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The papers deals with the use of dissipative braces as retrofit solutions for existing moment resisting
frame buildings. Braces are widely used in order to enhance performances of existing buildings under
seismic loads, by adding stiffness and strength against inertial forces induced by earthquake ground
motions. The braces can be equipped with supplemental dissipators in order to increase the overall
energy dissipation capacity of the system and reduce stresses in the existing structures. In the present
work, general design criteria for dampers and supporting braces are given and a simple design procedure
based on the actual mechanical interaction between dampers and braces has been carried out. A number
of design procedures have been proposed for dissipative bracing systems in frame structures. The pro-
cedures are often based on simplifying assumptions, due to the complexity of mechanical behavior of
systems equipped with dissipative braces. Those assumptions make the procedures easier to use, but at
the same time, less reliable in predicting the behavior of complex structures. In the present work, results
are obtained without using two of the most common simplifying assumptions that neglect interaction
between frame and braces: the use of the floor stiffness in order to characterize the frame behavior, and
the use of equivalent systems with a single degree of freedom. The proposed design procedure has been
tested on a moment resisting frame building and appears feasible for implementation on real structures.

1. Introduction

In recent years, many important changes in seismic codes are occurred. Most of the changes in the
seismic design area derive from greater comprehension of actual poor buildings performances in recent
earthquakes. Due to the renewed knowledge of the existing buildings behavior, retrofit of buildings is a
paramount task in reducing seismic risk. New techniques for protecting buildings against earthquake have
been developed with the aim of improving their capacity. Seismic isolation and energy dissipation are
widely recognized as effective protection techniques for reaching the performance objectives of modern
codes. However, many codes include design specifications for seismically isolated buildings, while there
is still need of improved rules for energy dissipation protective systems. FEMA 356 [FEMA 2000] is
one of the first prestandards that gives general criteria for the design of dissipative braces. According to
this document, dissipative braces, added in a structure, should be able to ensure the necessary increment
in stiffness for the protection in the Immediate Occupancy Performance and the necessary supplemental
damping for the protection in the Life Safety Performance. However, design rules for specific devices
(viscous, friction, steel devices) are still missing.

A large amount of research has been concerned with development of these innovative earthquake
resistant systems. In many studies involving parametric analyses [Choi et al. 2003; Phocas and Pocanschi
2003; Whittaker et al. 2003a; 2003b; Wu and Ou 2003; Lin and Chopra 2002; Goel 2000; 2001; Singh
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and Moreschi 2001; Pekcan and Chen 1999; Shukla and Datta 1999; Fu and Kasai 1998] and design
procedures [Park and Min 2004; Lee et al. 2004; Moreschi and Singh 2003; Singh and Moreschi 2002;
Garcia 2001; Levy et al. 2000; Fu and Cherry 2000; Yamada 2000; Takewaki 1999; Gluck et al. 1997;
Ciampi 1993; Filiatrault and Cherry 1990], the structure, equipped with braces and dampers, is modeled
as a simple mechanical system. This approach leads to a significant reduction of the complexity of the
problem that has to be solved for evaluating the response of the system, but at the same time it leads to
approximations, in some cases not acceptable, in the assessment of the behavior of the actual system.

In this paper, two of the most common simplifications that neglect interaction between frame and
braces have been analyzed and their effects on the evaluation of the actual behavior of structural systems
have been quantified. The study has been conducted on systems that can be modeled as viscoelastic
components according to FEMA 356. The proposed design procedure for dissipative braces uses the
results of a parametric study considering the actual interaction between frame and different types of
dissipative braces and has been validated on a seven-storey frame building through non linear numerical
analyses.

2. Problem statement

The analyzed structural systems are the moment resisting frames that are typical systems for the modern
building and well suited to be protected with braces equipped with dissipative braces. Only limited
damages are tolerated on the frames so the structures are expected to remain in the elastic range. For this
reason the frames are modeled in order to perform with a linear-viscous-elastic behavior.

2A. Frame without braces. The dynamic characteristic of the frames, subjected to external forces, is
formulated for structures discretized with a finite number of degrees of freedom (DOFs) and defined in
term of generalized displacements of the nodes. The equation of the motion for a generic elastic multiple
degree of freedom (MDOF) frame structure is

ms ü(t)+ cs u̇(t)+ ksu(t)= p(t) (2-1)

where ms , cs and ks are the mass, damping and stiffness matrices of the frame structure without braces,
respectively, u is the displacement vector, t is the time variable and p is the external force vector.

