-module structure of Bar-Natan homology:

Theorem 4.2 [Kotelskiy et al. 2019, Proposition 4.31]. Let T1 and T2 be two pointed
oriented 4-ended tangles. Then there is a homotopy

(2)
∼

CBN(L; k){−1} ≃ Mor(D(mT1; k),D(T2; k))

of bigraded chain complexes of k[H ]-modules, where m denotes the mirror, and
the bifunctor Mor(−, −) above is the internal Hom in the category of bigraded
type-D structures.

The type-D structure of Mor(D1,D2) is defined in [Kotelskiy et al. 2019, §2].
Briefly, Mor(D1,D2) consists of all morphisms D1 → D2, not just the grading-
preserving ones. Given generators xi ∈ Di the quantum and homological grading
of a morphism is given by

gr(x1
f

−→ x2) = gr(x2) − gr(x1) + gr( f ).

Finally, a differential D on Mor(D1,D2) is given on morphisms between generators
by pre- and post-composing with the δi differentials on Di :

D(x1
f

−→ x2) = f ◦ δ1 − δ2 ◦ f.

For our purposes, note the computations

Mor(i
• j ,

k
◦l) = k[H ]⟨

i
• j

S•
−→

k
◦l⟩ ∼=

k−i−1(k[H ])l− j ,

Mor(i
• j ,

k
•l) = k[H ]⟨

i
• j

1•
−→

k
•l,

i
• j

D•
−→

k
•l⟩ ∼=

k−i(k[H ])l− j ⊕
k−i−2(k[H ])l− j .

To give the simplest application of Theorem 4.2, the unknot U is L( , ). Thus
∼

BN(U ){−1} ∼= H∗[Mor(0
•0,

0
◦0)] ∼=

−1(k[H ])0.

Now we can give a rapid computation of
∼

BN(T (2, n)) =
∼

BN(L( , Qn)). If
n < 0, then
∼

BN(T (2, n)){−1} ∼= H∗[Mor(0
•0,

3n−1
◦n

X
−→ ◦

D
−→ ◦

SS
−→ · · · →

n
•0)]

∼= H∗

[
Mor(0

•0,
3n−1

◦n)
X∗−→ Mor(0

•0, ◦)
D∗−→ Mor(0

•0, ◦)

SS∗−−→ · · · → Mor(0
•0,

n
•0)

]
,

where the maps above are the ones induced by postcomposing with the components
of the differential on D(Qn). It is convenient to organize the above complex in a
grid as follows:
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k[H ]

k[H ]X∗
...

k[H ]

k[H ]

k[H ]

k[H ]

k[H ]

k[H ]

×H

×H

×H
1

-4 -3 -2 -1 0n n + 1

n

n − 2

n − 4

n − 6

n − 8

3n

3n − 2

Here, the horizontal and vertical axes measure the homological and quantum
grading, respectively, and only the nonzero components of the differential are
indicated. These components are easy to compute: every morphism group, except
for the last one, is generated over k[H ] by an S•, which D∗ takes to 0 and SS∗

takes to SSS = HS. The last morphism group is generated by 1• and D• and the
incoming differential is S• 7→ S◦S• = H1• + D•.

Taking homology of the above bigraded complex of free k[H ]-modules yields
∼

BN(T (2, n); k). In particular, when n is even, the two towers are in homological
grading n and 0, in accordance with Lemma 2.1. The computation for n ≥ 0 is
analogous.
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