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Construction of a stable blowup solution with
a prescribed behavior for a non-scaling-invariant

semilinear heat equation

Giao Ky Duong, Van Tien Nguyen and Hatem Zaag

We consider the semilinear heat equation

∂t u =1u+ |u|p−1u lnα(u2
+ 2)

in the whole space Rn, where p > 1 and α ∈ R. Unlike the standard case α = 0,
this equation is not scaling invariant. We construct for this equation a solution
which blows up in finite time T only at one blowup point a, according to the
asymptotic dynamic

u(x, t)∼ ψ(t)
(

1+
(p− 1)|x − a|2

4p(T − t)|ln(T − t)|

)−1/(p−1)

as t→ T,

where ψ(t) is the unique positive solution of the ODE

ψ ′ = ψ p lnα(ψ2
+ 2), lim

t→T
ψ(t)=+∞.

The construction relies on the reduction of the problem to a finite-dimensional
one and a topological argument based on the index theory to get the conclu-
sion. By the interpretation of the parameters of the finite-dimensional problem
in terms of the blowup time and the blowup point, we show the stability of the
constructed solution with respect to perturbations in initial data. To our knowl-
edge, this is the first successful construction for a genuinely non-scale-invariant
PDE of a stable blowup solution with the derivation of the blowup profile. From
this point of view, we consider our result as a breakthrough.

1. Introduction

We are interested in the semilinear heat equation{
∂t u =1u+ F(u),
u(0)= u0 ∈ L∞(Rn),

(1-1)
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where u(t) : Rn
→ R, 1 stands for the Laplacian in Rn and

F(u)= |u|p−1u lnα(u2
+ 2), p > 1, α ∈ R. (1-2)

By standard results the model (1-1) is well-posed in L∞(Rn) thanks to a fixed-
point argument. More precisely, there is a unique maximal solution on [0, T ),
with T ≤+∞. If T <+∞, then the solution of (1-1) may develop singularities in
finite time T, in the sense that

‖u(t)‖L∞→+∞ as t→ T.

In this case, T is called the blowup time of u. Given a ∈ Rn , we say that a is a
blowup point of u if and only if there exists (aj , tj )→ (a, T ) as j →+∞ such
that |u(aj , tj )| → +∞ as j→+∞.

In the special case α = 0, (1-1) becomes the standard semilinear heat equation

∂t u =1u+ |u|p−1u. (1-3)

This equation is invariant under the scaling transformation

u 7→ uλ(x, t) := λ2/(p−1)u(λx, λ2t). (1-4)

Extensive literature is devoted to (1-3) and no review can be exhaustive. Given our
interest in the construction question with a prescribed blowup behavior, we only
mention previous work in this direction.

Bricmont and Kupiainen [1994] showed the existence of a solution of (1-3) such
that∥∥(T−t)1/(p−1)u

(
a+z

√
(T−t)|ln(T−t)|, t

)
−ϕ0(z)

∥∥
L∞(Rn)

→0 as t→T, (1-5)

where

ϕ0(z)=
(

p− 1+
(p− 1)2z2

4p

)−1/(p−1)

(note that Herrero and Velázquez [1992] proved the same result with a different
method; note also that Bressan [1992] made a similar construction in the case of
an exponential nonlinearity).

Later, Merle and Zaag [1997] (see also [Merle and Zaag 1996]) simplified the
proof of [Bricmont and Kupiainen 1994] and proved the stability of the constructed
solution satisfying the behavior (1-5). Their method relies on the linearization of
the similarity variables version around the expected profile. In that setting, the lin-
earized operator has two positive eigenvalues, a zero eigenvalue and then a negative
spectrum. Then, they proceed in two steps:

• Reduction of an infinite-dimensional problem to finite-dimensional one: they
show that controlling the similarity variable version around the profile reduces
to the control of the components corresponding to the two positive eigenvalues.
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• Then, they solve the finite-dimensional problem thanks to a topological argu-
ment based on index theory.

The method of [Merle and Zaag 1997] has proved to be successful in various
situations, such as for the complex Ginzburg–Landau equation of [Masmoudi and
Zaag 2008] (see also [Zaag 1998] for an earlier work) and for the case of a complex
semilinear heat equation with no variational structure [Nouaili and Zaag 2015]. We
also mention the work of Tayachi and Zaag [2015a; 2015b] and the work of Ghoul,
Nguyen and Zaag [Ghoul et al. 2017a] dealing with a nonlinear heat equation with
a double source depending on the solution and its gradient in a critical way. Ghoul,
Nguyen and Zaag [Ghoul et al. 2016; 2017b] successfully adapted the method to
construct a stable blowup solution for a nonvariational semilinear parabolic sys-
tem.

In other words, the method of [Merle and Zaag 1997] has proved to be efficient
even for the case of systems with nonvariational structure. However, all the previ-
ous examples enjoy a common scaling-invariant property like (1-4), which seemed
at first to be a strong requirement for the method. In fact, this was proved to be
untrue.

Ebde and Zaag [2011] were able to adapt the method to construct blowup solu-
tions for the non-scaling-invariant equation

∂t u =1u+ |u|p−1u+ f (u,∇u), (1-6)
where

| f (u,∇u)| ≤ C(1+ |u|q + |∇u|q
′

), with q < p, q ′ <
2p

p+ 1
.

These conditions ensure that the perturbation f (u,∇u) results in exponentially
small coefficients in the similarity variables. Later, Nguyen and Zaag [2016]
recorded a more spectacular achievement by addressing the case of stronger per-
turbation of (1-3), namely

∂t u =1u+ |u|p−1u+
µ|u|p−1u

lna(2+ u2)
, (1-7)

where µ ∈ R and a > 0. When moving to the similarity variables, the perturbation
turns out to have a polynomial decay. Hence, when a > 0 is small, we are almost
in the case of a critical perturbation.