The following assumptions are generally accepted in design of frames subjected to seismic forces:

(i) Each floor is assumed to be rigid in its own plane.

(ii) A mass lumped matrix is used to describe inertial effects.

(iii) Structural damping is expressed as a function of the mass and stiffness matrices (classical damping).

Assumption (i) is generally appropriate for reinforced concrete buildings with floor slabs or in steel frame
buildings with steel floor bracings; assumption (ii) is generally accepted for multi-storey buildings, in
which the greater amount of mass is at the floor levels; assumption (iii) permits to neglect the terms
related to the viscous forces and to consider only mass and stiffness proportional terms. Under those
assumptions, the dynamic problem can be reduced to a smaller one by relating certain degrees of freedom
to certain others by means of constraint equations and considering only the mass and stiffness terms. With
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this aim in mind, (2-1) can be written as[
ms,t t 0

0 0

] [
üt(t)
ü0(t)

]
+

[
ks,t t ks,t0

ks,0t ks,00

] [
ut(t)
u0(t)

]
=

[
pt(t)

0

]
, (2-2)

where ut and u0 denote the displacements along DOFs with mass (dynamic DOFs) and with zero mass,
respectively, and pt are the external dynamic forces acting on the frame.

The displacement vector partition introduced in (2-2) leads to the equation

ms,t t üt(t)+ k̂s,t t ut(t)= pt(t), (2-3)

where k̂s,t t is the condensed stiffness matrix of the frame defined as

k̂s,t t = ks,t t − kT
s,0t k

−1
s,00ks,0t . (2-4)

2B. Frame with braces. Following the same approach presented in the previous section, for the system
composed by frame and braces the equation of motion could be expressed as[

ms+b,t t 0
0 0

] [
üt(t)
ü0(t)

]
+

[
ks+b,t t ks+b,t0

ks+b,0t ks+b,00

] [
ut(t)
u0(t)

]
=

[
pt(t)

0

]
, (2-5)

where ms+b = ms +mb is the system mass matrix given by the sum of the frame mass matrix ms and the
braces mass matrix mb, and ks+b = ks + kb is the system stiffness matrix given by the sum of the frame
stiffness matrix ks and the braces stiffness matrix kb.

Considering (2-5), the static condensation of this system leads to the equation

ms+b,t t üt(t)+ k̂s+b,t t ut(t)= pt(t), (2-6)

where k̂s+b,t t is the condensed stiffness matrix of the frame defined as

k̂s+b,t t = ks+b,t t − kT
s+b,0t k

−1
s+b,00ks+b,0t . (2-7)

From (2-5), the displacement vector associated to the DOFs with zero mass can be evaluated through
the expression

u0(t)=−k−1
s+b,00ks+b,0t ut(t). (2-8)

3. Interaction between frame and braces

Two of the most common assumptions used in design procedures and parametric studies of braces systems
assume that (1) each floor of the frame is characterized by a floor stiffness, and (2) the frame can be
reduced to an equivalent system with a single degree of freedom. According to the first assumption, the
storey drift is function of the shear forces induced by horizontal seismic loads. Generally, this assumption
leads to two possible model simplifications:

(1a) The shear-type floor stiffness is obtained imposing that flexural and shear deformations of the beams
and axial deformations of the columns are null. This case will be referred as “shear-type” floor
stiffness ks,st .
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(1b) The shear-type floor stiffness is obtained as the ratio between shear forces and storey drift displace-
ments computed on the frame under known horizontal forces, without imposing null deformations.
This case will be referred as “equivalent shear-type” floor stiffness, related to the condensed stiffness
matrix of the frame without braces k̂s .

For the second assumption, the fundamental mode shape is used in order to reduce the multiple degree
of freedom (MDOF) model to a single degree of freedom (SDOF) model. Both assumptions are not
able to describe the actual interaction between the frame and braces but are commonly used to reduce
the complexity of the problem to be solved and generally accepted for analyzing frames equipped with
dissipative braces. Their validity is questionable when the actual system behavior becomes more complex,
i.e., when the braces have a stiffness comparable to the frame elements stiffness and the building modifies
the shape of its fundamental vibration modes after the insertion of the braces.

