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Welcome to the Tunisian Journal of Mathematics

The Tunisian Journal of Mathematics (TJM) is an international publication or-
ganized by the Tunisian Mathematical Society and published in electronic and
print formats by MSP (Mathematical Sciences Publishers) in Berkeley. It pub-
lishes research articles in all areas of mathematics. These will be selected by a
distinguished, international board of editors (see next page) based on outstanding
quality and interest, and according to the highest international standards.

The purpose of TIM is the advancement of mathematics. Editors evaluate sub-
mitted papers strictly on the basis of scientific merit. All articles submitted to this
journal are peer-reviewed. The TIM uses single-blind peer review, which means
that reviewers know who the authors of the manuscript are, but the authors do not
know who the reviewers are.

The African continent is increasingly interested in scientific development, par-
ticularly in mathematics. The Tunisian Mathematical Society was founded in 1992
and is a permanent institutional member of the International Mathematical Union.
It plays a major role in stimulating and sustaining high level mathematical research
in Tunisia and its surrounding region. With the launch of this journal, the Tunisian
Mathematical Society contributes to the development in Africa of scientific re-
search meeting high international standards.

The TIM editorial board invites mathematicians from all over the world to take
part in this stimulating project by submitting high-level research articles. Submis-
sions can be made at https://ef.msp.org/submit/tunis.
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Partial resolution by toroidal blow-ups

Janos Kollar

We give an alternate proof of a theorem of Tevelev about improving a nontoroidal
ideal sheaf by a sequence of toroidal blow-ups.

1. Toroidal blow-up. Let X be a smooth variety over a field and )_ D; a sim-
ple normal crossing (abbreviated as snc) divisor on X. A (closed) stratum of
(X, >_ D;) is an irreducible component of an intersection D;, N---ND; . If ZC X
is a stratum (or a disjoint union of strata) and 7 : Bz X — X the blow-up then
(BZX DD+ Y G E j) is also an snc pair where the E; are the exceptional
divisors of . We call such blow-ups toroidal.

The following question was suggested by Keel.

Question 2. Let (X, Y D;) be an snc pair over a field and J C Oy an ideal sheaf.
How much can one improve J by a sequence of toroidal blow-ups?

As a simple example, assume that X is a surface. Then there are very few
toroidal blow-ups: we can blow up either the curves D; C X (giving the identity
map) or any of their intersection points. Thus if the cosupport of J (that is, the
support of Oy /J) does not contain any strata then toroidal blow-ups have no effect
on J. Similarly, one expects to be able to improve the singularities of J along strata
but not necessarily along other subvarieties. This leads to the following.

Definition 3. Let (X, A := ) D;) be an snc pair over a field and J C Oy an ideal
sheaf. We say that J is foroidally resolved if its cosupport does not contain any
strata.

The key step of the proof is to show that each ideal sheaf J C Ox has a unique
toroidal hull J C J' C Oy such that the toroidal resolution problem for J is equiv-
alent to the ordinary resolution problem for J’; see Definition-Theorem 17 and
Proposition 20. The resolution of toroidal ideals is known over arbitrary fields by
[Bierstone and Milman 2006], thus we get the following answer to Question 2.

MSC2010: 14E30, 14EXX.
Keywords: resolution, toroidal variety.
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Theorem 4. Let (X, A) be an snc pair over a field (of arbitrary characteristic)
and J C Ox an ideal sheaf. Then there is a toroidal blow-up sequence

(X}’lv Anv Jl’l) —> > (XO’ AOv JO) = (Xv Av '])
such that J, C Oy, is toroidally resolved.

We state a more precise version in Theorem 10 and also explain how the ideals
J; transform into each other, but first we apply Theorem 4 to the ideal sheaf of a
divisor to get the following answer to the original question of Keel.

Tevelev pointed out that, using [De Concini and Procesi 1985], the methods of
[Tevelev 2007] can easily be modified to obtain Corollary 5; see also [Popescu-
Pampu 2004; Hacking 2008; Ulirsch 2015; Vogiannou 2015] for closely related
variants. In fact, [Tevelev 2007] gives the stronger result that IT_ Y intersects
each stratum in the expected codimension.

Corollary 5 [Tevelev 2007]. Let (X, A) be an snc pair over a field and Y C X
a closed subscheme that does not contain any of the irreducible components of A.
Then there is a sequence of toroidal blow-ups I1 : X,, — --- — Xo := X such that
the birational transform I1_ Y does not contain any strata of the pair

(Xn, T, ' A+ Ex(ID)). O

For another application, note that a divisor B does not contain any strata of
(X, A) if and only if (X, A + €B) is divisorial log terminal (abbreviated as dit)
for 0 < € « 1, cf. [Kollar 2013, 2.8]. We can thus restate the divisorial case of
Corollary 5 as follows.

Corollary 6. Let (X, A) be an snc pair over a field and B C X an effective divisor
that does not contain any of the irreducible components of A. Then there is a
sequence of toroidal blow-ups I1 : X, — - - - — X¢ := X such that

(X, TI;' (A +€B) +Ex(I)) isdltfor0<e < 1. O

The model obtained in Corollary 6 is related to the construction in [Odaka and
Xu 2012] of dit modifications of (X, A + € B) (in characteristic 0). Our models
are smooth but the log canonical class need not be relatively nef. Nonetheless, this
suggests that Corollary 6 might be approached using the minimal model program.
A problem is that there are many different dIt modifications and most of them are
singular. It is not clear to me how to guarantee smoothness using MMP.

7. Plan of the proof of Theorem 4. Assume for simplicity that (X, A) is toric
with torus 7. We assume that A consists of all T -invariant divisors. We show that
Theorem 4 for J is essentially equivalent to a special case of resolution, usually
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called monomialization, of the toric ideal J' := ) t*J, where we sum over all
7 € T. This is a combinatorial problem that is independent of the characteristic.

Note also that, at least in characteristic zero, J' is the ideal generated by logarith-
mic derivatives of all orders of elements of J; see Paragraph 14.4 and Proposition 15
for details.

In general, (X, A) is locally toric in the analytic or étale topology so we need
to check that the local construction of J’ gives a global ideal sheaf J’. This is
probably well known to experts. I do not know a reference that covers everything
that we need, so we go through the details.

In the precise version of Theorem 4 we further restrict the blow-ups allowed in
the sequence. For this we need some definitions first.

8. Toroidally equimultiple blow-ups. Let X be a smooth variety and J C Ox an
ideal sheaf. Let Z C X be a smooth subvariety and 7 : Bz X — X the blow-up of
Z. Let E C Bz X denote the exceptional divisor.

Most resolution methods work with blow-up centers Z C X such that J is equi-
multiple along Z; that is, mult, J = m for every z € Z for some fixed m. We then
define the birational transform of J by

n ' J = 0p,x(mE)-1*J. (8-1)

(This is frequently called the “controlled” or “weak” transform.) This is an ideal
sheaf on Bz X. It has the pleasant property that mult, 7~ 'J <m forevery y € E.

Working toroidally, we would like Z to be a stratum (or a disjoint union of strata).
However, if the multiplicity of J jumps at a single point that is not a stratum, then
toroidal blow-ups are unlikely to change this. Thus, in a resolution procedure, the
best one can hope for is that J is toroidally equimultiple along Z, that is, multy J =
multz J = m for every stratum W C Z for some fixed m.

If this holds then we define the birational transform of J by

n ' = 0p,x(mE) -1*J. (8-2)

As before, this is an ideal sheaf on Bz X and multy 7~ 1] <m for every stratum
V CE.

The resulting birational transform of J then behaves as expected over generic
points of strata W C Z but can be rather badly behaved elsewhere. This is not a
problem if we care only about generic points of strata.

Let us recall a somewhat detailed form of resolution (usually called monomial-
ization) of ideal sheaves, as stated in [Kollar 2007, 3.68].

Theorem 9. Let (X, E) be an snc pair over a field of characteristic 0 and J C Oy
an ideal sheaf. Then there is a blow-up sequence

(Xn, Jn, En) = -+ = (Xo, Jo, Eo) := (X, J, E)
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with the following properties:

(1) Eachm;: Xij+1 — X; is a blow-up with smooth center Z; C X; and exceptional
divisor E'*!,

(2) J; is equimultiple along Z;.

(3) Jix1 = ()7 s as in (8-1).

(4) Z; has normal crossings with E; and E; | = (71,-);1E,- + EitI,

(5) (X, Ju, Ep) is resolved; that is, J, = Ox,.

Now we can state the more precise form of Theorem 4 where we just add
“toroidal” to the formulation of Theorem 9 in a few places.

Theorem 10. Let (X, A) be an snc pair over a field of any characteristic and
J C Ox an ideal sheaf. Then there is a toroidal blow-up sequence

(X}’Lv Anv Jn) — > (XOa AOv ‘]0) = (Xa Av ‘])
with the following properties:

(1) Each m; : X;+1 — X; is a blow-up with smooth, toroidal center Z; C X; and
exceptional divisor E; 1.

(2) J; is toroidally equimultiple along Z;.

(3) Jiv1 = () J; as in (8-2).

@) Aipr= @) A+ Eir.

O) (X, Ay, Jy) is toroidally resolved.

Remark 11. The role of the divisors E and A is quite different in the two Theo-
rems; the notation is changed to emphasize this. In Theorem 9 E is but an auxil-

iary datum which gives very mild restrictions on the blow-up centers, whereas in
Theorem 4 A gives extremely strong restrictions on the blow-up centers.

Definition 12. We call a blow-up sequence satisfying Theorem 9(1)—(4) equimulti-
ple and a blow-up sequence satisfying Theorem 10(1)—(4) toroidally equimultiple.

Thus Theorem 9 says that, in characteristic 0, every ideal sheaf can be resolved
by an equimultiple blow-up sequence.

13. Toroidal ideals. Let X be a smooth variety and ) D; an snc divisor. An ideal
sheaf I C Oy is toroidal if X is covered by open sets U; such that

Iy, =ZOU1(_ > mijsDilu;) (13-1)
S

for every j and for suitable m;;; € N.
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Let Z C X be a closed stratum and Z° := Z \ U{W : W C Z is a stratum} the
corresponding open stratum. For every z € Z°NU ; the m;;, give vectors

vjs:=(mijs: Di DZ)e Y. N[Dj] (13-2)
i:D;D>Z

and these generate a subsemigroup

MzC Y NIDj] (13-3)
i:D;DZ
which depends only on Z. For any inclusion of strata W C Z we have the coordinate
projection
pzw: 2 NIDil— > N[Di] (13-4)

i:DiDW i:D;DZ

and the subsemigoups M satisfy the compatibility relation

Pz.wMw) =Mz. (13-5)

This gives a one-to-one correspondence between toroidal ideals and collections of
subsemigroups {M } satisfying the compatibility relations (13-5). In particular,
we see that / — [?" gives a one-to-one correspondence

{toroidal ideals I C Ox} <« {toroidal ideals /™" C OF'}. (13-6)

We claim that toroidal ideals are the only ones that can be “canonically” associ-
ated to the stratification of an snc pair.

14. Local stratified isomorphisms. Let (X, A) be an snc pair and U}, Uy C X
open sets. An isomorphism ¢ : U; — U, is called stratification preserving if
ZNU; = ¢~ (ZNU,) for every stratum Z C X. Note that our strata are the
irreducible components of the intersections of the D;, thus this is stronger than
just assuming D; NU| = ¢~ (D; N U») for every D;.

We say that an ideal sheaf I C Oy is invariant under stratification preserving
local isomorphisms if ¢*(I |U2) = I |y, holds for every such ¢ : Uy — Us.

It is clear that a toroidal ideal is invariant under stratification preserving local
isomorphisms and we would like to claim the converse. Unfortunately, if X has no
birational automorphisms then the identity map is the only stratification preserving
local isomorphism. As usual, there are three ways to get more U;.

14.1. Complex analytic. If X is over C, we use analytic open sets Uy, Uy C X?".

14.2. Etale local. We use étale morphisms 7; : U — X and require that T Yz)=
T, 1(Z) for every stratum Z C X.
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14.3. Formal local. We use isomorphisms of complete local rings
" 04 x = Oy x.
(If the base field is not algebraically closed we also allow residue field extensions.)
14.4. Micro local. We assume the condition on the tangent space level. That is
Derx(—logA) -1 C I,

where Dery (—log A) is the sheaf of logarithmic derivatives along A; cf. [Kollar
2013, 3.87]. This works in characteristic O but not in positive characteristic. This
shows that the concepts of toroidal ideal and toroidal hull (Definition-Theorem 17)
are related to D-balanced ideals and well-tuned ideals used in resolution. See
[Kollar 2007, Section 3.4] for the latter notions.

Proposition 15. Ler (X, A) be an snc pair and I C Oy an ideal sheaf that is in-
variant under all stratification preserving local isomorphisms in any of the settings
of Paragraphs 14.1-14.3. Then I is a toroidal ideal sheaf.

Proof. We explain the complex analytic case and leave the details of the other
settings to the reader. By (13-6) it is enough to show that /2" is toroidal.

Let D C C denote the unit disc and D* the punctured unit disc. We will view
D* c C* as a semigroup.

Let Z° C X be an open stratum. After reindexing the D;, for every z € Z°
we can choose a neighborhood of the form (0 € D"), where D; = (x; = 0) for

i =1,...,m. We start with the natural (D*)™ action on the first m coordinates.
This is a stratification preserving action.
Pick an}’f=zil ’’’’’ im .fi] ..... im(xm+1"'~7xn)'xlll "'xylylln € I*™. Then

T f = Z Kitromsim * Sitroin (mls <oy Xn) = X] o oxp,

i1onin - (D*)™ — D* denotes the character )Jil .-+ Jm_ Since the characters
of a group (in this case (C*)™) are linearly independent we see that

. , . N
ﬁ],...,i,,l(xm+]9 "'axn)'-xlll o 'x,lr’ln € Idn+(-x17 --"xm)

holds for every N. By Krull’s intersection theorem this implies that

i i an
Jitrosin Cma1s ooy X)) - x) oo x € I,
We next use translations by (¢;y+1, - - . , C) inthe x,,41, . . ., X, directions to achieve
that f;,. i, (Xm+1+ Cmsts ..., Xy +Cp) 1S DONZEro at (Xp41, ..., x,) = (0, ..., 0).
Thus

xi' e -xim e 1™ provided fi, i (Xmits---,Xn) ZO.



PARTIAL RESOLUTION BY TOROIDAL BLOW-UPS 9

This shows that /" is generated by monomials in x, ..., x;,; hence it is toroidal.
O

Note that (X, A) is toric with torus 7 then we need only the T-action in the
above proof. Thus we have showed the following elementary observation.

Corollary 16. Let (X, A) be a smooth toric variety. Then an ideal is toric if and
only if it is toroidal. (I

Now we come to the key definition, the toroidal hull of an ideal. The existence
of the toroidal hull is a quite elementary observation which is at least implicit in
several papers. See, for instance, the notion of the Newton polygon [Kouchnirenko
1976] and its connections with resolutions [Teissier 2004] or the D-balanced and
well-tuned ideals discussed in [Wilodarczyk 2005]; see also [Kollar 2007, Sec-
tion 3.4] for more details on the latter.

Definition—-Theorem 17. Let (X, A) be an snc pair over a field and J C Ox an
ideal sheaf. There is a unique, smallest toroidal ideal sheaf J' O J, called the
toroidal hull of J.

Furthermore, if W C X is a stratum then multy J* = multy J. (A stronger
version of this property is established in Lemma 19.)
Proof. As we noted in Paragraph 13, specifying J' is equivalent to specifying the
semigroups Mz (13-3) and the latter can be done working in an analytic or formal
neighborhood of a point py € Z° of an open stratum.

Then the recipe of constructing J' follows from the proof of Proposition 15:
(*) Take al_l f= .Zil ,,,,, in Sivroin Gmg1s -0 xn)xi‘ - -x,’;;” € J and add the mono-

mial x}' - - - x,7 to J' whenever f;, _; #0.

This also shows that we have not decreased the multiplicity along Z° since

i1 im _ : ) . i i :
multy, x}' -+ - xpr = inf mult,(f;, i, X} -+ xp) > inf mult, f. O
peZ® pez0

Corollary 18. Let (X, A) be an snc pair and J C Ox an ideal sheaf. Then J is
toroidally resolved if and only if J' = Oy. (I

The following result says that the toroidal hull commutes with toroidal blow-ups
along toroidally equimultiple centers.

Lemma 19. Assume that J is toroidally equimultiple along Z. Then
(' D =mt TN,

Proof. The question is local on X and we can even replace X by its completion X,.
Thus we may assume that (X, A) is toric with torus 7" acting on X. Then

J! ZZ‘L’*J,
T
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where we sum of all T € T'. If J is toroidally equimultiple along Z with multiplicity
m then the same holds for every 7*J. Thus

w (I = O0p,x(mE) -7 (X, ) = ¥, (Op,x(mE) - t*n*J) = (x'J) . O

The following observations transforms the toroidal resolution problem for J to
the usual resolution problem for its toroidal hull. Thus the toroidal hull is a variant
of the concept of tuning an ideal used in resolution; see [Kollar 2007, 3.54].

Proposition 20. Let (X, A) be an snc pair over a field and J C Ox an ideal sheaf.
There is a natural equivalence between the following sets:

(1) toroidally equimultiple blow-up sequences for J,
(2) toroidally equimultiple blow-up sequences for J',

(3) equimultiple blow-up sequences for J'.

Proof. Definition-Theorem 17 shows that J is toroidally equimultiple along a
stratum Z if and only if J’ is toroidally equimultiple along Z. A toroidal ideal is
toroidally equimultiple along a stratum Z if and only if it is equimultiple along Z.
Thus in all three settings the blow-ups allowed at the first step are the same.
Lemma 19 guarantees that this holds for all subsequent steps by induction. [J

21. Resolution of toroidal ideals. 1t has been long known that resolution of toric
ideal sheaves is a combinatorial question that is independent of the characteris-
tic [Kempf et al. 1973; Ash et al. 1975; Cox 2000; Gonzalez Pérez and Teissier
2002]. However, we need a resolution that is obtained by an equimultiple blow-up
sequence. The original toric references that I could find do not claim this and the
methods do not seem to be designed for this purpose.

Resolution of toric and toroidal varieties and ideals using equimultiple blow-
up sequences is proved in [Bierstone and Milman 2006]; see also [Blanco 2012a;
2012b]. Note that our setting is quite a bit easier since for us all strata are smooth.
(This is also the reason why we do not need to worry about imperfect fields.)

One should also note that for toroidal ideals an étale-local resolution procedure is
automatically combinatorial. So, although this is not stated, the resolution method
discussed in [Wtodarczyk 2005; Kollar 2007, Chapter 3] is combinatorial. Thus it
yields the required resolution procedure for toroidal ideals over any field.

22. Proof of Theorem 10. By Theorem 9 (in characteristic = 0) and Paragraph 21
(in characteristic # 0) there is an equimultiple blow-up sequence

Xy An, (JDn) = -+ = (X0, Ao, (o) := (X, A, J")
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that resolves J'. By Proposition 20 the same sequence gives a toroidally equimul-
tiple blow-up sequence for J:

(Xna Al’l? Jn) — > (X()’ AO? JO) = (Xv Aa J)

By Lemma 19 we know that (J,)" = (J"), and the latter is O, by assumption.
Thus J, is toroidally resolved by Corollary 18.
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Construction of a stable blowup solution with
a prescribed behavior for a non-scaling-invariant
semilinear heat equation

Giao Ky Duong, Van Tien Nguyen and Hatem Zaag

We consider the semilinear heat equation
u=Au+|ul” 'uln® @ +2)

in the whole space R”, where p > 1 and « € R. Unlike the standard case o = 0,
this equation is not scaling invariant. We construct for this equation a solution
which blows up in finite time 7" only at one blowup point a, according to the
asymptotic dynamic

(p=Dlx—af /e
u(x,t) w(t)<1+4p(T—t)|ln(T—t)|> ast — T,

where 1 (¢) is the unique positive solution of the ODE

Y =y’ In“(y? +2), lim (1) = +o0.

The construction relies on the reduction of the problem to a finite-dimensional
one and a topological argument based on the index theory to get the conclu-
sion. By the interpretation of the parameters of the finite-dimensional problem
in terms of the blowup time and the blowup point, we show the stability of the
constructed solution with respect to perturbations in initial data. To our knowl-
edge, this is the first successful construction for a genuinely non-scale-invariant
PDE of a stable blowup solution with the derivation of the blowup profile. From
this point of view, we consider our result as a breakthrough.

1. Introduction

We are interested in the semilinear heat equation

{Btu =Au+ F(u),

(1-1)
u(0) = up € LX(R"),
G. K. Duong is supported by the project INSPIRE, which received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie grant
agreement No. 665850. H. Zaag is supported by the ANR projet ANAE ref. ANR-13-BS01-0010-03.
MSC2010: primary 35K50, 35B40; secondary 35K55, 35K57.
Keywords: blowup solution, blowup profile, stability, semilinear heat equation, nonscaling invariant
heat equation.

13


http://msp.org
http://msp.org/tunis
http://dx.doi.org/10.2140/tunis.2019.1-1
http://dx.doi.org/10.2140/tunis.2019.1.13

14 GIAO KY DUONG, VAN TIEN NGUYEN AND HATEM ZAAG

where u(¢) : R* — R, A stands for the Laplacian in R" and
Fu)=ulP'uln®u?+2), p>1, aeR. (1-2)

By standard results the model (1-1) is well-posed in L>°(R") thanks to a fixed-
point argument. More precisely, there is a unique maximal solution on [0, T'),
with T < +o00. If T < 400, then the solution of (1-1) may develop singularities in
finite time T, in the sense that

lu(t)||pe = 400 ast— T.

In this case, T is called the blowup time of u. Given a € R", we say that a is a
blowup point of u if and only if there exists (a;, t;) — (a, T) as j — +00 such
that |u(aj, t;)| — +o00 as j — +o0.

In the special case o = 0, (1-1) becomes the standard semilinear heat equation

du = Au+|ul” u. (1-3)
This equation is invariant under the scaling transformation
u >y (x, 1) 1= AP Dy, A7), (1-4)

Extensive literature is devoted to (1-3) and no review can be exhaustive. Given our
interest in the construction question with a prescribed blowup behavior, we only
mention previous work in this direction.

Bricmont and Kupiainen [1994] showed the existence of a solution of (1-3) such
that

[T =" P Vufatz/(T—DIT =01, 1) =90 gy > 0 as 1= T, (1-5)

where
(p— 1)2z2 —1/(p—1)
4p )
(note that Herrero and Veldzquez [1992] proved the same result with a different
method; note also that Bressan [1992] made a similar construction in the case of
an exponential nonlinearity).

Later, Merle and Zaag [1997] (see also [Merle and Zaag 1996]) simplified the
proof of [Bricmont and Kupiainen 1994] and proved the stability of the constructed
solution satisfying the behavior (1-5). Their method relies on the linearization of
the similarity variables version around the expected profile. In that setting, the lin-
earized operator has two positive eigenvalues, a zero eigenvalue and then a negative
spectrum. Then, they proceed in two steps:

wo(z) = (P—1+

» Reduction of an infinite-dimensional problem to finite-dimensional one: they
show that controlling the similarity variable version around the profile reduces
to the control of the components corresponding to the two positive eigenvalues.
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» Then, they solve the finite-dimensional problem thanks to a topological argu-
ment based on index theory.

The method of [Merle and Zaag 1997] has proved to be successful in various
situations, such as for the complex Ginzburg-Landau equation of [Masmoudi and
Zaag 2008] (see also [Zaag 1998] for an earlier work) and for the case of a complex
semilinear heat equation with no variational structure [Nouaili and Zaag 2015]. We
also mention the work of Tayachi and Zaag [2015a; 2015b] and the work of Ghoul,
Nguyen and Zaag [Ghoul et al. 2017a] dealing with a nonlinear heat equation with
a double source depending on the solution and its gradient in a critical way. Ghoul,
Nguyen and Zaag [Ghoul et al. 2016; 2017b] successfully adapted the method to
construct a stable blowup solution for a nonvariational semilinear parabolic sys-
tem.

