
Pacific
Journal of
Mathematics

Volume 339 No. 2 December 2025



PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Atsushi Ichino
Department of Mathematics

Kyoto University
Kyoto 606-8502, Japan

atsushi.ichino@gmail.com

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Kefeng Liu
School of Sciences

Chongqing University of Technology
Chongqing 400054, China

liu@math.ucla.edu

Sucharit Sarkar
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

sucharit@math.ucla.edu

Dimitri Shlyakhtenko
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

shlyakht@ipam.ucla.edu

Ruixiang Zhang
Department of Mathematics

University of California
Berkeley, CA 94720-3840

ruixiang@berkeley.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2025 is US $677/year for the electronic version, and $917/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2025 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:chari@math.ucr.edu
mailto:atsushi.ichino@gmail.com
mailto:lipshitz@uoregon.edu
mailto:liu@math.ucla.edu
mailto:sucharit@math.ucla.edu
mailto:shlyakht@ipam.ucla.edu
mailto:ruixiang@berkeley.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS
Vol. 339, No. 2, 2025

https://doi.org/10.2140/pjm.2025.339.201

STARTING THE STUDY OF OUTER LENGTH BILLIARDS

LUCA BARACCO, OLGA BERNARDI AND CORENTIN FIEROBE

We focus on outer length billiard dynamics, acting on the exterior of a strictly
convex planar domain. We first show that ellipses are totally integrable. We
then provide an explicit representation of first order terms for the formal
Taylor expansion of the corresponding Mather’s β-function. Finally, we
provide explicit Lazutkin coordinates up to order 4.

1. Introduction

The aim of the present paper is starting an accurate study of outer length billiards,
first described by P. Albers and S. Tabachnikov in 2024, see [2, Section 3.4]. These
billiards are the counterpart of Birkhoff ones since the generating function is the
outer length instead of the inner length. They are also called “fourth billiards”.
In fact, two billiards systems — Birkhoff and outer area billiards — have been
extensively studied; we refer respectively to [22] and [21] for exhaustive surveys.
Another type of billiards, namely symplectic billiards, whose generating function
is the inner area, were introduced in 2018 by P. Albers and S. Tabachnikov [1]
and their study started to become more intensive only recently. We refer to [4],
[6] and [23] for integrability results and to [5] and [12] for area spectral rigidity
results for symplectic billiards. Regarding outer length billiards, to the best of
our knowledge, they were not studied yet. However, the seminal idea on the base
of the definition of this dynamical system (detecting, in particular, circumscribed
polygons to a strictly convex domain with minimal perimeter) can already be found
in some former papers in convex planar geometry; see [11, Theorem 1] and [10,
Section 2], for example.

We first give all the details to introduce this dynamical system, acting on the
exterior of a strictly convex planar domain. We then prove, using elementary planar
geometry, that ellipses are totally integrable, that is the phase space is fully foliated
by continuous invariant curves which are not null-homotopic.

MSC2020: primary 37E40; secondary 37C83.
Keywords: monotone twist maps, mathematical billiards, Mather beta function, geometric
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We successively focus on the main topic of the paper, which is providing an
explicit representation of first order terms for the formal Taylor expansion of
Mather’s β-function (or minimal average function) for outer length billiards. In
particular, we write these coefficients (up to order 5) by means of the ordinary
curvature and length of the boundary of the billiard table. As already noticed, for
such a dynamical system, Mather’s β-function is related to the minimal perimeter
of polygons circumscribed to a strictly convex domain. These perimeters are special
cases (i.e., for periodic trajectories of winding number = 1) of the corresponding
marked length spectrum for outer length billiards.

Finally, by using the computations we made to obtain minimal average function’s
coefficients, we provide explicit Lazutkin coordinates up to order 4 and discuss
straightforward facts regarding the existence/nonexistence of caustics for outer
length billiards.

2. Twist maps and Mather’s β-function

Let T × (a, b) be the annulus, where T = R/Z = [0, 1]/ ∼ identifying 0 ∼ 1 and
(eventually) a = −∞ and/or b = +∞. Given a diffeomorphism 8 : S1

× (a, b) →

S1
× (a, b), we denote by

φ : R × (a, b) → R × (a, b), (x0, y0) 7→ (x1, y1)

a lift of 8 to the universal cover. Then φ is a diffeomorphism and φ(x + 1, y) =

φ(x, y)+ (1, 0). In the case where a (resp. b) is finite, we assume that φ extends
continuously to R × {a} (resp. R × {b}) by a rotation of fixed angle:

(2-1) φ(x0, a) = (x0 + ρa, a) (resp. φ(x0, b) = (x0 + ρb, b)).

Once fixed the lift, the numbers ρa, ρb are unique. The choice of ρa (resp. ρb) if
a = −∞ (resp. b = +∞) depends on the dynamics at infinity. For example, in the
case of outer length billiards, where b = +∞, it is natural to set ρb =

1
2 . We refer

to point 1 of Section 3 for details.
We recall for convenience the definition of a monotone twist map (see [18, page

2], for instance).

Definition 1. A monotone twist map φ :R×(a, b)→R×(a, b), (x0, y0) 7→ (x1, y1)

is a diffeomorphism satisfying

1. φ(x0 + 1, y0) = φ(x0, y0) + (1, 0).

2. φ preserves orientations and the boundaries of R × (a, b).

3. φ extends to the boundaries by rotation, as in (2-1).
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4. φ satisfies a monotone twist condition, that is

(2-2)
∂x1

∂y0
> 0.

5. φ is exact symplectic; this means that there exists a generating function H ∈

C2(R × R; R) for φ such that

(2-3) y1 dx1 − y0 dx0 = d H(x0, x1).

Clearly, H(x0+1, x1+1)= H(x0, x1) and, due to the twist condition, the domain
of H is the strip {(x0, x1) : ρa + x0 < x1 < x0 +ρb}. Moreover, equality (2-3) reads

(2-4)
{

y1 = H2(x0, x1),

y0 = −H1(x0, x1),

and the twist condition (2-2) becomes H12 < 0. As a consequence, {(xi , yi )}i∈Z is an
orbit of φ if and only if H2(xi−1, xi ) = yi = −H1(xi , xi+1) for all i ∈ Z. Formally,
this means that the corresponding bi-infinite sequence x := {xi }i∈Z is a so-called
critical configuration of the action functional

∑
i∈Z H(xi , xi+1). In such a setting,

minimal orbits play a fundamental role. We recall that a critical configuration x of
φ is minimal if every finite segment of x minimizes the action functional with fixed
end points (we refer to [18, page 7] for details). Clearly, all these facts remain true
if we consider a monotone twist map on {(x0, x1) : ua(x0) < x1 < ub(x0)}, where
ua, ub : R → R are two continuous 1-periodic functions such that ua < ub.

For a twist map φ generated by H , we finally introduce the rotation number and
the Mather β-function (or minimal average action).

Definition 2. The rotation number of an orbit {(xi , yi )}i∈Z of φ is

ρ := lim
i→±∞

xi

i

if such a limit exists.

An important class of monotone twist maps are planar billiard maps. In this
setting, the rotation number of a periodic trajectory is the rational number

m
n

=
winding number

number of reflections
∈

(
0, 1

2

]
;

see [18, page 40] for details.
In view of the celebrated Aubry–Mather theory (see [3], for example), a monotone

twist map possesses minimal orbits for every rotation number ρ inside the so-called
twist interval (ρa, ρb). As a consequence, we can associate to each ρ the average
action of any minimal orbit having that rotation number.
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Definition 3. The Mather β-function of φ is β : (ρa, ρb) → R with

β(ρ) := lim
N→∞

1
2N

N−1∑
i=−N

H(xi , xi+1)

where {xi }i∈Z is any minimal configuration of φ with rotation number ρ.

In the framework of Birkhoff billiards, A. Sorrentino in [19] gave an explicit
representation of the coefficients of the (formal) Taylor expansion at zero of the
corresponding Mather’s β-function. More recently, J. Zhang in [24] got (locally)
an explicit formula for this function via a Birkhoff normal form. Moreover, M.
Bialy in [9] obtained an explicit formula for Mather’s β-function for ellipses by
using a nonstandard generating function, involving the support function. Regarding
symplectic and outer billiards, the first two authors and A. Nardi in [7] computed
explicitly the higher order terms of such an expansion, by using tools from affine
differential geometry. As anticipated, one of the target of the present paper is
writing explicitly these coefficients (up to order 5) in the case of forth billiards.

3. The dynamical system

Let � be a strictly convex planar domain with smooth boundary ∂�. Assume that
the perimeter of ∂� is ℓ = |∂�|. Fixing the positive counterclockwise orientation,
let γ : T → ∂� be the smooth arc-length parametrization of ∂�. For every s ∈ T,
we denote by s∗

∈ T the (unique, by strict convexity) arc-length parameter such
that Tγ (s)∂� = Tγ (s∗)∂�. We refer to

P = {(s, r) ∈ T × T : s < r < s∗
}

as the (open, positive) phase space and we define the outer length billiard map as
follows [2, Section 3.4].

Since � is strictly convex, to every point P ∈R2
\cl(�) can be uniquely associated

a pair (s0, s1) ∈ T × T with s0 < s1 and such that the lines Pγ (s0) and Pγ (s1) are
the (negative and positive) tangents to ∂�. Consider the circle in R2

\ � tangent
to ∂� at γ (s1) and to the line Pγ (s0). Then the image P ′ of P is defined as the
intersection point between the lines Pγ (s1) and the other common tangent line of
the circle and ∂� (hence passing through P ′ and γ (s2)):

T : P → P, (s0, s1) 7→ (s1, s2).

(We refer to Figure 1.) Setting ε0 = s1 − s0 and

P̂ = {(s, ε) ∈ T × R : 0 < ε < s∗
− s},
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γ (s0)γ (s1)

γ (s2)

P

P ′

∂�

R

Figure 1. The outer-length billiard map around the domain � associates
the point P to the point P ′.

the outer length billiard map can be equivalently defined as

T : P̂ → P̂, (s0, ε0) 7→ (s1, ε1).

Here are some properties of the outer length billiard map.

1. T is continuous and can be continuously extended so that T (s, s) = (s, s) and
T (s, s∗) = (s∗, s).

2. The function

H : P → R, H(s0, s1) := |Pγ (s0)| + |Pγ (s1)|,

generates T , that is

(3-1) T (s0, s1) = (s1, s2) ⇐⇒ H2(s0, s1) + H1(s1, s2) = 0.

See [2, Lemma 3.1] for the proof. In view of (3-1), we can equivalently refer to

H̄ : P → R, H̄(s0, s1) := |Pγ (s0)| + |Pγ (s1)| − s1 + s0,

as a generating function, which is exactly the Lazutkin parameter of ∂�, interpreted
as convex caustic for a Birkhoff billiard.

3. T is a twist map preserving the area form −H12(s0, s1) ds0 ∧ ds1.

4. By introducing new variables

y0 = −H1(s0, s1), y1 = H2(s0, s1),

(s, y) are coordinates on P and the outer length billiard map results a (negative)
twist map, since

∂y1

∂s0
= H12(s0, s1) = −

k(s0)k(s1)H(s0, s1)

2 sin2(ϕ/2)
< 0,
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where ϕ is the angle between the tangent lines Pγ (s0) and Pγ (s1) (see also [2, page
11]). In these coordinates, the preserved area form is the standard one: ds ∧ dy.

5. The marked length spectrum for the outer length billiard is the map MLo(�) :

Q ∩
(
0, 1

2

)
→ R that associates to any m/n in lowest terms the minimal perimeter

of the periodic trajectories having rotation number m/n. We refer to [18, Sections
3.1 and 3.2] for a general treatment of the marked spectrum. Clearly, periodic
outer length billiard minimal trajectories (with winding number = 1) correspond to
convex polygons realizing the minimal (circumscribed) perimeter, so that

(3-2) β
( 1

n

)
=

1
nMLo(�)

( 1
n

)
.

3.1. Circles and ellipses. As expected, the outer length billiard on the circle (of
center O) is totally integrable: the phase space is completely foliated by concentric
invariant circles. By using as coordinates (α0, α1) ∈ T × T, where α0 and α1 are
respectively the angles of Oγ (s0) and Oγ (s1) with respect to the positive horizontal
direction, the generating function in the case of disk of unit radius is

H(α0, α1) = 2 tan
α1 − α0

2
.

Equivalently, in terms of (α0, y0) = (α0, −H1(α0, α1)) =
(
α0, 1 + tan2 α1−α0

2

)
, we

have
H(α0, y0) = 2

√
y0 − 1

and total integrability follows.
An unexpected fact — at least from the authors’ point of view, since the billiard

dynamics is not invariant by affine transformations — is that also the outer length
billiard on the ellipse is totally integrable, as stated in the next proposition.

Proposition 4. Let E and 0 be two confocal nested ellipses, E ⊂ 0. Then 0 is a
caustic for the outer-length billiard dynamics outside E .

The proof of Proposition 4 relies on a lemma from elementary plane geometry:

Lemma 5 [20, Lemma 2.4]. Let P0, P1 ∈ 0 two distinct points such that the line
P0 P1 is tangent to E at a point Q. Let R be the intersection point of the tangent lines
to 0 at P0 and P1. Then the lines P0 P1 and RQ are orthogonal. (See Figure 2.)

Proof of Proposition 4. Let a point P0 on 0. Consider the positive tangent line
to E at a point Q and passing through P0. Let P1 ∈ 0 be the intersection point
of the latter tangent line P0 Q with 0, see Figure 3. We need to show that P1 is
the image of P0 under the outer-length billiard reflection outside E . Consider the
point P , such that PP0 and PP1 are the two tangent lines to E passing through P ,
see Figure 3. Since E and 0 are confocal, E is a caustic for the classical billiard
in 0. In particular, the tangent line TP00 is a bisector of the angle P̂1 P0 P . With
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E

0

Q

TP00

TP10

R

P0

P1

Figure 2. The line RQ is orthogonal to the line P0 P1.

E

0

Q

TP00

TP10

R

P0

P1

P

Figure 3. The point P0 ∈ 0 is reflected to the point P1 ∈ 0 by the outer-
length billiard dynamics around E .

the same argument the tangent line TP10 is a bisector of the angle P̂0 P1 P . Hence
TP00 and TP10 intersects at a point R which is the center of the inscribed circle
D to the triangle P0PP1. By Lemma 5, the lines RQ and P0 P1 are orthogonal. In
particular D is tangent to the ellipse E . This implies that P1 is obtained from P0 by
the outer-length billiard law of reflection. □

It would be interesting to investigate if these are the only cases. This fundamental
problem (possibly to be studied by an integral inequality à la Bialy [8]) may present
nontrivial difficulties, due to the infinite total area of the phase space.
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4. Asymptotic expansions

S. Marvizi and R. Melrose’s theory, first stated and proved for Birkhoff billiards
[15, Theorem 3.2], can be applied to the general case of (strongly) billiard-like
maps, see [13, Section 2.1]. As an outcome, the following expansion at ρ = 0 of
the corresponding minimal average function holds:

β(ρ) ∼ β1ρ + β3ρ
3
+ β5ρ

5
+ · · ·

in terms of odd powers of ρ. It is well-known (see, e.g., [15, Section 7] again)
that for usual billiards the sequence {βk} can be interpreted as a spectrum of a
differential operator, see also Remark 2.11 in [1]. The question is wide open for
other types of billiards, included outer length billiards.

In this section, we gather all the technical results in order to prove the next
theorem, providing the coefficient β5 for the outer length billiard map. This result
is a refinement of [17, Theorem 1(iii)]. In fact, in a genuine framework of convex
planar geometry, D.E. Vitale and R.A. McClure computed β3 by using as coordinate
the support function and as parameter the angle with respect to a fixed direction.

Theorem 6. Let � be a strictly convex planar domain with smooth boundary ∂�.
Suppose that ∂� has everywhere positive curvature. Denote by k(s) the (ordinary)
curvature of ∂� with arc-length parameter s. Let ℓ be the length of the boundary
and

L :=

∫ ℓ

0
k2/3(s) ds.

The formal Taylor expansion at ρ = 0 of Mather’s β-function for the outer length
billiard map has coefficients

β2k = 0 for all k, β1 = ℓ, β3 =
L3

12
,

β5 = L4
∫ ℓ

0

(
k4/3(s)

120
+

k−
8
3 (s)k ′2(s)
2160

)
ds.

As expected, a straightforward consequence of the previous result is that, as for
other billiards, also for outer length ones, the two coefficients β1 and β3 allow one
to recognize a circle among all strictly convex planar domains.

Corollary 7. The coefficients β1 and β3 recognize a circle. In particular,

3β3 + π2β1 ≤ 0

with equality if and only if ∂� is a circle.
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Proof. We apply Hölder’s inequality with p = 3/2 and q = 3 to obtain

(4-1) L =

∫ ℓ

0
k2/3(s) ds ≤

(∫ ℓ

0
(k2/3(s))3/2ds

)2/3(∫ ℓ

0
13ds

)1/3
= (2π)2/3ℓ1/3,

since
∫ ℓ

0 k(s) ds = 2π . Using the expressions of β1 and β3 found in Theorem 6, we
can write

3β3 + π2β1 =
1
4 L3

− π2ℓ ≤
1
4(2π)2ℓ − π2ℓ = 0.

In the case of equality, namely if 3β3 + π2β1 = 0, then L = (2π)2/3ℓ1/3, and the
case of equality is reached in (4-1). In that case, k is constant. Hence � is a disk. □

Remark 8. Let Pc
n be the set of all convex polygons with at most n vertices which

are circumscribed to �. We define

δ(�;Pc
n) := inf{ℓ(Pn) : Pn ∈ Pc

n},

where ℓ(Pn) is the perimeter length of Pn . Clearly, essentially in view of equality
(3-2), Theorem 6 gives also the formal expansion of δ(�;Pc

n) at n → +∞.

Since we use the arc-length parametrization of ∂�, it is useful to recall that

(4-2)


γ ′′

= k Jγ ′, γ ′′′
= −k2γ ′

+ k ′ Jγ ′,

γ (4)
= −3kk ′γ ′

+ (−k3
+ k ′′)Jγ ′,

γ (5)
= (k4

− 4kk ′′
− 3k ′2)γ ′

+ (−6k2k ′
+ k ′′′)Jγ ′,

γ (6)
= (10k3k ′

−10k ′k ′′
−5kk ′′′)γ ′

+(k5
−10k2k ′′

−15kk ′2
+k(4))Jγ ′,

where J is the counterclockwise rotation of angle π/2.

Proposition 9. For 0 ≤ r ≤ s ≤ ℓ, let δ := s − r . Then

(4-3) H(r, s) = δ +
k2(r)

12
δ3

+
k(r)k ′(r)

12
δ4

+
2k4(r) + 4k ′2(r) + 7k(r)k ′′(r)

240
δ5

+ O(δ6),

uniformly as δ → 0.

Proof. We start by writing separately the Taylor expansions of numerator and
denominator of the generating function

(4-4) H(r, s) =
(γ (s) − γ (r)) ∧ (γ ′(s) − γ ′(r))

γ ′(r) ∧ γ ′(s)
.

From now on, we omit the dependence on r of γ , k and their derivatives. We have

γ (s) − γ (r) = γ ′δ +
γ ′′

2
δ2

+
γ ′′′

6
δ3

+
γ (4)

24
δ4

+
γ (5)

5!
δ5

+ O(δ6)

and likewise for γ ′(s)− γ ′(r); thus the Taylor expansion of the numerator of (4-4)
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is

kδ2
+

k ′

2
δ3

+
1
6

2k ′′
− k3

2
δ4

+
k ′′′

− 3k2k ′

24
δ5

+
2k5

− 48kk ′2
− 29k2k ′′

+ 6k(4)

720
δ6

+ O(δ7),

where we have used (4-2). Similarly, the Taylor expansion of the denominator is

γ ′(r) ∧ γ ′(s)

= γ ′
∧

(
γ ′

+ γ ′′δ +
γ ′′′

2 δ2
+

γ (4)

6 δ3
+

γ (5)

24 δ4
+

γ (6)

5!
δ5

+ O(δ6)
)

= kδ +
k′

2 δ2
+

−k3
+k′′

6 δ3
+

−6k2k′
+k′′′

24 δ4
+

k5
−10k2k′′

−15kk′2
+k(4)

5!
δ5

+ O(δ6)

= kδ
(

1 −
k′

2k δ +
2k4

+3k′2
−2kk′′

12k2 δ2
−

3k′3
−2k′(k4

+2kk′′)+k2k′′′

24k3 δ3
+ Dδ4

+ O(δ5)
)−1

,

where

D =
45k ′4

− 90kk ′2k ′′
+ 30k2k ′k ′′′

+ 2k2(7k6
+ 10k3k ′′

+ 10k ′′2
− 3kk(4))

720k4 .

Using the above expansions for numerator and denominator, we obtain (4-3). □

Proposition 10. The outer length billiard map T : (s0, ε0) 7→ (s1, ε1) has the
expansion

(4-5)
{

s1 = s0 + ε0,

ε1 = ε0 + A(s0)ε
2
0 + B(s0)ε

3
0 + C(s0)ε

4
0 + O(ε5

0),

where

(4-6)
A(s) = −

2k ′(s)
3k(s)

, B(s) =
10k ′2(s)
9k2(s)

−
2k ′′(s)
3k(s)

,

C(s) =
−24k4(s)k ′(s) − 1160k ′3(s) + 1200k(s)k ′(s)k ′′(s) − 216k2(s)k ′′′(s)

540k3(s)
.

Proof. We start by writing separately the Taylor expansions of numerator and
denominator of the radius R of the circle in R2

\ � tangent to ∂� at γ (s1) and to
the line Pγ (s0); see Figure 1.

R =
(γ (s1) − γ (s0)) ∧ γ ′(s1)

1 + γ ′(s1) · γ ′(s0)
=

(γ (s2) − γ (s1)) ∧ γ ′(s2)

1 + γ ′(s2) · γ ′(s1)
.

From now on, we indicate, by subscripting 1, the dependence on s1 of γ , k and
their derivatives. Recall that ε1 = s2 − s1. The Taylor expansion of the numerator is(
γ ′

1ε1 +
γ ′′

1
2 ε2

1 +
γ ′′′

1
6 ε3

1 +
γ

(4)
1
24 ε4

1 +
γ

(5)
1
5!

ε5
1 + O(ε6

1)
)

∧

(
γ ′

1 + γ ′′

1 ε1 +
γ ′′′

1
2 ε2

1 +
γ

(4)
1
6 ε3

1 +
γ

(5)
1
24 ε4

1 + O(ε5
1)

)
=

k1
2 ε2

1 +
k′

1
3 ε3

1 +

(
−k3

1+3k′′

1
24

)
ε4

1 +

(
−9k2

1k′

1+4k′′′

1
120

)
ε5

1 + O(ε6
1),
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where we have used (4-2).
Similarly, the Taylor expansion of the denominator is

1 +

(
γ ′

1 + γ ′′

1 ε1 +
γ ′′′

1
2 ε2

1 +
γ

(4)
1
6 ε3

1 +
γ

(5)
1
24 ε4

1 + O(ε5
1)

)
· γ ′

1

= 2
(

1 −
k2

1
4 ε2

1 −
k1k′

1
4 ε3

1 + O(ε4
1)

)
= 2

(
1 +

k2
1
4 ε2

1 +
k1k′

1
4 ε3

1 + O(ε4
1)

)−1
.

Using the above expansions for numerator and denominator, we obtain

(4-7) 2R =
k1

2
ε2

1 +
k ′

1

3
ε3

1 +
2k3

1 + 3k ′′

1

24
ε4

1 +
16k2

1k ′

1 + 4k ′′′

1

120
ε5

1 + O(ε6
1)

or, equivalently,

(4-8) 2R =
k1

2
ε2

0 −
k ′

1

3
ε3

0 + A4 ε4
0 + A5 ε5

0 + O(ε6
0),

with

A4 =
2k3

1 + 3k ′′

1

24
, A5 :=

16k2
1k ′

1 + 4k ′′′

1

120

Substituting the powers of the expansion

ε1 = ε0 + α(s1)ε
2
0 + β(s1)ε

3
0 + γ (s1)ε

4
0 + O(ε5

0)

in (4-7), we obtain (omitting the dependence on s0 in α, β and γ )

2R =
k1

2
ε2

0 +

(
k1α +

k ′

1

3

)
ε3

0 +

(
k1

2
(α2

+ 2β) + k ′

1α + A4

)
ε4

0

+
(
k1(αβ + γ ) + k ′

1(α
2
+ β) + 4αA4 + A5

)
ε5

0 + O(ε6
0).

Equaling this to (4-8), we obtain

α(s) = −
2k ′(s)
3k(s)

, β(s) =
4k ′2(s)
9k2(s)

,

γ (s) =
−320k ′3(s) + 3k ′(s)(−8k4(s) + 60k(s)k ′′(s)) − 36k2(s)k ′′′(s)

540k3(s)
.

Finally, from

ε1 = ε0 + α(s0)ε
2
0 + (α′(s0) + β(s0))ε

3
0 +

(
α′′(s0)

2
+ β ′(s0) + γ (s0)

)
ε4

0 + O(ε5
0),

we obtain the formulas (4-6). □
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Proposition 11. Let q ≥ 3. The q-periodic orbits of rotation number 1/q for the
outer length billiard map have the expansion

(4-9)


sk = sq

0 + a0 (k/q) +
a1 (k/q)

q
+

a2 (k/q)

q2
+ O

(
1
q3

)
εk =

b1 (k/q)

q
+

b2 (k/q)

q2
+

b3 (k/q)

q3
+ O

(
1
q4

)
where sq

0 ∈ R converges to 0 with q, a0 : R → R is a map such that a0(x + 1) =

a0(x) + ℓ for any x and a1, a2, b1, b2, b3 : R → R are 1-periodic maps which can
be expressed as

(4-10)



a−1
0 (s) =

1
L

∫ s

0
k2/3(r) dr := x(s), L :=

∫ ℓ

0
k2/3(r) dr,

a1(x) = 0,

a2(x) = k−
2
3 (a0(x))

×

(∫ x

0
L3

(
1

810

(
9k ′′k−

7
3 − 12(k ′)2k−

10
3
)
+

k
2
3

15

)
(a0(t)) dt + cx

)
,

b1(x) = a′

0(x) = Lk−2/3(a0(x)),

b2(x) =
a′′

0 (x)

2
= −

L2k ′(a0(x))k−7/3(a0(x))

3
,

b3(x) = a′

2 +
a′′′

0

6
.

The constant c in the expression of a2 is such that

L3
(

1
810

(
9k ′′k−

7
3 − 12(k ′)2k−

10
3
)
+

k
2
3

15

)
+ c

has zero mean.

Proof. Since the points in the orbits are equidistributed as q → +∞, for any q
we can choose the first point of the orbit sq

0 such as sq
0 → 0 for q → +∞. For

simplicity, we omit the dependence of ai and b j on k/q .
Combining the expansions in (4-5), we have

εk+1 − εk = A(sk)ε
2
k + B(sk)ε

3
k + C(sk)ε

4
k + O(ε5

k )

=
A(sq

0 + a0)b2
1

q2 +
B(sq

0 + a0)b3
1 + A′(sq

0 + a0)a1b2
1 + 2A(sq

0 + a0)b1b2

q3

+
F(ai , b j )

q4 + O
(

1
q5

)
,
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where

F(ai , b j ) := A(sq
0 +a0)b2

2+2A(sq
0 +a0)b1b3+2A′(sq

0 +a0)a1b1b2+A′(sq
0 +a0)a2b2

1

+ A′′(sq
0 + a0)a2

1b2
1/2 + 3B(sq

0 + a0)b2
1b2 + B ′(sq

0 + a0)a1b3
1 + C(sq

0 + a0)b4
1.

Moreover, directly from the second expansion in (4-9), we have

εk+1 − εk =
b′

1

q2 +
b′

2 + b′′

1/2
q4 +

b′

3 + b′′

2/2 + b′′′

1 /6
q5 + O

(
1
q5

)
.

Equaling these two expansions, we obtain that ai and b j solve

(4-11)


A(sq

0 + a0)b2
1 = b′

1,

B(sq
0 + a0)b3

1 + A′(sq
0 + a0)a1b2

1 + 2A(sq
0 + a0)b1b2 = b′

2 + b′′

1/2,

F(ai , b j ) = b′

3 + b′′

2/2 + b′′′

1 /6.

On the other hand, directly from the first expansion in (4-5), we conclude that

sk+1 − sk =
a′

0

q
+

a′

1 + a′′

0/2
q2 +

a′

2 + a′′

1/2 + a′′′

0 /6
q3 + O

(
1
q4

)
,

which, compared which the second expansion in (4-5), gives the system

(4-12) a′

0 = b1, a′

1 + a′′

0/2 = b2, a′

2 + a′′

1/2 + a′′′

0 /6 = b3.

Expressions of a0 and b1. To compute a0 and b1, we solve the system

(4-13) b1 = a′

0, b′

1 = A(sq
0 + a0)b2

1.

Replacing b1 by a′

0 in the second equation, we get

(4-14) a′′

0 = (a′

0)
2 A(sq

0 + a0).

If we let A1(s) = −
2
3 log k(s) be a primitive of A, it follows from (4-14) that(

a′

0e−A1(s
q
0 +a0)

)′
= 0.

Hence a′

0e−A1(s
q
0 +a0) is constant. Consider now A2(s) =

∫ s
0 k2/3(r) dr , which is a

primitive of exp(−A1). We just proved that A2(s
q
0 + a0) has constant derivative,

hence it must be of the form A2(s
q
0 +a0(x)) = ux +v for any x ∈ R, where u, v ∈ R.

Since, by definition, A2(s
q
0 + a0(0)) = A2(s

q
0 ) = v, we have v = A2(s

q
0 ). The

expression of u is

u = A2(s
q
0 + a0(1)) − A2(s

q
0 ) = A2(s

q
0 + ℓ) − A2(s

q
0 ) =

∫ ℓ

0
k2/3(r) dr.
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Finally, b1 follows from b1 = a′

0.

Expressions of a1 and b2. To compute a1 and b2, we solve the system

(4-15)

{
b2 = a′

1 + a′′

0/2,

b′

2 + b′′

1/2 = B(sq
0 + a0)b3

1 + A′(sq
0 + a0)a1b2

1 + 2A(sq
0 + a0)b1b2.

The terms containing a1 nor b2 can be computed using the expression of a0 and
b1 we just obtained. Let us replace in the second equation of (4-15) b2 by the
expression given by the first equation: we obtain an equation for which we split the
terms containing a1 from the others. Namely,

(4-16) a′′

1 − 2A(sq
0 + a0)b1a′

1 − A′(sq
0 + a0)a1b2

1

= A(sq
0 + a0)b1a′′

0 + B(sq
0 + a0)b3

1 −
1
2 b′′

1 −
1
2a(3)

0 .

Replacing a0 and b1 by the expressions we just found, the left-hand side of (4-16)
can be expressed as

a′′

1 +
4
3 Lk−5/3k ′a′

1 +
2
3 L2(k−7/3k ′′

− k−10/3k ′2)a1 = k−2/3(a1k2/3)′′,

where it is understood that k and its derivatives are evaluated at sq
0 + a0. The

right-hand side of (4-16) vanishes. Hence (4-16) is equivalent to

k−2/3(a1k2/3)′′ = 0.

Since a1 is periodic and vanishes at 0, we necessarily have a1 = 0. The expression
of b2 comes from the first equation of (4-15), namely b2 = a′′

0/2.

Expressions of a2 and b3. Although not used later, we derive an explicit expression
for the coefficient a2. By making use of (4-11) and (4-12), and taking into account
that a1 = 0, we obtain the system

(4-17)


b3 = a′

2 + a′′′

0 /6,

A′(sq
0 + a0)b2

1a2 + A(sq
0 + a0)(b2

2 + 2b1b3) + B(sq
0 + a0)3b2

1b2 + C(sq
0 + a0)b4

1

= b′′′

1 /6 + b′′

2/2 + b′

3

From the first equation of (4-17) we have b′

3 = a′′

2 + a(4)
0 /6, which in turn gives

b′

3 = a′′

2 +
11k ′k ′′k−

10
3

27
−

8(k ′)3k
13
3

27
−

k ′′′k−
7
3

9
.
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Replacing into the second of (4-17) and grouping all the terms with a2, we get

(4-18) (k
2
3 a2)

′′
= L4

(
40(k ′)3

− 45kk ′k ′′
+ 9k2k ′′

810k5 +
2k ′

45k

)
.

The right-hand side is the derivative of

L3
(

1
810

(
9k ′′k−

7
3 − 12(k ′)2k−

10
3

)
+

k
2
3

15

)
+ c,

where c is a constant such that this function has zero mean. At this point we can
integrate again and get for a2(x) the value

k−
2
3 (a0(x))

(∫ x

0
L3

(
1

810

(
9k ′′k−

7
3 − 12(k ′)2k−

10
3

)
+

k
2
3

15

)
(a0(t)) dt + cx

)
.

The value of b3 can now be easily derived from the first one of (4-17). □

5. Proof of Theorem 6

This section is entirely devoted to the proof of Theorem 6, providing the coefficient
β5 for the outer length billiard map.

Proof. We start the computation of the beta function by writing its value at rational
points of the form 1

q , which (by the expansion (4-3) of the generating function H )
is

(5-1) β
(1

q

)
=

1
q

q−1∑
n=0

H (sn, sn+1)

=
1
q

q−1∑
n=0

εn +
k2

12
ε3

n +
kk ′

12
ε4

n +
2k4

+ 4k ′2
+ 7kk ′′

240
ε5

n + O(ε6
n).

Here, the curvature k and its derivatives k ′ and k ′′ are to be understood as evaluated
in sn .

Now, we substitute in the above formula sn and εn with their corresponding
Taylor expansions obtained in Proposition 11. We then proceed to group the various
terms according to their order of magnitude qk .

First, we observe that the summation of εn is simply equal to the perimeter ℓ of
D, so that β1 = ℓ.

By inspecting the formula even before performing the substitution, we see that
there are no terms of order q−2, so that β2 = 0, as expected by Marvizi–Melrose
theory.
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The second term of the summation on the right-hand side of (5-1) becomes, after
the substitution and after grouping the various powers of q ,

(5-2)
1

12

q−1∑
n=0

k2 (sn) ε3
n

=
1

12

q−1∑
n=0

k2
(

a0 +
a2

q2 + O
(

1
q3

)) (
b1

q
+

b2

q2 +
b3

q3

)3

=

q−1∑
n=0

k2b3
1

12
1
q3 +

k2b2
1b2

4
1
q4 +

2kk ′b3
1a2 + 3k2(b2

1b3 + b1b2
2)

12
1
q5 + O

( 1
q6

)
.

Similarly, we have

(5-3)

1
12

q−1∑
n=0

k (sn) k ′ (sn) ε4
n =

1
12

q−1∑
n=0

kk ′

(
b1

q
+

b2

q2 + O
( 1

q3

))4

=

=

q−1∑
n=0

kk ′b4
1

12
1
q4 +

kk ′b3
1b2

3
1
q5 + O

( 1
q6

)
.

Finally, the last term is

(5-4)
q−1∑
n=0

(
2k4

+ 4k ′2
+ 7kk ′′

240

)
b5

1
1
q5 + O

( 1
q6

)
.

We recall that, in the last three formulas, it is implicitly understood that all functions
ai , bi are evaluated at n/q , and the curvature k and its derivatives k ′ and k ′′, where
not explicitly specified, are computed at sq

0 +a0(n/q). To determine β3, we compute
limq→+∞ q3

(
β
( 1

q

)
−

ℓ
q

)
.

From (5-2), (5-3), and (5-4), we obtain

β3 = lim
q→+∞

1
12q

q−1∑
n=0

(
k2b3

1 + O
(1

q

))

By Proposition 11, we have b1 = Lk−
2
3 ⇒ k2b3

1 = L3, so that

β3 =
1
12

L3
=

1
12

(∫ ℓ

0
k2/3(r)dr

)3

.

The leading part of this limit is constant, while the term denoted by O(1/q)

contains only higher-order terms. We will take this into account when analyzing
β − ℓ/q − β3/q3, considering only the terms present in O(1/q).
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For the terms of order 4, we obtain the expression

q−1∑
n=0

(
k2b2

1b2

4
+

kk ′b4
1

12

)
1
q4 .

Since, by Proposition 11, we have b1 = Lk−
2
3 and b2 =−

1
3 L2k ′k−

7
3 , we immediately

conclude (again, as expected by Marvizi–Melrose theory), that β4 = 0.
The terms of order 5 are

q−1∑
n=0

[
2k4

+ 4k ′2
+ 7kk ′′

240
b5

1 +
1
12

(
2kk ′b3

1a2 + 3k2 (
b3b2

1 + b2
2b1

)
+ 4kk ′b3

1b2
)] 1

q5

= S1 + S2,

where

S1 :=

q−1∑
n=0

1
12

(
2kk ′b3

1a2 + 3k2b2
1a′

2
)
,

S2 :=

q−1∑
n=0

(
2k4

+ 4k ′2
+ 7kk ′′

240
b5

1 +
1
12

(
3k2b2

2b1 + 4kk ′b3
1b2 +

1
2

k2a′′′

0 b2
1

))
;

where we substituted the value b3 = a′

2 +a′′′

0 /6 from Proposition 11. We remark that
the sum S1 contains a2 and the sum S2 doesn’t contain a2. As established earlier,
we have

β5 = lim
q→+∞

q5
(

β
(1

q

)
−

ℓ

q
−

β3

q3

)
= lim

q→+∞

1
q

(S1 + S2).

By studying lim
q→+∞

1
q S1, we obtain

(5-5)
1
12

lim
q→+∞

1
q

q−1∑
n=0

(
2kk ′k−2a2L3

+ 3k2k−
4
3 a′

2L2)
=

1
12

∫ 1

0

(
2k ′

k
(a0(x)) a2(x)L3

+ 3k
2
3 (a0(x)) a′

2(x)L2
)

dx,

where once again in the summations we have used the convention that the functions
ai , bi are evaluated at n/q, while the functions k, k ′ are evaluated at a0(n/q).
Similarly, in the integral on the right-hand side, ai , bi are evaluated at x , and k, k ′

at a0(x). Integrating by parts the second term inside the integral, we have

(5-6)
∫ 1

0
k

2
3 (a0(x)) a′

2(x)L2dx

= k
2
3 (a0(x)) a2(x)L2

∣∣∣1

0
−

∫ 1

0

2k ′

3k
(a0(x)) a2(x)L3dx .
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By periodicity, the first term is 0. By substituting the remaining expression of (5-6)
inside (5-5), we conclude that the first limit is 0.

Let us proceed with the calculation of lim
q→+∞

1
q S2. Recalling from (4-10) that

a′

0(x) = Lk−
2
3 (a0(x)), we have

a′′′

0 = L3
(

−
2k ′′

3k3 +
14k ′2

9k4

)
.

Taking into account the expressions of ai , b j given in (4-10) and by substituting
the previous expression into S2, we obtain

(5-7) lim
q→+∞

1
q

S2

= lim
q→+∞

1
q

q−1∑
n=0

2k4
+4k ′2

+7kk ′′

240
b5

1 +
1
12

(
3k2b2

2b1 + 4kk ′b3
1b2 +

1
2 k2a′′′

0 b2
1
)

= lim
q→+∞

L5

q

q−1∑
n=0

(
k2/3

120
−

k−
10
3 k ′2

540
+

k−
7
3 k ′′

720

)

= L5
∫ 1

0

(
k2/3

120
−

k−
10
3 k ′2

540
+

k−
7
3 k ′′

720

)
dx .

We finally integrate by parts the last term of the integral, obtaining∫ 1

0
L5k−

7
3 k ′′dx = L4

∫ 1

0
k−5/3k ′′(k−

2
3 L) dx = L4

∫ 1

0
k−

5
3
(
k ′

)′ dx

=
5L5

3

∫ 1

0
k−

10
3 k ′2dx .

Substituting this in (5-7), we conclude that

lim
q→+∞

1
q

S2 = L5
∫ 1

0

(
k2/3

120
+

k−
10
3 k ′2

2160

)
dx .

Finally, switching to arc length as the variable of integration, we obtain the desired
result:

β5 = L4
∫ ℓ

0

(
k4/3(s)

120
+

k−
8
3 (s)k ′2(s)
2160

)
ds. □

6. Lazutkin coordinates and caustics

A consequence of Proposition 10 is that we can compute explicitly Lazutkin coor-
dinates [14] for order 4 in the case of outer length billiards.
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Lemma 12 (Lazutkin for outer length billiards). The coordinates

x(s) =
1
L

∫ s

0
k2/3(r) dr, L :=

∫ ℓ

0
k2/3(r) dr,

y(s, ε) = x(s + ε) − x(s)

are such that the outer length billiard dynamics is given by

x 7→ x + y, y 7→ y + O(y4).

Proof. Let
(s, ε) 7→ (x, y) := ( f (s), f (s + ε) − f (s))

a change of coordinates so that (xk, yk) 7→ (xk + yk, yk+1). Then, by using the
expansion of ε1 given in 10, we have

y1 = x2 − x1 = f (s1 + ε1) − f (s1) = f ′(s1)ε1 +
f ′′(s1)

2
ε2

1 +
f ′′′(s1)

6
ε3

1 + O(ε4
1)

=

(
f ′(s0) + f ′′(s0)ε0 +

f ′′′(s0)

2
ε3

0

) (
ε0 + A(s0)ε

2
0 + B(s0)ε

3
0
)

+
(

f ′′(s0) + f ′′′(s0)ε0
) (

ε0 + A(s0)ε
2
0 + B(s0)ε

3
0

)2

2
+

f ′′′(s0)

6
ε3

0 + O(ε4
0)

=

(
f ′(s0)ε0 +

f ′′(s0)

2
ε2

0 +
f ′′′(s0)

6
ε3

0

)
+

(
f ′′(s0) + f ′(s0)A(s0)

)
ε2

0

+
(

f ′(s0)B(s0) + 2 f ′′(s0)A(s0) + f ′′′(s0)
)
ε3

0 + O(ε4
0)

= y0 +
(

f ′′(s0)+ f ′(s0)A(s0)
)
ε2

0 +
(

f ′(s0)B(s0)+2 f ′′(s0)A(s0)+ f ′′′(s0)
)
ε3

0

+ O(ε4
0).

Thus, to get rid of the ε2
0 and ε3

0 terms, we need to choose f solving{
f ′′(s0) + f ′(s0)A(s0) = 0,

f ′(s0)B(s0) + 2 f ′′(s0)A(s0) + f ′′′(s0) = 0.

Integrating the first equation, we immediately obtain the desired formula for f ,
giving, up to normalization,

x(s) =
1
L

∫ s

0
k2/3(r) dr, L :=

∫ ℓ

0
k2/3(r) dr.

Then, by direct computation, it is easy to check that such a function solves also the
second equation. □

As a consequence, the outer length billiard map is a small perturbation of the
integrable map

(x, y) 7→ (x + y, y),
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satisfying the assumptions of Lazutkin’s theorem [14, Theorem 1]. Applying this
theorem, the next corollary of Proposition 10 immediately follows.

Theorem 13. Arbitrarily close to the boundary ∂�, there exist smooth caustics for
the outer length billiard map. The union of these caustics has positive measure.

On the other hand, regarding the nonexistence of caustics, we underline that the
following outer length billiard version of Mather s theorem still holds.

Theorem 14. If the curvature of the boundary ∂� vanishes at some point, then the
outer length billiard in ∂� has no caustics.

Proof. We use Mather’s necessary analytic condition for the existence of a caustic
[16], that is

H22(s0, s1) + H11(s1, s2) < 0.

By using the general expression of the generating function (4-4), it is easily seen
that

H1(s1, s2) = −1 −
(γ (s2) − γ (s1)) ∧ γ ′′(s1)

γ ′(s1) ∧ γ ′(s2)

−
(γ (s2) − γ (s1)) ∧ (γ ′(s2) − γ ′(s1)) · (γ ′′(s1) ∧ γ ′(s2))

(γ ′(s1) ∧ γ ′(s2))2 .

Hence,

H11(s1, s2) =
γ ′(s1)∧γ ′′(s1)

γ ′(s1)∧γ ′(s2)
−

(γ (s2)−γ (s1))∧γ ′′′(s1)

γ ′(s1)∧γ ′(s2)

+ 2
(γ (s2)−γ (s1))∧γ ′′(s1)

(γ ′(s1)∧γ ′(s2))2 (γ ′′(s1)∧γ ′(s2)) +
γ ′′(s1)∧γ ′(s2)

(γ ′(s1)∧γ ′(s2))2

−
(γ (s2)−γ (s1))∧(γ ′(s2)−γ ′(s1))

(γ ′(s1)∧γ ′(s2))2 (γ ′′′(s1)∧γ ′(s2))

+ 2
(γ (s2)−γ (s1))∧(γ ′(s2)−γ ′(s1))

(γ ′(s1)∧γ ′(s2))3 (γ ′′(s1)∧γ ′(s2))
2.

Now assume that at a point on the boundary corresponding to the arc-length pa-
rameter value s1, the curvature is zero, that is, k(s1) = 0. Since the set is convex,
this condition implies that also k ′(s1) = 0. From formulas (4-2), it follows that
γ ′′(s1) = γ ′′′(s1) = 0. Substituting into the previous formula, we see that all
the terms composing H11 vanish, and a similar argument holds for H22. As a
consequence, we have H11(s1, s2)+ H22(s0, s1) = 0 for every s0, s2, and therefore
no topologically nontrivial invariant curve can exist. □
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MORI DREAM SPACES AND Q-HOMOLOGY QUADRICS
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We show that Shavel-type surfaces are fake Q-homology quadrics of even
type which are not Mori dream surfaces, yet there are infinitely many primes
p such that the reduction modulo p is a Mori dream surface.

We investigate fake Q-homology quadrics, first concerning the property
of being a Mori dream surface, then trying to determine which families are
of even type among the surfaces isogenous to a higher product which are
fake Q-homology quadrics.

1. Introduction

In [20] the authors considered complex surfaces of general type with q = pg = 0
which are Mori dream surfaces, and asked in section 3.2 whether there are fake
quadrics which are not Mori dream surfaces.

We produce here the first examples.
Recall that, for complex surfaces isogenous to a product of curves, it was estab-

lished in [20] and [16] that they are Mori dream surfaces.
At the Hefei Conference in September 2024, the second author pointed out that

such examples should be provided by the surfaces constructed by Shavel in 1978
[24]. Our first aim is therefore to give a complete proof of this assertion.

Our second aim is to discuss several problems related to minimal surfaces
of general type which are Q-homology quadrics: that is, smooth surfaces with
q = pg = 0, and with second Betti number b2(S) = 2 (equivalently, with K 2

S = 8).
All known such examples have universal cover equal to the bidisk H × H.

Indeed Hirzebruch ([18] Problem 25; see also pages 779–780 of [19]) was the
first to ask the question whether there exists a surface of general type which is
homeomorphic to P1

× P1, and one can respectively ask the same question for
a surface homeomorphic to the blow up F1 of P2 in one point. The answer is
suspected to be negative.
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The two manifolds above are topologically distinguished by the property that
the intersection form on the Severi group Num(S) is even in the first case, odd in
the second.

We show here that many of our surfaces (surfaces of general type which are
Q-homology quadrics) have even intersection form. The existence of the case of
odd intersection form was shown in the affirmative in [11] after the present paper
was written.

The third question we consider is: what happens when, instead of complex
surfaces, we consider surfaces defined over an algebraically closed field of positive
characteristic? When are they Mori dream surfaces?

This is related to a beautiful conjecture by Ekedahl, Shepherd-Barron and Taylor
[14] about algebraic integrability of foliations via reduction modulo primes p.

We can summarize our result in this regard as follows.

Theorem 1.1. A Shavel-type surface S is an even Q-homology fake quadric which
is not a Mori dream surface.

There are infinitely many primes p such that the reduction of S modulo p is a
Mori dream surface.

We also give results stating when a fake Q-homology quadric is a Mori dream
space.

2. Definitions and basic properties

In these first sections we shall mostly work with projective smooth surfaces defined
over the field C, most definitions however make also sense if C is replaced by an
algebraically closed field K of arbitrary characteristic.

Definition 2.1 (Q-homology quadric). Let S be a smooth projective surface over C.
The surface S is called a Q-homology quadric if q(S) = pg(S) = 0, b2(S) = 2.
In turn, it will be called an even homology quadric if

(1) q(S) = pg(S) = 0, b2(S) = 2;

(2) the intersection form on Num(S) is even, that is, it is
( 0

1
1
0

)
.

We shall call it an odd homology quadric if instead the intersection form is odd,
and hence diagonalizable with diagonal entries (+1, −1).

Remarks 2.2. (1) A normal projective surface X is called a Q-homology projective
plane if b1(X) = b3(X) = 0 and b2(X) = 1.

(2) A smooth Q-homology projective plane must be either the projective plane or
a ball quotient with q = pg = 0.
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(3) Our definition of Q-homology quadric can also be extended to normal surfaces,
requiring however that b1(X) = b3(X) = 0 and b2(X) = 2. But in this paper a
Q-homology quadric means a smooth Q-homology quadric.

For a Q-homology quadric S, condition (1) and the Noether formula imply

χ(OS) = 1, c2(S) = 4, K 2
S = 8.

Also the long exact sequence of cohomology groups associated to the exponential
exact sequence shows that

c1 : Pic(S) → H 2(S, Z)

is an isomorphism. We identify these two groups and denote by Tors(S) their
torsion subgroup. Then

Num(S) ∼= Pic(S)/Tors(S).

In the case of an even homology quadric, condition (2) implies that S is minimal.
Hence, by surface classification, for an even homology quadric,

• either S is rational, and then S ∼= F2n for n ≥ 0;

• or S is a minimal surface of general type.

In the former case S is simply connected, Tors(S) = 0 and KS is not ample.
In the case of an odd homology quadric

• either S is rational, and then S ∼= F2n+1 for n ≥ 0;

• or S is a (not necessarily minimal) surface of general type.

Definition 2.3 (even fake homology quadric). Let S be a smooth projective surface
over C. The surface S will be called1 an even fake homology quadric if it is an even
homology quadric and is of general type.

In general, a minimal smooth complex projective surface of general type with
pg = q = 0, K 2

= 8 has Picard number 2 and KS is ample by [23, Proposition 2.1.1].
Also Tors(S) can be nonzero (see [5]).

For L ∈ Pic(S), we denote by [L] its class in Num(S).

Definition 2.4 (odd fake homology Quadric). Let S be a smooth projective surface
over C. If S is an odd homology quadric which is of general type, then either S is
not minimal and it is a one point blow up of a fake projective plane, or we call the
surface S an odd fake homology quadric, which means:

(1) S is minimal of general type with K 2
S = 8, pg(S) = 0;

1In the literature, sometimes Q-homology quadrics of general type are referred to as fake quadrics,
without specification whether the intersection form is even or odd; see [19; 12; 13; 16].
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(2) the intersection form on Num(S) is odd.

Therefore smooth minimal surfaces of general type with K 2
= 8 and pg = 0 are

divided into two classes: the even and the odd fake homology quadrics.
For the sake of clarity, we give two definitions: the first is meant to be consistent

with the current use, the second relates to the original question by Hirzebruch.

Definition 2.5. Let S be a minimal smooth projective surface over C.

(I) Then S is called a fake quadric if and only if it is either an odd fake homology
quadric, or an even fake homology quadric.

(II) S is called a fake homotopy quadric if and only if it is a fake quadric and
moreover it is simply connected.

By Freedman’s theorem [17] a fake homotopy quadric is homeomorphic either
to F0 = P1

× P1 or to F1.

Lemma 2.6. Let S be a fake quadric, and let f : S → P1 be a fibration, whose
general fibre we denote by F. Then:

(1) Any fibre Ft = f ∗(t) has irreducible support.

(2) The multiplicity mt of any multiple fibre Ft = mt F ′
t divides g − 1, where g is

the genus of F.

(3) The class of the fibre [F] is divisible by d in Num(S), where d is the least
common multiple of the exponents mi of the multiple fibres.

Proof. (1) follows from Zariski’s lemma (the intersection form on the fibre com-
ponents is seminegative with nullity 1), and from the fact that the Picard number
ρ(S) := rank(Num(S)) equals 2.

(2) follows by adjunction.

(3) If d is the least common multiple of the multiplicities m1, . . . , ms of the multiple
fibres, then we may write 1

mi
=

ri
d , where the ri have GCD equal to 1. Thus, we can

write 1
d as a sum of the rational numbers 1

mi
, hence proving that 1

d [F] ∈ Num(S),
since it is an integer linear combination of the classes F ′

i .
Therefore, the divisibility of [F] is a multiple of d. □

Lemma 2.7. Keep the assumptions of Lemma 2.6, and assume that S has another
fibration f ′

: S → P1 with general fibre F ′ of genus g′. Then:

(1) F F ′
= (g − 1)(g′

− 1).

(2) KS ∼
2

g−1
F +

2
g′−1

F ′, where ∼ denotes numerical equivalence.

(3) The intersection form of S is even if 1
g−1

F,
1

g′−1
F ′

∈ Num(S).
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Proof. The matrix of intersection numbers of KS, F, F ′ has determinant

8(g − 1)(g′
− 1)x − 8x2,

with x = FF ′, which must be 0 since ρ(S) = 2; hence (1) and (2) follow right away.
For (3), these classes generate a unimodular lattice, hence all of Num(S). □

Lemma 2.8. Let S be a fake quadric. Then2 the intersection form is even if and
only if KS is divisible by 2 in Num(S).

Proof. KS D ≡ D2(mod 2), and the intersection form on

Num(S) = H 2(S, Z)/Tors(S)

is unimodular. □

3. Surfaces isogenous to a product

Definition 3.1. Let S be a smooth projective surface. The surface S is said to be
isogenous to a higher product [7] if

S ∼= (C1 × C2)/G,

where Ci is a smooth curve with g(Ci ) ≥ 2 and G is a finite group acting faithfully
and freely on C1 × C2.

If there are respective actions of G on C1 and C2 such that G acts by the diagonal
action g(x, y) = (gx, gy) on C1 × C2, then S is called of unmixed type.

If some element of G exchanges the two factors, then S is called of mixed type.

Observation. In this paper we shall only consider surfaces isogenous to a higher
product with pg(S) = 0.

The next question we ask is to determine which of the Q-homology quadrics
which are isogenous to a higher product are even or odd fake quadrics.

Example 3.2. The classical Beauville surface is an even fake quadric.

Proof. Here C1 = C2 = C are the Fermat quintic in P2, and the group G = µ5 ×µ5

acts on C1 by the linear action

(ζ1, ζ2)(x0, x1, x2) = (x0, ζ1x1, ζ2x2),

2By Wu’s formula, saying that KS induces the second Stiefel–Whitney class w2(S) ∈ H2(S, Z/2),
and by the universal coefficients formula, S is spin (i.e., w2(S) = 0) if and only if KS is divisible
by 2 in H2(S, Z), a fact which is often expressed by saying that S is even; being an even surface is a
stronger notion than requiring that the intersection form is even, as one can see from the example of
Enriques surfaces.
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while the action on C2 is twisted by an automorphism of G (in such a way that the
action on the product C1 × C2 is free; see for instance [7], page 24, for details and
a generalization).

Hence OC(1) is a G-linearized bundle with square KC , see also ([10]).
Thus, OC1(1)⊗OC2(1) is a G-linearized bundle which descends to a line bundle

L with square KS .
Alternatively, the fibres of both projections are divisible by 5 and yield F ′

1, F ′

2
such that F ′

1 F ′

2 = 1 and (F ′

j )
2
= 0. □

We can give a partial answer to the above parity question for surfaces isogenous
to a product of unmixed type with pg = 0, which have been classified in [6] (their
torsion groups have been classified in [5]).

Theorem 3.3. Let S = (C1 ×C2)/G be a surface isogenous to a product of unmixed
type, with pg(S) = 0; then G is one of the groups in the table below and the
multiplicities T1, T2 of the multiple fibres for the natural fibrations S → Ci/G ∼= P1

are as listed. For each case in the list we have an irreducible component of the
moduli space of surfaces of general type, whose dimension is denoted by D. The
property of being an even, respectively an odd homology quadric and the first
homology group of S are given in the third last column, respectively in the last
column.3

G Id(G) T1 T2 parity D H1(S,Z)

A5 ⟨60,5⟩ [2,5,5] [3,3,3,3] ? 1 (Z3)
2
× (Z15)

A5 ⟨60,5⟩ [5,5,5] [2,2,2,3] ? 1 (Z10)
2

A5 ⟨60,5⟩ [3,3,5] [2,2,2,2,2] ? 2 (Z2)
3
× Z6

S4 × Z2 ⟨48,48⟩ [2,4,6] [2,2,2,2,2,2] ? 3 (Z2)
4
× Z4

G(32) ⟨32,27⟩ [2,2,4,4] [2,2,2,4] ? 2 (Z2)
2
× Z4 × Z8

(Z5)
2

⟨25,2⟩ [5,5,5] [5,5,5] even 0 (Z5)
3

S4 ⟨24,12⟩ [3,4,4] [2,2,2,2,2,2] even 3 (Z2)
4
× Z8

G(16) ⟨16,3⟩ [2,2,4,4] [2,2,4,4] even 2 (Z2)
2
× Z4 × Z8

D4 × Z2 ⟨16,11⟩ [2,2,2,4] [2,2,2,2,2,2] ? 4 (Z2)
3
× (Z4)

2

(Z2)
4

⟨16,14⟩ [2,2,2,2,2] [2,2,2,2,2] even 4 (Z4)
4

(Z3)
2

⟨9,2⟩ [3,3,3,3] [3,3,3,3] even 2 (Z3)
5

(Z2)
3

⟨8,5⟩ [2,2,2,2,2] [2,2,2,2,2,2] ? 5 (Z2)
4
× (Z4)

2

Remark 3.4. In [11], one of us (Catanese) showed that the intersection form is odd
for the first family of surfaces in the above list. The question remains open for the
other families in the list.

Proof. In view of the cited results in [6] and [5], it suffices to prove the assertion
about the intersection form being even, respectively odd.

3The group identity Id(G) consists of the group cardinality |G| followed by the Atlas list number.
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We use now (3) of Lemma 2.6 showing that F j = d j8 j , where d j is the least
common multiple of the multiplicities of the fibration with general fibre F j .

Since F1 F2 = |G|, we conclude that

8182 =
|G|

d1d2
.

If d1d2 = |G|, then 8182 = 1, and, since 82
j = 0, we have an even intersection

form.
Inspecting the list, we see that 8182 ∈ {1, 2, 4}.
If we have an even intersection form, then we have a basis e1, e2 of the lattice

Num(S) with e2
j = 0, and e1e2 = 1.

Hence, without loss, we may assume that [8 j ] = a j e j , and therefore 8182 =

a1a2.
If 2|a1a2, then 2|a j for some j , and 8 j is further divisible by 2.
We could conclude that the intersection form is odd, in case 8182 = 2, if we

knew that each 8 j is not divisible by 2.
In fact, if the intersection form is odd, then we have a basis q1, q2 of the lattice

Num(S) with q2
1 = 1, q2

2 = −1, and q1q2 = 0.
Then 81, 82 must be multiples of q1 + q2, respectively q1 − q2, and indeed

(q1 + q2)(q1 − q2) = 2.
In the only case (with group (Z/2)4) where 8182 = 4, the divisibility index of

81 equals the one of 82 by the symmetry of the roles of the two curves C1, C2,
including the associated monodromies. Hence either 81 and 82 are both 2-divisible,
and the intersection form is even, or the intersection form is odd and 81 and 82 are
both indivisible. But then {81, 82}={(q1+q2), (q1−q2)} and (q1+q2)(q1−q2)=2
contradicts 8182 = 4. □

Remark 3.5. In the case where 8182 = 2, it is easy to see which of the two divisors
may be 2-divisible.

In fact, using the ramification formula for S → (C1/G) × (C2/G) = P1
× P1,

we see that, setting m1, . . . , ms to be the multiplicities of the multiple fibres in the
first fibration and n1, . . . , ns′ those in the second, we have

KS =

(
−2 +

∑
j

(
1 −

1
m j

))
F1 +

(
−2 +

∑
i

(
1 −

1
ni

))
F2

and, in Num(S)/2 Num(S), we have

KS ≡
∑

j
(d1 − r j )81 +

∑
i
(d2 − r ′

i )82 ≡ δ181 + δ282, δ1, δ2 ∈ {0, 1}.

We see by direct inspection that exactly one δ j equals 1, the other is 0.
Then [KS] ∈ Num(S) is 2-divisible if and only if the [8 j ] with δ j = 1 is 2-

divisible.
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For instance in the last case we have δ1 = 1 and δ2 = 0; indeed, KS ∼ 81 + 282.

Remarks 3.6. (1) In the last case we can prove that KS is not 2-divisible, since
there is no G-linearized theta characteristic on the curve C1, a hyperelliptic
curve of genus g1 = 3. Indeed, the only G-fixed theta characteristics are
the hyperelliptic divisor H (the hyperelliptic divisor class is fixed by any
automorphism of the curve), which does not admit a G-linearization, and
P1 + P2 + P3 + P4 −H, where the Pj ’s are Weierstrass points and their sum
is a G-orbit (hence OC1(P1 + P2 + P3 + P4) admits a G-linearization).

(2) On the other hand, showing that [KS] is not 2-divisible is harder, in view of
the existence of torsion divisors of order 4.