3A. Floor stiffness assumption. The use of the floor stiffness instead of the whole stiffness matrix is
based on the assumption that the braces have no effects on the stiffness of the storey in which they are
installed. In this case the floor stiffness of the frame can be added to the stiffness of the braces to evaluate
the whole floor stiffness. It is clear, however, that the interaction between frame and braces modifies the
frame behavior. The stiffness of each floor is, in fact, influenced by the braces as a function of kb and ks .
The force vector ps(t), carried only by the frame for a given displacement vector u(t), can be obtained as[

ks,t t ks,t0

ks,0t ks,00

] [
ut(t)
u0(t)

]
=

[
ps,t(t)
ps,t(t)

]
. (3-1)

Considering that u0(t) is given by (2-8), this equation can be replaced by

k̂s∗,t t ut(t)= ps,t . (3-2)

where the condensed stiffness matrix of the frame when the braces are installed is defined as

k̂s∗,t t = ks,t t − kT
s,0t k

−1
s+b,00ks+b,0t . (3-3)

Similarly, the force vector pb(t), carried only by the braces for a given displacement vector u(t), can
be obtained as [

kb,t t kb,t0

kb,0t kb,00

] [
ut(t)
u0(t)

]
=

[
pb,t(t)
pb,t(t)

]
, (3-4)

where the condensed stiffness matrix of the braces is defined as

k̂b,t t = kb,t t − kT
b,0t k

−1
s+b,00ks+b,0t . (3-5)

The condensed stiffness matrices given by (2-4) and (3-3) represent the stiffness of the same frame
when no braces are installed and when the braces are installed, respectively. A comparison between those
equations indicates that the presence of braces provides a variation in the condensed stiffness matrix of
the frame. The variation is expressed as

1k̂s,t t = k̂s∗,t t − k̂s,t t = kT
s,0t
(
k−1

s,00ks,0t − k−1
s+b,00ks+b,0t

)
. (3-6)

In addition, the condensed stiffness matrix of the braces, given by (3-5), includes the terms ks+b,00 and
ks+b,0t function of the frame stiffness. The interaction between frame stiffness and brace performance is
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Figure 1. One-bay frame case study.

E A E I G As

Beam 4.50× 106 kN 1.13× 106 kNm2 1.44× 106 kN
Columns 2.70× 106 kN 2.43× 105 kNm2 8.64× 105 kN
Brace 8.64× 105 kN

Table 1. Mechanical characteristics of the one-bay frame case study.

then to be expected. The floor and brace stiffnesses, computed separately, can be added only accepting an
error in the final estimate of the whole floor-stiffness. In the following example, the interaction between
the frame and brace stiffnesses has been studied for a simple one bay frame with a diagonal brace. A
planar frame, with masses lumped at the column-beam joints and a steel brace with circular section
pinned to the frame, was analyzed as first case study (Figure 1).

The mass of the brace is assumed to be negligible and inertial effects due to the ground motion are
considered only in the horizontal direction. Seismic action on the frame have been described as equivalent
horizontal static forces applied to the joints and the mechanical characteristics of the components are
reported in Table 1, where A is the sectional area of the element, I is the moment of inertia, As is
the shear area, E is the longitudinal elastic modulus and G is the shear elastic modulus. The variation
of each stiffness contribution is reported in Figure 2 as a function of the cross sectional area of the
brace Ab normalized to the reference area reported in Table 1. The reference area has been chosen in

Figure 2. Stiffness components versus brace sectional area Ab.
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order to represent a quite usual situation in steel frame protected by braces, corresponding to a brace
stiffness approximatively two times higher than the frame stiffness versus horizontal forces. From the
graph, it is evident that the stiffness ks,st overestimates of approximatively 30% k̂s . Moreover, the actual
stiffness of the frame k̂s∗ is affected by the presence of the brace and for Ab = 1 the stiffness reduction
is approximatively 15% of the stiffness of the frame without brace k̂s . The frame stiffness reduction
increases with the sectional area of the brace. For Ab = 10 the stiffness reduction of the frame is around
50%. Finally, the stiffness of the brace is also influenced by the interaction with the frame. For Ab = 1 the
interaction produces a reduction of the brace stiffness k̂b approximatively equal to 5% of its theoretical
“shear-type” stiffness kb,st , linearly increasing with Ab. For Ab = 10 the interaction produces a brace
stiffness reduction of almost 90%.