In other words, the method of [Merle and Zaag 1997] has proved to be efficient
even for the case of systems with nonvariational structure. However, all the previ-
ous examples enjoy a common scaling-invariant property like (1-4), which seemed
at first to be a strong requirement for the method. In fact, this was proved to be
untrue.

Ebde and Zaag [2011] were able to adapt the method to construct blowup solu-
tions for the non-scaling-invariant equation

du = Au+|ul” u+ fu, Vu), (1-6)
where

! . / 2p
| f(u, Vu)| < C(1+ |ul? +|Vul?), withg <p, ¢’ < m
These conditions ensure that the perturbation f(u, Vu) results in exponentially
small coefficients in the similarity variables. Later, Nguyen and Zaag [2016]
recorded a more spectacular achievement by addressing the case of stronger per-
turbation of (1-3), namely

plulP~u
In“ (2 +u?)’
where 1 € R and a > 0. When moving to the similarity variables, the perturbation
turns out to have a polynomial decay. Hence, when a > 0 is small, we are almost
in the case of a critical perturbation.

In both cases addressed in [Ebde and Zaag 2011; Nguyen and Zaag 2016],
the equations are indeed non-scaling-invariant, which shows the robustness of the
method. However, since both papers proceed by perturbations around the standard
case (1-3), it is as if we are still in the scaling-invariant case.

In this paper, we aim at trying the approach on a genuinely non-scaling-invariant
case, namely (1-1). This is our main result.

u=Au+|ul”'u+ (1-7)
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Theorem 1.1 (blowup solutions for (1-1) with a prescribed behavior). There exists
an initial data uy € L (R") such that the corresponding solution to (1-1) blows
up in finite time T = T (ug) > 0, only at the origin. Moreover, we have:

(1) Forallt € [0, T), there exists a positive constant Cy such that

x Co
Y (Du(x, 1) — fo( ) S 07— (18
H VT =)[In(T =]/ | prowny — /[In(T —1)]

where \ (t) is the unique positive solution of the ODE
¥ =P @) In® (Y (1) +2), tlin% Y (1) = +o0 (1-9)
(see Lemma A.1 for the existence and uniqueness of ), and the profile fy is de-

fined by
(p—1 =1/(p—1)
fox) = (1 + P : (1-10)
p

(i) There exits u*(x) € C*(R™\{0}) such that u(x,t) — u*(x) as t — T uniformly
on compact sets of R" \ {0}, where

uw(x) ~ —(p_1)2|x|2 ey 4|ln|x|| T asx — 0 (1-11)
8p|In x| p—1 '

Remark 1.2. From (i), we see that u(0, t) ~ ¢ (t) = 400 as t — T, which means
that the solution blows up in finite time 7 at x = 0. From (ii), we deduce that the
solution blows up only at the origin.

Remark 1.3. Note that the behavior in (1-8) is almost the same as in the standard
case o = 0 treated in [Bricmont and Kupiainen 1994; Merle and Zaag 1997]. How-
ever, the final profile u* has a difference coming from the extra multiplication of
the size ‘ln |x| ‘_a/ (P _1), which shows that the nonlinear source in (1-1) has a strong
effect on the dynamic of the solution in comparison with the standard case o« = 0.

Remark 1.4. Item (ii) is in fact a consequence of (1-8) and Lemma A.4. Therefore,
the main goal of this paper is to construct for (1-1) a solution blowing up in finite
time and satisfying the behavior (1-8).

Remark 1.5. By parabolic regularity, one can show that if the initial data u( €
W2 (R"), then we have fori =0, 1, 2,

“w—laxT —O)2Viu(x, t) — (T —t)“zv;;fo< al )
JT =0T — 1)

LOO
c

=< T
~ VIn(T —1)]
where fj is defined by (1-10).
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From the technique of [Merle 1992a], we can prove the following result.

Corollary 1.6. For an arbitrary set of m points x1, ..., Xn, there exists initial
data ugy such that the solution u of (1-1) with initial data ug blows up exactly at
m points X1, . .., Xm. Moreover, the local behavior at each blowup point x; is also
given by (1-8) by replacing x by x — x;.

As a consequence of our technique, we prove the stability of the solution con-

structed in Theorem 1.1 under the perturbations of initial data. In particular, we
have the following result.

Theorem 1.7 (stability of the solution constructed in Theorem 1.1). Consider u,
the solution constructed in Theorem 1.1 and denote by T its blowup time. Then
there exists Uy C L*°(R") a neighborhood of 1(0) such that for all uy € Uy, (1-1)
with the initial data ug has a unique solution u(t) blowing up in finite time T (ug)
at a single point a(ug). Moreover, the statements (i) and (ii) in Theorem 1.1 are
satisfied by u(x — a(ug), t), and

(T (uo), auo)) — (T, 0) as |luo — dio|l Lr) — 0. (1-12)

Remark 1.8. We will not give the proof of Theorem 1.7 because the stability result
follows from the reduction to a finite-dimensional case as in [Merle and Zaag 1997]
with the same proof. Here we only prove the existence and refer to that paper for
the stability.

2. Formulation of the problem

We first use the matched asymptotic technique to formally derive the behavior (1-8).
Then, we give the formulation of the problem in order to justify the formal result.

2A. A formal approach. We follow the approach of [Tayachi and Zaag 2015b]
to formally explain how to derive the asymptotic behavior (1-8). To do so, we
introduce the following self-similarity variables

u(x, 1) =y @Ow(y,s),

y= \/;——t s =—1In(T —1), (2-1)
where ¥ (¢) is the unique positive solution of (1-9) and ¥ (¢) - oo ast — T.
Then, we see from (1-1) that w(y, s) solves the following equation: for all (y, s) €
R*"x[—InT, +00)

., In*(iw?+2)
dyw=Aw— 1y - Vw —h(s)w + h(s)|w|” ‘wm, (2-2)
where
h(s) =e=yP ™ () I (Y(s) +2), (2-3)

Vi) =y(T —e™). (2-4)
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Note that 4 (s) admits the following asymptotic behavior as s — +00:

his) = — (1—“—“21ns)+0(1>- (2-5)
0=—1-7 % =) :

see (ii) of Lemma A.5 for the proof of (2-5). From (2-1), we see that the study
of the asymptotic behavior of u(x, ) as t — T is equivalent to the study of the
long-time behavior of w(y, s) as s — 4-00. In other words, the construction of the
solution u(x, t), which blows up in finite time 7 and satisfies the behavior (1-8),
reduces to the construction of a global solution w(y, s) for (2-2) satisfying

0 < € < limsup w(s)l~@n < ~, € >0, (2-6)
s—+00 €0
and
)2\ Ye-D
Hw(y,s)— <1+u) —0 ass— +oo. (2-7)
4pS Loo(RM)

In the following, we will formally explain how to derive the behavior (2-7).

Inner expansion. We remark that 0, £1 are the trivial constant solutions to (2-2).
Since we are looking for a nonzero solution, let us consider the case when w — 1
as s — +o00. We now introduce

w=14+w; (2-8)
then from (2-2), we see that w satisfies
dyw = L(w)+ N(w, s), (2-9)

where
L=A—1y.V+Id, (2-10)

In® (2 (0+41)24-2)
In® (2 +2)

Y1 (s) is defined in (2-4) and A(s) behaves as in (2-5). Note that N admits the
asymptotic behavior

N, s) = h(s)| w4117 (@+1) —h(s)(@+)—w, (2-11)

_ pw? |w]|Ins |w|? 4 _
N(w,s)= T+O( )+0<T>+O(|w|‘) as (w,s) — (0, +00),

2
(2-12)
(see Lemma A.6 for the proof of this statement).
Since w(s) — 0 as s — 400 and the nonlinear term N is quadratic in w, we see
from (2-9) that the linear part will play the main role in the analysis of our solution.
Let us recall some properties of £. The linear operator L is self-adjoint in L% (R™),
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where L% is the weighted space associated with the weight p defined by
e~ VP/4

p(y) = W’

and

spec(L) = {1—% im GN}.

More precisely, we have:

e When n =1, all the eigenvalues of £ are simple and the eigenfunction corre-
sponding to the eigenvalue 1 —m /2 is the Hermite polynomial defined by

[m/2]

(=) m!ym=2
B (y) = A A A 2-13
) ; Ton =271 (2-13)

In particular, we have the orthogonality
/ hihjpdy =i'2'8; ; forall (i, j) € N
R
e When n > 2, the eigenspace corresponding to the eigenvalue 1 —m /2 is defined as

En={hs=hp,---hg, forall BN, [Bl=m, |B] = Bi+---+Bu). (2-14)

Since the set of the eigenfunctions of £ is a basis of L2, we can expand w in
this basis as

B(y,s)= Y w(s)hp(y).

BeN

For simplicity, let us assume that w is radially symmetric in y. Since hg with
|B] > 3 corresponds to negative eigenvalues of £, we may consider the solution w
taking the form

W = Wy + wa(s)(|y|> = 2n), (2-15)

where |wo(s)| and |wy(s)| go to 0 as s — +o00. Injecting (2-15) and (2-12) into
(2-9), then projecting (2-9) on the eigenspace &,, with m =0 and m = 2, we obtain

(|U_)0|+|u_)2|)1ns)+O(|U_)0|2+|u_)2|2)
S

) = w0+§(w§+8nw2)+0( ;

+0 (|wo*+w2 ),

(|11)0|+|121)2|)1n8>+0<|@0|2+|@2|2)
S N
+0 (|wo*+w2]*)

(2-16)
wh =4pw§+pwow2+0(
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as s — +00. We now assume that |wo(s)| < |wa(s)| as s — +oo; then (2-17)
becomes

- -2 |wz|Ins
wy = wp + O(|lw2|7) + O 2 ,
2-17)

_ - _ wy|Ins
w/2=4Pw§+0(|w2|2)+0<| 2S|2 )

as s — 400. We consider the following cases:
Case 1: Either |w;| = O((lns)/sz) or |{wp| < (Ins)/s as s — +oo. Then the
second equation in (2-17) becomes

B <|w2|1ns

w, =0
2 S2

) as s — +0o00,
which yields

_ Ins
In|wy| = 0<—) as s — +o0,
s

which contradicts the condition wy(s) — 0 as s — +o0.
Case 2: |wz| > (In s)/s2 as s — +00. Then (2-17) becomes
Wy =wo + O([w2]*), W) =4pw3 + o(|iba]*)

as s — 4o0. This yields

1 1 1
111():0(—2), d)zz———i-o(—) (2-18)
s 4ps s

as s — +o00. Substituting (2-18) into (2-17) yields

iy 1 _, s Ins
w():O S_Z ’ w2=4pw2+0 s_3

as s — +o0, from which we improve the error for w, as

0 1 1 ‘o In?s 2-19
wo= s2)’ w2 = 4ps 52

as s — +o00. Hence, from (2-8), (2-15) and (2-19), we derive

y? n In? s
wy,s)=1-— 4+ yo 22 (2-20)
4ps  2ps 52

in L%(R”) as s — +o00. Note that the asymptotic expansion (2-20) also holds for
all |y| < K, where K is an arbitrary positive number.
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Outer expansion. The asymptotic behavior of (2-20) suggests that the blowup pro-

file depends on the variable

M
7=

NG

From (2-20), let us search for a regular solution of (2-2) of the form
n .
w(y,s) =¢o(z) + — + 0(l> in Ly, ass — 400, (2-21)
2ps s

where ¢ is a bounded, smooth function to be determined. From (2-20), we impose
the condition

$0(0) = 1. (2-22)
Since w(y, s) is supposed to be bounded, we obtain from Lemma A.7 that

In®(y2w? +2) |w|1’_lw‘_0<1)
n*(yi+2)  p-1 | \s/

‘h(s)|w|plw

Note also that

@+ o(H)|" (500 +0(1)) ~ 1 g0(a)| =

o(3)

Hence, injecting (2-21) into (2-2) and comparing terms of order O (1/s’) for j =

0,1, ..., we derive the following equation for j = 0:
p—1
7. Veo(z)— 0@ | 190l” $0@) _ o foran z e R (2-23)
p—1 p—1
Solving (2-23) with condition (2-22), we obtain
$0(2) = (1+colz[H VPP (2-24)

for some constant ¢y > 0 (since we want ¢ to be bounded for all z € R"). From
(2-21), (2-24) and a Taylor expansion, we obtain

w(y,s)=1 _(pco_—yj)s ;E—l—o(l) for all |y| < K as s — +o0.
From this and the asymptotic behavior (2-20), we find that
p—1
co= W

In conclusion, we have just derived the asymptotic profile

w(y,s)~e(y,s) ass— 400, (2-25)

2\,
oy, 5) = <1 + (p4—)y) v (2-26)
ps 2ps

where
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2B. Formulation of the problem. We now set up the problem in order to justify
the formal approach presented in Section 2A. In particular, we give a formulation
to prove item (i) of Theorem 1.1. We aim at constructing for (1-1) a solution
blowing up in finite time 7" only at the origin and satisfying the behavior (1-8). In
the similarity variables (2-1), this is equivalent to the construction of a solution
w(y, s) for (2-2) defined for all (y, s) € R" x [sp, +00) and satisfying (2-7). The
formal approach given in Section 2A, see (2-25), suggests linearizing w around
the profile function ¢ defined by (2-26). Let us introduce

q(yvs):w(yv S)_w(y’ S), (2-27)
where ¢ is defined by (2-26). From (2-2), we see that g satisfies the equation
0sq =Lq+Vqg+B(@)+R(y,s)+ D(q,s), (2-28)

where L is the linear operator defined by (2-10) and

v=-""L_(pr-1-1, (2-29)
p—1
lg+¢!P~ (g+@)—pP —ppP~!
B(g)="2 1 Py 9 (2-30)
p—1
)4
R(y.s)=Ap—tyvo——F 4+ ¥ 40 2-31)
p—1 p—1

1
D(q,s)=(q+¢) <(h(s)—j)(lq+<pl”‘l—l)
+h(S)|q+s0I"1(q+<p)L(q+<p,S)>, (2-32)

_ 20511/12
I W +2)
with &, ¥ (s) and ¢ being defined by (2-3), (2-4) and (2-26) respectively, and
f@)=mI"Yiz*+2), zeR.

Hence, proving (1-8) now reduces to constructing for (2-28) a solution g such that

L(v,s)

1 v
-4+ " — 2
(v )+ln°‘(w12+2)/1 [T —u)du,  (2-33)

lim [[g(s)llr~ — 0.
§—>—+00

Since we construct for (2-28) a solution ¢ satisfying ||g(s)|/z~ — 0 as s — +o0,
and since

i C
|B(q)| < Clg|™™@P |[R(s)|I1 + ID(g, )l 1 < <,

(see Lemmas A.8, A.9 and A.10 for these estimates), we see that the linear part
of (2-28) will play an important role in the analysis of the solution. The spectral
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property of the linear operator £ is studied in the previous section (see page 19),
and the potential V has the following properties:

(i) Perturbation effect of £ inside the blowup region {|y| < K./s}:
||V(s)||L% —0 ass— 4o0.

(i1) For each € > 0, there exist K, > 0 and s. > 0 such that

V(y,s)+—2—
p—1

<e€.

sup
V/5=Ke, 5>5¢

Since 1 is the biggest eigenvalue of L, the operator £ + V behaves as one with a
fully negative spectrum outside the blowup region {|y| > K./s}, which makes the
control of the solution in this region easy.

Since the behavior of the potential V is different inside and outside the blowup
region, we will consider the dynamics of the solution for |y| < 2K /s and for
ly| > K /s separately for some K to be fixed large. We introduce the function

_ Iyl
x(y,s)= XO(Kﬁ), (2-34)

where xo € C3°[0, +00), [Ixollz= <1 and

1 forx <1,
0 forx=>2,

Xo(x) = !
and K is a positive constant to be fixed large later. We now decompose g as

q=xq+—x)qg=qp+qge. (2-35)

(Note that supp(gp) C {|y| < 2K+/s} and supp(q.) C {|y| > K+/s}). Since the
eigenfunctions of £ span the whole space L%, let us write

a3, ) =qo(s) +q1(s) -y +3y" - q2(s) -y —tr(q2(s)) + q-(y,5),  (2-36)

where g, (s) = (q(5)) genn,|p|=m and
hg
sl

forall N, gp(5) = [ (v )hpody. = (237)
Rn

and

()= Y ap)hs(y). (2-38)

BeN",|B|=3

In particular, we set g1 = (q1.;)1<i<n and g2 (s) is an n x n symmetric matrix defined
explicitly by

42 (s) = / BM)Pdy = (@)1t j<ns (2-39)
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with
M= = 38} < jen (2-40)
Hence, by (2-35) and (2-36), we can write

q(y,8)=qo(s)+q1(s)-y+3y" -q2(s) -y —tr(q2(s)) +q— (3, ) +qe (v, 5). (2-41)

Note that g,,(m =0, 1, 2) and g_ are the components of g;, and not those of g.

3. Proof of the existence, assuming some technical results

We shall now describe the main argument behind the proof of Theorem 1.1. To
avoid winding up with too many details, we shall postpone most of the techni-
calities involved to the next section. According to the transformations (2-1) and
(2-27), proving (i) of Theorem 1.1 is equivalent to showing that there exists an
initial data go(y) at the time s¢ such that the corresponding solution g of (2-28)
satisfies

lg(s)llLoe@wny — 0 ass — +oo.

In particular, we consider the function

V) = 5o+ )22y, 50) (3-1)
0
as the initial data for (2-28), where (dy, di) € R'*" are the parameters to be de-
termined, so > 1 and A > 1 are constants to be fixed large enough, and y is the
function defined by (2-34).
We aim to prove that there exists (dop, d;) € R x R” such that the solution
q(y, ) =qa,,q,(y,s) of (2-28) with initial data ¥4, 4, (y) satisfies

1gdy.a, ($)|lLe — 0 ass — +oo.

More precisely, we will show that there exists (dy, d;) € R x R" such that the
solution g4, 4, (v, s) belongs to the shrinking set S5 defined as follows:

Definition 3.1 (a shrinking set to zero). For all A > 1, s > 1 we define S4(s) to
be the set of all functions ¢ € L*°(R") such that

A A AZIn®s o
lgol <= =, lquil < =, g2l = — forall 1 <i, j <n,
S h) S
q-(y) A?
<=, lgeWMlr=w) < —,
” L+ 1yP || ooy — 82 ¢ Js

where q0, 41 = (q1,i)1§i§n, qr = (qz}i,j)lfi,jgn, q— and (e are defined as in (2-41).
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We also denote by §A (s) the set
5 ) A A A AT (3-2)
S=|——,=[x|—-—=,=]. -
4 527 2 s’ s2

Remark 3.2. For each A > 1, s > 1, we have the following estimates for all
q(s) € Sa(s):

CA%In?s
9,9 = —5— 1+ IyP’) forall y e R", (3-3)
CA
g () Looqy <2k 5 = f, (3-4)
2

g ()l Loy < (3-5)

We aim to prove the following central proposition, which implies Theorem 1.1.

Proposition 3.3 (existence of a solution trapped in Sz (s)). There exists A} > 1
such that for all A > A there exists s1(A) > 1 such that for all so > s1(A), there
exists (do, di) € R'™" such that the solution q(y, s) = Qdy.d, (¥, 8) of (2-28) with
the initial data at the time so given by q(y, so0) = Vd,.4,(y), where Vg, q4, is defined
as in (3-1), satisfies

q(s) € Sa(s) foralls € [sg, +00).

From (3-5), we see that once Proposition 3.3 is proved, item (i) of Theorem 1.1
directly follows. In the following, we shall give all the main arguments for the
proof of this proposition assuming some technical results which are left to the next
section.

As for the initial data at time so defined as in (3-1), we have the following
properties.

Proposition 3.4. For each A > 1, there exists sy(A) > 1 such that for all s > s2(A)
we have the following:

(1) There exists
Das, C[=2;2] x [-2;2]"

such that the mapping
@RI - R

(do, d1) = (Yo, Y1),

is linear and one-to-one from D 4 g, onto Ss(so). Moreover,

®1(dD44,) C 3S4(s0).
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(ii) For all (do, d1) € Dy 5, we have Y4, 4, € Sa(so) with strict inequalities in the
sense that

A A Aln® s ..
Vol = =, Wil ==, Woijl<—F— foralll<i,j<n,
So So So
v A
<—=, Y.=0.
Hl"‘l_VP L®(R) Sg ¢

Above, x(y, o) is defined in (2-34), Yo, (V1.i)i<i<n» (Y2.)1<ij<2, VY- and
Y. are the components of Y4, a4, defined as in (2-41), and V4, 4, and Sa(s) are
defined by (3-1) and (3-2).

Proof. See Proposition 4.5 of [Tayachi and Zaag 2015b] for a similar proof.  [J

From now on, we denote by C the universal constant which only depends on K,
where K is introduced in (2-34). Let us now give the proof of Proposition 3.3 to
complete the proof of item (i) of Theorem 1.1.

Proof of Proposition 3.3. We proceed into two steps to prove Proposition 3.3:

« In the first step, we reduce the problem of controlling g (s) in S4(s) to controlling
(90, q1)(s) in Su (s), where go and ¢, are the components of g corresponding to
the positive modes defined as in (2-41) and §A is defined by (3-2). This means that
we reduce the problem to a finite-dimensional one.

« In the second step, we argue by contradiction to solve the finite-dimensional
problem thanks to a topological argument.

Step 1: reduction to a finite-dimensional problem. In this step, we show through
an a priori estimate that the control of g(s) in S4(s) reduces to the control of
(g0, q1)(s) in Su (s). This mainly follows from a good understanding of the proper-
ties of the linear part £+ V of (2-28). In particular, we claim the following which
is the heart of our analysis.

Proposition 3.5 (control of g(s) in S4(s) by (g0, g1)(s) in §A (s)). There exists
Az > 1 such that for all A > Az, there exists s3(A) > 1 such that for all s > s3(A),
the following holds:

If q(y, s) is the solution of (2-28) with the initial data at time sy given by (3-1)
with (dy, d1) € Da,, and q(s) € Sa(s) for all s € [sg, s1] for some s; > sy and
q(s1) € 0S4(s1), then:

(1) Reduction to a finite-dimensional problem: we have (qo, q1)(s1) € 8§A (s1).

(i1) Transverse outgoing crossing: there exists 5o > 0 such that

forall § € (0,80), (g0, q1)(s1+8) & Sals1 +8);

hence, q(s1 + 8) & Sa(s1 + 8), where :S’\A is defined in (3-2) and Dy g, is
introduced in Proposition 3.4.



A NON-SCALING-INVARIANT SEMILINEAR HEAT EQUATION 27

Let us suppose for the moment that Proposition 3.5 holds. Then we can take
advantage of a topological argument quite similar to that already used in [Merle
and Zaag 1997].

Step 2: a basic topological argument. From Proposition 3.5, we claim that there
exists (do, d1) € Dy 4, such that (2-28) with initial data (3-1) has a solution

Qdo.d,(s) € Sa(s) forall s € [s9, +00),

for suitable choice of the parameters A, K, so. Since the argument is analogous to
that in [Merle and Zaag 1997], we only give the main ideas.

Let us consider sg, K and A such that Propositions 3.4 and 3.5 hold. From
Proposition 3.4, we have

for all (do,d1) € Da sy, Gag.a, (V> 50) := Vay,a, € Sa(s0),

where ¥4, 4, 1s defined by (3-1). Since the initial data belongs to L>°, we then
deduce from the local existence theory for the Cauchy problem of (1-1) in L* that
we can define for each (dy, d1) € Dy 5 a maximum time s, (do, d1) € [s9, +00)
such that

qdy.d, (s) € Sa(s) forall s € [so, 54).

