
Tunisian Journal of Mathematics
an international publication organized by the Tunisian Mathematical Society

msp

Partial resolution by toroidal blow-ups

János Kollár

2019 vol. 1 no. 1



msp
TUNISIAN JOURNAL OF MATHEMATICS

Vol. 1, No. 1, 2019

dx.doi.org/10.2140/tunis.2019.1.3

Partial resolution by toroidal blow-ups

János Kollár

We give an alternate proof of a theorem of Tevelev about improving a nontoroidal
ideal sheaf by a sequence of toroidal blow-ups.

1. Toroidal blow-up. Let X be a smooth variety over a field and
∑

Di a sim-
ple normal crossing (abbreviated as snc) divisor on X . A (closed) stratum of
(X,

∑
Di ) is an irreducible component of an intersection Di1 ∩· · ·∩Dir . If Z ⊂ X

is a stratum (or a disjoint union of strata) and π : BZ X → X the blow-up then(
BZ X,

∑
i π
−1
∗

Di +
∑

j E j
)

is also an snc pair where the E j are the exceptional
divisors of π . We call such blow-ups toroidal.

The following question was suggested by Keel.

Question 2. Let (X,
∑

Di ) be an snc pair over a field and J ⊂OX an ideal sheaf.
How much can one improve J by a sequence of toroidal blow-ups?

As a simple example, assume that X is a surface. Then there are very few
toroidal blow-ups: we can blow up either the curves Di ⊂ X (giving the identity
map) or any of their intersection points. Thus if the cosupport of J (that is, the
support of OX/J ) does not contain any strata then toroidal blow-ups have no effect
on J . Similarly, one expects to be able to improve the singularities of J along strata
but not necessarily along other subvarieties. This leads to the following.

Definition 3. Let (X,1 :=
∑

Di ) be an snc pair over a field and J ⊂OX an ideal
sheaf. We say that J is toroidally resolved if its cosupport does not contain any
strata.

The key step of the proof is to show that each ideal sheaf J ⊂OX has a unique
toroidal hull J ⊂ J t

⊂OX such that the toroidal resolution problem for J is equiv-
alent to the ordinary resolution problem for J t ; see Definition–Theorem 17 and
Proposition 20. The resolution of toroidal ideals is known over arbitrary fields by
[Bierstone and Milman 2006], thus we get the following answer to Question 2.
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Theorem 4. Let (X,1) be an snc pair over a field (of arbitrary characteristic)
and J ⊂OX an ideal sheaf. Then there is a toroidal blow-up sequence

(Xn,1n, Jn)→ · · · → (X0,10, J0) := (X,1, J )

such that Jn ⊂OXn is toroidally resolved.

We state a more precise version in Theorem 10 and also explain how the ideals
Ji transform into each other, but first we apply Theorem 4 to the ideal sheaf of a
divisor to get the following answer to the original question of Keel.

Tevelev pointed out that, using [De Concini and Procesi 1985], the methods of
[Tevelev 2007] can easily be modified to obtain Corollary 5; see also [Popescu-
Pampu 2004; Hacking 2008; Ulirsch 2015; Vogiannou 2015] for closely related
variants. In fact, [Tevelev 2007] gives the stronger result that 5−1

∗
Y intersects

each stratum in the expected codimension.

Corollary 5 [Tevelev 2007]. Let (X,1) be an snc pair over a field and Y ⊂ X
a closed subscheme that does not contain any of the irreducible components of 1.
Then there is a sequence of toroidal blow-ups 5 : Xn→ · · · → X0 := X such that
the birational transform 5−1

∗
Y does not contain any strata of the pair(

Xn,5
−1
∗
1+Ex(5)

)
. �

For another application, note that a divisor B does not contain any strata of
(X,1) if and only if (X,1+ εB) is divisorial log terminal (abbreviated as dlt)
for 0 < ε � 1, cf. [Kollár 2013, 2.8]. We can thus restate the divisorial case of
Corollary 5 as follows.

