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NEW CRITICAL EXPONENT INEQUALITIES FOR PERCOLATION AND
THE RANDOM CLUSTER MODEL

TOM HUTCHCROFT

We apply a variation on the methods of Duminil-Copin, Raoufi, and Tassion (Ann. of Math. (2) 189:1
(2019), 75–99) to establish a new differential inequality applying to both Bernoulli percolation and the
Fortuin–Kasteleyn random cluster model. This differential inequality has a similar form to that derived for
Bernoulli percolation by Menshikov (Dokl. Akad. Nauk 288:6 (1986), 1308–1311) but with the important
difference that it describes the distribution of the volume of a cluster rather than of its radius. We apply
this differential inequality to prove the following:

(1) The critical exponent inequalities γ ≤ δ− 1 and 1 ≤ γ + 1 hold for percolation and the random
cluster model on any transitive graph. These inequalities are new even in the context of Bernoulli
percolation on Zd , and are saturated in mean-field for Bernoulli percolation and for the random
cluster model with q ∈ [1, 2).

(2) The volume of a cluster has an exponential tail in the entire subcritical phase of the random cluster
model on any transitive graph. This proof also applies to infinite-range models, where the result is
new even in the Euclidean setting.

1. Introduction

Differential inequalities play a central role in the rigorous study of percolation and other random media.
Indeed, one of the most important theorems in the theory of Bernoulli percolation is that the phase
transition is sharp, meaning (in one precise formulation) that the radius of the cluster of the origin has an
exponential tail throughout the entire subcritical phase. This theorem was first proven in independent
works of Menshikov [1986] and Aizenman and Barsky [1987]. While these two proofs were rather
different, they both relied crucially on differential inequalities: In Menshikov’s case this differential
inequality was

d
dp

log Pp(R ≥ n)≥
1
p

[
n∑n

m=0 Pp(R ≥ m)
− 1

]
for each n ≥ 1, (1-1)

where R denotes the radius of the cluster of the origin, while for Aizenman and Barsky the relevant
differential inequalities were

M ≤ h
∂M
∂h
+M2

+ pM
∂M
∂p

and
∂M
∂p
≤ d M

∂M
∂h

, (1-2)

where we write |K | for the volume of the cluster of the origin, write M = Mp,h for the magnetization
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M = Ep[1− e−h|K |
], and write d for the degree of the graph. An alternative, simpler proof of sharpness

for percolation, which also relies on differential inequalities, was subsequently found by Duminil-Copin
and Tassion [2016]. Aside from their use to establish sharpness, the differential inequalities (1-1) and (1-2)
also yield further quantitative information about percolation at and near criticality. In particular, both
inequalities can be used to derive bounds on critical exponents associated to percolation; this is discussed
further in Section 1A and reviewed in detail in [Grimmett 1999]. Similar methods have also yielded
similar results for the Ising model [Aizenman et al. 1987; Duminil-Copin and Tassion 2016].

Aside from percolation and the Ising model, the class of models that were rigorously proven to undergo
sharp phase transitions was, until recently, very limited. In particular, the derivations of both (1-1) and (1-2)
rely heavily on the van den Berg–Kesten (BK) inequality [1985], and are therefore rather specific to
Bernoulli percolation. This situation has now improved drastically following the breakthrough work of
Duminil-Copin, Raoufi, and Tassion [Duminil-Copin et al. 2019b], who showed that the theory of random-
ized algorithms can often be used to prove sharpness of the phase transition in models satisfying the FKG
lattice condition. They first applied this new methodology to prove that a differential inequality essentially
equivalent to that of Menshikov (1-1) holds for the Fortuin–Kasteleyn random-cluster model (with q ≥ 1),
from which they deduced sharpness of the phase transition for this model and the ferromagnetic Potts model.
Variations on their methods have subsequently been used to prove sharpness results for several other models,
including Voronoi percolation [Duminil-Copin et al. 2019a], Poisson-Boolean percolation [Duminil-Copin
et al. 2018], the Widom-Rowlinson model [Dereudre and Houdebert 2018], level sets of smooth planar
Gaussian fields [Muirhead and Vanneuville 2020], and the contact process [Beekenkamp 2018].

The main new technical tool introduced by [Duminil-Copin et al. 2019b] was a generalization of the
OSSS inequality from product measures to monotonic measures. This inequality, introduced by O’Donnell,
Saks, Schramm, and Servedio [O’Donnell et al. 2005], can be used to derive differential inequalities for
percolation in the following way: Let A be an increasing event depending on at most finitely many edges,
and suppose that we have an algorithm for computing whether or not A occurs. This algorithm decides
sequentially which edges to reveal the status of, with decisions depending on what it has previously seen
and possibly also some external randomness, stopping when it has determined whether or not A has
occurred. For each edge e, let δe be the revealment of e, defined to be the probability that the status of the
edge e is ever queried by the algorithm. Then the OSSS inequality implies that

d
dp

log Pp(A)≥
1− Pp(A)

p(1− p)maxe∈E δe
. (1-3)

In particular, if Pp(A) is not too large and there exists a randomized algorithm determining whether or
not A holds with low maximum revealment, then the logarithmic derivative of Pp(A) is large. This yields
an extremely flexible methodology for deriving differential inequalities for percolation. Even greater
flexibility is provided by the two-function version of the OSSS inequality, which implies in particular that
if A and B are events, where A is increasing and we have some randomized algorithm that determines
whether or not B occurs, then

d
dp

log Pp(A)≥
Pp(B | A)−Pp(B)
p(1− p)maxe∈E δe

. (1-4)
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The new differential inequality. In this article, we apply the OSSS inequality to establish a new differential
inequality for percolation and the random cluster model. Once we establish this inequality, we use it to
prove several other new results for these models which are detailed in the following subsections. Our
new inequality is similar to Menshikov’s inequality (1-1) but describes the distribution of the volume of a
cluster rather than of its radius. In the case of percolation on a transitive graph, we obtain in particular that

d
dp

log Pp(|K | ≥ n)≥
1

2p(1− p)

[
(1− e−λ)n

λ
∑dn/λe

m=1 Pp(|K | ≥ m)
− 1

]
(1-5)

for each n ≥ 0, λ > 0, and 0 ≤ p < 1, where K is the cluster of some vertex v and |K | is the number
of vertices it contains. We will typically apply this inequality with λ= 1, but the freedom to change λ
is sometimes useful for optimizing constants.