If 5.(do, d1) = +oo for some (dy, d1) € Dy 4. then we are done. Otherwise, we
argue by contradiction and assume that s.(dy, d1) < +oo for all (dy, d1) € Dy 4.
By continuity and the definition of s,, we deduce that g, 4, (s«) is on the boundary
of S4(ss). From item (i) of Proposition 3.5, we have

(90, q1)(5:) € 3Sa(55).

Hence, we may define the rescaled function

[:Day — (=1, 117,
S2
(do, d1) — X*(Clo, q1)(Sx).

From item (i) of Proposition 3.4, we see that if (do, d1) € 0D 4 4,, then

q(s0) € Sa(50), (g0, q1)(s0) € 3Sa(50)-

From item (ii) of Proposition 3.5, we see that g(s) must leave S4(s) at s = so,
thus, s.(do, d1) = so. Therefore, the restriction of I'to dD4 4, is homeomorphic
to the identity mapping, which is impossible thanks to index theorem, and the
contradiction is obtained. This concludes the proof of Proposition 3.3 as well as
item (i) of Theorem 1.1, assuming that Proposition 3.5 holds. (I

Proof of (ii) of Theorem 1.1. The existence of u* in C>(R" \ {0}) follows from the
technique of [Merle 1992b]. Here, we want to find an equivalent formation for u*
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near the blowup point x = 0. The case « = 0 was treated in [Zaag 1998]. When
o # 0, we follow the method of that paper, and no new idea is needed. Therefore,
we just sketch the main steps for the sake of completeness.

We consider Ky > 0 a constant to be fixed large enough, and |xg| # 0 small
enough. Then, we introduce the function

v(xo, €, 7) =¥ (fo(x0)u(x, 1), (3-6)
where (x0)
n _ lolxo
E,1)eR"x |: —T—to(xo)’ 1),
and
(x, 1) = (x0+ &y T — to(x0), to(x0) + (T — 19(x0))), (3-7)
with #p(xg) being uniquely determined by
%0l = Koy/(T — 1o (x0)) [In(T — to(x0))|. (3-8)

From (3-6)—(3-8) and (1-8) we derive that

C

[v(x0,&,0)—=¢po(Ko)| < (T =G 0 asxo—0,

sup
&1 <2In(T—to(xo))|1/*

where

D2\ D
g =Dt ) .
4p

As in [Zaag 1998], we use the continuity with respect to initial data for (1-1) asso-
ciated to a space-localization in the ball B(0, |&| < |In(T — fo(x0))|'/*) to derive

@o(x) = (

sup [v(x0, &, T) — U, (D) <€(x0) > 0 asxo—> 0, (3-9)
J€1<IIn(T —1o(x0))['/4, T€[0.1)

where 1)
. (p—DKg\ "'~
b, (7) = ((1 —0)+ 4—0) .
p
From (3-7) and (3-9), we deduce
u*(xp) = lim u(xo, t)
t—T
(p— DKo\ /"7
= ¥ (to(x0)) Th_r)n] v(x0, 0, T) ~ w(to(xO))(T) . (3-10)
Using the relation (3-8), we find that
- |xol?
2Ko|In |xol|

The formula (1-11) then follows from Lemma A.1, (3-10) and (3-11). This con-
cludes the proof of Theorem 1.1, assuming that Proposition 3.5 holds. U

T—1 and In(T —ty(xg)) ~21In(|xg|]) asxgp— 0. (3-11)
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4. Proof of Proposition 3.5

This section is devoted to the proof of Proposition 3.5, which is the heart of our
analysis. We proceed into two parts. In the first part, we derive a priori estimates
on g(s) in S4(s). In the second part, we show that the new bounds are better than
those defined in S4(s), except for the first two components (go, g¢1). This means
that the problem is reduced to the control of a finite-dimensional function (g, q1),
which is the conclusion of item (i) of Proposition 3.5. Item (ii) of Proposition 3.5
is just direct consequence of the dynamics of the modes g and g;.

4A. A priori estimates on q(s) in S4(s). We derive the a priori estimates on the
components g, g—, q. which imply the conclusion of Proposition 3.5. Firstly, let
us give some dynamics of qo, g1 = (q1,/)1<i<n and g2 = (q2,i,j)1<i,j<n. More
precisely, we claim the following.

Proposition 4.1 (dynamics of (2-28)). There exists A4 > 1 such that for all A > Ay
there exists s4(A) > 1 such that the following holds for all sy > s4(A): Assume that
forall s € [1, s1] for some s1 > T > sg, we have q(s) € Sa(s). Then the following
holds for all s € [sg, s1]:

(1) ODE satisfied by the positive and null modes:

’ m c
m=0,1, <s>—(1—5)qm<s> <. (4-1)
and
Cl
ns 4-2)
(i1) control of the negative and outer modes:
2
q-(-,s) ——oy2[ 9= 1) e_(s i (1+S T)
H I+]y]? sCeto” 1+[y[? Loo+C g 19e(Dl=+C
(4-3)
—(5—1)/ —7.3)2 qg-(-,7) I+(s—1)e’ "
o)l = Ce™ ™ o)t Ce s 2| 2] e R
(4-4)

Proof. We proceed in two parts:
« In the first part we project (2-28) to write ODEs satisfied by ¢,, for m =0, 1, 2.

o In the second part we use the integral form of (2-28) and the dynamics of the
linear operator £+ V to derive a priori estimates on g_ and g,.

Part 1: ODEs satisfying the positive and null modes. We give the proof of (4-2);
the same proof holds for (4-1). By formula (2-39) and (2-28), we write for each
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1<i,j<n,

<Ce™.

(4-5)
Using the assumption g(s) € S4(s) for all s € [sp, s1], we derive the following
estimates for all s € [sg, s1]:

ylyj 81‘,]‘ C
L(q — L pdy| < =,

and from Lemmas A.8, A.9 and A.10

yly_] 8i,j 2 CA

‘/ ( _7>de+ng,i,j(s) Ss_?”
C

[ o5 =% Jpar)< &

; C

[ =5 o=

Yiyi 6 Clns
/D(q,S)x(%— ’ZJ) dy| = =

Gathering all these above estimates in (4-5) yields

, 2 Clns
,'+§‘D,i,j‘ =< 3

, Yiyj Sij
92.i,j(8)— [Lg+Vq+B(q)+R(y,s)+D(q,s)]x o 5 pdy

which concludes the proof of (4-2).

Part 2: control of the negative and outer modes. We give the proofs of (4-3) and
(4-4) in this part. The control of g_ and ¢, is mainly based on the dynamics of the
linear operator £ + V. In particular, we use the following integral form of (2-28):
for each s > o > s,

s 4
q(s) =/C(s,0)q(0)+/ K(s, D[B(@)(D)+R(x)+D(q, )] dt = Zﬁi(s,ﬁ),

i i=1

. (4-6)
where {(s, 0)}s>¢ 1s defined by
{EMC(S, o)=(L+V)K(s,0), s>o0, @-7)
K(o,o0)=1d,
and
(s, 0) =K(s,0)q(0), o (s, 0) =/ K(s, t)B(g)(7) d,

193(s,0):/‘s K(s, 0)R(-, 7) dx, 294(s,o):/SIC(s,t)D(q,r)dr.
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From (4-6), it is clear to see the strong influence of the kernel /C in this formula.
It is therefore convenient to recall the following result on the dynamics of the linear
operator K =L+ V.

Lemma 4.2 (a priori estimates of the linearized operator in the decomposition in
(2-41)). For all p* > 0, there exists ss(p*) > 1 such that if o > ss(p*) and v € L/Z)
satisfies

+ lvell L < o0, (4-8)
Lo©

2

Do |+H -
m 3

o L+1yl

then, for all s € [0, 0 + p*] the function 6(s) = K(s, o)v satisfies

s—0 2
Hel_ﬁy? = CGED g 4 | 4 502 )
v —(s—0)?
+Ce T2 TTOF Lm+cs3TllvellLoo, (4-9)
and
160y, Ol
sca—U(Zsl/2|vl|+s3/2 AR Lm)+Ce—<“‘—“>/P||ve||Loo. (4-10)

=0

Proof. The proof of this result was given in [Bricmont and Kupiainen 1994] in
the one-dimensional case. It was then extended to higher-dimensional cases in
[Nguyen and Zaag 2017]. We kindly refer interested readers to Lemma 2.9 in that
paper for the details of the proof. (Il

In view of formula (4-6), we see that Lemma 4.2 plays an important role in
deriving the new bounds on the components g_ and g.. Indeed, given bounds
on the components of ¢, B(q), D(g) and R, we directly apply Lemma 4.2 with
K(s, o) replaced by K(s, ) and then integrate over T to obtain estimates on g_
and ¢.. In particular, we claim the following which immediately follows from (4-3)
and (4-4) by addition.

Lemma 4.3. For all A >1, A>1, p* =0, there exists s¢(A, p*) > 1 such that
for all so > s6(A, p*), if q(s) € Sa(s) forall s € [0, 0 + p*] for some o > 50, then
we have for all s € [0, 0 + p*]:

(1) The linear term v (s, 0):

‘ (V1(s,0))-
1+ [y

—(s—0)?

Q—('va) C
e e P s

< Ce—(s—a)/Z S
14yl

LOO

LOO
C

+ .
RN

Q—("G)

10105, 0l = Ce™ P llge(@) o+ Ce™5™2 ) T s
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(i1) The quadratic term 9,(s, 0):

(D2(s,0)) - C(s—o) C(s—o)
lep . = SZT’ |(D2(s, 0))ellLe < sl/—2+e’

where e = €(p) > 0.

(iii) The correction term v3(s, 0):

(U3(s,0))— C(s—o) C(s—o)

lep LOCSS—Z’ ||(193(Sa(7))e||L°°§s37
(iv) The nonlinear term 94(s, 0):

(Va(s,0))— C(s—o) C(s—o)

lep . = 5—2’ |(D4(s, 0)ellLe < T

Proof. The proof simply follows from definition of the set S4 and Lemma 4.2. In
particular, we make use of Lemmas A.8 , A.9 and A.10 to derive the bounds on
the components of the terms B, D and R as follows:

2

Y IB@weI= s, Bl(ff('? < IB@eln = e
meN", |m|=0 § y Lo S N
and
22: Ru()] < 5 “—R‘(s) < IR~ <~
m\S = 3 —Tl/z’ e(S Loo_3—/4,
meN", [m|=0 § L+{yP (e~ s g
and
2
D(q)-(s) Clns C
> |D(‘1>m<s)|+HT|y|3 ST IP@e®)e <

meN" |m|=0
where € = €(p) > 0. We simply inject these bounds into the a priori estimates
given in Lemma 4.2 to obtain the bounds on (9,,)— and (¢,,). for m =2, 3, 4. The
estimate on ¥ directly follows from Lemma 4.2 and the assumption g (s) € Sa(s).
This ends the proof of Lemma 4.3. (]

By the formula (4-6), the estimates (4-3) and (4-4) simply follow from Lemma 4.3
by addition. This concludes the proof of Proposition 4.1. U

4B. Conclusion of Proposition 3.5. We now give the proof of Proposition 3.5,
which is a consequence of the dynamics of (2-28) given in Proposition 4.1. Indeed,
item (i) of Proposition 3.5 directly follows from the result below.

Proposition 4.4 (control of ¢ (s) by (g0, q1)(s) in Sa(s)). There exists A7 > 1 such
that for all A > A7, there exists s7(A) > 1 such that for all so > s7(A) if

(a) Q(SO) = l)[/d(),dl,s‘()(y)v Where (dOv dl) € DA,S()?
() q(s) € Sa(s) forall s € [sg, 511,
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then for all s € [sg, s1], we have

o AZln’s
foralli, je{l,...,n}, |q2;(s)| < 2 (4-11)
q-(y.5) A?
— o < ——, 4-12
H T+ 0P | = 292 Ige(s) Iz < NG (4-12)

where Dy 4, is introduced in Proposition 3.4 and 4, 4, is defined as in (3-1).

Proof. Since the proof of (4-12) is similar to the one written in [Merle and Zaag
1997], we only deal with the proof of (4-11) and refer to Proposition 3.7 in that
paper for the proof of (4-12). We argue by contradiction to prove (4-11). Let

i, j €{l,...,n}and assume that there is s, € [sg, s1] such that
A% In’(s) A% In?(s,)
foralls € [s0,5.), 192, (9)l < —5—— and g0 j(s) = —5—
%

Assuming that g ; ; (ss) > 0 (the negative case is similar), we have on the one hand

, d (A%In’s 2A%Ins, 2A%In%s,
2., (5%) = — 2 = 3 — 3 .
ds K s=s, s; s;

On the other hand, we have from (4-2),

) 2A%In’s, Clns,

9, (%) = — 53 ER
Thus the contradiction then follows if 242 > C, and this concludes the proof of
Proposition 4.4. U

From Proposition 4.4, we see that if g(s) € dS4(s1), the first two components
(g0, q1)(s1) must be in 8§A (s1), which is the conclusion of item (i) of Proposition 3.5.

The proof of item (ii) of Proposition 3.5 follows from (4-1). Indeed, it is easy to
see from (4-1) that for alli € {1, ..., n} and for each g, €; = £1, if go(s1) = eoA/sl2
and g1, (s1) = el-A/slz, it follows that the signs of

dqi i
TLi(s1)
N

dqo
— d
s (s1) an
are opposite the signs of
d (€A d (€A
a(s—z)(sl) and a(s—z)(sl)

respectively. Hence, (qo, ¢1)(s) will actually leave Sa (s) at 57 > s for sp large
enough. This concludes the proof of Proposition 3.5.
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Appendix: Some elementary lemmas

Lemma A.l1. For each T > 0, there exists only one positive solution of (1-9).
Moreover, the solution \r satisfies the asymptotic

Y (t) ~ ko (T — )"V DNIn(T — )7/ P~V g5t — T, (A-1)

-1 a/(p=1)
Kaz(p—lr‘/(”—”(—p ) .

where

2
Proof. Consider the ODE

v =yP (Y2 +2), ¥(0) > 0.

The uniqueness and local existence are derived by the Cauchy-Lipschitz property.
Let Tiax, Tmin be the maximum and minimum times of the existence of the positive
solution; i.e., ¥ (¢) exists for all # € (Tinin, Tmax). We now prove that Ty < +00

and T, = —oo. By contradiction, we suppose that the solution exists on [0, 4-00);
we have
1 ,ll// 1
lim / ——————dr= lim dt = +o0.
n—>+oo Jo PP In*(Y2+2) n—+oo fi

Since /Ot' V' /(WP In* (% +2)) dt is bounded, the contradiction then follows. With
a similar argument we can prove that Ty, = —o0. Let us now prove (A-1). We
deduce from (1-9) that

T t_/+°° du
oo wPIn @ +2)°
Thus, for all § € (0, p — 1), there exist t5 such that for all ¢ € (t5, T'), we have
+o00 du +00 du
/ s<T—1< / 5
vy uPt vy uP”
For all ¢ € (t5, T') it follows that

((p—1+48)(T—0)~/P=1*Y

from which we have

<Y@) < ((P—1—8)(T_t))*1/(p7175)’

1
p—1

Inyr(t) ~— In(T —¢t) ast—T,

ln(lﬂ2 +2)~— In(T —¢t) ast—T.

p—1

Hence, we obtain

Y = I +2) ~ yr (-

In(T — t))a ast—T, (A2
p—1
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which yields

w’w( 2

o
o7 —Z NI =" ast—> T,

This implies
1 1- 2\ ! o 2\ o
pw(_> (T —v)| dUN(_) (T—0)In(T—1)[* ast—T,
p—1 p—1/ ], p—1
which concludes the proof of (A-1). Ol
Lemma A.2. Forallo € (0,1), 6 >0and 0 < h < 1, the integral

1
I(h) = / (s —h)%s%ds
h

satisfies:

G) If a+0 > 1, then

1 1 l—a—6
I(h)5<1—a+a+9—1)h :

@{i) If a +6 =1, then
I(h) < L—l— [Inh|.
l—«a

(i) If a +6 < 1, then

1
I = 1= =%
Proof. See Lemma 2.2 of [Giga and Kohn 1989] (I

Lemma A.3 (a version of the Gronwall lemma). If y(¢), r(t) and q(t) are contin-
uous functions defined on [ty, t1] such that

y(t) Syo-i-/ y(s)r(s)ds—i—f h(s)ds forallt e [ty, 11].

1o 1o

Then,
t t S
NOETN (yo + / h(s)e o @ ds)'

fo
Proof. See Lemma 2.3 of [Giga and Kohn 1989]. U

Lemma A.4. Foreach T, < T, § > 0. There exists € = €(T, T, 8, n, p) > 0 such
that for each v(x, t) satisfying

18,0 — Av| < Clo|P In* (02 +2) forall |x| <8, te(T»,T), §>0, (A-3)

and
lv(x,t)| <ey(t) forall|x| <8, te (T, T), (A-4)

where  (t) is the unique positive solution of (1-9). Then, v(x, t) does not blow up
at (0, T).
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Proof. Since the argument is almost the same as in [Giga and Kohn 1989] treated
for the case o = 0, we only sketch the main step for the sake of completeness. Let
¢ e CPRY), o =1if |x| <8/2, ¢ =0if |x| > §, and consider w = ¢v satisfying

oo —Aw= fo+g, (A-5)
where

f=0v—Av and g=vA¢p—2V-(vVe).

By using Duhamel’s formula, we write

w(t) =" P (w(Ty) + / (""%(ef)
& +e!"P2(g))dr forallt € [T, T), (A-6)

where e# is the heat semigroup satisfying the following properties: for all 1 € L,
le"®hllro < |hllpe and ||e'2Vh]| e < Ct™V?||h||p~ forall f > 0.

The formula (A-6) then yields

t
lo@)lz~ <C+C / llo @)= [ 117~ I @ +2)(©) | oo 1 25)
> -

t
+C | (=) 2 v@) |Leqy<sy dT (A-T)
T

for some constant C = C(n, p, ¢, T, T»,5) > 0.
From (A-3), (A-4) and Lemma A.1, we find that for all |[x| <§,and 7 € [T>, T),

@I I (A0 +2) < CYP T @ WP +2) < C(T - 1)
and
()| < C(T — ) VP DIn(T — 7)|7*/ P~ D,

The estimate (A-7) becomes

t
o)L= < C+CeP™H | (T =) ()| = dT
T

t
+Ce| ¢t—0) V2T =) VDT = 0)|7YP D gr. (A-8)
b3

In particular, we now consider 0 < A < % fixed, then we have

(T—7) V=D (T =) 7P~ D <C(a, W) (T—7) "V P=DY forall te(D, T).
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Hence, we rewrite (A-8) as
t
oz < C+Ce?™ | (T —1) M)~ dT

T
t
+Ce| (t—) VAT -7y~ WP=DtM gr (A-9)
T

where C(n, p, ¢, a, €, A, p). Beside that, by the change of variables s =T —,
h =T —t we have

t T-T,
=) V(T =) 0P g = / (s —h)~ 2 () PP gs,  (A-10)
T h

where 0(p, A) = (1/(p— 1)+ 1).

Case 1: If 8(p, 1) < %, by using (iii) of Lemma A.2 we deduce from (A-9), (A-10)
that

t
lo@)|lgo < C+CeP™ 1 | (T =) Hw(s)| L~ ds.
T;

Therefore, by Lemma A.3,
lo@ll~ < CT =)= (A-11)
Choose € small enough such that Ce? —1' <1/@(p —1)). Then, we conclude from
(A-11) that
e, D] < C(T —1) /P~ for x| <1 ¢t <T. (A-12)
By using parabolic regularity theory and the same argument as in Lemma 3.3 of
[Giga and Kohn 1987], we can prove that (A-12) actually prevents blowup.

Case 2: O(\, p) = % is similar to the first case. By using (ii) of Lemma A.2, (A-9)
and (A-10) we get

t
lo(@®)llzx < C(A+[In(T — 1))+ Ce?~1 | (T —5) " w(s)ll 1~ ds.
T,
However, we derive from Lemma A.3 that
lo @~ < C(T — 1)~k (A-13)
where C =C(n, p, ¢, T, T», 5§). We now take € small enough such that Cel—1 <
1/(2(p — 1)), which follows (A-12).

Case 3: For (%, p) > 1, by using Lemmas A.2, A.3 and similar arguments we
obtain
lv(x, )| < C(T —n)'?79PP forall |x| <8, 1 €[Th, T).

Repeating the step in finite steps would end up with (A-12). This concludes the
proof of Lemma A 4. O
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The following lemma gives the asymptotic behavior of A(s) and ¥ (s).

Lemma A.5. Let h(s) and | (s) be defined as in (2-3) and (2-4) respectively. Then

we have:
1 —1 -1 1
(i) . _p=l el 2) g 0(—2) ass — +0o. (A-14)
In(yry(s) +2) 2s 2s s
1 2] 1
G)y ) =—(1-2-C V1 0(=) ass— 400 (A-15)
p—1 s 52 52
Proof. (i) Consider 1 (¢) the unique positive solution of (1-9). We have
+o00 d
T—t= / a—xz (A-16)
10) xPIn (X +2)

An integration by parts yields

1
Y1) In" (Y2 (1) +2)

1 2 1
- +0 . (A-17
) <p—1 (p— 12 In(y2(1) +2) ((lnz(W(t)—i—Z)))) (A1
Let us write ¥ (1) = ¥;(s), where s = — log(T — t); then we have

T—t=

W) = —— — —%  In(n@ () +0() ass— +oo,  (A-18)
p—1 (p—-1

from which we deduce that

S o In(s)

In(yri(s)) = +0(1) ass— 400, (A-19)

p—1 p-1
which is the conclusion (i).
(i1) From (2-3) and (A-17), we have

1 2 1
h(s) = —— — — +0 (#> (A-20)
p—1 (p—1D?In(yi(s)+2) In“ (Y (s) +2)
Using (A-14), we conclude the proof of (A-15), as well as Lemma A.5. U

Lemma A.6. Let N be defined as in (2-11). We have

i} pw? |w|Ins |w|? 3 .
N(w,s)=T+0( 2 )+O<T)+O(|w| ) as(w,s)— (0, 4+00).
(A-21)

Proof. From the definition (2-11) of N, let us write

N(w, s) = Ni(w, s) + Na(w, s),
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where
N, 8) =h(s)(lo+ 1P @+ 1) — 0+ 1)) —w,
In“(Yi@+1)*+2) 1)
In®(y? +2) ’

No(W, s) = h(s)|w+ 117" (w+ 1)(

From (A-15) and a Taylor expansion, we find that

_ pw?  aw || Ins |w|? 3 }
Nl(w’s):T_T+0 2 +0 S +O0(wl|’) as (w,s)— (0, +00).

We now claim the following

- - 1 - 2
Ny, s) = 22 4 0<|w|2ns> + o(ﬂ) as (10, 5) — (0, 400).  (A-22)
s s s
Then, the proof of (A-21) simply follows by addition.
Let us now give the proof of (A-22) to complete the proof of Lemma A.6 . We
set

f@) =" @i@+1>+2),  |0] < 3.
We apply Taylor expansion to f(w) at w = 0 to find that
vi 11O

W+ (w)2,

(W) :1n°‘(1ﬂ12+2)+2aln°‘_1(1012+2)w12+2 >

where 6 is between 0 and w, and

e M)
F1®) = el =) I 23O +1) +2)<¢12(9+1)2+2
@y — 297 O+ 1)?)