(3) Our observation (1) shows that, given a Fuchsian group 0 < P SL(2, R) which
is not torsion free, the embedding 0 ↪→ P SL(2, R) does not necessarily lift to
SL(2, R) (unlike the case where 0 is cocompact and torsion free).

4. Even fake quadrics

Assumption. Assumption In this section, we let S be an even fake quadric. Recall
that, over the complex number field C, a fake quadric S contains no smooth rational
curves [23, Proposition 2.1.1] and in particular KS is ample.

4.1. Nef cone of an even fake quadric.

Lemma 4.1. (1) There exist L1, L2 ∈Pic(S) such that L1L2 =1, KS L i =2, L2
i =0

for i = 1, 2.

(2) For any L1, L2 as in (1),

Num(S) = Z[L1] ⊕ Z[L2].

(3) KS ∼ 2L1 + 2L2.

The condition that the universal covering of S is the bidisk can be formulated as
follows: there exists a 2-torsion divisor η such that

H 0(S2(�1
S)(−KS + η)) ̸= 0;

see for instance [8; 9]. This condition is equivalent to the splitting of the cotangent
bundle on a suitable unramified double covering of S.

From now on, we fix L1, L2 ∈ Pic(S) as in 4.1 (1).

Proposition 4.2. (1) Any effective divisor on S is nef.

(2) Any nef and big divisor on S is ample.

(3) L1 and L2 are nef.
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(4) For any strictly effective divisor D on S, if D2
= 0, then D ∼ aL1 or D ∼ aL2

for some a ∈ Z>0. (However, we do not claim that such a D exists.)

Proof. For (1), it suffices to show for any irreducible curve C , we have C2
≥ 0.

Assume by contradiction that C2 < 0. Assume C ∼ aL1 + bL2 for a, b ∈ Z. Then

C2
= 2ab, KSC = 2a + 2b.

We may assume that a > 0 and b < 0. By the adjunction formula,

−2 ≤ 2pa(C) − 2 = C2
+ KSC = 2(a + b + ab) = 2a(1 + b) + 2b.

Therefore b = −1, C ∼= P1, and this contradicts the fact that S contains no smooth
rational curve.

For (2), let D be a nef and big divisor on S. Then D2 > 0. Let C be any
irreducible curve. Since C is nef, DC ≥ 0. Also, since C2

≥ 0, DC > 0 by the
algebraic index theorem. Therefore D is ample.

For (3) and (4), let D be an effective divisor. Assume that D ∼ aL1 + bL2.
Then D2

= 2ab and KS D = 2(a + b). Since D is nef and KS is ample, a ≥ 0, b ≥

0, a + b > 0. Then L1 D = b ≥ 0, L2 D = a ≥ 0. And if D2
= 0, then a = 0 or

b = 0. □

Corollary 4.3. Let L1, L2 as in Lemma 4.1(1). In Num(S)R,

Amp(S) = {a[L1] + b[L2] | a, b ∈ R+},

Nef(S) = {a[L1] + b[L2] | a, b ∈ R≥0},

Nef(S) = Eff(S).

Lemma 4.4. Assume that the cotangent sheaf of S splits as the direct sum of two
invertible sheaves:

�1
S = OS(A1) ⊕OS(A2).

Then either [A1] = 2[L1], [A2] = 2[L2] or [A1] = 2[L2], [A2] = 2[L1].
Moreover the universal covering of S is the bidisk H × H, and S = H × H/0,

where 0 < P SL(2, R) × P SL(2, R).

Proof. Assume that [A1] = a[L1]+ b[L2] with a, b ∈ Z. Since KS = A1 + A2 and
[KS] = 2[L1] + 2[L2], [A2] = (2 − a)[L1] + (2 − b)[L2].

A Chern class computation shows that A1 A2 = c2(S) = 4. That is,

a(2 − b) + b(2 − a) = 4, i.e., (a − 1)(b − 1) = −1.

Therefore either a = 2, b = 0 or a = 0, b = 2.
The last assertion has been known for a long time; see [26; 3]. □



232 PAOLO CASCINI, FABRIZIO CATANESE, YIFAN CHEN AND JONGHAE KEUM

4.2. Even fake quadrics and Mori dream surfaces. The following theorem follows
from Theorems 3.9 and 3.10 of [21], but we give another proof for the reader’s
convenience.

Theorem 4.5. Let S be an even fake quadric. Then S is a Mori dream surface if
and only if L1 and L2 are semiample, equivalently, if and only if S admits a finite
morphism to P1

× P1. The same is true for any fake quadric that does not contain a
negative curve.

Proof. Note that Pic(S)∼= H 2(S, Z) is finitely generated. According to [1, Corollary
2.6], S is a Mori dream surface if and only if Eff(S) is rational polyhedral and
Nef(S) = SAmp(S).

By 4.3,
Nef(S) = Eff(S) = {a[L1] + b[L2] | a, b ∈ R≥0}.

Since Eff(S) ⊇ SAmp(S), it follows that S is Mori dream surface if and only if
Nef(S) = SAmp(S), if and only if L1, L2 are semi-ample.

It follows that S is a Mori dream surface if and only if S has two fibrations
f1, f2 : S → P1. These combine to yield a morphism f : S → P1

× P1 which is
necessarily finite since the second Betti number of S equals 2.

Conversely, if S has a finite morphism f : S → P1
×P1, q(S)= 0, and the second

Betti number of S equals 2, then S is a Mori dream surface with q(S) = pg(S) = 0,
hence in particular it is a Q-homology quadric.

Since the property of being a Mori dream space depends on the structure of
Num(S) ⊗ R, by the cited criteria, in the case of an odd fake quadric we take a
basis of Num(S) as in Lemma 6.1 and set L1 := Q1 + Q2, L2 := Q1 − Q2.

If there are no negative curves, then the cones Nef(S) and the closure of Eff(S)

are again equal to the first quadrant, and the proof runs exactly as in the even
case. □

5. Shavel-type surfaces

Definition 5.1. A smooth projective surface S shall be called a Shavel surface of
special unmixed type if

pg(S) = q(S) = 0, S = H2/0,

where 0 is a cocompact discrete, torsion-free (hence acting freely), irreducible
subgroup of

Aut(H2) ≃ PSL(2, R)2 ⋊Z/2,

such that
0 < SL(2, R) × SL(2, R).
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We shall drop the word “special” if

0 < PSL(2, R)2.

Observe that the group 0 is said to be reducible if it contains a normal finite
index subgroup which is of the form 01 ×02: in this case S = H2/0 is a finite free
quotient (C1 × C2)/G, where C j := H/0 j , by the action of G := 0/01 × 02.

0 is said to be irreducible if it is not reducible: then the projection of 0 on each
of the factors PSL(2, R) has dense image.

Note that for a Shavel surface S of unmixed type, we have

γ z = (γ1z1, γ2z2) for all γ = (γ1, γ2) ∈ 0 and all z = (z1, z2) ∈ H2.

Hence S admits two smooth foliations and �1
S splits as the direct sum of two

invertible sheaves:
�1

S = Ł1 ⊕ Ł2.

Proposition 5.2. A Shavel surface S of special unmixed type is an even fake quadric
and KS is divisible by 2 in Pic(S).

Proof. It suffices to show KS is divisible by 2 in Pic(S).
The automorphic factor of the canonical bundle is the inverse of the jacobian

determinant
1

(c1z1 + d1)2(c2z2 + d2)2 ,

for γ = (γ1, γ2), and where

γi =

(
ai bi

ci di

)
, i = 1, 2.

This shows immediately that, since we assume that 0 < SL(2, R), we have a
well defined square root of the jacobian determinant, whence KS is the square of
the automorphic factor (c1z1 + d1)(c2z2 + d2); hence KS = 2(L1 + L2), Ł j = 2L j ,
and our claim follows. □

Theorem 5.3. A Shavel surface of unmixed type S is not a Mori-dream surface.

Proof. We saw in Proposition 5.2 that S is an even fake quadric. We use the notation
of Section 2.

It suffices to prove that |nL1| = ∅ for any n ≥ 1.
As remarked above, S admits two smooth foliations and �1

S splits as the sum of
two invertible sheaves:

�1
S = Ł1 ⊕ Ł2,

where, by 5.2, we have Ł1 = 2L1, Ł2 = 2L2.
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In fact, nL1 is an automorphic line bundle on H × H corresponding to the
following cocycle. We see this as follows: Let

p1 : PSL(2, R) × PSL(2, R) → PSL(2, R), γ = (γ1, γ2) 7→ γ1,

be the first projection map. Then to γ1 such that

γ1(z1) =
a(γ1)z1 + b(γ1)

c(γ1)z1 + d(γ1)

we associate the automorphic factor (c(γ1)z1 + d(γ1)).
Since 0 is irreducible, p1(0) is dense.
We claim that H 0(S, nL1) = 0 for n ≥ 1.
In fact, every section of H 0(S, nL1) is represented by a function f which satisfies

the functional equation

f (γ1z1, γ2z2) = (c(γ1)z1 + d(γ1))
n f (z1, z2).

By density of p1(0), this holds for each γ1 ∈ SL(2, R).
Here we have to explain how γ1, γ2 are obtained (see [24]): A is a division

quaternion algebra with centre a totally real number field K of degree 2 over Q.
This means that there are two embeddings ι1, ι2 : K → R, and these determine

two homomorphisms
ι1, ι2 : A → Mat (2 × 2, R).

Then γ j := ι j (γ ), for γ ∈ 0, where 0 is the group of units lying in a maximal
order D of A and having reduced norm 1.

If we take now γ1 to be in a maximal compact subgroup, the stabilizer of one point,
then the same holds for γ2; hence, using the biholomorphism of H with the unit disk,
and choosing suitable coordinates, we can assume that γ1(z1)=λ2z1, γ2(z2)=µ2z2.

Hence, setting

f (z1, z2) :=

∑
i, j

ai, j zi
1z j

2,

we get

f (λ2z1, µ
2z2) = λ−n f (z1, z2) ⇐⇒ ai, jλ

2iµ2 j
− λ−nai, j = 0, ∀i, j ≥ 0.

Now set j = 0: then ai,0λ
2i

− λ−2nai,0 = 0 for each λ, and we get a Laurent
polynomial in λ whose coefficients are all vanishing, hence ai,0 = 0 for each
i ≥ 0. Therefore f (z1, 0) vanishes identically, and f (z1, z2) vanishes identically
for z2 = 0.

Varying now γ1, we obtain all the maximal compact subgroups to which γ2

belongs.
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Hence we have shown, for each choice of w2, that f (z1, z2) vanishes identically
for z2 = w2.

We conclude that the section determined by the function f vanishes identically
on the surface S. □

Remark 5.4. One can formulate the last argument as showing that the Iitaka
dimension of L j is −∞.

Note that a more general result, but with a less elementary proof, is contained in
Proposition IV.5.1 of [22], saying that the canonical model of a surface foliation
with numerical dimension 1 has Iitaka dimension either −∞ or 1 (and in Example
II.2.3 it is stated that the first alternative applies for Hilbert modular surfaces).

6. Odd fake quadrics

In this section, we assume that S is an odd fake quadric. Recall that, over C,
S contains no smooth rational curves [23, Proposition 2.1.1] and in particular KS is
ample.

6.1. The intersection form.

Lemma 6.1. There exist Q1, Q2 ∈ Pic(S) such that

Q2
1 = 1, Q2

2 = −1, Q1 Q2 = 0, KS = 3Q1 − Q2.

The numerical classes [Q1] and [Q2] are uniquely determined in Num(S).
Moreover, for any such Q1, Q2,

(1) h0(S, 3Q1) ≥ 1 and Q1 is nef and big;

(2) Q1 is ample unless S contains an irreducible curve C such that C ∼ Q2;

(3) Q1 is semiample.

Proof. The intersection form on Num(S) is diag(1, −1).
Hence there exist divisors Q1, Q2 such that Q2

1 = 1, Q2
2 = −1, Q1 Q2 = 0.

We may assume KS · Q1 ≥ 0 and KS · Q2 ≥ 0 by possibly replacing Qi with −Qi .
Then KS ∼ aQ1 + bQ2 with a, b ∈ Z, a ≥ 0, b ≤ 0. Since K 2

S = 8, a2
− b2

= 8. It
follows that a = 3, b = −1 and KS ∼ 3Q1 − Q2.

Therefore KS = 3Q1 − Q2 + η for some η ∈ Tors(S), and we can assume
KS = 3Q1 − Q2 after replacing Q2.

Note that h2(S, 3Q1) = h0(S, KS − 3Q1) = h0(S, −Q2) and KS(−Q2) = −1.
Since KS is ample, h2(S, 3Q1) = 0. Then the Riemann–Roch theorem shows

h0(S, 3Q1) ≥
1
2(3Q1)(Q2) + χ(OS) = 1.

Let C be an irreducible curve. We write C ∼ aQ1 + bQ2 with a = C Q1 and
b = −C Q2. Then KSC = 3a + b and C2

= a2
− b2.
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In order to see whether Q1 is nef, respectively ample, assume that C Q1 ≤ 0, i.e.,
a ≤ 0.

Then C is a negative curve, and, by Proposition 6.2 below, the class of C equals
the class of (b − 1)Q1 + bQ2, and we are done unless b ≤ 1.

However, since KS is ample and 3(b − 1) + b = KSC > 0, b ≥ 1. If b = 1, then
C ∼ Q2. Then we have shown that Q1 is nef, and then (1) and (2) are proven.

For (3), we may assume that Q1 is not ample. Then by (2), there is an irreducible
curve C ∼ Q2. Note that pa(C) = 1 and thus OC(KS +C) ∼= ωC ∼= OC . Moreover,

3Q1 = KS + C + η′

for some η′
∈ Tors(S).

There exists m > 0 such that

• mη′
= 0, and thus 3m Q1|C ∼= OC ; and

• h0(3m Q1) ≫ 0.

Note that Q1 is nef and big, and that

3m Q1 − C ∼ KS + 3(m − 1)Q1.

By the Kawamata–Viehweg vanishing theorem, we have

H 1(S, 3m Q1 − C) = 0.

So the trace (restriction) of |3m Q1| on C is complete and base-point-free.
Write |3m Q1| = |M |+ F , where |M | is the movable part and F is the fixed part.

The discussion above shows that F ̸≥ C and thus FC ≥ 0. Since 3m Q1.C = 0, we
conclude that M.C = 0 and F.C = 0. It follows that M ∼ λQ1 for some positive
integer λ. Because Tors(S) is finite, |k Q1| has no fixed part for sufficiently large
and divisible k > 0. By a theorem of Zariski, [27] (see also Theorem 14.19, page
223, of [2]), Q1 is semiample. □

Unlike the even fake quadric case, we do not know whether S contains a negative
curve or not (but in the case it does not contain such a negative curve, we have
determined the condition that it is a Mori dream space in Theorem 4.5).

Proposition 6.2. Let C be an irreducible curve on S. Assume that C2 < 0. Then:

(1) C ∼ aQ1 + (a + 1)Q2 for some a ∈ Z≥0 and pa(C) = a + 1.

(2) For any irreducible curve C0 ̸= C , C2
0 ≥ 0.

(3) Set D := (a + 1)Q1 + aQ2. Then DC = 0, D is nef and big, moreover D is
semiample only if OC(D) is a torsion divisor.

(4) One of the sides of Eff(S) is R+[C] and one of the sides of Nef(S) is R+[D].
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Proof. We may assume C ∼ aQ1 + bQ2; hence a = C Q1 and b = −C Q2. Then
by our assumption KSC = 3a + b > 0, C2

= a2
− b2 < 0.

Set α := |a|, then |b| = α + δ with δ > 0.
For some ϵ1, ϵ2 ∈ {1, −1}, we have a = ϵ1α, b = ϵ2(α + δ).
The inequalities KSC = 3a + b > 0 and KSC + C2

≥ 0 (since S contains no
rational curve) read out as:

3ϵ1α + ϵ2(α + δ) > 0, 3ϵ1α + ϵ2(α + δ) − 2δα − δ2
≥ 0.

If δ ≥ 2, then −2δα+(3ϵ1+ϵ2)α ≤ 0, while ϵ2δ−δ2 < 0; hence this contradiction
shows that δ = 1.

The first inequality excludes the possibility ϵ1 = ϵ2 = −1.
If ϵ1 = 1, ϵ2 = −1, then the second inequality tells that −2 ≥ 0, absurd.
Hence ϵ2 = 1, and (3ϵ1 + 1 − 2)α ≥ 0 shows that ϵ1 = 1.
Therefore C ∼ αQ1 + (α + 1)Q2 and (1) is proven.
Next, if C0 is a different negative curve, we have C0 ∼ a0 Q1 + (a0 + 1)Q2 with

a0 ≥ 0. Then CC0 = aa0 − (a + 1)(a0 + 1) < 0, which is impossible, proving (2).
For (3), clearly we have D2

= 2a + 1 > 0 and DC = 0.
From (1) and (2), we see DC0 > 0 for any C0 ̸= C . Thus D is nef and big.
By a Theorem of Zariski, saying that a nef and big divisor D is asymptotically

base point free if and only if there exists a large multiple |m D| which is without
fixed part, D is semiample if and only if for each irreducible curve C ′, C ′ is not in
the base locus of some |m D| with m positive.

Applying this to C ′
= C we see that OC(D) must be a torsion line bundle.

Let us show (4). We have seen that C is the only irreducible curve which is not
inside the closure P̄ of the positive cone P , which is of course contained inside
Eff(S).

Hence R+[C] is one of the sides of Eff(S).
Since the nef cone is the dual of the closure Eff(S), which is the span of R+[C]

and P̄ , and since D is orthogonal to C , and is nef and big, R+[D] is one of the
sides of Nef(S). □

Corollary 6.3. Assume that f : S → P1 is a fibration with general fibre F. Then
either F ∼ a(Q1 + Q2) with a ≥ 1 and g(F) = 2a + 1, or F ∼ a(Q1 − Q2) and
g(F) = a + 1 with a ≥ 1.

Proof. Let F ∼aQ1+bQ2: then F2
=0 amounts to a2

=b2, that is, a =ϵ1α, b=ϵ2α,
with α > 0, ϵ j ∈ {1, −1}.

Since KS F > 0, we get 3ϵ1 + ϵ2 > 0; hence ϵ1 = 1, and the two solutions are as
stated. □
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Corollary 6.4. Assume that S contains a negative curve. Then S admits at most
one fibration, and if there is a fibration f : S → P1 with general fibre F , then
F ∼ (g(F) − 1)(Q1 − Q2).

Proof. To show the last assertion, we observe that F ′
:= Q1 + ϵQ2 is nef; hence

F ′
· C ≥ 0.
This condition amounts to a − ϵ(a + 1) ≥ 0; hence ϵ = −1. □

7. Characteristic p

Let S be an even fake quadric, now over an algebraically closed field of characteristic
p > 0.

We begin with an easy remark: the quadrant {n1L1 + n2L2 | n1, n2 ≥ 0} is
contained in the closure of the effective cone, since P := {n1L1 +n2L2 | n1, n2 > 0}

consists of big divisors D (this means, for n ≫ 0, nD = A + E , where A is ample
and E effective). Indeed, by Riemann–Roch D ∼ d1L1 + d2L2 is effective for
d1, d2 ≥ 2, (d1, d2) ̸= (2, 2).

Lemma 7.1. There are at most two negative irreducible curves C on S.
The class of C may only be C ∼ −L1 + bL2 or C ∼ aL1 − L2 and C ∼= P1.

Moreover, b ≥ 2, and a ≥ 2 if KS is ample.
If KS is not ample there is a unique irreducible −2-curve C orthogonal to KS:

then either C ∼ −L1 + L2 or C ∼ L1 − L2, but obviously both possibilities cannot
occur.

Proof. If C is irreducible with C ∼ c1L1 + c2L2, if C is negative c1c2 < 0, hence
we may assume that c1 > 0, c2 < 0.

Since KSC ≥ 0, we obtain c1 + c2 ≥ 0.
If C ′ is another negative irreducible curve, it cannot lie in the same quadrant,

since c′

1 > 0, c′

2 < 0 implies CC ′
= c1c′

2 + c′

1c2 < 0, a contradiction.
Hence there is at most one negative curve, in each of the two quadrants which

are neither positive nor negative.
Assume now that we have an irreducible curve C with C2 < 0. Then C ∼

aL1 + bL2 for a, b ∈ Z and

C2
= 2ab, KSC = 2a + 2b.

We may assume that a > 0 and b < 0. By the adjunction formula,

−2 ≤ 2pa(C) − 2 = C2
+ KSC = 2(a + b + ab) = 2a(1 + b) + 2b.

Therefore b = −1, C ∼= P1. □

Remarks 7.2. (i) In [14], remark after Lemma 6.3, Ekedahl, Shepherd-Barron and
Taylor show that, for each prime p which is inert in the quadratic field K which
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is the centre of the quaternion algebra A of a Shavel surface of special unmixed
type (see the proof of Proposition 5.2 for more details), the divisors −2L1 + 2pL2

and 2pL1 − 2L2 are effective, since the p-curvature tensor is nonvanishing for both
foliations.

(ii) Is it true that the possible numbers a, b in the previous Lemma 7.1 can only be
equal to the characteristic p?

If we have two negative curves C1 ∼ a1L1 − L2 and C2 ∼ −L1 + b2L2, they
span the effective cone, which is therefore polyhedral.

The nef cone consists of divisors D ∼ aL1 + bL2 such that

a ≤ ba1, b ≤ ab2;

hence it is polyhedral and spanned by D1 ∼ a1L1 + L2, D2 ∼ L1 + b2L2.

Proposition 7.3. If on S there are two negative curves C1 ∼ a1L1 − L2 and
C2 ∼ −L1 + b2L2, then S is a Mori dream space.

Proof. By [1] it suffices to show that the divisors D1 ∼ a1L1 + L2, D2 ∼ L1 +b2L2

are semiample.
The divisors are both nef and big, and by symmetry, it suffices to show only the

first assertion, that D1 is semiample.
We denote by E(D1) the exceptional locus of D1, i.e., the union of the finite

maximal subvarieties Z such that the restriction of D1 to Z is nonbig. Since D1 is
big and C1 is the only curve which is orthogonal to D1, it follows that E(D1) = C1.
By Lemma 7.1, we have that C1 ∼= P1 and hence OC1(D1) is semiample.

We apply Theorem 0.2 of [15] (see also [4], Corollary 3.6), stating that if we are
in positive characteristic and D1 is nef and big and the restriction to the exceptional
locus E(D1) is semiample, then also D1 is semiample.

Hence we are done. □

Theorem 1.1 follows now immediately from Theorem 5.3, from the fact that S is
defined over a number field, from i) of Remarks 7.2, and the previous Proposition 7.3.

8. Problems

Problem 1. Consider all fake Q-homology quadrics S that are isogenous to a
product of curves. (a) Determine which ones are even. (b) Determine which ones
are odd.

Problem 2. Let S be an odd fake quadric. Does S contain a negative curve?

Problem 3. Let S be an odd fake quadric. Could S have two fibrations?
Remark: this is related to Problem 1 since surfaces isogenous to a product are

Q-homology quadrics having two fibrations.
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Problem 4′. (Hirzebruch’s question) Is every surface homeomorphic to a smooth
quadric indeed a deformation of P1

× P1?

Problem 4′′. Is every surface homeomorphic to F1 indeed a deformation of F1?
A negative answer to both questions would follow if one could answer positively

the next problem 5, or negatively the weaker problem 6: indeed, by a theorem of
Michael Freedman [17], a simply connected fake quadric is homeomorphic either
to F1 or to F0 = P1

× P1.

Problem 5. Let S be a fake quadric: is then the universal covering of S biholomor-
phic to H × H?

Problem 6. Is there a simply connected fake quadric?

Problem 7. (raised by Michael Lönne at a seminar talk by the second author): is
there a fake quadric with H1(S, Z) = 0?

Remark 8.1. If a fake quadric S is homeomorphic to P1
× P1 then S is spin, that

is, KS is divisible by 2, and one may study its half-canonical ring.
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FIVE-DIMENSIONAL MINIMAL
QUADRATIC AND BILINEAR FORMS

OVER FUNCTION FIELDS OF CONICS

ADAM CHAPMAN AND AHMED LAGHRIBI

Over a field of characteristic 2, we give a complete classification of quadratic
and bilinear forms of dimension 5 that are minimal over the function field
of an arbitrary conic. This completes the unique known case due to Faivre
concerning the classification of minimal quadratic forms of dimension 5 and
type (2, 1) over function fields of nondegenerate conics.

1. Introduction

Let F be a field of characteristic 2 and K/F a field extension. An anisotropic
F-form (quadratic or bilinear) ϕ is called K -minimal if ϕK is isotropic and any
form ψ dominated by ϕ, such that dimψ < dimϕ, remains anisotropic over F
(dimϕ denotes the dimension of ϕ). We refer to Section 2 for the definition of
the domination relation which is more refined than the subform relation and is
necessary when we take into account singular quadratic forms. Let us mention that
the minimality for bilinear forms is equivalent to that of totally singular quadratic
forms (Corollary 6). Henceforth, we will restrict ourselves on the minimality for
quadratic forms.

In the case of a quadratic extension K/F , any K -minimal form is of dimen-
sion 2. Obviously, the same conclusion is true when K is the function field of a
2-dimensional quadratic form. When K is the function field of a conic, then any
3-dimensional anisotropic F-form which becomes isotropic over K is necessarily
K -minimal, and there is no K -minimal form of dimension 4. These two facts
combine many references that we summarize below (we refer to Sections 2 and 5
for the definition of the type and the norm degree ndegF ):

(1) For quadratic forms ϕ of dimension 3, we use [13, théorème 1.4].

(2) For quadratic forms ϕ of dimension 4, we use

(i) [13, théorème 1.3] for ϕ of type (2, 0),
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(ii) [13, théorème 1.4] for ϕ of type (1, 2),

(iii) [20, Theorem 1.2] for ϕ of type (0, 4) and ndegF (ϕ)= 8,

(iv) [20, Proposition 1.1 and Theorem 1.2] for ϕ of type (0, 4) and ndegF (ϕ)= 4.

We will distinguish between degenerate and nondegenerate conics. Recall that a
conic is called degenerate if it is given by a quadratic form of type (0, 3), otherwise
it is given by a quadratic form of type (1, 1) and called nondegenerate. Quadratic
forms of dimension 5 which are minimal over function fields of conics were
classified first in characteristic not 2 by Hoffmann, Lewis and van Geel [9]. Their
result has been extended to characteristic 2 by Faivre in the case of quadratic forms
of type (2, 1) and nondegenerate conics. His result states the following:

Theorem 1 [4, Corollary 3.7; 6, Proposition 5.2.12]. Let ϕ be an anisotropic F-
quadratic form of dimension 5 and type (2, 1), and τ = b[1, a] ⊥ ⟨1⟩ an anisotropic
F-quadratic form of dimension 3. Then, ϕ is F(τ )-minimal if and only if these three
conditions are satisfied:

(i) ϕ is a Pfister neighbor of a 3-fold Pfister form π .

(ii) π ≃ ⟨⟨c, b, a]] for a suitable c ∈ F∗.

(iii) ind(C0(ϕ)⊗ C0(τ ))= 4.

For function fields of nondegenerate conics, Faivre proved this general result:

Proposition 1 [6, Propositions 5.2.1, 5.2.8, 5.2.11]. Let τ = b[1, a] ⊥ ⟨1⟩ be an
anisotropic F-quadratic form of type (1, 1), and ϕ an anisotropic F-quadratic form.
Suppose that ϕ is F(τ )-minimal, then we have:

(1) ϕ is singular but not totally singular.

(2) If ϕ is of type (1, ℓ), then ℓ is odd.

(3) If dimϕ = 5, then ϕ is a Pfister neighbor of a 3-fold Pfister form ⟨⟨c, b, a]] for
some c ∈ F∗.

The proof of this proposition is mainly based on the fact that the extension given
by the function field of a nondegenerate conic is excellent [8, Corollary 5.7] and
some arguments similar to those developed by Hoffmann, Lewis and Van Geel
in characteristic not 2 [9]. This excellence result is no longer true for degenerate
conics as it was proved by Laghribi and Mukhija [19].

To our knowledge, no classification of minimal quadratic forms of type (2, 1)
over function fields of degenerate conics, or of type (1, 3) over function fields
of arbitrary conics are known. Our aim in this paper is to complete these open
cases. The first result in this sense is the following theorem that concerns minimal
quadratic forms of type (2, 1) over function fields of degenerate conics.
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Theorem 2. Let ϕ be an anisotropic F-quadratic form of dimension 5 and type
(2, 1), and τ = ⟨1, a, b⟩ an anisotropic totally singular F-quadratic form of dimen-
sion 3. Then, ϕ is F(τ )-minimal if and only if these three conditions are satisfied:

(i) ϕ is a Pfister neighbor of a 3-fold Pfister form π .

(ii) π ≃ ⟨⟨a, b, c]] for some c ∈ F∗.

(iii) ind C0(ϕ)F(
√

a,
√

b) = 2.

Concerning the classification of minimal 5-dimensional quadratic forms of type
(1, 3) over function fields of degenerate conics, we prove the following result.

Theorem 3. Let ϕ be an anisotropic F-quadratic form of type (1, 3), and τ =

⟨1, a, b⟩ an anisotropic totally singular quadratic form of dimension 3. Then, ϕ is
F(τ )-minimal if and only if these three conditions are satisfied:

(i) ϕ is a Pfister neighbor of a 3-fold Pfister form π .

(ii) π ≃ ⟨⟨a, b, c]] for some c ∈ F∗.

(iii) For any e ∈ F∗, we have either
(a) id(eτ ⊥ ql(ϕ))≤ 1, or
(b) id(eτ ⊥ ql(ϕ))= 2 and (DF (ϕ)∩ DF (eτ)) \ DF (ql(ϕ))= ∅.

The classifications given in Theorems 1 et 2 are based on the even Clifford algebra
C0(ϕ) of ϕ. However, for quadratic forms of type (1, 3), another characterization
is used in Theorem 3. This is due to the fact that the even Clifford algebra of any
quadratic Pfister neighbor of type (1, 3) is split as we state in Corollary 1.

Proposition 2 (compare [21, Lemma 2]). Let ϕ = a1[1, b1] ⊥ · · · ⊥ an[1, bn] ⊥

⟨1, c1, · · · , cs⟩ be a singular quadratic form such that n ≥ 1 and s ≥ 1, and let
K = F(

√
c1, . . . ,

√
cs). Then, C0(ϕ) is isomorphic to the F-algebra [b1, a1)⊗F

· · · ⊗F |bn, an)⊗F K . In particular, C0(ϕ) has degree 2n as a K -algebra.

Corollary 1. An anisotropic F-quadratic form ϕ of type (1, 3) is a Pfister neighbor
if and only if ϕ is similar to rs[1, u] ⊥ ⟨1, r, s⟩ for suitable scalars r, s, u ∈ F∗.
Moreover, C0(ϕ) is split as a K -algebra, where K = F(

√
r ,

√
s).

For the classification of minimal 5-dimensional quadratic forms of type (1, 3)
over function fields of nondegenerate conics, we prove the following theorem:

Theorem 4. Let ϕ be an anisotropic F-quadratic form of type (1, 3), and τ =

a[1, b] ⊥ ⟨1⟩ an anisotropic quadratic form of dimension 3 and type (1, 1). Then, ϕ
is F(τ )-minimal if and only if these three conditions are satisfied:

(i) ϕ is a Pfister neighbor of a 3-fold Pfister form π .

(ii) π ≃ ⟨⟨c, a, b]] for some c ∈ F∗.

(iii) For any e ∈ F∗, if e[1, b] ⊂ ϕ then e ̸∈ DF (a[1, b]) · DF (ql(ϕ)).
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Finally, for the classification of minimal quadratic forms of type (0, 5), we use
the language of bilinear forms, which will help us to use a cohomological invariant
and a classification parallel to those given in Theorems 1 et 2. Namely, we will
prove the following result:

Theorem 5. Let B be an anisotropic F-bilinear form of dimension 5, and Q =

⟨1, a, b⟩ an anisotropic totally singular quadratic form of dimension 3. Then, the
following statements are equivalent:

(1) B is F(Q)-minimal.

(2) There exists an F-bilinear form C of dimension 5 which is a strong Pfister
neighbor of a bilinear Pfister form ⟨⟨a, b, c⟩⟩b and satisfies the two conditions:
(i) B̃ ≃ C̃.

(ii) For any u, v ∈ F2(a, b) such that ⟨u, v, uv⟩b is similar to a subform of
⟨⟨a, b, c⟩⟩b, the invariant e2(C ⊥ ⟨det C⟩b ⊥ ⟨⟨u, v⟩⟩b + I 3 F) has length 2.

Note that for bilinear forms, nothing happens over the function field of a nonde-
generate conic since an anisotropic bilinear form remains anisotropic over such a
field. To clarify the notations used in Theorem 5, let us recall that to any bilinear
form B of underlying vector space V , we associate a totally singular quadratic form
B̃ defined on V by: B̃(v) = B(v, v) for all v ∈ V . The cohomological invariant
e2 is that due to Kato [10] going from the quotient I 2 F/I 3 F to νF (2), where
νF (2) is the additive group generated by the logarithmic symbols da1

a1
∧

da2
a2

for
a1, a2 ∈ F∗. This invariant plays the role of the Clifford invariant which is not
defined for bilinear forms in characteristic 2, and thus the group νF (2) can be seen
as the 2-torsion of the Brauer group. The word “length” that we talk about in the
previous theorem concerns the smallest number of logarithmic symbols needed to
write the cohomological invariant e2(η) for η ∈ I 2 F/I 3 F . Finally, the notion of a
strong Pfister neighbor bilinear form is defined as the classical notion of a quadratic
Pfister neighbor. We use the term “strong” since we have another weaker notion of
bilinear Pfister neighbor (see Section 5).

2. Background on quadratic and bilinear forms

We refer to [5] for undefined terminologies or facts. Recall that any quadratic form
ϕ decomposes as follows:

(1) ϕ ≃ [a1, b1] ⊥ · · · ⊥ [ar , br ] ⊥ ⟨c1⟩ ⊥ · · · ⊥ ⟨cs⟩ ,

where [a, b] (resp. ⟨c⟩) denotes the binary quadratic form ax2
+ xy + by2 (resp.

cz2). Here, ≃ and ⊥ denote the isometry and the orthogonal sum, respectively.
As in (1), the form ϕ is called of type (r, s). We say that ϕ is nonsingular (resp.

totally singular) if s = 0 (resp. r = 0). It is called singular if s > 0.
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The form ⟨c1⟩⊥ · · ·⊥⟨cs⟩ in (1) is unique up to isometry, we call it the quasilinear
part of ϕ and denote it by ql(ϕ).

A quadratic form ϕ of underlying vector space V is called isotropic if there exists
v ∈ V \ {0} such that ϕ(v)= 0. Otherwise, ϕ is called anisotropic.

Any quadratic form ϕ uniquely decomposes as follows:

(2) ϕ ≃ ϕan ⊥ [0, 0] ⊥ · · · ⊥ [0, 0] ⊥ ⟨0⟩ ⊥ · · · ⊥ ⟨0⟩ ,

where the form ϕan is anisotropic that we call the anisotropic part of ϕ. The number
of copies of the hyperbolic plane [0, 0] in (2) is called the Witt index of ϕ, we
denote it by iW (ϕ). Similarly, the number of ⟨0⟩ in (2) is called the defect index of
ϕ, we denote it by id(ϕ). The total index of ϕ is iW (ϕ)+ id(ϕ).

Two quadratic forms ϕ and ψ are called Witt equivalent if ϕ ⊥ m ×[0, 0] ≃ψ ⊥

n × [0, 0] for some integers m, n ≥ 0. In this case, we write ϕ ∼ ψ .
Let C(ϕ) (resp. C0(ϕ)) denote the Clifford algebra (resp. the even Clifford

algebra) of the quadratic form ϕ. When ϕ≃a1[1, b1]⊥ · · ·⊥ar [1, br ] for ai , bi ∈ F
such that ai ̸= 0 for 1 ≤ i ≤ r , its Arf invariant 1(ϕ) is the class of

∑r
i=1 bi in

F/℘ (F), where ℘(F) = {x2
+ x | x ∈ F}. In this case, C(ϕ) is isomorphic

to ⊗
r
i=1[bi , ai ), where [b, a) denotes the quaternion algebra generated by two

elements i and j subject to the relations: i2
= a ∈ F∗

:= F \ {0}, j2
+ j = b ∈ F

and i j i−1
= j + 1.

Let ϕ and ψ be two quadratic forms over F of underlying vector space V and W ,
respectively. We say that ϕ is dominated by ψ if there exists an injective F-linear
map σ : V −→ W such that ϕ(v)= ψ(σ(v)) for any v ∈ V . In this case, we write
ϕ ≺ ψ . We say that ϕ is weakly dominated by ψ if αϕ ≺ ψ for some α ∈ F∗. The
form ϕ is called a subform of ψ , denoted by ϕ ⊂ ψ , if ψ ≃ ϕ ⊥ ϕ′ for a suitable
quadratic form ϕ′. Clearly, if ϕ is a subform of ψ , then it is dominated by ψ , but
the converse is not true in general. We refer to [7, Lemma 3.1] for more details on
the domination relation.

For a1, . . . , an ∈ F∗, let ⟨a1, . . . , an⟩b denote the diagonal bilinear form given by

((x1, . . . , xn), (y1, · · · , yn)) 7→

n∑
i=1

ai xi yi .

A metabolic plane is a 2-dimensional bilinear form isometric to
(a

1
1
0

)
for some

a ∈ F ; we denote it by M(a). A bilinear form is called metabolic if it is isometric
to a sum of metabolic planes.

Let Wq(F) (resp. W (F)) be the Witt group of nonsingular quadratic forms (resp.
the Witt ring of nondegenerate symmetric bilinear forms). For any integer m ≥ 1, let
I m F be the m-th power of the fundamental ideal I F of classes of even-dimensional
forms in W (F) (we take I 0 F = W (F)). Recall that Wq(F) is endowed with
W (F)-module structure in a natural way [1]. For any integer m ≥ 2, let I m

q F be
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the submodule I m−1 F · Wq(F) of Wq(F). The ideal I m F is additively generated
by the m-fold bilinear Pfister forms ⟨1, a1⟩b ⊗ · · · ⊗ ⟨1, am⟩b, that we denote by
⟨⟨a1, . . . , am⟩⟩b. The submodule I m

q F is generated, as a W (F)-module, by the
quadratic forms ⟨⟨a1, . . . , am−1⟩⟩b · [1, b], that we denote by ⟨⟨a1, . . . , am−1, b]] and
call an m-fold quadratic Pfister form. We have I 1

q F = Wq(F) and a 1-fold quadratic
Pfister form is a form of type [1, a].

Let Pm F be the set of forms isometric to m-fold quadratic Pfister forms, and
G Pm F the set of forms similar to forms in Pm F . Similarly, let B Pm F be the set
of forms isometric to m-fold bilinear Pfister forms, and G B Pm F the set of forms
similar to forms in B Pm F .

For m ≥ 1 an integer and B ∈ B Pm F , we have B ≃ ⟨1⟩b ⊥ B ′ for some bilinear
form B ′. This form B ′ is unique, we call it the pure part of B.

The Hauptsatz of Arason–Pfister asserts that any anisotropic form in I m
q F (or

I m F) has dimension ≥ 2m . Moreover, if the form has dimension 2m , then it is
similar to a Pfister form (see [16, lemme 4.8] for bilinear forms, and [17, proposition
6.4] for quadratic forms). In this paper, we will only need the Hauptsatz for bilinear
forms.

Recall that a quadratic (resp. bilinear) Pfister form Q is isotropic if and only if it
is hyperbolic (resp. metabolic). Such a form is also round, meaning that α ∈ F∗ is
represented by Q if and only if Q ≃ αQ.

For a quadratic form ϕ ≃ [a1, b1] ⊥ · · · ⊥ [ar , br ] ⊥ ⟨c1⟩ ⊥ · · · ⊥ ⟨cs⟩, we define
the polynomial Pϕ =

∑r
i=1(ai x2

i + xi yi + bi y2
i )+

∑s
j=1 c j z2

j . This polynomial is
reducible if and only if ϕ ≃ [0, 0] ⊥ ⟨0⟩ ⊥ · · · ⊥ ⟨0⟩ or ϕ ≃ ⟨a⟩ ⊥ ⟨0⟩ ⊥ · · · ⊥ ⟨0⟩

for some a ∈ F∗ [21, Proposition 3]. When Pϕ is irreducible, we denote by F(ϕ)
the quotient field of the ring F[xi , yi , z j ]/(Pϕ), that we call the function field of ϕ.
When Pϕ is reducible or ϕ is the zero form, then we take F(ϕ)= F .

A quadratic form ϕ is called a Pfister neighbor if there exist π ∈ Pm F such that
ϕ is weakly dominated by π and 2 dimϕ > dimπ . Recall that the form π is unique
up to isometry, and for any field extension K/F we have that ϕK is isotropic if and
only if πK is isotropic. In particular, ϕF(π) and πF(ϕ) are isotropic.

3. Preliminary results

For the proof of Theorems 2, 3 and 4, we give a preparatory result.

Theorem 6. Let ϕ and τ be anisotropic quadratic forms of dimension 5 and 3,
respectively, with ϕ not totally singular and 1 ∈ DF (τ ). Suppose that there exists a
3-fold Pfister form π , some x ∈ F∗ and a 5-dimensional quadratic form ϕ′ of the
same type as ϕ such that τ is weakly dominated by both forms π and ϕ′, and such
that ϕ ∼ xπ ⊥ ϕ′. Then, τ is weakly dominated by ϕ.
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Proof. Let y ∈ F∗ be such that yτ ≺ϕ′. Then, xπ ⊥ yτ ≺ xπ ⊥ϕ′ is of codimension
2, but the right hand side has Witt index 4, so the left hand side is isotropic. Hence,
there exists z ∈ DF (τ ) such that yz ∈ DF (xπ). By the roundness of Pfister forms, we
get xπ ≃ yzπ . Let t ∈ F∗ be such that tτ ≺ π . In particular, t ∈ DF (tτ)⊂ DF (π).
So τ ≺ tπ ≃ π , thus z ∈ DF (π) and xπ ≃ yzπ ≃ yπ . Hence, without loss of
generality, we may suppose x = y = 1, meaning that τ is dominated by both forms
π and ϕ, and we have

(3) ϕ ∼ π ⊥ ϕ′.

Clearly, from (3) we have ql(ϕ)≃ ql(ϕ′). The form ϕ is of type (2, 1) or (1, 3),
and τ is of type (1, 1) or (0, 3). We write

ϕ ≃

{
R ⊥ ⟨r⟩ case (a),
R ⊥ ⟨r, s, t⟩ case (b),

where R is a nonsingular quadratic form and r, s, t ∈ F∗. Obviously, in case (a)
the form ϕ is of type (2, 1) and dim R = 4, while in case (b) the form ϕ is of type
(1, 3) and dim R = 2.

For the proof we will proceed case by case. We have to prove that τ is weakly
dominated by ϕ.

(1) Suppose that τ is of type (0, 3). We write τ = ⟨1, a, b⟩. The isotropy of πF(τ )

implies that π ≃⟨⟨a, b, c]] for some c ∈ F∗. If in case (b), τ is similar to ⟨r, s, t⟩, then
we are done. So suppose that these two forms are not similar. By the domination
relation, there exist u, v, w ∈ F∗ such that τ ≃ ⟨u, v, w⟩ and

ϕ′
≃

{
u[1, p] ⊥ v[1, q] ⊥ ⟨w⟩ in case (a),
u[1, p] ⊥ ⟨v,w, z⟩ in case (b),

where p, q, z ∈ F∗. Note that in case (a) we may suppose w = r . Adding on both
sides of (3) the form θ := ⟨⟨a, b⟩⟩, we get:{

R ⊥ θ ⊥ ⟨0⟩ ∼ θ ⊥ ⟨0⟩ in case (a),
R ⊥ ⟨z⟩ ⊥ θ ⊥ ⟨0, 0⟩ ∼ ⟨z⟩ ⊥ θ ⊥ ⟨0, 0⟩ in case (b).

The Witt cancellation of the zero form yields{
R ⊥ θ ∼ θ in case (a),
R ⊥ ⟨z⟩ ⊥ θ ∼ ⟨z⟩ ⊥ θ in case (b).

– In case (a) we get iW (R ⊥ θ)= 2. Hence, there exists a form
〈
r ′, s ′

〉
dominated

by R and θ [7, Proposition 3.11]. Then,
〈
r, r ′, s ′

〉
is dominated by ϕ. In particular,〈

r, r ′, s ′
〉

is anisotropic. Since θ represents r ′, s ′ and r (because we take w = r ), it
follows that

〈
r, r ′, s ′

〉
is dominated by θ . Consequently,

〈
r, r ′, s ′

〉
becomes isotropic
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over F(τ ) because τ and
〈
r, r ′, s ′

〉
are quasi-Pfister neighbors (see Section 5 for

this notion) of the same quasi-Pfister form ⟨⟨a, b⟩⟩. It follows from [20, Theorem
1.2(1)] that τ is similar to

〈
r, r ′, s ′

〉
, and thus τ is weakly dominated by ϕ.

– Similarly, in case (b), we get iW (R ⊥ ⟨z⟩ ⊥ θ) = 1, and thus there exists z′
∈

DF (R ⊥ ⟨z⟩)∩ DF (θ). Then,
〈
v,w, z′

〉
is dominated by ϕ. In particular,

〈
v,w, z′

〉
is anisotropic. Since θ represents v, w and z′, it follows that

〈
v,w, z′

〉
is dominated

by θ . Consequently,
〈
v,w, z′

〉
becomes isotropic over F(τ ), and by [20, Theorem

1.2(1)] τ is similar to
〈
v,w, z′

〉
, thus τ is weakly dominated by ϕ.

(2) Suppose that τ is of type (1, 1). We write τ = b[1, a] ⊥ ⟨1⟩ for some a, b ∈ F∗.
The isotropy of πF(τ ) implies that π ≃ ⟨⟨c, b, a]] for a suitable c ∈ F∗. By the
domination relation, we get

ϕ′
≃

{
b[1, a] ⊥ S ⊥ ⟨r⟩ in case (a),
b[1, a] ⊥ ⟨r, s, t⟩ in case (b),

where in case (a), S is nonsingular of dimension 2 such that 1 ∈ DF (S ⊥ ⟨r⟩); and in
case (b) we suppose r = 1. The condition 1 ∈ DF (S ⊥ ⟨r⟩) implies that 1 = re2

+ f
for some e ∈ F and f ∈ DF (S) ∪ {0}. If f = 0, then ⟨r⟩ ≃ ⟨1⟩. If f ̸= 0, then
S ≃ [ f, g] for some g ∈ F∗, and thus S ⊥ ⟨r⟩ ≃ [ f + re2, g] ⊥ ⟨r⟩ = [1, g] ⊥ ⟨r⟩.
Hence, in case (a), we may suppose r = 1 or 1 ∈ DF (S). When 1 ∈ DF (S), we get
S ≃ [1, d] for some d ∈ F . Inserting the forms ϕ′ and π = ⟨⟨c, b, a]] in equation (3),
we get

(4) ϕ ∼

{
c ⟨⟨b, a]] ⊥ T in case (a),
c ⟨⟨b, a]] ⊥ ⟨r, s, t⟩ in case (b),

where T is the form [1, a + d] ⊥ ⟨r⟩ or S ⊥ ⟨1⟩ according as S ≃ [1, d] or r = 1.
Clearly, the form on the right hand side of (4) is isotropic. Let b′

∈ DF (T ) (resp.
b′

∈ DF (⟨r, s, t⟩)) be such that b′
∈ DF (c ⟨⟨b, a]]). The existence of b′ in case

(a) is clear when T is anisotropic. If T is isotropic, then it contains a hyperbolic
plane and thus it represents any scalar. The roundness of Pfister forms yields
c ⟨⟨b, a]] ≃ b′ ⟨⟨b, a]].

(1) In case (a), the condition b′
∈ DF (T ) implies that b′

[1, a] ⊥ T ∼ U for some
form U of type (1, 1) such that

〈
b′

〉
≺ U . Since ϕ ∼ bb′

[1, a] ⊥ b′
[1, a] ⊥ T , it

follows that b′τ ≺ ϕ.

(2) In case (b), we have ⟨r, s, t⟩≃
〈
b′, . . .

〉
; thus ϕ∼ bb′

[1, a]⊥
〈
b′, . . .

〉
, and hence

b′τ ≺ ϕ. □

The rest of this section is devoted to some corollaries that refine some results on
isotropy due to the second author. The first one is a refinement of [13, théorème
1.2(3)] and [3, Theorem 1.1(3)].
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Corollary 2. Let ϕ be an anisotropic quadratic form of type (2, 1) or (1, 3), and
τ = ⟨1, a, b⟩ an anisotropic totally singular quadratic form of dimension 3. Suppose
that ϕ is not a Pfister neighbor. Then, ϕF(τ ) is isotropic if and only if τ is weakly
dominated by ϕ.

Proof. Suppose that ϕF(τ ) is isotropic. We have to prove that τ is weakly dominated
by ϕ. If ϕ is of type (1, 3) and τ is similar to ql(ϕ), then we are done. So suppose
that τ is not similar to ql(ϕ) when ϕ is of type (1, 3). Using [13, théorème 1.2(3)]
(resp. [3, Theorem 1.1(3)]) when ϕ is of type (2, 1) (resp. ϕ is of type (1, 3)), we
get

(5) ϕ ∼ xπ ⊥ ϕ′

where x ∈ F∗, π a 3-fold Pfister form isotropic over F(τ ), and ϕ′ a form of type
(2, 1) that weakly dominates τ . The isotropy of πF(τ ) is equivalent to saying that τ
is weakly dominated by π . Hence, Theorem 6 implies that τ is weakly dominated
by ϕ. Conversely, if τ is weakly dominated by ϕ, then ϕF(τ ) is isotropic. □

Corollary 3. Let ϕ be an anisotropic quadratic form of type (2, 1) or (1, 3), and
τ = ⟨1, a, b⟩ an anisotropic totally singular quadratic form of dimension 3. If ϕ
is F(τ )-minimal, then ϕ is a Pfister neighbor of a 3-fold Pfister form ⟨⟨a, b, c]] for
some c ∈ F∗.

Proof. If ϕ is F(τ )-minimal, then Corollary 2 implies that ϕ is a Pfister neighbor
of some 3-fold Pfister form π . Since ϕF(τ ) is isotropic, it follows that πF(τ ) is
isotropic and thus hyperbolic. Hence, π ≃ ⟨⟨a, b, c]] for some c ∈ F∗. □

The following corollary refines [3, Theorem 1.1(1)].

Corollary 4. Let ϕ be an anisotropic quadratic form of type (1, 3), and τ an
anisotropic quadratic form of type (1, 1). Suppose that ϕ is not a Pfister neighbor.
Then, ϕF(τ ) is isotropic if and only if τ is weakly dominated by ϕ.

Proof. Suppose that ϕ is isotropic over F(τ ). It follows from [3, Theorem 1.1] that
there exist α, β, u, v ∈ F∗ and R1, R2 nonsingular quadratic forms of dimension 2
such that αϕ ≃ R1 ⊥ ⟨1, u, v⟩, βτ = R2 ⊥ ⟨1⟩ and

(6) R1 ⊥ R2 ⊥ ρ ∼ xπ,

where x ∈ F∗, ρ is a nonsingular complement of ⟨1, u, v⟩ and π ∈ P3 F dominates
τ up to a scalar. Adding on both sides of (6) the form ⟨1, u, v⟩ yields

αϕ ∼ xπ ⊥ ϕ′,

where ϕ′
= R2 ⊥ ⟨1, u, v⟩ dominates βτ . Theorem 6 implies that τ is weakly

dominated by ϕ. Obviously, if τ is weakly dominated by ϕ then ϕF(τ ) is isotropic.
□
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Corollary 5. Let ϕ be an anisotropic F-quadratic form of type (1, 3), and τ =

b[1, a] ⊥ ⟨1⟩ an anisotropic F-quadratic form of type (1, 1). If ϕ is F(τ )-minimal,
then it is a Pfister neighbor of a 3-fold quadratic Pfister form π = ⟨⟨c, b, a]] for
some c ∈ F∗.

Proof. We use Corollary 4 and we proceed as in the proof of Corollary 3. □

Proposition 1 recovers Corollary 5 but the proof given by Faivre uses some
arguments different from those developed here.

4. Proof of Theorems 2–4

Proof of Theorem 2. Let ϕ be an anisotropic F-quadratic form of dimension 5 and
type (2, 1), and τ = ⟨1, a, b⟩ an anisotropic totally singular F-quadratic form of
dimension 3.

– Suppose that conditions (i)–(iii) from the theorem are satisfied. Since πF(τ )

is isotropic and ϕ is a Pfister neighbor of π , it follows that ϕF(τ ) is isotropic.
Suppose that ϕ is not F(τ )-minimal. Then, there exists ψ a form dominated by ϕ of
dimension 3 or 4 such that ψF(τ ) is isotropic. Using [13, théorème 1.3], we can see
that the form ψ is neither of type (2, 0) nor of type (1, 1). Hence, ψ is of type (0, 3)
or (1, 2). In both cases, there exists x ∈ F∗ such that xτ ≺ψ (use [13, théorème 1.4]
for type (1, 2), and [20, Theorem 1.2] for type (0, 3)). Hence, there exist u, v, w
such that xτ ≃ ⟨u, v, w⟩ and ϕ ≃ u[1, p] ⊥ v[1, q] ⊥ ⟨w⟩. We have that C0(ϕ) is
isomorphic to [p, uw)⊗F [q, vw) [21, Lemma 2]. Because x ⟨1, a, b⟩ ≃ ⟨u, v, w⟩,
the scalars uw and vw are squares in F(

√
a,

√
b). Consequently, C0(ϕ)F(

√
a,

√
b) is

split, a contradiction.

– Suppose that ϕ is F(τ )-minimal. By Corollary 3, we deduce that ϕ is a Pfister
neighbor of a 3-fold Pfister form π = ⟨⟨a, b, c]] for some c ∈ F∗. Moreover, modulo
a scalar, we have ϕ ≃ ⟨⟨s, t]] ⊥ ⟨r⟩ (we may use [13, Proposition 3.2]).

Suppose that C0(ϕ)F(
√

a,
√

b) is split. Then, ⟨⟨s, t]] is hyperbolic over F(
√

a,
√

b).
By a result of Baeza [1, Corollary 4.16, page 128], we get ⟨⟨s, t]] ∼ ⟨1, a⟩⊗ϕ1 ⊥

⟨1, b⟩ ⊗ϕ2 for suitable ϕ1, ϕ2 ∈ Wq(F). Hence, we get

⟨⟨s, t]] ⊥ ⟨⟨a, k1]] ⊥ ⟨⟨b, k2]] ∈ I 3
q F,

where ki =1(ϕi ) for i = 1, 2. Hence, we get

(7) r ⟨⟨s, t]] ⊥ [1, k1 + k2] ⊥ a[1, k1] ⊥ b[1, k2] ∈ I 3
q F.

It follows from [17, proposition 6.4] that there exists ρ ∈ G P3 F such that

r ⟨⟨s, t]] ∼ [1, k1 + k2] ⊥ a[1, k1] ⊥ b[1, k2] ⊥ ρ.
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Consequently, by adding ⟨1⟩ on both sides, we get

rϕ ∼ a[1, k1] ⊥ b[1, k2] ⊥ ⟨1⟩ ⊥ ρ.

Since the forms ϕ and a[1, k1] ⊥ b[1, k2] ⊥ ⟨1⟩ are isotropic over F(τ ), it follows
that ρF(τ ) is isotropic, and thus τ is weakly dominated by ρ. Theorem 6 implies
that τ is weakly dominated by ϕ, a contradiction to the minimality of ϕ. □

Let us give an example for which Theorem 2 applies. This example is similar
to the one given by Chapman and Quéguiner-Mathieu for the minimality over the
function field of a nondegenerate conic [2].

Example 1. Let a, b, c be indeterminates over a field F0 of characteristic 2. Con-
sider the forms ϕ= c[1, a+b]⊥ b[1, a]⊥ ⟨1⟩, τ =⟨1, b, ac⟩ and π =⟨⟨b, c, a + b]]
over the rational function field F := F0(a, b, c). Then:

(1) π ≃ ⟨c, bc⟩b .[1, a + b] ⊥ ⟨1, b⟩b .[1, a] because

⟨1, b⟩b .[1, a + b] ≃ ⟨1, b⟩b .[1, a].

This proves that ϕ ≺ π , and thus ϕ is a Pfister neighbor of π .

(2) ϕF(τ ) is isotropic because cτ ≺ π as we can see from (1).

(3) Let L = F(
√

b,
√

ac). We have in the Brauer group of L the following:

C0(ϕ)L = [a + b, bc)L = [a + b, a)L = [b, a)L .

The algebra [b, a) is division over F1 := F0(a, b)(
√

b), and it remains division
over L = F1(

√
ac).

Hence, Theorem 2 implies that ϕ is F(τ )-minimal.

Proof of Theorem 3. Let ϕ be an anisotropic F-quadratic form of type (1, 3), and
τ = ⟨1, a, b⟩ an anisotropic totally singular quadratic form of dimension 3.

– Suppose that ϕ is F(τ )-minimal. Then, by Corollary 3, ϕ is a Pfister neighbor
of a 3-fold Pfister form π = ⟨⟨a, b, c]] for some c ∈ F∗. Suppose that there exists
e ∈ F∗ such that: id(eτ ⊥ ql(ϕ)) ≥ 2 and (id(eτ ⊥ ql(ϕ)) ̸= 2 or (DF (ϕ) ∩

DF (eτ)) \ DF (ql(ϕ)) ̸= ∅). This is equivalent to saying: id(eτ ⊥ ql(ϕ)) = 3 or
(id(eτ ⊥ ql(ϕ)) ≥ 2 and (DF (ϕ) ∩ DF (eτ)) \ DF (ql(ϕ)) ̸= ∅). The condition
id(eτ ⊥ ql(ϕ)) = 3 means that ql(ϕ) is similar to τ , while the second condition
means that eτ is dominated by ϕ. Hence, ϕ is not F(τ )-minimal, a contradiction.

– Conversely, suppose that we have the three conditions (i), (ii) and (iii) as described
in the theorem. Since ϕ is a Pfister neighbor of a 3-fold Pfister form ⟨⟨a, b, c]] for
some c ∈ F∗, it follows that ϕF(τ ) is isotropic. Suppose that ϕ is not F(τ )-minimal.
Then, there exists ψ a form dominated by ϕ of dimension 3 or 4 such that ψF(τ ) is
isotropic. Then, eτ is dominated by ψ for a suitable e ∈ F∗ (we use [20, Theorem
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1.2] when ψ is totally singular, and [13, théorème 1.4] when ψ is of type (1, 2)).
This gives two possibilities:

(a) eτ is isometric to ql(ϕ), which contradicts the condition (iii), or

(b) there exists x, y, z, t, u ∈ F∗ such that eτ ≃ ⟨x, y, z⟩ and ϕ ≃ x[1, u] ⊥

⟨y, z, t⟩. This condition also contradicts (iii) because id(eτ ⊥ ql(ϕ))= 2 but
x ∈ (DF (ϕ)∩ DF (eτ)) \ DF (ql(ϕ)).

Hence, ϕ is F(τ )-minimal. □

Proof of Proposition 2. Suppose ϕ = a1[1, b1] ⊥ · · · ⊥ an[1, bn] ⊥ ⟨c0, c1, . . . , cs⟩

for ai , bi , c j ∈ F such that c0 = 1 and ai ̸= 0 for all i . The Clifford algebra
of ϕ is generated by x1, y1, . . . , xn, yn, z0, . . . , zs such that zi commutes with
all the generators, xi commutes with y j when i ̸= j , and xi yi + yi xi = 1 and
x2

i = ai , y2
i = a−1

i bi and z2
i = ci . The even Clifford algebra of ϕ is generated

by u1, v1, . . . , un, vn, w2, . . . , ws where ui = xi z0, vi = yi z0 and wi = zi z0. The
relations are the following: wi commutes with all the other generators, ui commutes
with v j for i ̸= j , uivi + vi ui = z2

0 = 1 and u2
i = ai , v2

i = a−1
i bi and w2

j = c j .
Therefore, the even Clifford algebra of ϕ is

F⟨u1, v1⟩ ⊗ F⟨u2, v2⟩ ⊗ · · ·⊗ F⟨un, vn⟩ ⊗ F⟨w1, . . . , ws⟩,

which is indeed [b1, a1)F ⊗ · · · ⊗ [bn, an)F ⊗ K . □

Proof of Corollary 1. Let ϕ be an anisotropic quadratic form of type (1, 3). Suppose
that ϕ is a Pfister neighbor of a 3-fold Pfister form π . Modulo a scalar, we may write
ϕ = R ⊥ ⟨1, r, s⟩ for a suitable nonsingular quadratic form R of dimension 2 and
r, s ∈ F∗. On the one hand, since π is isotropic over F(⟨1, r, s⟩), it follows that π is
also isotropic over F(⟨⟨r, s⟩⟩), and thus π ≃ ⟨⟨r, s, u]] for some u ∈ F∗. On the other
hand, the hyperbolicity of πF(ϕ) implies that π ≃ R ⊥ [1, x] ⊥ r [1, y] ⊥ s[1, z] for
some x, y, z ∈ F∗. Hence, we get

⟨⟨r, s, u]] ≃ R ⊥ [1, x] ⊥ r [1, y] ⊥ s[1, z].