In both cases addressed in [Ebde and Zaag 2011; Nguyen and Zaag 2016],
the equations are indeed non-scaling-invariant, which shows the robustness of the
method. However, since both papers proceed by perturbations around the standard
case (1-3), it is as if we are still in the scaling-invariant case.

In this paper, we aim at trying the approach on a genuinely non-scaling-invariant
case, namely (1-1). This is our main result.
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Theorem 1.1 (blowup solutions for (1-1) with a prescribed behavior). There exists
an initial data u0 ∈ L∞(Rn) such that the corresponding solution to (1-1) blows
up in finite time T = T (u0) > 0, only at the origin. Moreover, we have:

(i) For all t ∈ [0, T ), there exists a positive constant C0 such that∥∥∥∥ψ−1(t)u(x, t)− f0

(
x

√
(T − t)|ln(T − t)|

)∥∥∥∥
L∞(Rn)

≤
C0

√
|ln(T − t)|

, (1-8)

where ψ(t) is the unique positive solution of the ODE

ψ ′(t)= ψ p(t) lnα(ψ2(t)+ 2), lim
t→T

ψ(t)=+∞ (1-9)

(see Lemma A.1 for the existence and uniqueness of ψ), and the profile f0 is de-
fined by

f0(z)=
(

1+
(p− 1)

4p
|z|2

)−1/(p−1)

. (1-10)

(ii) There exits u∗(x) ∈ C2(Rn
\{0}) such that u(x, t)→ u∗(x) as t→ T uniformly

on compact sets of Rn
\ {0}, where

u∗(x)∼
(
(p− 1)2|x |2

8p
∣∣ln |x |∣∣

)−1/(p−1)(4
∣∣ln |x |∣∣
p− 1

)−α/(p−1)

as x→ 0. (1-11)

Remark 1.2. From (i), we see that u(0, t)∼ ψ(t)→+∞ as t→ T, which means
that the solution blows up in finite time T at x = 0. From (ii), we deduce that the
solution blows up only at the origin.

Remark 1.3. Note that the behavior in (1-8) is almost the same as in the standard
case α = 0 treated in [Bricmont and Kupiainen 1994; Merle and Zaag 1997]. How-
ever, the final profile u∗ has a difference coming from the extra multiplication of
the size

∣∣ln |x |∣∣−α/(p−1), which shows that the nonlinear source in (1-1) has a strong
effect on the dynamic of the solution in comparison with the standard case α = 0.

Remark 1.4. Item (ii) is in fact a consequence of (1-8) and Lemma A.4. Therefore,
the main goal of this paper is to construct for (1-1) a solution blowing up in finite
time and satisfying the behavior (1-8).

Remark 1.5. By parabolic regularity, one can show that if the initial data u0 ∈

W 2,∞(Rn), then we have for i = 0, 1, 2,∥∥∥∥ψ−1(t)(T − t)i/2∇ i
x u(x, t)− (T − t)i/2∇ i

x f0

(
x

√
(T − t)|ln(T − t)|

)∥∥∥∥
L∞

≤
C

√
|ln(T − t)|

,

where f0 is defined by (1-10).
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From the technique of [Merle 1992a], we can prove the following result.

Corollary 1.6. For an arbitrary set of m points x1, . . . , xm , there exists initial
data u0 such that the solution u of (1-1) with initial data u0 blows up exactly at
m points x1, . . . , xm . Moreover, the local behavior at each blowup point xi is also
given by (1-8) by replacing x by x − xi .

As a consequence of our technique, we prove the stability of the solution con-
structed in Theorem 1.1 under the perturbations of initial data. In particular, we
have the following result.

Theorem 1.7 (stability of the solution constructed in Theorem 1.1). Consider û,
the solution constructed in Theorem 1.1 and denote by T̂ its blowup time. Then
there exists U0 ⊂ L∞(Rn) a neighborhood of û(0) such that for all u0 ∈ U0, (1-1)
with the initial data u0 has a unique solution u(t) blowing up in finite time T (u0)

at a single point a(u0). Moreover, the statements (i) and (ii) in Theorem 1.1 are
satisfied by u(x − a(u0), t), and

(T (u0), a(u0))→ (T̂ , 0) as ‖u0− û0‖L∞(Rn)→ 0. (1-12)

Remark 1.8. We will not give the proof of Theorem 1.7 because the stability result
follows from the reduction to a finite-dimensional case as in [Merle and Zaag 1997]
with the same proof. Here we only prove the existence and refer to that paper for
the stability.

2. Formulation of the problem

We first use the matched asymptotic technique to formally derive the behavior (1-8).
Then, we give the formulation of the problem in order to justify the formal result.