WO+ 1)2+2)2

+aln® YO+ 1> +2)
Since 0] < %, one can show that

If" @) < Cln* '(yi+2) forall 8] < 1.
Thus, we have
f@) =Y +2) + 2 In* (Y2 +2)w
+Oo(wf I (Y +2)) + 0(

o] 1na—1(w12+2))
Y
as s — +o00. This yields
In® (Y (w+ 1)> +2) 2o ( |2 ) ( |w| )
-1 0 o ———
In®(y? +2) In(y? +2) In(y? +2) In(y? +2)y}
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as (w, s) — (0, +00). From this and (A-14) we derive
In® (Y2 (w + 1)> 42 — Dw Ins|u |?
1 (wl(u;—i_ )+ )—1=a(p )w+0<ns|2w|)+0(ﬂ>' (A-23)
In® (i (s) +2) s s s
From the definition of N, (A-15), (A-23) and the fact that

o+ 1P+ 1) =1+ pw+ O(w|*) asw — 0,
we conclude the proof of (A-22) as well as Lemma A.6. U

Lemma A.7. For all |z| < Ky, there exists C(K1) such that for all s > 1 we have

In®(Yiz% +2 r=lz|  C(K
h(S)|Z|p_1Z n (‘/ﬁj + ) _ |Z| < < ( 1)’ (A-24)
lna(l;”] +2) p—1 s
where h(s) satisfies the asymptotic (2-5).
Proof. We consider f(z) = ln"‘(wlzz2 + 2) for all z € R; then we write
Izl
(Y2 4+2) =n“(Wi+2)+ | f'(v)dv.
1
Recalling from (2-5) that 2(s) =1/(p — 1) + O(1/s), we have
In% 2Z2 4 2 z p—lZ
h(s)lz|P 'z ,f*”lz )L
In“ (Y7 +2) p—1
Clz|P I Clz|?
_|—2| | f'(v)| dv + 2 . (A-25)
(7 +2) Jy 5
From (i) of Lemma A.5 we have
1 C

- @@ < )
In(yi+2) ~ s

Thus it 1s sufficient to show that

|z|P /Iz .
ARR) = ————— |f'(v)|dv <C(K;) forall|z] <K,
' (y?+2) Ji
where )
vy
') =aln* i +2)—1 .
') R

For 1 < |z| < K}, it is trivial to see that |A(z)| < C(Ky). For |z| < 1, we consider
two cases:
Case 1: o« —1>0. Then

1
A2) =< 2la |z|Pf Lav<cw.

z]
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Case 2: « —1 < 0. Then

h,lafl 2Z2+2 1
A@) < 2allor T WEHD 71,
In* (Y1 +2) Jig v

o If Y122 > 1 then

In'=¢(y2 42 1
A(z) §2|Q|M|Z|p/ !
|

—dv < C(Ky).
In'~(y1 +2) =y
o If y1z2 < 1then|z| <v < 1,01_1/2 we deduce that

2In' (Y7 +2)
TIZI/
In'=%(2) |

z|

1
Lav <cy. 0

z|

1AR)| < 2laly ™

Lemma A.8 (control of the nonlinear term D in S4(s)). For all A > 1, there exists
03(A) > 1 such that for all s > 03(A), q(s) € Sa(s) implies

Ins(1+|yD*
3

forall |yl <2K+/s, |D(q,s)| < C(K) ; (A-26)

and c
I1D(q, s)llLe®ny < s (A-27)
Proof. From the definition (2-32) of D, we have the decomposition

D(q,s) = Di(q,s) + Da2(q, s),
where

Di(q,s) = (h(S) - ﬁ)(lq +olI” N g+e) - @+9),

Dy(q,s) =h(s)lg+ol” (g +@)Lg+e,s),

h(s) admits the asymptotic behavior (A-15), and L is defined in (2-33). The proof
of (A-26) will follow once we show for all |y| < 2K./s

2 _ 4
D — a(|y|®—2n) )| < C(1+|y| )lnS’ (A28)
4ps? s - 53
2-2 1 Y1
‘Dz_,_(M_gq)‘ Scm. (A-29)
4ps S s

Let us give a proof of (A-28). From the definition of S4(s), we note that if g(s) €

Sa(s), then

CA%In® s(1+ |y
G ’

forally e R", |q(y,s)| < (A-30)

2
lg ()l Loy < 7. (A-31)
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From the definition (2-26) of ¢ and (A-31), we see that for all |y| < 2K /s, there
exists a positive constant C(K) such that

0 <(@+9)©,s) = CK). (A-32)

o1
C(K)

Using Taylor expansion and the asymptotic (A-15), we write

1
Di(q,s) = (— 0(%)) (¢ —p+(pe? ' —1)gq) + 0(g?). (A-33)

—Ds

Using again the definition of ¢ and a Taylor expansion, we derive

¢p21_<|y|2—2n)+0<1+|y|4>

4s 52
(Iyl*—2n) 1+ |yl
v=1- 4ps +O 52 ’

pp’ ' —1=p—1

2 4
_(p =Dyl —2n)+0<1+|y| )
4ps 52

as s — +o0. Inserting (A-30) and these estimates into (A-33) yields (A-28).
We now turn to the proof of (A-29). Recall from (2-33) the definition of L,

Lg+e,s)
B 207
T In(y2+2)(y?

where f(v) = lno‘(z/flzv2 +2), v € R. From (A-32) and a direct computation, we
estimate

1 q+¢ B
+2)(4+¢—1)+m/1 () (g +¢—v)di,

L Y L _ lg+o—11°
ln“(w12+2)/1 f g+ —v)dv) < C(K)=— :
which yields
209 i(qg+¢—1) lg+o—1°
L ,8) — <CK)—/—. A-34
' (g+o,s) 210712 < C(K) : ( )

From (A-14) and (A-34), we then have

a(p—D(@q+e—1)
S

= C(K)

(IqJﬂp—ll2 IHSIq+<p—1|)
+ - ,
R) R

‘L(q +¢,5)—

and additionally we have

C(1+]y%
lg+¢—1]| < 7,
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which implies

a(p—D(g+e—1) Ins(1+|y*)

‘L(q +@,8) — <C(K) (A-35)

s 53
Moreover, from definition of D; and (A-35) we deduce that

(1+|y| )Ins

‘Dz(q 5) — ( an <p”+((p+1)<p”—p<o”_‘)q)‘ 3

’

and

2 4
p+1_¢p:_(|y| =2 of LN ’
4ps 52

_ (yP=2) (Lt
(P+Dg" —pePl=1-=2——+0(—3

as s — +o00, which yields (A-29).
We now prove (A-27). From (A-15) and the boundedness of ¢ and ¢, we have

C
1Di(g.5) = -

It is sufficient to prove that for all y € R",

Da(q, 9] < S5

Indeed, from definition (2-33) of L we deduce that

lna(lﬂ222+2)
Da(q,s) = h P Wit P .
2(q,8) =h(s)lg +¢l” (g +¢) (Y21 2) (g +ol” (g +¢)
Using Lemma A.7 we deduce
C(K)
1D2(q, )] = —— O

Lemma A.9. For s large enough, we have:

(1) estimates on 'V

C(1+ |y
IV (y, s)| < ca+yh forall y e R",
s
and
2_9 ~ ~ 4
V=_(|y|4—n)+v withV=0< aabl ) forall |y| < K+/s.
s
(ii) estimates on R:
C

IR(y, s)| < " forall y e R,
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and

Cp s 1+ |y[*
R(y,s)zs—z-i-R(y,s) with R = O 3 for all |y| < K+/s.

Proof. The proof simply follows from Taylor expansion. We refer to Lemmas B.1
and B.5 in [Zaag 1998] for similar proofs. O

Lemma A.10 (estimates on B(q)). For all A > 0 there exists o5(A) > 0 such that
forall s > o5(A), q(s) € Sa(s) implies

|B(q(y,s)| < Clgl, (A-36)
and
|B(q)| < Clql?, (A-37)
with p = min(p, 2).

Proof. See Lemma 3.6 in [Merle and Zaag 1997] for the proof of this lemma. [l
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Troisieme groupe de cohomologie non ramifiée
des hypersurfaces de Fano

Jean-Louis Colliot-Thélene

Sur un corps algébriquement clos et sur un corps fini, on établit de nouveaux
résultats d’annulation pour la cohomologie non ramifiée de degré 3 des hyper-
surfaces de Fano.

We establish the vanishing of degree three unramified cohomology for several
new types of Fano hypersurfaces when the ground field is either finite or alge-
braically closed of arbitrary characteristic.

Soit X une variété projective, lisse, géométriquement connexe sur un corps k et
£ # car(k) un nombre premier. Pour tout couple d’entiers i >0 et j € Z, le groupe de
cohomologie non ramifiée H. (X, Qy/Z;(j)) est par définition le groupe des sec-
tions globales du faisceau pour la topologie de Zariski sur X associé au préfaisceau
qui a un ouvert U C X associe le groupe de cohomologie étale Hét(U , Qe/Z¢()))
de U a valeurs dans le groupe des racines £-primaires de 1’unité tordues j fois. Les
propriétés générales de ces groupes sont décrites dans le rapport [Colliot-Thélene
1995]. Le groupe Hfr(X , Q¢/Z,(1)) est la composante ¢-primaire du groupe de
Brauer de X. Les groupes HI’;r(X ,Q¢/Z4(j)) sont des invariants k-birationnels
des variétés projectives et lisses. On a une application naturelle du groupe de
cohomologie galoisienne H'(k, Q¢/Z,(j)) = Hét(k, Q¢/Z¢(j)) dans le groupe
H! (X, Q¢/Z(j)), application qui est un isomorphisme si X est k-birationnelle
a un espace projectif P}’

On s’intéresse ici au groupe H2> (X, Q;/Z¢(2)). Ce groupe joue un role impor-
tant dans 1’étude [Colliot-Théléne et Voisin 2012; Kahn 2012; Colliot-Thélene et
Kahn 2013; Colliot-Thélene 2015] de I’application “cycle” sur le groupe de Chow
des cycles de codimension 2

cycy : CHX(X) ® Zy — Hy(X, Z,(2)).

Pour une hypersurface cubique lisse X C P sur le corps des complexes, n =4 et
n =135, on sait que I’on a Hrfr(X, Q¢/Z¢(2)) =0 pour tout £. C’est une conséquence
[Colliot-Thélene et Voisin 2012, théoreme 1.1] de la conjecture de Hodge entiere

MSC2010: 14F20, 14J45.
Mots-clefs : Fano hypersurfaces, unramified cohomology.
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pour les cycles de codimension 2 sur ces hypersurfaces cubiques. Pour n = 4, cette
conjecture est facile a établir (voir le théoreme 2.1 ci-dessous). C’est aussi un cas
tres particulier d’un théoréme général de Claire Voisin sur les solides uniréglés.
Pour n = 5, cette conjecture fut démontrée dans [Voisin 2007, Theorem 18].

Dans [Colliot-Thélene 2015, §5.3], j’ai discuté des extensions de ce résultat aux
hypersurfaces lisses de degré d < n dans un espace projectif Pg avec n quelconque.
Par la formule d’adjonction, ce sont exactement les hypersurfaces lisses de Fano,
c’est-a-dire a fibré anticanonique ample.

Dans cet article, on considere la situation sur un corps algébriquement clos de
caractéristique quelconque, et sur un corps fini.

Plus précisément, pour X C [P} une hypersurface lisse de degré d < n sur un
corps k de caractéristique différente de £, on établit

H(X,Q¢/Z,(2)) =0

dans chacun des cas suivants :
(i) k algébriquement clos et n # 5 (théoreme 2.1);
(i) k=TF finietn #4, 5 (théoréme 3.1);

(iii) k algébriquement clos (de caractéristique différente de 2 et 3),d =3 etn=>5
(théoréeme 4.1);

(iv) k =T fini, d =3 et n = 4 (théoréme 5.1).

Le cas des hypersurfaces cubiques lisses dans [P’g reste ouvert.

La démonstration du cas (iii) repose sur un théoréme de Charles et Pirutka
[2015]. Dans le cas (iv), on offre deux démonstrations, utilisant toutes deux la
théorie du corps de classes supérieur de K. Kato et S. Saito. L’une de ces démons-
trations passe par un théoreme de Parimala et Suresh [2016].

Pour X une variété sur un corps k et k une cloture séparable de k, on note
)? =X x k ]E

1. Quelques rappels

Lemme 1.1. Soit F un corps fini. Soit X C P}, n > 4, une hypersurface cubique
lisse. Le pgcd des degrés des extensions finies L de [ sur lesquelles X possede
une L-droite est égal a 1.

Démonstration. D’apres Fano, Altman et Kleiman [1977], sur tout corps k, la va-
riété de Fano F = F(X) des droites de X C [}, est non vide, projective et lisse
[Altman et Kleiman 1977, Corollary 1.12] pour n > 3 et géométriquement connexe
pour n > 4 [Altman et Kleiman 1977, Theorem 1.16(i)]. Sur un corps fini F, les
estimations de Lang—Weil donnent le résultat. U
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Remarque 1.2. Des résultats précis sur I’existence de droites sur le corps fini F
lui-méme sont obtenus dans [Debarre et al. 2017].

Proposition 1.3. Soit X une surface projective, lisse, géométriquement connexe
sur un corps k. Soit £ un nombre premier différent de la caractéristique de k. Si k
est algébriquement clos, ou si k est fini, Hrfr(X, Q¢/Z¢(2)) =0.

Démonstration. On a Hﬁ”r(X ,Q¢/Z¢(2))CH 3k(X), Qg /Z¢(2)). Ce dernier groupe
est nul si k est algébriquement clos, car la £-dimension cohomologique du corps
des fonctions k(X) est 2.

Pour toute surface X projective, lisse, géométriquement connexe sur un corps
fini et ¢ premier différent de la caractéristique de k, on a Hfr(X ,Qu/7,(2)) =0
(Sansuc, Soulé et I’auteur [Colliot-Thélene et al. 1983, remarque 2, p. 790] ; Kato

[1986, Theorem 0.7 and Corollary]). O

Proposition 1.4. Soit n > 3 un entier et soit X C P} une hypersurface cubique
lisse sur un corps k. Soit £ un nombre premier différent de la caractéristique de k.

(1) Si X possede un zéro-cycle de degré 1, le quotient du groupe Hlfr(X ,Qe/Z4(2))
par Uimage de H3(k, Q;/Z¢(2)) est annulé par 6.

(i1) Si X contient une droite k-rationnelle, le quotient du groupe Hr?r(X ,Qo/Z6(2))
par Uimage de H?(k, Q¢ /Z¢(2)) est annulé par 2.

(iii) Si k est algébriquement clos, Hr?r(X , Q¢/Z4(2)) est annulé par 2.
(iv) Si k est fini, Hn3r(X, Q¢/Z4(2)) est annulé par 2.

Démonstration. Les énoncés [Auel et al. 2017, Theorem 1.4, Proposition 2.1]
donnent que ce quotient est annulé par 6 si X possede un zéro-cycle de degré 1,
et par 2 si X contient une droite k-rationnelle. Ceci établit (i), (ii) et (iii). Pour
k un corps fini, X posseéde un zéro-cycle de degré 1, et méme un point rationnel.
L’énoncé (iv) pour n = 3 est un cas particulier de la proposition 1.3. Pour n > 4,
I’énoncé (iv) résulte de la combinaison de 1’énoncé (ii), du lemme 1.1 et d’un
argument de corestriction-restriction. U

2. Hypersurfaces de Fano dans P}, k algébriquement clos, n # 5

On étend en toute caractéristique des résultats de [Colliot-Thélene 2015]. On en
profite pour rectifier la démonstration de [Colliot-Thélene 2015, théoréeme 5.6(vi)]
pour une hypersurface dans P4,

Théoréme 2.1. Soit n > 3 un entier, et soit X C P} une hypersurface lisse de
degré d sur un corps algébriquement clos k. Soit £ un nombre premier différent de
la caractéristique de k.
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(i) Pourn =3 etn > 6, 'application cycle
cycy : CHX(X) ® Zy — H*(X, Z,(2))
est surjective.
(i1) Pourn =4 etd <4, I’application cycle
cycy : CHX(X) ® Zy — H*(X, Z,(2))
est surjective.
(iii)) Pourn #5etd <n,ona Hrfr(X, Q¢/Z¢(2)) =0.

Démonstration. Etablissons (i). Pour n = 3, la classe de tout k-point de X engendre
le Z,-module H*(X, Z;(2)) ~ Z,. L énoncé (i) est donc clair pour n = 3.

Supposons n > 4. Soit U = PP} \ X. Pour tout entier m > 0, on a la suite exacte
de cohomologie étale a supports propres [Milne 1980, 111.1.30] :

HYU,Z/0™(2)) — H*(P", Z/0™(2)) - H*(X, Z/"(2)) — H>(U, Z/0"(2)).

Les groupes finis H (U, Z /€™ (2)) et H**~I(U, Z /€™ (2n — 2)) sont duaux (dualité
de Poincaré [Milne 1980, VI.11.2]).
Pourn > 6,0ona2n—4 > 2n—5 > n. Le théoreme de Lefschetz affine [Milne
1980, V1.7.2] donne H**~*(U, Z/¢" (2n—2)) =0et H*" (U, Z/" (2n —2)) =0.
La fleche de restriction H*(P", Z/¢™(2)) — H*(X, Z/€™(2)) est donc un iso-
morphisme de groupes finis pour tout m. La fleche de restriction

Ze=H'(P", Ze(2)) » HY (X, Zy(2))
est donc un isomorphisme. Ceci implique que I’application cycle

cycy : CHX(X) ® Zy — H*(X, Z,(2))
est surjective. Ceci établit (i) pour n > 6.

Pour n > 4, la considération de la suite exacte
H3(P", Z/¢"(2)) — H>(X,Z/¢™(2)) — HX(U, 7/ (2)),
la dualité de Poincaré et le théoréme de Lefschetz affine donnent alors
H3(X,Z/0"(2)) =0

pour tout m et donc H 3(X, Zy(2)) = 0. Ceci sera utilisé dans la démonstration du
théoreme 3.1 ci-apres.
Etablissons 1’énoncé (ii). Soit donc n = 4. L’ argument qui suit corrige celui donné
dans [Colliot-Thélene 2015, théoreme 5.6(vi)].

Pour tout degré d, et tout entier m > 0, la fleche de restriction H 2([P"‘, 7/0") —
H?(X,Z/£™) est un isomorphisme, comme on voit en utilisant la suite exacte de
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cohomologie étale a supports, la dualité de Poincaré sur U = P*\ X, et le théoréme
de Lefschetz affine. Ceci implique H%(X, Z/€™) ~ 7 /£", et ceci implique que 1’ap-
plication cycle CH!(X) /" — H 2(X, wen) définie via I’application de Kummer
Pic(X) /" — H?(X, jen) est un isomorphisme.

Le cup-produit sur la cohomologie étale

H*(X,Z/e™(2)) x H*(X,Z/¢"(1)) - HS(X, Z/¢"(3)) = Z/¢™

est un accouplement non dégénéré de groupes finis (dualité de Poincaré). D apres
ce qui précede, chacun des deux termes de cet accouplement est isomorphe a Z/£™.
Considérons le diagramme

CH*(X)/¢™ x CHY(X)/em — 7/em

|

H*(X,Z/0"(2)) x H*(X,Z/t"(1)) — Z/e"

ou I’accouplement supérieur est donné par I’intersection des cycles.

Pour £ # 2 = (dim(X) — 1)!, ce diagramme est commutatif [Milne 1980, Propo-
sition VI.10.7], Pour tout premier £, il commute sur les couples de cycles (Z, Z;)
transverses I’un a I’autre [Milne 1980, Proposition VI.9.5]. Soit Y = HNX C X la
trace d’un hyperplan H C P*. Sous I’hypothése d < 4, I’hypersurface X contient
une droite L C P*. Ceci est bien connu pour d = 3 ; pour un énoncé général, voir
[Debarre 2017, Theorem 2.1]. Dans I’accouplement supérieur, on a (L, Y) = 1. En
appliquant [Milne 1980, Proposition V1.9.5], on voit que la classe de cycle de L
dans H*(X, Z/€™(2)) ~ Z /€™ engendre ce groupe. Ainsi I’application cycle

cycy CH*(X)®7Z; — H*(X, Zi(2))

est surjective. Ceci établit (ii) pour n = 4.

Montrons maintenant (iii). D’apres [Kahn 2012, théoréeme 1.1] ou [Colliot-Thélene
et Kahn 2013, théoreme 2.2], la surjectivité de

cycy : CHA(X)®Z — H*(X,Z,(2)) = Z,

implique que le groupe Hrfr(X , Q¢/Z4(2)) est divisible.

D’apres un théoréme de Roitman [1980] (voir aussi [Chatzistamatiou et Levine
2017, §41), I’hypothese d < n implique que sur tout corps algébriquement clos K
contenant k, I’application degré CHo(Xx) — Z sur le groupe de Chow des zéro-
cycles est un isomorphisme. D’aprés un argument général (voir [Colliot-Théleéne
et Kahn 2013, proposition 3.2]), ceci implique I’existence d’un entier N > 0 qui
annule H3.(X, Q/Z,(2)).

iy
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Sous I’hypothese n # 5 et d <n, on a donc établi que le groupe Hn3r(X ,Qe/74(2))
est divisible et d’exposant fini. Il est donc nul. U

Remarque 2.2. Pour k = C et X C P} comme ci-dessus avec d < n et tout
corps F contenant k, et pour n > 6, on a établi dans [Colliot-Thélene 2015, théo-
réme 5.6(vii)] que la fleche naturelle

H*(F,Q¢/Z¢(2)) — HX(XF, Q¢/Z(2))

est un isomorphisme. Il est tres vraisemblable que ce résultat vaut sur tout corps k
algébriquement clos, avec £ distinct de la caractéristique de k.

3. Hypersurfaces de Fano dans P, [ fini,n =3 etn > 6

Théoreme 3.1. Soit n > 3 un entier et soit X C P} une hypersurface lisse de degré
d < n sur un corps fini F. Soit £ un nombre premier différent de la caractéristique
de F. Pour n =3 et pourn > 6,o0n a Hri(X, Q¢/Z,(2)) =0.

Démonstration. D’ apres la proposition 1.3, on peut supposer n > 6.
Pour n > 6, on a établi dans la démonstration du théoréme 2.1 que 'on a
H3(X,Zi(2)=0cet que la restriction

Z, = H* (P2, Z,(2)) > H*(X,Z,(2))

est un isomorphisme. Pour toute F-variété Y, on dispose de la suite exacte déduite
de la suite spectrale de Leray

0— H'(F, H (Y, Z,2))) > H*(Y, Z,(2)) - H°(F, H*(Y, Z;(2))) — 0.

La comparaison de cette suite pour ¥ = [P¢ et pour ¥ = X donne que I’application
cycle

cycy : CH*(X) ® Zy — H*(X, Z(2)) = Z,

est surjective.
D’apres [Kahn 2012, théoréme 1.1] ou [Colliot-Théleéne et Kahn 2013, théo-
reme 2.2], sur un corps fini F, la surjectivité de

CycCy : CH*(X)®Z; — H*(X, Zy(2)) = Z,

implique que le groupe Hn3r(X , Q¢/Z,(2)) est divisible.

Comme rappelé dans la démonstration du théoreme 2.1, I’hypothese d < n, le
théoreme de Roitman [1980] et I’argument donné dans [Colliot-Thélene et Kahn
2013, proposition 3.2] impliquent que H.(X, Q¢/Z(2)) est d’exposant fini.

Le groupe H2 (X, Q;/Z(2)) est divisible et d’exposant fini, il est donc nul. [J
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4. Hypersurfaces cubiques dans I]J’Z, k algébriquement clos

Déja pour les hypersurfaces cubiques, le théoréme 2.1, sur un corps algébrique-
ment clos, laisse ouvert le cas n = 5. Pour X C I]J’@SC une hypersurface cubique lisse
sur le corps des complexes, Voisin [2007, Theorem 18] a établi la conjecture de
Hodge enti¢re dans ce contexte. D apres [Colliot-Thélene et Voisin 2012], ceci
implique Hlfr(X ,Q/72)) =0, et [Colliot-Thélene 1995, Theorem 4.4.1] montre
alors que le résultat vaut pour toute hypersurface cubique lisse X C [P’,f sur un
corps k algébriquement clos de caractéristique zéro.

En utilisant [Charles et Pirutka 2015], on obtient I’analogue de ce résultat sur
tout corps algébriquement clos, avec une restriction mineure sur la caractéristique.