We derive (1-5) by introducing a ghost field as in [Aizenman and Barsky 1987], i.e., an independent
Bernoulli process G on the vertices of G such that G(v)= 1 with probability 1− e−λ/n for each vertex v
of G. We call vertices with G(v)= 1 green. We then apply the two-function OSSS inequality where A
is the event that |K | ≥ n and B is the event that K includes a green vertex, and our algorithm simply
examines the ghost field at every site and then explores the cluster of each green vertex it discovers. In
particular, this algorithm has the property that the revealment of an edge is equal to the magnetization up
to a factor of 2; see (3-2).

In the remainder of the introduction we describe consequences of the differential inequality (1-5) and
of its generalization to the random cluster model.

1A. Critical exponent inequalities for percolation. In this section we discuss the applications of our
differential inequality (1-5) to rigorously establish inequalities between critical exponents in percolation.
We first recall the definition of Bernoulli bond percolation, referring the reader to, e.g., [Grimmett 1999] for
further background. Let G = (V, E) be a connected, locally finite, transitive graph, such as the hypercubic
lattice Zd. Here, locally finite means that every vertex has finite degree, and transitive means that for any
two vertices x and y of G, there is an automorphism of G mapping x to y. In Bernoulli bond percolation,
each edge of G is either deleted (closed) or retained (open) independently at random with retention
probability p ∈ [0, 1] to obtain a random subgraph ωp of G. The connected components of ωp are referred
to as clusters. We write Pp and Ep for probabilities and expectations taken with respect to the law of ωp.

It is expected that the behaviour of various quantities describing percolation at and near the critical
parameter

pc = inf{p ∈ [0, 1] : ωp has an infinite cluster a.s.}

are described by critical exponents. For example, it is predicted that for each d ≥ 2 there exist exponents
β, γ, δ, and 1 such that percolation on Zd satisfies

Pp(|K | =∞)≈ (p− pc)
β as p ↓ pc, Ep[|K |] ≈ (pc− p)−γ as p ↑ pc,

Ppc(|K | ≥ n)≈ n−1/δ as n ↑∞, Ep[|K |k] ≈ (pc− p)−(k−1)1+γ as p ↑ pc,

where K is the cluster of the origin and ≈ means that the ratio of the logarithms of the two sides tends to 1
in the appropriate limit. Proving the existence of and computing these critical exponents is considered to
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be a central problem in mathematical physics. While important progress has been made in two dimensions
[Kesten 1987; Smirnov and Werner 2001; Smirnov 2001; Lawler et al. 2002], in high dimensions [Hara
and Slade 1990; Aizenman and Newman 1984; Barsky and Aizenman 1991; Nguyen 1987; Fitzner and
van der Hofstad 2017], and in various classes of infinite-dimensional graphs [Schonmann 2001; 2002;
Hutchcroft 2017; 2019], the entire picture remains completely open in dimensions 3≤ d ≤ 6.

A further central prediction of the nonrigorous theory is that, if they exist, these exponents should
satisfy the scaling relations

γ = β(δ− 1) and βδ =1 (1-6)

in every dimension. (There are also two further scaling relations involving the exponents α, ν, and η,
which we have not introduced.) See [Grimmett 1999] for a heuristic derivation of these exponents for
mathematicians and, e.g., [Cardy 1996] for more physical derivations. The heuristic derivations of (1-6)
do not rely on any special features of percolation, and the scaling relations (1-6) are expected to hold for
any natural model of random media undergoing a continuous phase transition.

A rigorous proof of (1-6) remains elusive. Special cases in which progress has been made include
the two-dimensional case, where the scaling relations (1-6) were proven by Kesten [1987], and the
high-dimensional case, where it has been proven rigorously [Aizenman and Newman 1984; Hara and
Slade 1990; Nguyen 1987; Fitzner and van der Hofstad 2017] that the exponents take their mean-field
values of β = 1, γ = 1, δ = 2, and 1= 2, from which it follows that (1-6) holds. (See, e.g., [Fitzner
and van der Hofstad 2017; Slade 2006] for a detailed overview of what is known in high-dimensional
percolation.) See also [Vanneuville 2019] for related results on two-dimensional Voronoi percolation.
Aside from this, progress on the rigorous understanding of (1-6) has been limited to proving inequalities
between critical exponents. In particular, it is known that

1≤ β(δ− 1), βδ ≥ 2,
γ δ

δ− 1
≥ 2,

γ δ

δ− 1
≤1, and 2γ ≥1, (1-7)

whenever these exponents are well-defined: The first of these inequalities is due to Aizenman and Barsky
[1987], the second, third, and fourth are due to Newman [1986; 1987a; 1987b], and the fifth is due to
Aizenman and Newman [1984]. All of these inequalities are saturated when the exponents take their
mean-field values, and the fourth is expected to be an equality in every dimension. These inequalities are
complemented by the mean-field bounds

β ≤ 1, γ ≥ 1, δ ≥ 2, and 1≥ 2, (1-8)

which were first proven to hold in [Chayes and Chayes 1987], [Aizenman and Newman 1984], [Aizenman
and Barsky 1987], and [Durrett and Nguyen 1985], respectively. See [Grimmett 1999, Chapters 9 and 10]
for further details, and [Menshikov 1986; Newman 1986; 1987a; Duminil-Copin and Tassion 2016;
Duminil-Copin et al. 2019b] for alternative proofs of some of these inequalities.

Our first application of the differential inequality (1-5) is to rigorously prove two new critical exponent
inequalities, namely that

γ ≤ δ− 1 and 1≤ γ + 1. (1-9)
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Note that the inequalities of (1-9) are consistent with the conjectural scaling relations (1-6) due to the
mean-field bound β ≤ 1, and are saturated when the relevant exponents take their mean-field values. The
first of these inequalities is particularly interesting as it points in a different direction to the previously
known inequalities given in (1-7).

We will deduce (1-9) as a corollary of the following two theorems, which are derived from (1-5) and
which give more precise quantitative versions of these critical exponent inequalities. The first of these
theorems relates the distribution of the volume of a critical cluster to the distribution of the volume of
a subcritical cluster. It implies the critical exponent inequalities γ ≤ δ− 1 and 1 ≤ δ. Recall that we
write K for the cluster of some arbitrarily chosen vertex.