2A. A formal approach. We follow the approach of [Tayachi and Zaag 2015b]
to formally explain how to derive the asymptotic behavior (1-8). To do so, we
introduce the following self-similarity variables

u(x, t)= ψ(t)w(y, s), y =
x

√
T − t

, s =− ln(T − t), (2-1)

where ψ(t) is the unique positive solution of (1-9) and ψ(t)→ +∞ as t → T.
Then, we see from (1-1) that w(y, s) solves the following equation: for all (y, s) ∈
Rn
×[− ln T,+∞)

∂sw =1w−
1
2 y · ∇w− h(s)w+ h(s)|w|p−1w

lnα(ψ2
1w

2
+ 2)

lnα(ψ2
1 + 2)

, (2-2)

where

h(s)= e−sψ
p−1
1 (s) lnα(ψ2

1 (s)+ 2), (2-3)

ψ1(s)= ψ(T − e−s). (2-4)
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Note that h(s) admits the following asymptotic behavior as s→+∞:

h(s)=
1

p− 1

(
1−

α

s
−
α2 ln s

s2

)
+ O

(
1
s2

)
; (2-5)

see (ii) of Lemma A.5 for the proof of (2-5). From (2-1), we see that the study
of the asymptotic behavior of u(x, t) as t → T is equivalent to the study of the
long-time behavior of w(y, s) as s→+∞. In other words, the construction of the
solution u(x, t), which blows up in finite time T and satisfies the behavior (1-8),
reduces to the construction of a global solution w(y, s) for (2-2) satisfying

0< ε0 ≤ lim sup
s→+∞

‖w(s)‖L∞(Rn) ≤
1
ε0
, ε0 > 0, (2-6)

and ∥∥∥∥w(y, s)−
(

1+
(p− 1)y2

4ps

)−1/(p−1)∥∥∥∥
L∞(Rn)

→ 0 as s→+∞. (2-7)

In the following, we will formally explain how to derive the behavior (2-7).

Inner expansion. We remark that 0,±1 are the trivial constant solutions to (2-2).
Since we are looking for a nonzero solution, let us consider the case when w→ 1
as s→+∞. We now introduce

w = 1+ w̄; (2-8)

then from (2-2), we see that w̄ satisfies

∂sw̄ = L(w̄)+ N (w̄, s), (2-9)

where
L=1− 1

2 y.∇+Id, (2-10)

N (w̄,s)= h(s)|w̄+1|p−1(w̄+1)
lnα(ψ2

1 (w̄+1)2+2)
lnα(ψ2

1+2)
−h(s)(w̄+1)−w̄, (2-11)

ψ1(s) is defined in (2-4) and h(s) behaves as in (2-5). Note that N admits the
asymptotic behavior

N (w̄,s)=
pw̄2

2
+O

(
|w̄| lns

s2

)
+O

(
|w̄|2

s

)
+O(|w̄|3) as (w̄,s)→ (0,+∞),

(2-12)
(see Lemma A.6 for the proof of this statement).

Since w̄(s)→ 0 as s→+∞ and the nonlinear term N is quadratic in w̄, we see
from (2-9) that the linear part will play the main role in the analysis of our solution.
Let us recall some properties of L. The linear operator L is self-adjoint in L2

ρ(R
n),
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where L2
ρ is the weighted space associated with the weight ρ defined by

ρ(y)=
e−|y|

2/4

(4π)n/2
,

and
spec(L)=

{
1− m

2
: m ∈ N

}
.

More precisely, we have:

• When n = 1, all the eigenvalues of L are simple and the eigenfunction corre-
sponding to the eigenvalue 1−m/2 is the Hermite polynomial defined by

hm(y)=
[m/2]∑
j=0

(−1) j m! ym−2 j

j ! (m− 2 j)!
. (2-13)

In particular, we have the orthogonality∫
R

hi h jρ dy = i ! 2iδi, j for all (i, j) ∈ N2.

• When n≥ 2, the eigenspace corresponding to the eigenvalue 1−m/2 is defined as

Em =
{
hβ = hβ1 · · · hβn : for all β ∈ Nn, |β| = m, |β| = β1+ · · ·+βn

}
. (2-14)

Since the set of the eigenfunctions of L is a basis of L2
ρ , we can expand w̄ in

this basis as
w̄(y, s)=

∑
β∈Nn

w̄β(s)hβ(y).

For simplicity, let us assume that w̄ is radially symmetric in y. Since hβ with
|β| ≥ 3 corresponds to negative eigenvalues of L, we may consider the solution w̄
taking the form

w̄ = w̄0+ w̄2(s)(|y|2− 2n), (2-15)

where |w̄0(s)| and |w̄2(s)| go to 0 as s→+∞. Injecting (2-15) and (2-12) into
(2-9), then projecting (2-9) on the eigenspace Em with m = 0 and m = 2, we obtain

w̄′0= w̄0+
p
2
(w̄2

0+8nw̄2
2)+O

(
(|w̄0|+|w̄2|) lns

s2

)
+O

(
|w̄0|

2
+|w̄2|

2

s

)
+O(|w̄0|

3
+|w̄2|

3),

w̄′2= 4pw̄2
2+pw̄0w̄2+O

(
(|w̄0|+|w̄2|) lns

s2

)
+O

(
|w̄0|

2
+|w̄2|

2

s

)
+O(|w̄0|

3
+|w̄2|

3)

(2-16)
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as s → +∞. We now assume that |w̄0(s)| � |w̄2(s)| as s → +∞; then (2-17)
becomes

w̄′0 = w̄0+ O(|w̄2|
2)+ O

(
|w̄2| ln s

s2

)
,

w̄′2 = 4pw̄2
2 + o(|w̄2|

2)+ O
(
|w̄2| ln s

s2

) (2-17)

as s→+∞. We consider the following cases:

Case 1: Either |w̄2| = O((ln s)/s2) or |w̄2| � (ln s)/s as s → +∞. Then the
second equation in (2-17) becomes

w̄′2 = O
(
|w̄2| ln s

s2

)
as s→+∞,

which yields

ln |w̄2| = O
(

ln s
s

)
as s→+∞,

which contradicts the condition w̄2(s)→ 0 as s→+∞.

