Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 339: 1  2
Vol. 338: 1  2
Vol. 337: 1  2
Vol. 336: 1+2
Vol. 335: 1  2
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Lower bounds for fractional Orlicz-type eigenvalues

Ariel Salort

Vol. 339 (2025), No. 2, 309–331
Abstract

We establish precise lower bounds for the eigenvalues and critical values associated with the fractional A-Laplacian operator, where A is a Young function. The obtained bounds are expressed in terms of the domain geometry and the growth properties of the function A. We do not assume that A or its complementary function satisfies the Δ2 condition.

Keywords
eigenvalues, nonlocal, fractional Orlicz–Sobolev, lower bound
Mathematical Subject Classification
Primary: 35P20, 46E30, 35R11, 47J10
Milestones
Received: 4 May 2025
Revised: 20 August 2025
Accepted: 20 August 2025
Published: 21 September 2025
Authors
Ariel Salort
Departamento de Matemáticas y Ciencia de Datos
Universidad San Pablo-CEU
Urbanización Montepríncipe
28660 Madrid
Spain

Open Access made possible by participating institutions via Subscribe to Open.