To express the interaction between brace and frame, an index R was defined as

R =
i T ps,t

i T pt
, (3-7)

where i is the dynamic coupling vector composed by unit-components in the earthquake direction and
null-components in the other directions, ps,t is the portion of the force vector carried by the frame, as
derived from (3-2), and pt is the force vector acting on the whole system composed by frame and braces.
Index R represents the ratio between the shear forces acting on the frame and the shear forces acting
on the overall system, under a fixed displacement. It expresses the ratio between the floor stiffness of
the frame and the floor stiffness of the whole system. For the case study of Figure 1, the index R is
presented in Figure 3 as a function of the braces cross sectional area Ab. The graph shows how the
stiffness of the overall braced frame is shared between the frame and the brace. As the area Ab of the
brace increase, brace stiffness becomes the contribute more important to the whole stiffness while frame
stiffness becomes less significant (R→ 0). Let us note that the R is strongly not linear, versus Ab, due
to the interaction between frame and brace. By using the floor stiffness assumption a linear trend for R
would instead be assumed. In the middle range of the horizontal axis, say 0.1≤ Ab ≤ 5, corresponding
to usual brace stiffness values varying between 0.l and 10 times the frame stiffness, the curve trend
is approximatively linear, meaning that the forces carried by the frame decrease with the logarithm of
the sectional area Ab of the brace and not linearly with the area Ab, as expected according to the floor
stiffness assumption.

Figure 3. Index R versus brace sectional area Ab.
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Figure 4. MDOF frame case study.

3B. Equivalent SDOF system assumption. Equivalent SDOF systems are used for reducing the com-
plexity of the mechanical problem to be solved. A MDOF system can be reduced to an equivalent
SDOF system assuming that its deformed shape is known under dynamic forces applied. In this case,
mechanical parameters, describing the mechanical behavior of the system, are reduced to its fundamental
vibration period Ts and damping ratio ξs . By using this simplification, effects of dissipative braces on
the behavior of the SDOF system are easy to be quantified. They generally introduce a reduction of
the vibration period, due to the increment of stiffness, from the value Ts to the value Ts+b, as well as
the increment of the damping ratio, due to added energy dissipation capacity, from the value ξs to the
value ξs+b. However the equivalent SDOF system can not describe the actual interaction between the
frame structure and the bracing system, as shown as an example in the next case study. The 7-storey
frame building, shown in Figure 4, was analyzed. The mechanical characteristics of the frame are listed
in Table 2. Inertial forces are considered only in the horizontal directions and each floor is assumed to
perform as a rigid diaphragm. Forces acting in the y direction were considered and the following linear
path of seismic forces used was

pt = F
ms+bh

i T ms+bh
= φp F, (3-8)

E A E I G As

Lateral and longitudinal beams 4.50× 106 kN 1.13× 106 kNm2 1.44× 106 kN
Internal transversal beams 4.32× 106 kN 2.49× 105 kNm2 1.38× 106 kN
Columns 6.30× 106 kN 3.09× 106 kNm2 2.02× 106 kN
Braces 2.36× 108 kN

Table 2. Mechanical characteristics of the MDOF frame case study.
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where F is the total seismic force entity, h is a vector containing the heights of each floor, measured
from the foundation level, and φp is the vector expressing the seismic force distribution. As described
before, interaction effects are captured by R index. For the forces of (3-8) the following expression of
R is obtained from (3-7) and considering (2-6) and (3-2):

R =
i T k̂s∗,t t k̂−1

s+b,t tφp

i Tφp
. (3-9)

Note that R depends only on the shape of the seismic forces path and not on their amplitude. For the
selected case study, index R = 19.6% indicates that the frame stiffness to the overall structural stiffness
is 19.6%. Reduction of the MDOF system to an equivalent SDOF system overestimates this contribution.
Since the total mass variation due to braces is neglected, for the equivalent SDOF system, the contribution
of the frame stiffness to the whole system stiffness is given by(

Ts

Ts+b

)2

=
ks

ks+b
= 23.3%. (3-10)

with Ts+b = 0.882 s the fundamental vibration period of the whole system, Ts = 1.826 s the fundamental
vibration period of the frame without braces and ks , ks+b the SDOF equivalent stiffnesses for the frame
with no braces and with braces, respectively. For the selected case study, the frame stiffness contribution
computed using the SDOF assumption in (3-10) appears about 1.19 times the effective one, computed
with (3-9). By using the reduction to a SDOF system, the portion of seismic forces carried by the frame
is hence overestimated by 19%.