Theorem 1.1. Let G be an infinite, connected, locally finite transitive graph, and suppose that there exist
constants C > 0 and δ > 1 such that

Ppc(|K | ≥ n)≤ Cn−1/δ

for every n ≥ 1. Then the following hold:

(1) There exist positive constants c and C ′ such that

Pp(|K | ≥ n)≤ C ′n−1/δ exp[−c(pc− p)δn]

for every 0≤ p < pc and n ≥ 1.

(2) There exists a constant C ′′ such that

Ep[|K |k] ≤ k!
[

C ′′

pc− p

](δ−1)+(k−1)δ

for every 0≤ p < pc and k ≥ 1.

The next theorem bounds the growth of the k-th moment of the cluster volume as p ↑ pc in terms of
the growth of the first moment as p ↑ pc. It implies the critical exponent inequality 1≤ γ + 1.

Theorem 1.2. Let G be an infinite, connected, locally finite transitive graph, and suppose that there exist
constants C > 0 and γ ≥ 0 such that

Ep[|K |] ≤ C(pc− p)−γ

for every n ≥ 1 and 0≤ p < pc. Then there exists a constant C ′ such that

Ep[|K |k] ≤ k!
[

C ′

pc− p

]γ+(k−1)(γ+1)

for every 0≤ p < pc and k ≥ 1.

In light of the results of [Hutchcroft 2020], Theorem 1.1 also has the following consequence for
percolation on unimodular transitive graphs of exponential growth. Here, the growth of a transitive
graph G is defined to be gr(G)= limn→∞ |B(v, n)|1/n where v is a vertex of G and |B(v, n)| is the ball
of radius n around v. See [Hutchcroft 2019; 2020] for more on what is known concerning percolation on
such transitive graphs.
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Corollary 1.3. For every g > 1 and M <∞ there exist constants C = C(g,M) and A = A(g,M) such
that for every unimodular transitive graph G with degree at most M and gr(G)≥ g, the bound

Ep[|K |k] ≤ C(pc− p)−Ak (1-10)

holds for every 0≤ p < pc and k ≥ 1.

1B. The random cluster model. In this section we discuss generalizations and applications of (1-5) to
the random cluster model (a.k.a. FK-percolation). Since its introduction by Fortuin and Kasteleyn [1972],
the random cluster model has become recognized as the archetypal example of a dependent percolation
model, and is closely connected to the Ising and Potts models. We refer the reader to [Grimmett 2006]
for further background on the model. We expect that the results in this section will also generalize to
other models for which sharpness has been proven via the methods of [Duminil-Copin et al. 2019b].

We begin by defining the random cluster model, which we do at the natural generality of weighted
graphs. We will take a slightly unconventional approach to allow for a unified treatment of short- and
long-range models. In this paper, a weighted graph G = (G, J ) is defined to be a countable graph
G = (V, E) together with an assignment of positive coupling constants {Je : e ∈ E} such that for each
vertex of G, the sum of the coupling constants Je over all e adjacent to v is finite. A graph automorphism
of G is a weighted graph automorphism of (G, J ) if it preserves the coupling constants, and a weighted
graph is said to be transitive if for every x, y ∈ V there is an automorphism sending x to y. Note that our
weighted graphs are not required to be locally finite.

Let (G = (V, E), J ) be a weighted graph with V finite, so that
∑

e∈E Je <∞. (Since we did not
assume that G is simple, it is possible for the edge set to be infinite.) For each q > 0 and β ≥ 0, we let
the random cluster measure φG,β,q be the purely atomic probability measure on {0, 1}E defined by

φG,β,q({ω})=
1

ZG,β,q
q#clusters(ω)

∏
e∈E

(eβ Je − 1)ω(e),

where ZG,β,q is a normalizing constant. In particular, φG,β,q is supported on configurations containing at
most finitely many edges. It is easily verified that this measure is well-defined under the above hypotheses,
that is, that ZG,β,q <∞. If q = 1 and Je ≡ 1, the measure φG,β,q is simply the law of Bernoulli bond
percolation with retention probability β =− log(1− p). Similarly, if q = 1 and the coupling constants
are nonconstant then the measure φG,β,q is the law of inhomogeneous Bernoulli bond percolation.

Now suppose that G is an infinite weighted graph. For each q ≥ 1, we define the free and wired random
cluster measures φf

β,q and φw
β,q on G by taking limits along finite subgraphs of G with either free or wired

boundary conditions. Let (Vn)n≥1 be an increasing sequence of finite subsets of V with
⋃

n≥1 Vn = V.
For each n ≥ 1, we define Gn to be the subgraph of G induced by Vn and let G∗n be the graph obtained by
identifying all vertices in V \ Vn and deleting all self-loops that are created. Both Gn and G∗n inherit the
coupling constants of G in the natural way. It is shown in [Grimmett 2006, Chapter 4] that if q ≥ 1 and
β ≥ 0 then the weak limits

φf
G,β,q := w-lim

n→∞
φGn,β,q and φw

G,β,q := w-lim
n→∞

φG∗n,β,q

are well-defined and do not depend on the choice of exhaustion (Vn)n≥1 for every q ≥ 1 and n ≥ 1. (It is
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not known whether these infinite volume limits are well-defined when q < 1.) From now on we will drop
the G from our notation and write simply φf

β,q and φw
β,q . Note that φw

β,q stochastically dominates φf
β,q

for each fixed β ≥ 0 and q ≥ 1, and that for each q ≥ 1, # ∈ {w, f}, and 0≤ β1 ≤ β2, the measure φ#
β2,q

stochastically dominates φ#
β1,q .

The generalization of the differential inequality (1-5) to the random cluster model may be stated as
follows. Here

( d
dβ

)
+

denotes the lower-right Dini derivative, which we introduce properly in Section 2B.

Proposition 1.4. Let (G, J ) be an infinite transitive weighted graph, and let q ≥ 1 and # ∈ {f,w}. Then

max
e∈E

[
eβ Je − 1

Je

](
d

dβ

)
+

logφ#
β,q(|K | ≥ n)≥

1
2

[
(1− e−λ)n

λ
∑dn/λe

m=1 φ
#
β,q(|K | ≥ m)

− 1
]

(1-11)

for every β ≥ 0, λ > 0, and n ≥ 1.