Adding on both sides in the last isometry the form ⟨1, r, s⟩, and canceling the
hyperbolic planes, yields that ϕ ≃ rs[1, u] ⊥ ⟨1, r, s⟩.

The fact that C0(ϕ) is split as an F(
√

r ,
√

s)-algebra is a direct consequence of
Proposition 2. □

We finish this section with an example applying the criteria given in Theorem 3.

Example 2. Let r, s, u be indeterminates over a field F0 of characteristic 2. Let us
consider the forms ϕ = rs[1, u] ⊥ ⟨1, r, s⟩ and τ =

〈
1, ru, s(r2

+ r + u)
〉

over the
rational function field F := F0(r, s, u). We have the following statements:
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(1) It is clear that ϕ is a Pfister neighbor of π =⟨⟨r, s, u]]. Moreover, τ is dominated
by π because the scalars 1, ru and s(r2

+ r + u) are represented by the forms
[1, u], r [1, u] and s[1, u], respectively. Hence, ϕF(τ ) is isotropic.

(2) For any e ∈ F∗, we have id(eτ ⊥ ql(ϕ))≤ 1.

In fact, suppose that id(eτ ⊥ ql(ϕ))≥ 2 for some e ∈ F∗. By [7, Proposition 3.2],
there exists a totally singular quadratic form of dimension 2 which is dominated
by eτ and ql(ϕ). Consequently, there exists an inseparable quadratic extension
K = F(

√
d) such that ⟨⟨r, s⟩⟩K and

〈〈
ru, s(r2

+ r + u)
〉〉

K are isotropic, and thus quasi-
hyperbolic. This implies that ⟨⟨r, s⟩⟩ ≃ ⟨⟨d, k⟩⟩ and

〈〈
ru, s(r2

+ r + u)
〉〉
≃ ⟨⟨d, l⟩⟩ for

suitable k, l ∈ F∗. Hence, ⟨⟨r, s⟩⟩ ⊥
〈〈
ru, s(r2

+ r + u)
〉〉

has defect index ≥ 2. In
particular, θ := ⟨⟨r, s⟩⟩⊥

〈
ru, s(r2

+ r + u), rus(r2
+ r + u)

〉
is isotropic. But, using

the classical isometry ⟨a, b⟩ ≃ ⟨a, a + b⟩ for any a, b ∈ F , we get

θ = ⟨1, r, s, rs⟩ ⊥
〈
ru, r2s + rs + su, rsu(r2)+ su(r2)+ rs(u2)

〉
≃ ⟨1, r, s, rs⟩ ⊥

〈
ru, su, rsu(r2)+ su(r2)+ rs(u2)

〉
≃ ⟨1, r, s, rs⟩ ⊥

〈
ru, su, rsu(r2)

〉
≃ ⟨1, r, s, rs⟩ ⊥ ⟨ru, su, rsu⟩

= ⟨1⟩ ⊥ ⟨1, u⟩ · ⟨r, s, rs⟩ ,

which shows that θ is anisotropic, a contradiction. Hence, id(eτ ⊥ ql(ϕ))≤ 1, and
thus Theorem 3 implies that ϕ is F(τ )-minimal. □

It would be interesting to see if there exists an example of an anisotropic quadratic
form of type (1, 3) which is minimal over the function field of a degenerate conic
and satisfies condition (iii)(b) of Theorem 3.

Proof of Theorem 4. Let ϕ be an anisotropic F-quadratic form of type (1, 3), and
τ = a[1, b] ⊥ ⟨1⟩ an anisotropic quadratic form of dimension 3 and type (1, 1).

– Suppose that ϕ is F(τ )-minimal. It follows from Corollary 5 that ϕ is a Pfister
neighbor of a 3-fold Pfister form π = ⟨⟨c, a, b]] for some c ∈ F∗. Since π is split
by K = F[℘−1(b)] and ϕ is its neighbor, the form ϕK is isotropic, which means
that e[1, b] ⊂ ϕ for some e ∈ F∗. Hence, ϕ ≃ e[1, b] ⊥ ql(ϕ). Suppose that
e ∈ DF (a[1, b]) · DF (ql(ϕ)). Let x ∈ DF ([1, b]) and y ∈ DF (ql(ϕ)) be such that
e = axy. Since [1, b] ≃ x[1, b], it follows that e[1, b] ≃ axy[1, b] ≃ ay[1, b], and
thus yτ is dominated by ϕ, a contradiction.

– Conversely, suppose that τ satisfies the conditions (i), (ii) and (iii) as described
in the theorem. The conditions (i) and (ii) imply that ϕF(τ ) is isotropic. Suppose
that ϕ is not F(τ )-minimal. Hence, there exists a form ψ of dimension 3 or 4
dominated by ϕ and isotropic over F(τ ). The form ψ is of type (1, 1) or (1, 2).
We use [13, théorème 1.4 (bis) (2)] when dimψ = 3, and [13, théorème 1.4(2)]
when dimψ = 4 to conclude that τ is weakly dominated by ψ . Hence, there
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exist e, f, g ∈ F∗ such that ϕ ≃ ea[1, b] ⊥ ⟨e, f, g⟩. This contradicts (iii) because
ea ∈ DF (a[1, b]) · DF (ql(ϕ)). □

To give an example of a minimal quadratic form that applies Theorem 4, we need
a few notions on the specialization theory due to Knebusch. Let λ : K −→ L ∪{∞}

be a place between two fields K and L . Let O be the valuation ring of λ and M its
maximal ideal. Recall that O = {x ∈ K | λ(x) ̸= ∞} and M = {x ∈ O | λ(x)= 0}. Let
µ be the restriction of λ to O and k = O/M the residue field of λ (Note that k can
be seen as a subfield of L). We say that a quadratic form ϕ over K has nearly good
reduction with respect to λ if there exists a quadratic module ψ over O such that
ϕ≃ψK and the quasilinear part of the quadratic form ψk is anisotropic, where ψk is
the quadratic form induced by the ring homomorphism O −→ k. The specialization
of ϕ with respect to λ, denoted by λ∗(ϕ), is the L-quadratic form µ∗(ψ) induced
by µ. We refer to [11] for more details.

Example 3. Let F = F2(r, s, u) be the rational function field in the indeterminates
r, s, u over the field F2 with two elements. Let ϕ= rs[1, u]⊥ ⟨1, r, s⟩, π =⟨⟨r, s, u]]
and τ = su[1, r+u]⊥⟨1⟩. It is clear that ϕ is a Pfister neighbor of π . Moreover, π ≃

[1, r+u]⊥[r, ur−1
+1]⊥ s[1, u]⊥rs[1, u], and thus suτ ≺π . Hence, ϕ is isotropic

over F(τ ). Suppose that ϕ is not F(τ )-minimal. Then, there exists by Theorem 4
a scalar e ∈ F∗ such that e[1, r + u] ⊂ ϕ and e ∈ DF (su[1, r + u]) · DF (⟨1, r, s⟩).
Hence, using the roundness of [1, r + u], we get ϕ ≃ sut[1, r + u] ⊥ ⟨1, r, s⟩ for a
suitable t ∈ DF (⟨1, r, s⟩). Without loss of generality, we may suppose t ∈ F2(r, s)[u]

square free with respect to the indeterminate u. Let M = F2(r, s) and consider the
M-place λ from F to M with respect to the u-adic valuation of F . We have:

(1) t is a unit for the u-adic valuation because t ∈ DF (⟨1, r, s⟩).

(2) the form ϕ has nearly good reduction with respect to λ because it is isometric
to ϕ = rs[1, u] ⊥ ⟨1, r, s⟩ and ⟨1, r, s⟩M is anisotropic.

On the one hand, the total index of λ∗(ϕ) is equal to 1 because λ∗(rs[1, u])= [0, 0]

and ⟨1, r, s⟩M is anisotropic. On the other hand, since ϕ contains sut[1, r + u] as a
subform, and λ(α)= 0 or ∞ for every α represented by sut[1, r +u], we conclude
by [11, Proposition 3.4] that the total index of λ∗(ϕ) is at least 2, a contradiction.

5. (Quasi-)Pfister neighbor forms

Our aim in this section is to relate the notions of quasi-Pfister neighbor and bilinear
(strong)Pfister neighbor. This is useful to classify F(τ )-minimal bilinear forms of
dimension 5 when τ is a totally singular quadratic form of dimension 3.

A quasi-Pfister form is a totally singular quadratic form B̃ for some bilinear
Pfister form B. A totally singular quadratic form Q is called quasi-Pfister neighbor
if there exists a quasi-Pfister form π such that 2 dim Q > dimπ and aQ ⊂ π for
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some a ∈ F∗. In this case, the form π is unique, and for any field extension K/F
the form QK is isotropic if and only if πK is isotropic. Thus QF(π) and πF(Q) are
isotropic.

For any bilinear Pfister form ⟨⟨a1, · · · , an⟩⟩b, we write B̃ = ⟨⟨a1, · · · , an⟩⟩.
The norm field of a nonzero totally singular quadratic form Q is the field

NF (Q) := F2(αβ | α, β ∈ DF (Q)), where DF (Q) is the set of scalars in F∗

represented by Q. The degree [NF (Q) : F2
] is called the norm degree of Q and it

is denoted by ndegF (Q). Clearly, we have ndegF (Q)= 2d for some integer d ≥ 1
and ndegF (Q) ≥ dim Q. See [7, Section 8] for details on the norm degree and
applications.

Here is a characterization of quasi-Pfister neighbors using the norm degree.

Proposition 3 [7, Proposition 8.9(ii)]. An anisotropic totally singular quadratic
form Q is a quasi-Pfister neighbor if and only if 2 dim Q > ndegF (Q).

The norm degree appears in the description of the Witt kernels for bilinear forms.

Proposition 4 [15, Theorem 1.2]. Let B be an anisotropic F-bilinear form and Q
an anisotropic totally singular form of norm degree 2d . If B becomes metabolic
over F(Q), then dim B is divisible by 2d .

A bilinear form B is called a Pfister neighbor if B̃ is a quasi-Pfister neighbor.
This definition does not imply that B is similar to a subform of a bilinear Pfister
form whose dimension is less than twice the dimension of B. For example, over
the rational functions field F(t1, t2), the bilinear form B = ⟨1, t1, t2, 1 + t1t2⟩b is
a Pfister neighbor because B̃ ≃ ⟨⟨t1, t2⟩⟩, but B is not similar to a subform of a
2-fold bilinear Pfister form since its determinant is not trivial. See [15] for more on
bilinear Pfister neighbors and their splitting properties.

A bilinear form B is called a strong Pfister neighbor, or SPN, if there exists a
bilinear Pfister form ρ such that 2 dim B > dim ρ and αB ⊂ ρ for some α ∈ F∗. In
this case, the form ρ is unique. In fact, if B is an SPN of another bilinear Pfister
form δ, then there exists β ∈ F∗ such that βB ⊂ δ. Hence, dim ρ = dim δ and
iW (αρ ⊥ βδ) ≥ dim B > 1

2 dim ρ, which implies that ρ ≃ δ since the Witt index
iW (αρ ⊥ βδ) is always a power of 2 [17, théorème 3.7]. Obviously, if B is an SPN
then it is a Pfister neighbor.

Recall from [10] the Kato isomorphism en
: I n F/I n+1 F −→ νF (n) given on

generators by

en(⟨⟨a1, . . . , an⟩⟩b + I n+1 F)=
da1

a1
∧ · · · ∧

dan

an
.

The symbol length (or simply the length) of an element θ ∈ νF (n) is the smallest
number of n-logarithmic symbols da1

a1
∧ · · · ∧

dan
an

needed to write it.
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An Albert bilinear form is a 6-dimensional bilinear form whose determinant is
trivial.

Lemma 1. Let γ be an Albert bilinear form and τ ∈ B P2 F be such that γ ⊥ τ ∈ I 3 F.
Then, γ is isotropic.

Proof. (1) If τ is isotropic, then it is metabolic, and thus γ ∈ I 3 F . By the Hauptsatz,
the form γ is metabolic, in particular it is isotropic.

(2) If τ is anisotropic, then we get by the previous case that γF(τ ) is metabolic. It
follows from Proposition 4 that γ is isotropic because the norm degree of τ̃ is 4. □

We give a characterization of SPN of dimension 5. This looks like the char-
acterization of 5-dimensional quadratic Pfister neighbors (due to Knebusch in
characteristic not 2 [12, Page 10], and the second author in characteristic 2 [13,
Proposition 3.2]).

Proposition 5. Let B be an anisotropic F-bilinear form of dimension 5. The
following statements are equivalent:

(1) B is an SPN.

(2) B ≃ a ⟨⟨b, c⟩⟩b ⊥ ⟨d⟩b for suitable a, b, c, d ∈ F∗.

(3) The invariant e2(B ⊥ ⟨det B⟩b + I 3 F) has length 1.

Proof. Let d ∈ F∗ be such that det B = d.F∗2.

(1) H⇒ (2) Suppose that B is an SPN of π ∈ B P3 F . Then, we have xπ ≃ B ⊥

⟨y, z, yzd⟩b for suitable scalars x, y, z ∈ F∗. Hence, B ⊥ ⟨d⟩b ⊥ dτ ∈ I 3 F , where
τ = ⟨⟨dy, dz⟩⟩b. We conclude by Lemma 1 that B ⊥ ⟨d⟩b is isotropic, and thus
B ≃ B ′

⊥ ⟨d⟩b for some bilinear form B ′ of dimension 4 and trivial determinant,
as desired.

(2) H⇒ (3) Suppose that B ≃ a ⟨⟨b, c⟩⟩b ⊥ ⟨d⟩b. Clearly, we have e2(B ⊥ ⟨d⟩b +

I 3 F)= db
b ∧

dc
c , which is of length 1 because the anisotropy of ⟨⟨b, c⟩⟩b implies that

db
b ∧

dc
c ̸= 0.

(3) H⇒ (1) Suppose that e2(B ⊥ ⟨d⟩b + I 3 F) has length 1. Then, there exists an
anisotropic 2-fold bilinear Pfister form τ such that e2(B ⊥⟨d⟩b+I 3 F)=e2(τ+I 3 F).
Hence, B ⊥⟨d⟩⊥ τ ∈ I 3 F using the isomorphism e2. Consequently, B ⊥ dτ ′

∈ I 3 F ,
where τ ′ is the pure part of τ . Then, B ⊥ dτ ′ is similar to a 3-fold bilinear Pfister
form because it is of dimension 8, and thus B is an SPN. □

6. K -minimal bilinear forms up to dimension 5

Throughout this section we take Q = ⟨1, a, b⟩ an anisotropic totally singular qua-
dratic form over F of dimension 3, and K = F(Q) its function field.
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Lemma 2 [18, Lemma 3.7]. Let B be an anisotropic bilinear form over F. If
ψ = ⟨a1, . . . , an⟩ is a subform of B̃, then there exists a bilinear form C over F
such that C ⊂ B and C̃ ≃ ψ . Explicitly, we can take C = ⟨b1, . . . , bn⟩b, where
bi = ai +

∑i−1
j=1 ai x2

i for suitable x1, . . . , xi−1 ∈ F (read b1 = a1).

Corollary 6. Let B be an anisotropic F-bilinear form. Then, B is K -minimal if
and only if B̃ is K -minimal.

We recall the isotropy results that we need for the classification of K -minimal
bilinear forms of dimension at most 5.

Theorem 7 [20, Proposition 1.1 and Theorem 1.2]. Let B be an anisotropic F-
bilinear form such that dim B ≤ 4 or dim B = 5 and ndegF (B̃)= 16. Then, BK is
isotropic if and only if Q is similar to a subform of B̃.

Corollary 7. Let B be an anisotropic F-bilinear form of dimension ≤ 5 such that
BK is isotropic. If B is K -minimal, then either dim B = 3, or dim B = 5 and
ndegF (B̃)= 8.

Proof. Suppose that dim B ≤ 5 and B is K -minimal. Since BK is isotropic, it
follows that dim B ̸= 2.

– If dim B =3, then obviously B is K -minimal since any subform of B of dimension
2 is anisotropic over K .

– If dim B = 4, then BK is isotropic if and only if Q is similar to a subform of B̃
(Theorem 7). Hence, B is not K -minimal (Corollary 6).

– If dim B = 5. In this case, ndegF (B̃) ∈ {8, 16}. If ndegF (B̃) = 16, then Q
is similar to a subform of B̃ (Theorem 7). Hence, B is not K -minimal when
ndegF (B̃)= 16. □

Corollary 8. Let B be an anisotropic F-bilinear form of dimension ≤ 5. If B is
isotropic over K but not K -minimal, then Q is similar to a subform of B̃.

Proof. Since B is not K -minimal, there exists C a subform of B such that dim C <

dim B and CK is isotropic. It follows from Theorem 7 that Q is similar to a subform
of C̃ . In particular, Q is similar to a subform of B̃. □

Lemma 3. Let π1 ∈ B Pm F and π2 ∈ B Pn F with 2 ≤ m ≤ n. Suppose that π ′

1 is
similar to a subform of π2, where π ′

1 denotes the pure part of π1. Then, π2 ≃ π1 ⊗τ

for some τ ∈ B Pn−m F.

Proof. We have iW (π1 ⊥ απ2) ≥ 2m
− 1 for some α ∈ F∗. It follows from [17,

théorème 3.7] that this Witt index is equal to dimπ1, and the forms π1 and π2 are
m-linked, which means that π2 ≃ π1 ⊗ τ for some τ ∈ B Pn−m F . □
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7. Proof of Theorem 5

Let B be an anisotropic bilinear form of dimension 5, and Q = ⟨1, a, b⟩ an
anisotropic totally singular quadratic form of dimension 3. Let K = F(Q) be
the function field of Q.

(2) H⇒ (1) Suppose that there exists an F-bilinear form C of dimension 5 which is
an SPN of a bilinear Pfister form ρ := ⟨⟨a, b, c⟩⟩b and satisfies the two conditions:

(a) B̃ ≃ C̃ .

(b) For any u, v ∈ F2(a, b) such that ⟨u, v, uv⟩b is similar to a subform of ρ, the
invariant e2(C ⊥ ⟨det C⟩b ⊥ ⟨⟨u, v⟩⟩b + I 3 F) has length 2.

Let d ∈ F∗ be such that det C = d.F∗2. The form CK is isotropic because ρK is
isotropic and C is an SPN of ρ. In particular, BK is isotropic.

Suppose that B is not K -minimal. Then, C is not K -minimal as well because
B̃ ≃ C̃ (Corollary 6). It follows from Corollary 8 that Q = ⟨1, a, b⟩ is similar to
a subform of C̃ . By Lemma 2, we conclude that p

〈
1, a + q2, b + ar2

+ s2
〉
b is a

subform of C for suitable p ̸= 0, q, r, s ∈ F . In particular,〈
a + q2, b + ar2

+ s2, (a + q2)(b + ar2
+ s2)

〉
b

is similar to a subform of ρ, and thus our hypothesis (b) above implies that e2(C ⊥

⟨d⟩b ⊥
〈〈
a + q2, b + ar2

+ s2
〉〉
b + I 3 F) has length 2.

Let u = a +q2, v= b+ar2
+s2. It is easy to see that C ⊥ ⟨d⟩b ∼ p ⟨⟨u, v⟩⟩b ⊥ τ

for some τ ∈ G B P2 F . Consequently, the invariant e2(C ⊥ ⟨d⟩ ⊥ ⟨⟨u, v⟩⟩b + I 3 F)
has length at most 1, a contradiction. Hence B is K -minimal.

(1) H⇒ (2) Suppose that B is K -minimal. Then, we get by Corollary 7 that
ndegF (B̃)= 8. It follows from Proposition 3 that B̃ is quasi-Pfister neighbor of a
quasi-Pfister form π . Since B̃K is isotropic, it follows that πK is quasi-hyperbolic.
Hence, π ≃ ⟨⟨a, b, c⟩⟩ for some c ∈ F∗ [14, Theorem 1.5]. There exists a bilinear
form C of dimension 5 similar to a subform of ρ := ⟨⟨a, b, c⟩⟩b such that B̃ ≃ C̃
(Lemma 2). In particular, the form C is an SPN of ρ. Modulo a scalar, we may
write C ≃ ⟨⟨x, y⟩⟩b ⊥ ⟨z⟩b for suitable x, y, z ∈ F∗ (Proposition 5).

Let u, v∈ F2(a, b) be such that ⟨u, v, uv⟩b is similar to a subform of ρ. The form
⟨u, v, uv⟩ is anisotropic because ρ is anisotropic. On the one hand, the condition
u, v ∈ F2(a, b) implies that ⟨1, u, v⟩ becomes isotropic over K , which gives by
Theorem 7 that Q is similar to ⟨1, u, v⟩ and thus K = F(⟨1, u, v⟩). On the other
hand, using Lemma 3, we get ρ ≃ ⟨⟨u, v, w⟩⟩b for some w ∈ F∗. Hence, without
loss of generality, we may suppose ⟨⟨a, b⟩⟩b ≃ ⟨⟨u, v⟩⟩b for the rest of the proof.

We have e2(C ⊥ ⟨z⟩d ⊥ ⟨⟨a, b⟩⟩b + I 3 F) =
dx
x ∧

dy
y +

da
a ∧

db
b . Suppose that

this invariant has length ≤ 1. Then, there exists a 2-fold bilinear Pfister form
τ such that e2(C ⊥ ⟨z⟩d ⊥ ⟨⟨a, b⟩⟩b + I 3 F) = e2(τ + I 3 F), which implies that
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⟨⟨x, y⟩⟩b ⊥ ⟨⟨a, b⟩⟩b ⊥ τ ∈ I 3
q F . It follows from Lemma 1 that the Albert form

⟨a, b, ab, x, y, xy⟩b is isotropic. Hence, the forms ⟨⟨x, y⟩⟩b and ⟨⟨a, b⟩⟩b are 1-linked,
meaning that ⟨⟨x, y⟩⟩b ≃ ⟨⟨e, r⟩⟩b and ⟨⟨a, b⟩⟩b ≃ ⟨⟨ f, r⟩⟩b for suitable e, f, r ∈ F∗.
By the uniqueness of the pure part of bilinear Pfister forms, we get ⟨a, b, ab⟩b ≃

⟨ f, r, f r⟩b, and thus K = F(⟨1, f, r⟩). Hence, without loss of generality, we may
keep ⟨1, a, b⟩ instead of ⟨1, r, f ⟩, and thus suppose that C ≃ ⟨⟨e, b⟩⟩b ⊥ ⟨z⟩b. So
the form C is an SPN of ⟨⟨e, b, z⟩⟩b. But C is also an SPN of ⟨⟨a, b, c⟩⟩b, it follows
that

(8) ⟨⟨e, b, z⟩⟩b ≃ ⟨⟨a, b, c⟩⟩b .

We continue with some arguments similar to those used by Faivre in his proof.
Adding on both sides of (8) the form ⟨1, b⟩b, we get

M(1)⊥ M(b)⊥ ⟨z, e, ez⟩b ⊗ ⟨1, b⟩b ≃ M(1)⊥ M(b)⊥ ⟨c, a, ac⟩b ⊗ ⟨1, b⟩b .

By the uniqueness of the anisotropic part, we get

⟨z, e, ez⟩b ⊗ ⟨1, b⟩b ≃ ⟨c, a, ac⟩b ⊗ ⟨1, b⟩b .

Adding on both sides a ⟨1, b⟩b, we get

a ⟨⟨ea, b⟩⟩b ⊥ z ⟨⟨e, b⟩⟩b ≃ M(a)⊥ M(ab)⊥ c ⟨⟨a, b⟩⟩b .

Thus, a ⟨⟨ea, b⟩⟩b ⊥ z ⟨⟨e, b⟩⟩b is isotropic, and thus there exist r ∈ DF (⟨⟨ea, b⟩⟩b)

and s ∈ DF (⟨⟨e, b⟩⟩b) such that ar = zs. We have

C ≃ ⟨⟨e, b⟩⟩b ⊥ ⟨z⟩b ≃ s ⟨⟨e, b⟩⟩b ⊥ ⟨z⟩b ≃ s ⟨1, b⟩b ⊥ D,

where D = es ⟨1, b⟩b ⊥ ⟨z⟩b. Let β := as ⟨1, b⟩b ⊥ D. Then, we have

β ≃ as ⟨⟨ea, b⟩⟩b ⊥ ⟨z⟩b ≃ ars ⟨⟨ea, b⟩⟩b ⊥ ⟨z⟩b ≃ z ⟨⟨ea, b⟩⟩b ⊥ ⟨z⟩b .

Hence, β ≃ M(z)⊥ β̃ ⊥ ⟨zb⟩b, where β̃ = zea ⟨1, b⟩b. Now, we have

bC ⊥ β̃ ∼ s ⟨⟨e, b⟩⟩b ⊥ β

∼ s ⟨⟨e, b⟩⟩b ⊥ as ⟨1, b⟩b ⊥ es ⟨1, b⟩b ⊥ ⟨z⟩b

∼ s ⟨⟨a, b⟩⟩b ⊥ ⟨z⟩b .

This shows that bC ⊥ β̃ is isotropic. Then, there exist bilinear forms C1 and C2

of dimension 4 and 1, respectively, such that C1 ⊂ bC , C2 ⊂ β̃ and C1 ⊥ C2 ≃

s ⟨⟨a, b⟩⟩b ⊥ ⟨z⟩b. Then, iW ((C1 ⊥ C2)K )= 2 and thus (C1)K is isotropic, meaning
that C is not K -minimal. Since C̃ ≃ B̃, it follows that B is not K -minimal, a
contradiction. □
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Using Theorem 3, we provide an example of a K -minimal bilinear form of
dimension 5, where K is the function field of a degenerate conic. The form we
choose in our example is inspired by [2, Proposition 4.1].

Example 4. Let F0 be a field of characteristic 2, and k = F0(a, b, c) the ratio-
nal function field in the indeterminates a, b, c over F0. Let B = c ⟨1, a + b⟩b ⊥

b ⟨1, a⟩b ⊥ ⟨1⟩b and Q = ⟨1, a, c⟩. Then, B is k(Q)-minimal.

Proof. Using the isometry ⟨⟨a, b⟩⟩b ≃ ⟨⟨ab, a + b⟩⟩b, we get

B ⊥ ⟨a⟩b ⊥ abc ⟨1, a + b⟩b = c ⟨⟨ab, a + b⟩⟩b ⊥ ⟨⟨a, b⟩⟩b

≃ c ⟨⟨ab, a + b⟩⟩b ⊥ ⟨⟨ab, a + b⟩⟩b

= ⟨⟨c, ab, a + b⟩⟩b

≃ ⟨⟨a, b, c⟩⟩b .

Hence, B is an SPN of ⟨⟨a, b, c⟩⟩b, and thus BK is isotropic. Moreover, B is
anisotropic over k since ⟨⟨a, b, c⟩⟩b is also anisotropic.

Let u, v ∈ k2(a, c) be such that ⟨u, v, uv⟩b is a subform of ⟨⟨a, b, c⟩⟩b. We have

e2 (
B ⊥ ⟨det B⟩b ⊥ ⟨⟨u, v⟩⟩b + I 3 F

)
=

d(a + b)
a + b

∧
d(bc)

bc
+

du
u

∧
dv
v
.

Suppose that this invariant is of length ≤ 1. Then, the Albert form

⟨u, v, uv, a + b, bc, (a + b)bc⟩b

is isotropic over k. Since the forms ⟨u, v, uv⟩b and ⟨a + b, bc, (a + b)bc⟩b are
anisotropic over k, there exists α ∈ k∗ represented by both forms. Let us write

α = uL2
+ vM2

+ uvN 2

= (a + b)S2
+ bcT 2

+ (a + b)bcU 2

for suitable L ,M, N , S, T,U ∈ k. Hence, we have

b(S2
+ cT 2

+ acU 2)= uL2
+ vM2

+ uvN 2
+ aS2

+ c(bU )2.

The right hand side in this equality and the factor S2
+ cT 2

+ acU 2 belong to
k2(a, c), but since b ̸∈ k2(a, c), we necessarily have S2

+ cT 2
+ acU 2

= 0. Since
⟨1, c, ac⟩ is anisotropic over k, it follows that S = T = U = 0 and thus α = 0, a
contradiction.

Consequently, e2(B ⊥ ⟨det B⟩b ⊥ ⟨⟨u, v⟩⟩b + I 3 F) is of length 2. Since all the
conditions of Theorem 5 are satisfied (taking for C the form B itself), we conclude
that B is k(Q)-minimal. □
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THE MANAKOV EQUATION OF MIXED TYPE
AND ITS MATRIX GENERALIZATION

QING DING, CHAOHAO YE AND SHIPING ZHONG

We introduce the matrix Manakov equation of mixed type by using algebraic
properties of the Lie algebra u(k, n−k), which is a nice supplementary to
the matrix nonlinear Schrödinger equation. As a consequence, the general
Manakov equation is generalized to the matrix case. By making use of some
peculiar properties of u(k, n−k), we derive both the geometric realization
and Darboux transformation of the matrix Manakov equation of mixed type.

1. Introduction

The general Manakov equation reads

(1)
{

iϕ1t + ϕ1xx + (b1|ϕ1|
2
+ b2|ϕ2|

2)ϕ1 = 0,

iϕ2t + ϕ2xx + (c1|ϕ1|
2
+ c2|ϕ2|

2)ϕ2 = 0,

where ϕ1 = ϕ1(t, x), ϕ2 = ϕ2(t, x) are unknown complex functions, subscript t
and x denote differentiation with respect to time and position, respectively, and
b1, b2, c1, c2 are nonzero real parameters. This differential system models the
evolution of multicomponent weakly nonlinear dispersive wave trains in nonlinear
optics, superfluid, plasma, Bose–Einstein condensed matter physics etc (refer to
[2; 3; 4; 5; 12; 15; 17; 20; 22]). Equation (1) was first introduced by Manakov in
1974 (refer to [14]) and thus is named after him. Although involving 4 free real
parameters and looking complicated, the analytic properties of equation (1) have
been explored deeply and summarized in [11]. One notes that, with parameters
being suitably chosen, equation (1) contains the three integrable equations{

iϕ1t + ϕ1xx + 2(|ϕ1|
2
+ |ϕ2|

2)ϕ1 = 0,

iϕ2t + ϕ2xx + 2(|ϕ1|
2
+ |ϕ2|

2)ϕ2 = 0,
(2) {

iϕ1t + ϕ1xx − 2(|ϕ1|
2
+ |ϕ2|

2)ϕ1 = 0,

iϕ2t + ϕ2xx − 2(|ϕ1|
2
+ |ϕ2|

2)ϕ2 = 0,
(3)

Qing Ding is the corresponding author.
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and

(4)
{

iϕ1t + ϕ1xx ± 2(|ϕ1|
2
− |ϕ2|

2)ϕ1 = 0,

iϕ2t + ϕ2xx ± 2(|ϕ1|
2
− |ϕ2|

2)ϕ2 = 0,

which are called the integrable Manakov equations, or 2-component nonlinear
Schrödinger equations, of focusing, defocusing and mixed types, respectively. The
two systems in equation (4) are actually equivalent to each other by the change of
variables ϕ1 → ϕ2 and ϕ2 → ϕ1. Therefore, one may choose the equation

(5)
{

iϕ1t + ϕ1xx + 2(|ϕ1|
2
− |ϕ2|

2)ϕ1 = 0,

iϕ2t + ϕ2xx + 2(|ϕ1|
2
− |ϕ2|

2)ϕ2 = 0,

as a representation of equation (4).
On the other hand, in the past decades, many efforts have been devoted to

extending the theory of nonlinear Schrödinger hierarchy to higher dimensional
cases. A successful generalization in literature seems to be the “matrix nonlinear
Schrödinger hierarchy” associated to a Hermitian symmetric Lie algebra (see, for
example, [6; 9; 13; 19]), which depends seriously on the integrability. Fordy and
Kulish constructed in [9] the matrix nonlinear Schrödinger equation

(6) i�t + �xx ± 2��∗� = 0,

associated to the Hermitian symmetric Lie algebra g = u(n) (resp. u(k, n−k)) of
index k (1 ≤ k < n), where � is a k × (n−k) complex matrix-valued function
and �∗ denotes the transposed conjugate of �. Equation (6) is also called the
Fordy–Kulish equation in literature (refer to [13]). When g = u(2) or u(1, 1),
equation (6) returns respectively to the nonlinear Schrödinger equation of focusing
or defocusing types: iqt + qxx ± 2|q|

2q = 0. It is clear that equations (2) and (3)
have their matrix generalizations which are included as special cases of the matrix
nonlinear Schrödinger equation (6). In fact, if we take � = (�1 �2) as a block
matrix with �1 and �2 being respectively k × µ and k × ν complex matrices, in
which 1 ≤ µ, ν ≤ n−k and µ + ν = n−k, then equation (6) becomes

(7)
{

i�1t + �1xx ± 2(�1�
∗

1 + �2�
∗

2)�1 = 0,

i�2t + �2xx ± 2(�1�
∗

1 + �2�
∗

2)�2 = 0.

Equation (7) reverts to equations (2) and (3) when n = 3 and k = µ = ν = 1,
respectively. But equation (5) of mixed type cannot be treated as a special case
of matrix nonlinear Schrödinger equations (6). The problem is that the third term
in the left-hand side of equation (5) involves a difference of two square norms of
the unknown functions. This arises an interesting question: does the Manakov
equation (5) of mixed type have a matrix generalization? To our surprise and to our
best knowledge, such a question is not answered up to now in literature.
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The aim of this paper is to give an affirmative answer to the above question based
on exploiting some peculiar algebraic properties (see Lemmas 1–3 below) of the
Lie algebra u(k, n−k) of the semi-unitary group U (k, n−k) (n ≥ 3, 1 < k < n),
where U (k, n−k) is the set of all C-linear isometries of Cn

k , here Cn
k denotes the

space Cn with the semi-Hermitian product ⟨u, v⟩ =
∑k

j=1 u j v̄ j −
∑n

j=k+1 u j v̄ j . It
follows that U (k, n−k)={g ∈ GL(n, C)|g∗

=εg−1ε}, in which the signature matrix
ε = (δi jε j ) whose diagonal entries are ε1 = · · · = εk = 1 and εk+1 = · · · = εn = −1,
and u(k, n−k) = {S ∈ gl(n, C)|S∗

= −εSε} (refer to [16]).
After deriving the matrix Manakov equation of mixed type (see below), we shall

investigate some of its geometric and analytic properties. We first demonstrate the
geometric realization of the matrix Manakov equation of mixed type in u(k, n−k)

(for the concept of geometric realization, see [13]). Then we deduce a Darboux
transformation for the matrix Manakov equation of mixed type under some addi-
tional conditions. Based on the above exploitation, the general matrix Manakov
equation is proposed.

Outline. Section 2 is devoted to introducing the matrix Manakov equation of mixed
type based on exploiting some algebraic properties of the Lie algebra u(k, n−k).
In Section 3, we derive a model of moving curves in the Lie algebra u(k, n−k) by
Schrödinger flows such that it is a geometric realization of the matrix Manakov
equation of mixed type. In Section 4, with some restrictions on the orders of
matrices, we deduce a Darboux transformation for the matrix Manakov equation of
mixed type. 1-soliton solutions are constructed explicitly in that section.

2. Decomposition of the Lie algebra u(k, n−k)

In order to generalize the Manakov equation (5) of mixed type to the matrix case,
let’s first explore some properties of the Lie algebra u(k, n−k) of the semi-unitary
group U (k, n−k). As mentioned in Introduction, u(k, n−k) is the subalgebra of
gl(n, C) consisting of all S which S∗

= −εSε, in other words, S ∈ u(k, n−k) has
the form

(8) S =

(
A 0

0∗ B0

)
,

for some A ∈ u(k), B0 ∈ u(n−k), and a k × (n−k) complex matrix 0. Recall that
an element A ∈ u(k) satisfies A∗

= −A.
Now for an integer ν satisfying 1 ≤ ν ≤ k, we come to introduce a direct

decomposition of u(k, n−k) with respect to ν by the following key observation.
Since A ∈ u(k) is presented by

A =

(
A1 �1

−�∗

1 B1

)
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for some A1 ∈ u(ν), B1 ∈ u(k−ν), and a ν × (k−ν) complex matrix �1, it follows
that an element S ∈ u(k, n−k) of the form (8) can be expressed by

(9) S =

 (
A1 �1

−�∗

1 B1

) (
�2

Q0

)
(
�∗

2 Q∗

0

)
B0

 ,

for some ν × (n−k) complex matrix �2 and (k−ν)× (n−k) complex matrix Q0.
Hence, S has an alternative expression as a block matrix:

(10)

 A1
(
�1 �2

)(
−�∗

1
�∗

2

) (
B1 Q0

Q∗

0 B0

) =:

(
A1 �

�† B

)
,

where � =
(
�1 �2

)
, �†

=
(
−�∗

1 �∗

2

)
⊤ is called the semicomposed conjugate

of the block matrix �, and

B =

(
B1 Q0

Q∗

0 B0

)
.

It is obvious that B ∈ u(k−ν, n−k). This leads to the following decomposition of
the Lie algebra u(k, n−k).

Lemma 1. For a given integer ν with 1 ≤ ν ≤ k, the Lie algebra u(k, n−k) (n ≥ 3
and 1 ≤ k < n) has the decomposition u(k, n−k) = k ⊕ m, where

(11) k =

{(
A 0
0 B

) ∣∣∣∣ A ∈ u(ν), B ∈ u(k−ν, n−k)

}
and

(12) m =

{(
0 �

�† 0

) ∣∣∣∣ � =
(
�1 �2

)
is indicated in (10)

}
.

The decomposition satisfies the symmetric conditions

[k, k] ⊂ k, [k, m] ⊂ m, [m, m] ⊂ k.

Proof. With the description mentioned above, what remains for us to do is to verify
that the decomposition u(k, n−k) = k ⊕ m satisfies the symmetric conditions. This
is direct and we omit it here. □

We emphasize that the semicomposed conjugate �† of a block matrix � =(
�1 �2

)
is very different from the usual one ∗. One will see in the sequel

that, because of the decomposition of u(k, n−k) in Lemma 1, we find the ma-
trix generalization of equation (5) of mixed type. Before going further, the Lie
algebra u(k, n−k) with the decomposition displayed in Lemma 1 is now denoted
by u(ν, k−ν, n−k), here ν denotes the rank of the decomposition, k−ν and n−k
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indicate that the first and second matrix in � are of ν × (k−ν) and ν × (n−k)

respectively. The following lemmas present interesting and important properties of
the semicomposed conjugate operation † : Q → Q†.

Lemma 2. (i) For the block matrices � =
(
�1 �2

)
and 0 =

(
01 02

)
, the

identity
(
�0†

)∗
= 0�† is valid.

(ii) For the block matrix � =
(
�1 �2

)
, the identity (��†�)†

= �†��† is valid
as well as the usual composed conjugate operation ∗.

Proof. Part (i) is obvious. For (ii), a direct computation shows that

��†� =
(
(−�1�

∗

1 + �2�
∗

2)�1 (−�1�
∗

1 + �2�
∗

2)�2
)

and

�†��†
=

(
−�∗

1(−�1�
∗

1 + �2�
∗

2)

�∗

2(−�1�
∗

1 + �2�
∗

2)

)
.

Hence, by definition, we have (��†�)†
= �†��†. □

Lemma 3. For the Lie algebra u(ν, k−ν, n−k) := u(k, n−k) with the decomposi-
tion given in Lemma 1, we set

(13) u∗(ν, k−ν, n−k)

=

{(
A �

−�† B

) ∣∣∣∣ A ∈ u(ν), B ∈ u(n−k, k−ν), � = (�2 �1)

}
.

Then u∗(ν, k−ν, n−k) is isomorphic to u(ν, k−ν, n−k) and u∗(ν, k−ν, n−k) has
similarly a symmetric decomposition u∗(ν, k−ν, n−k) = k∗

⊕ m∗, where

k∗
=

{(
A 0
0 B

) ∣∣∣∣ A ∈ u(ν), B ∈ u(n−k, k−ν)

}
,

m∗
=

{(
0 �

−�† 0

) ∣∣∣∣ � = (�2 �1)

}
.

It is obvious that Lemma 3 is not true if we replace the semicomposed conjugate
operation † by the usual composed conjugate operation ∗. This is a peculiar property
of the operation †. Lemma 3 indicates that the Lie algebra u(k, n−k) of U (k, n−k)

can be presented not only by u(ν, k−ν, n−k), but also by u∗(ν, k−ν, n−k). This
fact will be used very technically in Section 4 to establish the Darboux transforma-
tion.

Proof of Lemma 3. It is easy to verify that u∗(ν, k−ν, n−k) is a Lie algebra, in
this process, Lemma 2 is applied. Now we define a map ϕ from u(ν, k−ν, n−k) to
u∗(ν, k−ν, n−k) by

ϕ

((
A �

�† B

))
=

(
A σ(�)

−(σ (�))† σ(B)

)
,
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where

σ(�) =
(
�2 �1

)
when � =

(
�1 �2

)
,

σ (B) =

(
B00 Q∗

0
Q0 B01

)
when B =

(
B01 Q0

Q∗

0 B00

)
∈ u(k−ν, n−k).

What remains for us to do is to verify ϕ is an isomorphism. First, one notes that
the inverse map of ϕ is

ϕ−1
((

A �

−�† B

))
=

(
A σ(�)

(σ (�))† σ(B)

)
.

Hence ϕ is a linear bijective map. Next, we verify that ϕ preserves the Lie bracket
operation. For two matrices(

A1 �

�† B1

)
,

(
A2 0

0† B2

)
∈ u(ν, k−ν, n−k),

we have[(
A1 �

�† B1

)
,

(
A2 0

0† B2

)]
=

(
A1 A2 − A2 A1 + �0†

− 0�† A10 − A2� + �B2 − 0B1

�† A2 − 0† A1 + B10
†
− B2�

† �†0 − 0†� + B1 B2 − B2 B1

)
and [(

A1 σ(�)

−(σ (�))† σ(B1)

)
,

(
A2 σ(0)

−(σ (0))† σ(B2)

)]
=

(
61 62

63 64

)
,

where

61 = A1 A2 − A2 A1 − σ(�)(σ (0))†
+ σ(0)(σ (�))†,

62 = A1σ(0) − A2σ(�) + σ(�)σ(B2) − σ(0)σ(B1),

63 = −(σ (�))† A2 + (σ (0))† A1 − σ(B1)(σ (0))†
+ σ(B2)(σ (�))†,

64 = −(σ (�))†σ(0) + (σ (0))†σ(�) + σ(B1)σ (B2) − σ(B2)σ (B1).

It is direct to verify that

− σ(�)(σ (0))†
+ σ(0)(σ (�))†

= �0†
− 0�†,

64 = σ(�†0 − 0†� + B1 B2 − B2 B1),

62 = σ(A10 − A2� + �B2 − 0B1),

6
†
2 = −63.

Hence, we obtain that
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(14) ϕ

([(
A1 �

�† B1

)
,

(
A2 0

0† B2

)])
=

[
ϕ

((
A1 �

�† B1

))
, ϕ

((
A2 0

0† B2

))]
.

In the verifications, we have used that A1, A2 ∈ u(ν) and that

B01 ∈ u(k−ν), B00 ∈ u(n−k) for B =

(
B01 Q0

Q∗

0 B00

)
∈ u(k−ν, n−k).

This proves that u(ν, k−ν, n−k) is isomorphic to u∗(ν, k−ν, n−k).
The verification of the symmetric decomposition u∗(ν, k−ν, n−k) = k∗

⊕ m∗ is
direct and we omit it here. The proof of Lemma 3 is completed. □

Corollary 1. When µ := k−ν = n−k ≥ 1 — in other words, when �1, �2 in � are
the same ν × µ matrices (1 ≤ ν < k < n) — the semi-unitary group U (µ + ν, µ)

has two isomorphic Lie algebras u(ν, µ,µ) and u∗(ν, µ,µ).

Theorem 1. The matrix Manakov equation of mixed type, with model

(15)
{

i�1t + �1xx + 2(�1�
∗

1 − �2�
∗

2)�1 = 0,

i�2t + �2xx + 2(�1�
∗

1 − �2�
∗

2)�2 = 0,

is an integrable generalization of the Manakov equation (5) of mixed type, where
�1 and �2 are unknown complex ν × (k−ν) and ν × (n−k) matrices, respectively
(1 ≤ ν < k < n).

When ν = 1, k = 2 and n = 3, equation (15) reverts to (5). Equation (15)
includes the k-component (k ≥ 3) nonlinear Schrödinger equations of mixed type
as a special case. For the physical significance of general k-component (k ≥ 2)
nonlinear Schrödinger equations, one may refer to [1; 21].

When ν = k, equation (15) reverts to the matrix nonlinear Schrödinger equation
of defocusing type and when k = n, to the matrix nonlinear Schrödinger equation
of focusing type. Therefore, equation (15) is a nice supplementary equation to the
general integrable matrix nonlinear Schrödinger equations.

Proof of Theorem 1. For the Lie symmetric algebra u(ν, k−ν, n−k), we set

(16) σ3 =
i
2

(
Iν 0
0 −In−ν

)
,

where In stands for the n × n unit matrix and consider the linear equations

(17)
{
φx = −(λσ3 + Q)φ,

φt = P φ,

where λ is the spectral parameter, Q = Q(t, x) =

(
0 �

�† 0

)
∈ m, with � =(

�∗

1 �∗

2

)
, and

P =

2∑
j=0

Pj (t, x)λ j
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is a polynomial ansatz, with the Pj (t, x) ∈ u(ν, k−ν, n−k) ( j = 0, 1, 2), to be
determined later, being functions of Q and its derivatives, but independent of λ.
From the integrability condition of (17), namely

−(λσ3 + Q)t − Px − [(λσ3 + Q), P] = 0

and identifying the coefficients of λ j ( j = 0, 1, 2, 3) in the left-hand-side of the
above equation to be zero, we find that P2 = σ3, P1 = Q and P0 = −2(Qx − Q2)σ3,
i.e.,

P = λ2σ3 + λQ − 2(Qx − Q2)σ3

and Q satisfies

(18) −Qt + 2Qxxσ3 − 4Q3σ3 = 0,

which is exactly equation (15). Here we have used of Lemma 2(ii) in the computation.
The proof of Theorem 1 is completed. □

Combining the matrix Manakov equations (7) of focusing and defocusing types
with the matrix Manakov equation (15) of mixed type, the general matrix Manakov
equation is now proposed as

(19)
{

i�1t + �1xx + (B1�1�
∗

1 + B2�2�
∗

2)�1 = 0,

i�2t + �2xx + (C1�1�
∗

1 + C2�2�
∗

2)�2 = 0,

where �1 and �2 are respectively unknown complex (ν × (k−ν)) and (ν × (n−k))

matrices (1 ≤ ν < k < n), B1, B2, C1 and C2 are given real nonsingular ν × ν

matrices. When n = 3, k = 2 and ν = 1, equation (19) returns to the general
Manakov equation (1). It is very interesting to explore analytic and geometric
properties of equation (19). One may refer to [7; 8; 11] for such investigations in
the case of the general Manakov equation (1).

3. Geometric realization

We will now derive a model of moving curves in the Lie algebra u(k, n−k) such
that it is a geometric realization of the matrix Manakov equation (15) of mixed
type.

Recall that a (compact) Grassmannian manifold can be represented as an adjoint
orbit space in the unitary algebra u(n). From this representation for Grassmanni-
ans, Terng and Uhlenbeck showed in [19] that the matrix nonlinear Schrödinger
equation of focusing type is gauge equivalent to the equation of 1-d Schrödinger
flow to a Grassmannian manifold. In the semi-unitary Lie algebra u(k, n−k) =

u(ν, k−ν, n−k) = k ⊕ m indicated in Lemma 1, the adjoint orbit space

U (k, n−k)/U (ν) × U (k−ν, n−k) =
{

E−1σ3 E | E ∈ U (k, n−k)
}



THE MANAKOV EQUATION OF MIXED TYPE AND ITS MATRIX GENERALIZATION 273

represents a pseudosymmetric space, where σ3 is given by (16). This pseudo-
symmetric space is denoted by Gν,k,n and called a semi-Grassmannian manifold.
Recall that the standard Killing metric (i.e., a bi-invariant inner product) ⟨ · , · ⟩ on
u(k, n−k) is given by ⟨A, B⟩ = −tr(AB), A, B ∈ u(k, n−k).

Theorem 2. For the semi-unitary Lie algebra u(k, n−k)=u(ν, k−ν, n−k)= k⊕m
indicated in Lemma 1 and the standard Killing matric ⟨ · , · ⟩ indicated above, the
following model of moving curves γ̃ (t, x) in u(k, n−k),

(20) γ̃t = [γ̃x , γ̃xx ]

with γ̃x(t, x) ∈ Gν,k,n , is gauge equivalent to the matrix Manakov equation (15) of
mixed type.

Remarks. (i) The model (20) in Theorem 2 preserves the arc-length x of γ̃ (t, x)

invariant when t involves. In fact,

1
2

d
dt

(|γ̃x |
2) = ⟨γ̃x , γ̃xt ⟩ = ⟨γ̃x , [γ̃x γ̃xx ]x ⟩ = ⟨γ̃x , [γ̃x , γ̃xxx ]⟩

= ⟨γ̃x , γ̃xγ xxx − γ̃xxx γ̃x ⟩ = −tr(γ̃x γ̃x γ̃xxx) + tr(γ̃x γ̃xxx γ̃x)

= −tr(γ̃x γ̃x γ̃xxx) + tr(γ̃x γ̃x γ̃xxx)

= 0.

Here we have used the metric formula ⟨A, B⟩=−tr(AB) and the fact that tr(AB)=

tr(B A). This implies that |γ̃x(t, x)|2 = |γ̃x(0, x)|2; in other words, the arc-length x
is invariant when t evolves.

(ii) Taking the derivative with respect to x on both sides of equation (20) and
presenting γ̃x by γ , we obtain

(21) γt = [γ, γxx ],

where γ (t, x) ∈ Gν,k,n . It is a straightforward verification that the tangent space at
any point of Gν,k,n can be identified with m and equation (21) is just the equation
of 1-d Schrödinger flow to the semi-Grassmannian manifold Gν,k,n . The details are
omitted here.

(iii) It is obvious that equation (20) is equivalent to equation (21). Indeed, if
γ̃ ∈ u(k, n−k) satisfies equation (20) with γ̃x(t, x)∈ Gν,k,n , by taking the derivative
with respect to x in the both hand-sides of equation (20) , we see that γ = γ̃x satisfies
equation (21). Conversely, if γ (t, x) = E−1(t, x)σ3 E(t, x) for some E(t, x) ∈

U (k, n−k) satisfies equation (21), then it is easy to see that γ̃ (t, x) =
∫ x

γ (t, s) ds
solves equation (20) and satisfies

γ̃x(t, x) ∈ Gν,k,n =
{

E−1(t, x)σ3 E(t, x) | E ∈ U (k, n−k)
}
.
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As a consequence, equation (20) keeps γ̃x(t, x) ∈ Gν,k,n invariant when t involves
once γ̃x(t0, x) ∈ Gν,k,n for some t0.

Proof of Theorem 2. We only need to show that equation (21) is gauge equivalent
to the matrix Manakov equation (15) of mixed type.

We first show that equation (15) is gauge transformed to equation (21). For this
purpose, let (�1 �2) be a solution to equation (15) and set

Q = Q(t, x) =

(
0 �

�† 0

)
∈ m with � =

(
�∗

1 �∗

2

)
.

Notice that equation (15) has a zero curvature representation; namely, if we set

(22) A = (λσ3 + Q) dx − (λ2σ3 + λQ − V ) dt, with V = 2(Qx − Q2)σ3,

to be a connection of the trivial bundle R2
× u(k, n−k), where λ is a spectral

parameter, then equation (15) is equivalent to

FA = d A + A ∧ A = 0.

Now we choose a fundamental solution E = E(t, x) to

(23)
{

Ex = −(λσ3 + Q)E,

Et = (λ2σ3 + λQ − V )E,

at λ = 0 and make a gauge transformation for the connection A given by (22) by
using E ∈ U (k, n−k):

(24) A 7→ Ã = E−1d E + E−1 AE .

From the theory of Yang–Mills we know that FÃ = E−1 FA E = 0. By a direct
computation, we obtain from (24) that

(25) Ã = E−1d E + E−1 AE = λγ dx − (λ2γ + λ[γ, γx ]) dt,

where γ = E−1σ3 E . Here we have used the relations

γx = −E−1
[σ3, Q]E, [γ, γx ] = E−1 QE .

By using (25), the zero curvature condition of Ã,

FÃ = d Ã + Ã ∧ Ã = 0

is exactly equation (21). This proves that equation (15) is gauge transformed to
equation (21) of 1-d Schrödinger flow to the semi-Grassmannian Gν,k,n .

Next, we shall show that the above conclusion is reversible, i.e., equation (21) is
also gauge transformed to equation (15). In fact, for a given solution γ = E−1σ3 E
to equation (21), where E = E(t, x) ∈ U (k, n−k). Without loss of generality,
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E may be assumed to satisfy Ex = −QE for some

Q =

(
0 �

�† 0

)
∈ m

with � =
(
�∗

1 �∗

2

)
: indeed, if Ex = P E holds for some P ∈ u(k, n−k) with P =

Pk+ Pm and Pk ̸= 0, one may choose a matrix B ∈U (ν)×U (k−ν, n−k) by solving
the ordinary differential equation Bx = −B Pk. Then, from the transform E →

Ẽ = B E , we still have γ = E−1σ3 E = Ẽ−1σ3 Ẽ , since B ∈ U (ν) × U (k−ν, n−k)

commutes with σ3. Moreover, Ẽx = Bx E + B Ex = B Pm B−1 Ẽ with B Pm B−1
∈ m,

and the claim is justified.
Now, noting that equation (21) possesses the zero curvature representation by

the connection Ã given in (25) with γ = E−1σ3 E , we make the following gauge
transformation for the connection Ã via E1 = E−1:

(26) Ã 7→ A = E−1
1 d E1 + E−1

1 ÃE1 = −(d E)E−1
+ E ÃE−1.

By a direct computation, we have from (26) that

(27) A = −(d E)E−1
+ E ÃE−1

= (λσ3 + Q) dx − (λ2σ3 + λQ + Et E−1) dt,

where E−1 Et independent of λ will be determined later. By using (27), a direct
calculation show that

(28) FA = d A+ A∧ A

=
{
(−Qt −(Et E−1)x −[Q, Et E−1

])−λ(Qx +[σ3, Et E−1
])
}
dx ∧dt.

The coefficients of λ1 and λ0 in the right-hand-side of (28) are zero implies that

Qx + [σ3, Et E−1
] = 0,(29)

Qt + (Et E−1)x + [Q, Et E−1
] = 0.(30)

From equation (29), we have

(31) (Et E−1)m = −Vm,

where V = 2(Qx − Q2)σ3 is given in (22). Taking the k part in equation (30), we
have

(32) (Et E−1)kx + [Q, (Et E−1)m] = 0,

which implies that (Et E−1)k = −Vk + diag(α1(t), α2(t)) for some α1(t) ∈ u(ν)

and α2(t) ∈ u(k−ν, n−k) that independent of x . Hence we obtain

(33) Et E−1
= (Et E−1)k + (Et E−1)m = −Vk − Vm = −V + diag(α1(t), α2(t)).
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In order to cancel diag(α1(t), α2(t)) in (33), we modify E by

E → Ẽ = β(t)E,

where β(t) = diag(β1(t), β2(t)) ∈ U (ν) × U (k−ν, n−k) depends only on t and
satisfy dβ j

dt (t) + α j (t)β j (t) = 0 ( j = 1, 2). The existence of β j ( j = 1, 2) are
obvious. One may verify straightforwardly that with E being modified by Ẽ , the
second term on the right-hand-side of (33) vanishes identically and A given by
equation (27) is exactly that given in (22) with Q be replaced by Q̃ = β(t)Qβ(t)−1.
The corresponding (�1, �2) obtained from γ = E−1σ3 E is a solution to the matrix
Manakov systems (15) of mixed type. This proves that equation (21) is also gauge
transformed to equation (15). The proof of Theorem 2 is completed. □

From Theorem 2 we see that the matrix Manakov equation (15) of mixed type
admits a geometric interpretation, that is to say, it is gauge equivalent to the 1-d
Schrödinger flow to the semi-Grassmannian Gν,k,n . Furthermore, the model (20) of
moving curves in the Lie algebra u(k, n−k) is a geometric realization of the matrix
Manakov equation (15) of mixed type.

4. Darboux transformation

We now exploit some analytic aspects of the matrix Manakov equation (15) of
mixed type. More precisely, we establish a Darboux transformation and construct
soliton solutions.

Darboux transformation is a useful tool in constructing new solutions from given
ones to an integrable system/equation. For a given integrable system/equation,
usually there are two effective ways in deducing a Darboux transformation. One is
the usual way (see [10]), that is, if 8(t, x, λ) is a potential (matrix-valued) function
to a Lax pair of the integrable system/equation with a given solution Q = Q(t, x),
where λ is the spectral parameter, the idea is to find a (matrix-valued) function S
in an algebraic way such that 8̃(t, x, λ) = (λ − S)8(t, x, λ) is a solution to the
Lax pair with some Q̃ depending on Q and S so that it is a new solution to the
integrable system/equation. Then Q → Q̃ is the desired Darboux transformation.
Another way is given by Terng and Uhlenbeck in [18] who used the loop-group
technique in constructing new potential functions and hence the corresponding
Darboux transformation. In this section, we deduce a Darboux transformation
for the matrix Manakov equation of mixed type equation (15) (or equivalently
equation (18)) via the usual way. The difficulty here is whether the obtained Q̃ still
possesses the form

Q̃ = Q̃(t, x) =

(
0 �̃

�̃† 0

)
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for some new �̃. To overcome this crucial difficulty, we need to apply Lemma 3
and its corollary.

We first rewrite the Lax pair (17) of equation (15) (or equivalently (18)) as

(34)
{
8x = −(iλl3 + Q)8,

8t =
(∑2

j=0 Pj (t, x)λ j
)
8,

in which 8 is regarded as a U (k, n−k)-matrix-valued potential function, l3 =(
Iν 0
0 −In−ν

)
, Q =

(
0 �

�† 0

)
is a solution to equation (18) with � = (�∗

1 �∗

2),

P2 = 2i l3, P1 = 2Q and P0 = −i(Qx − Q2)l3.
Next, according to the usual idea for constructing a Darboux transformation

Q → Q̃, we must find a Darboux matrix (iλIn − S) such that 8̃ = (iλIn − S)8

still solves equation (34) with some new Q̃ which will be determined later. We
would point out that the Darboux matrix displayed in [10] is of the form λIn − S.
Here we modify it so that iλIn − S ∈ u(ν, k−ν, n−k) when S is suitably chosen.
From the relation

(35) (−iλl3 − Q̃)(iλIn − S)8 = (8̃)x = ((iλI − S)8)x

= (iλIn − S)(−iλl3 − Q)8 − Sx8,

we obtain, from identifying the coefficients of λ1 and λ0,

Q̃ = Q + [l3, S],(36)

Sx = [S, Q + l3S].(37)

Similarly, we have

(38)
( 2∑

j=1
P̃jλ

j
)
(iλIn − S)8 = (8̃)t = (iλIn − S)

( 2∑
j=1

Pjλ
j
)
8 − St8.

By identifying the coefficients of λ j ( j = 0, 1, 2, 3), we see that

(39) P̃2 = P2 = 2i l3, P̃1 = P1 +2[l3, S] = 2Q̃, P̃0 = P0 − i[P1, S]−[P2, S]S

and

(40) St + [S, P0 − i P1S − P2S2
] = 0.

Lemma 4. iλIn −S is a Darboux matrix of the Lax pair (34) if and only if S satisfies
equations (37) and (40).

Proof. If iλIn − S is a Darboux matrix of the Lax pair (34), then the above
exploitation indicates that S satisfies equation (37) and equation (40). Inversely,
if a matrix S satisfies equation (37) and equation (40). Then for a solution 8

to equation (34) with a given Q fulfilling equation (18), we have the validity
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of equation (35) and equation (38). Hence, with Q̃ determined by (36) and P̃j

( j = 0, 1, 2) by (39), we see that 8̃ = (iλIn − S)8 is a solution to

(41)
{
8̃x = −(iλl3 + Q̃)8̃,

8̃t =
(∑2

j=0 P̃j (t, x)λ j
)
8̃.

This implies that iλIn − S is a Darboux matrix of the Lax pair (34). Lemma 4 is
proved. □

Now we will construct the Darboux matrix by making use of (37) and (40).
Let λ1, λ2, . . . , λn be real numbers, at least two of which are different. Set 3 =

diag(iλ1, iλ2, . . . , iλn). For a given solution Q to equation (18), we first choose
h1 to be a unit column Cn

k -vector-valued solution to equation (34) at λ = λ1. Then,
in the complementary space of Ch1 in Cn

k , we choose h2 to be a unit column Cn
k -

vector-valued solution to equation (34) at λ = λ2. Going on this way, we choose
h j to be a unit column Cn

k -vector-valued solution to equation (34) at λ = λ j in
the complementary space of spanC(h1, h2, . . . , h j−1) ( j = 3, , . . . , n) in Cn

k . The
above process can be continuously displayed to j = n since for any real spectral
parameter λ, two coefficients on the right-hand side of equation (34) belong to
u(k, n−k) = u(ν, k−ν, n−k). The obtained matrix H = (h1, h2, . . . , hn) is thus
of U (k, n−k)-valued. We claim that

(42) S = H3H−1

is a solution to (37) and (40). In fact, since h j is a solution to equation (34) at
λ = λ j , we have (h j )x = −iλ j l3h j − Qh j and

(h j )t =

2∑
k=0

Pkλ
k
j h j ,

which means that

Hx = −l3 H3 − Q H, Ht = P0 H − i P1 H3 − P2 H32.