Théoreme 4.1. Soit k un corps algébriquement clos de caractéristique différente
de 2 et 3. Soit X C [P’Z une hypersurface cubique lisse. Soit £ premier différent de
la caractéristique de k. On a Hr?r(X, Q¢/Z,2)) =0.

Démonstration. D’ apres la proposition 1.4, le groupe Hr?r(X , Q¢/Z,(2)) est d’ex-
posant fini, en fait divisant 2. La proposition 1.4 donne donc déja le résultat pour
£ #£2.

Par une variante du lemme de rigidité de Suslin [Colliot-Thélene 1995, Theo-
rem 4.4.1], pour établir ce dernier énoncé Hrfr(X , Q¢/Z4(2)) =0, on peut se limiter
a considérer le cas ol k est une cl6ture algébrique d’un corps F de type fini sur le
corps premier, et ol X = Xy X g k pour Xg C [P’; une hypersurface cubique lisse.

On considere 1’application cycle CH2(X YR Zy — H*(X,Zi(2)). Elle respecte
I’action du groupe de Galois Gal(k/F'). Elle envoie donc le groupe des cycles dans
le sous-groupe

HY (X, Z,(2))” € HY(X, Z,(2))

des classes dont le stabilisateur est un sous-groupe ouvert.
Comme H*(X, Z;(2)) est un Z,-module de type fini et 'action de Gal(k/F) est
continue, le conoyau de

HY(X,Z,(2))) — H*(X, Z,(2))

est un groupe sans torsion [Colliot-Thélene et Kahn 2013, lemme 4.1].
Charles et Pirutka [2015, théoréeme 1.1] ont montré que I’application

CH (X) ® 7 — H*(X, Z,(2))’
est surjective. On conclut que le conoyau de
cycy : CH*(X) ® Zy — HY(X, Z,(2))

est un groupe sans torsion. D’apres [Kahn 2012, théoréme 1.1] ou [Colliot-Thélene
et Kahn 2013, théoreme 2.2], le groupe fini donné par la torsion du conoyau de
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I’application cycle
cycy : CHA(X) ® Zy — H*(X, Z,(2))

coincide avec le groupe quotient de HI?r(X , Q¢/Z,4(2)) par son sous-groupe divi-
sible maximal. D’apres la proposition 1.4, le groupe Hr?r(X , Qe/Z4(2)) est d’expo-
sant fini. Ceci établit Hlfr(X, Q¢/Z,(2)) =0. O
Remarque 4.2. Pour X C IP% une hypersurface cubique lisse, la conjecture de
Hodge rationnelle (a coefficients dans Q) pour les cycles de codimension deux est
connue depuis 1977 [Zucker 1977 ; Murre 1977]. La nullité de Hr?r(X , Qe /Z4(2))
établie ci-dessus et [Colliot-Théleéne et Voisin 2012, théoréeme 1.1] redonnent donc
la conjecture de Hodge entiere pour les cycles de codimension deux sur ces hy-
persurfaces, c’est-a-dire le résultat établi en 2007 par Voisin [2007, Theorem 18;
2013, Theorem 3.11]. Il convient cependant d’observer que la démonstration ci-
dessus repose de facon essentielle sur [Charles et Pirutka 2015], dont les méthodes
géométriques sont inspirées de celles de [Voisin 2007] (qui cite [Zucker 1977]).

5. Hypersurfaces cubiques dans IPﬁF‘, F corps fini

Pour les hypersurfaces cubiques lisses sur un corps fini, [Parimala et Suresh
2016] permet de compléter le théoréme 3.1 pour n = 4.

Théoreme 5.1. Soit X C I]j’ﬁFL une hypersurface cubique lisse sur un corps fini F de
caractéristique différente de 2.

(1) Pour tout £ premier différent de la caractéristique de T, on a
Ha (X, Q¢/Z(2)) =0.
(ii) Soit F une cloture algébrique de F et G = Gal(F/F). L’application naturelle
CH*(X) — CH*(X)¢
est un isomorphisme.
(ii1) L’application cycle
cycy : CHX(X) ® Zy — H*(X, Z,(2))
est surjective.

Démonstration. (i) Le cas £ #~ 2 résulte déja de la proposition 1.4. Pour démontrer
le théoréme, par le lemme 1.1 et un argument de restriction-corestriction, on peut
supposer que X contient une droite L C X définie sur le corps F. En éclatant
X le long de L, on trouve une [F-variété projective et lisse Y [F-birationnelle a X
et munie d’une structure de fibration en coniques sur [P’%. Le théoréeme de Pari-
mala et Suresh [2016, Corollary 5.6] donne alors Hrfr(Y ,Q¢/Z4(2)) =0, et donc
H(X, Q¢/Z,(2)) = 0.
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(ii) On sait (théoreme de Lefschetz faible) que H3(X, Z;) est sans torsion. Alors
la nullité de Hr?r(X , Q¢/Z,(2)) et [Colliot-Thélene et Kahn 2013, corollaire 6.9]
donnent (ii).

(iii)) Comme X est géométriquement unirationnelle de dimension 3, le conoyau
de I’application cycle CH*(X) ® Zy — H*(X, Z;(2)) est un groupe fini [Colliot-
Thélene et Kahn 2013, proposition 3.23]. D’apreés [Kahn 2012, théoreme 1.1] ou
[Colliot-Thélene et Kahn 2013, théoreme 2.2], la torsion du conoyau de 1’applica-
tion cycle s’identifie au quotient de H2 (X, @,/Z¢(2)) par son sous-groupe divi-
sible maximal. De (i) résulte donc (iii). U

Remarque 5.2. La démonstration du théoréme de Parimala et Suresh [2016] uti-
lise un résultat de théorie du corps de classes supérieur, a savoir la nullité de
H2 (S, Q/Z,(2)) pour S une surface projective et lisse sur un corps fini [Colliot-
Thélene et al. 1983, remarque 2, p. 790; Kato 1986, Theorem 0.7, Corollary]. Elle
utilise aussi beaucoup d’autres arguments délicats.

En utilisant la théorie du corps de classes supérieur, et le lien entre la surface
de Fano des droites de X et le groupe des cycles de codimension 2 de X, on
peut donner une démonstration alternative du théoreme 5.1. Soit Y /F la surface
de Fano de X, qui paramétrise les droites de X. C’est une surface projective, lisse,
géométriquement connexe [Altman et Kleiman 1977, Corollary 1.12], qui possede
donc un zéro-cycle de degré 1 sur le corps fini F.

La famille universelle des droites de X définit une correspondance entre ¥ et X
qui induit un homomorphisme CHy(Y) — CH?(X), lequel induit une application
Ag(Y) — CH%(X), ou I’on anoté Ap(Y) C CHy(Y) le sous-groupe des zéro-cycles
de degré zéro, et CH%(X ) C CH*(X) le sous-groupe des 1-cycles d’intersection
nulle avec une section hyperplane. Sur un corps de caractéristique différente de 2,
on sait [Murre 1974, VI, VII] que I’application Ao(Y) — CHZ(X) se factorise
comme

Ao(Y) — Alby (F) = CH3(X).

D’apres le théoreme de Roitman, 1’application d’ Albanese Ao(Y) — Alby (F), qui
est surjective, a son noyau uniquement divisible (en fait, pour F corps fini, cette
fleche est un isomorphisme). Ceci assure que 1’application Ao(Y)¢ - CH(Z)()? )6
est surjective. On a le diagramme commutatif

Ao(Y) ——— CH3(X)

l l

Ap(Y)¢ —— CH}(X)©
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La théorie du corps de classes supérieur [Kato et Saito 1983, Proposition 9.1]
montre que, pour toute variété projective lisse ¥ géométriquement connexe sur
un corps fini, I’application Ag(Y) — Ao(Y)Y est surjective (pour Y /F une surface,
voir aussi [Colliot-Théleéne et Kahn 2013, §6.2]). On conclut donc que CH(Z)(X ) —>
CH(Z)()? )G est surjectif, puis que CH2(X ) —> CHZ()? )G est surjectif. Ceci donne
I’énoncé (ii) du théoréme 5.1. Comme on a Hlfr()? ,Q¢/7,(12)) =0, I’énoncé (i)
résulte alors de (ii) et de [Colliot-Thélene et Kahn 2013, corollaire 6.9]. L’applica-
tion CHZ(X) ®Z; — H*(X,Z,(2)) ason conoyau fini. D’apres [Kahn 2012] ou
[Colliot-Thélene et Kahn 2013, théoréme 2.2], ce conoyau s’identifie au quotient
de H> (X, Q¢/Z,(2)) par son sous-groupe divisible maximal. Ainsi I’application
CH?*(X) ® Zy — H*(X, Z¢(2)) est surjective.

Remarque 5.3. Sur un corps fini F et pour un nombre premier ¢ # car(F), la
question si I’on a Hrfr(X , Q¢/Z,4(2)) = 0 pour une hypersurface cubique lisse X C
[P’? reste ouverte dans le cas crucial £ =2 (pour £ # 2, voir la proposition 1.4(iv)).
Elle est équivalente a la question de la surjectivité de 1’application cycle

cycy : CHX(X) @ Zy — H*(X, Z,(2)).
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On the ultimate energy bound of solutions
to some forced second-order evolution equations
with a general nonlinear damping operator

Alain Haraux

Under suitable growth and coercivity conditions on the nonlinear damping oper-
ator g which ensure nonresonance, we estimate the ultimate bound of the energy
of the general solution to the equation ii(t) + Au(t) + g (t)) = h(t), t € R™,
where A is a positive selfadjoint operator on a Hilbert space H and 4 is a bounded
forcing term with values in H. In general the bound is of the form C(1 + ||k[*),
where ||| stands for the L* norm of & with values in H and the growth of g
does not seem to play any role. If g behaves like a power for large values of the
velocity, the ultimate bound has quadratic growth with respect to ||| and this
result is optimal. If % is antiperiodic, we obtain a much lower growth bound and
again the result is shown to be optimal even for scalar ODE:s.

1. Introduction

We investigate a specific quantitative aspect of solutions to the equation
i(t) + Au(r) + g (1)) = h(t),

where V is a real Hilbert space, A € L(V, V') is a symmetric, positive, coercive
operator, g € C(V, V') is monotone and £ is a forcing term. This equation has
been intensively studied in the literature when g is a local damping term, covering
the following topics: existence of almost periodic solutions, asymptotic behavior
of the general solution, rate of decay to O of the difference of two solutions in
the energy space in the best cases; see, e.g., [Amerio and Prouse 1969; Prouse
1965a; 1965b; 1965¢; 1965d; Biroli 1973; Biroli and Haraux 1980; Haraux 1981;
1982; 1985; 1987; 1991; Haraux and Zuazua 1988; Zuazua 1988]. In the more
recent paper [Aloui et al. 2013], a result generalizing the theorems of [Haraux
1987] on boundedness and compactness has been proved for possibly nonlocal
damping terms. However when looking at the arguments of those two papers and
trying to extract an estimate of the solutions for ¢ large, we find immediately that

MSC2010: 34A34, 34D20, 35B40, 35L10, 35L90.
Keywords: second-order equation, nonlinear damping, energy bound, antiperiodic.
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the methodology cannot be adapted to that purpose. The present article aims at
improving the situation. Actually we devise a new technique which allows us to
“forget” the influence of the initial data from the very beginning of the estimates,
thus dropping all unnecessary terms related to transient behavior. The plan of the
paper is as follows: In Section 2, we introduce the basic tools used in the state-
ments and proofs of the main results. Section 3 is devoted to a very general case.
Section 4 covers a still rather general case where the damping operator behaves like
a power for large values of the velocity, this for instance allows us to encompass
any polynomial map, and we give a short list of examples in the field of PDEs of
the second order in ¢ for which our result is optimal. In Section 5 we establish two
partial results when the forcing is antiperiodic, a situation which is known (see, e.g.,
[Haraux 1989]) to prevent resonance under weaker conditions on g than the general
periodic case. We obtain a better estimate which is optimal in finite dimensions,
but in the infinite-dimensional setting we can only slightly improve the general
estimate and we do not reach what one might expect to be the optimal result.

2. Functional framework and the initial value problem

We now recall the exact functional framework that shall be used in the formulation
as well as in the proofs of our new results. We follow the presentation from [Aloui
et al. 2013] at the exception of a small difference for the approximation of weak
solutions.

2A. Monotone operators. Let H be a real Hilbert space endowed with an inner
product (-, - )%. We recall that a map A defined on a subset D = D(A) with values
in ‘H is monotone if

YU, U)eDxD, (AU-AU,U—-0U)y >0.
In addition A is called maximal monotone if
VFeH, dU e D(A), AU+ U=F.

The following result is well known; see [Brezis 1973].

Proposition 2.1. If A is maximal monotone, for each T > 0, each Uy € D(A)
and F = F(t) € WY1 (0, T; H) there is a unique function U € WLN0, T; H) with
U(t) € D(A) for almost all t € (0, T), U(0) = Uy and such that for almost all
te0,7)

U@)+ AU @) = F(1). 2-1)

In addition if for some ﬁo € D(A) and Fewl! (0, T'; H) we consider the solution
U e WL, T; H) with U(t) € D(A) for almost all t € (0, T), U(0) = Uy of

U@t)+AU@) = F@),
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then the difference satisfies the inequality

Vtel0,T], |U(t)—l7(t)|§|U0—l70|+f |F(s)—f(s)|ds.
0

This proposition allows one to define by density, for any Uy € D(A) and F =
F(t) € L'(0, T; ), a weak solution of (2-1) such that U (0) = Uy [Brezis 1973].

2B. Functional setting. Throughout this article we let H and V be two Hilbert
spaces with norms respectively denoted by || - || and | - |. We assume that V is
densely and continuously embedded into H. Identifying H with its dual H', we
obtain V < H = H' < V’. We denote inner products by (-, -) and duality
products by (-, -); the spaces in question will be specified by subscripts. The
notation ( f, u) without any subscript will be used sometimes to denote ( f, u)yy.
The duality map: V — V' will be denoted by A. We observe that A is characterized
by the property

Vu,v)eVxV, (Au,v)y yv=u,v)y.
2C. Weak solutions. We consider the dissipative evolution equation
i+ Au+g@) =h(), (2-2)
where g € C(V, V') satisfies
Vw,w)eVxV, (g)—gw),v—w)=>0. (2-3)

We consider the (generally unbounded) operator A defined on the Hilbert space
H=V x H by

DA) ={(u,v) e VxV:Au+gk) e H}
and
VY (u,v) € D(A), A(u,v)=(—v, Au+gv)).

Lemma 2.2. The operator A is maximal monotone.

Proof. Let U = (u, v) and U = (@i, 9) be two elements of D(A). We have

(AU - AU, U -U)y = —(u—1i, v—f))v+(Au+g(v)—Aﬁ—g(f)), v—ﬁ)H
—(u—i,v=0)y +(Au+g)—Ai—g(?), v—ﬁ}v,’v

since Au+ g(v) € H and A+ g(0) € H while v, v are in V. This reduces to

(AU — AU, U = U)y = (g(v) — g(D), v —D)yr.y > 0.
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Hence A is monotone. To prove that .A is maximal monotone we are left to show
that for any F = (¢, ¥) € H the system

u—v=9¢, Aut+g)+v=y
has a solution U = (u, v) € D(A). This is equivalent to finding a solution v € V of
Av+gv)+v=y —ApeV.
But now the operator C € C(V, V'), defined by
YveV, Cv=Av+g)+v,

is continuous and coercive since V — V’is the sum of a monotone operator and
the coercive duality map. Therefore by Corollary 14, p. 126 from [Brezis 1968],
C is surjective. Finally 4 is maximal monotone as claimed. U

As a consequence of Proposition 2.1, for any / € LIIOC([RJF, H) and for each
(ug, u1) € V x H there is a unique weak solution

ue CRY,V)NCYRY, H)

of (2-2) such that u(0) = ugy and 1(0) = u;. This solution can be recovered on
each compact interval [0, 7'] by approximating the initial data by elements of the
domain, approximating the forcing term 4 by C' functions and passing to the limit;
the limit is independent of the approximating elements so chosen. The next result
shows that in fact the approximation can even be made uniform on R™.

2D. Density of strong solutions.
Lemma 2.3. For any h € L2 (R, H), for each (ug, u\) € V x H and for each

loc

8 > 0 there exists (wg, wi) € D(A) and k € C' (R, H) for which the solution
w e Wol (R, V)N W2 RT, H) of

loc
W+ Aw+g(w) =k(t), w(0) =wy, w(0)=wi,
satisfies
V>0, Ju@)—w®)|+ @) —w@)| <4,
and in addition
t+1
Ve RY, / lk(s) — h(s)|*ds < 28.
t

Proof. 1t suffices to use the last result of Proposition 2.1 by observing that for any
h e L% (Rt H) we can find k € C}/(R*, H) such that

loc

n+1
VneN, / lk(s) — h(s)|*ds < 82722,
n
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Choosing (wg, w) € D(A) such that
-1
lwo —uoll + w1 —vi| <62

the result follows immediately U

3. A general ultimate bound

We now give a quite different proof, in a slightly more general case, of a result
stated in [Haraux 1985, Remark 1.2(b), p. 167]. We assume that 1 € S>(R™, H)
with

t+1
S*(RY, H) = :f €Ly .(RY, H): sup / |f(s)*ds < oo}

teRt

and we set

r+1 NG
12Nl 2+, 1y = (sup / | (s)] ds) .
t

teRT
In particular if # € L®(R™, H), then h € S* (R, H) and ||h || 2w+ g1y < Il oo, -
Theorem 3.1. Assume that g € C(V, V') satisfies the condition (2-3) and

3y >0,3C;>0,VveV, (g),v)=>yvf*-Cy, (3-1)
3K >0,3C2>20,VveV, |gwlv =Ca+ K(g(v),v). (3-2)

Then any solution u € C(R*, V)N CY(RT, H) of (2-2) is bounded on R* in the
sense that u has bounded range in V and u has bounded range in H. In addition
we have for some constant K depending only on A and g

imsup (i) + u®)1?) < KA+ 17l g )
1—00
Proof. The boundedness result is known for local damping operators g, see the
second case of Theorem IV.2.1.1 of [Haraux 1987], and in the general case it can
be proved by adapting in this case the method from [Aloui et al. 2013]. However
even in the local case these results cannot provide a reasonable estimate of the
ultimate bound. We start by an estimate in the case of a strong solutions; i.e., we

assume
ue WhH RN, V)N Wil (R, H).

loc

The general case will follow by density. Let

E(@t) = 3 (i + [lull®).
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Under the regularity conditions [ug, vo] € V x V, g(vp) € H and h € Wllo’c1 (R, H),
the function: t — E(¢) is absolutely continuous and we have, for all € R

L) = (h, i) — (), ). (3-3)

In addition ¢t — (u(¢), u(t)) is absolutely continuous and

L o), i) =1 — Nl = (gG), ) + . w).
By using (3-2), we obtain

d . . o
S @), @) < 1i* = [u)® + ul| (PIA] + C2 + K (g (i), i) (3-4)
with
P =sup{lul:ueV, |lul| =1}.
Introducing
d()=2E(t) Vt=0,
we are reduced to estimating the upper limit bound for ®(¢). Let us introduce

M =limsup P(¢)

t—00
and let us consider a sequence of times #, tending to infinity for which

D(ty) =M — l
n

In addition, for n large enough we have ¢, > t and

Oty =) =M+,
where t is any fixed positive number to be chosen later. Therefore by integrating
(3-3) on [t, — 7, t,] we find

n 1 tn 1 y ty 1 I
/ <g(u),u>dts—+/ <h,u>dt5—+—f li|>dr + — |h|* dt.
h—T n h—T n 2 th 2y

-7 t,—T

As a consequence of (3-1) we deduce

th n
/ @wxmm53+l/ P dt + Cs, (3-5)
ta—T no Yy Jy,-t
Iy ) C4 Iy 5
/ wms—+@f P di + Ce, (3-6)
th—T n ta—T

which provide an average bound of the kinetic part independent of the initial data
and the transient behavior. This is remarkable since we only used the properties
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D(t,) > M —1/nand ®(t, — 1) < M + 1/n to express the fact that 7 is large. By
combining these two estimates we also find an estimate of the form

1D(1) — B(s)| §c7(1+/" |h|2dt), (3-7)
tn

-7

which is valid for all s, ¢ in [#, — 7, #,]. As a consequence if we had an L' estimate
of the total energy instead of the kinetic part, the proof would be completed with
exponent 2 instead of 4. The difficulty in fact comes from the potential energy.
From (3-4), by integrating on [f, — 7, t,,] we find

I 5
f ) dr
ti—T

t ty
5/ |u|2dr+/ [Nl (P1h]+ C2 + K (g(@), i) ] dt + |[(u(®), ()|
I In

-7 -7

Recalling the notation M = lim sup,_, ., ®(¢) we find

tll
2
f llull*dt
th—T

th Iy
5/ |i¢|2dt+M1/2/ (Plh|+ Co+ K (g(@), i1)) dt + CsM,  (3-8)
1,

=T -

where Cs does not depend on . Combining (3-6) and (3-8) we obtain

tll
f d(t)dt
th—T
tn

In
<Cs [ hPdreCoM [ (PICHK (g(i0. i) dr+Codt (39
In

-7 th—T

and by (3-5) this implies

th tn
f O(t)dt < C10(1 +f |h|2dt)(1 + M)+ CgM. (3-10)
th Iy

- -7
Finally by combining this last inequality with (3-7) we end up with

In

(t—Cg)M§C11<I+/ |h|2dz>(1+M1/2). (3-11)
t

-7
Fixing 7 > 1 4 Cg, the result now follows easily since
tn
f > dt < (1+ )| h]|%.
th—T

The general case of weak solutions follows easily from density, relying on
Lemma 2.3. 0
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Remark 3.2. This ultimate bound has been obtained under the most general known
assumption ensuring boundedness of trajectories. It seems not to depend on the
kind of damping operator as long as the coerciveness and growth conditions are
satisfied. We have absolutely no idea whether it has a chance to be optimal in some
cases. A more natural quadratic estimate is valid in many cases, as we shall see in
the next section.

4. The case of a power-like damping term

For the main result of this section, we need to introduce an additional Banach
space Z such that
VcZCH

with continuous embeddings. The norm in Z of a vector z € Z will be denoted
by [zl z-
4A. Main result.

Theorem 4.1. Assume that g € C(V, V') satisfies the condition (2-3) and for some
o > 0 we have

3y >0, 3C1 =0, YveV, (g).v)=ylly?-Cl, (4-1)
3K>0,3C>0,VveV, [glv <C+KlpIg. 42
Then any solution u € C(R*, V)N CY (R, H) of (2-2) is bounded on R* in the

sense that u has bounded range in V and 1t has bounded range in H. In addition
we have for some constant K depending only on A and g

limsup (i (1) > + u(D)11*) < KA+ 1152 -

11— 00

Proof. We start as in the proof of Theorem 3.1; by integrating (3-3) on [t, — 7, 1]
we find

f" <g<u>,a>dzs%+/" (h. i) dt

-7 th—T

In th
< 1+1/ lall$T* dt + C(y) || @2/ @D gy,
no 2J, t—T

As a consequence of (4-1) we deduce, since n > 1,

ty [ (@+2)/2u+2)
/ (o), i) dt < C(y, r)( f |h|2dz) +C o 43)
In th

-7 -7

th Iy
/ lit]? dt < C4+ Cs(y, 7) |h|* dt. (4-4)
In

-7 th—T
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From (4-3) we also deduce, since % < (x¢+2)/(2a + 2) the important new estimate

tn ty 1/2
/ Jil< dr < Co+ Cry, r)( f P dz) 4-5)
th—T ti—T
and by (4-2) this implies
Iy In 1/2
/ lgGlyr dt < Cy + Coly, r)( f R dr) . (4-6)
th—T th—T

Recalling the notation M = limsup,_, ., ®(#) we now find

In In In 1/2
/ lul® dr < / ji? di+Co(y, T)M'/? ( / |h|2dr) +CioM+C1, (4-7)
th—T th—T th—T
where Cjo does not depend on t. Then by using Cauchy—Schwarz
th Iy
[Fwrarscooo [ wpascoromecn. @9
th—T th—T

By choosing t large enough we obtain, as a consequence of (4-8) and (4-4), the
inequality

th n
/ @ (1) dt < Cia(y) |h|*dt + Cy3. (4-9)
In

-7 th—T

We conclude by using

| (1) — D(s)] §C14(V)<1+/u Ihlzdt), (4-10)
1

n—T

which is valid for all s, ¢ in [, — 7, t,,] and follows easily from (4-3) and (4-4). U

Remark 4.2. This result is optimal. For instance if we consider an eigenvector ¢
of A corresponding to the eigenvalue A > 0, then for each k > 0, k¢ is a stationary
solution of the equation with source term /4 (#) = kA¢ for any dissipative operator g.
This shows that the ultimate bound of the energy is at least quadratic with respect
to the size of the source term.