Our main application of Proposition 1.4 is to establish the following sharpness result for the random
cluster model. For each # ∈ {f,w} the critical parameter β#

c is defined to be

β#
c = β

#
c (G, q)= inf

{
β ≥ 0 : φ#

G,β,q(|Kv| =∞) > 0 for some v ∈ V
}
.

We always have that βw
c ≤ β

f
c by stochastic domination. It is known that βw

c = β
f
c for the random cluster

model on Zd and other transitive amenable graphs, while it is believed that strict inequality should hold
for q > 2 in the nonamenable case [Grimmett 2006, Chapter 10]. It was shown in [Duminil-Copin et al.
2019b] that the following holds for every connected, locally finite, transitive graph, every q ≥ 1, and
every # ∈ {f,w}:

(1) If β < β#
c then there exist positive constants Cβ, cβ such that

φ#
β,q(R ≥ n)≤ Cβe−cβn

for every n ≥ 1, where R is the radius of the cluster of some fixed vertex v as measured by the graph
metric on G.

(2) There exists a constant c such that

φ#
β,q(|K | =∞)≥ c(β −β#

c )

for every β > β#
c with β −β#

c sufficiently small.

The following theorem improves this result by establishing an exponential tail for the volume rather than
the radius and also by applying to long-range models, which were not treated by [Duminil-Copin et al.
2019b]. (Note that in the case of finite-range models on Zd, the results of [Duminil-Copin et al. 2019b]
were known to imply an exponential tail on the volume by earlier conditional results [Grimmett 2006,
Section 5.6].)

Theorem 1.5. Let (G, J ) be an infinite transitive weighted graph. Let q ≥ 1 and # ∈ {f,w}. Then the
following hold.
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(1) For every 0≤ β < β#
c there exist positive constants Cβ and cβ such that

φ#
β,q(|K | ≥ n)≤ Cβe−cβn

for every n ≥ 1.

(2) The inequality

φ#
β,q(|K | =∞)≥

β −β#
c

2 maxe∈E

[
eβ Je−1

Je

]
+β −β#

c

holds for every β > β#
c .

An immediate corollary of Theorem 1.5 is that φ#
β,q [|K |] < ∞ for every β < β#

c under the same
hypotheses, which did not follow from the results of [Duminil-Copin et al. 2019b] in the case that the
graph G has exponential volume growth. This allows us to apply the method of [Hutchcroft 2016] and
the fact that φf

β,q is weakly left-continuous in β for each q ≥ 1 [Grimmett 2006, Proposition 4.28c] to
deduce the following corollary for the random cluster model on transitive graphs of exponential growth.
This adaptation has already been carried out in the case q = 2 (the FK-Ising model) by Raoufi [2018].

Corollary 1.6. Let G be a connected, locally finite, transitive graph of exponential growth and let q ≥ 1.
Then φf

βf
c,q
(|K | =∞)= 0.

Finally, we generalize Theorems 1.1 and 1.2 to the random cluster model.

Theorem 1.7. Let (G, J ) be an infinite transitive weighted graph. Let β0 > 0, q ≥ 1, and # ∈ {f,w}, and
suppose that there exist constants C > 0 and δ > 1 such that

φ#
β0,q(|K | ≥ n)≤ Cn−1/δ

for every n ≥ 1. Then the following hold:

(1) There exist positive constants c1 and C1 such that

φ#
β,q(|K | ≥ n)≤ C1n−1/δ exp[−c1(β0−β)

δn]

for every n ≥ 1 and 0≤ β < β0.

(2) There exists a positive constant c2 such that

φ#
β,q [|K |

k
] ≤ k![c2(β0−β)]

−δk+1

for every k ≥ 1 and 0≤ β < β0.

Theorem 1.8. Let (G, J ) be an infinite transitive weighted graph. Let β0 > 0, q ≥ 1, and # ∈ {f,w}, and
suppose that there exist constants C > 0 and γ ≥ 0 such that

φ#
β,q [|K |] ≤ C(β0−β)

−γ

for every n ≥ 1. Then there exists a positive constant c such that

φ#
β,q [|K |

k
] ≤ k![c(β0−β)]

−(k−1)(γ+1)−γ

for every n, k ≥ 1 and 0≤ β < β0.
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It follows from these theorems that the critical exponent inequalities γ ≤ δ−1 and 1≤ γ +1 hold for
the random cluster model whenever these exponents are well-defined, δ > 1 and q ≥ 1.

We remark that the previous literature on critical exponents for the random cluster model with q /∈ {1, 2}
seems rather limited, although the sharpness results of [Duminil-Copin et al. 2019b] imply the mean-field
bound β ≤ 1. It is also known that the exponent inequalities we derive here are sharp in mean-field for
q ∈ [1, 2), where the exponents are the same as for percolation [Bollobás et al. 1996]. Note that it is
expected that when q is large the random cluster model undergoes a discontinuous (first-order) phase
transition; see [Bollobás et al. 1996; Laanait et al. 1991; Duminil-Copin et al. 2016; Ray and Spinka
2019].

Remark 1.9. Note that our methods still yield useful bounds in the case δ ≤ 1, but the exact forms of
the inequalities will be different. For example, in Theorem 1.7 if δ = 1 one would obtain that there exist
constants C ′ and c such that

φ#
β,q(|K | ≥ n)≤ C ′n−1 exp

[
−

c(β0−β)n
− log(β0−β)

]
,

while if δ < 1 then one would simply obtain that there exist constants C ′ and c such that

φ#
β,q(|K | ≥ n)≤ C ′n−1/δ exp[−c(β0−β)n].

Such inequalities are not relevant for percolation due to the mean-field lower bound δ ≥ 2, but may be
useful for the random-cluster model. Our method also applies unproblematically to more complicated
bounds, so that one could convert, say, a critical bound of the form φ#

βc,q(|K | ≥ n)≤ Cn−1/δ logα(n+ 1)
with δ > 1 and α ∈ R into a subcritical bound of the form

φ#
β,q(|K | ≥ n)≤ C ′n−1/δ logα(n+ 1) exp

[
−

c(βc−β)
δn

(− log(βc−β))αδ

]
.