Hence

Sx = Hx3H−1
− H3H−1 Hx H−1

= [Hx H−1, S] = −[l3S + Q, S],

St = [Ht H−1, S] =
[
P0 − i P1S − P2S2, S

]
,

which indicates that S satisfies equations (37) and (40). This verifies the claim.
Hence (iλIn − S) with S given in (42) is a Darboux matrix.

Finally, we must to show that Q̃ given by (36) possesses the form

Q̃ = Q̃(t, x) =

(
0 �̃

�̃† 0

)
for some block matrix �̃, under an additional condition that µ := k−ν = n−k ≥ 1.
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In fact, since H ∈ U (k, n−k), we have H−1
= εH∗ε. Therefore, S = H3H−1

=

H3εH∗ε admits

S∗
= −εHε3H∗

= −εH3εH∗
= −εH3εH∗ε2

= −εSε.

This implies that S ∈u(µ+ν, µ)=u(ν, µ,µ)∼=u∗(ν, µ,µ). By applying Lemma 3,
we take S to be of the form (

A 0

−0† B

)
for some A ∈ u(ν), B ∈ u(µ) and a ν × (2µ) matrix 0 =

(
0∗

1 0∗

2

)
with 01 and

02 being of ν × µ complex matrices. From this choice we obtain that

[l3, S] = 2
(

0 0

0† 0

)
and hence by (36) we see that

Q̃ = Q + [l3, S] =

(
0 �̃

�̃† 0

)
for �̃ = � + 20. One notes that the linear operation � + 20 between � and 0

works well under the additional condition: k−ν = n−k ≥ 1. Without this condition,
the linear operation � + 20 does not work in general and hence such a Darboux
transformation Q → Q̃ is not obtained.

To summarize, we obtain the following Darboux transformation.

Theorem 3. The Darboux transformation for equation (15) (or equivalently equa-
tion (18)) with µ := k−ν = n−k ≥ 1 is

(43) Q → Q̃ = Q + [l3, S],

where Q ∈ m ⊂ u(ν, µ,µ) is a given solution to equation (18), S = H3H−1
∈

u(µ + ν, µ) is constructed by (42) and represented by u∗(ν, µ,µ).

We end this section with the construction of 1-soliton solutions by the Darboux
transformation (43). One knows that 1-soliton solutions come from the trivial
solution Q = 0 to equation (18) by Darboux transformation. For the Lax pair (34)
of equation (18) with Q = 0, {

8x = −iλl38,

8t = 2iλ2l38,

one obtains U (k, n−k)-solutions at λ = λ j ( j = 1, 2, . . . , n):

H = diag
(
e−i31x+2i32

1t , ei32x−2i32
2t , ei33x−2i32

3t)U0,

where 31 =diag (λ1, . . . , λν) , 32 =diag (λν+1, . . . , λk), 33 =diag (λk+1, . . . , λn)

and U0 is a U (k, n−k)-matrix independent of x and t .
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Writing U0 =

 U1 U2 U3

U4 U5 U6

U7 U8 U9

 and noting that 3 = diag(i31, i32, i33), we have

U03U−1
0 =

(
α0 00

0
†
0 β0

)
,

where 00 =
(
00

1, 00
2

)
and

α0 = U1i31U∗

1 +U2i32U∗

2 −U3i33U∗

3 ,

00
1 = U1i31U∗

4 +U2i32U∗

5 −U3i33U∗

6 ,

00
2 = −U1i31U∗

7 −U2i32U∗

8 +U3i33U∗

9 ,

β0 =

(
U4i31U∗

4 +U5i32U∗

5 −U6i33U∗

6 −U4i31U∗

7 −U5i32U∗

8 +U6i33U∗

9
U7i31U∗

4 +U8i32U∗

5 −U9i33U∗

6 −U7i31U∗

7 −U8i32U∗

8 +U9i33U∗

9

)
.

Hence, by (42),

S = H3H−1
=

(
e−i31x+2i32

1t α0 ei31x−2i32
1t e−i31x+2i32

1t 00 e−i323x+2i32
23t

ei323x−2i32
23t 0

†
0 ei31x−2i32

1t ei323x−2i32
23t β0 e−i323x+2i32

23t

)
,

in which 323 = diag (32, 33). Therefore, under the condition that k−ν = n−k
and applying Lemma 3 (notice that � is represented as � = (�∗

1 �∗

2)), (43) gives
general 1-soliton solutions to equation (15) as follows:

�1 = 2ei33x−2i32
3t 00∗

2 ei31x−2i32
1t , �2 = 2ei32x−2i32

2t 00∗

1 ei31x−2i32
1t .

Particularly, when n = 3, k = 2, ν = 1 and taking U0 to be

U0 =

 cos θ0 sin θ0 cosh ϕ0 sin θ0 sinh ϕ0

− sin θ0 cos θ0 cosh ϕ0 cos θ0 sinh ϕ0

0 sinh ϕ0 cosh ϕ0


for some θ0 ∈ [0, 2π) and ϕ0 ∈ (−∞, +∞), we have 1-soliton solutions to (5) as
follows:

ϕ1 = 2iei(λ1+λ3)x−2i(λ2
1+λ2

3)t(λ2 − λ3) sin θ0 sinh ϕ0 cosh ϕ0,

ϕ2 = 2iei(λ1+λ2)x−2i(λ2
1+λ2

2)t cos θ0 sin θ0(λ1 − λ2 cosh2 ϕ0 + λ3 sinh2 ϕ0).

One may continue to construct 2-soliton solutions and so on based on the Darboux
transformation (43) and 1-solitons. But the complexity of computations will be
exponentially increased with the order of solitons and we leave it for future study.
The analytic and geometric properties of the general matrix Manakov equation (19)
also deserve to be future investigated.
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MAPPING CLASSES FIXING AN ISOTROPIC HOMOLOGY
CLASS OF MINIMAL GENUS 0 IN RATIONAL 4-MANIFOLDS

SERAPHINA EUN BI LEE

For any N ≥ 1, let MN denote the rational 4-manifold CP2#NCP2. We
study the stabilizer Stab(w) of a primitive, isotropic class w ∈ H2(MN; Z) of
minimal genus 0 under the natural action of the topological mapping class
group Mod(MN) on H2(MN; Z). Although most elements of Stab(w) cannot
be represented by homeomorphisms that preserve any Lefschetz fibration
MN → 6, we show that every element of Stab(w) can be represented by
a diffeomorphism that almost preserves a holomorphic, genus-0 Lefschetz
fibration proj : MN → CP1 whose generic fibers represent the homology class
w. We also answer the Nielsen realization problem for a certain maximal
torsion-free, abelian subgroup 3w of Mod(MN) by finding a lift of 3w to
Diff+(MN) ≤ Homeo+(MN) under the quotient map q : Homeo+(MN) →

Mod(MN). This lift of 3w can be made to almost preserve proj : MN → CP1.
All results of this paper also hold for every primitive, isotropic class w ∈

H2(MN; Z) if N ≤ 8 because any such class has minimal genus 0.

1. Introduction

The (topological) mapping class group Mod(M) of a closed, oriented manifold M
is the group

Mod(M) := π0(Homeo+(M))

of isotopy classes of orientation-preserving homeomorphisms of M . There is a
natural action of Mod(M) on H2(M; Z) preserving the intersection form QM and
we consider the stabilizer Stab(w)≤ Mod(M) of any class w ∈ H2(M; Z).

Suppose M is a smooth, simply connected 4-manifold. If w ∈ H2(M; Z) is a
nonzero homology class with self-intersection 0 then w is called isotropic. One
way in which isotropic classes arise are as the homology class of the generic fibers
of a Lefschetz fibration p : M →6 where 6 is a closed, oriented surface. We say
that a diffeomorphism ϕ of M preserves p if there exists some diffeomorphism ψ

of 6 such that p ◦ϕ = ψ ◦ p.
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In some settings, elements g ∈ Stab(w)≤ Mod(M) are known to admit represen-
tative maps ϕ that preserve some Lefschetz fibration p : M →6 whose generic fibers
represent the homology class w. For example, Gizatullin ([12]) showed that any
parabolic automorphism of a compact Kähler surface M must preserve some elliptic
fibration M → 6 (also see [4, Proposition 1.4] or [7, Theorem 4.3, Appendix]).
In the smooth setting, Farb–Looijenga ([9, Theorem 1.11]) showed that on a K3
manifold, any g ∈ Stab(w) can be represented by a diffeomorphism preserving the
fibers of some holomorphic elliptic fibration M → CP1; this result is an application
of their study of the moduli space of genus one fibered K3 surfaces with only
nodal singular fibers. As another application, Farb–Looijenga ([9, Corollary 1.12])
study the Nielsen realization problem for a certain rank-20 free abelian subgroup
of Stab(w) by diffeomorphisms preserving the fibers of a given genus one fibration
of a K3 manifold.

In this paper we study representative maps of the stabilizers of isotropic classes
of rational manifolds M and their relationships to genus-0 Lefschetz fibrations
M →6. More specifically, we study manifolds of the form

MN := CP2#NCP2 for N ≥ 1,

which are the underlying smooth 4-manifolds of the blowup of CP2 at N points.
The total space M of a nontrivial genus-0 Lefschetz fibration M →6 is a rational
manifold MN for some N if M is simply connected. If N ≤ 8, all primitive,
isotropic classes w ∈ H2(MN ; Z) are represented by generic fibers of a genus-0,
holomorphic Lefschetz fibration p : MN → CP1. We sometimes refer to such a
Lefschetz fibration as a conic bundle structure on MN . Note that these Lefschetz
fibrations are not relatively minimal unless N = 1. See Section 2.3.

Representing Stab(w) by diffeomorphisms. Let N ≥ 1 and let w ∈ H2(MN ; Z)

be any primitive, isotropic class of minimal genus 0. Although any such class w
is represented by a generic fiber of a genus-0 Lefschetz fibration p : MN → CP1,
the following proposition shows that there does not exist any ϕ ∈ Homeo+(MN )

with [ϕ] ∈ Stab(w) that preserves such a fibration p if [ϕ] has infinite order in
Mod(MN ).

Proposition 1.1. Let N ≥ 1 and let w ∈ H2(MN ; Z) be a primitive, isotropic class
of minimal genus 0. Let ϕ ∈ Homeo+(MN ) represent an infinite-order mapping
class [ϕ] ∈ Stab(w) ≤ Mod(MN ). There does not exist any Lefschetz fibration
p : MN → 6 where 6 is a closed, oriented surface and where the generic fiber
represents w such that ϕ preserves p.

For a proof, see Section 2.3. In this paper we ask instead that any diffeomorphism
representing any infinite-order mapping class f ∈ Stab(w) ≤ Mod(MN ) almost
preserves some Lefschetz fibration p : MN →6.
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Definition 1.2 (almost preserving a Lefschetz fibration). A group of diffeomor-
phisms G ≤ Diff+(M) almost preserves a Lefschetz fibration p : M → 6 if the
elements of G act on the fibers of p outside of disjoint neighborhoods of the singular
fibers of p. More precisely, there exist

(a) disjoint, open neighborhoods V1, . . . , Vm ⊆ 6 of the images of the singular
points z1, . . . , zm ∈6, and

(b) a homomorphism i : G → Diff+
(
6−

⋃m
k=1 Vk

)
such that for all ϕ ∈ G, the following commutes:

M −
⋃m

k=1 p−1(Vk) M −
⋃m

k=1 p−1(Vk)

6−
⋃m

k=1 Vk 6−
⋃m

k=1 Vk

ϕ

p p

i(ϕ)

A diffeomorphism ϕ ∈ Diff+(M) almost preserves a Lefschetz fibration p : M →6

if the group ⟨ϕ⟩ ≤ Diff+(M) almost preserves p : M →6.

On the other hand, any element of Stab(w) ≤ Mod(MN ) with N ≥ 2 must
preserve the following subgroup of H2(MN ; Z):

w⊥
:= {w0 ∈ H2(MN ; Z) : QMN (w,w0)= 0} ∼= ZN .

Thus Stab(w) acts on the lattice (w⊥/Z{w}, QMN ) where QMN is the unimodular,
symmetric, bilinear form on w⊥/Z{w} induced by QMN . Since (H2(MN ; Z), QMN )

has signature (1, N ), (w⊥/Z{w}, QMN ) must be negative definite of rank N − 1.

Definition 1.3. Let 3w be the kernel of the map Stab(w)→ Aut(w⊥/Z{w}, QMN ).

There is an identification of 3w with the subgroup of even elements of the lattice
(w⊥/Z{w}, QMN ), and Stab(w) fits into a split short exact sequence

(1) 0 → 3w︸︷︷︸
∼=ZN−1≤w⊥/Z{w}

→ Stab(w)→ Aut(w⊥/Z{w}, QMN )→ 0.

Two properties of 3w are that it is a maximal torsion-free, abelian subgroup of
Mod(MN ) and that it has finite index in Stab(w). See Lemmas 2.5 and 2.6.

With the preliminaries above in hand, we state our main result concerning the
Nielsen realization problem for 3w.

Theorem 1.4 (realizing3w by diffeomorphisms). Let N ≥2 and letw∈ H2(MN ; Z)

be a primitive, isotropic class of minimal genus 0. There exists a homomorphism
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ρw :3w → Diff+(MN ) such that the following diagram commutes:

Diff+(MN )

3w Mod(MN )

qρw

The image ρw(3w) almost preserves a holomorphic genus-0 Lefschetz fibration
p : MN → CP1 whose generic fiber represents the homology class w.

If N ≤ 8, Theorem 1.4 holds for any primitive, isotropic class w ∈ H2(MN ; Z)

because any such class has minimal genus 0. See Corollary 3.10.
Compare Theorem 1.4 to the case of the K3 manifold M for which the subgroup

3w≤Mod(M) is isomorphic to Z20, wherew∈ H2(M; Z) is a fiber class of a genus-
1 fibration of M with only nodal fibers. As mentioned above, Farb–Looijenga ([9,
Corollary 1.12]) showed that 3w lifts to the group of diffeomorphisms preserving
the fibers of the given genus-1 fibration. In contrast to the case of the K3 manifold,
Theorem 1.4 shows that Nielsen realization for 3w holds in our setting despite the
fact that no element of 3w can preserve any genus-0 Lefschetz fibration of MN

(Proposition 1.1).
The next theorem uses the short exact sequence (1) and the diffeomorphisms

constructed in the proof of Theorem 1.4 to find a diffeomorphism representative of
any element of Stab(w) that almost preserves a genus-0 Lefschetz fibration.

Theorem 1.5 (mapping classes fixing an isotropic class). Let N ≥ 1 and let w ∈

H2(MN ; Z) be a primitive, isotropic class of minimal genus 0. For any h ∈ Stab(w),
there exists ϕ ∈ Diff+(MN ) almost preserving a holomorphic genus-0 Lefschetz
fibration p : MN → CP1 whose generic fiber represents the homology class w such
that [ϕ] = h ∈ Mod(MN ).

Similarly as with Theorem 1.4, Theorem 1.5 holds for any primitive, isotropic class
w ∈ H2(MN ; Z) if 2 ≤ N ≤ 8. See Corollary 4.2.

A large part of the work of this paper is to ensure that the diffeomorphisms
constructed in Section 3 commute as diffeomorphisms of MN . We point out that
the calculations of Section 3 are essential to the proof of Theorem 1.4 regarding
the Nielsen realization problem for 3w although Theorem 1.5 alone may be proven
more succinctly. For the sake of concreteness, we give explicit constructions of all
diffeomorphisms used in this paper.

One way to interpret the results of this paper is via the natural action of (an index-
2 subgroup of) Mod(MN ) on HN and the classification of hyperbolic isometries
into three types: elliptic, parabolic, and hyperbolic. Infinite-order elements of the
stabilizer Stab(w) for an isotropic class w ∈ H2(MN ; Z) are precisely the elements
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of Mod(MN ) acting by parabolic isometries on HN (Lemma 2.2). Therefore the
following is an immediate corollary of Theorem 1.5.

Corollary 1.6. Let 2 ≤ N ≤ 8. If g ∈ Mod(MN ) acts by a parabolic isometry on
HN then there exists ϕ ∈ Diff+(MN ) that almost preserves a holomorphic genus-0
Lefschetz fibration p : MN → CP1 such that [ϕ] = g.

Related work. The relationship between mapping classes of 4-manifolds fixing an
isotropic class and Lefschetz fibrations with the prescribed generic fiber has been
studied in some settings. As mentioned above, see Gizatullin [12] and Cantat [4]
for the case of compact, Kähler surfaces and elliptic fibrations and Farb–Looijenga
[9] for the case of K3 manifolds; [9] was an inspiration for this current paper.

Automorphisms preserving a genus-0 Lefschetz fibration (or a conic bundle
structure) also play an important role in the study of finite groups of automorphisms
of MN . An example of such a complex automorphism is the de Jonquières involution,
which is a main tool for this paper. Some examples of work in this direction include
the classification of order-2 birational automorphisms of CP2 up to conjugacy
(Bertini [2], Bayle–Beauville [1]) and finite subgroups of birational automorphisms
of CP2 in general (Dolgachev–Iskovskikh [8], Blanc [3]) in the complex category
and a study of finite groups of symplectomorphisms of rational surfaces (Chen–Li–
Wu [5]) in the symplectic category.

Outline. In Section 2, we recall relevant facts about the mapping class group
Mod(MN ) of rational manifolds and deduce basic facts about isotropic classes
w ∈ H2(MN ; Z), including the proof of Proposition 1.1. In Section 3, we prove
Theorem 1.4 by explicitly constructing the necessary diffeomorphisms. Using these
diffeomorphisms from Section 3, we prove Theorem 1.5 in Section 4.

2. Isotropic homology classes and their stabilizers in Mod(MN)

We collect useful properties of the mapping class groups of 4-manifolds, isotropic
classes in H2(MN ; Z), and certain Lefschetz fibrations.

2.1. The mapping class group of MN . For any 4-manifold M , let QM denote
the intersection form on H2(M; Z). The form QM is an integral, unimodular,
nondegenerate, symmetric bilinear form on H2(M; Z)/Torsion; we denote the
lattice (H2(M; Z)/Torsion, QM) by HM . The automorphism group of the lattice
HM is denoted O(HM).

The mapping class group Mod(M) := π0(Homeo+(M)) of a closed, oriented,
simply connected 4-manifold M is computable due to the following theorems of
Freedman [10], Perron [18], Quinn [19], Cochran–Habegger [6], and Gabai–Gay–
Hartman–Krushkal–Powell [11]. (For a more detailed history of this theorem, see
[11, Section 1.3].)
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Theorem 2.1. Let M4 be a closed, oriented, and simply connected manifold. The
map

8 : Mod(M)→ O(HM)

given by 8 : [ϕ] 7→ ϕ∗ is an isomorphism of groups.

By the Mayer–Vietoris sequence, H2(MN ; Z)= H2(CP2
; Z)⊕ H2(CP2; Z)⊕N ,

and we have the usual Z-basis {H, E1, . . . , EN }. The intersection form QMN is
given by the diagonal, (N + 1)× (N + 1) matrix

diag(1,−1, . . . ,−1)

with respect to the Z-basis {H, E1, . . . , EN }. On the other hand, there is a natural
Z-basis

(2) {s, v, e1, . . . , eN−1}

of H2((CP1
× CP1)#(N − 1)CP2; Z) via the Mayer–Vietoris sequence; here, s

and v correspond to the first and second factors of CP1
× CP1 respectively. There

is a diffeomorphism (CP1
× CP1)#(N − 1)CP2 ∼= MN for all N ≥ 2 giving an

identification

v= H −E1, s = H −E2, e1 = H −E1−E2, ek = Ek+1 for all 2≤ k ≤ N −1.

We will mostly work with the Z-basis {s, v, e1, . . . , eN−1} of H2(MN ; Z).
Therefore by Theorem 2.1,

Mod(MN )∼= O(1, N )(Z) := O(HMN )

We will identify O(HMN ) and Mod(MN ) throughout this paper.
On the other hand, consider E1,N

:= (RN+1, QN ), where QN is the diagonal
bilinear symmetric form of signature (1, N ):

QN ((x0, x1, . . . , xN ), (y0, y1, . . . , yN ))= x0 y0 − x1 y1 − · · · − xN yN .

There is a natural identification of the R-span of the Z-basis {H, E1, . . . , EN } of
H2(MN ; Z) with RN+1, under which the R-bilinear extension of QMN coincides
with QN . The hyperboloid model for HN sits in E1,N by

HN
= {w = (w0, w1, . . . , wN ) ∈ RN+1

: QN (w,w)= 1, w0 > 0}.

where the Riemannian metric is defined by the restriction of −QN to HN (see [20,
Chapter 2]). Because O(1, N )(Z) acts on RN+1 and preserves QN , it contains an
index-2 subgroup O+(1, N )(Z) acting by isometries on HN .

The boundary sphere of HN corresponds to

∂HN
= {w = (w0, w1, . . . , wN ) ∈ RN+1

: QN (w,w)= 0, w0 > 0}/∼
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where aw∼w for all a ∈ R>0. Parabolic isometries of HN are those that fix a unique
point of ∂Hn and no point in Hn . By [20, Problem 2.5.24(g)], parabolic isometries
not only preserve some line in RN+1 but fix it pointwise. Moreover, parabolic
isometries in O+(1, N )(Z) must fix a nonzero, isotropic vector with integral entries,
i.e., some nonzero w ∈ H2(MN ; Z) with QMN (w,w)= 0, and have infinite order
([20, Exercise 2.5.20]). The converse is true as well:

Lemma 2.2. Let N ≥ 2. An element f ∈ O+(1, N )(Z) acts by a parabolic isometry
if and only if f has infinite order and there exists some primitive, isotropic class
w ∈ H2(MN ; Z) such that f ∈ Stab(w)≤ O(HMN ).

Proof. One direction holds by the discussion preceding the statement of the lemma,
so it suffices to prove that if f ∈ Stab(w) has infinite order then f acts on HN by a
parabolic isometry.

Note that f fixes the point of ∂HN corresponding to w ∈ H2(MN ; Z). Because
stabilizers of points in HN in O(HMN ) have finite order, we only need to show that
this is the unique point of ∂HN fixed by f . To do this, let w0 ∈ E1,N be an isotropic
vector such that f (w0) = λw0 for some λ ∈ R. If w0 ∈ R{w}

⊥ then w0 must be
a scalar multiple of w because the restriction of QMN to R{w}

⊥/R{w} is negative
definite. If QMN (w,w0)=: a ̸= 0 then λ= 1 because

a = QMN (w,w0)= QMN ( f (w), f (w0))= QMN (w, λw0)= λa.

Then f (aw+w0)= aw+w0 and

QMN (aw+w0, aw+w0)= 2aQMN (w,w0)= 2a2 > 0.

A scalar multiple of aw +w0 lies in HN , meaning f acts on HN by an elliptic
isometry, and all such isometries of HN in O(HMN ) have finite order. Therefore,
w0 must be a scalar multiple of w and hence f fixes a unique point in ∂HN . □

2.2. Primitive, isotropic classes w ∈ H2(MN; Z) and Stab(w)≤ Mod(MN). Con-
sider lattices (L , Q), where L ∼= Zr as an abelian group for some r ∈ N and Q is
an integral, unimodular, nondegenerate, symmetric, bilinear form on L . For each
primitive, isotropic vector w ∈ L , there exists u ∈ L such that Q(w, u) = 1 by
unimodularity of Q. There is an orthogonal decomposition

L = Z{u, w} ⊕ Z{u, w}
⊥

to which Q restricts to a unimodular form on each factor. The restriction of Q
to Z{u, w} has signature (1, 1). Note that Z{u, w}

⊥ is a lift of w⊥/Z{w} under
the natural quotient w⊥

→ w⊥/Z{w}. This means that (Z{u, w}
⊥, Q|Z{u,w}⊥) is

isometric (i.e., isomorphic as a lattice) to (w⊥/Z{w}, Q) via this quotient, where
Q is the induced bilinear form on w⊥/Z{w}. We fix the above notation throughout
this subsection.
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Lemma 2.3. Let w ∈ L be a primitive, isotropic vector. If h1, h2 ∈ Stab(w) ≤

O(L , Q) and h1|w⊥ = h2|w⊥ then h1 = h2. In particular, for any h1, h2 ∈ Stab(v)≤
O(HMN ), where v is the homology class as given in (2) and N ≥2, if h1(ek)= h2(ek)

for all 1 ≤ k ≤ N − 1 then h1 = h2.

Proof. Observe that h−1
1 ◦ h2 acts as the identity on Z{u, w}

⊥
≤ w⊥. We claim

that h−1
1 ◦ h2(u) = u. To see this, write h−1

1 ◦ h2(u) = au + bw + v0 for some
v0 ∈ Z{u, w}

⊥ and some a, b ∈ Z. For any v1 ∈ Z{u, w}
⊥,

0= Q(u, v1)= Q((h−1
1 ◦h2)(u), (h−1

1 ◦h2)(v1))= Q(au+bw+v0, v1)= Q(v0, v1).

Therefore, v0 = 0 by unimodularity of Q|Z{u,w}⊥ . Moreover, (h−1
1 ◦h2)(w)=w, so

1 = Q((h−1
1 ◦ h2)(u), (h−1

1 ◦ h2)(w))= Q(au + bw,w)= a,

0 = Q((h−1
1 ◦ h2)(u), (h−1

1 ◦ h2)(u))= Q(u + bw, u + bw)= 2b.

Therefore, (h−1
1 ◦ h2)(u)= u and h−1

1 ◦ h2 restricts to the identity on Z{u, w}. In
the case of v ∈ H2(MN ; Z) for any N ≥ 2, apply the above argument with w = v,
u = s and Z{u, w}

⊥
= Z{e1, . . . , eN−1}. □

Let 3w denote the kernel of the natural map hw : Stab(w)→ O(w⊥/Z{w}, Q)
(cf. Definition 1.3). In order to describe 3w, we introduce an important type of
element of O(HMN ) used throughout this paper.

Definition 2.4. Let N ≥ 2 and u ∈ H2(MN ; Z) satisfy QMN (u, u)= ±1 or ±2. The
reflection Refu about u is an element of O(HMN ) defined by

Refu(x)= x −
2QMN (x, u)
QMN (u, u)

u.

We now use reflections and Eichler transformations to give generators for 3w.

Lemma 2.5. Let (L , Q) be any lattice and w ∈ L be a primitive, isotropic vector.
Let A ≤ w⊥/Z{w} denote the subgroup of even elements with respect to Q. Then
there is an isomorphism of groups

E(w, · ) : A →3w.

In the case that (L , Q)= HMN for any N ≥ 2 and w= v, the group3w is generated
by

fk := Refek ◦ Refek+1 ◦ Refv−ek−ek+1 ◦ Refek−ek+1

for 1 ≤ k ≤ N − 2 and g := Refe1 ◦ Refv−e1 .

Proof. For any f ∈3w, there exists c( f ) ∈ w⊥/Z{w} such that for any e ∈ w⊥,

f (e)= e − Q(c( f ), e)w
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by the definition of 3w and the unimodularity of Q. This defines a homomorphism
c :3w → w⊥/Z{w} which is injective by Lemma 2.3.

For any f ∈3w, there exists a ∈ Z and e ∈ Z{u, w}
⊥ such that

f (u)= u + aw+ e

because Q( f (u), w) = 1. (Here, u ∈ L is as chosen at the beginning of this
subsection.) Moreover,

Q(u, u)= Q( f (u), f (u))= Q(u, u)+ 2a + Q(e, e)

and so Q(e, e) is even. Because c( f ), e are contained in Z{u, w}
⊥ where c( f ) ∈

w⊥/Z{w} is identified with its lift in Z{u, w}
⊥,

0 = Q( f (u), f (c( f )))= Q( f (u), c( f )− Q(c( f ), c( f ))w)
= Q(e, c( f ))− Q(c( f ), c( f )),

0 = Q( f (u), f (e))= Q( f (u), e − Q(e, c( f ))w)= Q(e, e)− Q(e, c( f )).

By the second string of equalities, Q(e, c( f )) is even, and by the first, Q(c( f ),c( f ))
= Q(c( f ),c( f )) is even. Hence c(3w)≤ A.

Consider the homomorphism E(w, · ) : A →3w defined by

E(w, e) : x 7→ x + Q(w, x)e − Q(e, x)w−
1
2

Q(e, e)Q(w, x)w

for each [e] ∈ A ≤w⊥/Z{w} with e ∈w⊥, where E(w, e) is an Eichler transforma-
tion. A computation shows that E(w, · ) does not depend on the choice of lift e ∈w⊥,
and hence descends to a well-defined homomorphism on A ≤ w⊥/Z{w}. Another
computation shows that c◦E(w, · )= Id |A. Finally, if (L , Q)= (H2(MN ; Z), QMN )

and w = v, compute that fk = E(w, ek + ek+1) for each 1 ≤ k ≤ N − 2 and
g = E(w, 2e1), which together generate 3w as ek + ek+1 with 1 ≤ k ≤ N − 2 and
2e1 generate A. □

We combine the results of this subsection and record an important algebraic
property of Stab(w). Below, O(r)(Z) denotes the automorphism group of the
diagonal lattice (Zr , diag(1, . . . , 1)), or equivalently, the automorphism group of
the diagonal lattice (Zr , diag(−1, . . . ,−1)).

Lemma 2.6. For any primitive, isotropic vector w ∈ L , there is a split short exact
sequence

0 →3w → Stab(w)
hw
−→ O(w⊥/Z{w}, Q)→ 0.

In the case that (L , Q)= HMN for any N ≥ 2 and w = f (v) for any f ∈ O(HMN ),
the split short exact sequence above is isomorphic to

0 → ZN−1
→ Stab(w)

hw
−→ O(N − 1)(Z)→ 0.
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There is an equality of subgroups 3w = f ◦3v ◦ f −1. Moreover, 3w ∼= ZN−1 is a
finite-index maximal torsion-free subgroup of Stab(w) and a maximal torsion-free,
abelian subgroup of O(HMN ).

Proof. There is a section ℓ of hw defined by

ℓ : f 7→ Id ⊕ f ∈ O(Z{u, w} ⊕ Z{u, w}
⊥, Q)= O(L , Q)

which shows that hw is surjective and the sequence is split.
In the case of (L , Q) = HMN with N ≥ 2 and w = f (v) for any f ∈ O(HMN ),

we can let u = f (s), in which case

(w⊥/Z{w}, Q)∼= (Z{ f (e1), . . . , f (eN−1)}, QMN )

and so O(w⊥/Z{w}, Q)∼= O(N − 1)(Z) is finite. The subgroup A ≤ w⊥/Z{w} of
even elements with respect to Q has index 2 in w⊥/Z{w} which has rank N − 1,
and so 3w ∼= A ∼= ZN−1. Because the sequence is split, the subgroup ⟨3w, h⟩ of
Stab(w) generated by3w and h must have torsion for any h ∈ Stab(w) with h /∈3w
and so 3w is a maximal torsion-free subgroup of Stab(w).

To see that 3w = f ◦3v ◦ f −1, compute for any h ∈3v and e ∈ v⊥ that

( f ◦ h ◦ f −1)( f (e))= f (h(e))= f (e − Q(c(h), e)v)= f (e)− Q(c(h), e)w

for some c(h) ∈ v⊥/Z{v} as in the proof of Lemma 2.5 and where Q is the bilinear
form on v⊥/Z{v} induced by Q. Because w⊥

= f (v⊥), we see that f ◦ h ◦ f −1

induces the identity map on w⊥/Z{w}, showing that f ◦ 3v ◦ f −1
⊆ 3w. By

symmetry, it follows that f ◦3v ◦ f −1
=3w. Each of the generators of 3v given

in Lemma 2.5 is contained in O+(1, N )(Z). Because 3w = f ◦3v ◦ f −1 and
O+(1, N )(Z) is a normal subgroup of O(HMN ), we conclude that 3w is contained
in O+(1, N )(Z).

It remains to show that 3w is a maximal torsion-free, abelian subgroup of
O(HMN ). To this end, consider any h ∈3w with h ̸= Id. Because3w≤O+(1, N )(Z)
and 3w is torsion-free, Lemma 2.2 shows that h is parabolic and w ∈ H2(MN ; Z)

is the unique isotropic element of H2(MN ; Z) fixed by h, up to scaling. Suppose
k ∈ O(HMN ) commutes with some h ∈3w and that ⟨k,3w⟩ is torsion-free. Note
that then ⟨−k,3w⟩ is also torsion-free because − Id ∈ O(HMN ) is in the center
of O(HMN ) and has order 2. Moreover, k(w) = ±w because h fixes k(w), so
k ∈ Stab(w) or −k ∈ Stab(w). If −k ∈ Stab(w) then ⟨−k,3w⟩ = 3w because
⟨−k,3w⟩ is torsion-free and 3w is a maximal torsion-free subgroup of Stab(w).
However, −k ̸∈3w because −k ◦ k−1

= − Id is torsion and ⟨k,3w⟩ is torsion-free.
Therefore, k ∈ Stab(w) and k ∈ 3w since ⟨k,3w⟩ is a torsion-free subgroup of
Stab(w). □
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To use Lemma 2.6, we apply a theorem of Li–Li [15, Theorem 4.2] which says
that for any N ≥ 2 and any primitive, isotropic class w ∈ H2(MN ; Z) of minimal
genus 0, there exists ϕ ∈ Diff+(MN ) such that [ϕ](v) = w. Moreover, following
elementary lemma strengthens this theorem in the case 2 ≤ N ≤ 8. Recall the fixed
Z-basis {s, v, e1, . . . , eN−1} of H2(MN ; Z) given in (2).

Lemma 2.7. If 2 ≤ N ≤ 8 and w ∈ H2(MN ; Z) is an isotropic class, then

(a) there exists f ∈ O(HMN ) such that f (v)= w if w is primitive, and

(b) w has minimal genus 0.

Proof. To prove (a), supposew is primitive and u ∈HMN is chosen as in the beginning
of this subsection. The restriction of QMN to Z{w, u} is unimodular and indefinite
so Z{w, u}

⊥ is negative definite of rank N −1<8. There exists a unique unimodular
and negative definite lattice of rank r if r ≤ 7; see [16, p. 1], for example. Therefore,
(Z{w, u}

⊥, QMN |Z{w,u}⊥) is isometric to (Z{e1, . . . , eN−1}, QMN |Z{e1,...,eN−1}); let
w0 ∈ Z{w, u}

⊥ satisfy QMN (w0, w0)= −1.
With a := QMN (u, u), we have QMN (w, u − aw0)= 1 and

QMN (u − aw0, u − aw0)= a − a2
≡ 0 (mod 2).

So Z{w, u − aw0} is unimodular, even, and indefinite. Again, Z{w, u − aw0}
⊥ is

negative definite of rank N − 1 < 8, and so (Z{w, u − aw0}
⊥, QMN |Z{w,u−aw0}⊥)

is isometric to (Z{e1, . . . , eN−1}, QMN |Z{e1,...,eN−1}). There exists f ∈ O(HMN ) that
preserves the orthogonal direct sums below

f : Z{v, s} ⊕ Z{e1, . . . , eN−1} → Z{w, u − aw0} ⊕ Z{w, u − aw0}
⊥

such that f (v)= w. This proves (a).
To prove (b), we may assume thatw ̸= 0. Supposew1 ∈ H2(MN ; Z) is a primitive

isotropic class such that aw1 = w for some a ∈ Z. By (a), there exists some
f ∈ Mod(MN ) such that f (v)=w1. Because N ≤ 9, there exists a diffeomorphism
ϕ ∈ Diff+(MN ) such that [ϕ] = f by [21, Theorem 2], and so the minimal genus of
w and the minimal genus of av are equal, and the minimal genus of av= a(H −E1)

is 0 (cf. [15, Theorem 4.2]). □

2.3. Lefschetz fibrations, conic bundles, and de Jonquières involutions. Let N =

2m+1≥3 be odd and fix some distinct complex numbers a1, . . . , a2m ∈C. Consider
the birational map J 0 : CP1

× CP1 99K CP1
× CP1 given by

([X1 : X2], [Y1 : Y2]) 7→
(
[X1 : X2],

[
Y2

2m∏
i=m+1

(X1 −ai X2) : Y1

m∏
i=1
(X1 −ai X2)

])
.
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Figure 1. Each line represents a copy of CP1 and is labeled with its
homology class in MN . The rightmost fiber, for 1 ≤ i ≤ N − 1, is
a singular fiber. Each singular fiber is a union of two (−1)-spheres
intersecting transversely once.

Then J 0 lifts to an automorphism J of order 2 called a de Jonquières involution of
X := BlP(CP1

× CP1) where

P :=
{
([ai : 1], [1 : 0]) : 1 ≤ i ≤ m

}
∪

{
([ai : 1], [0 : 1]) : m + 1 ≤ i ≤ 2m

}
is a set in CP1

× CP1 with 2m points. Note that X is diffeomorphic to MN . Under
this identification, ek ∈ H2(MN ; Z) is the class of the exceptional fiber above
([ak : 1], [1 : 0]) for each 1 ≤ k ≤ m and the class of the exceptional fiber above
([ak : 1], [0 : 1]) for each m + 1 ≤ k ≤ m.

The projection map pr0 : CP1
× CP1

→ CP1 onto the first coordinate extends to
a map pr : X → CP1 defining a holomorphic genus-0 Lefschetz fibration (in other
words, a conic bundle). By construction, pr ◦J = pr.

If z ̸= zk := [ak : 1] ∈ CP1 for any k, the fiber of pr over a point z ∈ CP1 is
{z} × CP1 which is in the homology class v ∈ H2(MN ; Z). Because J acts on
each such pr−1(z) in an orientation-preserving way, [J ] ∈ Stab(v) ≤ Mod(MN ).
Moreover for all 1 ≤ k ≤ 2m and all ([ak : 1], [Y1 : Y2]) /∈ P ,

J 0 : ([ak : 1], [Y1 : Y2]) 7→

{
([ak : 1], [1 : 0]) if 1 ≤ k ≤ m,
([ak : 1], [0 : 1]) if m + 1 ≤ k ≤ 2m.

Therefore, [J ] must send the homology class v − ek of the strict transform of
pr−1([ak : 1]) in X to the exceptional divisor ek . See Figure 1 for an illustration of
the action of J on the fibers of pr.

The maps pr and J will be used in the explicit constructions in Sections 3 and 4.
The goal of the rest of this section is to show that it suffices to only consider the
Lefschetz fibration pr : MN → CP1 for our setting and to prove Proposition 1.1.
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Proposition 2.8. Let p : MN → 6 be a Lefschetz fibration where 6 is a closed,
oriented surface and the generic fiber F satisfies [F] ̸= 0 ∈ H2(MN ; Z). If [F] has
minimal genus 0 then 6 = CP1 and F = CP1.

Proof. Because MN is closed, a generic fiber F is a compact submanifold of M and
has finitely many connected components, i.e., π0(F) is finite. By the exact sequence
of the fibration [14, Proposition 8.1.9], there is a bijection π1(6)→ π0(F) because
π1(MN ) = 0. Therefore, π1(6) is finite because π0(F) is finite. Because 6 is a
closed, oriented surface, this implies that 6 = CP1. Furthermore, F is connected
since π0(F)= π1(CP1)= 0.

Because [F] is nontrivial in H2(MN ; R) since H2(MN ; Z) has no torsion, MN

can be given a symplectic structure such that F is a symplectic submanifold (Gompf
[14, Theorem 10.2.18], [13, Theorem 1.2]) and so F must achieve the minimal
genus in its homology class by the solution to the symplectic Thom conjecture
(Oszváth–Szabó [17, Theorem 1.1]). □

Proof of Proposition 1.1. Suppose there exists such a Lefschetz fibration p : MN →6

whose generic fiber representsw and a homeomorphism h :6→6 with p◦ϕ=h◦p.
Because w is nonzero and has minimal genus 0, Proposition 2.8 says that 6 = CP1

and the generic fiber of p has genus 0. After blowing down the (−1)-spheres
contained in the fibers of p, we see that p must be a CP1-bundle over 6 by [14,
Proposition 8.1.7]. Because all CP1-bundles over CP1 are holomorphic, MN gets
a complex structure as a rational surface and p is holomorphic.

We prove by induction on N that if some homeomorphism ϕ ∈ Homeo+(MN )

preserves a genus-0 Lefschetz fibration p : MN → CP1 then [ϕ] ∈ Mod(MN ) has
finite order. If N = 1 then it is easy to see Mod(MN ) = O(HMN ) is finite. Now
assume for some N0 > 1 that the claim holds for any 1 ≤ N < N0.

Let N = N0 and suppose ϕ ∈ Homeo+(MN ) preserves a genus-0 Lefschetz
fibration p : MN → CP1. Then ϕ must permute the singular fibers because none
of the singular fibers are homeomorphic to a generic fiber CP1. There are finitely
many singular fibers, so some power ϕk must preserve each singular fiber. Each
singular fiber F of p is a union of finitely many spheres of negative self-intersection
intersecting transversely at finitely many points q1, . . . , qm . Because ϕk restricts to
a homeomorphism of each singular fiber, ϕk must permute the points q1, . . . , qm .
Moreover, ϕk also restricts to a homeomorphism on F − {q1, . . . , qm}, a disjoint
union of finitely many spheres with punctures. Therefore, a further power ϕkℓ must
preserve each component of F − {q1, . . . , qm} and its orientation.

Let S ⊆ F be an embedded (−1)-sphere in MN . Because the homeomorphism ϕkℓ

fixes each point q1, . . . , qm and preserves S−(S∩{q1, . . . , qm})⊆ F−{q1, . . . , qm},
it must preserve S ⊆ MN . Let b : MN → M be the map that blows down S to a
point q ∈ M . Being a rational surface, M is diffeomorphic to MN−1 or CP1

×CP1.
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V6

Figure 2. The sets Uk , Bk , and Vk in the case n = 7. The set B4, shaded
in blue, surrounds z4 and z5. The annulus U1, shaded in orange, is the
collar neighborhood of B1 surrounding z1 and z2. The disk V6, shaded in
red, contains z6 and contained in (B5 − U5)∩ (B6 − U6).

Because ϕkℓ defines a homeomorphism on MN −S, it induces a homeomorphism
of M − q that extends to a homeomorphism ψ of M and preserves the Lefschetz
fibration p′

: M → CP1 such that p = p′
◦ b. If M is diffeomorphic to MN−1

then [ψ] has finite order in Mod(M) by the inductive hypothesis. Otherwise, M
is diffeomorphic to CP1

× CP1 and so Mod(M) is finite. Therefore, [ψ] also has
finite order in Mod(M).

Finally, note that b∗ : H2(MN ; Z)→ H2(M; Z) induces the quotient map

H2(MN ; Z)∼= Z{[S]}
⊥

⊕ Z{[S]} → Z{[S]}
⊥ ∼= H2(M; Z).

Because ψ ◦ b = b ◦ϕkℓ and ϕkℓ
∗
([S])= [S], the restriction of ϕkℓ

∗
to Z{[S]}

⊥ must
have the same order as ψ∗. Finally, this shows that [ϕkℓ

], and therefore [ϕ], has
finite order in Mod(MN ). □

3. Theorem 1.4: lifting 3w to Diff+(MN)

We turn to the proof of Theorem 1.4, after fixing some notation regarding certain
subsets of CP1 illustrated in Figure 2. Let N = n+1 and m =

⌈ n
2

⌉
; thus N = 2m+1

if n is even and N = 2m if n is odd. Fix distinct complex numbers a1, . . . , a2m ∈ C

and let zk := [ak : 1] for all k = 1, . . . , n. Then:

(a) For each 1 ≤ k ≤ n − 1, let Bk ∼= D2 denote a closed disk in CP1
− {[1 : 0]}

containing zk and zk+1 and no other points z j for j ̸= k, k+1 so that Bk ∩Bk′ =

∅ if |k − k ′
|> 1.

(b) For each 1 ≤ k ≤ n−1, let Uk ∼= [0, 1]×S1
⊆ Bk denote a collar neighborhood

of Bk that does not contain zk and zk+1 where {0} × S1 corresponds to ∂Bk .

(c) For each 1 ≤ k ≤ n, let Vk ∼= D2 denote a closed disk containing zk in B1 −

U1 − B2 if k = 1, in (Bk − Uk) ∩ (Bk−1 − Uk−1) if 2 ≤ k ≤ n − 1, or in
Bn−1 − Un−1 − Bn−2 if k = n.

As in Section 2.3, let

P =
{
([ai : 1], [1 : 0]) : 1 ≤ i ≤ m

}
∪

{
([ai : 1], [0 : 1]) : m + 1 ≤ i ≤ 2m

}
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and consider the de Jonquières involution J on BlP(CP1
× CP1). Identify Mn+1

with

(a) BlP(CP1
× CP1) if n is even, and

(b) BlP−{([a2m :1], [0:1])}(CP1
× CP1) if n is odd.

In both cases, consider pr : Mn+1 → CP1 defined in Section 2.3. There is a natural
inclusion

pr−1(Bk) ↪→ BlP(CP1
× CP1)

that is preserved by J on BlP(CP1
× CP1) for all 1 ≤ k ≤ n − 1. We use this

inclusion to define J |pr−1(Bk) on each pr−1(Bk) ⊆ Mn+1 regardless of the parity
of n. Note that J |pr−1(Bk) = J |pr−1(Bk+1) when restricted to pr−1(Bk)∩ pr−1(Bk+1)

for all 1 ≤ k ≤ n − 2.
There are four main steps to the proof of Theorem 1.4.

(1) Constructing commuting diffeomorphisms γ1, . . . , γn−1 ∈ Diff+(MN ) that
preserve the genus-0 holomorphic Lefschetz fibration pr : MN → CP1 such
that supp(γk) ⊆ pr−1(Bk) and γk agrees with J on pr−1(Bk − Uk) for each
1 ≤ k ≤ n − 1. These maps should be thought of as local de Jonquières maps.

(2) Constructing commuting diffeomorphisms r1, . . . , rn ∈ Diff+(MN ) satisfying
supp(rk)⊆ pr−1(Vk) and [rk] = Refek for each 1 ≤ k ≤ n.

(3) Defining a homomorphism ρv :3v → Diff+(MN ) using the diffeomorphisms
above so that ρv is a section of q : Diff+(MN )→ Mod(MN ) restricted to 3v
and ρv(3v) almost preserves pr : MN → CP1.

(4) Defining a homomorphism ρw : 3w → Diff+(MN ) for any other primitive,
isotropic class w of minimal genus 0 by pre- and post-composing ρv by
conjugation in Mod(MN ) and Diff+(MN ).

Step 1: Constructing local de Jonquières maps γ1, . . . , γn−1 ∈ Diff+(MN). First,
recall by construction that for each 1 ≤ k ≤ n − 1, the disk Bk is a closed subset
of CP1

−{[1 : 0]}. Throughout this section, we identify CP1
−{[1 : 0]} with C by

the diffeomorphism [a : 1] 7→ a. Then the disk Bk and the annulus Uk are subsets
of C and the point zk = [ak : 1] ∈ CP1

−{[0 : 1]} corresponds to ak ∈ C under this
identification.

For each 1 ≤ k ≤ n − 1, define λk : Uk → C× by

λk(x) :=

√ ∏m
i=1(x − ai )∏2m

i=m+1(x − ai )

with any smooth choice of square root. A computation of fundamental groups
shows that such a choice exists. For completeness, we include a proof below.
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Lemma 3.1. For each 1 ≤ k ≤ n − 1, there exists a smooth map λk : Uk → C× so
that

λk(x)2 =

∏m
i=1(x − ai )∏2m

i=m+1(x − ai )
.

Proof. Consider a function µk : Bk − {ak, ak+1} → C× defined by

µk(x) :=

( m∏
i=1
(x − ai )

)( 2m∏
i=m+1

(x − ai )
−1

)
.

Then µk(x) is well-defined and nonzero for any x ∈ Bk − {ak, ak+1} because
x −ai ̸= 0 for any 1 ≤ i ≤ n. It suffices to show that there exists a lift λk : Uk → C×

of the restrictionµk |Uk :Uk →C× under the double cover C×
→C× given by a 7→a2.

In other words, we will show that (µk)∗(π1(Uk)) is contained in 2Z ≤ Z ∼= π1(C
×).

Let δk, δk+1 ∈ π1(Bk − {ak, ak+1}) be generators so that δkδk+1 is a generator of
π1(Uk) ≤ π1(Bk − {ak, ak+1}) and so that δk (resp. δk+1) is freely homotopic in
Bk −{ak, ak+1} to a loop S1

→ Bk −{ak, ak+1} given by θ 7→ ak + εe2πθ
√

−1
∈ Vk

(resp. θ 7→ ak+1 + εe2πθ
√

−1
∈ Vk+1) for some 0< ε≪ 1.

The restrictions of µk to Vk − {ak} and Vk+1 − {ak+1} take the forms

µk |Vk−{ak}(x)= ηk(x)(x − ak)
±1, µk |Vk+1−{ak+1} = ηk+1(x)(x − ak+1)

±1,

where ηi : Vi → C× are nonvanishing functions for each 1 ≤ i ≤ n. Each of µk(δk)

and µk(δk+1) is freely homotopic to the loop S1
→ C× given by θ 7→ e2πθ

√
−1 or

by θ 7→ e−2πθ
√

−1, depending on the exponent of (x −ak) and (x −ak+1) in µk(x).
Therefore, (µk)∗(δkδk+1) is an element of 2Z ≤ π1(C

×). □

For such a choice of λk , consider the map Mλk : Uk → PGL2(C) given by

Mλk (x)=

(
1 1

−λk(x) λk(x)

)
∈ PGL2(C).

We also record the inverse of Mλk (x) for later use:

Mλk (x)
−1

=

(
1 −1/λk(x)
1 1/λk(x)

)
∈ PGL2(C).

Viewing Mλk (x) and Mλk (x)
−1 as automorphisms of CP1, define a diffeomorphism

uλk of pr−1(Uk)= Uk × CP1 by

uλk ([x : 1], [Y1 : Y2])= ([x : 1], Mλk (x) · [Y1 : Y2]).

Let T : [0, 1] → [0, 1] be a smooth, nondecreasing function such that T |[0,ε] ≡ 0
and T |[1−ε,1] ≡ 1 for some 0 < ε ≪ 1. Identifying pr−1(Uk) = Uk × CP1 with
[0, 1] × ∂Bk × CP1 (cf. Figure 2), we define a diffeomorphism jk of pr−1(Uk) by



MAPPING CLASSES IN RATIONAL 4-MANIFOLDS 299

0 0πT (t) π π πT (t)

0 t 1 zk zk+1 1 t 0

pr pr

Figure 3. Illustrating the action of jk on pr−1(Uk)∼= [0, 1]× ∂Bk × CP1.
The horizontal line represents Bk ⊆ CP1 and the orange portion represents
the annulus Uk ⊆ Bk ⊆ CP1 whose width is parametrized by t ∈ [0, 1].
The two blue points represent ∂Bk ∼= S1. The diffeomorphism jk acts by
rotation-by-πT (t) on the sphere lying above a point (t, x)∈[0,1]×∂Bk ∼=Uk .

jk(t, θ, [Y1 : Y2])= (t, θ, [e
√

−1πT (t)Y1 : Y2]).

Roughly, jk is a map on [0, 1]×S1
×CP1 induced by an isotopy of S1

×CP1 from
the Id × Id to Id ×R(π), where R(π) is a rotation-by-π map on CP1. See Figure 3.

In the next lemma, we show that the de Jonquières map is conjugate to Id ×R(π)
on each {t}×∂Bk ×CP1, which will be used to modify J |pr−1(Uk) to be the identity
near the boundary pr−1(∂Bk).

Lemma 3.2. Let 1 ≤ k ≤ n − 1. On pr−1(Uk)= [0, 1] × ∂Bk × CP1,

uλk ◦ jk ◦ u−1
λk

=

{
J on pr−1([1 − ε, 1] × ∂Bk),

Id on pr−1([0, ε] × ∂Bk).

Proof. On pr−1([0, ε] × ∂Bk), note that jk ≡ Id. On pr−1([1 − ε, 1] × ∂Bk),

jk([x : 1], [Y1 : Y2])= ([x : 1], [−Y1 : Y2]).

For all [x : 1] ∈ [1 − ε, 1] × ∂Bk ⊆ Uk

Mλk (x)
(

−1 0
0 1

)
Mλk (x)

−1
=

(
0 1

λk(x)2 0

)
∈ PGL2(C),

and so

uλk ◦ jk◦u−1
λk
([x :1], [Y1 :Y2])=

(
[x : 1], [Y2 : λk(x)2Y1]

)
=J ([x :1], [Y1 :Y2]). □

The diffeomorphisms γk below should be thought of as local de Jonquières maps,
acting only on a single pair of singular fibers of pr.

Definition 3.3. For 1 ≤ k ≤ n − 1, let γk be the diffeomorphism of MN given by

γk =


J on pr−1(Bk − Uk),

uλk ◦ jk ◦ u−1
λk

on pr−1(Uk),

Id on pr−1(CP1
− Bk).
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Proposition 3.4. The diffeomorphisms γk satisfy the following properties:

(a) The diffeomorphism γk preserves pr for all 1 ≤ k ≤ n − 1. In fact, pr ◦γk = pr.

(b) The diffeomorphisms γi and γ j commute for all 1 ≤ i, j ≤ n − 1.

(c) As mapping classes, [γk] = Refv−ek−ek+1 ◦ Refek−ek+1 for all 1 ≤ k ≤ n − 1.

Proof. For each k, pr ◦uλk = pr and pr ◦ jk = pr by construction of uλk and jk when
restricted to pr−1(Uk). Therefore,

(pr ◦γk)|pr−1(Uk) =
(
pr ◦(uλk ◦ jk ◦ u−1

λk
)
)∣∣

pr−1(Uk)
= pr |pr−1(Uk)

and γk preserves the fibers of pr on pr−1(Uk) for all k. The same is clearly true on
pr−1(CP1

− Bk) and true on pr−1(Bk − Uk) by construction of J . This proves (a).
If |i − j | > 1 then supp(γi ) ∩ supp(γ j ) = ∅ so γi and γ j commute. To show

that γi and γi+1 commute for 1 ≤ i ≤ n − 2, we will consider the action of
these diffeomorphisms on pr−1(Bi ∩ Bi+1), which contains supp(γi )∩ supp(γi+1).
We split Bi ∩ Bi+1 as a union of Ci := (Bi ∩ Bi+1) ∩ (Ui ∪ Ui+1) and Vi :=

(Bi ∩ Bi+1)− (Ui ∪ Ui+1) (see Figure 4), so

pr−1(Bi ∩ Bi+1)= pr−1(Ci )∪ pr−1(Vi ).

By construction, γi |pr−1(Vi )=J |pr−1(Vi )= γi+1|pr−1(Vi ), and so γi and γi+1 commute
on pr−1(Vi ).

For any [x :1]∈Ci , both γi and γi+1 act on pr−1([x :1]) by (a). If [x :1]∈Ui∩Ui+1

then for some t, T ∈ [0, 1] depending on x , we have

γi ([x :1], [Y1 :Y2])=

(
[x :1],

(
Mλi (x)

(
e
√

−1π t 0
0 1

)
Mλi (x)

−1
)

· [Y1 :Y2]

)
,

γi+1([x :1], [Y1 :Y2])=

(
[x :1],

(
Mλi+1(x)

(
e
√

−1πT 0
0 1

)
Mλi+1(x)

−1
)

· [Y1 :Y2]

)
.

Moreover, λi (x)= λi+1(x) or −λi+1(x). In the first case, Mλi (x)= Mλi+1(x), so
γi and γi+1 commute on pr−1([x : 1]). In the second case, we compute for each
[x : 1] ∈ Ui that

Mλi (x)= M−λi (x)
(

0 1
1 0

)
and Mλi (x)

−1
=

(
0 1
1 0

)
M−λi (x)

−1

Bi Bi+1
Ci

Vi

Bi Bi+1

Figure 4. For each 1 ≤ i ≤ n − 2, the sets Ci (left) and Vi (right) are
contained in Bi ∩ Bi+1.
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and so

M−λi (x)
(

e
√

−1πT 0
0 1

)
M−λi (x)

−1
= Mλi (x)

(
1 0
0 e

√
−1πT

)
Mλi (x)

−1.

It is clear that

Mλi (x)
(

e
√

−1π t 0
0 1

)
Mλi (x)

−1 and Mλi (x)
(

1 0
0 e

√
−1πT

)
Mλi (x)

−1

commute in PGL2(C), which shows that γi and γi+1 commute on pr−1([x : 1]) in
this case.

If [x : 1] ∈ Ui and [x : 1] /∈ Ui+1 then for some t ∈ [0, 1] depending on x and for
all [Y1 : Y2] ∈ CP1,

γi ([x :1], [Y1 :Y2])=

(
[x :1],

(
Mλi (x)

(
e
√

−1π t 0
0 1

)
Mλi (x)

−1
)

· [Y1 :Y2]

)
γi+1([x :1], [Y1 :Y2])=J ([x :1], [Y1 :Y2])

=

(
[x :1],

(
Mλi+1(x)

(
−1 0
0 1

)
Mλi+1(x)

−1
)

· [Y1 :Y2]

)
where the second equality follows from (the proof of) Lemma 3.2. Therefore, we
can show that γi and γi+1 commute on pr−1([x : 1]) similarly as in the previous case.
By analogous computations, γi and γi+1 commute on pr−1([x : 1]) if [x : 1] ∈ Ui+1

and [x : 1] /∈ Ui . This proves (b).
Finally, note that for all j ̸= k, k +1, the map γk restricts to the identity on e j and

on pr−1(z) for any z /∈ Bk so (γk)∗(e j )= e j and (γk)∗(v)= v. Moreover, γk agrees
with J on pr−1(Bk), meaning that (γk)∗(e j )= v−e j for j = k and j = k +1. This
then determines [γk] ∈ Mod(Mn+1) by Lemma 2.3. A computation shows that the
same holds for Refv−ek−ek+1 ◦ Refek−ek+1 . □

Step 2: Constructing r1, . . . , rn ∈Diff+(MN). For each 1 ≤ k ≤n, the exceptional
divisor ek has a tubular neighborhood νk in pr−1(Vk) that is diffeomorphic to
CP2 − {[0 : 0 : 1]}. Let ik : CP2 − {[0 : 0 : 1]} → νk be this diffeomorphism and
let τ0 be a diffeomorphism of CP2 − {[0 : 0 : 1]} given by complex conjugation,
τ0 : [X : Y : Z ] 7→ [X̄ : Ȳ : Z̄ ].

Consider a smooth path η : (0, 1)→ SO(4) such that

η(t)=

{
diag(1,−1, 1,−1) if t ∈ (1 − ε, 1)
Id if t ∈ (0, ε)

for some 0< ε≪ 1. Let B denote the punctured ball in CP2 −{[0 : 0 : 1]} given by

B := {[a + b
√

−1 : c + d
√

−1 : 1] ∈ CP2 : 0< ∥(a + b
√

−1, c + d
√

−1)∥< 1},
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identifying it with (0, 1)× S3
⊆ R4, and define τ ∈ Diff+(CP2 − {[0 : 0 : 1]}) by

τ =

{
τ0 on CP2 − B,
(t, x) 7→ (t, η(t)x) on B ∼= (0, 1)× S3.

Then τ is compactly supported in CP2 − {[0 : 0 : 1]}.

Definition 3.5. For all 1 ≤ k ≤ n, let rk ∈ Diff+(MN ) be

rk :=

{
ik ◦ τ ◦ i−1

k on νk,

Id on MN − νk .

Remark 3.6. By construction, the diffeomorphism rk restricts to an orientation-
reversing diffeomorphism of ek and preserves the homology classes ei for all
i ̸= k and v. This forces [rk] = Refek ∈ Mod(MN ) by Lemma 2.3. Moreover,
supp(rk)⊆ νk ⊆ pr−1(Vk) and rk preserves νk ⊆ pr−1(Vk).

Step 3: Constructing ρv : 3v → Diff+(MN). The generators f1, . . . , fn−1 of 3v
(cf. Lemma 2.5) will be mapped under ρv to the following diffeomorphisms.

Lemma 3.7. For each 1 ≤ k ≤ n − 1, let

ϕk := rk ◦ rk+1 ◦ γk .

Then ϕi ◦ϕ j = ϕ j ◦ϕi for any 1 ≤ i, j ≤ n − 1.

Proof. For any 1≤ i, j ≤n−1, the diffeomorphisms ϕi and ϕ j commute if |i− j |>1
because they have disjoint support. For any 1 ≤ i ≤ n − 2,

ϕi |pr−1(Vi+1) = (ri+1 ◦J )|pr−1(Vi+1) = ϕi+1|pr−1(Vi+1)

so ϕi and ϕi+1 commute on pr−1(Vi+1). Moreover on Si := pr−1(Bi ∩ Bi+1)−

pr−1(Vi+1)

ϕi |Si = γi , ϕi+1|Si = γi+1

and so ϕi and ϕi+1 commute on pr−1(Bi ∩ Bi+1) by Proposition 3.4(b). Finally, ϕi

and ϕi+1 commute on Mn+1 − pr−1(Bi ∩ Bi+1) because supp(ϕi )∩ supp(ϕi+1) is
contained in pr−1(Bi ∩ Bi+1). □

It remains to construct the image of the last generator g of 3v under ρv.