Corollary 6. Let (X,1) be an snc pair over a field and B ⊂ X an effective divisor
that does not contain any of the irreducible components of 1. Then there is a
sequence of toroidal blow-ups 5 : Xn→ · · · → X0 := X such that(

Xn,5
−1
∗
(1+ εB)+Ex(5)

)
is dlt for 0< ε� 1. �

The model obtained in Corollary 6 is related to the construction in [Odaka and
Xu 2012] of dlt modifications of (X,1+ εB) (in characteristic 0). Our models
are smooth but the log canonical class need not be relatively nef. Nonetheless, this
suggests that Corollary 6 might be approached using the minimal model program.
A problem is that there are many different dlt modifications and most of them are
singular. It is not clear to me how to guarantee smoothness using MMP.

7. Plan of the proof of Theorem 4. Assume for simplicity that (X,1) is toric
with torus T . We assume that 1 consists of all T -invariant divisors. We show that
Theorem 4 for J is essentially equivalent to a special case of resolution, usually
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called monomialization, of the toric ideal J t
:=
∑

τ τ
∗ J , where we sum over all

τ ∈ T . This is a combinatorial problem that is independent of the characteristic.
Note also that, at least in characteristic zero, J t is the ideal generated by logarith-

mic derivatives of all orders of elements of J ; see Paragraph 14.4 and Proposition 15
for details.

In general, (X,1) is locally toric in the analytic or étale topology so we need
to check that the local construction of J t gives a global ideal sheaf J t . This is
probably well known to experts. I do not know a reference that covers everything
that we need, so we go through the details.

In the precise version of Theorem 4 we further restrict the blow-ups allowed in
the sequence. For this we need some definitions first.

8. Toroidally equimultiple blow-ups. Let X be a smooth variety and J ⊂OX an
ideal sheaf. Let Z ⊂ X be a smooth subvariety and π : BZ X→ X the blow-up of
Z . Let E ⊂ BZ X denote the exceptional divisor.

Most resolution methods work with blow-up centers Z ⊂ X such that J is equi-
multiple along Z ; that is, multz J = m for every z ∈ Z for some fixed m. We then
define the birational transform of J by

π−1
∗

J :=OBZ X (m E) ·π∗ J. (8-1)

(This is frequently called the “controlled” or “weak” transform.) This is an ideal
sheaf on BZ X . It has the pleasant property that multy π

−1
∗

J ≤ m for every y ∈ E .
Working toroidally, we would like Z to be a stratum (or a disjoint union of strata).

However, if the multiplicity of J jumps at a single point that is not a stratum, then
toroidal blow-ups are unlikely to change this. Thus, in a resolution procedure, the
best one can hope for is that J is toroidally equimultiple along Z , that is, multW J =
multZ J = m for every stratum W ⊂ Z for some fixed m.

If this holds then we define the birational transform of J by

π−1
∗

J :=OBZ X (m E) ·π∗ J. (8-2)

As before, this is an ideal sheaf on BZ X and multV π
−1
∗

J ≤ m for every stratum
V ⊂ E .

The resulting birational transform of J then behaves as expected over generic
points of strata W ⊂ Z but can be rather badly behaved elsewhere. This is not a
problem if we care only about generic points of strata.

Let us recall a somewhat detailed form of resolution (usually called monomial-
ization) of ideal sheaves, as stated in [Kollár 2007, 3.68].

Theorem 9. Let (X, E) be an snc pair over a field of characteristic 0 and J ⊂OX

an ideal sheaf. Then there is a blow-up sequence

(Xn, Jn, En)→ · · · → (X0, J0, E0) := (X, J, E)
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with the following properties:

(1) Each πi : X i+1→ X i is a blow-up with smooth center Zi ⊂ X i and exceptional
divisor E i+1.

(2) Ji is equimultiple along Zi .

(3) Ji+1 = (πi )
−1
∗

Ji as in (8-1).

(4) Zi has normal crossings with Ei and Ei+1 = (πi )
−1
∗

Ei + E i+1.

(5) (Xn, Jn, En) is resolved; that is, Jn =OXn .

Now we can state the more precise form of Theorem 4 where we just add
“toroidal” to the formulation of Theorem 9 in a few places.