Case 2: |w̄2| � (ln s)/s2 as s→+∞. Then (2-17) becomes

w̄′0 = w̄0+ O(|w̄2|
2), w̄′2 = 4pw̄2

2 + o(|w̄2|
2)

as s→+∞. This yields

w̄0 = O
(

1
s2

)
, w̄2 =−

1
4ps
+ o

(
1
s

)
(2-18)

as s→+∞. Substituting (2-18) into (2-17) yields

w̄′0 = O
(

1
s2

)
, w̄′2 = 4pw̄2

2 + O
(

ln s
s3

)
as s→+∞, from which we improve the error for w̄2 as

w̄0 = O
(

1
s2

)
, w̄2 =−

1
4ps
+ O

(
ln2 s
s2

)
(2-19)

as s→+∞. Hence, from (2-8), (2-15) and (2-19), we derive

w(y, s)= 1−
y2

4ps
+

n
2ps
+ O

(
ln2 s
s2

)
(2-20)

in L2
ρ(R

n) as s→+∞. Note that the asymptotic expansion (2-20) also holds for
all |y| ≤ K , where K is an arbitrary positive number.
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Outer expansion. The asymptotic behavior of (2-20) suggests that the blowup pro-
file depends on the variable

z =
y
√

s
.

From (2-20), let us search for a regular solution of (2-2) of the form

w(y, s)= φ0(z)+
n

2ps
+ o

(1
s

)
in L∞loc as s→+∞, (2-21)

where φ0 is a bounded, smooth function to be determined. From (2-20), we impose
the condition

φ0(0)= 1. (2-22)

Since w(y, s) is supposed to be bounded, we obtain from Lemma A.7 that∣∣∣∣h(s)|w|p−1w
lnα(ψ2

1w
2
+ 2)

lnα(ψ2
1 + 2)

−
|w|p−1w

p− 1

∣∣∣∣= O
(1

s

)
.

Note also that∣∣∣∣∣∣∣φ0(z)+ O
(1

s

)∣∣∣p−1(
φ0(z)+ O

(1
s

))
− |φ0(z)|p−1φ0(z)

∣∣∣∣= O
(1

s

)
.

Hence, injecting (2-21) into (2-2) and comparing terms of order O(1/si ) for j =
0, 1, . . . , we derive the following equation for j = 0:

−
1
2 z · ∇φ0(z)−

φ0(z)
p− 1

+
|φ0|

p−1φ0(z)
p− 1

= 0 for all z ∈ Rn. (2-23)

Solving (2-23) with condition (2-22), we obtain

φ0(z)= (1+ c0|z|2)−1/(p−1) (2-24)

for some constant c0 ≥ 0 (since we want φ0 to be bounded for all z ∈ Rn). From
(2-21), (2-24) and a Taylor expansion, we obtain

w(y, s)= 1−
c0 y2

(p− 1)s
+

n
2ps
+ o

(1
s

)
for all |y| ≤ K as s→+∞.

From this and the asymptotic behavior (2-20), we find that

c0 =
p− 1
4p

.

In conclusion, we have just derived the asymptotic profile

w(y, s)∼ ϕ(y, s) as s→+∞, (2-25)
where

ϕ(y, s)=
(

1+
(p− 1)y2

4ps

)−1/(p−1)

+
n

2ps
. (2-26)
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2B. Formulation of the problem. We now set up the problem in order to justify
the formal approach presented in Section 2A. In particular, we give a formulation
to prove item (i) of Theorem 1.1. We aim at constructing for (1-1) a solution
blowing up in finite time T only at the origin and satisfying the behavior (1-8). In
the similarity variables (2-1), this is equivalent to the construction of a solution
w(y, s) for (2-2) defined for all (y, s) ∈ Rn

×[s0,+∞) and satisfying (2-7). The
formal approach given in Section 2A, see (2-25), suggests linearizing w around
the profile function ϕ defined by (2-26). Let us introduce

q(y, s)= w(y, s)−ϕ(y, s), (2-27)

where ϕ is defined by (2-26). From (2-2), we see that q satisfies the equation

∂sq = Lq + V q + B(q)+ R(y, s)+ D(q, s), (2-28)

where L is the linear operator defined by (2-10) and

V =
p

p−1
(ϕ p−1

−1), (2-29)

B(q)=
|q+ϕ|p−1(q+ϕ)−ϕ p

−pϕ p−1q
p−1

, (2-30)

R(y,s)=1ϕ− 1
2 y·∇ϕ−

ϕ

p−1
+
ϕ p

p−1
−∂sϕ, (2-31)

D(q,s)= (q+ϕ)
((

h(s)−
1

p−1

)
(|q+ϕ|p−1

−1)

+h(s)|q+ϕ|p−1(q+ϕ)L(q+ϕ,s)
)
, (2-32)

L(v,s)=
2αψ2

1

ln(ψ2
1+2)(ψ2

1+2)
(v−1)+

1
lnα(ψ2

1+2)

∫ v

1
f ′′(u)(v−u)du, (2-33)

with h, ψ1(s) and ϕ being defined by (2-3), (2-4) and (2-26) respectively, and

f (z)= lnα(ψ2
1 z2
+ 2), z ∈ R.

Hence, proving (1-8) now reduces to constructing for (2-28) a solution q such that

lim
s→+∞

‖q(s)‖L∞→ 0.

Since we construct for (2-28) a solution q satisfying ‖q(s)‖L∞→ 0 as s→+∞,
and since

|B(q)| ≤ C |q|min (2,p), ‖R(s)‖L∞ +‖D(q, s)‖L∞ ≤
C
s
,

(see Lemmas A.8, A.9 and A.10 for these estimates), we see that the linear part
of (2-28) will play an important role in the analysis of the solution. The spectral
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property of the linear operator L is studied in the previous section (see page 19),
and the potential V has the following properties:

(i) Perturbation effect of L inside the blowup region {|y| ≤ K
√

s}:

‖V (s)‖L2
ρ
→ 0 as s→+∞.