Lemma 3.8. The map

ψ =

{
ϕ1 ◦ϕ1 on pr−1(V1)

Id on Mn+1 − pr−1(V1).

is a well-defined diffeomorphism, which commutes with ϕk for all 1 ≤ k ≤ n −1 and
satisfies [ψ] = g = Refe1 ◦ Refv−e1 in Mod(Mn+1),
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Proof. By definition, rk has support contained in the interior of pr−1(Vk) for all
1 ≤ k ≤ n. So r1|C = Id |C on some collar neighborhood C of pr−1(V1), and

ψ |C = (ϕ1 ◦ϕ1)|C = (r1 ◦J ◦r1 ◦J )|C = (J ◦J )|C = Id |C .

Moreover, J , r1, and r2 all preserve pr−1(V1), so the map ψ is indeed a diffeomor-
phism.

The diffeomorphisms ψ and ϕk have disjoint supports for all k > 1. Considering
the subsets pr−1(V1) and Mn+1−pr−1(V1) separately shows that ϕ1 and ψ commute
as well.

Compute for all 2 ≤ k ≤ n that [ψ](ek) = ek because supp(ψ) ⊆ pr−1(V1).
Moreover, ψ agrees with ϕ2

1 on pr−1(V1), meaning that

[ψ](e1)= [ϕ2
1](e1)= e1 + 2v.

Computing that
Refe1 ◦ Refv−e1(ek)= [ψ](ek)

for all 1 ≤ k ≤ n and applying Lemma 2.3 shows that [ψ] = g. □

Proposition 3.9. There is a homomorphism ρv :3v → Diff+(MN ) defined by

ρv( fk) := ϕk for all 1 ≤ k ≤ n − 1, ρv(g) := ψ,

where g and fk for 1 ≤ k ≤ n − 1 are the generators of 3v as given in Lemma 2.5.
Moreover,

(a) ρv is a section of the map q : Diff+(MN ) → Mod(MN ) restricted to 3v ≤

Mod(MN ), and

(b) for all ϕ ∈ ρv(3v),

(pr ◦ϕ)|
MN −

n⋃
i=1

pr−1(Vi )

= pr |MN −
⋃n

i=1 pr−1(Vi )
.

Hence ρv(3v) almost preserves the Lefschetz fibration pr : MN → CP1.

Proof. By Lemma 2.5, 3v ∼= Zn is generated by f1, . . . , fn−1, g. By Lemmas 3.7
and 3.8, the image of ρv is abelian and therefore ρv is a well-defined homomorphism.

Compute using Proposition 3.4(c) and Remark 3.6 that

[ρv( fk)]=[rk]◦[rk+1]◦[γk]=Refek ◦ Refek+1 ◦ Refv−ek−ek+1 ◦ Refek−ek+1 = fk ∈3v.

Lemma 3.8 shows that [ρv(g)] = g. Therefore, ρv is a section of the quotient map
q : Diff+(MN )→ Mod(MN ) restricted to 3v ≤ Mod(MN ).

Finally, supp(rk)⊆ pr−1(Vk) for all 1 ≤ k ≤ n (cf. Remark 3.6). By Proposition
3.4(a), pr ◦γk = pr for all 1 ≤ k ≤ n − 1, so

ϕk |MN −
⋃n

i=1 pr−1(Vi )
= γk |MN −

⋃n
i=1 pr−1(Vi )

.
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By Lemma 3.8,
ψ |MN −

⋃n
i=1 pr−1(Vi )

= Id |MN −
⋃n

i=1 pr−1(Vi )
.

Hence pr ◦ϕ = pr restricted to MN −
⋃n

i=1 pr−1(Vi ) for all ϕ ∈ ρv(3v) and so
ρv(3v) almost preserves pr. □

Step 4: Extension to any primitive, isotropic class w of minimal genus 0. With
the constructions above in hand, we conclude the proof of Theorem 1.4.

Proof of Theorem 1.4. Because w is a primitive, isotropic class of minimal genus 0,
there exists some α ∈ Diff+(MN ) such that [α](w)= v by a theorem of Li–Li ([15,
Theorem 4.2]). Using the definitions of hv and hw (cf. Lemma 2.6), compute that

3v = [α] ◦3w ◦ [α−1
]

and define ρw :3w → Diff+(MN ) by

ρw( f )= α−1
◦ ρv([α] ◦ f ◦ [α−1

]) ◦α

where ρv :3v → Diff+(MN ) is the homomorphism constructed in Proposition 3.9.
Compute that for all x ∈ MN −

⋃n
k=1(pr ◦α)−1(Vk),

(pr ◦α) ◦ ρw( f )(x)= pr ◦ρv([α] ◦ f ◦ [α−1
]) ◦α(x)= (pr ◦α)(x)

because pr ◦ρv([α]◦ f ◦[α−1
])= pr on MN −

⋃n
k=1 pr−1(Vk) by Proposition 3.9(b).

Hence ρw(3w) almost preserves pr ◦α, which is holomorphic for some complex
structure on MN . Finally, compute by Proposition 3.9(a) that for any f ∈3w,

q ◦ ρw( f )= q(α−1
◦ ρv([α] ◦ f ◦ [α−1

]) ◦α)

= [α−1
] ◦ (q ◦ ρv)([α] ◦ f ◦ [α−1

]) ◦ [α] = f. □

If 2 ≤ N ≤ 8, Theorem 1.4 holds for any primitive, isotropic class in H2(MN ; Z).

Corollary 3.10. Let 2 ≤ N ≤ 8 and let w ∈ H2(MN ; Z) be any primitive, isotropic
class. There exists a homomorphism ρw :3w → Diff+(MN ) such that the following
diagram commutes:

Diff+(MN )

3w Mod(MN )

qρw

The image ρw(3w) almost preserves a holomorphic genus-0 Lefschetz fibration
p : MN → CP1 whose generic fiber represents the homology class w.

Proof. If 2 ≤ N ≤ 8 and w ∈ H2(MN ; Z) is a primitive, isotropic class then
Lemma 2.7(b) says that the minimal genus of w is 0. Now apply Theorem 1.4. □
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4. Theorem 1.5: individual elements of the stabilizer Stab(w) of w

We next prove Theorem 1.5 using the diffeomorphisms constructed in Section 3.
The following lemma considers the subgroup Sn ≤ Stab(v)∩ Stab(s)≤ Mod(MN )

given by permuting the classes e1, . . . , en . In other words, we consider the subgroup
⟨Refek−ek+1 : 1 ≤ k ≤ n − 1⟩ of Mod(MN ).

Lemma 4.1. For each 1≤k ≤n−1, there exist sk ∈Diff+(MN ) and τk ∈Diff+(CP1)

such that

(a) pr ◦sk = τk ◦ pr, and

(b) [sk] = Refek−ek+1 ∈ Mod(MN ).

Proof. Let A :=
(

−1
0

0
1

)
∈ PGL2(C), so A has order 2 and A([1 : 1])=[−1 : 1] ∈ CP1.

There exists a neighborhood D diffeomorphic to a disk D2 of the path {[t : 1] : t ∈

[−1, 1]} ⊆ CP1 that is preserved by A. Let ιk : D ↪→ CP1 be a smooth embedding
with image contained in Bk − Uk and

ιk([−1 : 1])= [ak : 1], ιk([1 : 1])= [ak+1 : 1],

so that ιk is holomorphic if restricted to small neighborhoods of [1 : 1] and [−1 : 1]

in D. Now let τk ∈ Diff+(CP1) be a diffeomorphism such that

τk =

{
ιk ◦ A ◦ ι−1

k on ιk(D)⊆ Bk − Uk,

Id on CP1
− Bk .

Consider the diffeomorphism s : (X, Y ) 7→ (τk(X), Y ) of CP1
×CP1 which extends

to a diffeomorphism sk of MN because s is holomorphic on a neighborhood of
pr−1([ai : 1]) for all 1 ≤ i ≤ n. By construction, pr ◦sk = τk ◦ pr. Moreover, if
i ̸= k or k +1 then sk acts as the identity on ei but sk(ek)= ek+1 and sk(ek+1)= ek .
Hence [sk] = Refek−ek+1 by Lemma 2.3 because [sk] ∈ Stab(v). □

We may assume that for all 1 ≤ k ≤ n −1, the choice of Vk, Vk+1 ⊆ CP1 satisfies
Vk, Vk+1 ⊆ ιk(D) and τk(Vk)= Vk+1, where ιk : D ↪→ CP1 is the embedding defined
in the proof of Lemma 4.1. This also implies that τk(Vk+1)= Vk because τk |ιk(D)

has order 2.

Proof of Theorem 1.5. The theorem holds for N = 1 because then Stab(w)= 1. Now
assume that N ≥ 2 and thatw= v. Since h ∈ Stab(v), we may write h = f ◦σ where
f ∈3v and σ ∈ Aut(Z{e1, . . . , en}, QMN )

∼= O(n)(Z) by Lemma 2.6. Furthermore,
the action of O(n)(Z) on Z{e1, . . . , en} preserves the set {e1, . . . , en,−e1, . . . ,−en}

of classes of norm −1. The action of O(n)(Z) on the set of n unordered pairs
{ek,−ek} with 1 ≤ k ≤ n defines a homomorphism O(n)(Z) → Sn with kernel
⟨Refek : 1 ≤ k ≤ n⟩ ∼= (Z/2Z)n . Moreover, this homomorphism admits a sec-
tion with image ⟨Refek−ek+1 : 1 ≤ k ≤ n − 1⟩ ≤ O(n)(Z). In other words, any



306 SERAPHINA EUN BI LEE

element σ ∈ Aut(Z{e1, . . . , en}, QMN ) can be written as a product [r ] ◦ [s] ∈

Aut(Z{e1, . . . , en}, QMN ) where

r ∈ ⟨rk : 1 ≤ k ≤ n⟩ ≤ Diff+(MN ) and s ∈ ⟨sk : 1 ≤ k ≤ n − 1⟩ ≤ Diff+(MN ),

by Remark 3.6 and Lemma 4.1(b). Let

ϕ := ρv( f ) ◦ r ◦ s ∈ Diff+(MN )

where ρv : 3v → Diff+(MN ) is the homomorphism from Proposition 3.9. By
construction, [ϕ] = h.

Note that

pr ◦ρv( f ) ◦ r |MN −
⋃n

i=1 pr−1(Vi )
= pr |MN −

⋃n
i=1 pr−1(Vi )

by Proposition 3.9(b) and by Remark 3.6. By Lemma 4.1(a), there exists τ ∈

Diff+(CP1) such that pr ◦s = τ ◦ pr and τ preserves
⋃n

i=1 pr−1(Vi ). Hence

pr ◦ϕ|
MN −

n⋃
i=1

pr−1(Vi )

= pr ◦(ρv( f ) ◦ r ◦ s)|
MN −

n⋃
i=1

pr−1(Vi )

= τ ◦ pr |
MN −

n⋃
i=1

pr−1(Vi )

,

which shows that ϕ almost preserves pr.
Take any other primitive, isotropic class w ∈ H2(MN ; Z) with minimal genus 0;

we proceed similarly as in the proof of Theorem 1.4. Apply Li–Li [15, Theorem 4.2]
to obtain α ∈ Diff+(MN ) such that [α](w)= v and [α] ◦h ◦ [α−1

] ∈ Stab(v). There
exists a diffeomorphism ϕ ∈ Diff+(MN ) almost preserving pr : MN → CP1 with
[ϕ] = [α]◦h◦[α−1

]. Then α−1
◦ϕ◦α almost preserves pr ◦α, and [α−1

◦ϕ◦α] = h.
□

Corollary 4.2. Let 2 ≤ N ≤ 8 and let w ∈ H2(MN ) be any primitive, isotropic
class. For any h ∈ Stab(w), there exists ϕ ∈ Diff+(MN ) almost preserving some
holomorphic genus-0 Lefschetz fibration p : MN → CP1 whose generic fiber
represents the homology class w such that [ϕ] = h ∈ Mod(MN ).

Proof. If 2 ≤ N ≤ 8 and w ∈ H2(MN ; Z) is a primitive, isotropic class then
Lemma 2.7(b) says that the minimal genus of w is 0. Now apply Theorem 1.5. □
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LOWER BOUNDS FOR
FRACTIONAL ORLICZ-TYPE EIGENVALUES

ARIEL SALORT

We establish precise lower bounds for the eigenvalues and critical values
associated with the fractional A-Laplacian operator, where A is a Young
function. The obtained bounds are expressed in terms of the domain geome-
try and the growth properties of the function A. We do not assume that A or
its complementary function satisfies the 12 condition.

1. Introduction

One of the central problems in the analysis of p-Laplacian type operators is the
study of its eigenvalues, which are closely related to the structure of the underlying
domain and the boundary conditions imposed. In particular, the first eigenvalue

λ1 = inf
{∫

�

|∇u|
p dx for u ∈ C∞

c (�) such that
∫
�

ω(x)|u|
p dx = 1

}
related to the nonlinear problem defined for p > 1 as{

−div(|∇u|
p−2

∇u)= λω|u|
p−2u in �,

u = 0 on ∂�,
(1-1)

has been extensively studied, as it provides important information about the behavior
of solutions to the geometry of the domain. Here ω is a suitable weight function
and �⊂ Rn denotes an open and bounded set. See for instance [29; 30].

While upper bounds for eigenvalues have been established in a variety of settings,
obtaining sharp lower bounds remains a challenging and active area of research.
Lower bounds are of particular importance because they offer insights into the
stability and regularity of solutions, as well as estimates for the oscillatory behavior
of eigenfunctions.

In the one-dimensional case with a weight function, lower bounds were obtained
in [17; 28; 34; 35; 40]. When �⊂ Rn , n ≥ 2 several results are known. In [6; 16],
lower bounds in terms of the measure of the domain were obtained. Indeed, when
ω ∈ Lθ (�) then we have
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C

|�|
p
n −

1
θ ∥ω∥Lθ (�)

≤ λ1 where θ =

{
θ0 ∈

( n
p ,∞

]
when 1< p < n

1 when n < p,

where C = C(n, p)> 0. In addition, in [33; 35], more accurate bounds involving the
inner radius r� of � are obtained as a consequence of Lyapunov type inequalities:

(1-2)
C

r
p−

n
θ

� ∥ω∥Lθ (�)

≤ λ1 where θ =

{
θ0 ∈

( n
p ,∞

]
when 1< p < n,

1 when n < p,

where C = C(n, p) > 0 and r� := max{dist(x, ∂�) : x ∈�} is the inradius of �. In
[26] these results were extended to the nonlocal case, obtaining that when ω∈ Lθ (�)

(1-3)
C

r
sp−

n
θ

� ∥ω∥Lθ (�)

≤ λs
1 where θ =

{
θ0 ∈

( n
sp ,∞

]
when 1< sp < n,

1 when n < sp,

where λs
1 is the first eigenvalue related to the fractional p-Laplacian operator of

order s ∈ (0, 1).
When operators follow a growth more general than a power law, the concept of

eigenvalue becomes highly dependent on the normalization of the eigenfunction
due to the potential lack of homogeneity. More precisely, equation (1-1) can be
generalized by replacing the power p with a so-called Young function: given a
Young function A, and a bounded domain �⊂ Rn , n ≥ 1, consider the problem

(1-4)

{
−div

(
a(|∇u|)

∇u
|∇u|

)
= λωa(|u|)

u
|u|

in �,

u = 0 on ∂�,

where λ ∈ R is the eigenvalue parameter, ω is a suitable weight function and
a(t)= A′(t), t > 0. Observe that (1-4) boils down to (1-1) when A(t)= t p, p > 1.

In this case, in [23; 25] it is proved that given α > 0 there exists a critical value
λ1,α > 0 and a function uα such that

∫
�
ωA(|uα|) dx = α and 1

α

∫
�

A(|∇uα|) dx =

λ1,α. From this, one can deduce the existence of an eigenvalue 31,α with corre-
sponding eigenfunction uα in the sense that pair (31,α, uα) satisfies (1-4) in the
weak sense. The quantities 31 and λ1 are in general different and coincide only
when A is homogeneous.

A first result concerning the lower bounds of (1-4) can be found in [32]. In the
one-dimensional case, assuming that A satisfies the 12 condition (that is, there
exists c ≥ 1 such that A(2t)≤ cA(t) for any t > 0), the authors establish that for
any α > 0,

C p

∥ω∥L1(a,b)
≤ λ1,α

where �= (a, b)⊂ R, and p> 1 is defined as limr→∞ A(r t)/A(r)= t p−1. Similar
bounds in the one-dimensional case were found in [39] when A is a submultiplicative
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Young function (that is, there exists c ≥ 1 such that A(r t) ≤ cA(r)A(t) for any
r, t ≥ 0).

When �⊂ Rn , n ≥ 1 and A is a submultiplicative Young function, in Theorems
4.4 and 4.2 of [37] it is proved that given α > 0 there exists a computable constant
C > 0, independent of α and depending only on A and n, such that

1
α

[
A

(
Cσ(r�)

A−1
(
∥ω∥

−1
L1(�)

))]−1

≤ λ1,α when ω ∈ L1(�) and σ(1) <∞,

1
α

[
A

(
C

A−1
(
∥ω∥

−1
L∞(�)/τA(�)

))]−1

≤ λ1,α when ω ∈ L∞(�) and σ(1)= ∞,

where

σ(t)=

∫
∞

t−n
A−1(r)r−(1+

1
n ) dr and τA(�) := |�|( Ã)−1(|�|

−1),

Ã being the complementary function of A. These inequalities, in the case A(t)= t p,
p > 1, recover the corresponding inequalities in (1-2).

In the last years nonlocal operators with nonstandard growth have received an
increasing amount of attention and an active community is currently working on
problems involving operators defined in terms of a Young function A(t)=

∫ t
0 a(τ ) dτ

having the form

(−1a)
su(x)= p.v.

∫
Rn

a(|Dsu|)
Dsu

|Dsu|

dy
|x − y|n

,

where s ∈ (0, 1), Dsu(x, y)= (u(x)−u(y))/|x − y|
s and p.v. stands for “principal

value”. This nonhomogeneous operator is a generalization of the fractional p-
Laplacian of order s ∈ (0, 1). See also [1; 2; 3; 4; 8; 12; 13; 14; 19; 20; 18; 21; 22;
36; 37; 38]. In particular, the nonlocal version of problem (1-4) takes the form

(1-5)

(−1a)
su = λω

a(|u|)

|u|
u in �,

u = 0 on ∂�.

where λ ∈ R is the eigenvalue parameter and ω is a suitable weight function. We
refer to [7; 12; 15; 19; 22; 36; 37; 38] for properties and results related with the
nonlocal nonstandard growth eigenvalue problem (1-5).

As in the local case, the nonhomogeneity of the problem makes the eigenvalue
highly dependent on the normalization of the eigenfunction. More precisely, in
[36; 38] it is proved that given α > 0 there exists a critical value λs

1,α > 0 and us
α

such that
∫
�
ωA(|us

α|) dx = α and 1
α

∫
�

A(|Dsus
α|) dx = λs

1,α. More precisely, we
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consider

(1-6) λs
1,α = inf

{
1
α

∫∫
R2n

A(|Dsu|) dνn : u ∈ C∞

c (�),

∫
�

ωA(|u|) dx = α

}
,

where dνn = |x − y|
−n dx dy and ω is a suitable weight function.

From this can be deduced the existence of an eigenvalue3s
1,α with corresponding

eigenfunction us
α in the sense that pair (3s

1,α, us
α) satisfies (1-5) in the weak sense,

being 3s
1 and λs

1 different when A is inhomogeneous, but comparable each other
when A satisfies the doubling condition.

To the best of our knowledge, estimates for3s
1,α and λs

1,α have not been previously
studied in the literature. The goal of this article is to establish lower bounds for
these quantities.

An important aspect of analyzing (1-5) is whether the Young function A satisfies
a so-called doubling condition. This condition is crucial for controlling constants
within the function:

◦ A satisfies the doubling condition near infinity (denoted as A ∈1∞

2 ) if there
exists C∞ ≥ 2 such that A(2t)≤ C∞ A(t) for all t ≥ T∞,

◦ A satisfies the doubling condition near zero (denoted as A ∈10
2) if there exists

C0 ≥ 2 such that A(2t)≤ C0 A(t) for all t ≤ T0.

◦ A satisfies the global doubling condition (denoted as A ∈12) if the previous
condition and fulfilled, and it is denoted 12 =10

2 ∩1∞

2 .

Assuming or relaxing the doubling condition introduces significant technical chal-
lenges in the analysis, such as the potential loss of reflexivity in the associated
fractional Orlicz–Sobolev spaces. Moreover, imposing this condition on either the
function A or its conjugate Ã is known to yield both upper and lower bounds for
the corresponding Young function in terms of power functions. For further details,
see Section 2.1.

To characterize the growth of a general Young function A (which may not satisfy
the doubling condition), we use the Matuszewska–Orlicz functions associated with
A, along with the corresponding indexes, defined as follows:

MA(t)= sup
α>0

A(αt)
A(α)

, M0(t, A)= lim inf
α→0+

A(αt)
A(α)

, M∞(t, A)= lim inf
α→∞

A(αt)
A(α)

,

i(A)= lim
t→∞

log MA(t)
log t

, i0(A)= lim
t→∞

log M0(t, A)
log t

, i∞(A)= lim
t→∞

log M∞(t, A)
log t

.

See Section 2.2 for details and precise definitions.

Main results. We emphasize that, unless explicitly stated otherwise, we do not
assume the 12 condition on A or its complementary function Ã.
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Theorem 1.1. Let s ∈ (0, 1) and let A be a Young function satisfying (2-4). Let
�⊂ Rn be an open bounded domain with inner radius r�. Given ω ∈ L1(Rn) and
α > 0, consider the critical value λs

1,α defined in (1-6).

(i) There exists a unique α0 > 0 satisfying the equation

α0λ
s
1,α0

= rn
�.

(ii) Assume that i0(A) > n
s when α ≤ α0 or i∞(A) > n

s when α > α0. Then, there
exists a positive, computable constant C = C(n, s, A) such that

C
∥ω∥L1(�)

rn
�

MA(r s
�)

≤ λs
1,α.

In particular, this holds when i0(A) > n
s if α≪ 1 or when i∞(A) > n

s if α≫ 1.

In Section 2.3, we compute the Matuszewska–Orlicz functions and indices
for several notable Young functions. With this, we state Theorem 1.1 for some
interesting cases:

(i) When A(t)= t p, p > 1 the eigenvalue problem becomes homogeneous. Then,
for any α > 0, when sp > n, we have

1
∥ω∥L1(�)

C

r sp−n
�

≤ λs
1,α

which in some extent recovers (1-3).

(ii) Given 1 < p < q < ∞, consider A(t) =
t p

p +
tq

q . Then A ∈ 12. This gives
the eigenvalue problem for the fractional p-q-Laplacian (see for instance [5]).
When α ≪ 1 and sp > n, or α ≫ 1 and sq > n, we have

1
∥ω∥L1(�)

C

max{r sp−n
� , r sq−n

� }
≤ λs

1,α.

(iii) Given p, q, r ≥ 1, consider A(t)= t p lnr (1 + tq). Then A ∈12. When α≪ 1
and s(p + qr) > n, or α ≫ 1 and sp > n, then

1
∥ω∥L1(�)

C

max{r s(p−qr)−n
� , r sp−n

� }

≤ λs
1,α.

(iv) For k ∈ N define A(t)= et
−
∑k−1

j=0 t j/ j !. Then A ∈10
2 but A /∈1∞

2 . When
α ≪ 1 and sk > n, when r� ≤ 1 we have

1
∥ω∥L1(�)

C

r sk−n
�

≤ λs
1,α.
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(v) Consider the function A(t)= eet
− e. Then A ∈10

2 but A /∈1∞

2 . When α≫ 1
we have

1
∥ω∥L1(�)

C
r s−n
�

≤ λs
1,α.

In Theorem 4.1, we also derive a lower bound for the minimizer using the inverse
of the Young function instead of the Matuszewska–Orlicz function. Moreover, in
Corollary 4.2 we prove that the same lower bounds hold for the eigenvalue 3s

1,α
when A ∈12.

Theorem 1.2. Assume that �⊂ Rn is a bounded domain with diameter d� contain-
ing the origin. Let s ∈ (0, 1) and let A be a Young function satisfying conditions
(2-6) and i(A) < n

s . Given ω ∈ L∞(Rn) and α > 0, consider λs
1,α as in (1-6). Then,

there exists a positive constant C = C(n, s, A) such that

C
∥ω∥L∞(�)MA(ds

�)
≤ λs

1,α.

To apply Theorem 1.2, there is an implicit growth condition: the condition
i(A) < n

s is not satisfied when A ̸∈ 10
2 or A ̸∈ 1∞

2 (see Lemma 2.2 for details).
Therefore, this result can be applied only when A ∈12.

Under the assumption of the 12 condition on A, we improve Theorem 1.2 by
replacing the diameter with the inner radius.

Theorem 1.3. Let s ∈ (0, 1) and let A ∈12 be a Young function satisfying (2-7).
Assume that � ⊂ Rn is a bounded Lipschitz domain with inner radius r�. Given
ω ∈ L∞(Rn) and α > 0, consider λs

1,α as in (1-6). Then, there exists a positive
constant C = C(n, s, A) such that

C
∥ω∥L∞(�)MA(r s

�)
≤ λs

1,α.

Here we state some notable examples derived from Theorem 1.3.

(i) When A(t)= t p, p > 1, this gives the eigenvalue problem for the fractional
p-Laplacian, which is homogeneous. Then for any α > 0, when sp < n:

1
∥ω∥L∞(�)

C
r sp
�

≤ λs
1,α

which in some extent recovers (1-3).

(ii) Given 1< p < q <∞, consider A(t)= t p

p +
tq

q . Then A ∈12. This gives the
eigenvalue problem for the fractional p − q-Laplacian (see for instance [5]).
Then, for α > 0, when sq < n, we have

1
∥ω∥L∞(�)

C
max{r sq

� , r
sp
� }

≤ λs
1,α.
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(iii) Given p, q, r ≥ 1, consider A(t) = t p lnr (1 + tq). Then A ∈ 12. Then, for
α > 0, when s(p + qr) < n,

1
∥ω∥L∞(�)

C

max{r sp
� , r

s(p+qr)
� }

≤ λs
1,α.

In particular, Theorem 1.2 establishes these same inequalities but with the diam-
eter in place of the inner radius under the same hypothesis on the parameters.

The same lower bounds established in Theorems 1.2 and 1.3 also hold for the
eigenvalue 3s

1,α, as stated in Corollary 4.3.

2. Preliminaries

2.1. Young functions. A function A : [0,∞)→ [0,∞] is called a Young function
if it is convex, nonconstant, left continuous and A(0)= 0. A function with these
properties admits the representation

A(t)=

∫ t

0
a(τ ) dτ for t ≥ 0,

for some nondecreasing, left continuous function a : [0,∞)→ [0,∞].
The complementary function Ã of A is the Young function defined as

Ã(t)= sup{τ t − A(τ ) : τ ≥ 0} for t ≥ 0.

One has
t ≤ A−1(t)( Ã)−1(t)≤ 2t for t ≥ 0.

From the convexity of the Young function it is immediate that

(2-1) A(r t)≤ r A(t) for 0< r < 1, A(r t)≥ r A(t) for r > 1.

From the integral representation of the Young function it follows that

G(2t) > tg(t), G(t)≤ tg(t).

2.1.1. The doubling condition. A Young function A lies in 1∞

2 (or in 10
2) if and

only if there exists p > 1 and T∞ > 0 (or T0 > 0) such that

(2-2)
ta(t)
A(t)

≤ p for all t ≥ T∞ (or 0< t ≤ T0).

It is easy to see that

• A ∈1∞

2 if there exists C∞ ≥ 2 such that A(2t)≤ C∞ A(t) for all t ≥ T∞, and

• A ∈10
2 if there exists C0 ≥ 2 such that A(2t)≤ C0 A(t) for all t ≤ T0.

We define 12 =10
2 ∩1∞

2 . The following statements are equivalent:
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(i) A ∈12.

(ii) There exists p > 1 such that ta(t)/A(t)≤ p for all t > 0.

(iii) There exists C ≥ 2 such that A(2t)≤ C A(t) for all t > 0.

Proposition 2.1. Let A be a Young function such that A ∈10
2 and let p > 1 be the

number defined in (2-2). Then

τ p A(t)≤ A(tτ)≤ τ A(t) for 0< τ < 1 and t < T0.

Similarly, if A ∈1∞

2 we have

τ A(t)≤ A(tτ)≤ τ p A(t) for τ > 1 and t > T∞.

Hence, if A ∈12, then

min{τ, τ p
}A(t)≤ A(tτ)≤ max{τ, τ p

}A(t) for τ > 0.

2.1.2. Ordering of functions. A Young function A dominates another Young func-
tion B near infinity if there exists a positive constant c and t0 such that

B(t)≤ A(ct) for t ≥ t0.

The functions A and B are called equivalent near infinity if they dominate each
other in the respective range of values of their arguments; in this case we write
A ≃ B.

A ≈ B means that A and B are bounded by each other, up to a multiplicative
constant.

2.2. Matuszewska indexes. The Matuszewska–Orlicz functions associated to the
Young function A are defined by

MA(t)= sup
α>0

A(αt)
A(α)

, M0(t, A)= lim inf
α→0+

A(αt)
A(α)

, M∞(t, A)= lim inf
α→∞

A(αt)
A(α)

.

They are nondecreasing, submultiplicative in the variable t and equal to 1 at t = 1.
We also consider the Matuszewska–Orlicz indices at zero and infinity, defined as

i(A)= lim
t→∞

log MA(t)
log t

, i0(A)= lim
t→∞

log M0(t, A)
log t

, i∞(A)= lim
t→∞

log M∞(t, A)
log t

.

When there is no confusion, we will remove the dependence on A.
It is easy to see that the Matuszewska function can be bounded in terms of powers

if and only if A, Ã ∈12, that is,

(2-3) min{t p+

A , t p−

A } ≤ M(t, A)≤ max{t p−

A , t p+

A }

where p+

A = supt>0 a(t)t/A(t) and p−

A = inft>0 a(t)t/A(t).
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For a comprehensive approach on these functions and indices we refer to the
monograph [31].

2.3. Examples of Young functions. Here we provide for some examples of Young
functions and compute their corresponding Matuszewska functions and indexes.
For further examples we refer to [31].

Example 1. Let p > 1, and assume that

A(t)≃ t p when t ≪ 1.

Then A ∈10
2. In this case we have M0(t)= t p and i0(A)= p. If we assume that

A(t)≃ t p when t ≫ 1,

then A ∈1∞

2 , M∞(t)= t p and i∞(A)= p.
In particular, when A(t)= t p, M(t, A)= M0(t, A)= M∞(t, A)= t p and i(A)=

i0(A)= i∞(A)= p. As a special case, if 1< p < q <∞,

A(t)=
t p

p
+

tq

q
;

then
M0(t, A)= t p, M∞(t, A)= tq , M(t, A)= max{t p, tq

},

and i0(A)= p, i∞(A)= i(A)= q.

Example 2. Let r ≥ 0 and p ≥ 1. Then if

A(t)≃ t p lnr t when t ≪ 1

then A ∈10
2 and in this case, M0(t)= t p and i0(A)= p. If

A(t)≃ t p lnr t when t ≫ 1,

then M∞(t)= t p and i∞(A)= p.
As a special case, if p, q, r ≥ 0 and A(t)= t p lnr (1 + tq) then

M0(t, A)= t p+qr , M∞(t, A)= t p, M(t, A)= max{t p, t p+qr
}

and i(A)= i0(A)= p + qr , i∞(A)= p.

Example 3. For k ∈ N define A(t)= et
−
∑k−1

j=0 t j/ j !. Then A ∈10
2 but A /∈1∞

2 ,
and

M0(t)= tk, M∞(t)=

{
0 if 0< t < 1,
∞ if t > 1,

M(t)=

{
tk if 0< t ≤ 1,
∞ if t > 1,

i0(A)= k, i(A)= i∞(A)= ∞.
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Example 4. For r > 0, assume that A(t)≃ e−t−r
for t ≪ 1. Then A /∈10

2 and

M0(t)=


0 if 0< t < 1,
1 if t = 1,
∞ if t > 1.

In particular, when A(t)= e−t−r
, we have

M∞(A)= 1, M0(t)=


0 if 0< t < 1,
1 if t = 1,
∞ if t > 1,

M(t)=

{
1 if 0< t ≤ 1,
∞ if t > 1.

and i∞(A)= i(A)= 0, i0(A)= ∞.

Example 5. Assume that A(t)≃ eet
for t ≫ 1. Then A /∈1∞

2 and

M∞(t)=


0 if 0< t < 1,
1 if t = 1,
∞ if t > 1.

In particular, when A(t)= eet
− e, since A(t)≃ et when t ≪ 1,

M0(t)= t, M∞(t)=


0 if 0< t < 1,
1 if t = 1,
∞ if t > 1,

M(t)=

{
t if 0< t ≤ 1,
∞ if t > 1,

and i0(A)= 1, i(A)= i∞(A)= ∞.

Lemma 2.2. Let A be a Young function such that A /∈1k
2 for k = 0 or k = ∞. Then

M(t)=

{
1 if t = 1,
∞ if t > 1.

When 0< t < 1 we have M(t)≤ t . Moreover, i(A)= ∞.

Proof. First, observe that from (2-1), we have M(t)≤ t for 0< t < 1.
In light of [11, Proposition 2.1], if A /∈10

2 or A /∈1∞

2 then

Mk(t)=

{
1 if t = 1,
∞ if t > 1,

k = 0,∞, respectively. By definition, M0(t) ≤ M(t) and M∞(t) ≤ M(t) for any
t > 0. This gives immediately that when A /∈ 1k

2 for k = 0 or k = ∞, one has
M(1)= 1 and M(t)= ∞ when t > 1.

Since M(t)= ∞ for t > 1, this gives that i(A)= ∞. □

Lemma 2.3. If A ∈12 then there exists p ≥ 1 such that M(t)= t p.
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Proof. Since A ∈12, there exists q > 1 such that A(r t)≤ max{t, tq
}A(r) for any

t, r ≥ 0. Then M is finite for any t > 0:

M(t)= sup
α>0

A(αt)
A(α)

≤ max{t, tq
}.

Moreover, observe that

M(r t)= sup
α>0

A(trα)
A(rα)

A(rα)
A(α)

≤ sup
α>0

M(t)
A(rα)
A(α)

≤ M(t)M(s)

and M(1)= 1, that is, M(t) is submultiplicative.
Define v(t)= ln(M(et)). This function is additive, that is, v(r + t)= v(r)+v(t)

for any s, t ∈ R. It is well known that measurable additive functions are linear,
therefore, there exists p ∈ R such that v(t) = pt from there M(t) = t p. Finally,
from (2-1),

M(t)≤ t for 0< t < 1 and M(t)≥ t for t > 1.

which implies that p ≥ 1. □

2.4. Some useful inequalities. Given s ∈ (0, 1) and a Young function A such that

(2-4)
∫

∞
(

t
A(t)

) s
n−s

dt <∞

consider the Young function E given by

(2-5) E(t)= t
n

n−s

∫
∞

t

Ã(τ )

τ 1+
n

n−s
dτ for t ≥ 0.

Consider also 9s : (0,∞)→ (0,∞) defined by

9s(r)=
1

rn−s E−1(r−n)
, for r > 0.

Lemma 2.4 [3, Proposition 2.1]. Let s ∈ (0, 1) and let A be a Young function.
Assume (2-4). Then:

(i) The function 9s is nondecreasing.

(ii) Define the Young function B = Ẽ . Then 9s(r)≈ r s B−1(r−n) for r > 0.

(iii) If i∞(A) > n
s then B ≃ A near infinity, and9s(r)≈ r s A−1(r−n) for 0< r ≤ 1.

(iv) If i0(A) > n
s then B ≃ A near 0, and 9s(r)≈ r s A−1(r−n) for r ≥ 1.

The following modular Morrey-type inequality is proved in [3, Remark 4.3]:
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Proposition 2.5. Let s ∈ (0, 1) and let A be a Young function satisfying (2-4). Then,
W s L A(Rn)⊂ C9s(·)(Rn). Moreover, for any u ∈ W s L A(Rn) and x, y ∈ Rn ,

|u(x)− u(y)| ≤ CM |x − y|
s B−1

(
1

|x − y|n

∫∫
R2n

A(Dsu(z, w)) dνn(z, w)
)

for some constant CM depending on n and s, where the Young function B is given
by B(t)= Ẽ(t), being E the Young function defined in (2-5).

The following Hardy type inequality is proved in Theorem 5.1 and Proposition
C in [1].

Proposition 2.6. Let s ∈ (0, 1) and let A be a Young function satisfying i(A) < n
s

and the conditions

(2-6)
∫

∞
(

t
A(t)

) s
n−s

dt = ∞,

∫
0

(
t

A(t)

) s
n−s

dt <∞.

Then for all u ∈ C∞
c (R

n)∫
Rn

A
(

CH1

|u(x)|
|x |s

)
dx ≤ (1 − s)

∫∫
R2n

A(CH2 |D
su|) dνn

for positive constants CH1 and CH2 depending only on n and s.

Given a bounded domain �⊂ Rn , we denote δ�(x) := inf{|x − y| : y ∈�c
} the

distance from x to ∂�.
The following Hardy type inequality is proved in [10, Theorem 1.5].

Proposition 2.7. Let s ∈ (0, 1) and let �⊂ Rn be a bounded Lipschitz domain. If
A ∈12 and

(2-7) lim
k→∞

sup
t≥0

A(kt)

k
n
s A(t)

= 0 = lim
k→0+

sup
t≥0

A(kt)

k
1
s A(t)

,

there exists a positive constant CH3 such that for all u ∈ C∞
c (�)∫

�

A
(

|u(x)|
δ�(x)

)
dx ≤ CH3

∫∫
R2n

A(|Dsu|) dνn.

2.5. Orlicz and Orlicz–Sobolev spaces. The main reference for Orlicz spaces is
the book [27]. For Orlicz–Sobolev spaces, the reader can consult [24], for instance.
Fractional-order Orlicz–Sobolev spaces, as we will use them here, were introduced
in [18] and then further analyze by several authors. The results used in this paper
can be found in [1; 2; 19].
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2.5.1. Orlicz spaces. Given a bounded domain �⊂ Rn and a Young function A,
the Orlicz class is defined as

LA(�) :=

{
u ∈ L1

loc(�) :

∫
�

A(|u|) dx <∞

}
.

The Orlicz space L A(�) is defined as the linear hull of LA(�) and is characterized
as

L A(�)=

{
u ∈ L1

loc(�) : there exists k > 0 such that
∫
�

A
(

|u|

k

)
dx <∞

}
.

In general the Orlicz class is strictly smaller than the Orlicz space, and LA(�)=

L A(�) if and only if A ∈ 1∞

2 . The space L A(�) is a Banach space when it is
endowed, for instance, with the Luxemburg norm, i.e.,

∥u∥L A(�) = ∥u∥A := inf
{

k > 0 :

∫
�

A
(

|u|

k

)
dx ≤ 1

}
.

This space L A(�) turns out to be separable if and only if A ∈1∞

2 .
An important subspace of L A(�) is E A(�) that it is defined as the closure of

the functions in L A(�) that are bounded. This space is characterized as

E A(�)=

{
u ∈ L1

loc(�) :

∫
�

A
(

|u|

k

)
dx <∞ for all k > 0

}
.

This subspace E A(�) is separable, and we have the inclusions

E A(�)⊂ LA(�)⊂ L A(�)

with equalities if and only if A ∈ 1∞

2 . Moreover, the following duality relation
holds

(E A(�))∗ = L Ã(�),

where the equality is understood via the standard duality pairing. This automatically
implies that L A(�) is reflexive if and only if A, Ã ∈1∞

2 .

2.5.2. Fractional Orlicz–Sobolev spaces. Given a fractional parameter s ∈ (0, 1),
we define the Hölder quotient of a function u ∈ L A(�) as

Dsu(x, y)=
u(x)− u(y)

|x − y|s
.

Then, the fractional Orlicz–Sobolev space of order s is defined as

W s L A(Rn) := {u ∈ L A(Rn) : Dsu ∈ L A(R2n, dνn)},

where dνn = |x − y|
−n dx dy and

W s E A(Rn) := {u ∈ E A(Rn) : Dsu ∈ E A(R2n, dνn)}.
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When A ∈12, these spaces coincide and we write

W s,A(Rn)= W s L A(Rn)= W s E A(Rn).

The space W s L A(Rn) is reflexive if and only if A, Ã ∈12.
In these spaces the norm considered is

∥u∥W s L A(Rn) = ∥u∥s,A = ∥u∥A + [u]s,A,Rn

with

[u]s,A,Rn = inf
{

k > 0 :

∫∫
R2n

A
(

|Dsu(x, y)|
k

)
dνn ≤ 1

}
.

Again, with this norm, W s L A(Rn) is a Banach space and W s E A(Rn) is a closed
subspace. The space W s

0 L A(�) is then defined as the closure of C∞
c (�) with

respect to the topology σ(W s L A(Rn),W s E Ã(Rn)) and W s
0 E A(�) as the closure

of C∞
c (�) in norm topology.

3. Eigenvalues and critical points

Let A be a Young function, and let �⊂ Rn be an open and bounded set. For a fixed
normalization parameter α > 0, we define the critical point λs

1,α as

(3-1) λs
1,α = inf

{
1
α

∫∫
R2n

A(|Dsu|) dνn : u ∈ C∞

c (�),

∫
�

ωA(|u|) dx = α

}
.

Here, ω is a suitable positive weight function. We assume that ω ∈ L1(Rn) when
(2-4) holds, and ω ∈ L∞(Rn) when (2-6) holds.

In [38] (see also [36] when A ∈ 12) it is proved that (3-1) is solvable, that is,
there exists a minimizer us

α ∈ W s
0 L A(�) such that

∫
�
ωA(|us

α|) dx = α and

(3-2)
∫∫

R2n
A(|Dsus

α|) dνn = λs
1,α

∫
�

ωA(|us
α|) dx .

By applying an appropriate version of the Lagrange multipliers theorem, we can
establish the existence of an eigenvalue 3s

1,α with corresponding eigenfunction us
α .

More precisely, uα is a weak solution to the following equation, with 3=3s
1,α:

(3-3)

{
(−1a)

su =3ω
a(|u|)

|u|
u in �

u = 0 on ∂�,

with a(t)= A′(t) for t > 0, and where the fractional a-Laplacian of order s ∈ (0, 1)
is the nonlocal and nonstandard growth operator defined as

(−1a)
su(x)= p.v.

∫
Rn

a(|Dsu|)
Dsu

|Dsu|
dνn,
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that is, for all v ∈ C∞
c (�)∫∫

R2n
a(|Dsus

α|)
Dsus

αDsv

|Dsus
α|

dνn =3s
1,α

∫
�

ωa(|us
α|)

us
αv

|us
α|

dx .

Refer also to [9; 19] for the existence of higher-order eigenvalues.

Lemma 3.1. Let A be a Young function such that A′(t)= a(t) for any t ≥ 0. Then

1
pA
3s

1,α ≤ λs
1,α ≤ pA3

s
1,α.

The number pA := supβ>0 a(β)β/A(β) is finite if and only if A ∈12.

Proof. Given α > 0, consider the critical point λs
1,α associated to the minimizing

function us
α such that

∫
�

A(|uα|) dx = α. Observe that

(3-4)
∫
�

ωA(|us
α|) dx ≥ inf

β>0

A(β)
a(β)β

∫
�

ωa(|us
α|)|u

s
α| dx =

1
pA

∫
�

ωa(|us
α|)|uα| dx .

Moreover, since a(t)= A′(t) is increasing, A(t)=
∫ t

0 a(τ ) dτ ≤ a(t)t for any t > 0.
This fact, together with (3-4) gives that

λs
1,α =

∫
�

A(|Dsus
α|) dνn∫

�
ωA(|us

α|) dνn
≤

∫
�

a(|Dsus
α|)|D

sus
α| dνn

1
pA

∫
�
ωa(|us

α|)|us
α| dx

= pA3
s
1,α.

The other bound is analogous. Finally, note that pA <∞ if and only if A ∈12. □

For example, the number pA as defined in Lemma 3.1, takes the following form
for the following notable Young functions A ∈12.

(i) Let p > 1 and A(t)= t p then pA = p.

(ii) Let p, q > 1, r ≥ 0 and consider A(t) = t p/p + tq/q. Then pA = q when
t ≥ 1 and pA = p when t < 1.

(iii) Let p, q > 1, r ≥ 0 and consider A(t)= (t p/p) lnr (1+ tq). Then pA = p+qr .

Lemma 3.2. For α > 0 define the function E(α) := αλs
1,α. Then E is strictly

positive, strictly increasing, E(0) = 0, E(∞) = ∞ and E is a Lipschitz function
for α > 0.

In particular, that λ1,1 ≤ αλs
1,α when α > 1 and αλs

1,α ≤ λ1,1 when α < 1.

Proof. Given β > 0 and a fixed function u ∈ C∞
c (�) such that

∫
�

A(|uβ |) dx = β,
since A is continuous and nondecreasing, if we define the function φ : R+ → R+ by

φ(r)=

∫
�

A(r |uβ |) dx,
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it follows that φ is continuous, nondecreasing, φ(0)= 0, φ(1)= β and φ(∞)= ∞.
Hence, for any α > 0 there exists rα > 0 such that φ(rα)= α and in particular

rα < 1 when α < β, rα > 1 when α > β,(3-5)

rα → 0 when α → 0, rα → ∞ when α → ∞.(3-6)

Let us see that E is strictly increasing. Let 0< α < β and in light of (3-2), let
uβ ∈ W s

0 E A(�) be such that∫
�

A(|uβ |) dx = β, λs
1,β =

1
β

∫∫
R2n

A(|Dsuβ |) dνn.

By (3-5) there exists rα < 1 such that
∫
�

A(rα|uβ |) dx = α. Therefore, using the
convexity of A we obtain the desired inequality:

αλs
1,α ≤

∫∫
R2n

A(rα|Dsuβ |) dνn ≤ rα

∫∫
R2n

A(|Dsuβ |) dνn < βλ
s
1,β .

Moreover, from the previous inequality together with (3-6) we get that

0 ≤ lim
α→0+

E(α)≤ lim
α→0+

rα

∫∫
R2n

A(|Dsuβ |) dνn = E(β) lim
α→0+

rα = 0,

from where E(0) = 0. E(α) is lower semicontinuous by [11, Lemma 4.3], and
then lim infα→∞ E(α)≥ ∞. Finally, E is Lipschitz continuous by Theorem 4.5 in
[11]. □

Proposition 3.3. Let A be a Young function and let �⊂ Rn be open and bounded,
let B1 ⊂ Rn be a ball such that |�| = |B1| and let B2 ⊂� be a ball. Then

λs
1,α(B1)≤ λs

1,α(�)≤ λs
1,α(B2).

Proof. Let u ∈W s
0 L A(�) be such that

∫
�

A(|u|) dx =α. Denote by u∗ the symmetric
rearrangement of u. Thus, u∗ is radially decreasing about 0 and is equidistributed
with u. Using the Pólya–Szegő principle stated in [2, Theorem 3.1] we get∫∫

R2n
A(|Dsu∗

|) dνn ≤

∫∫
R2n

A(|Dsu|) dνn.

Hence, if B1 is a ball of same measure of �, since
∫

B1
A(|u∗

|) dx = α, we get

λs
1,α(B1)≤ λs

1,α(�).

On the other hand, consider a ball B2 ⊂� and the function u B2 ∈ W s
0 L A(B2) such

that
∫

B A(|u B2 |) dx =α to be a minimizer for λs
1,α(B2). Define v∈ W 1,A

0 (�) defined
as the extension of u B2 by zero outside�. Then

∫
�

A(|v|) dx =
∫
�

A(|u B2 |) dx =α
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and therefore v is admissible in the variational characterization of λs
1,α(�). Hence

λs
1,α(�)≤

1
α

∫∫
R2n

A(|Dsv|) dνn = λs
1,α(B2),

which concludes the proof. □

4. Lower bounds of critical values and eigenvalues

Proof of Theorem 1.1. Fix α > 0 and let us
α ∈ W s

0 L A(�) be a minimizer of (3-1)
such that

∫
�
ωA(|us

α|) dx =α, i.e., the pair (us
α, λ

s
1,α) satisfies equation (3-2), where

λs
1,α is defined in (3-1). Since s ∈ (0, 1) is fixed, for simplicity we will drop the

dependence on s.
In light of Proposition 2.5, uα is continuous and so there exists x0 ∈� such that

|uα(x0)| = max{|uα(x)| : x ∈ Rn
}> 0.

From Proposition 2.5, for any x, y ∈ Rn we have

|uα(x)− uα(y)| ≤ CM |x − y|
s B−1

(
1

|x − y|n

∫∫
R2n

A(|Dsuα|) dνn

)
,

where the Young function B complementary to the Young function defined in (2-5).
We take x = x0, y ∈ ∂�; the previous expression becomes

|uα(x0)| ≤ CM |x0 − y|
s B−1

(
1

|x0 − y|n

∫∫
R2n

A(|Dsuα|) dνn

)
.

Using expression (3-2) and item (ii) of Lemma 2.4, since 9s(r)≈ r s B−1(r−n) for
all r > 0, there exists c1 > 0 depending only on n and s such that

|uα(x0)| ≤ CM |x0 − y|
s B−1

(
λ1,α

|x0 − y|n

∫
�

ωA(|uα|) dx
)

= CM |x0 − y|
s B−1

(
αλ1,α

|x0 − y|n

)
= CM(αλ1,α)

s
n
(
(αλ1,α)

−
1
n |x0 − y|

)s B−1

((
(αλ

−
1
n

1,α |x0 − y|

)−n
)

≤ c1CM(αλ1,α)
s
n9s

(
|x0 − y|(αλs

1,α)
−

1
n
)
.

(4-1)

Moreover, by definition of inner radius we get that

|x0 − y| ≤ max{d(x, ∂�) : x ∈�} = r�.

Hence, since 9s is nondecreasing in light of Lemma 2.4, inequality (4-1) yields

(4-2) |uα(x0)| ≤ c1CM(αλ1,α)
s
n9s

(
r�(αλ1,α)

−
1
n
)
.
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From Lemma 3.2, the function E(α) := αλs
1,α is strictly increasing, positive and

Lipschitz continuous for α > 0, and satisfies that E(0) = 0, E(∞) = ∞. Hence,
defining f (α) := r�E(α)−

1
n , α> 0, we get that f is a strictly decreasing continuous

function such that f (0) := limα→0+ f (α) = ∞ and f (∞) := limα→∞ f (α) = 0.
From these properties there exists α0 > 0 such that f (α0)= 1 and

f (α) > 1 when α < α0, f (α) < 1 when α > α0.

In particular, f (α) > 1 when α ≪ 1 and f (α) < 1 when α ≫ 1.

Case α > α0. Since f (α) < 1, assuming that i∞(A) > n
s , by of Lemma 2.4 (iii) we

get

9s( f (α))≈ f (α)s A−1( f (α)−n).

Then, there exists c2 > 0 depending only on n and s, and (4-2) gives

|uα(x0)| ≤ c1CM(αλ1,α)
s
n9s

(
r�(αλ1,α)

−
1
n
)
≤ Cr s

�A−1 (r−n
� αλ1,α

)
with C = c1c2CM . Moreover, since A is nondecreasing, the previous expression
yields

(4-3) A(C−1r−s
� |uα(x0)|)≤ r−n

� αλ1,α = r−n
� λ1,α

∫
�

ωA(|uα(x)|) dx

≤ r−n
� λ1,αA(|uα(x0)|)∥ω∥L1(�).

As a consequence, equation (4-3) yields

rn
�

∥ω∥L1(�)

≤ λ1,α
A(|uα(x0)|)

A(C−1r−s
� |uα(x0)|)

≤ λ1,α sup
t>0

A(t)
A(C−1r−s

� t)

= λ1,α sup
τ>0

A(Cr s
�τ)

A(τ )
= λ1,αMA(Cr s

�),

where MA is the Matuszewska–Orlicz function associated to A defined in Section 2.2.
Since M is submultiplicative, there is c > 0 depending on A such that MA(Cr s

�)≤

cMA(C)MA(r s
�), and the inequality above leads to the following lower bound for

λ1,α:
rn
�

cMA(C)|ω∥L1(�)

1
MA(r s

�)
≤ λ1,α.

Case α < α0. Here f (α) > 1. Then, assuming i0(A) > n
s , by Lemma 2.4(iv) we get

9s( f (α))≈ f (α)s A−1( f (α)−n).

Proceeding analogously as in the previous case we get the result. □
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A similar argument to the proof of Theorem 1.1 yields a lower bound for the
critical value, involving the inverse of A instead of the Matuszewska–Orlicz function
MA.

Theorem 4.1. Let s ∈ (0, 1), α > 0 and let A be a Young function satisfying (2-4).
Given ω ∈ L1(�) consider the critical value λs

1,α defined in (3-1). Then

(i) There exists a unique α0 > 0 satisfying the equation

α0λ
s
1,α0

= rn
�.

(ii) Assume that i0(A) > n
s when α ≤ α0, or i∞(A) > n

s when α > α0. Then, there
exists a C > 0 depending only on s, n and A such that

(4-4)
rn
�

α
A
(

1
Cr s

�

A−1
(

α

∥ω∥L1(�)

))
≤ λs

1,α.

In particular, this holds when i0(A) > n
s if α ≪ 1 and when i∞(A) > n

s if
α ≫ 1.

Proof. Fix α > 0 and let us
α ∈ W s

0 L A(�) be a minimizer of (3-1) such that∫
�
ωA(|us

α|) dx = α, i.e., the pair (us
α, λ

s
1,α) satisfies equation (3-2), where λs

1,α is
defined in (3-1). Since s ∈ (0, 1) is fixed, for simplicity we will drop the dependence
on s.

In light of Proposition 2.5 uα is continuous and hence there exists x0 ∈� such
that |uα(x0)| = max{|uα(x)| : x ∈ Rn

}> 0. Since

α =

∫
�

ωA(|uα|) dx ≤ A(|uα(x0)|)∥ω∥L1(�),

using (4-1) and the fact the A is nondecreasing, we get

α ≤ A
(
c1CM(αλ1,α)

s
n9s

(
|x0 − y|(αλ1,α)

−
1
n
))

∥ω∥L1(�)

for any y ∈ ∂�, and therefore, denoting by r� the inner radius of �, we get

(4-5) α∥ω∥
−1
L1(�)

≤ A
(
c1CM(αλ1,α)

s
n9s

(
r�(αλ1,α)

−
1
n
))
.

As in the proof of Theorem 1.1, there exists α0 > 0 such that rn
� ≤ αλ1,α when

α > α0 and rn
� ≥ αλ1,α when α < α0.

Case α > α0. Assuming i∞(A) > n
s , by Lemma 2.4(iii) we get 9s(t)≈ t s A−1(t−n)

for any t > 0. Then, there exists c2 = c2(n, s) > 0 for which (4-5) yields

α∥ω∥
−1
L1(�)

≤ A
(
Cr s

�A−1 (r−n
� αλ1,α

))
where C = c1c2CM . Since A is nondecreasing, the previous expression gives

rn
�

α
A
(

1
Cr s

�

A−1
(

α

∥ω∥L1(�)

))
≤ λ1,α.
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Case α < α0. Assuming that i0(A) > n
s , the bound follows analogously. □

As a direct consequence of Theorem 1.1 and Lemma 3.1 we get the following.

Corollary 4.2. Under the assumptions and notation of Theorem 1.1, if additionally
A ∈12, then

C
pA∥ω∥L1(�)

rn
�

M(r s
�)

≤3s
1,α

where pA = supβ>0 a(β)β/A(β).

Proof. It is direct from Theorem 1.1 by using Lemma 3.1. □

Proof of Theorem 1.2. Fix α > 0 and let us
α ∈ W s

0 L A(�) be a minimizer of (3-1)
such that

∫
�
ωA(|us

α|) dx = α, that is, the pair (us
α, λ

s
1,α) satisfies (3-2), where λs

1,α
is defined in (3-1).

Denote by d� the diameter of �. The Hardy inequality given in Proposition 2.6
together with (3-2) and the monotonicity of A gives

(4-6)
∫

Rn
A
(

c1|uα(x)|
ds
�

)
dx ≤

∫
�

A
(

c1|uα(x)|
|x |s

)
dx ≤ (1−s)

∫∫
R2n

A(|Dsuα|) dνn

= (1 − s)λs
1,α

∫
�

ωA(|uα|) dx

where c1 = CH1C−1
H2

, and CH1,CH2 > 0 are the constants given in Proposition 2.6,
which depend only on n and s. Now, we compute the following inequality:

(4-7)
∫
�

A(|uα|) dx =

∫
�

A(|uα|)
A(c1d−s

� |uα|)
A(c1d−s

� |uα|) dx

≤ sup
t∈(0,∥u∥∞)

A(t)
A(c1d−s

� t)

∫
�

A(c1d−s
� |uα|) dx

≤ sup
τ>0

A(c−1ds
�τ)

A(τ )

∫
�

A(c1d−s
� |uα|) dx

= MA(c−1ds
�)

∫
�

A
(

c1|uα|
ds
�

)
dx .

From (4-6), (4-7) and the fact that MA is submultiplicative, we get

1 ≤ (1 − s)λs
1,α∥ω∥L∞(�)MA(c−1ds

�)≤ (1 − s)λs
1,α∥ω∥L∞(�)c̃MA(c−1)MA(ds

�),

with c̃ = c̃(c, A), which concludes the proof. □

As a direct consequence of Theorem 1.2 and Lemma 3.1 we get the following.

Corollary 4.3. Under the assumptions and notation of Theorem 1.2, if additionally
A ∈12, then

C
pA∥ω∥L∞(�)MA(Cds

�)
≤3s

1,α
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where pA = supβ>0 a(β)β/A(β).

When A ∈12 we can improve Theorem 1.2 by replacing d� with r�.

Proof of Theorem 1.3. The proof is analogous to that of Theorem 1.2, noting that in
(4-6), the Hardy inequality stated in Proposition 2.7, together with (3-2), leads to

1
C

∫
Rn

A
(

|uα(x)|
r s
�

)
dx ≤

∫
�

A
(

|uα(x)|
δ�(x)s

)
dx

≤

∫∫
R2n

A(|Dsuα|) dνn = λs
1,α

∫
�

ωA(|uα|) dx,

where δ�(x) denotes the distance from x to ∂�, giving the desired result. □
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GRAPH THINNESS: A LOWER BOUND AND COMPLEXITY

YAROSLAV SHITOV

The thinness of a simple graph G = (V, E) is the smallest integer k for
which there exist a total order (V, <) and a partition of V into k classes
(V1, . . . , Vk) such that, for all u, v,w ∈ V with u < v < w, if u, v belong to
the same class and {u, w} ∈ E, then {v, w} ∈ E. We prove:

• There are n-vertex graphs of thinness n−o(n), which answers a question
of Bonomo-Braberman, Gonzalez, Oliveira, Sampaio, and Szwarcfiter.

• The computation of thinness is NP-hard, which is a solution to a long-
standing open problem posed by Mannino and Oriolo.

1. Introduction

The notion of a k-thin graph was introduced by Mannino, Oriolo, Ricci, Chan-
dran [13; 14] and motivated by applications to frequency assignment problems.
One particular result in [14] showed that the maximum weight stable set problem
can be solved in polynomial time, provided that the input graph is given with the
corresponding ordering and partition of its vertices, as in the definition of a k-thin
graph, and where k should be bounded by a constant fixed in advance. We remark
that G is 1-thin if and only if G is an interval graph, so the result of [14] came as
a generalization of the earlier polynomial time solution for the maximum weight
stable set problem on interval graphs [11; 12]. Nowadays, the polynomial time
solutions, in cases when the inputs are restricted to the k-thin form with bounded k,
are known for the maximum weight stable set [14], list matrix partition, rainbow
domination [1], capacitated graph coloring [7], and several other problems [2; 5].

This article deals with the algorithmic problem corresponding to the notion of
thinness. Here and in what follows, an ordered tuple (s1, . . . , sk) is said to be a
partition of a set V if the sets s1, . . . , sk are pairwise disjoint and s1 ∪ . . .∪ sk = V .

Problem 1 (GRAPH THINNESS).
Given: A simple graph G = (V, E), a positive integer k.
Question: Do there exist

• a total ordering < of the vertex set V and
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• a partition of V into k disjoint classes s = (s1, . . . , sk)

such that, for all u, v, w ∈ V with

(1-1) (u < v < w) AND ({u, w} ∈ E) AND (u, v ∈ si for some i),

one always has {v,w} ∈ E?

Definition 2. If (G, k) is a yes-instance in Problem 1, then the graph G is called
k-thin. The thinness of G is the smallest integer τ for which G is τ -thin.

The above mentioned algorithmic applications motivate the study of the com-
putational complexity of k-thin graph recognition. As said above, the case k = 1
corresponds to interval graphs, which can be detected in polynomial time [8].
For general k, the question of the determination of the algorithmic complexity of
detecting k-thin graphs was posed by Mannino and Oriolo [13] in 2002, and, until
now, it remained open despite further extensive research [1; 2; 3; 4; 5; 6; 9; 10; 15].
The aim of this paper is to prove Theorems 3 and 5 below.

Theorem 3. The problem GRAPH THINNESS is NP-complete.