4B. Examples. In this section, Q denotes a bounded open domain of RV with C?
boundary and o > 0, ¢ > 0. We consider four simple special cases.

Example 1 (the wave equation with local damping).

{u”+c|ut|“u,—Au=h(t,x) inR, x Q, @-11)

u=0 on Ry x 0€2.

Here V = H}(Q), H = L*(Q) and Z = L*"*(2). We assume (N —2)ar < 2.
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Example 2 (the wave equation with nonlinear averaged damping).

{un o[y u(t, x) dx)* iy — Au=h(r,x) inRy x Q, @12
u=0 on Ry x 0€2.
Here V = Hj(Q) and H = L*(Q) = Z.
Example 3 (a clamped plate equation with nonlinear structural averaged damping).
{ut, — c(fQ IVutlzdx)a/zAu, +A%u=h(,x) inR; xQ, 4-13)
u=1|Vu|=0 on Ry x 0Q2.
Here V = H}(Q), H = L*(Q) and Z = H(Q).

Example 4 (a simply supported plate equation with nonlinear structural averaged
damping).

{u” — c(fQ |V, |? dx)a/zAut +A%u=h(,x) inRy xQ,
u=Au=0 on R} x 0Q2.
Here V = H>NH, (), H=L*(Q)and Z = H(Q).

(4-14)

As a consequence of Theorem 4.1 we obtain immediately:

Corollary 4.3. In all four examples, let h € S>(R*, H). Then any solution u €
C(RT, V)NCY(R™, H) of (2-2) is bounded on R* in the sense that u has bounded
range in V and u has bounded range in H. In addition we have for some constant K
independent of h and the initial data

imsup (i (1)[* + u (@) 1?) < K (1 + A5 e 57))-

—00

Remark 4.4. In [Aloui et al. 2013], for the four previous examples, the authors
proved the existence of a unique almost periodic solution when £ is an S2-almost
periodic source. In this case (in particular if & is periodic), the ultimate bound
coincides with the supremum of the energy of the almost periodic solution. Actu-
ally, if we try to estimate directly the periodic solution, some boundary (in time)
term disappears but the main part of the estimate is not much simpler. In addition
we know that the estimate is essentially optimal, only the multiplicative constants
might be worked out if one wants a more precise inequality.

5. Partial results in the antiperiodic case
If g is odd and 4 is T-antiperiodic, i.e., if we have
ht+1)=—h(@®),

the interesting solutions are the antiperiodic ones; see, e.g., [Haraux 1989] for
existence results. Since such solutions have mean value O, the solution can be
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estimated through its time-derivative, and because the estimate of the derivative is
generally much better, we can expect an improvement on the energy bound.

This idea is perfectly valid if H is finite-dimensional, since then # and u belong
to the same space, but otherwise we have a problem to reach the norm of u in V.
At the present time we do not know what happens if dim H = oco. For the time
being we can only prove the following partial results.

Proposition 5.1. Assume that V = H, h € C(R, H) is t-antiperiodic, that g €
C(H, H) satisfies the condition (2-3) and for some oo > 0 we have

3y >0, 3C;>0,Vve H, (g),v)>y*?-Cy, (5-1)
3K >0,3C,>0,Vve H, |gw)|<Cr+K]v/* (5-2)

Then any t -antiperiodic solution u of (2-2) is such that

sup (1 ()2 + [u() ) = C(1+ 11T ).
teR

where C is independent of h.

Proof. The starting point is the same as for the proof of Theorem 4.1. From

27 27 (a+2)/2a+2)
/ <g<u>,a>dzsc<y,r>(/ |h|2dt) 4G (53)
0 0

we deduce, taking account of property (5-1), the more precise estimate

27 2t 1/(a+1)
/ |u|2drsc4+cs<y,r>(/ |h|2dr> , (5-4)
0 0

which implies, since u has mean value 0,
2 1
sup [u(®)]* < C(1+ IAl7A% ). (5-5)
te[0,27]

To obtain the uniform bound on i, the trick now consists in evaluating the max-
imum of ®(r) = |it|> + |A?u|%. At a maximum point 8 the derivative vanishes,
which gives
(g(u), u) = (h, u);
hence
i (O)[* < C'(1+ ||/ FD).
This implies

d(t) = D©B) < C"(1+ ||h|> D
nax (1) = 9@©) < (L4 1Al g i)

and the conclusion follows immediately. U
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Remark 5.2. This result is optimal. For instance if we consider an eigenvector
¢ of A corresponding to the eigenvalue A > 0, then for each k > 0, we have
uy(t) =k cos()»l/zt)(p is a solution of the equation

i 4 Au+ g(i) = g(—kA'? sin(A%1)p) =: h(t)

and the L norm of the source term is less than a constant times k**! for k large.
Both u and 4 are antiperiodic.

We have a weaker result (intermediate between Theorem 4.1 and Proposition 5.1)
which is also valid in the infinite-dimensional setting and can be stated as follows:

Proposition 5.3. Assume that the conditions of Theorem 4.1 are satisfied with
(4-2) reinforced into

3K>0,3C20, YveV, lgWlz=C+KlpIg". (56
Then any t -antiperiodic solution u € C'(R, V) N C*(R, H) of (2-2) is such that

sup (1 (1) + (1) = C(1+ WIS ),
te

where C is independent of h.

Proof. The starting point is the same as for the proof of Theorem 4.1. From the

inequality
27 2t (@+2)/2a+2)
f <g(u),u>dt§c3<1+/ |h|2dt) (5-7)
0 0

we deduce the estimate

27 2t 1/(a+1)
/ lu|?>dr < c4(1 + (/ |h|2dt) ) (5-8)
0 0
2T 2T 1/2
/ lal|%™ dr < C5<1 + (f |h|2dt> ) (5-9)
0 0

and by (5-6) this implies

2t 2T 1/2
f lg@)|lz dt < C6<1 + (/ |h|2dt> ) (5-10)
0 0

From (5-9), since u has mean value 0, we deduce

1 1
sup u()llz < Co(1+ IRl 55000 ) (5-11)
1€l0,27] U

but also

The two last inequalities imply immediately

(a+2)/(a+1)
< Cs(1+ RIS,

2T
/ (g G), u) dt
0
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Now, multiplying the equation by u and integrating on the period we find easily
after combining with (5-8)

2t
2 1
[ ewar=coimEis).
i g

with ®(¢) = |it|* + |lu||> Since
Q'(1) = (h, ) — (g(u), )

by 27-periodicity and the inequality ®" < |h||it| + Cy, we find as a consequence of
(5-8)

t
2 1
o)< [ @ ds+Cul+ I
t—T

and the conclusion follows easily by using t-antiperiodicity. ([l

Remark 5.4. This result is certainly not optimal but it is all we can prove for the
moment even in the most basic examples. Our result requires additional regular-
ity on u; this is usually achieved by assuming some regularity on 2. When g is
monotone, usually the antiperiodic solution is unique and depends continuously
on & in L2 so that the estimate will be easy to transfer to the general case in the
examples. This is important since we cannot derive strong estimates on solutions
which are not antiperiodic and therefore approximation by strong solutions has to
be performed within the antiperiodic class.
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On the irreducibility of some induced representations
of real reductive Lie groups

Wee Teck Gan and Atsushi Ichino

We prove the irreducibility of some standard modules of the metaplectic group
Mp,,, (R) and some nonstandard modules of the split odd special orthogonal
group SOy, 1(R).

1. Introduction

This article is a supplement to [Gan and Ichino 2017], in which we establish the
Shimura—Waldspurger correspondence for the metaplectic group Mp,, of higher
rank. Namely, we describe the tempered part of the automorphic discrete spectrum
of Mp,,, in terms of that of SOy, via theta lifts. In the course of the proof, we
use the inductive property of local L- and A-packets and need to show that some
induced representations are irreducible. The purpose of this article is to prove this
irreducibility in the real case.

We now describe our results. Let Wg be the Weil group of R. We say that an
irreducible representation ¢ of Wg is almost tempered if the image of ¢|- |7 is
bounded for some s € R with |s| < % We consider two cases and give the details
in turn.

In Section 2, we consider some standard modules of the metaplectic group
Mp,,, (R) (which is a nonlinear two-fold cover of the symplectic group Sp,, (R)
of rank n). Let ¥ : Wg — Sp,, (C) be an L-parameter, which we may regard as a
2n-dimensional symplectic representation of Wi. We assume

Y=¢D¢’ ® o,
where

e ¢ is a k-dimensional representation of Wi whose irreducible summands are all
nonsymplectic and almost tempered;

Yy is a 2np-dimensional representation of Wi whose irreducible summands are
all symplectic;

e k+ny=n.
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Let PNbe a parabolic subgroup of Sp,, (R) with Levi component GL (R) x Sp,,,, (R)
and P the preimage of P in Mp,,(R). Let v be the irreducible representation
of GL;(R) associated to ¢ and T = 7 Q x its twist by a fixed genuine quartic
character y of the two-fold cover of GL;(R), as in [Gan and Ichino 2014, §2.5
and §2.6]. Then the L-packet ITy (Mp,,(R)) consists of the unique irreducible
quotients of

Indl\;pzn(m(f@no)

for all 7o € Iy, (Mp,,,,(R)), and as stated in [Gan and Ichino 2017, Lemma 5.2], the
irreducibility of this induced representation is required. We should mention that the
irreducibility of standard modules of real reductive linear Lie groups was studied
in [Speh and Vogan 1980] and their result was extended to the nonlinear case in
[Milici¢ 1991] (via the Beilinson—Bernstein localization theorem). Nevertheless,
for the convenience of the reader, we give a more direct proof of this irreducibility,
following the argument in [Speh and Vogan 1980] but using the machinery of
cohomological induction [Knapp and Vogan 1995].

In Section 3, we consider some nonstandard modules of the split odd special
orthogonal group SO»,4+1(R) of rank n. Let

Y Wr x SLo(C) — Sp,,(C)

be an A-parameter, which we may regard as a 2n-dimensional symplectic repre-
sentation of Wi x SL,(C). We assume

V=0’ ® o,
where

* ¢ is a k-dimensional representation of Wr whose irreducible summands are all
nonsymplectic and almost tempered;

* Y is a 2ny-dimensional representation of W x SL,(C) whose irreducible sum-
mands are all symplectic;

e k+ny=n.

Let QO be a parabolic subgroup of SO,,11(R) with Levi component GL;(R) x
SO2,,+1(R). Let T be the irreducible representation of GL(R) associated to ¢.
Then the A-packet Iy, (SO2,41(R)) consists of the semisimplifications of

IndSQOZn+1 (R) ('L' ® O,O)

for all o € Iy, (SO2,,+1(R)), and as stated in [Gan and Ichino 2017, Lemma 5.5],
the irreducibility of this induced representation is required. To prove this irre-
ducibility, we reduce it to the irreducibility of a standard module

SO R)xSO,, R
IndQ,zkH( S0 ®) - 50)
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of an endoscopic group of SO,,.1(R), where Q' is a parabolic subgroup of
SO2k+1(R) x SO2441(R) with Levi component GL (R) X SO2,,+1(R). This reduc-
tion relies on the Kazhdan—Lusztig algorithm and is essentially due to Matumoto
[2004, §4], but we include it here for the sake of completeness. We also include a
more direct proof of this irreducibility given to us by the referee, using normalized
intertwining operators and the irreducibility result of [Speh and Vogan 1980].

2. Irreducibility of some standard modules of Mp,, (R)

In this section, we show that some standard modules of Mp,, (R) are irreducible
(see Proposition 2.3 below), which finishes the proof of [Gan and Ichino 2017,
Lemma 5.2] in the real case.

2A. Notation. Let G = Mp,, (R) be the metaplectic two-fold cover of Sp,, (R),
which we realize as

1 1
Span(®) = {g € GLa® [ 2y, )6 = (4, )}
n n
We define a maximal compact subgroup K of G as the preimage in G of

{g€Sp,,R) |'g™' =g}

Let 6 be the Cartan involution of G corresponding to K. Let go = Lie G be the Lie
algebra of G and g = go ®r C its complexification; analogous notation is used for
other groups.

For any nonnegative integers k, [, m such that k+2/+m = n, we define a 6-stable
Cartan subalgebra hg’l’m of go as follows. For a = (ay, ..., a;) € R¥, put

1W*90(q) = (a —a) € spy (R),

where a = diag(ay, ..., a;). For z = (z1, ..., z;) € C! with z; = x; + ~/—1y;, put
X )y
ROLO (L) — x -y R
(2) _y _i | €8P ®),
y —Xx

where x =diag(x1,...,x;) and y =diag(yy, ..., ). For & =(9y,...,9,) € R", put
¥
0@ = (_y V) € span(®),

where # = diag(¢¥y, ..., V). Let h&bm(a, 7, 9) be the image of
(h*"%@), h*"0(2), R*O" (9))
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under the natural embedding

5Py (R) @ 5pgy (R) @ 5pyy (R) — 5py, (R).
Then we set

o' = (W a, 7, 9) |a e RE, z €T, 9 € R™).

These bg’l’m with k + 2/ +m = n form a set of representatives for the G-conjugacy

classes of Cartan subalgebras of gg.

Fix such k, [, m and write by = b](;’l’m. We define a basis ey, ..., e, of h* by

ei(h) =a; (1<i=<k),
ers2im1(h) =x; + /=1y, (1<i <),
eerai(h) =x; — /=1y, (1<i <),
ersaryi(h) = /—10; (I <i<m)
for h = h*b™(a, z, 9). Note that

O(ei) = —e; (I1<i<h),

O(ert2i—1) = —exy2i (1 =i =<1),

O(ek+21+i) = ek+u+i (1 =i <m).

Using the above basis, we identify h* with C". Let (-, -) : hb* x h* — C be the
standard bilinear form:

(A" ,lL) :)\'IMI +- +)‘vnﬂn

forA=01, ..., ), w= (U1, ..., 1uy) € h* =C". We denote by A the set of roots
of hin g:
A={teitej|1<i<j=<njU{x2e; |1 =<i=<n}.
For any subspace f of g stable under the adjoint action of ), we denote by A(f) the
set of roots of  in § and put
1
p(f) = ) Z o.

aeA(f)

2B. Discrete series. As in [Adams and Barbasch 1998, §3], genuine (limits of)
0,0,n

discrete series representations of G are classified as follows. Suppose ho = b,
Let A, be the set of compact roots and take the positive system
A:T:{ei—ej |1 <i<j<n}.

Then a genuine discrete series representation of G is parametrized by its Harish-
Chandra parameter A € +/—1h of the form

)\':(017---yar’_bla---’_bs)7
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where

cai,bjeZ+13;
eq;>--->a,>0and0 < b <--- < by;
e a; #bjforalli, j.

More generally, a genuine limit of discrete series representation of G is parametrized
by a pair (A, W) consisting of A € +/—1b; of the form

A=(@i,...,a1,...,Gp,...,Cp, —Qpy oo, —Qp, ..., —Al,...,—0d]),
[

where

ai €7+ 3;

eay>--->a,>0;

e mj,nj >0;

e m; +n; >0and |m; —n;| <1 forall i,
and a positive system W of A such that
« AT C VY,

e {(a,A) >0 forall a € V;

e if ¢ is a simple root in W such that {(«, A) = 0, then « is noncompact; see the
condition (F-1) in [Vogan 1984].

Note that, given such A, there are precisely 2’ positive systems W satisfying the
above conditions, where ¢ is the number of indices i such that m; = n; > 0.

Remark 2.1. The L-parameter of the representation associated to (A, W) is
r
@(mi +n;)Dy;,
i=1

where for a € %Z, we denote by D, the 2-dimensional representation of W induced
from the character z — (z/z)¢ of Wg = C*. Note that

e D_y=Dy;
e D, is irreducible if and only if a # O;
e D, is symplectic if and only if a € Z + %

In particular, any irreducible summand of the above L-parameter is symplectic and
the associated L-packet consists of 2" representations.
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2C. Standard modules. We will use Vogan’s version [1984] of the Langlands clas-
sification for real reductive Lie groups in Harish-Chandra’s class. Suppose again
that hy = hl(‘)’l’m is arbitrary. Let H be the centralizer of hy in G. Then H is the
preimage in G of a Cartan subgroup of Sp,,,(R) isomorphic to

(Rx)k X (([:X)l X (Sl)m

Let tp and ag be the +1 and —1 eigenspaces of 6 in b, respectively. Put T = HNK
and A = exp(ap), so that
H=TxA.

Let M be the centralizer of ap in G. Then M is the preimage in G of a Levi
subgroup of Sp,, (R) isomorphic to

GL{(R)* x GLy(R)' x Sp,,, (R).

For the inducing data of a standard module, we take an irreducible representation
of M as follows. Let E}Id(ﬂ%) be the two-fold cover of GL;(R) given in [Gan and
Ichino 2014, §2.5]. Let xy be the genuine quartic character of GL, (R) given in
§2.6 of the same paper, relative to a fixed nontrivial additive character ¢ of R. For
1 <i <k, let x; be a character of E}II(R) of the form

"

Xxi =sgn” ® xy ® |-

for some §; € {0, 1} and some v; € C. For 1 <i <, let 7; be an irreducible
representation of GL;(R) of the form

7 = Dy, ® (xy o det) ® |det|"

for some «; € %Z and some v, € C, where D,, is the relative (limit of) discrete
series representation of GL;(R) of weight 2|«;| + 1 with central character trivial
on R} and det is the natural lift of the determinant map given in [Gan and Ichino
2014, §2.6]:

GL(R) —%5 GL,®)

| !

GL,(R) —*'s GL,(R)

Note that 7; does not depend on the choice of ¥ since Dy, ® (sgnodet) = D,,. Let
7’ be a genuine (limit of) discrete series representation of Mp,,, (R) associated to
(M, &) as in Section 2B. Then

T=1Q® QT - uen

descends to an irreducible representation of M.



ON THE IRREDUCIBILITY OF INDUCED REPRESENTATIONS OF LIE GROUPS 79

Put
y=0nv) eh =t ®a*, (2-1)
where
A=0(0,...,0,K1, =K1, .ourKiy =Ky Ay ooy A,
k
V= V], ..o, Vk, V[, V], o5V, 7,0, .00, 0).
—_——
m

Assume that the condition (F-2) in [Vogan 1984], which is explicated in [Adams
and Barbasch 1998, Lemma 4.3], holds:

G Ifv; = :|:\)j, then §; = (S/
(ii) If v/ =0, then k; € Z.

Choose a parabolic subgroup P = M N of G with Levi component M and unipotent

radical N such that
Re (o, v) >0

for all roots « of a in n. Then, by [Vogan 1984, Proposition 2.6], the normalized

parabolic induction
Ind% ()

has a unique irreducible quotient J g (7). Note that J g (r) is tempered if and only
if Rev; = Re va =0 for all 7, j, in which case Indg () is irreducible. Moreover,
every irreducible genuine representation of G arises in this way; see [Vogan 1984,
Theorem 2.9].

Remark 2.2. The L-parameter of J 1(,; () is

PP DY,

where ¢ is given by
k !
o= (Pret1-) o (Dos1-1Y)
i=1 j=1

and ¢’ is the L-parameter of 77’ (see Remark 2.1). Note that any irreducible sum-
mand of ¢ is nonsymplectic by the above conditions (i), (ii).

Finally, for any real root « € A, we consider the following “parity conditions”:
o Ifa ==+(e; —ej) with 1 <i < j <k, then either
{Bi =38 and v; —v; € 2Z+ 1; or
d; #9; and v; —v; € 2Z.
o If a ==+(e; +¢j) with 1 <i < j <k, then either
{51- =3§; and v; +v; €2Z+ 1; or
d; #9; and v; +v; € 2Z.
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e If o = £2¢; with | <i <k, then v; € Z+ 1.
o If o = F(erq2i—1 + exy2i) with 1 <i <[, then either
{Ki €Z and v, eZ—F%;or
K; eZ—I—%andv;eZ.
With the above notation, we now state the main result of this section.
Proposition 2.3. Assume that there exists no root a € A such that either
(1) « is complex and satisfies 2{a, y)/{a, o) € Z, {at, y) > 0, and (O, y) < O; or
(11) « is real and satisfies the parity condition.

Then Indg () is irreducible. In particular, if |Rev;|, |Re vl’-| < %for alli, j, then
Indg () is irreducible.

2D. Proof of Proposition 2.3. We first express the standard module Indg () as
cohomological induction from a principal series representation. By [Knapp and Vo-
gan 1995, §XI1.8], combined with Lemma 11.202 of the same work, we may write

T = (URET,Z{WQK)dimUﬂE(C ® Xp(t))),

where

. (“RE’;W m(),- is the functor defined by [Knapp and Vogan 1995, (11.71d)];

e b=hPv is a f-stable Borel subalgebra of m with Levi component k) and nilpotent
radical v such that
(@, ) >0
for all @ € A(v);

e ¢ is the character of H given by

(=10 - @x®5Q - QERN B+ & N,

where

— &; is the character of C* x {1} given by &;(z,¢€) =€ - (z2/2)"“ - (zZ)”i/;

— n; is the genuine character of the nonsplit two-fold cover of S' whose square

descends to the character z — z%* of S';

* Xp(v) s the character of H such that

— Xp(v) Tactors through the image of H in Sp,, (R);

— Xp(v) 1 trivial on (R*)K;

— the differential of x,) is p(v) (which is analytically integral).
Let L be the centralizer of ty in G. Then L is the preimage in G of a Levi subgroup
of Sp,, (R) isomorphic to

Spy (R) x U(1, 1)) x U()™
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Choose a 0-stable parabolic subalgebra q = [ @ u of g with Levi component [ and
nilpotent radical u such that v C u and such that

(@, 2) =0
for all @ € A(u). Then, by [Knapp and Vogan 1995, Theorem 11.225], we have

Ind% () = Laimure(Indp, (€ @ X, 0))»
where
o L; is the functor defined by [Knapp and Vogan 1995, (5.3a)];

e PNL=H(NNL) is aBorel subgroup of L with Levi component H and unipotent
radical NN L;
* Xp() 1s the character of H such that

— Xp) factors through the image of H in Sp,, (R);
— Xp(u) 1 trivial on (R*)K;
— the differential of x,) is p(u) (which is analytically integral).

Assume for a moment that
[Re (&, v)| < (e, 1) (2-2)

for all @ € A(u). Then, by [Knapp and Vogan 1995, Corollary 11.227], Indg ()
is irreducible if Ind5; (¢ ® Xp_(t)) is irreducible. Hence, noting that

Ao =X ® QY RER® - QERN® - @1y,
where

« x/ is the trivial character of R*;

o £/ is a character of C* of the form &/(z) = (z/2)“ for some ¢; € Z;
« 1} is a character of S! of the form 7/(z) = z” for some b; € Z,

we are reduced to the following irreducibility:

 The principal series representation of Mp,, (R) induced from x| ® - - - ® xx is

irreducible. Indeed, as in [Vogan 1981, Theorem 4.2.25], this can be deduced

from the following:

— The principal series representation of GL;(R) induced from any unitary char-
acter is irreducible; see, e.g., [Moeglin 1997].