Theorem 10. Let (X,1) be an snc pair over a field of any characteristic and
J ⊂OX an ideal sheaf. Then there is a toroidal blow-up sequence

(Xn,1n, Jn)→ · · · → (X0,10, J0) := (X,1, J )

with the following properties:

(1) Each πi : X i+1→ X i is a blow-up with smooth, toroidal center Zi ⊂ X i and
exceptional divisor Ei+1.

(2) Ji is toroidally equimultiple along Zi .

(3) Ji+1 = (πi )
−1
∗

Ji as in (8-2).

(4) 1i+1 = (πi )
−1
∗
1i + Ei+1.

(5) (Xn,1n, Jn) is toroidally resolved.

Remark 11. The role of the divisors E and 1 is quite different in the two Theo-
rems; the notation is changed to emphasize this. In Theorem 9 E is but an auxil-
iary datum which gives very mild restrictions on the blow-up centers, whereas in
Theorem 4 1 gives extremely strong restrictions on the blow-up centers.

Definition 12. We call a blow-up sequence satisfying Theorem 9(1)–(4) equimulti-
ple and a blow-up sequence satisfying Theorem 10(1)–(4) toroidally equimultiple.

Thus Theorem 9 says that, in characteristic 0, every ideal sheaf can be resolved
by an equimultiple blow-up sequence.

13. Toroidal ideals. Let X be a smooth variety and
∑

Di an snc divisor. An ideal
sheaf I ⊂OX is toroidal if X is covered by open sets U j such that

I |U j =

∑
s

OU j

(
−
∑

i mi js Di |U j

)
(13-1)

for every j and for suitable mi js ∈ N.
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Let Z ⊂ X be a closed stratum and Z0
:= Z \ ∪{W : W ( Z is a stratum} the

corresponding open stratum. For every z ∈ Z0
∩U j the mi js give vectors

v js :=
(
mi js : Di ⊃ Z

)
∈

∑
i :Di⊃Z

N[Di ] (13-2)

and these generate a subsemigroup

MZ ⊂
∑

i :Di⊃Z
N[Di ] (13-3)

which depends only on Z . For any inclusion of strata W ⊂ Z we have the coordinate
projection

pZ ,W :
∑

i :Di⊃W
N[Di ] →

∑
i :Di⊃Z

N[Di ] (13-4)

and the subsemigoups MZ satisfy the compatibility relation

pZ ,W (MW )= MZ . (13-5)

This gives a one-to-one correspondence between toroidal ideals and collections of
subsemigroups {MZ } satisfying the compatibility relations (13-5). In particular,
we see that I 7→ I an gives a one-to-one correspondence

{toroidal ideals I ⊂OX } ↔ {toroidal ideals I an
⊂Oan

X }. (13-6)

We claim that toroidal ideals are the only ones that can be “canonically” associ-
ated to the stratification of an snc pair.

14. Local stratified isomorphisms. Let (X,1) be an snc pair and U1,U2 ⊂ X
open sets. An isomorphism φ : U1 → U2 is called stratification preserving if
Z ∩ U1 = φ

−1(Z ∩ U2) for every stratum Z ⊂ X . Note that our strata are the
irreducible components of the intersections of the Di , thus this is stronger than
just assuming Di ∩U1 = φ

−1(Di ∩U2) for every Di .
We say that an ideal sheaf I ⊂ OX is invariant under stratification preserving

local isomorphisms if φ∗
(
I |U2

)
= I |U1 holds for every such φ :U1→U2.

It is clear that a toroidal ideal is invariant under stratification preserving local
isomorphisms and we would like to claim the converse. Unfortunately, if X has no
birational automorphisms then the identity map is the only stratification preserving
local isomorphism. As usual, there are three ways to get more Ui .

14.1. Complex analytic. If X is over C, we use analytic open sets U1,U2 ⊂ X an.

14.2. Étale local. We use étale morphisms τi :U → X and require that τ−1
1 (Z)=

τ−1
2 (Z) for every stratum Z ⊂ X .
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14.3. Formal local. We use isomorphisms of complete local rings

φ∗ : Ôx2,X → Ôx1,X .