We refer the interested reader to [1; 2; 3; 4; 5; 6; 9; 10; 15] for further results and
open problems regarding the complexities of fixed parameter versions of GRAPH

THINNESS. In particular, is it hard to decide whether a given graph is 2-thin?
Another question in [5] deals with the maximal value that can be taken by the
thinness of a simple graph on n vertices, and the best known result was as follows.

Proposition 4 (see Lemma 16 in [1]). For any positive integer k, there exists a
simple graph with 2k vertices and thinness k.

Indeed, the construction in [1, Lemma 16] is also relevant in our paper, and we
revisit it in Definition 22 below. Here is the formulation of our second main result.

Theorem 5. There exist simple graphs with n vertices and thinness n − o(n).

2. Preliminaries and overview

In what follows, the pair (s, <) as in Problem 1 is to be called a certificate of
the k-thinness of G, and, since the validity of such a certificate can be checked
in polynomial time, Problem 1 belongs to NP. Therefore, the remaining part of
Theorem 3 is the NP-hardness, and we prove it with the use of the following
auxiliary problem.

Problem 6 (GRAPH THINNESS WITH A GIVEN PARTITION).
Given: A simple graph G=(V,E), an integer k, a partition s = (s1, . . . ,sk) of V .
Question: Does there exist a total ordering < of the set V such that, for all

u, v, w ∈ V satisfying the conditions (1-1), one always has {v,w} ∈ E?
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Definition 7. If (G, k, s) is a yes-instance in Problem 6, then the partition s is said
to allow a certificate of the k-thinness of G.

This problem has been considered earlier as the ordering consistent with a given
partition in [1], and a review report suggests the incompatibility graph coloring
as another possible name of this problem. Indeed, although there seems to be no
standard terminology for the name of Problem 6, its complexity is known.

Theorem 8 (Bonomo, de Estrada [1]). Problem 6 is NP-complete.

Throughout our paper, all graphs are assumed to be simple. In the forthcoming
Section 3, we recall some relevant notation and prove several results needed in
our discussion. In Section 4, we present the polynomial reduction from GRAPH

THINNESS WITH A GIVEN PARTITION to GRAPH THINNESS, and, in view of
Theorem 8, this implies the validity of Theorem 3. In Section 5, we switch to
Theorem 5 and discuss its motivation, and we prove this theorem with a probabilistic
argument.

3. An auxiliary construction

We begin with two caveats on the use of some standard notation.

Remark 9. A clique of a graph G = (V, E) is a subset of V that induces a complete
subgraph of G. In particular, for any u ∈ V , the sets ∅ and {u} are cliques of G.

Remark 10. We write U ⊆ V for two sets U , V if every element of U is contained
in V . In particular, we can write U ⊆ V even if U = V .

We proceed with several techniques needed in our reduction.

Definition 11. Assume G = (V, E) is a simple graph, and let U ⊆ V . We define
B(G,U ) as the graph

• with the vertex set V ∪ {α, β}, where α, β /∈ V are new vertex labels,

• with all edges in E , and, apart from these, with an edge from α to every vertex
in V \ U , and with an edge from β to every vertex in V \ U .

Our next result may look similar to Lemma 16 in [1], which essentially states
that thinness(B(G,∅))= thinness(G)+ 1 if G is not a clique.

a

b

2

1

3

2

1

3

Figure 1. An example of G and B(G, {3}) as in Definition 11.
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Lemma 12. Let G, U be as in Definition 11. Suppose that, for some integer k, a
partition s = (s1, . . . , sk) allows a k-thinness certificate of B(G,U ). Then for some

• label i ∈ {1, . . . , k} and

• subset C ⊆ V \ U that is a clique of G,

one has si ⊆ U ∪ C ∪ {α, β}.

Proof. Let < be an ordering of V ∪{α, β} that is compatible with the partition s, so
that (s, <) is a certificate of the k-thinness of B(G,U ). Since the labels α, β can
be swapped without changing the graph B(G,U ), we can assume without loss of
generality that α < β, and then we take a label i such that α ∈ si .

Step 1. Let w ∈ V \ U be a vertex with w < α. If w ∈ si , then we have

(3-1) w < α < β and w, α ∈ si .

However, Definition 11 implies that w and β are adjacent in B(G,U ), but at the
same time α, β are not adjacent. Therefore, we arrived at a contradiction with the
fact that (s, <) is a k-thinness certificate, and hence we cannot have w ∈ si .

Step 2. Now let w′, w′′
∈ V \ U be two vertices such that

(3-2) α < w′ <w′′ and w′
∈ si .

Also, by Definition 11, the vertices α,w′′ are adjacent in B(G,U ), and, since (s, <)
is a k-thinness certificate, we get {w′, w′′

} ∈ E .

In Step 1, we showed that every vertex

(3-3) w ∈ si ∩ (V \ U )

should satisfy α < w. Using Step 2, we see that, if there are two such vertices w′,
w′′, then they should be adjacent in E . In other words, the set of all vertices w as
in (3-3) should be a clique of G. □

Now we explain how to extend a k-thinness certificate of G to B(G,U ).

Lemma 13. Let G, U be as in Definition 11. Suppose that, for some integer k, a
partition s = (s1, . . . , sk) and ordering < certify the k-thinness of G, where

(3-4) s1 = U.

Also, we define σ1 = s1 ∪ {α, β} and extend the ordering < by adding the relations

v < α, v < β, α < β

for all v ∈ V . Then the partition s ′
= (σ1, s2, . . . , sk) and the extended ordering <

are a k-thinness certificate of B(G,U ).
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Proof. In order to apply the definition of the k-thinness, we take u, v, w ∈ V ∪{α, β}

such that u < v < w and u, w are adjacent in B(G,U ), and

(3-5) u, v belong to the same class of the partition s ′.

We need to check that v, w are adjacent in B(G,U ).
Step 1. If u, v, w ∈ V , the conclusion follows because the purported certificate of
the k-thinness of B(G,U ) extends the initial certificate for G.

Step 2. If exactly one of the vertices u, v, w is in {α, β}, then we assume without
loss of generality that w = β. By Definition 11, since β and u are adjacent, we get
u /∈U , and, according to the condition (3-4), this implies u /∈ s1. Now we apply (3-5)
to get v /∈ s1, and then we use (3-4) to get v /∈ U , from which, by Definition 11, we
get a desired conclusion that v and β are adjacent in B(G,U ).
Step 3. If both α, β appear among u, v, w, then v = α, w = β. Similarly to Step 2,
we get u /∈ s1 and hence u /∈ σ1. Since v = α ∈ σ1 by the assumptions of the lemma,
the condition (3-5) violates, so there is nothing to prove in Step 3.

Since Steps 1, 2, 3 cover all possibilities, the proof is complete. □

4. The reduction

The following is the main construction in our reduction.

Definition 14. Assume that G = (V, E) is a simple graph, k is a positive integer,
and s = (s1, . . . , sk) is a partition of V . We define the graph G(G, k, s) as

B(B(. . .B(G, s1), . . .), sk−1), sk),

that is, in other words, G(G, k, s) is the k-fold application of the construction in
Definition 11, in which the i-th application is

(4-1) Gi := B (Gi−1, si ) ,

a(1)

b(1)

a(2)

b(2)

1 3

2 4

1 3

2 4

Figure 2. An example of a cycle graph C with vertices {1, 2, 3, 4} and
the graph G(C, 2, ({3, 4}, {1, 2})) as in Definition 14.
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where G0 = G, and Gi−1 is the graph obtained at the (i − 1)-st iteration.

For yes-instances of Problem 6, the desired outcome is straightforward.

Lemma 15. If (G, k, s) is a yes-instance of Problem 6, then G(G, k, s) is k-thin.

Proof. Let αi , βi be the vertices added to the graph at the i-th application of
Definition 11. Then, for every t ∈ {0, . . . , k}, the partition

(4-2) (s1 ∪ {α1, β1}, . . . , st ∪ {αt , βt }, st+1, . . . , sk)

allows a k-thinness certificate of Gt because, in fact, for t = 0, this is true as (G, k, s)
is a yes-instance, and, for t > 0, this follows from Lemma 13 by the induction. In
particular, the t = k version of (4-2) certifies the k-thinness of Gk = G(G, k, s). □

A converse direction of Lemma 15 requires some further work.

Definition 16. If G1 = (V1, E1), G2 = (V2, E2) are simple graphs with V1∩V2 =∅,
then we define G1 ⊕ G2 as the graph (V1 ∪ V2, E1 ∪ E2).

Definition 17. If s = (s1, . . . , sk) is a partition of a set S, and P is a subset of S,
then the partition (s1 ∩ P, . . . , sk ∩ P) is called the restriction of s on P .

Lemma 18. Let G1, . . . ,Gk+1 be nonempty simple graphs. We consider the graph

G = G1
⊕ . . .⊕ Gk+1

and a partition s = (s1, . . . , sk) of the vertex set of G. If , for every q ∈{1, . . . , k+1},

(N1) the graph Gq is not (k − 1)-thin,

(N2) the triple (Gq , k, ψq) is a no-instance for Problem 6, where ψq is the restric-
tion of s on the vertex set of Gq ,

then the graph G(G, k, s) is not k-thin.

Proof. We argue by contradiction, so we assume that G(G, k, s) is k-thin. Therefore,
some partition σ = (σ1, . . . , σk) allows a k-thinness certificate of G(G, k, s), and
then, for all t ∈ {0, . . . , k} and j ∈ {1, . . . , k}, we define

σ j t := σ j ∩ Vt ,

where Vt is the vertex set of the graph Gt as in Definition 14. Since the k-thinness
certificates remain valid at the restrictions to induced subgraphs, the partition

(σ1t , . . . , σkt)

certifies the k-thinness of Gt . We recall that Gt = B (Gt−1, st) by the condition (4-1),
and an application of Lemma 12 to this graph Gt allows us to find a clique Ct in
Gt−1 such that the set Vt \ (st ∪ Ct) lies in the union of at most (k − 1) classes in
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(σ1 t , . . . , σk t). A restriction of the latter statement to the vertices of G gives us a
clique Ct of G and an index rt such that

(4-3) V \ (st ∪ Ct) is a subset of V \ σ0 rt

for all t ∈ {1, . . . , k}. Since we had G = G1
⊕ . . .⊕ Gk+1 by the initial assumption,

there exists an index q ∈ {1, . . . , k + 1} for which

(4-4) Gq does not intersect C1 ∪ . . .∪ Ck .

Now we take the partition ψq
= (ψq1, . . . , ψqk) as in (N2), that is, ψq is the

restriction of s on the vertex set U q of Gq , which means that we have

(4-5) ψq j = s j ∩ U q

for all j ∈ {1, . . . , k}. Also, we define another partition τ = (τ1, . . . , τk) of U q as
the restriction of σ , that is, we get

(4-6) τ j = σ0 j ∩ U q

for all j ∈ {1, . . . , k}. Now we use the conditions (4-5) and (4-6) to restrict the
formula (4-3) to the set U q . In view of (4-4), we get that

U q
\ψqt is a subset of U q

\ τrt

for all t ∈ {1, . . . , k}, and hence

(4-7) τrt is a subset of ψqt

for all t ∈ {1, . . . , k}. If t → rt is a permutation, then (4-7) implies τrt =ψqt for all
t , which shows that τ is a permutation of ψq , and hence ψq allows a k-thinness
certificate of Gq . This contradicts to the condition (N2), and hence, in fact, the
mapping t → rt cannot be injective. Therefore, there exists a label h such that

h = rt1 = rt2 for some t1 ̸= t2,

and then τh is a subset of both ψqt1 and ψqt2 . Since ψq is a partition, this implies
that τh is an empty set, so the graph Gq admits a k-thinness certificate in which the
empty set appears in the corresponding partition of the vertices. This means that
Gq is (k − 1)-thin, so we obtain a contradiction to (N1) and complete the proof. □

We need to generalize the notation from Definition 16.

Definition 19. Let V1, V2 be disjoint sets. For some k, let s1
= (s11, . . . , s1k),

s2
= (s21, . . . , s2k) be partitions of V1, V2, respectively. Then we define

s1
⊕ s2

= (s11 ∪ s21, . . . , s1k ∪ s2k).



340 YAROSLAV SHITOV

Definition 20. Let V1, V2 be disjoint sets, and let <1 and <2 be total orderings on
V1, V2, respectively. Then a total ordering < on V1 ∪ V2 is denoted <1 ⊕<2 if

• <1 is contained in <,

• <2 is contained in <,

• one has v1 < v2, for all v1 ∈ V1, v2 ∈ V2.

Observation 21. Assume G1 = (V1, E1), G2 = (V2, E2) be simple graphs with
disjoint vertex sets. Let k be an integer, and assume that

• <1 is a total ordering of V1,

• <2 is a total ordering of V2,

• s1 is a partition of V1 into k classes,

• s2 is a partition of V2 into k classes,

then the following are equivalent:

• (s1
⊕ s2, <1 ⊕<2) is a k-thinness certificate of G1 ⊕ G2,

• (si , <i ) is a k-thinness certificate of Gi with both i = 1, 2.

Our further arguments require the graph that appears as an iterative application of
the construction in [1, Lemma 16] (see also the discussion of Proposition 4 above).

Definition 22. We consider the graph Hk with vertices {α1, β1, . . . , αk, βk} in
which ∗i and ⋆ j are adjacent if and only if i ̸= j , for any ∗, ⋆ in {α, β}.

Remark 23. According to Lemma 16 in [1], the thinness of Hk equals k.

Definition 24. We write (ψk, <k) for the k-thinness certificate of Hk defined by

• ψk = ({α1, β1}, . . . , {αk, βk}),

• ∗i < ⋆ j if i < j and ∗, ⋆ ∈ {α, β},

• αi < βi , for any i ∈ {1, . . . , k}.

Now we are ready to proceed with the reduction. To this end, we recall that the
⊕ construction is the one introduced in Definitions 16 and 19 above.

Definition 25. Let (G, k, s) be an instance of Problem 6. We create k + 1 copies
each of G and Hk , labeling them G1, . . . ,Gk+1 and Hk1, . . . , Hk k+1, so that the
vertex sets of all these copies are pairwise disjoint. We define

G = (G1 ⊕ Hk1)⊕ . . .⊕ (Gk+1 ⊕ Hk k+1),

and, assuming that s j and ψk j denote the copies of the corresponding partitions of
the vertex sets of G and Hk , we take s̄ = (s1 ⊕ψk1)⊕ . . .⊕(sk+1 ⊕ψk k+1), and then
we define the graph 0(G, k, s) := G(G, k, s̄), where G stands for the construction
in Definition 14.



GRAPH THINNESS: A LOWER BOUND AND COMPLEXITY 341

Theorem 26. An instance (G, k, s) of Problem 6 is a ‘yes’ if and only if the graph
0(G, k, s)= G(G, k, s̄) is k-thin.

Proof. If (G, k, s) is a yes-instance in Problem 6, then (G, k, s̄) is also a yes-instance
by Observation 21. In this case, the graph 0(G, k, s) is k-thin by Lemma 15.

If (G, k, s) is a no-instance in Problem 6, then we apply Lemma 18 to the graph
G. Then the corresponding condition (N1) is true by Remark 23, and we get the
validity of (N2) from Observation 21. Therefore, the assertion of Lemma 18 is
applicable, and hence the graph 0(G, k, s) is not k-thin. □

Theorem 26 gives a polynomial reduction to GRAPH THINNESS from Problem 6,
which is known to be NP-complete [1]. This implies Theorem 3.

5. Graphs with large thinness

As said above, the notion of thinness is being extensively studied for almost two
decades, but there are still many open questions on the behavior of this function
and its relations to other graph invariants [1; 2; 5; 6; 13; 14]. One particular natural
problem concerns the largest value of the thinness of an n-vertex graph.

Problem 27 (Section 5 in [5]). Is there an n-vertex graph G with thinness > n/2?

This section is devoted to the proof of Theorem 5, which gives an affirmative
solution to Problem 27, and, in fact, this theorem determines the largest value of
the thinness in the asymptotic sense. As we will see, our proof is probabilistic.

Definition 28. A graph G = (V, E) with |V | = 3m is called m-obstructive if one
can enumerate its vertices as (u1, . . . , um, v1, . . . , vm, w1, . . . , wm) so that, for
every i and j in {1, . . . ,m}, one has either {ui , w j } /∈ E or {vi , w j } ∈ E .

Lemma 29. If m, n are positive integers with m > 11 ln n, then there exists a graph
with n vertices which has no m-obstructive induced subgraphs.

Proof. We consider the random graph G = (V, E) with |V | = n such that the
edges of G appear independently with probability 1/2 each. For every fixed
nonrepeating sequence α = (u1, . . . , um, v1, . . . , vm, w1, . . . , wm) of vertices in V ,
the probability that α certifies the m-obstruction is (3/4)m

2
because there are m2

independent choices of (i, j) as in Definition 28, and each of the corresponding
events {ui , w j } /∈ E or {vi , w j } ∈ E happens with probability 1/2 (which implies
that their union occurs with probability 3/4 by the independence). Since there are
a total of at most n3m ways to choose α, the expected total number of all those
choices of α which give the m-obstruction certificates is at most

n3m
·
( 3

4

)m2

= exp
(
3m ln n − m2 ln 4

3

)
< 1,

and hence some choices of G do not admit m-obstructions at all. □
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Now we are ready to complete the proof of Theorem 5.

Theorem 30. For any positive integer n, there exists a graph with n vertices whose
thinness is at least n − 72 ln n.

Proof. Using Lemma 29, we take a graph G = (V, E) with |V | = n such that

(5-1) G has no induced m-obstructive subgraphs with any m > 11 ln n.

We are going to complete the proof by showing that the thinness of G is at least
n −72 ln n as desired. If this was not the case, there would exist an ordering (V, <)
and a partition of V into at most n − 72 ln n classes as in the definition of the
thinness, and then, for some integer c satisfying

(5-2) c ⩾ 72 ln n/3 = 24 ln n,

we should be able to find c disjoint pairs in each of which both vertices are in the
same class (the bound (5-2) follows because the worst case scenario is when every
class has either 1 or 3 vertices). We enumerate these pairs as follows:

(u1, v1), . . . , (uc, vc) with v1 < v2 < . . . < vc and ui < vi for all i.

By the thinness, for any i ∈ {1, . . . , c}, it never occurs that

(5-3) ({ui , x} ∈ E) AND ({vi , x} /∈ E) with x ∈ {vi+1, . . . , vc}.

Now we define m = ⌊c/2⌋ and note that the sequence

α = (u1, . . . , um, v1, . . . , vm, vm+1, . . . , v2m)

induces an m-obstruction because the condition (5-3) never occurs. By (5-1),
we get m ⩽ 11 ln n and hence c ⩽ 22 ln n + 1. A comparison to (5-2) implies
24 ln n ⩽ 22 ln n + 1, which is a contradiction unless n = 1. □

In other words, our result proves θ(n) > n − 72 ln n whenever θ(n) is the largest
possible thinness of any graph with n vertices. A review report suggests a modifi-
cation of our argument that implies θ(n) > n − 48 ln n, and, although our research
does not immediately lead to any bound stronger than θ(n) > n − O(ln n), a more
detailed analysis can lead to further minor improvements in the coefficient of ln n.
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1. Introduction

A thick subcategory of a triangulated category is a full triangulated subcategory
closed under direct summands. Classifying thick subcategories of a triangulated
category has been one of the most central subjects shared by many areas of mathe-
matics including representation theory, homotopy theory, algebraic geometry and
commutative/noncommutative algebra; see [11; 15; 16; 17; 26; 29; 31; 32; 38; 39;
46; 45; 50; 53; 54; 56] for instance. A significant work in commutative algebra is a
classification of thick subcategories of derived categories of complete intersections
by Stevenson [46]. We introduce a setup to explain Stevenson’s theorem.

Setup 1.1. Let (R, V ) be a pair, where R and V satisfy either of the following two
conditions.

(1) R is a commutative noetherian ring which is locally a hypersurface, and V is
the singular locus of R.

(2) R is a quotient ring of the form S/(a) where S is a regular ring of finite Krull
dimension and a = a1, . . . , ac is a regular sequence, and V is the singular
locus of the zero subscheme of a1x1 + · · · + acxc ∈ 0(X,OX (1)) where X =

Pc−1
S = Proj(S[x1, . . . , xc]).

Note that in both situations of this setup R is locally a complete intersection.
Under this setup, Stevenson [46] proved the following classification theorem of
thick subcategories.

Theorem 1.2 (Stevenson). Let (R, V ) be as in Setup 1.1. Then there are one-to-one
correspondences{

thick subcategories
of Dsg(R)

}
∼=

{
thick subcategories

of Db(R) containing R

}
(a)
∼=

{
specialization-closed

subsets of V

}
.

Here, Db(R) denotes the bounded derived category of the category mod R of finitely
generated R-modules, and Dsg(R) stands for the singularity category of R, that is
to say, the Verdier quotient of Db(R) by the full subcategory Dperf(R) of perfect
complexes, i.e., Dsg(R)= Db(R)/Dperf(R).

A resolving subcategory of an abelian category with enough projective objects
is a full subcategory containing projectives and closed under direct summands,
extensions and syzygies. This notion has been studied in various approaches so
far; see [4; 3; 23; 25; 24; 30; 33; 36; 37; 43; 49; 50; 51; 52] for instance. In
commutative algebra, Dao and Takahashi [24] gave a complete classification of the
resolving subcategories of mod R under the setup introduced above.



PREAISLES OF DERIVED CATEGORIES OF COMPLETE INTERSECTIONS 347

Theorem 1.3 (Dao–Takahashi). Let (R, V ) be as in Setup 1.1. Then there is a
one-to-one correspondence{

resolving subcategories
of mod R

}
(b)
∼=

{
grade-consistent

functions on Spec R

}
×

{
specialization-closed

subsets of V

}
.

Here, a grade-consistent function on Spec R is an order-preserving map f :

Spec R → N which satisfies the inequality f (p)⩽ grade(p) for every p ∈ Spec R.
The notion of a t-structure in a triangulated category has been introduced by

Beı̆linson, Bernstein and Deligne [14] in the 1980s. As with classifying thick
subcategories and resolving subcategories mentioned above, classifying t-structures
in a given triangulated category T , which is equivalent to classifying aisles of T ,
has been an important fundamental problem. Actually, this problem has almost been
settled for Db(R) for a commutative noetherian ring R. Indeed, if R has a dualizing
complex, then the aisles of Db(R) were completely classified by Alonso Tarrío,
Jeremías López and Saorín [2] in terms of the filtrations by supports that satisfy
the weak Cousin condition. Recently, this has been extended by Takahashi [55] to
the case where R has finite Krull dimension such that Spec R is a CM-excellent
scheme in the sense of Česnavičius [20].

Now that classifying aisles of Db(R) has almost been completed, what we
should consider next is classifying preaisles of Db(R), which are defined as full
subcategories closed under extensions and positive shifts. An aisle is none other
than a preaisle whose inclusion functor has a right adjoint, but there exists a big
difference between being an aisle and being a preaisle. Classifying preaisles is thus
much harder than classifying aisles, and so it would be reasonable to impose some
appropriate assumptions on the preaisles we try to classify.

The main result of this paper is the following theorem. This theorem provides
a classification of preaisles of Db(R) that satisfy some mild and natural condi-
tions. Also, the theorem includes both the classification of thick subcategories by
Stevenson and the classification of resolving subcategories by Dao and Takahashi.

Theorem 1.4. Let (R, V ) be a pair as in Setup 1.1. Then there are one-to-one
correspondences

preaisles of Db(R)
containing R and closed
under direct summands

 ∼=


resolving

subcategories
of Db(R)

 (∗)
∼=


order-preserving

maps from Spec R
to N ∪ {∞}

 ×


specialization-
closed subsets

of V

.
The restriction of (∗) to the thick subcategories of Db(R) containing R is identified
with (a) in Theorem 1.2. Each resolving subcategory X of mod R equals the
restriction to mod R of the smallest resolving subcategory X̃ of Db(R) containing
X . The composition of (∗) with the map X 7→ X̃ coincides with (b) in Theorem 1.3.
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Here, a resolving subcategory of Db(R) is a full subcategory containing R and
closed under direct summands, extensions and negative shifts, which we shall newly
introduce in this paper. We adopt this name because it is viewed as a triangulated
category version of a resolving subcategory of an abelian category stated above.

This paper is organized as follows. In Section 2, together with several prelimi-
naries for later sections, we give the precise definition of a resolving subcategory of
Db(R) and states its basic properties. In Section 3, we introduce the key notion of
NE-loci in Db(R), which are regarded as extensions of nonfree loci in mod R. We
find out several fundamental properties of NE-loci. In Section 4, applying some
results in the literature based on techniques of unbounded derived categories, we
classify the preaisles of Dperf(R) containing R and closed under direct summands,
which enables us to get a complete classification of the resolving subcategories
of Dperf(R) in terms of order-preserving maps from Spec R to N ∪ {∞}. We also
compare our results with a classification theorem of aisles given in [55].

From Section 5 to 7 we mainly handle locally complete intersection rings. In
Section 5, we prove that the resolving subcategories of Db(R) bijectively correspond
to the direct product of the resolving subcategories of perfect complexes and the
resolving subcategories of maximal Cohen–Macaulay complexes. In Section 6,
applying the result obtained in Section 5, we provide complete classifications of
the resolving subcategories of Db(R) and the preaisles of Db(R) containing R and
closed under direct summands. We also observe that this classification restricts
to the classification of thick subcategories of Dsg(R) given in Theorem 1.2. In
Section 7, we realize the classification of resolving subcategories of mod R given
in Theorem 1.3 as a restriction of the classification of resolving subcategories of
Db(R) given in Section 6.

In Appendices A and B, we mainly deal with perfect complexes. In Appendix A,
we give other proofs of the classification theorems of resolving subcategories and
preaisles of Dperf(R) given in Section 4 without using techniques of unbounded
derived categories. Instead, the use of Koszul complexes and NE-loci is crucial
here. In Appendix B, we realize results of Dao and Takahashi [24] about modules
of finite projective dimension, as restrictions of our results about perfect complexes
which are obtained in Appendix A.

Finally, we should emphasize that some of our methods to investigate resolving
subcategories of Db(R) are similar to methods given in the literature to investigate
resolving subcategories of mod R, but we do need to invent and develop a lot of new
techniques to obtain our results. We should also emphasize that the proof of our
main result, Theorem 1.4, is completed at the end of this paper (before Appendices),
by using results given in all the previous sections.
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2. Resolving subcategories of triangulated categories

In this section, we state basic definitions which are used throughout this paper.
Mimicking the definition of a resolving subcategory of an abelian category, we define
a resolving subcategory of a triangulated category. We also explore fundamental
properties of resolving subcategories. We begin with giving our convention.

Convention 2.1. All subcategories are assumed to be strictly full. An object X
of a category C is identified with the subcategory of C consisting of X . An exact
triangle A → B → C → A[1] is often abbreviated to A → B → C ⇝. Let R be a
commutative noetherian ring with identity. For a prime ideal p of R, we denote by
κ(p) the residue field of the local ring Rp, that is, κ(p)= Rp/pRp. Subscripts and
superscripts may be omitted if there is no danger of confusion.

In the next two definitions, we explain basic closedness conditions in an addi-
tive/abelian/triangulated category, and introduce certain subcategories determined
by a given subcategory.

Definition 2.2. Let C be an additive category, and let X be a subcategory of C.

(1) We say that X is closed under finite direct sums provided that for any finite
number of objects X1, . . . , Xn in X the direct sum X1 ⊕· · ·⊕ Xn is also in X .
This is equivalent to saying that the direct sum of any two objects in X also
belongs to X .

(2) We say that X is closed under direct summands provided that if X is an object
in X and Y is a direct summand of X in A, then Y is also in X .

(3) We denote by addC X the additive closure of X , that is, the smallest subcategory
of C containing X and closed under finite direct sums and direct summands.

(4) Assume C is abelian (resp. triangulated). We say that X is closed under
extensions provided for an exact sequence 0 → L → M → N → 0 (resp. exact
triangle L → M → N ⇝) in C, if L , N ∈ X , then M ∈ X .

(5) Suppose that C is either abelian or triangulated. The extension closure extC X
of X is defined as the smallest subcategory of C containing X and closed under
direct summands and extensions.

Definition 2.3. Let T be a triangulated category, and let X be a subcategory of T .

(1) For any n ∈ Z denote by X [n] the subcategory of T consisting of objects of
the form X [n] with X ∈ X .

(2) We say that X is closed under positive shifts (resp. closed under negative shifts)
if X [n] is contained in X for all n > 0 (resp. n < 0), which is equivalent to
saying that X [1] (resp. X [−1]) is contained in X .
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(3) We say that X is thick if X is a nonempty triangulated subcategory of T closed
under direct summands. We denote by thickT X the thick closure of X , namely,
the smallest thick subcategory of T containing X .

In the next proposition, we compare closedness under positive/negative shifts
with other conditions regarding subcategories of a triangulated category. The proof
of the proposition is left as an easy exercise to the reader.

Proposition 2.4. Let T be a triangulated category. Let X be a subcategory of T .

(1) Suppose X is closed under extensions and contains the zero object of T . Then
the following are equivalent.

(a) The subcategory X of T is closed under positive (resp. negative) shifts.
(b) If A → B → C ⇝ is an exact triangle with A, B ∈ X (resp. B,C ∈ X ),

then C (resp. A) is in X .

(2) If X is nonempty, then X is a thick subcategory of T if and only if X is closed
under direct summands, extensions, positive shifts and negative shifts.

We introduce categories and subcategories which we basically use in this paper.

Definition 2.5. We denote by mod R the category of finitely generated R-modules,
by proj R the subcategory of mod R consisting of projective modules, and by fpd R
the subcategory of mod R consisting of modules of finite projective dimension. We
denote by D(R) the bounded derived category of mod R which is denoted by Db(R)
in Section 1, and by K(R) the bounded homotopy category of proj R. Via the natural
fully faithful functors, we regard mod R and K(R) as (strictly full) subcategories
of D(R). Thus we identify K(R) with the derived category Dperf(R) of perfect
R-complexes that appears in Section 1. Here, a perfect complex is defined to be a
bounded complex of finitely generated projective modules. We thus have inclusions

proj R ⊆ fpd R =K(R)∩mod R, fpd R ⊆K(R)⊆D(R), fpd R ⊆mod R ⊆D(R).

Definition 2.6 (resolving subcategories of module categories). Let X be a subcate-
gory of mod R.

(1) We say that X is resolving if it satisfies the following four conditions.

(i) X contains R. (ii) X is closed under direct summands.
(iii) X is closed under extensions.
(iv) For an exact sequence 0 → A → B → C → 0 in mod R with
B,C ∈ X , one has A ∈ X .

Conditions (i) and (ii) imply that a resolving subcategory of mod R contains
the zero object 0 of mod R. Condition (i) can be replaced with the condition
that X contains proj R. Condition (iv) can be replaced with the condition that
X is closed under syzygies; see [49, Remark 2.3].
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(2) The resolving closure resmod R X of X is the smallest resolving subcategory of
mod R containing X .

Definition 2.7 (resolving subcategories of triangulated categories). Let T be a
triangulated subcategory of D(R) containing R. Let X be a subcategory of T .

(1) We say that X is resolving if it satisfies the following four conditions.
(i) X contains R. (ii) X is closed under direct summands.
(iii) X is closed under extensions.
(iv) For an exact triangle A → B → C ⇝ in T with B,C ∈ X , one
has A ∈ X .

Conditions (i) and (ii) imply that a resolving subcategory of T contains the
zero object 0 of T . Condition (i) can be replaced with the condition that X
contains proj R. Condition (iv) can be replaced with the condition that X is
closed under negative shifts; see Proposition 2.4(1).

(2) The resolving closure resT X of X is defined to be the smallest resolving
subcategory of T containing X .

In the next proposition we explore the relationship between resolving closures
and shifts. It turns out that compatibility of taking the resolving closure and taking
a shift is subtle; see also Remark 2.16 given later.

Proposition 2.8. Let T be a triangulated subcategory of D(R) containing R.

(1) For each object X of T and each integer n, there is an equality

resT {X [i] | i ∈ Z} = resT {X [i] | i ⩾ n}.

(2) Let X be a subcategory of T , and let n be an integer.

(a) Let n ⩽ 0. Then there is an inclusion (resT X )[n] ⊆ resT (X [n]).
(b) Let n⩾0. If X is resolving, then so is X [n]. More generally, (resT X )[n]=

resT (X [n] ∪ {R[n]}).

Proof. (1) Set X = resT {X [i] | i ⩾ n}. Fix j ∈ Z. If j ⩾ n, then X [ j] is clearly in
X . If j < n, then j − n < 0 and one has X [ j] = (X [n])[ j − n] ∈ res(X [n]) ⊆ X .
Hence X [ j] ∈ X for all j ∈ Z, and the assertion follows.

(2a) Consider the subcategory Y = {Y ∈ T | Y [n] ∈ resT (X [n])} of T . Since
resT (X [n]) is resolving, it contains R. As n ⩽ 0, we have R[n] ∈ resT (X [n]).
Hence R belongs to Y . Let Y be an object in Y and Z a direct summand of Y .
Then Y [n] is in resT (X [n]) and Z [n] is a direct summand of Y [n]. Hence Z [n] is
in resT (X [n]), which implies Z ∈ Y . Let A → B → C⇝ be an exact triangle in T
with C ∈Y . Then there is an exact triangle A[n] → B[n] → C[n]⇝ and C[n] is in
resT (X [n]). Hence A[n] ∈ resT (X [n]) if and only if B[n] ∈ resT (X [n]). Therefore,
A∈Y if and only if B ∈Y . Consequently, Y is a resolving subcategory of T . Since Y
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contains X , we see that Y contains resT X . It follows that (resT X )[n]⊆ resT (X [n]).

(2b) To show the first assertion, suppose that X is resolving. As X is closed under
negative shifts, we have that X [−1] ⊆ X , and that R[−n] ∈ X since R ∈ X and
−n ⩽ 0. Hence (X [n])[−1] = (X [−1])[n] ⊆ X [n] and R = (R[−n])[n] ∈ X [n],
that is, X [n] is closed under negative shifts and contains R. Let A → B → C ⇝
be an exact triangle in T with A,C ∈ X [n]. Then there is an exact triangle
A[−n] → B[−n] → C[−n]⇝ in T and A[−n],C[−n] ∈ X . Since X is closed
under extensions, it contains B[−n]. Hence B = (B[−n])[n] belongs to X [n], and
therefore X [n] is closed under extensions. Let K be an object in X [n] and L a
direct summand of K . Then K [−n] is in X and L[−n] is a direct summand of
K [−n]. As X is closed under direct summands, L[−n] is in X . Hence L belongs
to X [n], and therefore X [n] is closed under direct summands. Consequently, X [n]

is a resolving subcategory of T .
Now we prove the second assertion. Replacing X with X ∪{R}, we may assume

R ∈ X . We want to deduce (resT X )[n] = resT (X [n]). As resT X ⊇ X , we have
(resT X )[n] ⊇ X [n]. As (resT X )[n] is resolving by the first assertion, (resT X )[n]

contains resT (X [n]). To show the opposite inclusion, consider the subcategory
Y = {Y ∈ T | Y [n] ∈ resT (X [n])} of T . Since R ∈ X , we get R[n] ∈ X [n] ⊆

resT (X [n]), which implies R ∈ Y . An analogous argument as in the proof of (1)
shows Y is a resolving subcategory of T . Since Y contains X , it contains resT X .
Thus (resT X )[n] ⊆ resT (X [n]). We now obtain (resT X )[n] = resT (X [n]). □

The next notion plays a crucial role in the proofs of our main results.

Definition 2.9 (minimum resolving subcategories). Let T be a triangulated subcat-
egory of D(R) containing R. We set ET = resT 0 and call it the minimum resolving
subcategory of T . It is minimum in the sense that every resolving subcategory of
T contains ET . We simply write ER = ED(R).

The resolving closure resT X of a subcategory X of T , particularly the minimum
resolving subcategory ET = resT 0 of T , depends on which triangulated subcategory
T of D(R) is taken as the ambient category. The proposition below collects proper-
ties of resolving subcategories, the second and third of which produce sufficient
conditions for T to satisfy resT X = resD(R) X for every subcategory X of T .

Proposition 2.10. (1) If T is a triangulated subcategory of D(R) containing R,
then ET = resT R. If T is a thick subcategory of D(R) containing R, then
ET = resT (proj R).

(2) Let T be a thick subcategory of D(R) containing R. Then the resolving
subcategories of T are the resolving subcategories of D(R) contained in T .
Hence resT X = resD(R) X for any subcategory X of T .
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(3) The equality K(R)= thickD(R) R holds. Hence, there is an equality resK(R) X =

resD(R) X for any subcategory X of K(R). In particular, EK(R) = ER .

(4) If X is a resolving subcategory of D(R), then X ∩mod R is a resolving sub-
category of mod R. If X is a resolving subcategory of K(R), then X ∩mod R
is a resolving subcategory of mod R contained in fpd R.

Proof. (1) The first assertion holds since R ∈ ET = resT 0 ⊆ resT R. In the situation
of the second assertion, T contains proj R. Hence the assertion follows from the
inclusions proj R ⊆ ET = resT 0 ⊆ resT R ⊆ resT (proj R).

(2) Let X be a subcategory of T with R ∈ X and X [−1] ⊆ X . Since T is closed
under extensions as a subcategory of D(R), we see that X is closed under extensions
as a subcategory of T if and only if X is closed under extensions as a subcategory of
D(R). If A, B are objects of D(R) with A⊕ B ∈X , then A⊕ B ∈ T , which implies
A, B ∈ T since T is thick. It is seen that X is closed under direct summands as a
subcategory of T if and only if X is closed under direct summands as a subcategory
of D(R). The first assertion follows.

Since resT X is a resolving subcategory of T containing X , by the first assertion
it is a resolving subcategory of D(R) contained in T and containing X . Hence
T ⊇ resT X ⊇ resD(R) X . Therefore, resD(R) X is a resolving subcategory of D(R)
contained in T and containing X , so that it is a resolving subcategory of T containing
X by the first assertion again. This implies that resD(R) X ⊇ resT X . The second
assertion now follows.

(3) It is a well-known fact that K(R) = thickD(R) R; see [38, Proposition 1.4(2)]
for instance. In particular, K(R) is a thick subcategory of D(R) containing R. It
follows from (2) that resK(R) X = resD(R) X for any subcategory X of K(R). We
get the equalities EK(R) = resK(R) 0 = resD(R) 0 = ED(R) = ER .

(4) Let X be a resolving subcategory of D(R). Then R belongs to X ∩mod R. If
M ∈ X ∩mod R and N is a direct summand in mod R of M , then M is in X and N
is a direct summand in D(R) of M , so that N is in X and hence N ∈ X ∩mod R.
Let 0 → A → B → C → 0 be an exact sequence in mod R with C ∈ X ∩mod R.
Then there is an exact triangle A → B → C ⇝ in D(R) and C ∈ X . Hence A ∈ X
if and only if B ∈ X , so that A ∈ X ∩mod R if and only if B ∈ X ∩mod R. Thus,
X ∩mod R is a resolving subcategory of mod R.

Let X be a resolving subcategory of K(R). By (2) and (3), X is a resolving
subcategory of D(R) contained in K(R). Hence X∩mod R is a resolving subcategory
of mod R contained in K(R)∩mod R = fpd R. □

In the proposition below, we state simple observations about representing each
closure as an intersection of subcategories. We leave the proof of the proposition
as an easy exercise to the reader.
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Proposition 2.11. Let C be an additive category, and let X be a subcategory of C.

(1) The additive closure addC X is equal to the intersection of all subcategories of
C that contain X and are closed under finite direct sums and direct summands.

(2) Assume that C is either abelian or triangulated. Then the extension closure
extC X is equal to the intersection of all subcategories of C that contain X and
are closed under direct summands and extensions.

(3) Assume that C is triangulated. Then the thick closure thickC X is equal to the
intersection of all thick subcategories of C containing X .

(4) Assume that C is a triangulated subcategory of D(R) containing R. Then the
resolving closure resC X is equal to the intersection of all resolving subcate-
gories of C containing X . In particular, EC coincides with the intersection of
all resolving subcategories of C.

Next we recall the definitions of projective dimension and depth for complexes,
and of Koszul complexes.

Definition 2.12. (1) The supremum sup X and infimum inf X of an object X ∈D(R)
is defined by sup X = sup{i ∈ Z | Hi X ̸= 0} and inf X = inf{i ∈ Z | Hi X ̸= 0}.

(2) The projective dimension pdR X of an object X ∈ D(R) is the infimum of
integers n such that X ∼= P in D(R) for some perfect R-complex P with
P−i

= 0 for all integers i > n. One has pd X ∈ Z∪{±∞} and pd X ⩾−inf X ;
note that pd X = −∞ if and only if X ∼= 0 in D(R). Also, pd X <∞ if and
only if X ∈ K(R). One does not necessarily have pd X ⩽ n even if X ∼= P
in D(R) for some complex P of finitely generated projective modules with
P−i

= 0 for all i > n; see [9, 2.6.P]. We refer to [9, 1.2.P, 1.7, 2.3.P, 2.4.P and
2.7.P] for details of projective dimension.

(3) For each integer n, we denote by Kn(R) the subcategory of K(R) consisting
of perfect complexes having projective dimension at most n.

(4) For a sequence x = x1, . . . , xn we denote by K(x, R) the Koszul complex of
x over R; we refer the reader to [18, §1.6] for the definition and details of
Koszul complexes. When the ambient ring R is clear, we simply write K(x).

(5) Let R be a local ring with residue field k. For an object X of D(R), we denote
by depthR X the depth of X , which is defined by the equality depthR X =

inf RHomR(k, X). Note that if X belongs to mod R, then depthR X = inf{i ∈

N | ExtiR(k, X) ̸= 0}, so it coincides with the classical definition of the depth
of a finitely generated module over a local ring.

We make a collection of basic properties of projective dimension and depth
which are frequently used later.
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Proposition 2.13. (1) Let X be an object of D(R), and let r be an integer. Then
pdR(X [r ])= pdR X +r . When the ring R is local, the equality depthR(X [r ])=

depthR X − r holds.

(2) Let R be a local ring with residue field k. Let X ∈ D(R). One has the equality
pdR X = −inf(X ⊗

L
R k). Also, the Auslander–Buchsbaum formula holds: If

pdR X <∞, then pdR X = depth R − depthR X.

(3) Let A → B → C ⇝ be an exact triangle in D(R). Then the following in-
equalities hold true, where for the latter ones we assume that the ring R is
local.

pdR B ⩽ sup{pdR A, pdR C},

pdR A ⩽ sup{pdR B, pdR C − 1},

pdR C ⩽ sup{pdR B, pdR A + 1},


depthR B ⩾ inf{depthR A, depthR C},

depthR A ⩾ inf{depthR B, depthR C + 1},

depthR C ⩾ inf{depthR B, depthR A − 1}

(4) Let X and Y be objects of D(R). Then pdR(X ⊕ Y ) = sup{pdR X, pdR Y }.
When R is local, depthR(X ⊕ Y )= inf{depthR X, depthR Y }.

(5) For all nonnegative integers n, the subcategory Kn(R) of K(R) is resolving.

(6) There is an equality K0(R) = ER . In particular, the equality ER ∩mod R =

proj R holds.

(7) Let R be a local ring with maximal ideal m. Let x = x1, . . . , xn be a sequence
of elements of R. If xi ∈ m for all i , then pdR K(x)= n. If xi /∈ m for some i ,
then K(x)∼= 0 in K(R) and pdR K(x)= −∞.

Proof. (1) We easily deduce the assertion from the definitions of projective dimension
and depth.

(2) The first assertion follows from [21, (A.5.7.2)]. The second assertion is stated
in [22, (1.5)] for example.

(3) Suppose that R is a local ring with residue field k. The two exact triangles

RHomR(k, A)→ RHomR(k, B)→ RHomR(k,C)⇝, A ⊗
L
R k → B ⊗

L
R k → C ⊗

L
R k⇝

give rise to the inequalities

inf RHomR(k, B)⩾ inf{inf RHomR(k, A), inf RHomR(k,C)}

and inf(B ⊗
L
R k) ⩾ inf{inf(A ⊗

L
R k), inf(C ⊗

L
R k)}. Therefore we have depth B ⩾

inf{depth A, depth C}, and by (2) we get

pdR B = −inf(B ⊗
L
R k)⩽−inf{inf(A ⊗

L
R k), inf(C ⊗

L
R k)}

= sup{−inf(A ⊗
L
R k),−inf(C ⊗

L
R k)} = sup{pdR A, pdR C}.
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Now we consider the case where R is nonlocal. Using [9, Proposition 5.3.P] and
the local case, we get

pdR B = supp∈Spec R{pdRp
Bp}

⩽ supp∈Spec R{sup{pdRp
Ap, pdRp

Cp}}⩽ sup{pdR A, pdR C}.

Applying the argument given so far to the exact triangles C[−1] → A → B⇝ and
B → C → A[1]⇝ and using (1), we obtain the remaining four inequalities.

(4) Suppose that the ring R is local, and let k be the residue field of R. Using (2)
for the former, we have

pdR(X ⊕ Y )= −inf((X ⊕ Y )⊗L
R k)

= −inf((X ⊗
L
R k)⊕ (Y ⊗

L
R k))= −inf{inf(X ⊗

L
R k), inf(Y ⊗

L
R k)}

= sup{−inf(X ⊗
L
R k),−inf(Y ⊗

L
R k)} = sup{pdR X, pdR Y },

depthR(X ⊕ Y )= inf RHomR(k, X ⊕ Y )= inf(RHomR(k, X)⊕ RHomR(k, Y ))

= inf{inf RHomR(k, X), inf RHomR(k, Y )}

= inf{depthR X, depthR Y }.

Now let the ring R be nonlocal. Applying (3) to the exact triangle

X → X ⊕ Y → Y ⇝

gives pdR(X⊕Y )⩽ sup{pdR X, pdR Y }. Assume pdR(X⊕Y )< sup{pdR X, pdR Y }.
We may assume pdR X ⩾ pdR Y .

We claim that if pdRp
Xp<∞ for all prime ideals p of R, then pdR X<∞. Indeed,

putting t = inf X and s = sup X , we find a complex P = ( · · ·→ P t
→· · ·→ Ps

→0)
of finitely generated projective R-modules such that P ∼= X in D(R). Let C be the
cokernel of the map P t−1

→ P t . Let Q = (0 → P t+1
→ · · · → Ps

→ 0) be the
truncation of P , which is a perfect complex. There is an exact triangle Q → P →

C[−t]⇝. For each p∈ Spec R we have pdRp
Qp<∞ and pdRp

Pp = pdRp
Xp<∞,

so that pdRp
Cp < ∞. It follows from [13, Lemma 4.5] that pdR C < ∞. As

pdR Q <∞, we get pdR X = pdR P <∞. The claim thus follows.
The claim and [9, Proposition 5.3.P] produce a prime ideal p such that pdR X =

pdRp
Xp ⩽∞. We have

pdRp
Xp ⩽ sup{pdRp

Xp, pdRp
Yp} = pdRp

(Xp ⊕ Yp)

⩽ pdR(X ⊕ Y ) < sup{pdR X, pdR Y } = pdR X = pdRp
Xp,

where the first equality holds since the ring Rp is local. We now get a contradiction,
and therefore, the equality pdR(X ⊕ Y )= sup{pdR X, pdR Y } holds.

(5) As n is nonnegative, R belongs to Kn(R). The assertion is shown to hold by
using (3) and (4).
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(6) As ER contains R and is closed under negative shifts, it contains R[i] for all
i ⩽ 0. Hence we will get the required equality K0(R)= ER once we prove that the
following inclusions hold.

K0(R)⊆ extK(R){R[i] | i ⩽ 0} ⊆ ER ⊆ K0(R).

The second inclusion holds since ER is closed under extensions, while the last
inclusion comes from the fact that K0(R) is a resolving subcategory and ER is a
minimum resolving subcategory. To show the first inclusion, pick an object P in
K0(R). We may assume that P = (0→ P0

→ P1
→· · ·→ Ps

→0). Then P belongs
to extK(R){Ps

[−s], . . . , P1
[−1], P0

}, which is contained in extK(R){R[i] | i ⩽ 0}.
Thus the first inclusion follows.

(7) If xi ∈m for all i , then pdR K(x)= n by (2). If xi /∈m for some i , then K(xi )∼= 0
in D(R), and hence K(x)∼= K(x1)⊗

L
R · · · ⊗

L
R K(xi )⊗

L
R · · · ⊗

L
R K(xn)∼= 0 in D(R).

Hence K(x)∼= 0 in K(R). □

Here, let us present an application of the above proposition. The corollary below
is thought of as a derived category version of [50, Proposition 1.12(2)].

Corollary 2.14. Let R be a local ring. Let X and Y be complexes that belong
to D(R). Suppose that X is in the resolving closure resD(R) Y . Then there is an
inequality depthR X ⩾ inf{depthR Y, depth R}.

Proof. Let Z be the subcategory of D(R) consisting of objects Z such that depth Z ⩾
inf{depth Y, depth R}. It is evident that Z contains Y and R. Using the depth equality
in Proposition 2.13(4), we see that Z is closed under direct summands. Also, the
first depth inequality in Proposition 2.13(3) shows that Z is closed under extensions.
By the depth equality in Proposition 2.13(1), it follows that Z is closed under
negative shifts. Consequently, Z is a resolving subcategory of D(R) containing Y .
Hence Z contains resD(R) Y , and therefore X belongs to Z. Now the assertion of
the corollary follows. □

By definition, a thick subcategory of D(R) containing R is a resolving subcategory
of D(R). The converse of this statement is not necessarily true. Actually, we state
and prove the following proposition, which gives rise to an example of a resolving
subcategory of D(R) that is not a thick subcategory of D(R).

Proposition 2.15. The equality resD(R)(mod R) = {X ∈ D(R) | H<0 X = 0} of
subcategories of D(R) holds. Thus, the resolving subcategory resD(R)(mod R) of
D(R) is not thick; it is not closed under positive shifts.

Proof. Let X be the subcategory of D(R) consisting of complexes X with H<0 X = 0.
Evidently, X contains mod R. In particular, X contains R. It is straightforward
to verify that X is closed under direct summands, extensions, and negative shifts.
Hence X is a resolving subcategory of D(R) containing mod R. Therefore, X
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contains resD(R)(mod R). Conversely, pick X ∈ X . Since H<0 X = 0, we may
assume X = (0 → X0

→ X1
→· · ·→ Xn

→ 0); see [21, (A.1.14)]. There is a series
{X i

[−i]→ X i → X i−1⇝}
n
i=0 of exact triangles in D(R) with Xn = X and X−1 = 0.

The object X i
[−i] is in resD(R)(mod R) for all 0 ⩽ i ⩽ n, since X i

∈ mod R and
−i ⩽ 0. It is observed that X belongs to resD(R)(mod R). Therefore, X is contained
in resD(R)(mod R).

As for the last assertion of the proposition, we have R ∈ X , but R[1] /∈ X since
H−1(R[1])= R ̸= 0. □

We close the section by stating a remark on the second assertion of Proposition 2.8.

Remark 2.16. Let T be a triangulated subcategory of D(R) containing R. Let
X and Y be objects of T . Assume that X belongs to res Y . Then X [n] belongs
to res(Y [n]) if n ⩽ 0 by Proposition 2.8(2a). However, X [n] does not necessarily
belong to res(Y [n]), if n > 0. In fact, we have the following observations.

(1) Let X = R and Y = R[−1]. Then X ∈ resD(R) Y , but X [1] = R[1] /∈ ER =

resD(R) R = resD(R)(Y [1]); see Proposition 2.10(1). Indeed, we have pd R[1] =

1 and R[1] /∈ K0(R)= ER by Proposition 2.13(1)(6).

(2) Suppose that there exists an exact triangle X → E → Y ⇝ in T such that
E ∈ ET . Then X belongs to resT Y . An exact triangle X [1] → E[1] → Y [1]⇝
in T is induced. If E[1] is in resT (Y [1]), then X [1] is in resT (Y [1]). However,
as we have seen in (1), the object E[1] may not belong to resT (Y [1]).

3. NE-loci of objects and subcategories of D(R)

Recall that the nonfree locus NF(M) of each object M of mod R is by definition the
set of prime ideals p of R such that the localization Mp is nonfree as an Rp-module.
Also, recall that the nonfree locus NF(X ) of a subcategory X of mod R is defined
as the union of NF(M) where M runs through the objects of X . In this section, we
introduce and study NE-loci NE(−), which extend nonfree loci NF(−) to objects
and subcategories of D(R).

We begin with stating the definitions of an R-linear additive category and a
quotient of such a category by an ideal.

Definition 3.1. Let C be an R-linear additive category, that is, an additive category
whose hom-sets are R-modules and composition of morphisms is R-bilinear.

(1) An ideal I of C is by definition a family {I(X, Y )}X,Y∈C of R-submodules of
HomC(X, Y ) such that b f a ∈ I(W, Z) for all a ∈ HomC(W, X), f ∈ I(X, Y ),
b ∈ HomC(Y, Z) and W, X, Y, Z ∈ C. The quotient C/I of C by the ideal I is
by definition the category whose objects are those of C and morphisms are
given by HomC/I(X, Y )= HomC(X, Y )/I(X, Y ) for X, Y ∈ C. Note that C/I
is an R-linear additive category.
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(2) Let D be a subcategory of C. For two objects X, Y of C, let [D](X, Y ) be the
subset of HomC(X, Y ) consisting of morphisms that factor through some finite
direct sums of objects in D. Then it is easy to observe that [D] is an ideal of
C, and hence the quotient C/[D] is defined.

The category D(R) that we now define plays an important role in this section.

Definition 3.2. We denote by D(R) the quotient D(R)/[ER]. The hom-set

HomD(R)(X, Y )

is a finitely generated R-module for all X, Y ∈ D(R), as it is a factor of the finitely
generated R-module HomD(R)(X, Y ).

The proposition below concerns when an object and a morphism in D(R) are
zero in the category D(R). The proof is standard, so we omit it.

Proposition 3.3. (1) A morphism in D(R) is zero in D(R) if and only if it factors
through an object in ER .

(2) Let X ∈ D(R). The following are equivalent:

(a) X ∼= 0 in D(R). (b) HomD(R)(X, X)= 0. (c) X ∈ ER .

We define the localization of a given subcategory of D(R) by a multiplicatively
closed subset of R.

Definition 3.4. Let X be a subcategory of D(R). For a multiplicatively closed
subset S of R, we define the subcategory XS of D(RS) by XS = {X S | X ∈ X }.
When S = R \ p with p ∈ Spec R, we set Xp = XS .

In the lemma below we study the structure of localizations of morphisms in the
category D(R).

Lemma 3.5. Let p be a prime ideal of R. Taking the localization of a morphism
in D(R) at p induces an isomorphism HomD(R)(X, Y )p → HomD(Rp)(Xp, Yp) of
Rp-modules for all objects X, Y ∈ D(R).

Proof. Localization at p gives an isomorphism

φ : HomD(R)(X, Y )p → HomD(Rp)(Xp, Yp);

see [21, Lemma (A.4.5)]. If P = (0 → P0
→ · · · → Pn

→ 0) is a perfect R-
complex, then Pp = (0 → P0

p → · · · → Pn
p → 0) is a perfect Rp-complex. By

Proposition 2.13(6), the subcategory (ER)p of D(Rp) is contained in ERp . Thus φ
restricts to an injection ψ : ([ER](X, Y ))p → [ERp](Xp, Yp). Let

Q = (0 → R⊕r0
p → · · · → R⊕rn

p → 0)
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be a perfect Rp-complex with Qi
= R⊕ri

p for each i ∈ Z. Then we easily find a
perfect R-complex P = (0 → R⊕r0 → · · · → R⊕rn → 0) such that Pp is isomorphic
to Q as an Rp-complex; see [1, Lemma 4.2(1) and its proof]. Hence P belongs to
ER , and the equality (ER)p = ERp follows. Consider the decomposition

(Xp

f
s

−→ Yp)= (Xp

g
t

−→ Ep

h
u

−→ Yp)

of a morphism f
s : Xp → Yp in D(Rp), where f, g, h are morphisms in D(R),

s, t, u ∈ R\p and E ∈ ER . Then vut f = vshg for some v ∈ R\p. We have f
s =

vut f
vuts

and
(X

vut f
−−→ Y )= (X

g
−→ E

vsh
−−→ Y ).

This shows that the injection ψ is surjective. Consequently, φ induces an isomor-
phism HomD(R)(X, Y )p → HomD(Rp)(Xp, Yp). □

Definition 3.6 (NE-loci of objects of D(R)). Let X be an object of D(R). We denote
by NE(X) the set of prime ideals p of R such that Xp /∈ ERp , and call it the NE-locus
of X . According to Proposition 2.13(6), this is equal to the set of prime ideals p of
R such that the Rp-complex Xp has positive (possibly infinite) projective dimension.
Thus we may also call NE(X) the positive projective dimension locus of X . Clearly,
the equality NE(M)= NF(M) holds for each finitely generated R-module. Note
that NE(X) is contained in Supp(X), where the latter set is the support of X , which
is defined by the equality Supp(X)= {p ∈ Spec R | Xp ≇ 0 in D(Rp)}.

We state a basic fact on free resolutions and truncations of complexes, which is
frequently used later.

Remark 3.7. Let X ∈D(R) be a complex. Put t = inf X and s = sup X . Then there
exists a complex

F = ( · · ·
∂ t−1

−−→ F t ∂ t

−→ F t+1 ∂ t+1

−−→ · · ·
∂s−2

−−→ F s−1 ∂s−1

−−→ F s
→ 0)

of finitely generated free R-modules such that X ∼= F in D(R); see [21, (A.3.2)]
for instance.

(1) Let C be the cokernel of the differential map ∂t−1, and let P = (0 → F t+1
→

· · · → F s
→ 0) be a truncation of F . Then P is a perfect complex and one

has an exact triangle P → X → C[−t]⇝ in D(R).

(2) Let P = (0 → F1
→ · · · → F s

→ 0) and Y = ( · · · → F−1
→ F0

→ 0)
be truncations of F . Then Y is an object of D(R) with sup Y ⩽ 0. There is
an exact triangle P → X → Y ⇝ in D(R), which induces an exact triangle
X → Y → P[1]⇝ in D(R). Proposition 2.13(6) implies that P and P[1]

belong to ER . It is seen that Y belongs to resD(R) X .

Here are several basic properties of the NE-loci of objects of the derived category
D(R).
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Lemma 3.8. (1) Let X be an object of D(R). Then, the set NE(X) is empty if and
only if X belongs to ER .

(2) For any objects X1, . . . , Xn of D(R) one has the equality NE(
⊕n

i=1 X i ) =⋃n
i=1 NE(X i ).

(3) For every X ∈D(R) there exists Y ∈D(R) with sup Y ⩽0, resD(R) X = resD(R) Y
and NE(X)= NE(Y ).

(4) For an exact triangle X → Y → Z ⇝ one has NE(X)⊆ NE(Y )∪ NE(Z) and
NE(Y )⊆ NE(X)∪ NE(Z).

Proof. (1) By [9, Proposition 5.3.P] and Proposition 2.13(6), we get NE(X)= ∅ if
and only if Xp ∈ ERp for all p∈ Spec R, if and only if pdRp

Xp⩽ 0 for all p∈ Spec R,
if and only if pdR X ⩽ 0, if and only if X ∈ ER .

(2) Let p be a prime ideal of R. Since ERp is a resolving subcategory of D(Rp), we
have

⊕n
i=1(X i )p =

(⊕n
i=1 X i

)
p
∈ ERp if and only if (X i )p ∈ ERp for all 1⩽ i ⩽ n.

The assertion follows from the contrapositive.

(3) According to Remark 3.7(2), there exists an exact triangle X → Y → Z ⇝ in
D(R) such that sup Y ⩽ 0 and Z ∈ ER . For each resolving subcategory X of D(R)
we have X ∈X if and only if Y ∈X . In particular, resD(R) X = resD(R) Y . For every
p ∈ Spec R there exists an exact triangle Xp → Yp → Zp ⇝ in D(Rp). Since Zp

belongs to ERp , we again have Xp ∈ Y if and only if Yp ∈ Y for each resolving
subcategory Y of D(Rp). In particular, Xp /∈ ERp if and only if Yp /∈ ERp . Hence the
equality NE(X)= NE(Y ) holds.

(4) Fix p ∈ Spec R. By Proposition 2.13(3), if pd Yp ⩽ 0 and pd Zp ⩽ 0, then
pd Xp ⩽ sup{pd Yp, pd Zp − 1} ⩽ 0. Also, if pd Xp ⩽ 0 and pd Zp ⩽ 0, then
pd Yp ⩽ sup{pd Xp, pd Zp}⩽ 0. The assertion follows. □

Remark 3.9. In view of Lemma 3.8(4), we may wonder if the inclusion NE(Z)⊆

NE(X)∪NE(Y ) holds for every exact triangle X → Y → Z⇝ in D(R). This is not
true in general. In fact, the exact triangle R

=
−→ R → 0⇝ induces an exact triangle

R → 0 → R[1]⇝. Then NE(R[1]) = Spec R because pd(R[1])p = pd Rp[1] =

pd Rp + 1 = 1 for each p ∈ Spec R by Proposition 2.13(1), while NE(R)∪ NE(0)
is the empty set.

We provide a generalization (or a derived category version) of [49, Proposition
2.10 and Corollary 2.11(1)].