4. Interaction between brace and damper

Dissipative braces are commonly applied to structure as integral devices that exhibit both functions of
stiffnesses and energy dissipators in a single mechanical system as well as combination of different
devices with different functional contribution. Both configurations will be referred here as dissipative
braces, while the energy dissipation capabilities will be associated to elements generically defined as
dampers to be intended as single units as well as components of integral devices. In dissipative bracing
system, the interaction between the brace and the additional damping effects has to be considered. To
evaluate this interaction, devices characterized by the following behaviors have been considered: viscous
linear (VL), viscous nonlinear (VN), viscous elastic (VE), elastoplastic (EP), and friction (FR). The
selected behaviors cover the most common typologies of dampers used for protection of frame buildings.
It is clear that the installation of generic damper devices reduces the stiffness of the brace. Total strains
in each dissipative brace are obtained as the sum of strains in the brace and strains in the damper. Ac-
cordingly, the R index evaluated for the structure with only the braces, is always not lower than the one
computed for the dissipative bracing system Rd by means of (3-7). The portion of total seismic forces
carried by the frame is, in fact, greater if there are dampers installed. This loss of efficiency, in terms of
stiffness, for the braces alone can be quantified by the ratio

FR =
Rd

R
≤ 1. (4-1)
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The larger the loss of efficiency of the braces due to the deformability of the dampers, the smaller is
the parameter FR .

The second effect of the addition of the dampers is the reduction of seismic forces acting on the
whole system due to added energy dissipation capacity. The seismic force vector should be reduced
due to higher dissipation capacity of the system. An important issue is the evaluation of the effective
dissipation capacity of dissipative braces. It is evident also that the dissipated energy in dampers depends
on the stiffness of the supporting braces. For a given damper, the maximum amount of dissipated energy
is obtained if the supporting brace has null deformability. In this case, total strains in the dissipative
brace affect the dampers performance and produce energy dissipation. The energy dissipation capacity
is expressed in terms of equivalent damping ratio, evaluated for stationary oscillations as

ξs+b =
1

4π
Ed

Es

ωs+b

ω
, (4-2)

where Ed is the dissipated energy in the deformation cycle, Es is the maximum strain energy, ω is the
circular frequency of the deformation cycle and ωs+b is the equivalent circular frequency of the system
composed by the structure and the braces, defined as

ωs+b =

√
i t pt,max

i t ms+bumax
, (4-3)

where pt,max is the force vector corresponding to the maximum displacement vector umax.
By using (4-2) and (4-3), the maximum equivalent damping ratio ξs+d can be computed assuming

supporting braces of infinite stiffness. The ratio ξs+d results always greater than the effective damping
ratio of the system ξs+b evaluated for braces with finite stiffness. Accordingly, the quantity

ξd = ξs+d − ξs (4-4)

represents the maximum damping ratio that the given dampers can add to the original damping ratio ξs

of the structure, while the actual damping ratio added by the dissipative braces is given by

ξb = ξs+b− ξs . (4-5)

If the phenomenon of interaction between bracing effects and dissipation of energy is considered in
terms of damping contribution, it is evident that braces make the dampers less efficient in supporting
seismic forces because they reduce their energy dissipation capacity. This loss of efficiency, in terms of
damping, can be quantified by the ratio

Fξ =
ξb

ξd
≤ 1. (4-6)

The larger is the loss of efficiency of the dampers due to deformability of the braces, the smaller is
the parameter Fξ .