(ii) For each ε > 0, there exist Kε > 0 and sε > 0 such that

sup
y/
√

s≥Kε , s≥sε

∣∣∣∣V (y, s)+
p

p− 1

∣∣∣∣≤ ε.
Since 1 is the biggest eigenvalue of L, the operator L+ V behaves as one with a
fully negative spectrum outside the blowup region {|y| ≥ K

√
s}, which makes the

control of the solution in this region easy.
Since the behavior of the potential V is different inside and outside the blowup

region, we will consider the dynamics of the solution for |y| ≤ 2K
√

s and for
|y| ≥ K

√
s separately for some K to be fixed large. We introduce the function

χ(y, s)= χ0

(
|y|

K
√

s

)
, (2-34)

where χ0 ∈ C∞0 [0,+∞), ‖χ0‖L∞ ≤ 1 and

χ0(x)=
{

1 for x ≤ 1,
0 for x ≥ 2,

and K is a positive constant to be fixed large later. We now decompose q as

q = χq + (1−χ)q = qb+ qe. (2-35)

(Note that supp(qb) ⊂ {|y| ≤ 2K
√

s} and supp(qe) ⊂ {|y| ≥ K
√

s}). Since the
eigenfunctions of L span the whole space L2

ρ , let us write

qb(y, s)= q0(s)+ q1(s) · y+ 1
2 yT
· q2(s) · y− tr(q2(s))+ q−(y, s), (2-36)

where qm(s)= (qβ(s))β∈Nn,|β|=m and

for all β ∈ Nn, qβ(s)=
∫

Rn
qb(y, s)h̃β(y)ρ dy, h̃β =

hβ
‖hβ‖2L2

β

, (2-37)

and
q−(y, s)=

∑
β∈Nn,|β|≥3

qβ(s)hβ(y). (2-38)

In particular, we set q1= (q1,i )1≤i≤n and q2(s) is an n×n symmetric matrix defined
explicitly by

q2(s)=
∫

qbM(y)ρ dy = (q2,i, j )1≤i, j≤n, (2-39)
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with
M=

{1
4 yi yj −

1
2δi, j

}
1≤i, j≤n. (2-40)

Hence, by (2-35) and (2-36), we can write

q(y, s)= q0(s)+q1(s)· y+ 1
2 yT
·q2(s)· y−tr(q2(s))+q−(y, s)+qe(y, s). (2-41)

Note that qm(m = 0, 1, 2) and q− are the components of qb, and not those of q.

3. Proof of the existence, assuming some technical results

We shall now describe the main argument behind the proof of Theorem 1.1. To
avoid winding up with too many details, we shall postpone most of the techni-
calities involved to the next section. According to the transformations (2-1) and
(2-27), proving (i) of Theorem 1.1 is equivalent to showing that there exists an
initial data q0(y) at the time s0 such that the corresponding solution q of (2-28)
satisfies

‖q(s)‖L∞(Rn)→ 0 as s→+∞.

In particular, we consider the function

ψd0,d1(y)=
A
s2

0
(d0+ d1 · y)χ(2y, s0) (3-1)

as the initial data for (2-28), where (d0, d1) ∈ R1+n are the parameters to be de-
termined, s0 > 1 and A > 1 are constants to be fixed large enough, and χ is the
function defined by (2-34).

We aim to prove that there exists (d0, d1) ∈ R × Rn such that the solution
q(y, s)= qd0,d1(y, s) of (2-28) with initial data ψd0,d1(y) satisfies

‖qd0,d1(s)‖L∞→ 0 as s→+∞.

More precisely, we will show that there exists (d0, d1) ∈ R × Rn such that the
solution qd0,d1(y, s) belongs to the shrinking set SA defined as follows:

Definition 3.1 (a shrinking set to zero). For all A ≥ 1, s ≥ 1 we define SA(s) to
be the set of all functions q ∈ L∞(Rn) such that

|q0| ≤
A
s2 , |q1,i | ≤

A
s2 , |q2,i, j | ≤

A2 ln2 s
s2 for all 1≤ i, j ≤ n,∥∥∥∥ q−(y)

1+ |y|3

∥∥∥∥
L∞(Rn)

≤
A
s2 , ‖qe(y)‖L∞(Rn) ≤

A2
√

s
,

where q0, q1 = (q1,i )1≤i≤n , q2 = (q2,i, j )1≤i, j≤n , q− and qe are defined as in (2-41).
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We also denote by ŜA(s) the set

ŜA(s)=
[
−

A
s2 ,

A
s2

]
×

[
−

A
s2 ,

A
s2

]n

. (3-2)

Remark 3.2. For each A ≥ 1, s ≥ 1, we have the following estimates for all
q(s) ∈ SA(s):

|q(y, s)| ≤
C A2 ln2 s

s2 (1+ |y|3) for all y ∈ Rn, (3-3)

‖q(s)‖L∞({|y|≤2K
√

s}) ≤
C A
√

s
, (3-4)

‖q(s)‖L∞(Rn) ≤
C A2
√

s
. (3-5)

We aim to prove the following central proposition, which implies Theorem 1.1.

Proposition 3.3 (existence of a solution trapped in SA(s)). There exists A1 ≥ 1
such that for all A ≥ A1 there exists s1(A) ≥ 1 such that for all s0 ≥ s1(A), there
exists (d0, d1) ∈ R1+n such that the solution q(y, s) = qd0,d1(y, s) of (2-28) with
the initial data at the time s0 given by q(y, s0)= ψd0,d1(y), where ψd0,d1 is defined
as in (3-1), satisfies

q(s) ∈ SA(s) for all s ∈ [s0,+∞).