— The principal series representation of Mp,,;(R) induced from any genuine uni-
tary character is irreducible; see the proof of [Gan and Ichino 2017, Lemma 5.2].

— For €1, €, € {0, 1} and s1, 57 € C, the principal series representation of GL,(R)
induced from sgn®'| - |*! ® sgn®?| - |*2 is irreducible if and only if either

€eg=¢eyand sy —sp ¢ 27+ 1; or
€1 7562 andsl—s2§é2Z\{0}.
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— For € € {0, 1} and s € C, the principal series representation of Mp, (R) induced
from sgn€ xy | - |° is irreducible if and only if s ¢ Z + %
e Fork € %Z and s € C, the principal series representation of U(1, 1) induced from
the character z — (z/2)* - (zz)* of C* is irreducible if and only if either

KeZands¢Z+%;or
ke€Z+%ands ¢ Z.

Thus, in view of condition (ii) in Proposition 2.3, we have shown that Indg () 1s
irreducible under the assumption (2-2).

We now consider the general case. We reduce it to the case where y as in (2-1)
satisfies the condition (2-2) by using the translation functor. Fix a positive system
AT (l) of A(I) such that

Re (o, y) >0

for all @ € AT(I). Then AT = AT () U A(u) is a positive system of A. We denote
by A(y) the set of integral roots defined by y:

(o, o)

A(y) = {aeA‘2<a’y> ez}.

Put A*T(y) = A(y) N A*. Then we have
(a,y)=0

for all « € AT (y). Indeed, if («, y) < 0 for some a € A(y) N A(u), then since
(o, A) = 0, we have (a, v) < 0 and hence

Oa, y) = {a, A) — {a, v) > 0.

Namely, —« satisfies condition (i) in Proposition 2.3, which contradicts the as-
sumption. Let i € h* be an integral weight; i.e., u = (41, ..., u,) with u; € Z.
Then we have A(y + ) = A(y). Recall that the translation functor w}),/ 4y for G
is defined by

W) (X) = Py (P (X) @ F_p)

for any (g, K)-module X of finite length, where P, is the projection to the y-primary
component and F_, is the (nongenuine) finite-dimensional irreducible (g, K)-module
with extreme weight —u. The translation functor for M is defined similarly and is
also denoted by W;)// 445 see [Knapp 1986, §XIV.12]. We now take u of the form
w = (tp(u), u') for some positive integer ¢ and some integral weight u’ € a* such
that

o {a, ') >0forall o € AT(I);
o [Re (o, v+ )| < (o, A +1tp(w)) for all @ € A(u).
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Then we have:

e ¥ 4+ is regular;

e y + u satisfies (2-2);

« AT(y)={ae AWy) | {a, ¥y +u) >0}

Moreover, if 7 is the irreducible representation of M associated to

8 =8; +p; mod 2, Vi = v + Wi,
Ki = ki + 5 (Wka2io1 — ar2i)s V) = V] + 3 (rr2io1 + Ri2i),
A= AL ki U=,

then we have shown that Indg () is irreducible. On the other hand, by [Knapp
and Vogan 1995, Theorem 7.237], we have

1/’7)//+M(7~T) =7

Hence it follows from the argument in the proof of [Knapp 1986, Theorem 14.67]
combined with [Vogan 1981, Lemma 7.2.18] that

Yy, (Ind§ (7)) = IndF (¥}, , (7)) = Ind§ ().

From this and [Knapp and Vogan 1995, Theorem 7.229] (which asserts that un-
der the integral dominance condition, the translation functor sends an irreducible
(g, K)-module to either an irreducible (g,K)-module or zero), we deduce that
Indg () is irreducible. This completes the proof.

3. Irreducibility of some nonstandard modules of SO, 1 (R)

In this section, we show that some nonstandard modules of SO,,,+1(R) are irre-
ducible (see Proposition 3.4 below), which finishes the proof of [Gan and Ichino
2017, Lemma 5.5] in the real case.

3A. Notation. Let G be a real reductive linear Lie group with abelian Cartan sub-
groups. Let go = Lie G be the Lie algebra of G and fix a Cartan involution 6 of go.
We denote by K the maximal compact subgroup of G associated to 6. Then we
have a Cartan decomposition gy = £y @ po, where €y = Lie K and pg are the 41 and
—1 eigenspaces of 9 in g, respectively. Fix a nondegenerate invariant symmetric
bilinear form

(«,):g0xgo—> R (3-1
such that

e (-,-) is preserved by 0;

e (-, -) is negative definite on €y and positive definite on pg.
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Let g = go ®gr C be the complexification of gy and Z(g) the center of the universal
enveloping algebra of g. Let Ad(g) be the identity component of the automorphism
group of g.

Let H be a 6-stable Cartan subgroup of G. Let hy = Lie H be the corresponding
Cartan subalgebra of gy (so that H is the centralizer of hy in G) and h = hy Qg C
the complexification of hy. Let (-, - ) : h* x h*™ — C be the bilinear form induced by
(3-1). We denote by A(g, h) the set of roots of f in g. Let W(g, h) = W(A(g, h))
be the associated Weyl group and put W(G,H) = N(G,H)/H, where N(G,H) is
the normalizer of H in G. Then we may regard W (G, H) as a subgroup of W (g, 0).
For any regular element y € h* we denote by A(y) the set of integral roots defined

by y:
Aly) = {a € Ag, ) ‘ ey Z}.
(o, a)

Then A(y) is a root system. Let W(y) = W(A(y)) be the associated Weyl group.
We may define a positive system AT (y) of A(y) by

AT () ={ee AW | {a, y) > 0}

Let T1(y) be the set of simple roots in A*(y). We define a homomorphism
Xy : Z(g) — C as the composition of the Harish-Chandra isomorphism Z(g) =
S(h)W@H with evaluation at .

Fix a f-stable maximally split Cartan subgroup H* of G and write A = A(g, b*).
Fix a regular element £ € (h*)* For any y € h* such that x,, = xg, there exists an
isomorphism i,, : (h*)* — bh* such that

s iy(§)=vy;
e i, is induced by some element g € Ad(g).

Since £ is regular, i, does not depend on the choice of g. We define an automor-
phism 6, of (h*)* by
0, =i, ob0i,,

which depends only on the K-conjugacy class of y. For @ € A(§) and w € W(§),
put
ay =i, () € Ay), (3-2)
wy, =i, (w) € W(y). (3-3)

Let A = A“ be the subgroup of H* (where HS is the group of continuous char-
acters of H*) consisting of weights of finite-dimensional representations of G. For
any A € A, we denote by A € (h*)* the differential of A. Then the homomorphism
A > A splits over the root lattice ZA canonically; see [Vogan 1981, Lemma 0.4.5].
For any & € (h*)* we denote by & 4+ A the set of formal symbols & 4+ A with A € A.
Note that W(£) acts on & + A; see [Vogan 1981, Definition 7.2.21].
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We denote by R(g, K) the Grothendieck group of the category of (g, K)-modules
of finite length. For any (g, K)-module X of finite length, we denote by [X] the
image of X in R(g,K).

3B. Regular characters. Following [Vogan 1984, Definition 2.2], we call a triple
y = (H, T, y) aregular character for G if

e H is a 6-stable Cartan subgroup of G;

e [" is a continuous character of H;

e ¥ € h* is an element such that

— if o € A(g, b) is an imaginary root, then (¢, y) is a nonzero real number;
— the differential of I" is

Y +o(¥) —2p.(V),
where W is the positive system of imaginary roots such that
(a,7) >0

for all @ € W, p(W) is half the sum of the roots in ¥, and p.(¥) is half the
sum of the compact roots in W.

If further ¥ is regular, we define the length £(y) = £%(y) of ¥ by
Uy) = 3lle € AT() | 6a ¢ AT ()} + 5 dimag € 37,

where ag is the —1 eigenspace of 8 in by.

To any regular character y = (H, I', y) for G such that y is regular, we may
associate a (g,K)-module X (y) = X G (y) of finite length with infinitesimal char-
acter y as follows; see [Vogan 1984, Definition 2.3]. Let M be the centralizer of
ap in G. Then there exists a unique relative discrete series (m, M N K)-module
XM (y) such that

o XM (y) has infinitesimal character y;
o XM (y) has a lowest (M N K)-type of highest weight I'| ;7.

Choose a parabolic subgroup P = MN of G with Levi component M and unipotent
radical N such that

Re(a, y) <0
for all roots « of a in n. Then X (y) is given by
X(y) =IndZ (X" (y)).
We recall some properties of X (y):

e [X(y)] depends only on the K-conjugacy class of y.
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e X (y) has a unique irreducible (g, K)-submodule X(y).
« X(y) depends only on the K -conjugacy class of .

« For any irreducible (g, K )-module X with regular infinitesimal character, we have
X = X (y) for some y.

For any 6-stable Cartan subgroup H of G and any regular element & € (h*)*, we
denote by RO (H, &) the set of regular characters y = (H, I', y) for G such that

Xy = Xe- Put
REE) = RO (H. &),
H

where the union runs over 8-stable Cartan subgroups H of G. Later, we also need
the following notion.

Definition 3.1. We say that H is £-integral if RO (H, &) # @.
3C. Coherent families. In this subsection, we recall some properties of coherent
families.
Fix a regular element & € (h*)*. Following [Vogan 1981, Definition 7.2.5], we
call a map
®: £+ A—R(gK)
a coherent family on & + A if
e ©(& 4 1) has infinitesimal character & + A;
« for any finite-dimensional representation F of G, we have
OGE+MN®F = Y OE+Ar+p),
HEA(F)
where A(F') is the multiset of weights of H* in F' (counted with multiplicity).
Then the following properties hold:

o For any coherent family ® on & + A and any A € A such that £ + A is dominant
for AT (&) (but possibly singular), we have

OF +1) =y (O®) (3-4)

by [Vogan 1981, Proposition 7.2.22], where l//§ ** is the translation functor; see
Definition 4.5.7 of the same work.

 For any (g,K)-module X of finite length with infinitesimal character &, there
exists a unique coherent family ®x on & + A such that

Ox () =[X]
by [Vogan 1981, Theorem 7.2.7 and Corollary 7.2.27].
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We denote by C(§ + A) the free Z-module of coherent families on £ + A. Then
we may define a representation W(£) on C(§ + A) by

WO)(E +21) =0 w (€ +1)

for w € W(§) and ® € C(§£ 4+ A), which we call the coherent continuation repre-
sentation; see [Vogan 1981, Definition 7.2.28].
For any y € RY(§), we define coherent families ©, = OF and ©®, = ©F on
&+ A by
0y =0x@), 0O, = (”))?(y)-
Put
S(G, §) =10, |y eRU(®)}, (G, §) =8, |y e RE(&)}.

Then both Std(G, &) and Irr(G, &) are bases of C(§ + A), so that we may define
a bijection ® > © from Std(G, &) to Irr(G, &) by ©, > O, for y € RU(&).
Moreover, we may write

@l

y= > M@©.8,)0 (3-5)
©eStd(G.£)
for some M (O, @y) eZ.
Let P be a parabolic subgroup of G with Levi component M such that H* C M.
In particular, M is f-stable and A® C AM. Also, the parabolic induction functor
Ind% induces a homomorphism

Ind$, : R(m, M N K) — R(g,K),

which depends only on M. For any coherent family ®* on & + AY, we may define
a coherent family Ind,?,, (®M) on £ + AC by

Ind$, (©M) (¢ + 1) = Ind$, (O™ (£ + 1))
for A € AY; see [Speh and Vogan 1980, Lemma 5.8]. Then we have
Indf; (©)) = OF
for y € RM (), noting that RM (£) c RY (&).

3D. The Kazhdan—Lusztig algorithm. In this subsection, we recall the Kazhdan—
Lusztig algorithm for real reductive Lie groups, which determines the coefficients
M(@®,®,) in (3-5).

Fix a regular element & € (h*)*. Recall the cross action of W (£) on RY (£):

w Xy =(H, w;l x T, w;l)?)

forw e W(€) and y = (H, T, ) € R¢ (&), where wjy is as in (3-3) and w};l x T
is the cross product given in [Vogan 1981, Definition 8.3.1]. This descends to
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an action of W (&) on Std(G, &) such that w x ®,, = 0, for w € W(§) and
y € RE(&).

Leta € I1(£) and y = (H, T, 7) € RE(€). If the root ay as in (3-2) either is
noncompact imaginary, or is real and satisfies the parity condition [Vogan 1981,
Definition 8.3.11], then we have the Cayley transform of ®,, through o (which is
a subset of Std(G, &)). We recall some details in turn.

* Suppose first that «; is noncompact imaginary. Following [Vogan 1981, Defi-
nition 8.3.4], we say that «; is type I (resp. type II) if the reflection in W (g, )
with respect to «; does not belong to (resp. belongs to) W(G,H). Let ¢*(y) be
the Cayley transform of y through a; i.e., c®(y) is the subset of RY(£) given in
[Vogan 1981, Definition 8.3.6] of the form
= vy =EHSTY YY)
if o is type I, and
()=, v, yEi=HYTL v
if aj is type 1I, where H* is the 6-stable Cartan subgroup of G given in [Vogan
1981, Definition 8.3.4]. Then the subset
Ca(®y) = {®y’ | V/ € ca(y)}
of Std(G, &) depends only on the K-conjugacy class of y.

 Suppose next that «; is real and satisfies the parity condition [Vogan 1981, Def-
inition 8.3.11]. Following Definition 8.3.8 of the same work, we say that o is
type I (resp. type II) if a; : H N K — {Z£1} is not surjective (resp. is surjective).
Let c,(y) be the Cayley transform of y through «; i.e., c,(y) is the subset of
RY (&) given in [Vogan 1981, Definitions 8.3.14 and 8.3.16] of the form

W) =1a Vet Ve =HaTy.72)
if o is type I, and
Ca()/) = {Va}, Yo = (Hy, Ty, )711)

if aj is type II, where H, is the 0-stable Cartan subgroup of G given in [Vogan
1981, Definition 8.3.8]. Then the subset

ca(®y) = {®)/’ | )// € Ca(y)}
of Std(G, &) depends only on the K-conjugacy class of y.

Let H(W(&)) be the Hecke algebra of W (&) over Z[q], where g is an indetermi-
nate. Note that the specialization at ¢ = 1 gives a surjection H(W (§)) — Z[W (§)].
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Then, by [Vogan 1983b, Definition 5.2], see also [Vogan 1982, Definition 12.3 and
Proposition 12.5], there exists an action of H(W(£)) on

CE+A)g=CE+AN®z7Zlq]

determined by the cross action and the Cayley transforms. Moreover, by [Vogan
1982, Lemma 14.5], the specialization of C(§ + A), at ¢ = 1 is isomorphic to the
coherent continuation representation tensored with the sign representation of W (§).
More explicitly, this isomorphism is induced by the surjection

€:CE+N)y—CE+AN)
given by
€qd'®,) =(-)"'"e, (3-6)

fori >0 and y € RY(&), where the integral length £/ (y) of y is given by

e (y) = L(y) — co(G) (3-7)

for some choice of ¢o(G) € %Z such that El(y) e/Zforall y € RO (£); see [Vogan
1982, Definition 12.1].
Finally, we recall the Kazhdan—Lusztig algorithm for real reductive Lie groups.

Theorem 3.2 [Vogan 1983a; Adams et al. 1992, Theorem 16.22]. Forany y, § €
RE(£), we have

M(©,, 85 = (—1)!'O=-®p (1),

where M(©®,,, ©s) is the integer defined by (3-5) and P, s(q) is the Kazhdan—
Lusztig—Vogan polynomial defined in terms of the H(W (§))-module C(§ + A),.
In particular, M(©,,, ®s) can be computed by an algorithm which depends only
on the H(W (&§))-module structure on C(§ + A),.

3E. Comparison of Hecke algebra module structures. Let G| and G, be two real
reductive linear Lie groups with abelian Cartan subgroups. Fori =1, 2, fix a Cartan
involution 6; of (g;)¢o = Lie G; and let K; be the maximal compact subgroup of G;
associated to 6;. Fix a 6;-stable maximally split Cartan subgroup H; of G; and a
regular element &; € (h})™

We now assume that the following conditions hold:

(1) There exists an isomorphism
s ~ A
H{ = H,.

(i) Let f: ﬁf — ﬁg be the isomorphism induced by the isomorphism in (i). Then
we have
F(ASH) C AC2
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(iii)) Let f: (b])* — (b3)* be the isomorphism induced by the isomorphism in (i)
and put & = f(&1). Then &, is regular.

(iv) The isomorphism in (iii) induces an isomorphism
fiAG) =A%)

of root systems. This induces an isomorphism

fiWED) = W)

of the associated Weyl groups.

(v) There exists a bijection
¢ :Std(Gy, &) — Std(Ga, &).
(vi) Let y; € RYi (&) be such that ¢(®,,) = ©,,. Then we have

foby =6p0f.
This implies that
O (y1) = L% (),

and that for any a € A(§;), ay, is imaginary (resp. real, resp. complex) if and only
if f(a)y, 1s imaginary (resp. real, resp. complex).

(vii) Lety; € RYi(&) and o € A(&)) be such that ¢(®,,) =0,, and such that «, is
imaginary (and hence so is f(«)y,). Then ay, is noncompact if and only if f (),
is noncompact, in which case «;j, is type I (resp. type II) if and only if f(a)y, is
type I (resp. type II).

(viii) Let y; € R (&) and « € A(&}) be such that ¢(®,,) = ©,, and such that a,
is real (and hence so is f(a)y,). Then ay, satisfies the parity condition if and only
if f(a)y, satisfies the parity condition, in which case ay, is type I (resp. type II) if
and only if f(a)y, is type I (resp. type II).

(ix) The bijection in (v) is compatible with the cross action: for w € W(£;) and
y € RO1(%)), we have

p(w x 0y) = f(w) X 9(O,).

(x) The bijection in (v) is compatible with the Cayley transforms: for a € I1(&})
and y € RE1(&)), we have

9(c*(©))) = /D (p(©,))
if ; is noncompact imaginary, and

P(ca(®y)) = cr@)(@(0y))

if o is real and satisfies the parity condition.
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The bijection in (v) induces isomorphisms
@ :CE + M%) > C&E+ A7),
0q : C(E1+ M)y — C& + A7),

of Z-modules and Z[g]-modules, respectively. By the definition of the H(W (&;))-
module structure on C(&; + A% )¢ the above conditions imply ¢, is equivariant un-
der the action of H(W (&;)) = H(W (&;)). From this and the commutative diagram

CE + A9, —2y C(&, + A%,

| !

CE + M%) —X (& + A9)

induced by the specialization at ¢ = 1 defined by (3-6) (with a suitable choice of
¢o(G}) in the definition of the integral length; see (3-7)), we can deduce that ¢ is
an isomorphism of the coherent continuation representations of W (&) = W (&,).
Moreover, by Theorem 3.2, we have

M(9(©,), ¢(05)) = M(©,, ©5)
for all ¥, 8 € RG!(£;) and hence
9(©) =¢(©)
for all ® € Std(G1, &;). In particular, ¢ induces a bijection from Irr(G, &) to
Irr(G», &).

Lemma 3.3. Fori=1,2,let B; € C(&+A%) and 1; € A% be such that p(E1) = E,
and f (A1) = hy. Assume there exists an irreducible (g,, K»)-module X, such that
Ea(62+ 22) = [X2].

Then there exists an irreducible (g1, K1)-module X such that
E1(61+ A1) =[X1].

Proof. The assertion was proved by Matumoto [2004, Lemma 4.1.3] when Cartan
subgroups of G; are all connected, but the argument works in the general case. We
include the proof for the convenience of the reader.

Choose w; € W (&) such that w(£; + A1) is dominant for At (&) and write

1= Z a(:)@

Oelr(G1,&1)

[l

w1

for some ag € Z. Put wy = f(wy) € W(&2), so that ¢(w; E1) = wyE». Then

Y age®) (waEr +12) = (w1 E1) (wa (&2 +42))
Oel(G1.6) = (W2 E2) (w2(&2 + 12)) = Ea (62 + 22) = [Xal.
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On the other hand, since w» (&, 4+ A,) is dominant for At (&), we deduce from (3-4)
and [Vogan 1983b, Theorem 7.6], see also [Speh and Vogan 1980, Theorem 6.18],
that for any Y € Irr(G2, &), Y(w2(£& + Ay)) is either [X] for some irreducible
(g2, K»)-module X or zero, and that there exists a unique Yo € Irr(G, &) such that

Yo(wa(& +12) = [Xo].
Hence, noting that <p((:)) e Irr(Ga, &) for © € Irr(Gy, &), we have
a@O =1

for ©g = ¢~ 1(Yy), and either ag=0or ©(®)(wa(&24+12)) =0 for ® # ©¢. More-
over, recalling the definition of r-invariants, see [Vogan 1983b, Definition 5.3], we
can also deduce from (3-4) and [Vogan 1983b, Theorem 7.6] that

p(@)(w2(&2+12) =0 <= Owi(§+11)=0
for all ® € Irr(G1, &/). Thus, we obtain
E1(&1+21) = (w1 ED(wi (81 +21))

= Y ag®iE+1)) = Go(wi (i +4) = [X1]
Ochr(G1.&1)

for some irreducible (g;, K1)-module X;. O

3FE. Some nonstandard modules of SO3,+1(R). Let G = SOy,+1(R) be the split
odd special orthogonal group, which we realize as

tg(1n+l _1n>g:<1n+1 —ln)}'

We define a Cartan involution 6 of G by

0(g)="¢g"".

Let K be the maximal compact subgroup of G associated to 6. We define the
bilinear form

$02141(R) = {¢ € SLawi1 (®)

(. ):g0xgo—> R
as in (3-1) by
(X,Y) =1 w(XY).

For any nonnegative integers k, [, m such that k+2[4+m = n, we define a f-stable
Cartan subalgebra bé’l’m of g as follows. Fora = (ay, ..., ax) € R, put

W*00(q) = (a a) € 50 (R),
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where a = diag(ay, ..., ar). Forz=(z1,...,21) € C! with z; = x; ++/—1y;, put

y X
ROy =Y . * | Esou®,
X y
where x =diag(xy,...,x;) and y =diag(yi, ..., y;). For ¢ = (¢, ..., 9,) e R", put
W00 (9) = diag(@1, ..., Py, 0, =By 1, -, —B) € 50211 (R),
where

vi= <—19i ﬁi)

and m; =[(m+1)/2]. Let h&bm (g, z, 9) be the image of
(hk,0,0(a)’ hO’I’O(Z), h0,0,m(ﬁ))
under the natural embedding

502k (R) ® 504/ (R) @ 50215 41(R) — 502,11 (R).
Then we set

hp'" = {h*"(a,z,9) a e R ze T, 9 e R™).

These hg’[’m with k + 2/ +m = n form a set of representatives for the G-conjugacy
classes of Cartan subalgebras of go. Let H*"™ be the centralizer of hé’l’m in G.
Then H*'™ is a 6-stable Cartan subgroup of G isomorphic to

Note that W (g, h*>™) = W(B,,) and
W(G,HM'™y = W(By) % (6) X (Z)2Z x Z)27)") x W(Byn,) X W(By,), (3-8)

where G is the symmetric group of degree d, W(By) = &4 x (Z/27Z)? is the Weyl
group of type By, m; = [(m + 1)/2], and m, = [m/2]; see, e.g., [Vogan 1982,
Proposition 4.16].