In Figures 5–9, the variation of Rd , FR and ξs+b, Fξ are represented versus R for different values of ξd

with the aim of describing the loss of efficiency in terms of stiffness and in terms of damping, respectively.
On the abscissa, lower values of R represent stiffer supporting braces, while R = 1 represents the frame
without braces. The dampers mechanical characteristics have been chosen in order to obtain values of
the maximum added damping ratio ξd in the range 0.05–0.25. For the damping exponent of the VN
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Figure 5. Variation of Rd , FR . ξs+b, and Fξ with R (ξd = 0.05–0.25) for VL dampers.

Figure 6. Variation of Rd , FR . ξs+b, and Fξ with R (ξd = 0.05–0.25) for VN dampers.
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Figure 7. Variation of Rd , FR . ξs+b, and Fξ with R (ξd = 0.05–0.25) for VE dampers.

Figure 8. Variation of Rd , FR . ξs+b, and Fξ with R (ξd = 0.05–0.25) for EP dampers.
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Figure 9. Variation of Rd , FR , ξs+b, and Fξ with R (ξd = 0.05–0.25) for FR dampers.

dampers the value α = 0.15 was considered, for VE dampers a loss factor ηL = 0.80 was assumed and
for the EP dampers the hardening ratio of β = 0.01 was used.

From these figures, it is evident that the losses of efficiency in terms of stiffness and damping act in
a different way. Factor FR shows that the greater losses of efficiency occurs at low values of R, (stiffer
braces), and at low values of ξd (for less dissipative dampers). On the other side, factor Fξ shows that the
greater losses of efficiency occur for higher values of R (smaller braces), and for higher values of ξd (for
more dissipative dampers). For supporting braces with the same stiffness of the frame (R = 0.5) and for
a damping ratio ξs+b = 0.30, losses of stiffness of 64%, 58%, 78%, 24%, and 40% were experienced due
to the insertion of damper types VL, VN, VE, EP, and FR, respectively. EP dampers are then preferable
when higher stiffness increments are needed while VE dampers are most indicated for lower increments
of stiffness. For supporting braces with R = 0.5 and with an additional damping ξd = 0.25, losses of
damping of 33%, 30%, 23%, 40%, and 27% correspond to types VL, VN, VE, EP, and FR, respectively.
VE dampers are then less affected by the brace stiffness while EP require very stiff supporting braces in
order to ensure their dissipation capacity. The previously defined factors could be combined in a factor
describing the global efficiency of the braces:

F (R, ξd)= FR (R, ξd)× Fξ (R, ξd) . (4-7)

The factor F describes losses of efficiency in terms of both stiffness and damping: dissipative braces
with greater values of F are the most efficient both for stiffness and damping. As an example, the left
part of Figure 10 shows the F factor versus R index for braces equipped with VL dampers. Values of F
factor are always lower than unity. In the presented case, maximum value of F is equal to 0.55 for a R
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Figure 10. Variation of F with R (left) and contour levels of F∗ in the plane R-ξd for VL dampers.

value of approximately 0.7. The solid line represents the maximum values of F factor for values of the
damping ratio ranging from 0.05 to 0.25.

To assign the value of 1 to the most efficient case (maximum F) a normalization procedure was applied:

F∗ (R, ξd)=
F (R, ξd)

max
(
Fξ (R, ξd)

) ≤ 1. (4-8)

Figure 10, right, shows the dependence of F∗ on R and ξd using by contour levels. In the area between
the two curves labeled 0.9, the maximum efficiency both in terms of stiffness and damping selection is
achieved. Maximum efficiency is observed for the range of damping values 0.05–0.25 centered on
different values of R, expressing the stiffness contribution to the total stiffness of the frame alone. It can
be observed that, for instance, for a value of ξd equal to 0.05 (limited additional damping) the center of
the efficiency band corresponds to R approximately equal to 0.7. This scenario indicates that a limited
damping addition is particularly beneficial for frames quite stiff originally with limited contribution of
the braces to the total stiffness. For larger introduced dissipation capability (ξd = 0.25) the efficiency is
maximized for frames where braces contribute about 50% of the total stiffness. An increase or reduction
of additional stiffness reduces the efficiency of the overall system.

Similar charts can be obtained for all the selected damper typologies and could indicate variations
of the location of the maximum efficiency range. Figure 11 reports the maximum efficiency range

Figure 11. Contour levels corresponding to F∗ = 0.90 in the plane R-ξd .
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(F∗ = 0.90) for all the damper types considered. These charts provide useful information for the design
and selection of dissipative braces.