From (3-5), we see that once Proposition 3.3 is proved, item (i) of Theorem 1.1
directly follows. In the following, we shall give all the main arguments for the
proof of this proposition assuming some technical results which are left to the next
section.

As for the initial data at time s0 defined as in (3-1), we have the following
properties.

Proposition 3.4. For each A≥ 1, there exists s2(A) > 1 such that for all s0≥ s2(A)
we have the following:

(i) There exists

DA,s0 ⊂ [−2; 2]× [−2; 2]n

such that the mapping
81 : R

1+n
→ R1+n,

(d0, d1) 7→ (ψ0, ψ1),

is linear and one-to-one from DA,s0 onto ŜA(s0). Moreover,

81(∂DA,s0)⊂ ∂ ŜA(s0).
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(ii) For all (d0, d1) ∈ DA,s0 we have ψd0,d1 ∈ SA(s0) with strict inequalities in the
sense that

|ψ0| ≤
A
s2

0
, |ψ1,i | ≤

A
s2

0
, |ψ2,i, j |<

A ln2 s0

s2
0

for all 1≤ i, j ≤ n,∥∥∥∥ ψ−

1+ |y|3

∥∥∥∥
L∞(R)

<
A
s2

0
, ψe ≡ 0.

Above, χ(y, s0) is defined in (2-34), ψ0, (ψ1,i )1≤i≤n , (ψ2,i, j )1≤i, j≤2, ψ− and
ψe are the components of ψd0,d1 defined as in (2-41), and ψd0,d1 and ŜA(s) are
defined by (3-1) and (3-2).

Proof. See Proposition 4.5 of [Tayachi and Zaag 2015b] for a similar proof. �

From now on, we denote by C the universal constant which only depends on K,
where K is introduced in (2-34). Let us now give the proof of Proposition 3.3 to
complete the proof of item (i) of Theorem 1.1.

Proof of Proposition 3.3. We proceed into two steps to prove Proposition 3.3:

• In the first step, we reduce the problem of controlling q(s) in SA(s) to controlling
(q0, q1)(s) in ŜA(s), where q0 and q1 are the components of q corresponding to
the positive modes defined as in (2-41) and ŜA is defined by (3-2). This means that
we reduce the problem to a finite-dimensional one.

• In the second step, we argue by contradiction to solve the finite-dimensional
problem thanks to a topological argument.

Step 1: reduction to a finite-dimensional problem. In this step, we show through
an a priori estimate that the control of q(s) in SA(s) reduces to the control of
(q0, q1)(s) in ŜA(s). This mainly follows from a good understanding of the proper-
ties of the linear part L+ V of (2-28). In particular, we claim the following which
is the heart of our analysis.

Proposition 3.5 (control of q(s) in SA(s) by (q0, q1)(s) in ŜA(s)). There exists
A3 ≥ 1 such that for all A ≥ A3, there exists s3(A)≥ 1 such that for all s0 ≥ s3(A),
the following holds:

If q(y, s) is the solution of (2-28) with the initial data at time s0 given by (3-1)
with (d0, d1) ∈ DA,s0 , and q(s) ∈ SA(s) for all s ∈ [s0, s1] for some s1 ≥ s0 and
q(s1) ∈ ∂SA(s1), then:

(i) Reduction to a finite-dimensional problem: we have (q0, q1)(s1) ∈ ∂ ŜA(s1).

(ii) Transverse outgoing crossing: there exists δ0 > 0 such that

for all δ ∈ (0, δ0), (q0, q1)(s1+ δ) 6∈ ŜA(s1+ δ);

hence, q(s1 + δ) 6∈ SA(s1 + δ), where ŜA is defined in (3-2) and DA,s0 is
introduced in Proposition 3.4.
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Let us suppose for the moment that Proposition 3.5 holds. Then we can take
advantage of a topological argument quite similar to that already used in [Merle
and Zaag 1997].

Step 2: a basic topological argument. From Proposition 3.5, we claim that there
exists (d0, d1) ∈ DA,s0 such that (2-28) with initial data (3-1) has a solution

qd0,d1(s) ∈ SA(s) for all s ∈ [s0,+∞),

for suitable choice of the parameters A, K , s0. Since the argument is analogous to
that in [Merle and Zaag 1997], we only give the main ideas.

Let us consider s0, K and A such that Propositions 3.4 and 3.5 hold. From
Proposition 3.4, we have

for all (d0, d1) ∈ DA,s0, qd0,d1(y, s0) := ψd0,d1 ∈ SA(s0),

where ψd0,d1 is defined by (3-1). Since the initial data belongs to L∞, we then
deduce from the local existence theory for the Cauchy problem of (1-1) in L∞ that
we can define for each (d0, d1) ∈ DA,s0 a maximum time s∗(d0, d1) ∈ [s0,+∞)

such that
qd0,d1(s) ∈ SA(s) for all s ∈ [s0, s∗).

If s∗(d0, d1) = +∞ for some (d0, d1) ∈ DA,s0 , then we are done. Otherwise, we
argue by contradiction and assume that s∗(d0, d1) < +∞ for all (d0, d1) ∈ DA,s0 .
By continuity and the definition of s∗, we deduce that qd0,d1(s∗) is on the boundary
of SA(s∗). From item (i) of Proposition 3.5, we have

(q0, q1)(s∗) ∈ ∂ ŜA(s∗).