Proposition 3.10. For every object X of D(R) there is an equality NE(X) =

SuppR(HomD(R)(X, X)). In particular, the NE-loci of objects of D(R) are closed
subsets of Spec R in the Zariski topology.

Proof. A prime ideal p of R does not belong to the support of the R-module
HomD(R)(X, X) if and only if HomD(R)(X, X)p = 0, and this happens if and only
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if HomD(Rp)(Xp, Xp) = 0 by Lemma 3.5, if and only if Xp belongs to ERp by
Proposition 3.3(2), if and only if p is not in NE(X). It follows that NE(X) =

Supp(HomD(R)(X, X)). □

Definition 3.11 (NE-loci of subcategories of D(R)). For a subcategory X of D(R),
we set NE(X )=

⋃
X∈X NE(X) and call it the NE-locus of X . Since each NE(X)

in the union is a Zariski-closed subset of Spec R by Proposition 3.10, the subset
NE(X ) of Spec R is specialization-closed. (This is a generalization of [49, Corollary
2.11(2)].)

The following proposition is regarded as a derived category version of [49,
Corollary 3.6].

Proposition 3.12. For every subcategory X of D(R) the equality NE(resD(R) X )=

NE(X ) holds.

Proof. Since X is contained in resD(R) X , we see that NE(X ) is contained in
NE(resX ). Let p be a prime ideal of R with p /∈ NE(X ). We have pdRp

Xp ⩽ 0 for
every X ∈ X , so that X is contained in the subcategory Y of D(R) consisting of
complexes Y such that pdRp

Yp⩽ 0. Clearly, Y contains R. By the projective dimen-
sion equality in Proposition 2.13(4), we see that Y is closed under direct summands.
The first projective dimension inequality in Proposition 2.13(3) shows that Y is
closed under extensions. The projective dimension equality in Proposition 2.13(1)
implies that Y is closed under negative shifts. Thus, Y is a resolving subcategory of
D(R) containing X , so that it contains resX . It follows that p /∈ NE(resX ). Thus,
NE(X )= NE(resX ). □

Recall that a finitely generated R-module M is called a maximal Cohen–Macaulay
module provided that it satisfies the inequality depthRp

Mp ⩾ dim Rp for all prime
ideals p of R. Now, extending this, we introduce the notion of a maximal Cohen–
Macaulay complex. This plays an important role in the rest of this paper.

Definition 3.13. (1) We call an object X of D(R) a maximal Cohen–Macaulay
complex if depthRp

Xp ⩾ dim Rp for all prime ideals p. By definition, a finitely
generated R-module M is maximal Cohen–Macaulay if and only if the complex
(0 → M → 0) concentrated in degree zero is maximal Cohen–Macaulay.

(2) We denote by C(R) the subcategory of D(R) consisting of all maximal Cohen–
Macaulay R-complexes.

Recall that Sing R stands for the singular locus of R, that is to say, the set of
prime ideals p of R such that the local ring Rp is not regular. In the proposition
below, we state some properties of maximal Cohen–Macaulay complexes, whose
module category version can be found in [49, Example 2.9].

Proposition 3.14. (1) Let X ∈ D(R) be maximal Cohen–Macaulay. Then NE(X)
is contained in Sing R.
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(2) The subcategory C(R) of D(R) is closed under direct summands, extensions
and negative shifts. If R is a Cohen–Macaulay ring, then C(R) is a resolving
subcategory of D(R) and vice versa.

Proof. (1) Let p be a prime ideal of R with p /∈ Sing R. Then Rp is a regular
local ring, so that pdRp

Xp < ∞. By Proposition 2.13(2), we have pdRp
Xp =

depth Rp − depth Xp = dim Rp − depth Xp ⩽ 0. Thus p /∈ NE(X).

(2) The depth equality in Proposition 2.13(4) shows C(R) is closed under direct
summands. Using the first inequality in Proposition 2.13(3), we observe that C(R)
is closed under extensions. It is seen from the depth equality in Proposition 2.13(1)
that C(R) is closed under negative shifts. The ring R is Cohen–Macaulay if and only
if R belongs to C(R), if and only if C(R) is a resolving subcategory of D(R). □

Recall that a thick subcategory X of CM(R) is by definition a subcategory of
CM(R) closed under direct summands and such that for every short exact sequence
0→ L → M → N →0 of maximal Cohen–Macaulay R-modules, if two of L ,M, N
belong to X , then so does the third. Also, for each set 8 of prime ideals of R,
the subcategory NF−1(8) is defined as the subcategory of mod R consisting of
modules whose nonfree loci are contained in 8, and NF−1

CM(8) is defined to be the
intersection of NF−1(8) with CM(R). These three subcategories play important
roles in [50; 52; 53]. Now we introduce their derived category versions.

Definition 3.15. (1) We say that a subcategory X of C(R) is thick provided that
X is closed under direct summands in the additive category C(R), and that for
each exact triangle A → B → C ⇝ in D(R) such that A, B,C ∈ C(R), if two
of A, B,C belong to X , then so does the third. (We should be careful not to
confuse a thick subcategory of C(R) with a thick subcategory of D(R) in the
sense of Definition 2.3.)

(2) For a subset 8 of Spec R, we denote by NE−1(8) the subcategory of D(R)
consisting of complexes whose NE-loci are contained in 8. We define the
subcategory NE−1

C (8) of C(R) by NE−1
C (8)= NE−1(8)∩C(R).

The following proposition includes a derived category version of [50, Propositions
1.15(3), 4.2 and Theorem 4.10(3)]. Compare this proposition with Theorem 6.1
stated later.

Proposition 3.16. (1) Every thick subcategory of D(R) contained in C(R) is a
thick subcategory of C(R). Every thick subcategory of C(R) containing R is a
resolving subcategory of D(R) contained in C(R).

(2) For8⊆ Spec R the subcategory NE−1(8) of D(R) is resolving. If R is Cohen–
Macaulay, then NE−1

C (8) is a thick subcategory of C(R) containing R, and a
resolving subcategory of D(R) contained in C(R).
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Proof. (1) First of all, note that since C(R) is closed under direct summands as a
subcategory of D(R) by Proposition 3.14(2), being closed under direct summands as
a subcategory of C(R) implies being closed under direct summands as a subcategory
of D(R). The first assertion now follows. To show the second, let X be a thick
subcategory of C(R) containing R. Then X is closed under direct summands as
a subcategory of D(R). Let A → B → C ⇝ be an exact triangle in D(R) with
C ∈ X . Then C is in C(R), and we observe from Propositions 3.14(2) and 2.4(1)
that A ∈ C(R) if and only if B ∈ C(R). Since X is a thick subcategory of C(R), it is
easy to verify that A ∈ X if and only if B ∈ X . Thus, X is a resolving subcategory
of D(R).

(2) Since NE(R)= ∅ ⊆8, we have R ∈ NE−1(8). Using Lemma 3.8(2), we see
that NE−1(8) is closed under direct summands. Let X → Y → Z ⇝ be an exact
triangle in D(R) with Z ∈ NE−1(8). Then 8 contains NE(Z). It follows from
Lemma 3.8(4) that 8 contains NE(X) if and only if 8 contains NE(Y ). This means
that X ∈ NE−1(8) if and only if Y ∈ NE−1(8). Thus, NE−1(8) is a resolving
subcategory of D(R).

Let R be Cohen–Macaulay. The first assertion of (2) shows NE−1(8) is a
resolving subcategory of D(R), and so is C(R) by Proposition 3.14(2), whence
so is NE−1(8)∩ C(R) = NE−1

C (8). Let A → B → C ⇝ be an exact triangle in
D(R) with A, B ∈ NE−1

C (8) and C ∈ C(R). Assume C /∈ NE−1
C (8). Then we find

p ∈ NE(C) such that p /∈8. Hence p does not belong to NE(A) or NE(B), which
means that pd Ap ⩽ 0 and pd Bp ⩽ 0. The exact triangle Ap → Bp → Cp ⇝ in
D(Rp) and Proposition 2.13(3) show pd Cp ⩽ 1<∞, and we get

pd Cp = depth Rp − depth Cp = dim Rp − depth Cp ⩽ 0,

where the first equality comes from Proposition 2.13(2), the second equality holds
since the local ring Rp is Cohen–Macaulay, and the inequality holds as C is maximal
Cohen–Macaulay. This is a contradiction because p ∈ NE(C). It follows that
C ∈ NE−1

C (8). Thus NE−1
C (8) is a thick subcategory of C(R) (containing R). □

Remark 3.17. The converse of the first assertion of Proposition 3.16(1) does not
necessarily hold true. In fact, C(R) is itself a thick subcategory of C(R), but it is not
necessarily a thick subcategory of D(R). For example, let R be a Cohen–Macaulay
local ring of positive Krull dimension. Then there exists a non-zerodivisor x in the
maximal ideal of R, which gives rise to an exact sequence 0→ R

x
−→ R → R/(x)→0

in mod R, which induces an exact triangle R
x
−→ R → R/(x)⇝ in D(R). We have

R ∈ C(R) but R/(x) /∈ C(R). Therefore, C(R) is not a thick subcategory of D(R).
This argument also shows the module category version: a thick subcategory of
CM(R) is not necessarily a thick subcategory of mod R contained in CM(R).
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4. Classification of certain preaisles of K(R)

We will now consider classifying certain preaisles of the triangulated category K(R).
We begin by recalling the definitions of preaisles and several related notions.

Definition 4.1 [2, §1.1; 14, §1.3; 35, §1.1]. Let T be a triangulated category. A
preaisle (resp. precoaisle) of T is by definition a subcategory of T closed under
extensions and positive (resp. negative) shifts. A preaisle (resp. precoaisle) X of T
is called an aisle (resp. a coaisle) if the inclusion functor X ↪→ T has a right (resp.
left) adjoint. For an aisle X and a coaisle Y of T , the pair (X ,Y[1]) is called a
t-structure of T if HomT (X, Y )= 0 for all X ∈ X and Y ∈ Y .

Denote by (−)∗ the R-dual functor HomR(−, R). The assignment P 7→ P∗

gives a duality of K(R), which sends an exact triangle

A
f

−→ B
g
−→ C

h
−→ A[1]

to the exact triangle

C∗ g∗

−→ B∗ f ∗

−→ A∗ h∗
[1]

−−→ C∗
[1].

For a subcategory X of K(R), we denote by X ∗ the subcategory of K(R) consisting
of complexes of the form X∗ with X ∈ X . The following lemma is straightforward
from the definitions of preaisles and precoaisles.

Lemma 4.2. The assignment X 7→ X ∗ produces a one-to-one correspondence{
preaisles of K(R) containing R

and closed under direct summands

}
∼=

{
precoaisles of K(R) containing R
and closed under direct summands

}
.

Remark 4.3. In [27] a preaisle closed under direct summands is called a thick
preaisle.

Let us recall the definition of a certain fundamental filtration of subsets of Spec R.

Definition 4.4. A filtration by supports or sp-filtration of Spec R is by definition
an order-reversing map φ : Z → 2Spec R such that for each i ∈ Z the subset φ(i) of
Spec R is specialization-closed.

Here we need to introduce some notation. Let f be a map Spec R → Z ∪{±∞}.

P( f )(i)= {p ∈ Spec R | f (p) > i} for i ∈ Z.

E( f )= {X ∈ K(R) | pd X∗
p ⩽ f (p) for all p ∈ Spec R}.

F(φ)(p)= sup{ j ∈ Z | p ∈ φ( j)} + 1 for a map φ : Z → 2Spec R and p ∈ Spec R.

Q(X )(p)= sup{pd X∗
p | X ∈ X } for a subcategory X of K(R) and p ∈ Spec R.

The following theorem classifies certain preaisles of K(R), which can be shown
by using techniques of the unbounded derived category D(Mod R) of the category
Mod R of all (possibly infinitely generated) R-modules.
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Theorem 4.5. There are one-to-one correspondences
preaisles of K(R)

containing R
and closed under
direct summands


Q
//

{
order-preserving maps

Spec R → N ∪ {∞}

}
P
//

E
oo


sp-filtrations φ
of Spec R with
φ(−1)= Spec R

.F
oo

Proof. If φ is an sp-filtration of Spec R with φ(−1) = Spec R, then F(φ)(p) =

sup{i ∈ Z | p ∈ φ(i)} + 1 ⩾ (−1)+ 1 = 0 for each prime ideal p of R, and hence
F(φ) is regarded as a map from Spec R to N∪{∞}. If f : Spec R → N∪{∞} is an
order-preserving map, then P( f )(−1)= {p ∈ Spec R | f (p)⩾ 0} = Spec R. Thus,
it follows from [55, Proposition 4.3] that the maps (P, F) appearing in the assertion
are mutually inverse bijections.

Let A be the set of preaisles of K(R) closed under direct summands, B the
set of aisles of compactly generated t-structures of D(Mod R), and C the set of
sp-filtrations of Spec R. Then, [47, Theorem 4.10] or the combination of [41,
Proposition 1.9(ii)] with [34, Theorem A.7] implies that the map f : A → B is
bijective, which sends each X ∈ A to the aisle of D(Mod R) generated by X . In [2,
Theorem 3.11] it is proved that the map g : B → C is bijective, which sends each
Y ∈ B to the map φ : Z → 2Spec R given by φ(n)= {p ∈ Spec R | (R/p)[−n] ∈ Y}

for each n ∈ Z. We see that the maps (Q,E) appearing in the assertion are mutually
inverse bijections. □

Here we define assignments between subcategories of D(R) and maps from
Spec R to Z ∪ {±∞}, and state a couple of properties.

Definition 4.6. For a subcategory X of D(R), we define the map 8(X ) : Spec R →

Z∪{±∞} by8(X )(p)= supX∈X {pdRp
Xp} for p∈Spec R. For a map f :Spec R →

Z ∪ {±∞}, we denote by 9( f ) the subcategory of D(R) consisting of objects X
with pdRp

Xp ⩽ f (p) for all p ∈ Spec R. We equip the sets Spec R and Z ∪ {±∞}

with the partial orders given by the inclusion relation (⊆) and the inequality relation
(⩽), respectively.

Lemma 4.7. (1) Let X be a subcategory of D(R) which contains R. Then 8(X )
defines an order-preserving map from Spec R to N ∪ {∞}.

(2) Let f : Spec R → N ∪ {∞} be a map. Then 9( f ) is a resolving subcategory
of D(R).

Proof. (1) Fix a prime ideal p of R. Then supX∈X {pd Xp} ⩾ pd Rp = 0, since R
belongs to X . Thus, 8(X )(p) is an element of N ∪ {∞}. If q is a prime ideal of
R that contains p, then we have pdRp

Xp = pd(Rq)pRq
(Xq)pRq ⩽ pdRq

Xq for each
X ∈ D(R) (see [9, Proposition 5.1(P)]), whence 8(X )(p)⩽8(X )(q).
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(2) We have pd Rp = 0⩽ f (p) for every prime ideal p of R, which shows that 9( f )
contains R. If X is an object of 9( f ) and Y is a direct summand of X in D(R),
then pd Yp ⩽ pd Xp ⩽ f (p) for all p ∈ Spec R by Proposition 2.13(4), which shows
that Y belongs to 9( f ). Let X → Y → Z ⇝ be an exact triangle in D(R) with
Z ∈9( f ). Then for each p ∈ Spec R there is an exact triangle Xp → Yp → Zp⇝
in D(Rp) and pd Zp ⩽ f (p). It is seen from Proposition 2.13(3) that pd Xp ⩽ f (p)
if and only if pd Yp ⩽ f (p). Therefore, X is in 9( f ) if and only if Y is in 9( f ).
We now conclude that 9( f ) is a resolving subcategory of D(R). □

Note that the resolving subcategories of K(R) are precisely the precoaisles of
K(R) that contain R and are closed under direct summands. Therefore, applying
Lemmas 4.2, 4.7 and Theorem 4.5, we immediately get the following theorem,
which provides a complete classification of the resolving subcategories of K(R).

Theorem 4.8. The assignments X 7→8(X ) and f 7→9( f )∩K(R) give mutually
inverse bijections between the resolving subcategories of K(R), and the order-
preserving maps from Spec R to N ∪ {∞}.

Remark 4.9. (1) The proof of Theorem 4.5 given above actually classifies the
preaisles of K(R) closed under direct summands, which do not necessarily
contain R. For our purpose, the assertion of Theorem 4.5 suffices.

(2) There are other proofs of Theorems 4.5 and 4.8 without using techniques of
unbounded derived categories. The proofs are longer than the ones given above,
but instead elementary enough for those who are unfamiliar with unbounded
derived categories to understand easily. They will be given in Appendix A.

To compare Theorem 4.5 with classification of aisles of D(R), we need to recall
some notions.

Definition 4.10. (1) A map f : Spec R → Z ∪ {±∞} is called a t-function on
Spec R if for each inclusion p ⊆ q in Spec R there are inequalities f (p) ⩽
f (q)⩽ f (p)+ ht q/p.

(2) An sp-filtration φ is said to satisfy the weak Cousin condition provided that
for all integers i and for all saturated inclusions p⊊ q in Spec R, if q belongs
to φ(i), then p belongs to φ(i − 1).

(3) We say that R is CM-excellent if R is universally catenary, the formal fibers of
the localizations of R are Cohen–Macaulay, and the Cohen–Macaulay locus
of each finitely generated R-algebra is Zariski-open.

Takahashi [55, Theorem 5.5] proved the following, which yields a complete
classification of the t-structures of D(R) when R is a CM-excellent ring of finite
Krull dimension. We set

H( f )= {X ∈ D(R) | H⩾ f (p)(Xp)= 0 for all p ∈ Spec R}
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for a map f : Spec R → Z ∪ {±∞}, and

R(X )(p)= sup{i ∈ Z | (R/p)[−i] ∈ X } + 1

for a subcategory X of D(R) and p ∈ Spec R.

Theorem 4.11 (Takahashi). When R is CM-excellent and dim R <∞, there are
one-to-one correspondences{

aisles
of D(R)

}
R
//

{
t-functions
on Spec R

}
P
//

H
oo

{
sp-filtrations of Spec R

satisfying the weak Cousin condition

}
.

F
oo

The next proposition records a relationship between Theorem 4.5 and the re-
striction of Theorem 4.11 to K(R). Note that the intersection of the set of order-
preserving maps from Spec R to N ∪ {∞} and the set of t-functions on Spec R
consists of the t-functions whose images are contained in N ∪ {∞}.

Proposition 4.12. Let R be a CM-excellent ring of finite Krull dimension. Let f
be a t-function on Spec R whose image is contained in N ∪ {∞}. Then there is an
equality E( f )[1] = H( f )∩K(R).

Proof. We claim that if R is local, X ∈ K(R) and n ∈ Z, then pd X∗ ⩽ n if and only
if H>n(X) = 0. In fact, letting k be the residue field of R, we have that pd X∗

=

sup RHomR(X∗, k), that RHomR(X∗, k)∼= X ⊗
L
R k and that sup(X ⊗

L
R k)= sup X

by [21, (A.5.7.3), (A.4.24) and (A.6.3.2)], respectively.
Let X be an object of K(R). Using the above claim, we see that X ∈ E( f )[1] if

and only if X [−1] ∈ E( f ), if and only if pd(X [−1])∗p ⩽ f (p) for all p ∈ Spec R, if
and only if pd X∗

p ⩽ f (p)− 1 for all p ∈ Spec R, if and only if H⩾ f (p)(Xp)= 0, if
and only if X ∈ H( f ). It follows that E( f )[1] = H( f )∩K(R). □

Question 4.13. Let R be a CM-excellent ring of finite Krull dimension. Is there
any relationship between Theorem 4.5 and the restriction of Theorem 4.11 to K(R),
other than the one shown in Proposition 4.12?

Remark 4.14. In view of what we have stated so far, it is quite natural to ask if the
aisles of K(R) can be classified. If R is regular, then K(R) coincides with D(R),
and Theorem 4.11 gives an answer. In case R is singular, it is known that K(R)
possesses only trivial aisles under mild assumptions: Smith [44, Theorems 1.2
and 1.3] proved that if R has finite Krull dimension, then K(R) has no bounded
t-structure, and if moreover R is irreducible, then 0 and K(R) are the only aisles of
K(R). The former statement has recently been extended to schemes by Neeman
[42, Theorem 0.1], which resolves a conjecture of Antieau, Gepner and Heller [5].
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5. Separating the resolving subcategories of D(R)

In this section, for a complete intersection R we separate the resolving subcategories
of D(R) into the resolving subcategories contained in K(R) and the resolving
subcategories contained in C(R). For this, we need several preparations. We start
by recalling the definition of the cosyzygies of a finitely generated module.

Definition 5.1. Let M be a finitely generated R-module and n ⩾ 1 an integer. We
denote by �−n

R M the nth cosyzygy of M . This is defined inductively as follows.
Let �−1

R M be the cokernel of a left (proj R)-approximation of M , namely, a homo-
morphism f : M → P such that P is a finitely generated projective R-module and
the map HomR( f, R) : HomR(P, R)→ HomR(M, R) is surjective. For n ⩾ 2 we
set �−n

R M =�−1
R (�

−(n−1)
R M). The nth cosyzygy of M is uniquely determined by

M and n up to projective summands. For details, see [48, Sections 2 and 7] for
instance.

Next we recall the definition of a certain numerical invariant for complexes.

Definition 5.2. The (large) restricted flat dimension RfdR X of an R-complex
X ∈ D(R) is defined by

RfdR X = supp∈Spec R{depth Rp − depth Xp}.

One has inequalities −inf X ⩽ RfdR X < ∞; see [10, Theorem 1.1] and [22,
Proposition (2.2) and Theorem (2.4)]. Also, note that if R is Cohen–Macaulay, then
X is maximal Cohen–Macaulay if and only if RfdR X ⩽ 0.

For a complex X ∈ D(R), we denote by GdimR X the Gorenstein dimension
(G-dimension for short) of X . Recall that a totally reflexive module is defined to
be a finitely generated module of G-dimension at most zero. For the details of
G-dimension and totally reflexive modules, we refer the reader to [21]. In the
following lemma, we make a list of properties of G-dimension we need to use
later. Assertions (2) and (3) of the lemma correspond to assertions (1) and (3) of
Proposition 2.13 concerning projective dimension.

Lemma 5.3. (1) Let Y, Z ∈ D(R). If pdR Y < ∞ and GdimR Z ⩽ 0, then
ExtiR(Z , Y )= 0 for all i > sup Y .

(2) For every X ∈D(R) and every n ∈ Z the equality GdimR(X [n])=GdimR X +n
holds.

(3) Let X → Y → Z ⇝ be an exact triangle in D(R). Then

GdimR X ⩽ sup{GdimR Y,GdimR Z − 1},

GdimR Y ⩽ sup{GdimR X,GdimR Z},

GdimR Z ⩽ sup{GdimR X + 1,GdimR Y }.
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(4) An object X ∈ D(R) is isomorphic to a totally reflexive module if and only if
GdimR X ⩽ 0 and sup X ⩽ 0.

(5) Suppose that the ring R is Gorenstein. Then every complex X of D(R) satisfies
GdimR X = RfdR X < ∞. In particular, X is a maximal Cohen–Macaulay
R-complex if and only if one has GdimR X ⩽ 0.

Proof. In what follows, [21, (2.3.8)] is our fundamental tool. Also, we set

(−)⋆ = RHomR(−, R),

and for each complex C ∈ D(R) such that C⋆
∈ D(R), let fC : C → C⋆⋆ stand for

the natural morphism.

(1) If R is local, then sup RHom(Z , Y )⩽Gdim Z + sup Y ⩽ sup Y by [21, (2.4.1)],
and the assertion is deduced. Suppose R is nonlocal, and fix p ∈ Spec R. Then
pdRp

Yp <∞, Zp ∈ D(Rp), and GdimRp Zp ⩽ 0 by [21, (2.3.11)]. The assertion in
the local case shows ExtiRp

(Zp, Yp)= 0 for all i > sup Yp. As sup Yp ⩽ sup Y , we
have ExtiR(Z , Y )p =ExtiRp

(Zp, Yp)=0 for all i > sup Y . Therefore, ExtiR(Z , Y )=0
for all i > sup Y .

(2) The assertion is straightforward (from the definition of G-dimension or from
[21, (2.3.8)]).

(3) We have only to verify Gdim Y ⩽ sup{Gdim X,Gdim Z}, because once it is
done, applying it to the exact triangles Y → Z → X [1]⇝ and Z [−1] → X → Y ⇝
and using (2) will give the inequalities Gdim Z ⩽ sup{Gdim Y,Gdim X + 1} and
Gdim X ⩽ sup{Gdim Z − 1,Gdim Y }. The inequality is obvious if either Gdim X
or Gdim Z is infinite. We may assume Gdim X and Gdim Z are both finite. Then
X⋆, Z ⋆ belong to D(R), and fX , fZ are isomorphisms. The induced exact triangle
Z ⋆ → Y ⋆ → X⋆⇝ (in the derived category of left-bounded R-complexes) shows
that Y ⋆ is in D(R). There is a commutative diagram

X //

fX
��

Y //

fY
��

Z //

fZ
��

X [1]

fX [1]
��

X⋆⋆ // Y ⋆⋆ // Z ⋆⋆ // X⋆⋆
[1]

of exact triangles in D(R). Since fX and fZ are isomorphisms, so is fY . We
conclude that Gdim Y is finite, and get Gdim Y = sup RHom(Y, R) = sup Y ⋆ ⩽
sup{sup X⋆, sup Z ⋆} = sup{Gdim X,Gdim Z}.

(4) The “only if” part is obvious. By [21, (2.3.3)] we have Gdim X ⩾ −inf X .
Suppose that Gdim X ⩽ 0 and sup X ⩽ 0. We then have sup X ⩽ 0⩽− Gdim X ⩽
inf X , which implies sup X = inf X = 0 or X ∼= 0 in D(R). Hence, X is isomorphic
in D(R) to a totally reflexive module. Thus the “if” part follows.
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(5) The second assertion follows from the first and the fact that for a Cohen–
Macaulay ring R one has X ∈ C(R) if and only if RfdR X ⩽ 0. To show the first
assertion, put r = RfdR X . Fix p ∈ Spec R. As Rp is a Gorenstein local ring,
GdimRp Xp = depth Rp − depth Xp ⩽ r ; see [21, (2.3.13) and (2.3.14)]. Hence
ExtiR(X, R)p = ExtiRp

(Xp, Rp)= 0 for all i > r . Therefore, ExtiR(X, R)= 0 for all
i > r . We see that ( fX )p = fXp is an isomorphism for all p ∈ Spec R, so that fX is
an isomorphism (see [21, (A.4.5) and (A.8.4.1)]). Hence GdimR X = sup X⋆ ⩽ r .
If GdimR X ⩽ r − 1, then depth Rp − depth Xp = GdimRp Xp ⩽ r − 1 for all
p ∈ Spec R by [21, (2.3.11) and (2.3.13)], and RfdR X ⩽ r − 1, a contradiction.
Thus GdimR X = r . □

In the lemma below we study the structure of a resolving subcategory of a certain
form. The idea of the proof comes from the proof of [24, Lemma 7.2].

Lemma 5.4. Let Y and Z be resolving subcategories of D(R). Let X be the
subcategory of D(R) consisting of complexes X which fits into an exact triangle
Z → X ⊕ X ′

→ Y ⇝ in D(R) with Z ∈ Z and Y ∈ Y .

(1) There is an inclusion X ⊆ resD(R)(Y ∪Z) of subcategories of D(R).

(2) The subcategory X coincides with the subcategory of D(R) consisting of
objects X which fits into an exact triangle Z → X ⊕ X ′

→ Y ⇝ in D(R) with
Z ∈ Z , Y ∈ Y and sup Y ⩽ 0.

(3) Suppose that pdR Y <∞ for each Y ∈ Y and GdimR Z ⩽ 0 for each Z ∈ Z.
Then X = resD(R)(Y ∪Z).

Proof. (1) Let Z → X ⊕ X ′
→ Y ⇝ be an exact triangle in D(R) such that Z ∈ Z

and Y ∈ Y . As res(Y ∪Z) contains Z and Y , the objects Z , Y are in res(Y ∪Z).
The triangle implies that X belongs to res(Y ∪Z).

(2) Let Z → X⊕X ′
→Y⇝ be an exact triangle with Z ∈Z and Y ∈Y . Remark 3.7(2)

gives an exact triangle P → Y → Y ′⇝ with P ∈ ER , Y ′
∈ Y and sup Y ′ ⩽ 0. The

octahedral axiom yields a commutative diagram

X ⊕ X ′ // Y //

��

Z [1] //

��

(X ⊕ X ′)[1]

X ⊕ X ′ //

��

Y ′ // Z ′
[1] //

��

(X ⊕ X ′)[1]

��

Y //

��

Y ′ //

��

P[1] // Y [1]

��

Z [1] // Z ′
[1] // P[1] // Z [2]

of exact triangles, and the bottom row induces an exact triangle Z → Z ′
→ P ⇝.

As Z and P are in Z , so is Z ′. An exact triangle Z ′
→ X ⊕ X ′

→ Y ′⇝ is induced
from the second row. Now the assertion follows.



372 RYO TAKAHASHI

(3) The inclusion (⊆) is shown in (1). We prove the opposite inclusion (⊇). For
Y ∈Y and Z ∈Z there are exact triangles 0 → Y ⊕0 → Y⇝ and Z → Z ⊕0 → 0⇝.
This shows that Y ∪Z ⊆ X . We will be done once we prove that X is a resolving
subcategory of D(R). As R belongs to Y (and Z), it belongs to X .

Let X be an object of X , and let W be a direct summand of X in D(R). Then
there is an exact triangle Z → X ⊕ X ′

→ Y ⇝ in D(R) such that Z ∈Z and Y ∈ Y ,
and also X = W ⊕ V for some V ∈ D(R). Setting W ′

= V ⊕ X ′, we have an exact
triangle Z → W ⊕ W ′

→ Y ⇝. Hence X is closed under direct summands.
Every exact triangle Z → X ⊕ X ′

→ Y ⇝ with Z ∈ Z and Y ∈ Y induces an
exact triangle Z [−1] → X [−1] ⊕ X ′

[−1] → Y [−1]⇝, and we have Z [−1] ∈ Z
and Y [−1] ∈ Y . Thus X is closed under negative shifts.

It remains to prove that X is closed under extensions. Let L
f

−→ M
g
−→ N ⇝

be an exact triangle in D(R) with L , N ∈ X . Then there exist exact triangles
Z1 → L ⊕ L ′

→ Y1⇝ and Z2 → N ⊕ N ′
→ Y2⇝ in D(R) such that Z1, Z2 ∈ Z

and Y1, Y2 ∈ Y . In view of (2), we may assume that sup Y1 ⩽ 0. The octahedral
axiom yields the following commutative diagrams of exact triangles in D(R).

Z1 // L ⊕ L ′ //(
f 0
0 1

)
��

Y1 //

��

Z1[1]

Z1 //

��

M ⊕ L ′

( p q )
// A r

//

h
��

Z1[1]

��

L ⊕ L ′

(
f 0
0 1

)
//

��

M ⊕ L ′
( g 0 )

//

��

N // (L ⊕ L ′)[1]

��

Y1 // A h
// N k

// Y1[1]

A ⊕ N ′

(
h 0
0 1

)
// N ⊕ N ′

( k 0 )
//

��

Y1[1] //

��

(A ⊕ N ′)[1]

A ⊕ N ′ //

��

Y2 // B[1] //

��

(A ⊕ N ′)[1]

��

N ⊕ N ′ //

��

Y2 //

��

Z2[1] // (N ⊕ N ′)[1]

��

Y1[1] // B[1] // Z2[1]
δ[1]

// Y1[2]

The bottom row of the second diagram induces an exact triangle

σ : Y1 → B → Z2
δ
−→ Y1[1]

in D(R). We have δ ∈ HomD(R)(Z2, Y1[1])∼= Ext1R(Z2, Y1)= 0 by Lemma 5.3(1).
Hence σ splits (see [40, Corollary 1.2.7]), which gives an isomorphism B ∼= Y1⊕ Z2.
An exact triangle Y1 ⊕ Z2 → A ⊕ N ′

→ Y2⇝ is induced from the second row of
the second diagram. Applying the octahedral axiom again, we obtain commutative
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diagrams

Z2

(
0
1

)
// Y1 ⊕ Z2

( 1 0 )
//

��

Y1 //

��

Z2 //

��

A ⊕ N ′ // Y //

��

Y1 ⊕ Z2 //

��

A ⊕ N ′ //

��

Y2 //

Y1 // Y // Y2 //

M ⊕ L ′
⊕ N ′

(
p q 0
0 0 1

)
// A ⊕ N ′

( r 0 )
//

��

Z1[1] //

��

M ⊕ L ′
⊕ N ′ //

��

Y // Z [1] //

��

A ⊕ N ′ //

��

Y //

��

Z2[1] //

Z1[1] // Z [1] // Z2[1] //

of exact triangles. We obtain exact triangles Y1 → Y → Y2⇝ and Z1 → Z → Z2⇝,
which imply Y ∈Y and Z ∈Z . We also have an exact triangle Z → M ⊕ L ′

⊕ N ′
→

Y ⇝, which shows that M belongs to X . □

In the following lemma, we investigate syzygies and cosyzygies for complexes.

Lemma 5.5. Let X be an object of D(R).

(1) There exists an exact triangle Y → E → X ⇝ in D(R) such that E ∈ ER ,
sup E ⩽ sup{sup X, 0} and sup Y ⩽ 0. If sup X ⩽ 0, then E is isomorphic in
D(R) to a projective R-module.

(2) Suppose that GdimR X ⩽ 0. Then there exists an exact triangle X → P → Y⇝
in D(R) such that P is a projective R-module and GdimR Y ⩽ 0.

Proof. (1) Put u = sup{sup X, 0}. Thanks to [21, (A.3.2)], we can choose a complex
F = ( · · · → Fu−1

→ Fu
→ 0) of finitely generated projective R-modules which

is isomorphic to X in D(R). (In the case sup X < 0, we can put F i
= 0 for all

integers i such that sup X + 1⩽ i ⩽ 0 = u.) As u ⩾ 0, we can take the truncation
E = (0 → F0

→ · · · → Fu
→ 0) of F . We have sup E ⩽ u, and E ∈ ER by

Proposition 2.13(6). Taking the truncation X ′
= ( · · · → F−2

→ F−1
→ 0) of F ,

we get an exact triangle E → X → X ′⇝ in D(R). Setting Y = X ′
[−1], we get an

exact triangle Y → E → X ⇝ in D(R), and it holds that sup Y ⩽ 0.
Suppose that sup X ⩽ 0. Then u = sup{sup X, 0} = 0. Therefore, we have

E = (0 → F0
→ 0), which is isomorphic in D(R) to the finitely generated projective

R-module F0.

(2) In view of Remark 3.7(2), we can take an exact triangle X → X ′
→ E⇝ in D(R)

such that sup X ′⩽0 and E ∈ER . It is observed from Lemma 5.3(3) and [21, (2.3.10)]
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that Gdim X ′ ⩽ 0. By Lemma 5.3(4), we may assume that X ′ is a totally reflexive
R-module. Hence, there is an exact sequence 0 → X ′

→ P →�−1 X ′
→ 0 in mod R

such that P is projective, which induces an exact triangle X ′
→ P →�−1 X ′⇝ in

D(R). By the octahedral axiom, we obtain a commutative diagram

X // X ′ //

��

E //

��

X [1]

X //

��

P // Y //

��

X [1]

��

X ′ //

��

P //

��

�−1 X ′ // X ′
[1]

��

E // Y // �−1 X ′ // E[1]

of exact triangles in D(R). Using Lemma 5.3(3) and [21, (2.3.10)] again, we see
from the bottom row that Gdim Y ⩽ 0. Thus the second row in the above diagram
is such an exact triangle as in the assertion. □

To show our next proposition, we need to prepare one more lemma.

Lemma 5.6. Let Z → X⊕W →Y⇝ be an exact triangle in D(R). Then there exists
an exact triangle Z → X ′

⊕ W → Y ′⇝ in D(R) such that resD(R) X = resD(R) X ′,
resD(R) Y = resD(R) Y ′ and sup X ′ ⩽ 0.

Proof. By Remark 3.7(2), there exists an exact triangle X
a
−→ X ′ b

−→ E ⇝ in D(R)
such that sup X ′ ⩽ 0 and E ∈ ER . Note then that res X = res X ′. The octahedral
axiom gives rise to a commutative diagram

Z // X ⊕ W //

��

Y //

��

Z [1]

Z //

��

X ′
⊕ W // Y ′ //

��

Z [1]

��

X ⊕ W

(
a 0
0 1

)
//

��

X ′
⊕ W

( b 0 )
//

��

E // (X ⊕ W )[1]

��

Y // Y ′ // E // Y [1]

of exact triangles in D(R). From the bottom row in the commutative diagram we
observe that res Y = res Y ′. Thus the second row in the commutative diagram is an
exact triangle as in the assertion of the lemma. □

We denote by G(R) the subcategory of D(R) consisting of objects X satisfying
the inequality GdimR X ⩽ 0. We can now prove the proposition below, which
includes a derived category version of [24, Proposition 7.3].

Proposition 5.7. Let Y and Z be resolving subcategories of D(R) such that Y ⊆

K(R) and Z ⊆ G(R). Then

Y = resD(R)(Y ∪Z)∩K(R), Z = resD(R)(Y ∪Z)∩G(R).
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Proof. Let us begin with the first equality. The inclusion (⊆) is clear. To show
(⊇), pick X ∈ res(Y ∪Z)∩K(R). According to Lemma 5.4(3), there is an exact
triangle Z → X ⊕ W → Y ⇝ in D(R) with Z ∈ Z and Y ∈ Y . What we want to
show is that X is in Y . For this purpose, thanks to Lemma 5.6, we may assume
sup X ⩽ 0. Lemma 5.5(2) yields an exact triangle Z → P → V ⇝ in D(R) such
that P is a projective module and Gdim V ⩽ 0. The octahedral axiom gives the
following commutative diagrams of exact triangles in D(R).

Y [−1] // Z //

��

X ⊕ W //

( f g )
��

Y

Y [−1] //

��

P // Y ′ //

��

Y

��

Z //

��

P //

��

V // Z [1]

��

X ⊕ W
( f g )

// Y ′ // V // X [1]

W

(
0
1

)
// X ⊕ W

( 1 0 )
//

( f g )
��

X //

l
��

W [1]

W //

��

Y ′ h
// U //

��

W [1]

��

X ⊕ W
( f g )

//

��

Y ′ //

��

V // (X ⊕ W )[1]

��

X l
// U // V δ

// X [1]

From the exact triangle P →Y ′
→Y⇝we see that Y ′ is in Y . The equality h( f g)=

l(1 0) implies l = h f . Also, by Lemma 5.3(1) we have δ ∈ HomD(R)(V, X [1])=

Ext1R(V, X)= 0. There are commutative diagrams

X l
// U //

∼= ( s
t )��

V 0
// X [1]

X

(
1
0

)
// X ⊕ V

( 0 1 )
// V // X [1]

X
f
// Y ′ k

//

∼=

(
sh
k

)
��

C // X [1]

X

(
1
0

)
// X ⊕ C

( 0 1 )
// C // X [1]

of exact triangles in D(R). Indeed, we get the first diagram by [40, proof of
Corollary 1.2.7], while the equality

(1
0

)
=

(s
t

)
l coming from the commutativity of

the first diagram shows 1 = sl = sh f , so that the second diagram is obtained by
[40, Remark 1.2.9]. The isomorphism X ⊕ C ∼= Y ′ shows that X belongs to Y , as
desired.

Next, we prove the second equality (the proof has the same stream as that of
the first equality, but there are actually various different places). It is evident that
(⊆) holds. To prove (⊇), let X be an object in the subcategory res(Y ∪Z)∩G(R).
By Lemma 5.4(2)(3), there is an exact triangle Z → X ⊕ W → Y ⇝ in D(R)
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with Z ∈ Z, Y ∈ Y and sup Y ⩽ 0. We want to show that X belongs to Z. Using
Lemma 5.5(1), we get an exact triangle Y ′

→ P → Y ⇝ in D(R) such that P is a
projective module and sup Y ′ ⩽ 0. Note then that Y ′ is in Y . The octahedral axiom
gives the following commutative diagrams of exact triangles in D(R).

X ⊕ W // Y //

��

Z [1] //

��

(X ⊕ W )[1]

X ⊕ W
( f g )

//

��

Y ′
[1] // Z ′

[1] //

��

(X ⊕ W )[1]

��

Y //

��

Y ′
[1] //

��

P[1] // Y [1]

��

Z [1] // Z ′
[1] // P[1] // Z [2]

X

(
1
0

)
// X ⊕ W

( 0 1 )
//

( f g )
��

W //

��

X [1]

X
f

//(
1
0

)
��

Y ′
[1] // V h

//

k
��

X [1](
1
0

)
��

X ⊕ W
( f g )

//

��

Y ′
[1] //

��

Z ′
[1]

( p
q

)
// X [1] ⊕ W [1]

��

W // V k
// Z ′

[1] // W [1]

The induced exact triangle Z → Z ′
→ P ⇝ shows that the object Z ′ belongs to Z .

Lemma 5.3(1) implies f ∈ HomD(R)(X, Y ′
[1])= Ext1R(X, Y ′)= 0. By [40, proof

of Corollary 1.2.7] there is a commutative diagram

X // Y ′
[1]

(
1
0

)
// Y ′

[1] ⊕ X [1]
( 0 1 )

//

( s t ) ∼=
��

X [1]

X 0
// Y ′

[1] // V h
// X [1]

of exact triangles in D(R), which gives ht = 1. The equality
(p

q

)
k =

(1
0

)
h implies

h = pk. Hence pkt = 1, and it follows from [40, Lemma 1.2.8] that X [1] is
isomorphic in D(R) to a direct summand of Z ′

[1]. This implies that X is isomorphic
in D(R) to a direct summand of Z ′. Since Z ′ belongs to Z , so does X . □

We say that R is a complete intersection if the completion of the local ring Rp is
isomorphic to a quotient of a regular local ring by a regular sequence for each prime
ideal p of R. The exact triangle appearing in the third assertion of the following
proposition is regarded as a derived category version of a finite projective hull in
the sense of Auslander and Buchweitz [7].
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Proposition 5.8. Let R be a complete intersection.

(1) Let M be a maximal Cohen–Macaulay R-module. Then the cosyzygy �−1
R M

belongs to resmod R M.

(2) For every maximal Cohen–Macaulay complex X ∈ D(R), there exists an exact
triangle X → P → Y ⇝ in D(R) such that P is a projective module and Y
belongs to the resolving closure resD(R) X.

(3) Each X ∈ D(R) admits an exact triangle X → P → Y ⇝ with P ∈ K(R) and
Y ∈ (resD(R) X)∩C(R).

Proof. (1) Fix a prime ideal p of R. Then Mp is a maximal Cohen–Macaulay
Rp-module. In mod Rp we have

(�−1
R M)p ≈�−1

Rp
(Mp) ∈ resmod Rp Mp ⊆ addmod Rp(resmod R M)p.

Here, by A ≈ B we mean A ∼= B up to free summands. The containment and the
inclusion follow from [23, Theorem 4.15] and [24, Lemma 3.2(1)], respectively.
By [24, Proposition 3.3], we get �−1

R M ∈ resmod R M .

(2) By Remark 3.7(2) there exists an exact triangle X → X ′
→ E ⇝ in D(R) such

that sup X ′⩽0 and E ∈ER . As X belongs to C(R), so does X ′ by Proposition 3.14(2).
By Lemma 5.3(4)(5), we may assume that X ′ is a totally reflexive module. There is
an exact sequence 0 → X ′

→ P →�−1 X ′
→ 0 in mod R with P projective, and

�−1 X ′ belongs to resmod R X ′ by (1). The octahedral axiom gives a commutative
diagram

X // X ′ //

��

E //

��

X [1]

X //

��

P // Y //

��

X [1]

��

X ′ //

��

P //

��

�−1 X ′ // X ′
[1]

��

E // Y // �−1 X ′ // E[1]

of exact triangles in D(R). It is seen from the bottom row that Y belongs to
resD(R) X ′, which coincides with resD(R) X (by the first row). Thus, the second row
provides such an exact triangle as we want.

(3) We may assume that sup X ⩽ 0. In fact, by Remark 3.7(2) there exists an exact
triangle X → X ′

→ E ⇝ in D(R) such that sup X ′ ⩽ 0 and E ∈ ER . Suppose that
we have got an exact triangle X ′

→ P → C ⇝ in D(R) such that P ∈ K(R) and
C ∈ (res X ′) ∩ C(R). Then we have C ∈ (res X) ∩ C(R) as res X ′

= res X . The
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octahedral axiom gives rise to a commutative diagram of exact triangles in D(R):

X // X ′ //

��

E //

��

X [1]

X //

��

P // Y //

��

X [1]

��

X ′ //

��

P //

��

C // X ′
[1]

��

E // Y // C // E[1]

The bottom row in the above diagram shows that Y belongs to (res X)∩C(R) by
Proposition 3.14(2). Consequently, the second row in the above diagram is such an
exact triangle as in the assertion.

Since the ring R is a complete intersection, it is Gorenstein. By Lemma 5.3(5),
the number n := GdimR X is finite. We use induction on n. Let n ⩽ 0. Then X
is a maximal Cohen–Macaulay complex; see Lemma 5.3(5). Thus the assertion
follows from (2); note that res X = (res X)∩C(R). Let n > 0. Since sup X ⩽ 0, by
Lemma 5.5(1) there is an exact triangle Y → P → X ⇝ in D(R) such that P is a
projective module and sup Y ⩽ 0. Note then that Y ∈ res X , so that res Y ⊆ res X .
As n −1⩾ 0, Lemma 5.3(3) implies Gdim Y ⩽ sup{Gdim P,Gdim X −1} = n −1.
The induction hypothesis yields an exact triangle Y → K → C⇝ in D(R) such that
K ∈K(R) and C ∈ (res Y )∩C(R). By the octahedral axiom, we get the commutative
diagram (a) of exact triangles in D(R). The second row in (a) shows C ′

∈ C(R) and
resC ′

⊆ resC . By (2) there is an exact triangle C ′
→ Q → C ′′

→ C ′
[1] in D(R)

such that Q is a projective module and C ′′
∈ resC ′. Applying the octahedral axiom

again, we obtain the commutative diagram (b) of exact triangles in D(R).

(a) :

C[−1] // Y //

��

K //

��

C

C[−1] //

��

P // C ′ //

��

C
��

Y //

��

P //

��

X // Y [1]

��

K // C ′ // X // K [1]

(b) :

K // C ′ //

��

X //

��

K [1]

K //

��

Q // K ′ //

��

K [1]

��

C ′ //

��

Q //

��

C ′′ // C ′
[1]

��

X // K ′ // C ′′ // X [1]

The second row in (b) shows K ′ is in K(R). We have C ′′
∈ resC ′

⊆ resC ⊆

(res Y ) ∩ C(R) ⊆ (res X) ∩ C(R). Consequently, the bottom row in (b) provides
such an exact triangle as in the assertion. □

We record a direct consequence of the second assertion of the above proposition.

Corollary 5.9. Let R be a complete intersection. Let X ∈ D(R) be a maximal
Cohen–Macaulay complex. Then X belongs to the resolving closure resD(R)(X [−i])
for every nonnegative integer i .
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Proof. Proposition 5.8(2) gives rise to an exact triangle X → P →Y⇝ in D(R) such
that P is a projective module and Y ∈ res X . An exact triangle Y [−1] → X → P⇝
is induced, which shows that X is in res(Y [−1]). Proposition 2.8(2a) implies
Y [−1] ∈ (res X)[−1] ⊆ res(X [−1]). Hence X ∈ res(X [−1]). If X ∈ res(X [− j])
for an integer j , then

X [−1] ∈ (res(X [− j]))[−1] ⊆ res(X [− j][−1])= res(X [− j − 1])

by Proposition 2.8(2a) again, and we get X ∈ res(X [−1])⊆ res(X [− j − 1]). It fol-
lows that X belongs to res(X [−i]) for all i ⩾ 0. □

The main goal of this section is the following theorem, which is viewed as a
derived category version of [24, Theorem 7.4].

Theorem 5.10. Suppose that R is a complete intersection. Then there are mutually
inverse bijections

resolving
subcategories

of D(R)

 φ
//


resolving

subcategories of D(R)
contained in K(R)

 ×


resolving

subcategories of D(R)
contained in C(R)

,ψ
oo

where the maps φ,ψ are given by φ(X )= (X ∩K(R),X ∩C(R)) and ψ(Y,Z)=

resD(R)(Y ∪Z).

Proof. Clearly, the maps φ,ψ are well-defined. Lemma 5.3(5) implies G(R)=C(R).
Proposition 5.7 says φψ = id. Let X be a resolving subcategory of D(R). Then
ψφ(X ) = res((X ∩ K(R)) ∪ (X ∩ C(R))) is clearly contained in X . Let X be
any object in X . It follows from Proposition 5.8(3) that there is an exact triangle
X → P → Y ⇝ in D(R) such that P ∈ K(R) and Y ∈ (res X)∩C(R)⊆ X ∩C(R).
We see that P is in X ∩K(R), so that X is in res((X ∩K(R))∪ (X ∩C(R))). Thus
X belongs to ψφ(X ), and we obtain ψφ = id. □

6. Classification of resolving subcategories and certain preaisles of D(R)

The main goal of this section is to give a complete classification of resolving
subcategories of D(R) and preaisles of D(R) containing R and closed under direct
summands, in the case where R belongs to a certain class of complete intersection
rings. First of all, applying the main result of the previous section, we prove the
following theorem. The bijections given in the theorem say that classifying the
resolving subcategories of maximal Cohen–Macaulay complexes is equivalent to
classifying the thick subcategories containing R. The equality given in the theorem
is a derived category version of [23, Corollary 4.16].
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Theorem 6.1. Let R be a complete intersection. There are mutually inverse bijec-
tions and an equality

thick
subcategories of

D(R) containing R

 (−)∩C(R)
//


resolving

subcategories of D(R)
contained in C(R)

 =


thick

subcategories of C(R)
containing R

.thickD(R)(−)
oo

Proof. We start by proving the equality, using the bijections. By Proposition 3.16(1),
it suffices to show that each resolving subcategory X of D(R) contained in C(R) is
a thick subcategory of C(R), and for this it is enough to verify that for each exact
triangle A → B → C⇝ in D(R) with A, B,C ∈C(R), if A and B belong to X , then
so does C . By the first assertion of the theorem we have X = (thickD(R) X )∩C(R).
Hence A and B are in thickD(R) X , and so is C . It follows that C belongs to
(thickD(R) X )∩C(R)= X , and we are done.

We proceed with showing the bijections. Clearly, the two maps are well-defined.
Fix a thick subcategory X of D(R) containing R and a resolving subcategory Z
of D(R) contained in C(R). Then X is a resolving subcategory of D(R), so that
Theorem 5.10 shows X = ψφ(X ) = res((X ∩K(R))∪ (X ∩ C(R))). Since X is
thick and contains R, it contains K(R)= thick R; see Proposition 2.10(3). Hence
X ∩K(R)= K(R), and

X = res(K(R)∪ (X ∩C(R)))⊆ thick(K(R)∪ (X ∩C(R)))= thick(X ∩C(R))⊆X .

Therefore, X = thick(X ∩C(R)). On the other hand, applying Theorem 5.10 again,
we have

(K(R),Z)= φψ(K(R),Z)= (res(K(R)∪Z)∩K(R), res(K(R)∪Z)∩C(R)),

which gives us the equality Z = res(K(R)∪Z)∩C(R).
We claim that res(K(R)∪Z) is a thick subcategory of D(R). Indeed, it suffices to

verify that res(K(R)∪Z) is closed under positive shifts. Using Proposition 2.8(2b),
we get equalities

(6.1.1) (res(K(R)∪Z))[1] = res((K(R)∪Z)[1] ∪ {R[1]})

= res((K(R)∪Z)[1])= res(K(R)∪Z[1]).

Pick Z ∈ Z. Then Z is maximal Cohen–Macaulay, and Corollary 5.9 implies
Z ∈ res(Z [−1]). We obtain

Z [1] ∈ (res(Z [−1]))[1] = res{Z , R[1]} ⊆ res(K(R)∪Z),

where for the equality we apply Proposition 2.8(2b) again. It follows that Z[1]

is contained in res(K(R) ∪ Z). This and (6.1.1) yield that (res(K(R) ∪ Z))[1] is
contained in res(K(R)∪Z). Thus the claim follows.
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The above claim guarantees that res(K(R)∪Z) = thick(K(R)∪Z) = thickZ,
and we obtain an equality Z = (thickZ)∩C(R). Now we conclude that the two
maps in the assertion are mutually inverse bijections. □

Denote by S(R) the singularity category Dsg(R) of R, that is, the Verdier quotient
of D(R) by K(R). The following lemma enables us to obtain a classification of
preaisles in the next theorem.

Lemma 6.2. (1) There is a natural one-to-one correspondence{
thick subcategories

of S(R)

}
∼=

{
thick subcategories

of D(R) containing R

}
.

(2) Suppose that R is Gorenstein. Assigning to each subcategory X of D(R)
the subcategory RHomR(X , R) of D(R) consisting of objects of the form
RHomR(X, R) with X ∈ X , one gets a one-to-one correspondence
preaisles of D(R)

containing R and closed
under direct summands

 ∼=


precoaisles of D(R)

containing R and closed
under direct summands

 =


resolving

subcategories
of D(R)

.
Proof. (1) The assertion comes from a general fact on Verdier quotients; see [57,
Chapitre II, Proposition 2.3.1], [53, Lemma 3.1] and [54, Lemma 10.5].

(2) The equality follows by definition. As R is Gorenstein, for each C ∈ D(R)
the complex RHom(C, R) is bounded, so that it is in D(R); see [21, (2.3.8)] and
Lemma 5.3(5). Thus, the contravariant exact (additive) functor RHom(−, R) gives
a duality of D(R). Since RHom(R, R)= R, we can easily get the bijection. □

Combining Theorems 4.5, 5.10, 6.1 and Lemma 6.2, we obtain the theorem
below. Thanks to this theorem, to classify the resolving subcategories of D(R) we
have only to classify the thick subcategories of S(R).

Theorem 6.3. Let R be a complete intersection. Then there are one-to-one corre-
spondences

preaisles of D(R)
containing R

and closed under
direct summands

 ∼=


resolving

subcategories
of D(R)

 ∼=


order-preserving

maps from Spec R
to N ∪ {∞}

 ×


thick

subcategories
of S(R)

.
We recall the definition of a hypersurface, related notions and basic properties.

Definition 6.4. (1) Let (R,m, k) be a local ring. We denote by edim R the em-
bedding dimension of R, that is, the number of elements in a minimal system
of generators of m, which is equal to the dimension of the k-vector space
m⊗R k = m/m2.
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(2) Let R be a local ring. We denote by codim R and codepth R the codimension
and the codepth of R, respectively, that is to say, codim R = edim R − dim R
and codepth R = edim R − depth R.

(3) For a local ring R, the following three conditions are equivalent; see [8, §5.1].
(a) There is an inequality codepth R ⩽ 1. (b) The local ring R is Cohen–
Macaulay and codim R ⩽ 1.
(c) The completion of R is isomorphic to the residue ring of a regular local
ring by a single element.
When one of these equivalent conditions holds, the local ring R is called a
hypersurface. By [8, Corollary 7.4.6], if a local ring R is a hypersurface, then
so is the local ring Rp for every prime ideal p of R.

(4) We say that R is a hypersurface if the local ring Rp is a hypersurface (in the
sense of (2)) for every prime ideal p of R.

To state theorems of Stevenson, Dao and Takahashi, and ours, we establish the
following setup.

Setup 6.5. Let (R, V ) be a pair that satisfies either of the following two conditions.

(1) R is a hypersurface and V = Sing R.

(2) R = S/(a)where S is a regular ring of finite Krull dimension and a =a1, . . . , ac

is an S-regular sequence, and V = Sing Y ={y ∈ Y |OY,y is not regular} where
X = Pc−1

S = Proj(S[x1, . . . , xc]) and Y is the zero subscheme of a1x1 +· · ·+

acxc ∈ 0(X,OX (1)).

Remark 6.6. In view of [19, Theorem 2.10], [46, Corollary 7.9 and the beginning
of Section 10], Setup 6.5(2) is equivalent to the following condition.

(2′) R = S/(a) where S is a regular ring of finite Krull dimension and a =

a1, . . . , ac is an S-regular sequence, and V = Sing Y where Y = Proj G and
G = S[x1, . . . , xc]/( f ) is the generic hypersurface, that is, the homogeneous
S-algebra (deg(s)= 0 for s ∈ S and deg(xi )= 1 for i = 1, . . . , c) defined as
the quotient ring of the polynomial ring over S in c variables x1, . . . , xc by the
polynomial f = a1x1 + · · · + acxc.

The following is the theorem of Stevenson [46]. Its assertion for Setup 6.5(1)
is shown in [46, Theorem 6.13], whose local case is [53, Theorem 3.13(1)]. Its
assertion for Setup 6.5(2) is shown in [46, Theorem 8.8]. The first one-to-one
correspondence in the theorem is the one given in Lemma 6.2(1).

Theorem 6.7 (Stevenson). Let (R, V ) be as in Setup 6.5. Then there is a one-to-one
correspondence{

thick subcategories
of S(R)

}
∼=

{
thick subcategories

of D(R) containing R

}
(a)
∼=

{
specialization-closed

subsets of V

}
.
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We obtain the following bijections by applying Theorems 6.3 and 6.7.

Corollary 6.8. Let (R, V ) be as in Setup 6.5. Then there are one-to-one correspon-
dences

preaisles of D(R)
containing R

and closed under
direct summands

 ∼=


resolving

subcategories
of D(R)


(b)
∼=


order-preserving

maps from
Spec R to N∪{∞}

 ×


specialization-

closed
subsets of V

.
Remark 6.9. (1) By Proposition 3.16(1), thick subcategories of D(R) containing R
are resolving subcategories of D(R). Restricting the bijection (b) in Corollary 6.8
to the thick subcategories of D(R) containing R, one recovers the bijection (a) in
Theorem 6.7. In fact, let X be a thick subcategory of D(R) containing R. Then
X contains thickD(R) R = K(R) by Proposition 2.10(3). Hence X ∩K(R)= K(R),
and supX∈X∩K(R){pd Xp} = ∞ for each prime ideal p of R. Note that this actually
holds for X :=K(R). Define the map ξ : Spec R → N∪{∞} by ξ(p)= ∞ for every
p ∈ Spec R. It is observed along the way to get Corollary 6.8 that the bijection (b)
in Corollary 6.8 restricts to the bijection below, which can be identified with the
bijection (a) in Theorem 6.7.

{thick subcategories of D(R) containing R}

∼= {ξ} × {specialization-closed subsets of V }.

(2) Taking Remark 4.9(1) into account, we may wonder if it is possible to classify
the preaisles of D(R) closed under direct summands, including those ones which do
not contain R. There would be no straightforward modifications of our techniques
to achieve this. In fact, the condition of containing R is used in a lot of places of
this paper. For example, Theorem 5.10 is one of our key results which played an
essential role in the proof of Corollary 6.8. To extend Theorem 5.10 directly to the
precoaisles of D(R) closed under direct summands, one has to generalize the lemmas
and propositions given in Section 5 to the setting where the condition of containing
R is not assumed. It should already be a big obstruction here that those subcategories
to be classified are not necessarily closed under syzygies of modules. On the other
hand, in [45, Theorem 4.9] all the thick subcategories of D(R) are classified when
(R, V ) is as in Setup 6.5. Not assuming the thick subcategories contain R, a
compatibility condition between the specialization closed subsets of V and Spec R
shows up. This would also say that our results cannot be straightforwardly extended
to encompass all preaisles closed under direct summands.

It may be interesting to consider the following question, which is similar to
Question 4.13.
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Question 6.10. Let R be as in Corollary 6.8. Hence R is Cohen–Macaulay, so it is
CM-excellent. Assume that R has finite Krull dimension. Then, the aisles of D(R)
containing R are classified by both Theorem 4.11 and Corollary 6.8. Are these two
classifications (essentially) the same?

We close the section by giving, in the case of a hypersurface, an explicit de-
scription in terms of NE-loci of the restriction of the one-to-one correspondence
(b) in Corollary 6.8 to the resolving subcategories of maximal Cohen–Macaulay
complexes. For a subcategory C of D(R), denote by IPD(C) the set of prime ideals
p of R with pdRp

Xp = ∞ for some X ∈ C. For a set 8 of prime ideals of R, denote
by IPD−1(8) the subcategory of D(R) consisting of complexes X such that every
prime ideal p of R with pdRp

Xp = ∞ belongs to 8.

Proposition 6.11. Let R be a hypersurface. One then has the following mutually
inverse bijections.{

resolving subcategories of D(R)
contained in C(R)

}
NE(−)

//

{
specialization-closed subsets

of Sing R

}
NE−1

C (−)

oo

Proof. Fix a resolving subcategory X of D(R) contained in C(R) and a specialization-
closed subset W of Sing R. By Proposition 2.13(2) and [54, Remark 10.2(8)], we
get IPD(thickD(R) X )= NE(X ) and IPD−1(W )∩C(R)= NE−1

C (W ). The assertion
follows by combining this with Theorem 6.1 and [53, Theorem 3.13(1)]. □

Remark 6.12. Another way in the case where R is a hypersurface to deduce the
equality given in Theorem 6.1 is obtained by the combination of Propositions 6.11
and 3.16.