2. Background

2A. Monotonic measures. Let A be a countable set. A probability measure µ on {0, 1}A is said to be
positively associated if

µ( f (ω)g(ω))≥ µ( f (ω))µ(g(ω))

for every pair of increasing functions f, g : {0, 1}A→ R, and is said to be monotonic if

µ(ω(e)= 1 | ω|F = ξ)≥ µ(ω(e)= 1 | ω|F = ζ )

whenever F ⊂ A, e∈ A, and ξ, ζ ∈ {0, 1}F are such that ξ ≥ ζ . It follows immediately from this definition
that if µ is a monotonic measure on {0, 1}A and ν is a monotonic measure on {0, 1}B, then the product
measure µ⊗ ν is monotonic on {0, 1}AqB.

Monotonic measures are positively associated, but positively associated measures need not be mono-
tonic; see [Grimmett 2006, Chapter 2]. Indeed, it is proven in [Grimmett 2006, Theorem 2.24] that if
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A is finite and µ gives positive mass to every element of {0, 1}A then it is monotonic if and only if it
satisfies the FKG lattice condition, which states that

µ(ω1 ∨ω2)µ(ω1 ∧ω2)≥ µ(ω1)µ(ω2)

for every ω1, ω2 ∈ {0, 1}A. In particular, it follows readily from this that the random cluster measures
with q ≥ 1 on any (finite or countably infinite) weighted graph (G, J ) are monotonic.

2B. Derivative formulae. Let G = (G, J ) be a finite weighted graph. Then for every function F :
{0, 1}E → R, we have the derivative formula [Grimmett 2006, Theorem 3.12]

d
dβ
φβ,q [F(ω)] =

∑
e∈E

Je

eβ Je − 1
Covφβ,q [F(ω), ω(e)], (2-1)

where we write Covµ[X, Y ] = µ(XY )−µ(X)µ(Y ) for the covariance of two random variables X and Y
under the measure µ.

To discuss the generalization of this derivative formula to the infinite volume case, we must first
introduce Dini derivatives, referring the reader to [Kannan and Krueger 1996] for further background.
The lower-right Dini derivative of a function f : [a, b] → R is defined to be(

d
dx

)
+

f (x)= lim inf
ε↓0

f (x + ε)− f (x)
ε

for each x ∈ [a, b). Note that if f : [a, b] → R is increasing then we have that

f (b)− f (a)≥
∫ b

a

(
d

dx

)
+

f (x) dx,

so that we may use differential inequalities involving Dini derivatives in essentially the same way
that we use standard differential inequalities. (It is a theorem of Banach [Kannan and Krueger 1996,
Theorem 3.6.5] that measurable functions have measurable Dini derivatives, so that the above integral is
well-defined.) We also have the validity of the usual logarithmic derivative formula(

d
dx

)
+

log f (x)=
1

f (x)

(
d

dx

)
+

f (x).

The following proposition yields a version of (2-1) valid in the infinite-volume setting.

Proposition 2.1. Let G = (G, J ) be a weighted graph and let F : {0, 1}E → R be an increasing function,
and let # ∈ {f,w}. Then (

d
dβ

)
+

φ#
β,q [F(ω)] ≥

∑
e∈E

Je

eβ Je − 1
Covφ#

β,q
[F(ω), ω(e)] (2-2)

for every β ≥ 0.

Proof. We prove the claim in the case #= f, the case #=w being similar. Fix β0 ≥ 0 and let A be a finite
set of edges. Let (Vn)n≥1 be an exhaustion of V, let Gn be the subgraph of G induced by Vn and let En
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be the edge set of Gn . For each n ≥ 1, β ≥ 0 and q ≥ 1 we define φGn,β,β0,q,A({ω}) by

φGn,β,β0,q,A({ω})=
1
Z

q#clusters(ω)
∏

e∈A∩En

(eβ Je − 1)ω(e)
∏

e∈En\A

(eβ0 Je − 1)ω(e)

for an appropriate normalizing constant Z = Z(n, β, q, A). The usual proof of the existence of the infinite
volume random cluster measures yields that the measures φGn,β,β0,q,A converge weakly to a limiting
measure φf

β,β0,q,A as n→∞. Using the assumption that A is finite, it is straightforward to adapt the usual
proof of (2-1) to show that φf

β,β0,q,A[F(ω)] is differentiable and that

d
dβ
φf
β,β0,q,A[F(ω)] =

∑
e∈A

Je

eβ Je − 1
Covφf

β,β0,q,A
[F(ω), ω(e)]

for every function F(ω)→ R with φf
β0,q [F(ω)]<∞. On the other hand, the FKG property implies that

φf
β,q stochastically dominates φf

β,β0,q,A for every β ≥ β0, and we deduce that if F is increasing then

lim inf
β↓β0

φf
β,q [F(ω)] −φ

f
β0,q [F(ω)]

β −β0
≥ lim inf

β↓β0
sup

A

1
β −β0

[
φf
β,β0,q,A[F(ω)] −φ

f
β0,β0,q,A[F(ω)]

]
≥ sup

A
lim inf
β↓β0

1
β −β0

[
φf
β,β0,q,A[F(ω)] −φ

f
β0,β0,q,A[F(ω)]

]
= sup

A

∑
e∈A

Je

eβ Je − 1
Covφf

β0,β0,q,A
[F(ω), ω(e)]

=

∑
e∈E

Je

eβ0 Je − 1
Covφf

β0,q
[F(ω), ω(e)],

where the final equality follows by positive association. The claim follows since β0 ≥ 0 was arbitrary. �

2C. Decision trees and the OSSS inequality. Let N={1, 2, . . .}, and let E be a countable set. A decision
tree is a function T : {0, 1}E → EN from subsets of E to infinite E-valued sequences with the property
that T1(ω)= e1 for some fixed e1 ∈ E , and for each n ≥ 2 there exists a function Sn : (E×{0, 1})n−1

→ E
such that

Tn(ω)= Sn[(Ti , ω(Ti ))
n−1
i=1 ].

In other words, T is a deterministic procedure for querying the values of ω ∈ {0, 1}E, that starts by
querying the value of ω(e1) and chooses which values to query at each subsequent step as a function of
the values it has already observed.