Hence, we may define the rescaled function

0 : DA,s0 → ∂([−1, 1]1+n),

(d0, d1) 7→
s2
∗

A
(q0, q1)(s∗).

From item (i) of Proposition 3.4, we see that if (d0, d1) ∈ ∂DA,s0 , then

q(s0) ∈ SA(s0), (q0, q1)(s0) ∈ ∂ ŜA(s0).

From item (ii) of Proposition 3.5, we see that q(s) must leave SA(s) at s = s0,
thus, s∗(d0, d1) = s0. Therefore, the restriction of 0to ∂DA,s0 is homeomorphic
to the identity mapping, which is impossible thanks to index theorem, and the
contradiction is obtained. This concludes the proof of Proposition 3.3 as well as
item (i) of Theorem 1.1, assuming that Proposition 3.5 holds. �

Proof of (ii) of Theorem 1.1. The existence of u∗ in C2(Rn
\ {0}) follows from the

technique of [Merle 1992b]. Here, we want to find an equivalent formation for u∗
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near the blowup point x = 0. The case α = 0 was treated in [Zaag 1998]. When
α 6= 0, we follow the method of that paper, and no new idea is needed. Therefore,
we just sketch the main steps for the sake of completeness.

We consider K0 > 0 a constant to be fixed large enough, and |x0| 6= 0 small
enough. Then, we introduce the function

υ(x0, ξ, τ )= ψ
−1(t0(x0))u(x, t), (3-6)

where

(ξ, τ ) ∈ Rn
×

[
−

t0(x0)

T − t0(x0)
, 1
)
,

and
(x, t)=

(
x0+ ξ

√
T − t0(x0), t0(x0)+ τ(T − t0(x0))

)
, (3-7)

with t0(x0) being uniquely determined by

|x0| = K0
√
(T − t0(x0))|ln(T − t0(x0))|. (3-8)

From (3-6)–(3-8) and (1-8) we derive that

sup
|ξ |<2|ln(T−t0(x0))|1/4

|v(x0,ξ,0)−ϕ0(K0)| ≤
C

1+(|ln(T−t0(x0))|1/4)
→ 0 as x0→ 0,

where

ϕ0(x)=
(

1+
(p− 1)x2

4p

)1/(p−1)

.

As in [Zaag 1998], we use the continuity with respect to initial data for (1-1) asso-
ciated to a space-localization in the ball B(0, |ξ |< |ln(T − t0(x0))|

1/4) to derive

sup
|ξ |<|ln(T−t0(x0))|1/4, τ∈[0,1)

|v(x0, ξ, τ )− v̂K0(τ )| ≤ ε(x0)→ 0 as x0→ 0, (3-9)

where

v̂K0(τ )=

(
(1− τ)+

(p− 1)K 2
0

4p

)−1/(p−1)

.

From (3-7) and (3-9), we deduce

u∗(x0)= lim
t→T

u(x0, t)

= ψ(t0(x0)) lim
τ→1

v(x0, 0, τ )∼ ψ(t0(x0))

(
(p− 1)K0

4p

)−1/(p−1)

. (3-10)

Using the relation (3-8), we find that

T − t0 ∼
|x0|

2

2K0
∣∣ln |x0|

∣∣ and ln(T − t0(x0))∼ 2 ln(|x0|) as x0→ 0. (3-11)

The formula (1-11) then follows from Lemma A.1, (3-10) and (3-11). This con-
cludes the proof of Theorem 1.1, assuming that Proposition 3.5 holds. �
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4. Proof of Proposition 3.5

This section is devoted to the proof of Proposition 3.5, which is the heart of our
analysis. We proceed into two parts. In the first part, we derive a priori estimates
on q(s) in SA(s). In the second part, we show that the new bounds are better than
those defined in SA(s), except for the first two components (q0, q1). This means
that the problem is reduced to the control of a finite-dimensional function (q0, q1),
which is the conclusion of item (i) of Proposition 3.5. Item (ii) of Proposition 3.5
is just direct consequence of the dynamics of the modes q0 and q1.

4A. A priori estimates on q(s) in SA(s). We derive the a priori estimates on the
components q2, q−, qe which imply the conclusion of Proposition 3.5. Firstly, let
us give some dynamics of q0, q1 = (q1,i )1≤i≤n and q2 = (q2,i, j )1≤i, j≤n . More
precisely, we claim the following.

Proposition 4.1 (dynamics of (2-28)). There exists A4 ≥ 1 such that for all A≥ A4

there exists s4(A)≥ 1 such that the following holds for all s0 ≥ s4(A): Assume that
for all s ∈ [τ, s1] for some s1 ≥ τ ≥ s0, we have q(s) ∈ SA(s). Then the following
holds for all s ∈ [s0, s1]:

(i) ODE satisfied by the positive and null modes:

m = 0, 1,
∣∣∣q ′m(s)− (1− m

2

)
qm(s)

∣∣∣∣≤ C
s2 , (4-1)

and ∣∣∣q ′2(s)+ 2
s

q2(s)
∣∣∣≤ C ln s

s3 . (4-2)

(ii) control of the negative and outer modes:∥∥∥∥q−( · ,s)
1+|y|3

∥∥∥∥
L∞
≤Ce−(s−τ)/2

∥∥∥∥q−( · ,τ )
1+|y|3

∥∥∥∥
L∞
+C

e−(s−τ)
2

s3/2 ‖qe(τ )‖L∞+C
(1+s−τ)

s2 ,

(4-3)

‖qe(s)‖L∞ ≤Ce−(s−τ)/p
‖qe(τ )‖L∞+Ces−τ s3/2

∥∥∥∥q−( · ,τ )
1+|y|3

∥∥∥∥
L∞
+C

1+(s−τ)es−τ

s1/2 .