Fix nonnegative integers k, [, m such that k 4+ 2/ +m = n and write hy = f)](‘)’l’m.
Let M be the centralizer of ag in G, where ag is the —1 eigenspace of 6 in hy. Then
M is a Levi subgroup of G isomorphic to

GL1 (R x GL2(R)' x SO241(R).
We consider an irreducible representation = of M of the form

T=1Q - Qu®T® QT
where
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e x; is a character of GL;(R) of the form
xi=sgn” @|-|"

for some §; € {0, 1} and some v; € C;

e 7; is an irreducible representation of GL,(R) of the form
1, = Dy, ® |det|"

for some k; € %Z and some v € C, where D, is the relative (limit of) discrete series
representation of GL,(R) of weight 2|«;| + 1 with central character trivial on R ;

o 7/ is an irreducible representation of SOy, 1(R) with infinitesimal character
N=00, ) e (00 = e

(with the identification given in Section 3G below).

Choose a parabolic subgroup P of G with Levi component M.
We now state the main result of this section.

Proposition 3.4. Assume that
o if v = :|:1)j, then §; = 8j;
o if v/ =0, thenk; € Z;
* |Revi|, [Revi| < 3 foralli, j;
« M €Z+3 foralli.
Then the normalized parabolic induction Indg () is irreducible.
3G. Proof of Proposition 3.4. Put
G1=S02,4+1(R), G2 =S023-m)+1(R) X SO2,+1(R).
We define embeddings ¢ : SO2(y—m)+1(R) < G and (' : SOz, 41 (R) — G by

a b
. (a b) _ ( 1, a€My—mn-m(R),  bEMu_mn-mi1(R),
cd KC d ’ CcE Mn7m+l,n*ﬂ1(R)’ de Mn7m+l,n*m+l(|R)v
Lo , ,
I a b B a’ b a GMm-H,m-H(R)’ b EM”H‘]”"(R)’
dd)= Low | @ eMuun®,  d €My, (R).
¢ d

For i = 1,2, let 6; be the Cartan involution of G; as in Section 3F and K; the
maximal compact subgroup of G; associated to 6;. We take a 6;-stable maximally
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split Cartan subgroup H;’ of G; given by
HS = 00 HS = gr—m0.0 o pm.0.0
Then we have an isomorphism H; — H] given by
(h, h") = (W) (R'). (3-9)

This induces an isomorphism f : H | = I:I\év
Lemma 3.5. We have f(A°') C A%

Proof. Let u € A®', so that u occurs in some finite-dimensional representation
F of G;. Then f(u) occurs in the representation *F ® (/')*F of G,. Hence
fp) € A% 0

Also, the isomorphism (3-9) induces an isomorphism
f0D*— (h)" (3-10)
We define a basis €], ..., e of (h})* = (h"*%)* by
el (h"%%a)) = a;.

Fix a regular element &) = (x1, ..., x,) € (h})* = C" (with the identification using
the above basis) such that

X ¢Z+5 (1<i<n-—m),
: (3-11)
xi€Z+5 (n—m<i=<n).

Put & = f(&)). Since f(A(g1, b)) D A(g2, b3), we know & is regular.

Lemma 3.6. The isomorphism (3-10) induces an isomorphism f : A(&)) = A(&)
of root systems.

Proof. Since
Agr, D\ F T (Ag2, b)) = (Fef £ef [ 1 <i<n—m < j <n},
it follows from (3-11) that

sl
forall @ € A(gy, b))\ 1 (A(gs, b5)). This implies the assertion. O
Recall that
HK (K" +2l' +m' =n),

HPUT x HP9T (p42q+r=n—m, p'+2q'+r' =m)

form a set of representatives for the K;-conjugacy classes of 8;-stable Cartan sub-
groups of G; fori =1, 2, respectively.
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Lemma 3.7. (i) If the 0,-stable Cartan subgroup H*!"™ of G| is & -integral,
then m’ < m.

(i1) If the 6,-stable Cartan subgroup HP 9" x HP 4T of Gy is &-integral, then
r=0.

Proof. We only prove (i); the proof of (ii) is similar. Put H; = H Klm' and by =
hk/’l/””/. We define a basis ey, ..., e, of b} by
ei(h) =aj (I<i<k),
evraict(h) =xi+v/—ly;  (1<i<l),
ews2i(h) = —xi +v/=1y; (1=i<l),
ewiar4i(h) = v/ =10; (I<i<m)
for h = hk/’l/’m/(a, z, ). Note that
O(ei) = —e; (I<i<k),
Olewtai-1) =epya  (1<i <),
O(ewar+i) = exqorri (1 <i<m').
Then there exists a unique isomorphism j : (h})* — b7 such that
o j(e}) =e; foralli;
« j is induced by some element in Ad(g;).

Lety, = (H;, 1, y1) € RE1(&)). Then J is W(g1, b1)-conjugate to iy, . Under the
identification b} = C" using the above basis, we write

)71:(1417"‘7“")9 IO(IIJ)_ZIOC(\IJ):(UI’~~~’U}1)’

where W is the positive system of imaginary roots as in Section 3B. Then we have
v, €7+ % for all k' < i < n. Since y; + p(¥) — 2p.(¥) is the differential of a
character of H; = (R*)¥ x (C)! x (S")™, we must have
Upg2i—1 FVkg2io1 Furgi o €2 (1<i<l),

Ui gorti + oy €2 (1<i<m'),

so that
Up42i—1 +Up42i €2 (1=<i<l),
upsori €Z+% (1<i<m).

Hence, noting that j (&) is W (g1, b1)-conjugate to iy, (§1) = y1, we deduce from
(3-11) that m’ < m. O
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We now define the map
¢ :Std(G2, &) — Std(G1, &1)

as follows. Let y, = (H, "2, y») € RO2(&). Replacing y, by a K,-conjugate if
necessary, we may assume that

H, = HP%" x yrha-r
with p+2g+r =n—m and p’'+2q’+r'=m. By Lemma 3.7, we have r = 0. Put
H) = {L(h)t/(h/) lhe Hp’q’(), W e HP/,q/,r/}.

Then H, is a 6;-stable Cartan subgroup of G and is K -conjugate to H?tP-4+4"""
Moreover, we have an isomorphism H, — H; given by (h, ') > (k) (h'). This
induces isomorphisms ¢ : ﬁl — ﬁz and ¢ : b7 — b3, which in turn induces an
embedding

W(g2, b2) = W(g1, by).

We identify W (g,, h2) with its image in W (g1, b1).
Lemma 3.8. We have
W(G2, Hy) = W(g2, b)) N W(Gy, Hy).
Proof. The assertion follows from (3-8). O
Put y; = (Hy, 'y, y1), where
Fi=¢"'(T), n=9¢"(n).

Then we have y; € RE1(&)), and by Lemma 3.8, the K;-conjugacy class of y; is
uniquely determined by the K>-conjugacy class of y,. Hence we may define ¢’ by

¢'(0,,) =0,,.
We also define the map
@ :Std(G1, &1) — Std(Ga, &)

as follows. Let y; = (H;, 'y, y1) € RO(&)). Replacing y; by a K;-conjugate if
necessary, we may assume that

H1 — Hk’,l’,m’

with k' +20'+m’ =n. Write y; = (uy, .. ., u,) as in the proof of Lemma 3.7 and put
p=|{1<i<kluez+1},

¢ =3{1<i<2l'|upyi eZ+ 3}

’

r=|{l<i<m'|upsoryi e Z+3}|.



98 WEE TECK GAN AND ATSUSHI ICHINO

Then it follows from the proof of Lemma 3.7 that

/

qg ez, r=m p+2¢d+r=m.
Put
Hy = HP 90 x gP-ar

where p =k’ — p’ and ¢ =1’ — ¢’. Then H, is a 6,-stable Cartan subgroup of G,.
Replacing y; by a K-conjugate again, we may now assume that

Hy = (W) (W) | h e HP9O B/ e HP ).

Let¢: H, — H> and ¢ : b — b3 be the isomorphisms induced by the isomorphism
H, — H, given by (h, h') > t(h)/ (h'). Put y» = (Hy, "2, 1), where

Lo=¢T1), v=0¢().

Replacing y; by a W(G1, Hy)-conjugate if necessary, we may further assume that
X7 = Xg- Then we have y, € RY2(&,), and by Lemma 3.8, the K>-conjugacy
class of y, is uniquely determined by the K{-conjugacy class of y;. Hence we may
define ¢ by

P(Oy,) = 0y,.
By construction, we have:

Lemma 3.9. The two maps ¢ and ¢’ are inverses of each other. Moreover, the
conditions (1)—(x) in Section 3E hold.

Finally, as in Section 3F, we define a Levi subgroup M; of G; with respect to
the 0;-stable Cartan subgroup

Hk,l,m’ Hk,l,O X HO,O,m
of G; fori =1, 2, respectively. Then we have H® C M; and
M; = GL(R)* x GLy(R)" x SO 41(R).

Since My = M3 x SOy, 11 (R) for some Levi subgroup M3 = GL; (R)* x GL,(R)*
of SO2(y—m)+1(R), we may identify M, with M, via the isomorphism M, — M,
given by (i, h') — «(h)/ (k). Let P; be a parabolic subgroup of G; with Levi
component M;. Note that P, = P3 x SO»,,4+1(R) for some parabolic subgroup P;
of SO2¢,—m)+1(R) with Levi component M3. Recall the irreducible representation

T=x01® - @uen® - 9uenr
of M, as in Section 3F. Put

E1 =1, Vi KL H V] KL=V oo KV K — V[ A ) € (B ECT,
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so that Indgll (7) has infinitesimal character &/. Fix a positive system A% of
A(g1, b}) such that
Re (o, &) > 0

for all « € AT and let p(A™) be half the sum of the roots in A™. Choose a
sufficiently large positive integer ¢ such that

£ =& +2p(AT)

is regular. Then we have A1 (&) = A(&;) N AT, and by the assumption on 7,
& satisfies (3-11). By construction, we have

Gy _ G
¢(®y1) - ®y2

for all y € RM1 (&) = RM:(&). Since ©F' = Indj; (©M) and Indj; is additive,
we have
¢(Ind§} (©)) = Ind}7 (©)

for all ® € Irr(M;, &) = Irr(M>, &). On the other hand, by (3-4) and [Vogan
1983b, Theorem 7.6], there exists ® € Irr(M;, &) such that

O+ 1) =[xl
where A1 € AC! with A; = —2tp(A™T). Put §; = Indf,l"i (®) and A» = f(A1), so that
E; (& + A1) = [Indg (7)].

Then, applying Lemma 3.3 to E; and A;, we can reduce the irreducibility of
Indg]l () to that of

Ind?(7) = Ind,, "M@ @ u@ne- @) e

Since Indgz2 (7r) is a standard module (with a suitable choice of P,), its irreducibility
follows from [Speh and Vogan 1980, Theorem 6.19] (see also Section 3J below)
and the assumption on 7. This completes the proof.

3H. Normalized intertwining operators. In the rest of this section, we will give
another proof of Proposition 3.4 given to us by the referee, using normalized inter-
twining operators and the irreducibility result of [Speh and Vogan 1980].

We need to introduce more notation. Let G be a connected reductive linear
algebraic group over R. We confuse G with the group of R-rational points of G.
Let P = MN be a parabolic subgroup of G with Levi component M and unipotent
radical N. We denote by P = MN the parabolic subgroup of G opposite to P. Let
Ay be the split component of the center of M and put

ay, =Rat(Ay) ®z R, ay =Homgz(Rat(Ay), R),
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where Rat(A,y) is the group of algebraic characters of Ay, defined over R. Let
ay, ¢ = a3, ®r C be the complexification of aj,. Put

abt ={reaj | (A, &) >0forall @ € T(P)},
apt={reaj | (A, &) >0foralla € T(P)},

where (-,-) : a}, x ay — R is the natural pairing, X(P) C aj, is the set of
reduced roots of Ay, in P, and @ € ay, is the coroot corresponding to . Noting
that Rat(M) ®z Q = Rat(Ay) ®7 Q C a},, we may define a homomorphism H), :
M — ay by

(X, Hu(m)) =log|x (m)|

for x € Rat(M) and m € M. For any continuous character w of Ay, we define
Rew € aj, by

(Rew, Hy (a)) =log |w(a)]
forae Ay.

Let M be a Levi subgroup of G. Let m be an irreducible representation of
M with central character w, on Ay. Put 7, (m) = 7 (m)e st for ) e a},
and m € M. Let P and P’ be two parabolic subgroups of G with common Levi
component M. Then we define an intertwining operator

Jpp(my) : Indg () — Indg, (7T;)

by
(Jpp(m) )(g) = / f(n'g)dn’

NON\N’

for f € Indg (7;) and g € G, where N and N’ are the unipotent radicals of P and P,
respectively. Note that this integral converges absolutely if Re A lies in some cone
and admits a meromorphic continuation to a), .. Moreover, by [Arthur 1989],
there exists a meromorphic function rp/p () on a*M’C such that the normalized
intertwining operator

Rpp(m2) = rpip ()~ Tpyp(m))
satisfies the following properties:

o If 7r is tempered, then Rp/p(m;) is holomorphic for Re A € a’}'.
o If P, P/, and P” are three parabolic subgroups of G with common Levi compo-
nent M, then

Rprp () = Rprp (7)) Rprp(702).

o Let L be a Levi subgroup of G containing M. Let Q and Q' be two parabolic
subgroups of G with common Levi component L. Let S and S’ be two parabolic
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subgroups of L with common Levi component M. Let Q(S), Q'(S), and Q(S’) be
the unique parabolic subgroups of G with common Levi component M such that
o) cQ, 0©)NL=S,
Q' (S)ycQ, Q0®NL=S,
oShco, oW8HNL=S,

respectively. Then we have

Ros)0(5) () = Roro(Ind§ (7)),

Ro)10(9)(m) = Ind§ (Rgs(m)).
31. Another proof of Proposition 3.4. We now return to the setting of Section 3F,
so that G = SOy, +1(R). Recall that P is a parabolic subgroup of G with Levi

component
M = GL(R)* x GLy(R)’ x SOz 41(R),

where k + 2/ +m = n. Recall also that 7 is an irreducible representation of M of
the form

T=X1® - Qu®u® -®ueN,
where

o xi =sgn® ®|-|" for some §; € {0, 1} and some v; € C with |Re v;| < % such that
if v; = £, then §; =§;;

e ;,=D,® |det|” for some «; € %Z and some v, € C with |[Re v]| < % such that
if v =0, then «; € Z;

o 7’ is an irreducible representation of SO, 1 (R) with infinitesimal character
A=, ..., A, such that A, € Z+ 1 for all i.

We will show that Ind$ () is irreducible.
By the Langlands classification and the condition on 7/, there exist a parabolic
subgroup P’ of SOy,,11(R) with Levi component

M’ = GL{(R)? x GLy(R)? x SO, 41(R),
where p 4 2q +r = m, and an irreducible representation 7, of M’ of the form
H=X® Qx0T ® Q1,1
where
o X/ = sgn(sf ®]|-|% for some &; € {0, 1} and some p; € Z—i—% such that if p; = % u;,
then §; = 8}’.;
« /=Dy ® |det|“ for some K/ € %Z and some u; € Z+ k! + % with ! 7 0;

o 7" is a (limit of) discrete series representation of SO, 1 1(R)
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such that 7’ is a unique irreducible quotient of Ind?,c,)z’"“(R) (my). Then 7’ is the
image of R/, p (7). Let So be a parabolic subgroup of M with Levi component M

such that
So = GL; (R)* x GL,(R)! x P,

My = GL; (R)¥ x GLy(R)! x M.
We define an irreducible representation g of Mg by
TH=X1Q Qi ®TI® - QT Q.

Then 7 is the image of R~§0|SO (m9).
Let P; and P, be the unique parabolic subgroups of G with common Levi com-
ponent My such that
PrcCcP, PPNM=LS,

P,CP, P,NM=5,
respectively. Then we have
Rpy|p, (0) = Ind§ (Rg, 5, (70)).

so that Indg (7r) is the image of Rp,|p, (79). On the other hand, if we take a parabolic
subgroup Py of G with Levi component M, such that

PoNM =Sy,
Rewy, € apy s

then
Rp, p, (t0) = Rp, 5, (0) R 5, p, (7T0) R py P, (700).

Lemma 3.10. The normalized intertwining operators Rp, p, (7o) and R Py| Py (o)
are isomorphisms.

Proof. We only prove the assertion for Rp p, (9); the proof for Rp p (7o) is
similar. Put Ry = P; and write

S(P)NE(Py) ={ai, ..., o).

For 1 <i <t, let R; be the parabolic subgroup of G with Levi component M, such
that
Y(Ri—1) N E(R;) = {ai}.

Then we have R, = Py and hence

Rpy p, (7m0) = RR,|r,_, (770) - - - RR,|Ry (7T0).

Thus, it remains to show that Rg,|r,_, (7o) is an isomorphism for all 1 <i <1.
Let L; be the centralizer of A,, in G, where Ay, is the identity component of
the kernel of o; in Apg,. Put S; = R;—1 N L;. Then L; is a Levi subgroup of G
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containing My and S; is a maximal parabolic subgroup of L; with Levi compo-
nent M. Moreover, we have S; = R; N L; and hence

R, &, (0) = Ind{ (Rg, 5, (70)),

where Q; is the parabolic subgroup of G with Levi component L; such that
R;_; C Q;. Since «; is not a root in M, it follows from [Speh and Vogan 1980,
Theorem 6.19] (see also Section 3J below) and the condition on 7 that Indé_" (o)
is irreducible. Hence RS,-I s; (70) 1s an isomorphism, and so is Rg,|r,_, (70). U

Hence, to prove the irreducibility of Indg (), it suffices to show that the image
of Rp,p, (70) 1s irreducible. There exists a unique parabolic subgroup Q of G with
Levi component L such that

PhyCQ, MyCL, Rewscay.

Put S = PyN L, so that S is a parabolic subgroup of L with Levi component M.
Then we have Py = Q(S) and hence

R, p, (0) = R5(5)0(5)(70) = R55)0(5) (M) R g5 0s) (770)-

Since R 3| (7o) is an isomorphism, so is

G
R )05 (0) = Ind g (R55(0)).-
Also, we have

L
R5(5)005) (m0) = Rng(Indg (70)).

By [Speh and Vogan 1980, Theorem 6.19] (see also Section 3] below) and the con-
dition on g, Indlg‘ () is irreducible, so that Indg (Indg (mp)) is a standard module.
(We remark that the irreducibility of Indg (7rp) also follows from a result of Knapp
and Zuckerman [1982a; 1982b].) Hence the image of R a5)1068) (7o) is irreducible,
and so is of R PolPo (). This completes the proof.

3J. Explicit form of the irreducibility results. Finally, for the convenience of
the reader, we explicate the irreducibility results which are used in the proof of
Proposition 3.4. For x € %Z, we have denoted by D, the relative (limit of) discrete
series representation of GL,(R) of weight 2|«| 4+ 1 with central character trivial
on RZ.

We first recall the following irreducibility criterion due to Speh; see [Mceglin
1997, Theorem 10b]:

e For €1,¢€ € {0, 1} and 51, s € C, the representation of GL;(R) parabolically
induced from

sgn|-|" @sgn®|- [
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is irreducible if and only if either
€eg=¢eand sy —sp €27+ 1; or
€1 75 € and S1— 82 ¢ 27 {0}

e Fore € {0, 1}, x € %Z, and s, 57 € C, the representation of GL3(R) parabolically
induced from
sgn’| - ' ® D, |det|™
is irreducible if and only if either
{Sl —sy ¢ Z+«k; or

s1—8y €Z+«k and |s1 — s2| < |k|.

e Forki,kp € %Z and s1, 57 € C, the representation of GL4(R) parabolically induced

from
Dy, |det|”! @ D, |det|*?

is irreducible if and only if either

{Sl —s2 € 7+ K1 +K; or
s1—82 € Z+ k1 + k2 and |51 — 57| <min(|ky + k2], [k1 — Kk2]).

We next recall the irreducibility result of [Speh and Vogan 1980] for G =
SO2,+1(R). We retain the notation of Section 3F, so that P is a parabolic subgroup
of G with Levi component

M = GL;(R)* x GLy(R)! x SOz 11(R),
where k 4 21 +m = n. Put h = h*/™. We define a basis ey, . .., e, of h* by
ei(h) =a; (1<i<k),
erraici(h) =x;i++/—=1y;  (1<i <D,
er2i(h) = —x; +v/=1ly; (1<i <D,
exrarti(h) = V=10 (I<i<m)

for h = h*!™(a, z, ). Using the above basis, we identify h* with C". We denote
by A = A(g, b) the set of roots of b in g:

A={teitej|1<i<j=<njU{xe;|1=<i=<n}

We also denote by A;, A,, and A, the sets of imaginary, real, and complex roots,
respectively:
Ai={aeA|Oa=ual

Ar={xeA|ba=—a},
Aoy ={a € A|Oa # Fa},



ON THE IRREDUCIBILITY OF INDUCED REPRESENTATIONS OF LIE GROUPS 105

where 6 is the Cartan involution of g. Let r be an irreducible representation of M
of the form

T=x1® - @uen® - uer,

where
o xi =sgn¥ ®|-|" for some §; € {0, 1} and some v; € C;
e 7;,=D,® |det|¥ for some k; € %Z and some v; € C;
o 7' is a (limit of) discrete series representation of SO,,, . 1 (R) with Harish-Chandra

parameter

N=00, .0 e M0 =em,
where A} € Z + % for all i.

Put
Y=y, Uk KL+ V] KL=V, oo kY k= VL A A) BT ECT,
Then, by [Speh and Vogan 1980, Theorem 6.19], Indg () is irreducible if

(1) there exists no complex root o € A, satisfying 2{«, y)/{a, @) € Z, (o, y) > 0,
and (fa, y) < 0; and

(i1) there exists no real root o € A, satisfying the parity condition [Vogan 1981,
Definition 8.3.11].

We now explicate the conditions (i) and (ii). We start with the following special
cases:

e Suppose that k =1, [ =0, and m = n — 1. In this case, we have
Aj={xe;tej|2=<i<j=<n}U{xe |2=<i=<nj},
Ar ={xei},
Aoy ={Fei £ej |2 < j <n}.
Hence the conditions (i) and (ii) are equivalent to the following conditions, respec-
tively:
(i,){w ¢ Z+1%; or
vy €Z+% and || < [A)| forall 1 <i <m;
(ii") vy ¢Z+3.
e Suppose that k =0, [ =1, and m = n — 2. In this case, we have
Ai={t(e1 +e)}U{Lei te;[3<i<j=nlU{Le [3=<i=<n}
Ar ={£(e1 —er)},
Aoy ={Fe;tej |1 <i<2<j=<njU{xe |1=<i=<2}.
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Hence the conditions (i) and (ii) are equivalent to the following conditions, respec-
tively:

V| ¢ %Z; or
(') v{ € Z+«k; and |vi| < |k1]; or

S Z-Hq—i—%, [vil < lx1l, and |vi| <min(|k1+A], [k1—=A}]) for all 1 <i <m;
(i) V| ¢ Z4K1+3.
Similarly, in the general case, we can show that the conditions (i) and (ii) hold if
and only if

eforl <i<j<k, 6 =36;andv; —v; ¢2Z+1,0rd; #8; and v; —v; ¢ 27;

eforl <i<j<k, 4 =6 andv;+v; ¢2Z+1,0rd; #3; and v; +v; ¢ 2Z;

e forl<i<kandl=<j<lI, vi—v}¢Z+Kj,orvi—v]er+Kj and|v,~—vj’.|§|/cj|;

eforl<i<kandl<j<lI, Ui+UJ/~¢Z+Kj‘,OrU,‘+VJ/~€Z+KJ‘ and|v,~+vj/.|§|/<j|;

oeforl<i<j<lI, vlf—v]/.¢Z—|—Ki+Kj,0rvlf—vJ/.eZ+Ki+/cj and|v;—v;|§
min(|k; + &1, [ki — k;j);

eforl<i<jc<lI, vlf-l—vj’.¢Z+K,-+Kj,orv;+vj/.el+/<,-+/<j and|v{+v]/.|§
min(|x; + 1, [ki — k;);

eforl<i<k, v¢Z+1;

e for 1 <i<1l, v/ ¢3Z orv.€Z+k; and |v]] < |k;].
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