5. Design procedure

This section shows how the presented charts can be used for the design of bracing systems. The proposed
design procedure essentially follows five steps:

Step 1. Selection of the performance requirements (performance level and reference seismic action).

Step 2. Selection of the target damping level and reduction of the seismic action. The damping level is
expressed by the damping ratio ξs+b for the whole system.

Step 3. Design of elastic braces. For the elastic bracing system, a vector containing R indices computed
by (3-7) is evaluated for each level of the frame in order to quantify the interaction between the frame
and the bracing system.

Step 4. Choice of characteristics of dissipative braces. The characteristics of dissipative braces depend
on the R values selected at Step 3 and on the design charts presented in Figure 12.

Step 5. Validation of the design solution. The behavior of the system composed by the frame and
the dissipative braces is studied through non linear analyses in order to verify that the performance
requirements are satisfied.

As an example of the procedure application and validity, the 7-storey frame of Figure 4 is considered.
The system has four diagonal bracings for each direction. The procedure is applied as described below.

Step A1. Performance requirements are statements of acceptable performance of the structure. The perfor-
mance target can be specified as limits on any response parameter such as stresses, strains, displacements,
accelerations. In the case study, target inter-storey drifts of 0.3% are considered, assuming that the frame
should remain elastic under the design seismic action. The elastic spectrum Type 1 given by Eurocode 8
[CEN 2004] for ground type A, with ground acceleration equal to ag=0.35g, is assumed in the design.
Seven ground motions were selected by means of specialized software [Gasparini and Vanmarcke 1976]
in order to obtain an average acceleration spectrum matching the elastic design spectrum, in accordance
with Eurocode 8.

Step A2. The damping ratio ξs+b = 0.20 is chosen as target damping level for the frame equipped with
dissipative braces. According to Eurocode 8, the spectrum reduction factor which takes into account
damping is η = 0.63.

Step A3. An elastic bracing system has been designed to ensure compliance with target inter-storey drifts.
At each floor level all the braces have the same geometrical characteristics. The vector containing the R
indices of the braces, at each floor level, from the bottom to the top of the building, is

R = [0.92 0.81 0.86 0.86 0.89 1.00 1.00] .

Note that for the two upper levels no braces are necessary in order to satisfy the performance requirements
(R = 1.00).

Step A4. The dissipative braces at each level will have Rd = R and they must provide an additional
damping in order to obtain the target damping ratio ξs+b for the whole system. The supplemental damping
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Figure 12. Design charts for different types of dampers: variation of ξs+b with Rd (ξd =

0.05–0.25). Clockwise from top left: VL, VN, EP, FR, VE.

value is obtained as the weighted average of the damping value of each storey, proportionally to the storey
shear forces. In the analyzed case, the vector containing the damping ratios for each floor level is

ξs+b = [0.29 0.27 0.23 0.18 0.12 0.05 0.05] .

From Rd and ξs+b values, the additional damping ratios ξd provided by each damper can be estimated
from the charts presented in Figure 12. The R values, characterizing the stiffness of the supporting braces,
can be calculated from the charts presented in Figures 5–9. Different types of dampers can be chosen
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Figure 13. Left: estimation of ξd from ξs+b and Rd . Right: estimation of R from ξd and
Rd values. In both cases, ξd ranges from 0.05 to 0.25.

in order to obtain the desired characteristics. The most efficient ones have been chosen according to the
F∗ index of (4-8). For example, selection for the fourth storey is presented in Figure 13, left. Given a
value of Rd = 0.86 and a damping ratio ξs+b = 0.18, the chart indicates an optimum value for ξd equal
to 0.21. The estimate for the R index is presented in Figure 13, right. Given Rd = 0.86 and ξd = 0.21,
the chart indicates an optimum value of 0.55 for R.

The dissipative braces selected for the fourth level are VL dampers characterized by ξd = 0.21 and
supported by elastic braces with R = 0.55. It is evident that the interaction between brace and damper
implies that the additional damping ratio due to damper ξd = 0.21 must be higher than the value required
at the storey level ξb = ξs+b− ξs = 0.18−0.05= 0.13, where ξs = 0.05 is the damping ratio of the elastic
structure, because of the loss of efficiency due to the deformability of the brace. At the same time, the
elastic braces could support (1− R) = (1− 0.55) = 0.45 times the whole seismic forces acting at the
storey level. They however suffer a reduction of stiffness for the presence of the damper and are able to
carry only (1− Rd)= (1− 0.86)= 0.14 times the whole seismic forces. Results for all the levels of the
frame are presented in Table 3.