Now let µ be a probability measure on {0, 1}E and let ω be a random variable with law µ. Given a
decision tree T and n ≥ 1 we let Fn(T ) be the σ -algebra generated by the random variables {Ti (ω) :

1≤ i ≤ n} and let F(T )=
⋃

Fn(T ). For each measurable function f : {0, 1}E → [−1, 1], we say that
T computes f if f (ω) is measurable with respect to the µ-completion of F(T ). By the martingale
convergence theorem, if f is µ-integrable this is equivalent to the statement that

µ[ f (ω) | Fn(T )] n→∞−−−→ f (ω) µ-a.s.
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For each e ∈ E , we define the revealment probability

δe(T, µ)= µ(there exists n ≥ 1 such that Tn(ω)= e).

Finally, following [O’Donnell et al. 2005], we define for each probability measure µ on {0, 1}E and each
pair of measurable functions f, g : {0, 1}E → R the quantity

CoVrµ[ f, g] = µ⊗µ[| f (ω1)− g(ω2)|] −µ[| f (ω1)− g(ω1)|],

where ω1, ω2 are drawn independently from the measure µ, so that if f and g are {0, 1}-valued then

CoVrµ[ f, g] = 2 Covµ[ f, g] = 2µ
(

f (ω)= g(ω)= 1
)
− 2µ

(
f (ω)= 1

)
µ
(
g(ω)= 1

)
. (2-3)

We are now ready to state Duminil-Copin, Raoufi, and Tassion’s generalization of the OSSS inequality to
monotonic measures [Duminil-Copin et al. 2019b].

Theorem 2.2. Let E be a finite or countably infinite set and let µ be a monotonic measure on {0, 1}E.
Then for every pair of measurable, µ-integrable functions f, g : {0, 1}E → R with f increasing and every
decision tree T computing g we have that

1
2 |CoVrµ[ f, g]| ≤

∑
e∈E

δe(T, µ)Covµ[ f, ω(e)].

Remark 2.3. In [Duminil-Copin et al. 2019b], only the special case of Theorem 2.2 in which E is finite and
f = g is stated. The version with E finite but f not necessarily equal to g follows by an easy modification
of their proof, identical to that carried out in [O’Donnell et al. 2005, Section 3.3] — note in particular
that when running this modified proof only f is required to be increasing. The restriction that E is finite
can be removed via a straightforward Martingale argument [Duminil-Copin et al. 2019b, Remark 2.4].

The statement above will be somewhat inconvenient in our analysis as the algorithm we use is naturally
described as a parallel algorithm rather than a serial algorithm. To allow for such parallelization, we
define a decision forest to be a collection of decision trees F = {T i

: i ∈ I } indexed by a countable set I.
Given a decision forest F = {T i

: i ∈ I } we let F(F) be the smallest σ -algebra containing all of the
σ -algebras F(T i ). Given a measure µ on {0, 1}E, a function f : {0, 1}E → R and a decision forest F, we
say that F computes f if f is measurable with respect to the µ-completion of the σ -algebra F(F). We
also define the revealment probability δe(F, µ) to be the probability under µ that there exist i ∈ I and
n ≥ 1 such that T i

n (ω)= e.

Corollary 2.4. Let E be a finite or countably infinite set and let µ be a monotonic measure on {0, 1}E.
Then for every pair of measurable, µ-integrable functions f, g : {0, 1}E → R with f increasing and every
decision forest F computing g we have that

1
2 |CoVrµ[ f, g]| ≤

∑
e∈E

δe(F, µ)Covµ[ f, ω(e)].

Proof. We may assume that I = {1, 2, . . .}. The claim may be deduced from Theorem 2.2 by “serializing”
the decision forest F into a decision tree T. This can be done, for example, by executing the j-th step of
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the decision tree T i at the time p j
i where pi is the i-th prime, and re-querying the first input queried by

T 1 at all times that are not prime powers. This decision tree T clearly computes the same functions as the
decision forest F and has δe(T, µ)= δe(F, µ) for every e ∈ E , so the claim follows from Theorem 2.2. �

3. Derivation of the differential inequality

Given a graph G = (V, E), a vertex v and a configuration ω ∈ {0, 1}E, we write Kv = Kv(ω) for the
cluster of v in ω.

Proposition 3.1. Let G = (V, E) be a countable graph and µ be a monotonic measure on {0, 1}E. Then

∑
e∈E

Covµ[1(|Kv| ≥ n), ω(e)] ≥

[
(1− e−λ)−µ

[
1− e−λ|Kv |/n

]
2 supu∈V µ

[
1− e−λ|Ku |/n

] ]
µ(|Kv| ≥ n) (3-1)

for every v ∈ V, n ≥ 1 and λ > 0.

Proof. Let ω ∈ {0, 1}E be a random variable with law µ. Independently of ω, let η ∈ {0, 1}V be a
random subset of V where vertices are included independently at random with inclusion probability
h = 1− e−λ/n

≤ λ/n. We refer to η as the ghost field and call vertices with η(v)= 1 green. Let P and E

denote probabilities and expectations taken with respect to the joint law of ω and η, which is monotonic.
Fix a vertex v, and let f, g : {0, 1}E∪V

→ {0, 1} be the increasing functions defined by

f (ω, η)= 1(|Kv(ω)| ≥ n) and g(ω, η)= 1(η(u)= 1 for some u ∈ Kv(ω)).

For each u ∈ V, we define T u to be a decision tree that first queries the status of η(u), halts if it
discovers that η(u)= 0, and otherwise explores the cluster of u in ω. We now define this decision tree
more formally; if the reader is satisfied with the informal description they may safely skip the rest of
this paragraph. Fix an enumeration of E and a vertex u ∈ V. Set T u

1 (ω, η)= u. If η(u)= 0, set T u
n = u

for every n ≥ 2 (i.e., halt). If η(u) = 1, we define T u
n (ω, η) for n ≥ 2 as follows. At each step of the

decision tree, we will have a set of vertices U u
n , a set of revealed open edges Ou

n , and a set of revealed
closed edges Cu

n . We initialize by setting U u
1 = u and Ou

n = Cu
n = ∅. Suppose that n ≥ 1 and that we

have computed (U u
k , Ou

k ,Cu
k , T u

k ) for k ≤ n. If every edge with at least one endpoint in U u
n is either in Ou

n

or Cu
n then we set (U u

n+1, Ou
n+1,Cu

n+1, T u
n+1)= (U

u
n , Ou

n ,Cu
n , T u

n ) (i.e., we halt). Otherwise, we set T u
n+1

to be the element of the set of edges that touch U u
n but are not in Ou

n or Cu
n that is minimal with respect

to the fixed enumeration of E . If ω(T u
n+1) = 1 we set U u

n+1 to be the union of U u
n with the endpoints

of T u
n+1, set Ou

n+1 = Ou
n ∪ {T

u
n+1} and set Cu

n+1 = Cu
n . Otherwise, ω(T u

n+1) = 0 and we set U u
n+1 = U u

n ,
set Ou

n+1 = Ou
n and set Cu

n+1 = Cu
n ∪ {T

u
n+1}.