(If the base field is not algebraically closed we also allow residue field extensions.)

14.4. Micro local. We assume the condition on the tangent space level. That is

DerX (−log1) · I ⊂ I,

where DerX (−log1) is the sheaf of logarithmic derivatives along 1; cf. [Kollár
2013, 3.87]. This works in characteristic 0 but not in positive characteristic. This
shows that the concepts of toroidal ideal and toroidal hull (Definition–Theorem 17)
are related to D-balanced ideals and well-tuned ideals used in resolution. See
[Kollár 2007, Section 3.4] for the latter notions.

Proposition 15. Let (X,1) be an snc pair and I ⊂ OX an ideal sheaf that is in-
variant under all stratification preserving local isomorphisms in any of the settings
of Paragraphs 14.1–14.3. Then I is a toroidal ideal sheaf.

Proof. We explain the complex analytic case and leave the details of the other
settings to the reader. By (13-6) it is enough to show that I an is toroidal.

Let D ⊂ C denote the unit disc and D∗ the punctured unit disc. We will view
D∗ ⊂ C∗ as a semigroup.

Let Z0
⊂ X be an open stratum. After reindexing the Di , for every z ∈ Z0

we can choose a neighborhood of the form (0 ∈ Dn), where Di = (xi = 0) for
i = 1, . . . ,m. We start with the natural (D∗)m action on the first m coordinates.
This is a stratification preserving action.

Pick any f =
∑

i1,...,im
fi1,...,im (xm+1, . . . , xn) · x

i1
1 · · · x

im
m ∈ I an. Then

τ ∗ f =
∑

i1,...,im

χi1,...,im · fi1,...,im (xm+1, . . . , xn) · x
i1
1 · · · x

im
m ,

where χi1,...,im : (D
∗)m→ D∗ denotes the character λi1

1 · · · λ
im
m . Since the characters

of a group (in this case (C∗)m) are linearly independent we see that

fi1,...,im (xm+1, . . . , xn) · x
i1
1 · · · x

im
m ∈ I an

+ (x1, . . . , xm)
N

holds for every N . By Krull’s intersection theorem this implies that

fi1,...,im (xm+1, . . . , xn) · x
i1
1 · · · x

im
m ∈ I an.

We next use translations by (cm+1, . . . , cm) in the xm+1, . . . , xn directions to achieve
that fi1,...,im (xm+1+ cm+1, . . . , xn + cn) is nonzero at (xm+1, . . . , xn)= (0, . . . , 0).
Thus

x i1
1 · · · x

im
m ∈ I an provided fi1,...,im (xm+1, . . . , xn) 6≡ 0.
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This shows that I an is generated by monomials in x1, . . . , xm ; hence it is toroidal.
�

Note that (X,1) is toric with torus T then we need only the T -action in the
above proof. Thus we have showed the following elementary observation.

Corollary 16. Let (X,1) be a smooth toric variety. Then an ideal is toric if and
only if it is toroidal. �

Now we come to the key definition, the toroidal hull of an ideal. The existence
of the toroidal hull is a quite elementary observation which is at least implicit in
several papers. See, for instance, the notion of the Newton polygon [Kouchnirenko
1976] and its connections with resolutions [Teissier 2004] or the D-balanced and
well-tuned ideals discussed in [Włodarczyk 2005]; see also [Kollár 2007, Sec-
tion 3.4] for more details on the latter.

Definition–Theorem 17. Let (X,1) be an snc pair over a field and J ⊂ OX an
ideal sheaf. There is a unique, smallest toroidal ideal sheaf J t

⊃ J , called the
toroidal hull of J .

Furthermore, if W ⊂ X is a stratum then multW J t
= multW J . (A stronger

version of this property is established in Lemma 19.)

Proof. As we noted in Paragraph 13, specifying J t is equivalent to specifying the
semigroups MZ (13-3) and the latter can be done working in an analytic or formal
neighborhood of a point p0 ∈ Z0 of an open stratum.