7. Restricting the classification of resolving subcategories of D(R)

In this section, restricting the classification theorem of resolving subcategories of
D(R) obtained in the previous section, we consider the resolving subcategories of
mod R. We begin with establishing a lemma.

Lemma 7.1. Let R be a complete intersection. Let X be a resolving subcategory of
mod R.

(1) Let p be a prime ideal of R. One has the equality supX∈X {depth Rp −

depth Xp} = supY∈X∩fpd R{pd Yp}.

(2) There is an equality thickD(R) X = thickD(R)(X ∩CM(R)) of thick closures in
D(R).

Proof. (1) The inequality (⩾) holds by the Auslander–Buchsbaum formula. To
show the opposite inequality (⩽), put t = supX∈X {depth Rp − depth Xp}. As Xp

is an Rp-module, we have depth Xp ∈ N ∪ {∞}. Hence t ⩽ depth Rp < ∞. We
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have t = depth Rp − depth Xp for some X ∈ X . Set n = RfdR X . We see that
�n X is a maximal Cohen–Macaulay R-module. By [24, proof of Theorem 7.4]
there is an exact sequence 0 → X → L → D → 0 in mod R such that L has finite
projective dimension and D =�−n−1�n X is maximal Cohen–Macaulay. Applying
Proposition 5.8(1) to �n X ∈ X , we get D ∈ X , and hence L ∈ X ∩ fpd R. As Dp

is a maximal Cohen–Macaulay Rp-module, we have depth Dp ⩾ ht p. The depth
lemma implies

depth Xp ⩾ inf{depth Lp, depth Dp + 1}⩾ inf{depth Lp, ht p+ 1} = depth Lp.

Hence pd Lp = depth Rp − depth Lp ⩾ depth Rp − depth Xp = t . We obtain
supY∈X∩fpd R{pd Yp}⩾ pd Lp ⩾ t .

(2) It suffices to show that X is contained in thickD(R)(X ∩ CM(R)). Fix an R-
module X ∈ X , and put n = RfdR X . Since R is Gorenstein, there is an exact
sequence 0 → P →�−n�n X → X → 0 in mod R such that P has finite projective
dimension; see [6, (2.21) and (4.22)]. The R-module �n X is maximal Cohen–
Macaulay. Proposition 5.8(1) implies �−n�n X ∈ resmod R(�

n X) ⊆ X . Hence
�−n�n X is in X ∩CM(R). As P ∈ thickD(R) R and R ∈ X ∩CM(R), both P and
�−n�n X are in thickD(R)(X ∩CM(R)), and so is X . □

Using the above lemma and results in the previous sections, we can show that
for each resolving subcategory of mod R, taking the resolving closure in D(R)
commutes with taking the restriction to K(R) and C(R).

Proposition 7.2. Suppose that R is a complete intersection. Let X be a resolving
subcategory of mod R. Then:

(1) resD(R)(X ∩K(R))= resD(R)(X ∩ fpd R)= (resD(R) X )∩K(R).

(2) resD(R)(X ∩C(R))= resD(R)(X ∩CM(R))= (resD(R) X )∩C(R).

Proof. The first equalities in the two assertions hold since X ∩K(R)= X ∩ fpd R
and X ∩C(R)= X ∩CM(R). In what follows, we show the second equalities.

(1) Since K(R) is a resolving subcategory of D(R) by Proposition 2.10(3), we see
that both resD(R)(X ∩ fpd R) and (resD(R) X )∩K(R) are resolving subcategories of
D(R) contained in K(R). Put

a = supX∈resD(R)(X∩fpd R){pd Xp},

b = supX∈(resD(R) X )∩K(R){pd Xp},

c = supX∈X∩fpd R{pd Xp}.
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By Theorem 4.8, it is enough to verify that a = b. Since

X ∩ fpd R ⊆ resD(R)(X ∩ fpd R)⊆ (resD(R) X )∩K(R),

we have c ⩽ a ⩽ b. Thus it suffices to show that b ⩽ c, which we do as follows.

b
(i)
= supX∈(resD(R) X )∩K(R){depth Rp − depth Xp}

(ii)
⩽ supX∈resD(R) X {depth Rp − depth Xp}

(iii)
= supX∈X {depth Rp − depth Xp}

(iv)
= c.

Here, (i) follows from Proposition 2.13(2) and (iv) from Lemma 7.1(1). The
inclusion (resD(R) X )∩K(R)⊆ resD(R) X implies (ii). As for (iii), the inequality (⩾)
holds since X is contained in resD(R) X . It is observed from Proposition 2.13(2)(3)
that the subcategory Y of D(R) consisting of objects Y such that

depth Rp − depth Yp ⩽ supX∈X {depth Rp − depth Xp}

is resolving and contains X . Therefore, the subcategory Y contains resD(R) X . Thus
(⩽) follows.

(2) By Proposition 3.14(2), resD(R)(X∩CM(R)) and (resD(R) X )∩C(R) are resolving
subcategories of D(R) contained in C(R). By virtue of Theorem 6.1, it is enough
to show that

thickD(R)(resD(R)(X ∩CM(R))) and thickD(R)((resD(R) X )∩C(R))

coincide. We have

thickD(R)(resD(R)(X ∩CM(R)))= thickD(R)(X ∩CM(R))
= thickD(R) X
= thickD(R)(resD(R) X )
⊇ thickD(R)((resD(R) X )∩C(R))
⊇ thickD(R)(X ∩CM(R)),

where the first and third equalities and the inclusions are clear, while the second
equality follows from Lemma 7.1(2). Thus those two inclusions are equalities, and
we obtain the desired equality of thick closures. □

In the next result, CM(R) denotes the stable category of CM(R) (the definition of
a thick subcategory of CM(R) is given in Section 3). This proposition particularly
says that, over a complete intersection, the resolving subcategories of maximal
Cohen–Macaulay modules bijectively and naturally correspond to the resolving
subcategories of maximal Cohen–Macaulay complexes.
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Proposition 7.3. Let R be a complete intersection. Then there are natural one-to-
one correspondences

resolving
subcategories of mod R

contained in CM(R)

=


thick subcategories

of CM(R)
containing R

∼=

{
thick subcategories

of CM(R)

}

∼=

{
thick subcategories

of S(R)

}
∼=


thick subcategories

of D(R)
containing R


∼=


thick subcategories

of C(R)
containing R

=


resolving

subcategories of D(R)
contained in C(R)

.
In particular, one has the following one-to-one correspondence.{

resolving subcategories
of mod R contained in CM(R)

}
resD(R)(−)

//

{
resolving subcategories

of D(R) contained in C(R)

}
.

(−)∩CM(R)
oo

Proof. We start by showing the first assertion. The first equality can be obtained by
[23, Corollary 4.16], where the ring is assumed to be local, but the argument works
if we replace [23, Theorem 4.15(1)] used there with Proposition 5.8(1). The first
bijection follows from [50, Proposition 6.2], where the ring is again assumed to
be local but it is not used. Since R is Gorenstein, the assignment M 7→ M gives a
triangle equivalence

η : CM(R)= GP(R)
∼=
−→ S(R),

where GP(R) denotes the stable category of the category GP(R) of totally reflexive
R-modules; see [12, 1.3]. The second bijection in the assertion is induced from the
equivalence η. The third bijection is given in Lemma 6.2(1). The last bijection and
the last equality follow from Theorem 6.1.

From now on, we give a proof of the last assertion of the proposition. There is a
commutative diagram

CM(R) inc
//

ε
��

D(R)
π
��

CM(R)
η

// S(R)

where inc is the inclusion functor, η is the triangle equivalence, and ε, π are the
canonical quotient functors.

Fix a resolving subcategory X of mod R contained in CM(R). The resolving
subcategory of D(R) contained in C(R) that corresponds to X is π−1ηε(X )∩C(R),
which coincides with π−1π(X )∩C(R). As this is a resolving subcategory of D(R)
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containing X , it contains resD(R) X as well. Pick an object C ∈ π−1π(X )∩C(R).
Then π(C) is in π(X ), and π(C) is isomorphic to π(X) for some X ∈X . There are
exact triangles σ : E →C → A⇝ and τ : E → X → B⇝ in D(R)with A, B ∈K(R);
see [40, Proposition 2.1.35]. We see from τ that E is in thickD(R) X , and from
σ that C is in thickD(R) X . Hence π−1π(X ) ∩ C(R) ⊆ (thickD(R) X ) ∩ C(R) =

resD(R) X , where the equality follows from Theorem 6.1. We now conclude that
π−1π(X )∩C(R)= resD(R) X .

Fix a resolving subcategory X of D(R) contained in C(R). The resolving subcate-
gory of mod R contained in CM(R) that corresponds to X is ε−1η−1π(thickD(R) X ).
Note that the equality π−1π(Y)= Y holds for each thick subcategory Y of D(R)
containing R. We get the following equalities of subcategories of CM(R).

ε−1η−1π(thickD(R) X )= π−1π(thickD(R) X )∩CM(R)= (thickD(R) X )∩CM(R)

= (thickD(R) X )∩C(R)∩CM(R)= X ∩CM(R).

Here, the last equality follows from Theorem 6.1. Now we obtain the mutually
inverse bijections in the last statement of the proposition. □

Proposition 7.3 says that when R is a complete intersection, the equality X =

resD(R)(X ∩CM(R)) holds for every resolving subcategory X of D(R) contained
in C(R). This equality holds in a more general setting.

Proposition 7.4. The equality X = resD(R)(X ∩GP(R)) holds for every resolving
subcategory X of D(R) contained in G(R). In particular, if the ring R is Gorenstein,
then the equality X = resD(R)(X ∩CM(R)) holds for every resolving subcategory
X of D(R) contained in C(R).

Proof. The last assertion follows from the first and Lemma 5.3(5). To show the
first assertion, let X be a resolving subcategory of D(R) contained in G(R). It
clearly holds that X contains resD(R)(X ∩GP(R)). Pick any X ∈ X . Remark 3.7(2)
gives an exact triangle X → Y → E ⇝ in D(R) with sup Y ⩽ 0 and E ∈ ER . By
Lemma 5.3(3)(4) there exists a totally reflexive R-module T such that Y ∼= T in
D(R). Since Y is in X , we have T ∈X ∩GP(R). Hence Y is in resD(R)(X ∩GP(R)),
and so is X . Thus the first assertion follows. □

In view of Propositions 7.3 and 7.4, it is quite natural to ask the following
question. Proposition 7.3 guarantees that the question has an affirmative answer in
the case where R is a complete intersection.

Question 7.5. Suppose that the ring R is Gorenstein. Let X be a resolving subcat-
egory of mod R contained in CM(R). Then, does the equality X = (resD(R) X )∩
CM(R) hold?

To show our next result, we establish a lemma on projective dimension.
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Lemma 7.6. Let X be a resolving subcategory of mod R contained in fpd R. Let
Y be an object in resD(R) X , and let p be a prime ideal of R. Then one has the
inequality pdRp

Yp ⩽ pdRp
Xp for some object X ∈ X .

Proof. Let Z be the subcategory of D(R) consisting of complexes Z such that
pd Zp ⩽ pd Xp for some X ∈ X . Clearly, X is contained in Z, and in particular,
R is in Z. If Z is an object in Z and W is a direct summand of Z , then pd Wp ⩽
pd Zp ⩽ pd Xp for some X ∈ X by Proposition 2.13(4), and hence W is also in
Z. Let A → B → C ⇝ be an exact triangle in D(R) with C ∈ Z. Then pd Cp ⩽
pd Xp for some X ∈ X . If pd Ap (resp. pd Bp) is at most pd X ′

p for some X ′
∈ X ,

then pd Bp (resp. pd Ap) is at most sup{pd Ap, pd Cp} (resp. sup{pd Bp, pd Cp − 1})
by Proposition 2.13(3), which is at most pd X ′′

p where X ′′
= X ⊕ X ′

∈ X by
Proposition 2.13(4). Hence A ∈ Z if and only if B ∈ Z. Thus, Z is a resolving
subcategory of D(R) containing X . Then Z contains resD(R) X , and we get Y ∈ Z .
We conclude pd Yp ⩽ pd Xp for some X ∈ X . □

Now we find out a close relationship of each resolving subcategory of mod R
with its resolving closure in D(R) when R is a complete intersection. In the proof
we use the map 8 which is defined in Definition 4.6.

Proposition 7.7. Let X be a resolving subcategory of mod R. Suppose either that
X is contained in fpd R or that R is a complete intersection. Then the equality
X = (resD(R) X )∩mod R holds true.

Proof. We set up three steps, and in each step we prove the equality given in the
proposition.

(1) Assume that X is contained in fpd R. Then X is contained in K(R), and so is
resD(R) X by Proposition 2.10(3). Proposition 2.10(4) says that (resD(R) X )∩mod R
is a resolving subcategory of mod R contained in fpd R. There are inclusions
X ⊆ resD(R) X ∩ mod R ⊆ resD(R) X , which induce the inequalities 8(X )(p) ⩽
8((resD(R) X )∩mod R)(p)⩽8(resD(R) X )(p) for each prime ideal p of R. Then
Lemma 7.6 yields

8(resD(R) X )(p)= supY∈resD(R) X {pd Yp}⩽ supX∈X {pd Xp} =8(X )(p),

and therefore 8(X )(p) = 8((resD(R) X ) ∩ mod R)(p) = 8(resD(R) X )(p). This
shows that 8(X ) coincides with 8((resD(R) X )∩mod R). By [24, Theorem 1.2],
we obtain X = (resD(R) X )∩mod R.

(2) Assume that X is contained in CM(R) and that R is a complete intersec-
tion. Proposition 7.3 implies X = (resD(R) X )∩ CM(R). As C(R) is a resolving
subcategory of D(R) by Proposition 3.14(2), it contains resD(R) X . We obtain
X = (resD(R) X )∩CM(R)= (resD(R) X )∩C(R)∩mod R = (resD(R) X )∩mod R.
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(3) Suppose that R is a complete intersection. Put Y = (resD(R) X )∩mod R. We want
to prove X = Y . By [24, Theorem 7.4], it suffices to show X ∩ fpd R = Y ∩ fpd R
and X ∩CM(R)= Y ∩CM(R). We have

Y ∩ fpd R = (resD(R) X )∩ fpd R = (resD(R) X )∩K(R)∩mod R

= resD(R)(X ∩ fpd R)∩mod R = X ∩ fpd R,

where the fourth equality follows by (1) and the third one by Proposition 7.2(1).
Similarly, we have

Y ∩CM(R)= (resD(R) X )∩CM(R)= (resD(R) X )∩C(R)∩mod R

= resD(R)(X ∩CM(R))∩mod R = X ∩CM(R),

where the fourth equality follows from (2) and the third from Proposition 7.2(2). □

Let f : A → B and g : B → A be maps. We call ( f, g) a section-retraction pair
(resp. bijection pair) if g f is an identity map (resp. g f, f g are identity maps). In
this case, we denote it by f ⊣ g (resp. f ∼ g). Now we can state and prove the
following theorem, which describes a natural relationship between the resolving
subcategories of D(R) and the resolving subcategories of mod R in the case where
R is a complete intersection.

Theorem 7.8. Let R be a complete intersection. Then there is a diagram


resolving

subcategories
of D(R)

 ≀

((−)∩K(R),(−)∩C(R))
//

⊣ (−)∩mod R

��


resolving

subcategories
of D(R)

contained in K(R)

×


resolving

subcategories
of D(R)

contained in C(R)


⊣ ((−)∩mod R)×((−)∩mod R)
��

resD(R)(−∪··· )

oo


resolving

subcategories
of mod R

 ≀

((−)∩fpd R,(−)∩CM(R))
//

resD(R)(−)

OO


resolving

subcategories
of mod R

contained in fpd R

×


resolving

subcategories
of mod R

contained in CM(R)



resD(R)(−)×resD(R)(−)

OO

resmod R(−∪··· )

oo

The pairs of top (resp. bottom) horizontal arrows are bijection pairs given in
Theorem 5.10 (resp. [24, Theorem 7.4]). The pairs of vertical arrows are section-
retraction pairs. The diagram with vertical arrows from the bottom (resp. top) to
the top (resp. bottom) is commutative.

Proof. It follows from Proposition 7.7 that (resD(R)(−), (−)∩mod R) and(
resD(R)(−)× resD(R)(−), ((−)∩mod R)× ((−)∩mod R)

)
are section-retraction pairs of maps. Also, it follows from Proposition 7.2 that
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((−)∩K(R), (−)∩C(R)) ◦ resD(R)(−)

= (resD(R)(−)× resD(R)(−)) ◦ ((−)∩ fpd R, (−)∩CM(R));

the equality

((−)∩ fpd R, (−)∩CM(R)) ◦ ((−)∩mod R)

= (((−)∩mod R)× ((−)∩mod R)) ◦ ((−)∩K(R), (−)∩C(R))

is also straightforward to verify. □

Remark 7.9. The section-retraction pair (resD(R)(−), (−)∩mod R) in Theorem 7.8
is never a bijection pair. Indeed, if so, then resD(R)(X ∩ mod R) = X for every
resolving subcategory X of D(R). However, this equality does not hold even for
X = D(R), because in this case we have the following equalities

resD(R)(X ∩mod R)= resD(R)(mod R)= {X ∈ D(R) | H<0 X = 0}

by Proposition 2.15, which is strictly contained in X = D(R).

The corollary below is an immediate consequence of Theorem 7.8, Corollary 6.8
and [24, Theorem 1.5]. This corollary says that the classification of resolving
subcategories of mod R due to Dao and Takahashi [24] is a restriction of our
classification of resolving subcategories of D(R).

Corollary 7.10. Let (R, V ) be as in Setup 6.5. Then there is a commutative diagram
resolving

subcategories
of D(R)

 oo ∼=

(α)

//

{
order-preserving maps

from Spec R to N ∪ {∞}

}
×

{
specialization-closed

subsets of V

}


resolving

subcategories
of mod R

 oo ∼=

(β)

//

resD(R)(−)

OO

{
grade-consistent

functions on Spec R

}
×

{
specialization-closed

subsets of V

}
,

inc×id

OO

where (α) is the bijection from Corollary 6.8 and (β) the one from [24, Theorem 1.5].

Finally, we give a proof of our main result stated in the Introduction.

Proof of Theorem 1.4. The assertion follows from Corollaries 6.8 and 7.10,
Proposition 7.7 and Remark 6.9(1). □

Appendix A. Classification of resolving subcategories of K(R)

with no use of D(Mod R)

The purpose of this appendix is to classify the resolving subcategories of K(R)
without using methods of unbounded derived categories; we shall give longer but
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more elementary proofs of Theorems 4.5 and 4.8. We will also obtain derived
category versions of various results on the module category in the literature.

Definition A.1. Let R be a local ring with maximal ideal m.

(1) For a minimal system of generators x of m, we set KR = K(x, R) and call it
the Koszul complex of R.

(2) We denote by D0(R) the subcategory of D(R) consisting of complexes X with
Xp ∈ ERp (or in other words, pdRp

Xp ⩽ 0 by Proposition 2.13(6)) for all prime
ideals p of R such that p ̸= m. We set

K0(R)= K(R)∩D0(R),

Kn
0(R)= Kn(R)∩K0(R)= Kn(R)∩D0(R) for n ∈ Z.

Here are a couple of statements about KR , D0(R) and K0(R) for a local ring R.

Proposition A.2. Let R be a local ring. Then the following statements are true.

(1) Let X ∈ D(R). If Hi X has finite length as an R-module for all i ∈ Z, then
X [i] ∈ D0(R) for all i ∈ Z.

(2) The Koszul complex KR of R is uniquely determined up to complex isomor-
phism.

(3) Put e = edim R and K = KR . One then has that K [i] ∈ Ke+i
0 (R) \Ke+i−1

0 (R)
for each integer i .

(4) It holds that D0(R) is a resolving subcategory of D(R). Hence K0(R) is
a resolving subcategory of K(R), and so is Kn

0(R) for every nonnegative
integer n.

Proof. (1) Let p be a nonmaximal prime ideal of R. Let i be an integer. Then
H j ((X [i])p)= (H j+i X)p = 0 for all j ∈ Z, which means that (X [i])p ∼= 0 in D(Rp).
Hence (X [i])p belongs to ERp , so that X [i] ∈ D0(R).

(2) The assertion is shown in [18, page 52].

(3) The complex K [i] is in K0(R) by (1). Since pd K = e, we have pd K [i] = e + i
by Proposition 2.13(1).

(4) The first statement is deduced by using the fact that ERp is a resolving subcategory
of D(Rp) for each prime ideal p of R. The second statement follows from the first
statement, Propositions 2.13(5), 2.10(2)(3) and the fact that the resolving property
is preserved under taking intersections. □

Here is an elementary lemma on a general triangulated category, which produces
a certain exact triangle.

Lemma A.3. Let T be a triangulated category.
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(1) Suppose that there exists a commutative diagram

A // B //

��

C //

��

A[1]

A // B ′ // C ′ // A[1]

of exact triangles in T . Then there exists an exact triangle B → B ′
⊕ C →

C ′
→ B[1] in T .

(2) Let X
f

−→ Y
g
−→ Z be morphisms in T . Then there exists an exact triangle

cone(g f )→ cone(g)⊕ X [1] → Y [1] → cone(g f )[1] in T .

Proof. (1) follows from [40, Lemma 1.4.3].

Let X
f

−→ Y
g
−→ Z be morphisms in T . Then we have a commutative diagram of

exact triangles at the lower left, which induces a commutative diagram of exact
triangles at the lower right.

X
g f
//

f
��

Z // cone(g f ) //

��

X [1]

��

Y
g
// Z // cone(g) // Y [1]

Z // cone(g f ) //

��

X [1] //

��

Z [1]

Z // cone(g) // Y [1] // Z [1]

By (1), we get an exact triangle cone(g f )→cone(g)⊕X [1]→Y [1]→cone(g f )[1]

in T . □

Applying the previous lemma, we consider when a given object of the derived
category D(R) belongs to the resolving closure of the (derived) tensor product with
a Koszul complex.

Lemma A.4. (1) For elements x, y ∈ R there is an exact triangle K(x)→K(xy)→
K(y)⇝ in K(R).

(2) Let X be an object of D(R) and let x be an element of R. Suppose that the
morphism X

x
−→ X in D(R) defined by multiplication by x is zero. Then X

belongs to resD(R)(K(x)⊗R X [−1]).

(3) Suppose that (R,m) is local. Let X be an object in D0(R). Let x = x1, . . . , xn

be a sequence of elements in m. Then X belongs to resD(R)(K(x)⊗R X [−n]).
In particular, X is in resD(R)(KR ⊗R X [− edim R]).

Proof. (1) The assertion is shown by applying the octahedral axiom to (R
xy
−→ R)=

(R
x
−→ R

y
−→ R).

(2) There exist morphisms X
f

−→ E
g
−→ X in D(R) such that E is in ER and the

composition g f is equal to the multiplication morphism X
x
−→ X in D(R). By

Lemma A.3(2) we have an exact triangle cone(g f )→ cone(g)⊕ X [1] → E[1]⇝
in D(R). The object cone(g f ) is the mapping cone of the morphism X

x
−→ X ,
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which is isomorphic to K(x)⊗ X . We get an exact triangle K(x)⊗ X [−1] →

cone(g)[−1]⊕X → E⇝ in D(R). It follows that X ∈ extD(R){K(x)⊗X [−1], E}⊆

resD(R)(K(x)⊗ X [−1]).

(3) By Proposition 3.10 the R-module HomD(R)(X, X) has finite length, and hence it
is annihilated by some power mr of m. Fix an element x ∈m. Then the multiplication

morphism X
xr

−→ X in D(R) is zero. By (2) the object X is in resD(R)(K(xr )⊗X [−1]),
which is contained in resD(R)(K(x)⊗ X [−1]) by (1). It follows that resD(R) X is
contained in resD(R)(K(x) ⊗ X [−1]). We observe that there is a sequence of
inclusions

resD(R) X ⊆ resD(R)(K(x1)⊗ X [−1])⊆ resD(R)(K(x2)⊗ K(x1)⊗ X [−2])

⊆ · · · ⊆ resD(R)(K(xn)⊗ · · · ⊗ K(x1)⊗ X [−n])

= resD(R)(K(x)⊗ X [−n]).

Thus, X belongs to the resolving closure resD(R)(K(x)⊗R X [−n]). □

Using the above lemma, we prove a proposition which will play a key role for
the purpose of this appendix.

Proposition A.5. Let R be a local ring. Put e = edim R and K = KR .

(1) For every integer n ⩾ 0 there is an equality Kn
0(R)= resK(R)(K [n − e]).

(2) Let F be an object of K(R), and put t = pdR F. Then the object K[t − e]
belongs to resK(R) F.

Proof. (1) We have K [n−e]∈Kn
0(R), so that resK(R)(K [n−e])⊆Kn

0(R); see (3) and
(4) of Proposition A.2. Conversely, pick an object P ∈ Kn

0(R). Lemma A.4(3) and
Proposition 2.10(3) imply that P belongs to resK(R)(K ⊗ P[−e]). We may assume
that the perfect complex P has the form (0 → P−n

→ P−n+1
→ · · · → Ps

→ 0).
Then it holds that P ∈ extK(R){Ps

[−s], . . . , P−n
[n]} ⊆ extK(R){R[i] | −s ⩽ i ⩽ n},

and hence

(K ⊗ P)[−e] ∈ extK(R){K [i − e] | −s ⩽ i ⩽ n} ⊆ resK(R)(K [n − e]).

Therefore, the complex P belongs to resK(R)(K [n − e]).

(2) We shall prove that K [i −e] ∈ res F for all i ⩽ t . For this we use induction on t .
When t⩽0, for each i ⩽ t we have pd K [i−e]=pd K +(i−e)= i ⩽ t⩽0 by (1) and
(7) of Proposition 2.13, and hence K [i −e] ∈ ER ⊆ res F . Let t > 0. We may assume

that F = (0 → F−t ∂
−→ F−t+1

→ · · · → F s
→ 0), where F−t , F−t+1, . . . , F s are

free, F−t
̸= 0, −t + 1 ⩽ s and Im ∂ ⊆ mF−t+1. Since pd F[−1] = t − 1 < t , the

induction hypothesis implies K [ j − e] ∈ res F[−1] for all j ⩽ t − 1. As F[−1]

belongs to res F , we see that

(A.5.1) the object K [ j − e] belongs to resK(R) F for all integers j ⩽ t − 1.
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It remains to show that K [t − e] is in res F . Let P = (0 → F−t ∂
−→ F−t+1

→ 0) be
a truncation of F . Then there is an exact triangle F−t ∂

−→ F−t+1
→ P[1 − t]⇝ in

K(R). Tensoring K over R gives an exact triangle

(A.5.2) F−t
⊗ K

∂⊗K
−−→ F−t+1

⊗ K → (P ⊗ K )[1 − t]⇝

in K(R). Write F−t
= R⊕n and F−t+1

= R⊕m . The inclusion Im ∂ ⊆ mF−t+1

implies that the map ∂ : R⊕n
→ R⊕m is represented by an m × n matrix (ai j ) with

ai j ∈ m. The chain map ∂ ⊗ K : K ⊕n
→ K ⊕m is given by the matrix (ai j ). The

multiplication morphism K
ai j
−→ K is zero in K(R) by [38, Proposition 2.3(3)],

and so is the morphism K ⊕n (ai j )
−−→ K ⊕m ; the matrix (si j ) of null-homotopies si j

of K
ai j
−→ K is a null-homotopy of K ⊕n (ai j )

−−→ K ⊕m . It follows from (A.5.2) that
(P ⊗ K )[1 − t] is isomorphic to the direct sum of

F−t+1
⊗ K = K ⊕m and (F−t

⊗ K )[1] = (K [1])⊕n.

Since F−t
̸= 0, we have n > 0 and the complex K [1] is a direct summand of

(P ⊗ K )[1 − t] as an object of K(R). Applying the functor [t − e − 1] shows that

(A.5.3) the object K [t −e] is a direct summand of the object(P⊗K )[−e] in K(R).

Let Q = (0 → F−t+2
→ · · · → F s

→ 0) be another truncation of F . There is an
exact triangle Q → F → P ⇝, which induces an exact triangle (Q ⊗ K )[−e] →

(F ⊗ K )[−e] → (P ⊗ K )[−e]⇝. This shows that

(A.5.4) the object (P ⊗ K )[−e] belongs to extK(R){(F ⊗ K )[−e], (Q ⊗ K )[1−e]}.

The Koszul complex K = (0 → K −e
→ · · · → K 0

→ 0) is in ext{K −i
[i] | 0 ⩽

i ⩽ e}, and this extension closure is contained in ext{R[i] | 0⩽ i ⩽ e}. Applying
(F ⊗ −)[−e] shows (F ⊗ K )[−e] is in ext{F[i] | −e ⩽ i ⩽ 0}, which implies

(A.5.5) the object (F ⊗ K )[−e] belongs to resK(R) F .

The perfect complex Q = (0 → F−t+2
→ · · · → F s

→ 0) is in extK(R){F i
[−i] |

−t + 2⩽ i ⩽ s}, which is contained in extK(R){R[−i] | −t + 2⩽ i ⩽ s}. Hence the
object (Q ⊗ K )[1 − e] belongs to the subcategory

extK(R){K [1−e− i] | −t +2⩽ i ⩽ s} = extK(R){K [i] | (1−s)−e⩽ i ⩽ (t −1)−e}

of K(R). By (A.5.1), this extension closure is contained in the resolving closure
resK(R) F . Therefore,

(A.5.6) the object (Q ⊗ K )[1 − e] belongs to resK(R) F .

It follows from (A.5.3), (A.5.4), (A.5.5) and (A.5.6) that K [t − e] is in resK(R) F as
desired. □
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Remark A.6. We may wonder if the Hopkins–Neeman classification theorem [31;
39] can be applied to deduce Proposition A.5(2). Actually, the proof of the Hopkins–
Neeman theorem provides a certain integer m such that K [m] belongs to resK(R) F .
However, this is done by applying the smash nilpotence theorem [39, Theorem
1.1], which relies on the fact that R is noetherian, so that m cannot be described
concretely. Note that there is no meaning for us unless m > −e, since we know
that K [i] ∈ ER ⊆ resK(R) F for all i ⩽−e.

The following two corollaries are direct consequences of the above proposition.

Corollary A.7. Suppose that R is a local ring.

(1) There is an equality K0(R)= resK(R){KR[i] | i ∈ Z} of subcategories of K(R).

(2) Let F be an object in K0(R) and assume pdR F = t ⩾ 0. Then the equality
resK(R) F = Kt

0(R) holds.

Proof. Put e = edim R, K = KR and set X = res{K [i] | i ∈ Z}. Proposition A.2(3)
implies that X ⊆K0(R). Fix F ∈K0(R) and set t = pd F . If t ⩽ 0, then F ∈ ER ⊆X
by Proposition 2.13(6). Let t ⩾ 0. We have

F ∈ Kt
0(R)= resK(R) K [t − e] ⊆ X ∩ resK(R) F ⊆ resK(R) F ⊆ Kt

0(R),

where the equality and the first inclusion follow from Proposition A.5, and the other
inclusions are obvious. We thus obtain the equalities X = K0(R) and Kt

0(R) =

resK(R) F . □

Corollary A.8. Let R be a local ring. Let X be a resolving subcategory of K(R)
contained in K0(R). Suppose that one has supX∈X {pdR X} = ∞. Then the equality
X = K0(R) holds true.

Proof. Assume that X is strictly contained in K0(R). Then there exists an object
Y ∈ K0(R) such that Y /∈ X . Put u = pdR Y . As Y is a nonzero object of K(R),
we have that −∞ < u < ∞. Since supX∈X {pd X} = ∞, there exists an object
X ∈ X such that t := pd X ⩾max{u, 0}. Then X ∈ K0(R), pd X = t ⩾ 0 and u ⩽ t .
Applying Corollary A.7(2), we observe Y ∈Ku

0(R)⊆Kt
0(R)= resK(R) X ⊆X . This

gives a contradiction. □

Now we can show the following theorem. It provides an explicit description of
the resolving subcategories of K(R) contained in K0(R); in particular, they form a
totally ordered set.

Theorem A.9. Suppose that R is a local ring with e = edim R and K = KR . Then
one has strict inclusions

(A.9.1) ER = K0
0(R)⊊ K1

0(R)⊊ · · · ⊊ Kn
0(R)⊊ Kn+1

0 (R)⊊ · · · ⊊ K0(R)
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of resolving subcategories of K(R) such that K [n − e] ∈ Kn
0(R) \K

n−1
0 (R) for each

n ⩾ 1. Moreover, all the resolving subcategories of K(R) contained in K0(R)
appear in the above chain of subcategories of K(R).

Proof. Proposition 2.13(6) says ER = K0(R) ⊇ K0
0(R). Since K0

0(R) is resolving
by Proposition A.2(4) and ER is the minimum resolving subcategory, the equality
ER = K0

0(R) holds. For each n ⩾ 1 it is clear that Kn−1
0 (R) ⊆ Kn

0(R), while
K [n −e] ∈Kn

0(R)\K
n−1
0 (R) by Proposition A.2(3). The first assertion now follows.

Now, let us show the second assertion. Let X be a resolving subcategory of K(R)
contained in K0(R). We may assume that X is different from K0(R). Corollary A.8
says that t := supX∈X {pd X} is finite, and in particular, X is contained in Kt

0(R).
Choose an object X ∈ X such that pd X = t . We have t ⩾ 0 as R is in X . Using
Corollary A.7(2), we see that Kt

0(R) = resK(R) X ⊆ X . The equality X = Kt
0(R)

follows. □

From now on, we consider classifying all the resolving subcategories of K(R).
We start by defining, for each object of the derived category D(R), another object
by tensoring a Koszul complex and taking a shift.

Definition A.10. Let X ∈ D(R). For x ∈ R, set X (x)= K(x)⊗L
R X [−1] ∈ D(R).

For x = x1, . . . , xn ⊆ R, we inductively define X (x) ∈ D(R) by X (x1, . . . , xi )=

(X (x1 . . . , xi−1))(xi ) for each 1⩽ i ⩽ n.

We make a list of basic properties of the object X (x) for X ∈ D(R) and x ∈ R.

Lemma A.11. Let X be an object of D(R), and let x be an element of R.

(1) If x is a unit of R, then there is an isomorphism X (x)∼= 0 in D(R).

(2) There exists an exact triangle X (x) → X
x
−→ X ⇝ in D(R). In particular,

one has the containment X (x) ∈ resD(R) X and the isomorphisms X (x) ∼=

RHomR(K(x), X)∼= HomR(K(x), X) in D(R).

(3) Let R be a local ring with maximal ideal m and residue field k. Let x ∈ m.
Then one has the equalities depthR X (x)= depthR X and pdR X (x)= pdR X.
In particular, X ∈ ER if and only if X (x) ∈ ER .

(4) The equality NE(X (x))= NE(X)∩ V(x) holds, where V(x) denotes the set of
prime ideals containing x.

Proof. (1) If x is a unit of R, then K(x)∼= 0 in D(R), and hence X (x)= K(x)⊗L
R

X [−1] ∼= 0 in D(R).

(2) There exists an exact triangle e : R
x
−→ R → K(x)⇝ in D(R). Applying the

functor − ⊗
L
R X to e gives rise to an exact triangle X

x
−→ X → K(x)⊗L

R X ⇝ in
D(R), which induces an exact triangle a : X (x) → X

x
−→ X ⇝ in D(R). Hence

X (x) belongs to resD(R) X . Applying the functor RHomR(−, X) to e yields an
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exact triangle b : RHomR(K(x), X) → X
x
−→ X ⇝. It follows from a and b that

X (x)∼= RHomR(K(x), X).

(3) As x belongs to m, we have

K(x)⊗L
R k ∼= (0 → k

x
−→ k → 0)= (0 → k

0
−→ k → 0)∼= k ⊕ k[1].

Hence

RHomR(k, X (x))∼= RHomR(k,RHomR(K(x), X))∼= RHomR(K(x)⊗L
R k, X)

∼= RHomR(k ⊕ k[1], X)∼= RHomR(k, X)⊕ RHomR(k, X)[−1]

by (2), and

X (x)⊗L
R k ∼= K(x)⊗L

R X [−1] ⊗
L
R k ∼= (K(x)⊗L

R k)⊗L
R X [−1]

∼= (k ⊕ k[1])⊗L
R X [−1] ∼= (X ⊗

L
R k)⊕ (X ⊗

L
R k)[−1].

As inf Y [−1] = inf Y + 1 for any complex Y , we get

depth X (x)= inf RHomR(k, X (x))= inf RHomR(k, X)= depth X

and, from Proposition 2.13(2), pd X (x)=−inf(X (x)⊗L
R k)=−inf(X ⊗

L
R k)= pd X .

By virtue of Proposition 2.13(6), we have X ∈ ER if and only if X (x) ∈ ER .

(4) To show (⊇), let p ∈ NE(X)∩ V(x). Then pdRp
Xp > 0 and x

1 ∈ pRp. By (3)
we have pdRp

Xp

( x
1

)
= pdRp

Xp > 0, whence p ∈ NE(X (x)). To show (⊆), let
p ∈ NE(X (x)). Then pdRp

Xp

( x
1

)
> 0. In particular, Xp

( x
1

)
≇ 0 in D(R). Hence

x ∈ p by (1). By (3) we get 0< pdRp
Xp

( x
1

)
= pdRp

Xp, so that p ∈ NE(X). □

Assertions (1), (3) of the theorem below are viewed as derived category versions
of [49, Theorem 4.3] and [23, Lemma 4.6] respectively, which concern the nonfree
locus and the resolving closure of an object in mod R.

Theorem A.12. Let X be an object of D(R). Let W be a closed subset of Spec R
contained in NE(X).

(1) There exists an object Y ∈ resD(R) X such that W = NE(Y ).

(2) If R is local and W is nonempty, then Y can be chosen so that pd Y = pd X
and depth Y = depth X.

(3) If W is irreducible, then Y can be chosen so that pd Yp = pd Xp and depth Yp =

depth Xp for all p ∈ W .

Proof. When W is empty, we can take Y := R. Assume that W ̸= ∅. Then
there exist prime ideals p1, . . . , pn of R such that n > 0 and W = V(p1)∪ · · · ∪

V(pn). Each V(pi ) is contained in NE(X). If we find an object Yi ∈ resD(R) X
such that V(pi ) = NE(Yi ), then Y := Y1 ⊕ · · · ⊕ Yn belongs to res X and satisfies
W = NE(Y ) by Lemma 3.8(2). If R is local, pdR Yi = pdR X and depthR Yi =
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depthR X for all 1⩽ i ⩽n, then pdR Y = sup1⩽i⩽n{pdR Yi }=pdR X and depthR Y =

inf1⩽i⩽n{depthR Yi } = depthR X by Proposition 2.13(4). Thus, it suffices to show
that in the case where W = V(p) for some prime ideal p of R there exists Y ∈

resD(R) X such that W = NE(Y ), pdRr
Yr = pdRr

Xr and depthRr
Yr = depthRr

Xr

for all r ∈ W .
The set NE(X) contains V(p). If NE(X) = V(p), then we are done by letting

Y = X . Suppose that NE(X) strictly contains V(p) and choose an element q ∈

NE(X) \ V(p). Then q does not contain p, and we can choose an element x ∈ p \ q.
Using Lemma A.11(4), we get p ∈ NE(X) ∩ V(x) = NE(X (x)). As NE(X (x))
is Zariski-closed by Proposition 3.10, it contains V(p). It follows that V(p) ⊆

NE(X (x)) = NE(X) ∩ V(p) ⊆ NE(X) and the fact that q ∈ NE(X) \ V(p) says
NE(X)∩ V(p) ̸= NE(X). We conclude V(p)⊆ NE(X (x))⊊ NE(X).

By Lemma A.11(2)(3), we have that X (x) ∈ res X , and that pdRr
X (x)r =

pdRr
Xr

( x
1

)
= pdRr

Xr and depthRr
X (x)r = depthRr

Xr

( x
1

)
= depthRr

Xr for all
r ∈ V(p) since x ∈ p ⊆ r. If NE(X (x)) is equal to V(p), we are done by letting
Y = X (x). If NE(X (x)) strictly contains V(p), we apply the above argument to
find y ∈ p with V(p)⊆ NE(X (x, y))⊊ NE(X (x)). Iterating this procedure, we get
an ascending chain

V(p)⊆ · · ·⊊NE(x, y, z, w)⊊NE(x, y, z)⊊NE(X (x, y))⊊NE(X (x))⊊NE(X)

of subsets of Spec R with x, y, z, w, . . . ∈ p. However, we can do this only finitely
many times, since each NE-locus appearing in the above chain is Zariski-closed,
and the topological space Spec R is noetherian.

We thus obtain a sequence x = x1, . . . , xn in p with NE(X (x)) = V(p) and
X (x) ∈ res X , pdRr

X (x)r = pdRr
Xr and depthRr

X (x)r = depthRr
Xr for all r ∈

V(p). The theorem follows by letting Y = X (x). □

From the above theorem we can deduce the following corollary. Thanks to this
result, for each object X in a fixed resolving subcategory of D(R), one may often
assume that X belongs to D0(R).

Corollary A.13. Let R be a local ring. For every object X ∈ D(R) there exists an
object Y ∈ resD(R) X ∩D0(R) such that pdR Y = pdR X and depthR Y = depthR X.

Proof. When X belongs to ER , we put Y := X and are done. Let X be outside
of ER . Then the maximal ideal m of R belongs to NE(X) by Lemma 3.8(1) and
Proposition 3.10, and hence V(m) is contained in NE(X). Applying Theorem A.12
to V(m), we find an object Y ∈ resD(R) X such that NE(Y )= V(m)= {m}, pd Y =

pd X and depth Y = depth X . The equality NE(Y ) = {m} implies that Y belongs
D0(R). □
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The following lemma can be thought of as a derived category version of [24,
Lemma 3.2 and Proposition 3.3]. For a partially ordered set P we denote by min P
the set of minimal elements of P .

Lemma A.14. Let X be a subcategory of D(R).

(1) Let S be a multiplicatively closed subset of R. Suppose that X is a resolving
subcategory of D(R). Then addD(RS) XS is a resolving subcategory of D(RS).
Hence, the equality addD(RS) XS = resD(RS) XS holds.

(2) Suppose that X contains R and is closed under finite direct sums. Let Z be a
nonempty finite subset of Spec R. Let C ∈ D(R) be such that Cp ∈ addD(Rp) Xp for
all p ∈ Z. Then there exist exact triangles

K → X → C → K [1], L → K ⊕ C → X → L[1]

in D(R) such that X ∈ X , that NE(L)⊆ NE(C), that Supp(L)∩ Z = ∅, and that
pdRp

Lp ⩽ pdRp
Cp and depthRp

Lp ⩾ depthRp
Cp for all prime ideals p of R.

(3) Assume that X is a resolving subcategory of D(R). The following are equivalent
for each C ∈ D(R).

(a) The object C belongs to X .

(b) The localization Cp belongs to addD(Rp) Xp for all prime ideals p of R.

(c) The localization Cm belongs to addD(Rm) Xm for all maximal ideals m of R.

Proof. (1) By definition, the additive closure addXS is closed under direct summands.
As R is in X , we have RS ∈XS ⊆ addXS . Let A ∈ addXS . Then A⊕B is isomorphic
to X S for some B ∈ D(RS) and X ∈ X , whence A[−1] ⊕ B[−1] is isomorphic to
(X [−1])S . As X is closed under negative shifts, we see that A[−1] is in addXS .
Therefore, addXS is closed under negative shifts. Let L → M → N ⇝ be an exact
triangle in D(RS) with L , N ∈ addXS . Then L ⊕ L ′ ∼= X S and N ⊕ N ′ ∼= YS for
some L ′, N ′

∈ D(RS) and X, Y ∈ X . Taking the direct sum with the exact triangles
L ′

→ L ′
→ 0⇝ and 0 → N ′

→ N ′⇝, we observe that there exists an exact triangle

L ′
⊕ M ⊕ N ′

→ YS
f

−→ X [1]S ⇝ in D(RS). Write f =
g
s , where g : Y → X [1] is a

morphism in D(R) and s is an element of S; see [9, Lemma 5.2(b)]. There is an
exact triangle X → Z → Y

g
−→ X [1] in D(R). Since X is closed under extensions,

Z is in X . Also, we see that ZS is isomorphic to L ′
⊕ M ⊕ N ′ in D(RS). It follows

that M belongs to addXS , which shows that addXS is closed under extensions.

(2) Write Z = {p1, . . . , pn}. Fix 1⩽ i ⩽ n. There exists X i ∈ X such that Cpi is a
direct summand of (X i )pi in D(Rpi ). We have a split epimorphism fi : (X i )pi → Cpi

in D(Rpi ), so that there is a morphism αi : Cpi → (X i )pi in D(Rpi ) with fiαi = idCpi
.

Choose a morphism gi : X i → C in D(R) and an element si ∈ R\pi such that gi
si

= fi .
Set X = X1 ⊕· · ·⊕ Xn ∈ X and consider the morphism g = (g1, . . . , gn) : X → C
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in D(R). Then g
1 =

( g1
1 , . . . ,

gn
1

)
: Xpi → Cpi is a split epimorphism in D(Rpi ) for

each i , since letting βi : Cpi → Xpi be the transpose of (0, . . . , 0, 1
si
αi , 0, . . . , 0),

we have g
1βi = idCpi

. There is an exact triangle K → X
g
−→ C

h
−→ K [1] in D(R).

For any integer 1 ⩽ i ⩽ n it holds that hpi =
h
1 = 0 in D(Rpi ), which means that

the annihilator annR h of h ∈ HomD(R)(C, K [1]) is not contained in pi . By prime
avoidance, we find an element s ∈ annR h such that s /∈ p for all p ∈ Z . The
octahedral axiom gives rise to a commutative diagram

C s
// C

h
��

// K(s)⊗L
R C //

��

C[1]

C hs

0
//

��

K [1] // K [1] ⊕ C[1]

��

// C[1]

��

C h
//

��

K [1] //

��

X [1]
g[1]

// C[1]

��

K(s)⊗L
R C // K [1] ⊕ C[1] // X [1] // (K(s)⊗L

R C)[1]

in D(R) whose rows are exact triangles. The bottom row in the diagram induces
an exact triangle L → K ⊕ C → X → L[1] in D(R), where we put L := C(s)=

K(s)⊗L
R C[−1].

Let p ∈ Z . Then the element s
1 of Rp is a unit, and hence it holds in D(Rp) that

K(s)p =K
( s

1 , Rp

)
∼= 0. Thus, Lp =K(s)p⊗

L
Rp

Cp[−1] ∼= 0 in D(Rp). It follows that
the intersection Supp(L)∩ Z is the empty set.

Fix a prime ideal p of R. Note that we have Lp = C(s)p = Cp

( s
1

)
. If s is in p, then

pd Cp

( s
1

)
= pd Cp and depth Cp

( s
1

)
= depth Cp by Lemma A.11(3). If s is not in p,

then Cp

( s
1

)
= 0 by Lemma A.11(1), so that pd Cp

( s
1

)
= −∞ and depth Cp

( s
1

)
= ∞.

Thus, there are inequalities pd Lp ⩽ pd Cp and depth Lp ⩾ depth Cp. If p is not in
NE(C), then Cp is in ERp , and so is Lp. Hence NE(L) is contained in NE(C).

(3) Localization shows the implications (a) ⇒ (c) ⇒ (b). Assume that (b) holds
and C /∈ X . Then the set

A = {NE(Y ) | Y ∈ D(R), Y /∈ X and Yp ∈ addD(Rp) Xp for all prime ideals p of R}

is nonempty. Since Spec R is a noetherian space and each NE(Y ) is Zariski-
closed by Proposition 3.10, the set A contains a minimal element NE(B) with
B ∈ D(R), B /∈ X and Bp ∈ addXp for every prime ideal p of R. If NE(B)
is the empty set, then we have B ∈ ER ⊆ X by Lemma 3.8(1), which gives a
contradiction. Thus NE(B) is a nonempty Zariski-closed set, which implies that
min NE(B) is nonempty and finite. It follows from (2) that there exist exact triangles
K → X → B⇝ and L → K ⊕B → X⇝ in D(R) such that X ∈X , NE(L)⊆NE(B)
and NE(L)∩ min NE(B)= ∅. In particular, NE(L) is strictly contained in NE(B).
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We claim that Lp is in addXp for every p ∈ Spec R. In fact, there is an exact
triangle Kp→ Xp→ Bp⇝. It follows from (1) that addXp is a resolving subcategory
of D(Rp). Since Xp and Bp belong to addXp, so does Kp. There is an exact triangle
Lp → Kp ⊕ Bp → Xp⇝. As Kp ⊕ Bp and Xp are in addXp, so is Lp.

Now the minimality of NE(B) forces L to be in X . The exact triangle L →

K ⊕ B → X ⇝ implies that B belongs to X , which contradicts the choice of B.
We thus conclude that the object C belongs to X . □

Remark A.15. In Lemma A.14(2), the object L is taken in such a way that
Supp(L)∩ Z = ∅. Comparing this with the module category version of Lemma
A.14(2) given in [24, Lemma 3.2], we see that the expected condition satisfied by L
in Lemma A.14(2) is the weaker condition that NE(L)∩ Z = ∅. It is an advantage
the derived category possesses against the module category that one can get L so
that Supp(L)∩ Z =∅. By the way, only for the purpose of this appendix, it suffices
to have the equality NE(L)∩ Z = ∅.

Now, we can provide proofs of Theorems 4.5, 4.8 that do not use methods
of unbounded derived categories. We first prove Theorem 4.8, and then prove
Theorem 4.5 by applying Theorem 4.8.

Alternative proof of Theorem 4.8. Fix a resolving subcategory X of K(R) and an
order-preserving map f : Spec R → N ∪ {∞}. Lemma 4.7 implies that 8(X ) :

Spec R → N∪{∞} is an order-preserving map and 9( f ) is a resolving subcategory
of D(R). Hence 9( f ) ∩ K(R) is a resolving subcategory of K(R). Fix a prime
ideal p of R. It is clear that

8(9( f )∩K(R))(p)

= sup{pdRp
Pp | P ∈ K(R) and pdRq

Pq ⩽ f (q) for all q ∈ Spec R}⩽ f (p).

Let x = x1, . . . , xs be a system of generators of p, and let q be a prime ideal of R.
First, we consider the case where f (p) =: n <∞. Set P = K(x)[n − s] ∈ K(R).
We have pdRp

Pp = n = f (p) by Proposition 2.13(1)(7). If p is contained in q,
then pdRq

Pq = pdRq
K(x, Rq)+ (n − s) ⩽ s + (n − s) = n = f (p) ⩽ f (q). If p

is not contained in q, then pdRq
Pq = −∞ ⩽ f (q) by Proposition 2.13(7). Thus

8(9( f )∩K(R))(p)= f (p). Next, we consider the case where f (p)= ∞. Then
for any integer n we set P = K(x)[n − s] to have pdRp

Pp = n. If p is contained in
q, then ∞ = f (p) ⩽ f (q), so that pdRq

Pq ⩽∞ = f (q). If p is not contained in
q, then pdRq

Pq = −∞⩽ f (q). We get 8(9( f )∩K(R))(p)= ∞ = f (p). It now
follows that 8(9( f )∩K(R))= f .

It remains to prove that 9(8(X ))∩K(R)= X . Note the equality and inclusion

9(8(X ))∩K(R)= {P ∈ K(R) | pdRp
Pp ⩽ supX∈X {pdRp

Xp} for all p ∈ Spec R}

⊇ X .
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Let P ∈9(8(X ))∩K(R). All we need to do is show that P is in X . Fix a maximal
ideal m of R and a prime ideal p of R contained in m. Then addXm is a resolving
subcategory of K(Rm) by Lemma A.14(1). We have

(A.15.1) pd(Rm)pRm
(Pm)pRm = pdRp

Pp ⩽ supX∈X {pdRp
Xp}

= supX∈X {pd(Rm)pRm
(Xm)pRm}

⩽ supY∈addXm
{pd(Rm)pRm

YpRm}.

By Lemma A.14(3), it suffices to show Pm ∈ addXm. Thus we may assume that
(R,m) is local. Then the dimension n := dim NE(P) of the Zariski-closed set
NE(P) is finite. We prove by induction on n that P ∈ X .

When n ⩽ 0, the set NE(P) is contained in {m}, which means that P belongs to
K0(R). By the choice of P , we have pdR P ⩽ supX∈X {pdR X}, which implies that
there is an object X ∈ X such that pdR P ⩽ pdR X . Corollary A.13 gives rise to an
object X ′

∈ D0(R)∩ resD(R) X with pdR X ′
= pdR X . Hence X ′

∈ X ∩K0(R) and
pdR P ⩽ pdR X ′. Replacing X with X ′, we may assume that X ∈ K0(R). Setting
t = pdR X , we have the inequality pdR P ⩽ t , so that P ∈ Kt

0(R)= resK(R) X ⊆ X ,
where the equality holds by Theorem A.9.

Now we consider the case n> 0. Then min NE(P) is nonempty and finite. Write
min NE(P)={p1, . . . , pr } and fix an integer 1⩽ i ⩽ r . We have NE(Ppi )={pi Rpi },
whence dim NE(Ppi ) = 0. The subcategory addXpi of K(Rpi ) is resolving by
Lemma A.14(1). Similarly as in (A.15.1), the inequality

pd(Rpi )qRpi
(Xpi )qRpi

⩽ sup
Y∈addXpi

{pd(Rpi )qRpi
YqRpi

}

holds for every prime ideal q of R contained in pi . The induction basis implies
that Ppi belongs to addXpi . Lemma A.14(2) yields exact triangles K → Z →

P ⇝ and L → K ⊕ P → Z ⇝ in D(R) such that Z ∈ X , NE(L) ⊆ NE(P),
NE(L)∩min NE(P)=∅, and pdRp

Lp⩽pdRp
Pp for every prime ideal p of R. Since

Z and P are in K(R), so is K , and so is L . We have dim NE(L) < dim NE(P)= n,
while

pdRp
Lp ⩽ pdRp

Pp ⩽ sup
X∈X

{pdRp
Xp}

for all p ∈ Spec R. Hence we can apply the induction hypothesis to L to deduce
that L is in X . The exact triangle L → K ⊕ P → Z ⇝ shows that P is in X . □

Alternative proof of Theorem 4.5. The resolving subcategories of K(R) are exactly
the precoaisles of K(R) containing R and closed under direct summands. By
Lemma 4.2 and Theorem 4.8 the maps (Q,E) are mutually inverse bijections. (The
proof of (P, F) being mutually inverse bijections was given as the first paragraph
of the original proof of Theorem 4.5. This is elementary, not using methods of
unbounded derived categories.) □
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Appendix B. Restricting the classification of resolving subcategories of K(R)

In this appendix, we compare our results with the results of Dao and Takahashi
concerning resolving subcategories of mod R contained in fpd R. For this purpose,
we begin with recalling some notation.

Definition B.1. Let R be a local ring. We set mod0(R) = mod R ∩D0(R). Note
that mod0(R) consists of the finitely generated R-modules which are locally free
on the punctured spectrum of R. We also put

fpd0(R)= fpd R ∩mod0(R)= K0(R)∩mod R = {M ∈ mod0(R) | pdR M <∞},

fpdn
0(R)= Kn

0(R)∩mod R = Kn(R)∩mod0(R)= {M ∈ fpd0(R) | pdR M ⩽ n}

for n ∈ Z.

Denote by � and Tr the syzygy and transpose functors.

Theorem B.2 (Dao–Takahashi [24, Theorem 2.1]). Let R be a local ring of depth t
and with residue field k. Then

(B.2.1) proj R = fpd0
0(R)⊊ fpd1

0(R)⊊ · · ·⊊ fpdt
0(R)= fpdt+1

0 (R)=· · ·= fpd0(R)

such that Tr�n−1k ∈ fpdn
0(R) \ fpd

n−1
0 (R) for each t ⩾ n ⩾ 1. Moreover, all the

resolving subcategories of mod R contained in fpd0(R) appear in the above chain.

Remark B.3. (1) Theorem A.9 can be viewed as a derived category version of
Theorem B.2.

(2) A remarkable difference between Theorems A.9 and B.2 is that the latter says
that there exist only finitely many resolving subcategories of mod R contained in
fpd0(R), while the former says that there exist infinitely (but countably) many
resolving subcategories of K(R) contained in K0(R).

(3) Although both have similar configurations, the proof of Theorem A.9 is com-
pletely different from that of Theorem B.2. Indeed, the latter requires much more
complicated arguments on modules which involve syzygies and transposes; the
whole of [24, §2] is devoted to giving a proof of Theorem B.2.

(4) The restriction of (A.9.1) to mod R coincides with (B.2.1). Indeed, Proposition
2.13(6) says that ER∩mod R =proj R, while by definition we have Kn

0(R)∩mod R =

fpdn
0(R) for each integer n. The Auslander–Buchsbaum formula [18, Theorem 1.3.3]

shows fpdn
0(R)= fpd0(R) for all integers n ⩾ t .

In the proof of Theorem B.2, the resolving closure resmod R k in mod R of the
residue field k of R does play a crucial role; it coincides with mod0(R). Here we
consider a derived category version of this fact.
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Proposition B.4. Let R be a local ring with residue field k. Let X ∈ D0(R) and
put h = depth X. One then has X ∈ resD(R)(k[−h]). In particular, it holds that
D0(R)= resD(R){k[i] | i ∈ Z}.

Proof. Take a system of parameters x = x1, . . . , xd of R. Set Y =K(x)⊗L
R X ∈D(R).

It follows from Lemma A.4(3) that X ∈ resD(R)(Y [−d]). Taking soft truncations of
the complex Y implies that Y is in the extension closure extD(R){Hi Y [−i] | inf Y ⩽
i ⩽ sup Y }. Localization at nonmaximal prime ideals shows that each Hi Y has finite
length as an R-module (see Proposition 2.13(7)), so that it is in extD(R) k. We have
Y ∈ extD(R){k[−i] | inf Y ⩽ i ⩽ sup Y } ⊆ resD(R)(k[−inf Y ]), where the inclusion
comes from the fact that every resolving subcategory is closed under negative shifts.
Using [28, Theorem I], we get inf Y = h − d , which implies Y ∈ resD(R)(k[d − h]).
Therefore, the object X belongs to resD(R)(k[−h]) by Proposition 2.8(2a). □

Definition B.5 (grade-consistent functions [24]). For an ideal I of R we denote
by grade I the grade of I , that is to say, the infimum of integers i ⩾ 0 such that
ExtiR(R/I, R) ̸= 0. A grade-consistent function on Spec R is by definition an order-
preserving map f : Spec R → N such that the inequality f (p)⩽ grade p holds for
all prime ideals p of R.

The grade condition in the definition of a grade-consistent function can be
changed to a depth condition.

Lemma B.6. Let f : Spec R → N ∪ {∞} be an order-preserving map. Then f is
a grade-consistent function on Spec R if and only if f (p)⩽ depth Rp for all prime
ideals p of R.

Proof. Fix p ∈ Spec R. The equality grade p = inf{depth Rq | q ∈ V(p)} holds by
[18, Proposition 1.2.10(a)]. In particular, one has grade p⩽ depth Rp, which shows
the ‘only if’ part of the lemma. To show the ‘if’ part, suppose f (q)⩽ depth Rq for
all q ∈ Spec R. Then the image of f is contained in N. If q ∈ V(p), then p ⊆ q and
f (p) ⩽ f (q) ⩽ depth Rq. This shows f (p) ⩽ inf{depth Rq | q ∈ V(p)} = grade p.

Thus, we are done. □

Applying the above lemma, we can show the following result on the assignments
used in Theorem 4.8.

Proposition B.7. Let 8 and 9 be the ones introduced in Definition 4.6.

(1) Let X be a subcategory of mod R containing R. Then 8(X ) is a grade-
consistent function on Spec R.

(2) Let f : Spec R → N be a map. Then the equality 9( f )∩mod R = (9( f )∩
K(R))∩mod R holds, and it is a resolving subcategory of mod R contained in
fpd R.
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Proof. (1) Lemma 4.7(1) implies that8(X ) is an order-preserving map from Spec R
to N ∪ {∞}. For each p ∈ Spec R we have 8(X )(p)= supX∈X {pd Xp}⩽ depth Rp

since the Auslander–Buchsbaum formula implies pd Xp = depth Rp − depth Xp ⩽
depth Rp. Lemma B.6 shows 8(X ) is a grade-consistent function on Spec R.

(2) According to Lemma 4.7(2), the subcategory 9( f ) of D(R) is resolving. It
follows from Proposition 2.10(4) that 9( f )∩mod R is a resolving subcategory of
mod R, and (9( f )∩K(R))∩mod R = 9( f )∩ fpd R = (9( f )∩mod R)∩ fpd R
is a resolving subcategory of mod R contained in fpd R. Let M ∈9( f )∩mod R.
Then for every prime ideal p of R one has pdRp

Mp ⩽ f (p) ∈ N, which particularly
says that pdRp

Mp < ∞. By [13, Lemma 4.5], we get pdR M < ∞. Therefore,
9( f )∩mod R coincides with (9( f )∩mod R)∩ fpd R. □

The following theorem is one of the main results (Theorem 1.2) of [24].

Theorem B.8 (Dao–Takahashi). The assignments X 7→8(X ) and f 7→9( f )∩mod R
define a bijective correspondence between resolving subcategories of mod R con-
tained in fpd R and grade-consistent functions on Spec R.

Remark B.9. Proposition B.7 says that Theorem B.8 is viewed as the restriction of
Theorem 4.8 to mod R.
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