It is easily verified that this decision tree T u satisfies

{x ∈ V ∪ E : T u
n (ω, η)= x for some n ≥ 1} =

{
{u} η(u)= 0,
{u} ∪ E(Ku(ω)) η(u)= 1,

where E(Ku(ω)) is the set of edges with at least one endpoint in Ku(ω). In particular, we clearly have
that the decision forest F = {T u

: u ∈ V } computes g.
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Since f and g are increasing and {0, 1}-valued, we may apply Corollary 2.4 and (2-3) to deduce that

CovP[ f, g] ≤
∑
e∈E

δe(F, µ)CovP[ f, ω(e)] +
∑
u∈V

δu(F, µ)CovP[ f, η(v)] =
∑
e∈E

δe(F, µ)Covµ[ f, ω(e)],

where the equality on the right follows since f (ω, η) = 1(|Kv(ω)| ≥ n) is independent of η. Now, an
edge e is revealed by F(ω, η) if and only if the cluster of at least one endpoint of e contains a green
vertex, and, writing η(A)=

∑
u∈A η(u) for each set A ⊆ V, it follows that

δe(F, µ)≤ 2 sup
u∈V

P(η(Ku)≥ 1)= 2 sup
u∈V

µ[1− e−λ|Ku |/n
] (3-2)

for every e ∈ E and hence that

CovP[ f, g] ≤ 2 sup
u∈V

µ[1− e−λ|Ku |/n
]

∑
e∈E

Covµ[ f, ω(e)]. (3-3)

To conclude, simply note that

CovP[ f, g] = P(|Kv| ≥ n, η(Kv)≥ 1)−P(η(Kv)≥ 1)µ(|Kv| ≥ n)

= µ
[
(1− e−λ|Kv |/n)1(|Kv| ≥ n)

]
−µ[1− e−λ|Kv |/n

]µ(|Kv| ≥ n)

≥ (1− e−λ)µ(|Kv| ≥ n)−µ[1− e−λ|Kv |/n
]µ(|Kv| ≥ n). (3-4)

Combining (3-3) and (3-4) and rearranging yields the desired inequality. �

Proof of Proposition 1.4. This is immediate from Propositions 2.1 and 3.1 together with the inequality
1− e−λ|Kv |/n

≤ 1∧ λ|Kv|/n, which yields the bound

φ#
β,q [1− e−λ|Kv |/n

] ≤
λ

n
φ#
β,q

[
n
λ
∧ |Kv|

]
≤
λ

n

dn/λe∑
m=1

φ#
β,q(|Kv| ≥ m). �

Taking the limit as λ ↓ 0 in Proposition 1.4 yields the following corollary.

Corollary 3.2. Let (G, J ) be an infinite transitive weighted graph, and let q ≥ 1 and # ∈ {f,w}. Then

max
e∈E

[
eβ Je − 1

Je

](
d

dβ

)
+

logφ#
β,q(|K | ≥ n)≥

1
2

[
n

φ#
β,q [|K |]

− 1
]

(3-5)

for every n ≥ 1 and β ≥ 0.

Since φ#
β,q(|K | ≥ n) is increasing in β, the following inequalities may be obtained by integrating the

differential inequalities of Proposition 1.4 and Corollary 3.2: Letting C(β)=maxe∈E [(eβ Je − 1)/Je] for
each β ≥ 0, and noting that C(β) is an increasing function of β, we have that

φ#
β,q(|K | ≥ n)≤ φ#

β0,q(|K | ≥ n) exp
[
−

(1− e−1)(β0−β)n
2C(β0)

∑n
m=1 φ

#
β0,q(|K | ≥ m)

+
β0−β

2C(β0)

]
(3-6)

and

φ#
β,q(|K | ≥ n)≤ φ#

β0,q(|K | ≥ n) exp
[
−

(β0−β)n
2C(β0)φ

#
β0,q [|K |]

+
β0−β

2C(β0)

]
(3-7)

for every n ≥ 1, 0≤ β ≤ β0, and q ≥ 1.
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4. Analysis of the differential inequality

4A. Critical exponent inequalities. In this section we apply Proposition 1.4 to prove Theorems 1.1, 1.2,
1.7 and 1.8.

Proof of Theorems 1.1 and 1.7. It suffices to prove Theorem 1.7, of which Theorem 1.1 is a special case.
Fix β0 > 0, and suppose that there exist constants C > 0 and δ > 1 such that φ#

β0,q(|K | ≥ n)≤Cn−1/δ for
every n ≥ 1. In this proof, we use � and � to denote inequalities that hold up to positive multiplicative
constants depending only on (G, J ), δ, C , and β0. Since δ > 1 we have

n∑
m=1

φ#
β0,q(|K | ≥ m)� n1−1/δ

for every n ≥ 1 and hence by (3-6) that

φ#
β1,q(|K | ≥ n)� n−1/δ exp[−c1(β0−β1)n1/δ

]

for every 0≤ β1 < β0 and n ≥ 1. This inequality may be summed over n to obtain that

φ#
β1,q [|K |] =

∑
n≥1

φ#
β1,q(|K | ≥ n)�

∑
n≥1

n−1/δ exp[−c1(β0−β1)n1/δ
] � (β0−β1)

−δ+1 (4-1)

for every 0≤ β1 < β0 and n ≥ 1. Thus, we have by (3-7) that

φ#
β,q(|K | ≥ n)� n−1/δ exp

[
−c2

(β1−β)n
(β0−β1)−δ+1

]
for every 0≤ β < β1 < β0 and n ≥ 1. Item (1) of the theorem follows by taking β1 = (β0+β)/2.