Note that the required level of damping is obtained by the use of different dampers. VL dampers
are most indicated for less stiff braces with lower dissipation capacity, while VN dampers are preferred
where more stiffness and damping is required, i.e., at lower levels.

Level Damper R ξd

1 Type VN 0.10 0.25
2 Type VN 0.45 0.22
3 Type VN 0.45 0.20
4 Type VL 0.55 0.21
5 Type VL 0.70 0.18
6 — — —
7 — — —

Table 3. Dissipative braces characteristics (R, ξd ) derived from the design procedure.
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Figure 14. Inter-storey drifts d along the height H of the building.

Step A5. A numerical investigation has been carried out for the structure under consideration in order to
evaluate the effects produced by the insertion of the dissipative braces. The braces were modeled as purely
elastic springs and purely viscous dampers connected in series. The viscous dampers are characterized
by a damping coefficient c = ξdmdωs+b/2, where md is the modal mass supported by the damper and
ωs+b is the circular frequency of the fundamental mode of the system. Values of the damping exponent
α equal to 1 and 0.15 are assumed for VL and VN dampers, respectively. In addition to the damping
provided by the dissipative braces, a global damping ratio of 0.05 for the structure was included using
the Caughey damping model [Chopra 1995]. The interstorey drifts are presented as the average values
over the seven time histories. The 95% confidence interval is also represented. Results reported in Figure
14 show a good agreement between the target inter-story drift values (bold line) and the average values
obtained from the seven time histories. Sectional areas of the supporting braces Ad were estimated on
the basis of the R values, assuming that the dissipative portion of the brace is one third of the total length:

Ad = [0 0 0.0076 0.0131 0.0184 0.0146 0.0225] m2.

The values Ad can be compared with the sectional areas Ael of the elastic bracing system that can
ensure the same level of performance requirements without added dissipation:

Ael = [0 0.0159 0.0276 0.0339 0.0399 0.0345 0.0238] m2.

It is evident that the elastic braces that support the dampers have smaller sectional areas of the elastic
bracing system. In the case study, sectional areas of the braces in the dissipative system are on average
0.43 times the sectional areas of the elastic system.

6. Conclusions

Effects associated with two of the most common assumptions adopted in design procedures for dissipative
braces are studied. The assumption of constant floor stiffness and the reduction of MDOF systems to
SDOF systems are shown to be limited in capturing the interaction between the frame structure and the
installed braces. Index R is introduced in order to describe that interaction. Two additional interaction
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mechanisms have been studied. The stiffness of the supporting brace has been shown to condition the
dissipation capacity of the dampers and vice versa. The ratio FR quantifies the reduction of brace stiffness
due to the damper. For supporting braces with R = 0.5 (i.e., with the same stiffness of the frame) and
for a system damping ratio ξs+b = 0.30, the maximum reduction value of 78% has been found for VE
dampers, while the minimum value of 24% has been found for EP dampers, showing that EP dampers are
preferable when higher stiffness increments are needed while VE dampers are most indicated for lower
increments of stiffness. Ratio Fξ quantify the loss of dissipation capacity expressed in term of damping
ratio ξs+b due to the deformability of the brace. For supporting braces with R = 0.5 and for an additional
damping ξd = 0.25, the maximum reduction value of 40% has been found for EP dampers, while the
minimum value of 23% has been found for VE dampers, showing that VE are less affected by the brace
stiffness while EP require very stiff supporting braces in order to ensure their dissipation capacity. A
global index of efficiency F∗ has also been defined by combining FR and Fξ ratios. Contour levels of F∗

in the plane R-ξs+b identify fields of maximum efficiency for the considered type of dampers. A design
procedure has been proposed and validated for a seven-storey building, indicating a beneficial effect due
to the added dissipation capacity quantified as an average reduction of the sectional areas of the braces
of 57% respect to an elastic bracing system.
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