Then the recipe of constructing J t follows from the proof of Proposition 15:

(∗) Take all f =
∑

i1,...,im
fi1,...,im (xm+1, . . . , xn)x

i1
1 · · · x

im
m ∈ J and add the mono-

mial x i1
1 · · · x

im
m to J t whenever fi1,...,im 6≡ 0.

This also shows that we have not decreased the multiplicity along Z0 since

multp0 x i1
1 · · · x

im
m = inf

p∈Z0
multp

(
fi1,...,im · x

i1
1 · · · x

im
m
)
≥ inf

p∈Z0
multp f. �

Corollary 18. Let (X,1) be an snc pair and J ⊂ OX an ideal sheaf. Then J is
toroidally resolved if and only if J t

=OX . �

The following result says that the toroidal hull commutes with toroidal blow-ups
along toroidally equimultiple centers.

Lemma 19. Assume that J is toroidally equimultiple along Z. Then

(π−1
∗

J )t = π−1
∗
(J t).

Proof. The question is local on X and we can even replace X by its completion X̂x .
Thus we may assume that (X,1) is toric with torus T acting on X . Then

J t
=

∑
τ

τ ∗ J,
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where we sum of all τ ∈ T . If J is toroidally equimultiple along Z with multiplicity
m then the same holds for every τ ∗ J . Thus

π−1
∗
(J t)=OBZ X (m E) ·π∗

(∑
τ τ
∗ J
)
=
∑

τ

(
OBZ X (m E) ·τ ∗π∗ J

)
=
(
π−1
∗

J
)t
. �

The following observations transforms the toroidal resolution problem for J to
the usual resolution problem for its toroidal hull. Thus the toroidal hull is a variant
of the concept of tuning an ideal used in resolution; see [Kollár 2007, 3.54].

Proposition 20. Let (X,1) be an snc pair over a field and J ⊂OX an ideal sheaf.
There is a natural equivalence between the following sets:

(1) toroidally equimultiple blow-up sequences for J,

(2) toroidally equimultiple blow-up sequences for J t,

(3) equimultiple blow-up sequences for J t.

Proof. Definition–Theorem 17 shows that J is toroidally equimultiple along a
stratum Z if and only if J t is toroidally equimultiple along Z . A toroidal ideal is
toroidally equimultiple along a stratum Z if and only if it is equimultiple along Z .
Thus in all three settings the blow-ups allowed at the first step are the same.

Lemma 19 guarantees that this holds for all subsequent steps by induction. �

21. Resolution of toroidal ideals. It has been long known that resolution of toric
ideal sheaves is a combinatorial question that is independent of the characteris-
tic [Kempf et al. 1973; Ash et al. 1975; Cox 2000; González Pérez and Teissier
2002]. However, we need a resolution that is obtained by an equimultiple blow-up
sequence. The original toric references that I could find do not claim this and the
methods do not seem to be designed for this purpose.

Resolution of toric and toroidal varieties and ideals using equimultiple blow-
up sequences is proved in [Bierstone and Milman 2006]; see also [Blanco 2012a;
2012b]. Note that our setting is quite a bit easier since for us all strata are smooth.
(This is also the reason why we do not need to worry about imperfect fields.)

One should also note that for toroidal ideals an étale-local resolution procedure is
automatically combinatorial. So, although this is not stated, the resolution method
discussed in [Włodarczyk 2005; Kollár 2007, Chapter 3] is combinatorial. Thus it
yields the required resolution procedure for toroidal ideals over any field.

22. Proof of Theorem 10. By Theorem 9 (in characteristic = 0) and Paragraph 21
(in characteristic 6= 0) there is an equimultiple blow-up sequence

(Xn,1n, (J t)n)→ · · · → (X0,10, (J t)0) := (X,1, J t)
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that resolves J t. By Proposition 20 the same sequence gives a toroidally equimul-
tiple blow-up sequence for J :

(Xn,1n, Jn)→ · · · → (X0,10, J0) := (X,1, J ).

By Lemma 19 we know that (Jn)
t
= (J t)n and the latter is OXn by assumption.

Thus Jn is toroidally resolved by Corollary 18.
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