Item (2) of the theorem is a simple analytic consequence of item (1) since we have that

φ#
β,q(|K | ≥ x)= φ#

β,q(|K | ≥ dxe)� x−1/δ exp[−c2(β0−β)
δx]

for every x > 0, and consequently, letting ε = c2(β0−β)
δ and α = k− 1− 1/δ, we have that

φ#
β,q [|K |

k
] = k

∫
∞

0
xk−1φ#

β,q(|K | ≥ x) dx � k
∫
∞

x=0
xαe−εx dx

= kε−α−1
∫
∞

y=0
yαe−y dy

= k0(α+ 1)ε−α−1
≤ k!ε−α−1

= k![c2(β0−β)]
−δ(k−1)−(δ−1) (4-2)

for every k ≥ 1 and 0≤ β < β0, where we used the change of variables y = εx in the final equality on
the first line. �

Proof of Theorems 1.2 and 1.8. This proof is similar to that of Theorem 1.7. Fix β0 > 0, and suppose
that there exist constants C > 0 and γ ≥ 0 such that φ#

β,q(|K | ≥ n)≤ C(β0−β)
−γ for every 0≤ β < β0.

In this proof, we use � and � to denote inequalities that hold up to positive multiplicative constants
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depending only on (G, J ), γ , C , and β0. By (3-7) and Markov’s inequality there exist positive constants
c1 and c2 such that

φ#
β,q(|K | ≥ n)�

φ#
β1,q [|K |]

n
exp

[
−c1

n(β1−β0)

φ#
β1,q [|K |]

n
]
�

1
(β0−β)γ n

exp[−c2(β1−β0)
γ+1n]

for every 0 ≤ β < β1 < β0 and n ≥ 1. The proof may be concluded by taking β1 = (β0 + β)/2 and
performing essentially the same calculation as in (4-2). �

4B. Sharpness of the phase transition. We next apply Proposition 1.4 to prove Theorem 1.5. The proof
is very similar to that given in [Duminil-Copin et al. 2019b]. (Note that the analysis presented there
substantially simplified the original analysis of Menshikov [1986].) We include it for completeness since
our differential inequality is slightly different, and so that we can optimize the constants appearing in
item (2) of Theorem 1.5.

Proof of Theorem 1.5. We begin by defining

β̃#
c = sup

{
β ≥ 0 : there exist c,C > 0 such that φ#

β,q(|K | ≥ n)≤ Cn−c for every n ≥ 1
}

= inf
{
β ≥ 0 : lim sup

n→∞

logφ#
β,q(|K | ≥ n)

log n
≥ 0

}
.

We trivially have that β̃#
c ≤ β

#
c . Moreover, it is an immediate consequence of Theorem 1.7 that for every

0≤ β < β̃#
c there exist Cβ, cβ > 0 such that

φ#
β,q(|K | ≥ n)≤ Cβe−cβn for every n ≥ 1. (4-3)

We next claim that φ#
β,q(|K | =∞) > 0 for every β > β̃#

c . To this end, write Pn(β)= φ
#
β,q(|K | ≥ n)

and 6n(β)=
∑n−1

m=0 Pm(β) and let

Tk(β)=
1

log k

k∑
n=1

1
n
φ#
β,q(|K | ≥ n)

for each β ≥ 0 and k ≥ 2, so that limk→∞ Tk(β)= φ
#
β,q(|K | =∞) for each β ≥ 0. Let

C(β)=max
e∈E
[(eβ Je − 1)/Je]

as above. Applying Proposition 1.4 with λ= 1, we obtain that(
d

dβ

)
+

Tk(β)≥
1

2C(β) log k

k∑
n=1

[
(1− e−1)Pn(β)

6n(β)
−

Pn(β)

n

]
for every β ≥ 0 and k ≥ 2. Using the inequality

Pn

6n
≥

∫ 6n+1

6n

1
x

dx = log6n+1− log6n,
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we deduce that (
d

dβ

)
+

Tk(β)≥
(1− e−1) log6k+1(β)

2C(β) log k
−

Tk(β)

2C(β)

for every β ≥ 0 and k ≥ 1. Fixing β̃#
c < β1 < β2 and using that C(β) is increasing in β, we deduce that(

d
dβ

)
+

Tk(β)≥
(1− e−1) log6k+1(β1)

2C(β2) log k
−

Tk(β2)

2C(β1)

for every β1 ≤ β ≤ β2 and hence by definition of β̃#
c that

lim sup
k→∞

inf
β1≤β≤β2

(
d

dβ

)
+

Tk(β)≥
(1− e−1)

2C(β2)
−
φ#
β2,q(|K | =∞)

2C(β1)
.

Integrating this inequality yields that

φ#
β2,q(|K | =∞)≥ lim sup

k→∞

∫ β2

β1

(
d

dβ

)
+

Tk(β) dβ ≥
(1− e−1)(β2−β1)

2C(β2)
−
(β2−β1)

2C(β1)
φ#
β2,q(|K | =∞)

which rearranges to give that

φ#
β2,q(|K | =∞)≥

(
C(β1)

C(β2)

)
(1− e−1)(β2−β1)

2C(β1)+β2−β1
> 0. (4-4)

The claim now follows since β̃#
c < β1 < β2 were arbitrary. We deduce that β̃#

c ≥ β
#
c and hence that

β̃#
c = β

#
c , so that in particular item (1) of the theorem follows from (4-3).

It remains only to prove item (2), which amounts to improving the constants in (4-4). We apply
Proposition 1.4 again to obtain that(

d
dβ

)
+

Tk(β)≥
1

2C(β) log k

k∑
n=1

[
(1− e−λ)Pn(β)

λ6bn/λc(β)
−

Pn(β)

n

]
for each k ≥ 2, β ≥ 0, and λ > 0. Arguing in a similar way to before, we obtain that

lim sup
k→∞

inf
β1≤β≤β2

(
d

dβ

)
+

Tk(β)≥
1− e−λ

2C(β2)
−
φ#
β2,q(|K | =∞)

2C(β1)

for every β#
c < β1 ≤ β2. Sending λ→∞, it follows by elementary analysis that

φ#
β ′,q(|K | =∞)≥

∫ β ′

β#
c

1−φ#
β,q(|K | =∞)

2C(β)
dβ ≥

(β ′−β#
c )(1−φ

#
β ′,q(|K | =∞))

2C(β ′)

for every β ′ ≥ β#
c , which rearranges to give the claim. �
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