(4-4)

Proof. We proceed in two parts:

• In the first part we project (2-28) to write ODEs satisfied by qm for m = 0, 1, 2.

• In the second part we use the integral form of (2-28) and the dynamics of the
linear operator L+ V to derive a priori estimates on q− and qe.

Part 1: ODEs satisfying the positive and null modes. We give the proof of (4-2);
the same proof holds for (4-1). By formula (2-39) and (2-28), we write for each
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1≤ i, j ≤ n,∣∣∣∣q ′2,i, j (s)−
∫ [

Lq+V q+B(q)+R(y,s)+D(q,s)
]
χ

(
yi yj

4
−
δi, j

2

)
ρ dy

∣∣∣∣≤Ce−s.

(4-5)
Using the assumption q(s) ∈ SA(s) for all s ∈ [s0, s1], we derive the following
estimates for all s ∈ [s0, s1]:∣∣∣∣∫ L(q)χ

(
yi yj

4
−
δi, j

2

)
ρ dy

∣∣∣∣≤ C
s3 ,

and from Lemmas A.8, A.9 and A.10∣∣∣∣∫ V qχ
(

yi yj

4
−
δi, j

2

)
ρ dy+ 2

s
q2,i, j (s)

∣∣∣∣≤ C A
s3 ,∣∣∣∣∫ B(q)χ

(
yi yj

4
−
δi, j

2

)
ρ dy

∣∣∣∣≤ C
s3 ,∣∣∣∣∫ Rχ

(
yi yj

4
−
δi, j

2

)
ρ dy

∣∣∣∣≤ C
s3 ,∣∣∣∣∫ D(q, s)χ

(
yi yj

4
−
δi, j

2

)
ρ dy

∣∣∣∣≤ C ln s
s3 .

Gathering all these above estimates in (4-5) yields∣∣∣q ′2,i, j +
2
s

q2,i, j

∣∣∣≤ C ln s
s3 ,

which concludes the proof of (4-2).

Part 2: control of the negative and outer modes. We give the proofs of (4-3) and
(4-4) in this part. The control of q− and qe is mainly based on the dynamics of the
linear operator L+ V. In particular, we use the following integral form of (2-28):
for each s ≥ σ ≥ s0,

q(s)=K(s,σ )q(σ )+
∫ s

σ

K(s,τ )
[
B(q)(τ )+R(τ )+D(q,τ )

]
dτ =

4∑
i=1

ϑi (s,σ ),

(4-6)
where {K(s, σ )}s≥σ is defined by{

∂sK(s, σ )= (L+ V )K(s, σ ), s > σ,
K(σ, σ )= Id,

(4-7)

and

ϑ1(s, σ )= K(s, σ )q(σ ), ϑ2(s, σ )=
∫ s

σ

K(s, τ )B(q)(τ ) dτ,

ϑ3(s, σ )=
∫ s

σ

K(s, τ )R( · , τ ) dτ, ϑ4(s, σ )=
∫ s

σ

K(s, τ )D(q, τ ) dτ.
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From (4-6), it is clear to see the strong influence of the kernel K in this formula.
It is therefore convenient to recall the following result on the dynamics of the linear
operator K = L+ V.

Lemma 4.2 (a priori estimates of the linearized operator in the decomposition in
(2-41)). For all ρ∗ ≥ 0, there exists s5(ρ

∗)≥ 1 such that if σ ≥ s5(ρ
∗) and v ∈ L2

ρ

satisfies
2∑

m=0

|vm | +

∥∥∥∥ v−

1+ |y|3

∥∥∥∥
L∞
+‖ve‖L∞ <∞, (4-8)

then, for all s ∈ [σ, σ + ρ∗] the function θ(s)= K(s, σ )v satisfies∥∥∥∥θ−(y, s)
1+ |y|3

∥∥∥∥
L∞
≤

Ces−σ ((s− σ)2+ 1)
s

(|v0| + |v1| +
√

s|v2|)

+Ce−(s−σ)/2
∥∥∥∥ v−

1+ |y|3

∥∥∥∥
L∞
+C

e−(s−σ)
2

s3/2 ‖ve‖L∞, (4-9)

and
‖θe(y, s)‖L∞

≤ Ces−σ
( 2∑

l=0

sl/2
|vl | + s3/2

∥∥∥∥ v−

1+ |y|3

∥∥∥∥
L∞

)
+Ce−(s−σ)/p

‖ve‖L∞ . (4-10)

Proof. The proof of this result was given in [Bricmont and Kupiainen 1994] in
the one-dimensional case. It was then extended to higher-dimensional cases in
[Nguyen and Zaag 2017]. We kindly refer interested readers to Lemma 2.9 in that
paper for the details of the proof. �

In view of formula (4-6), we see that Lemma 4.2 plays an important role in
deriving the new bounds on the components q− and qe. Indeed, given bounds
on the components of q, B(q), D(q) and R, we directly apply Lemma 4.2 with
K(s, σ ) replaced by K(s, τ ) and then integrate over τ to obtain estimates on q−
and qe. In particular, we claim the following which immediately follows from (4-3)
and (4-4) by addition.

Lemma 4.3. For all Ã ≥ 1, A ≥ 1, ρ∗ ≥ 0, there exists s6(A, ρ∗) ≥ 1 such that
for all s0 ≥ s6(A, ρ∗), if q(s) ∈ SA(s) for all s ∈ [σ, σ +ρ∗] for some σ ≥ s0, then
we have for all s ∈ [σ, σ + ρ∗]:

(i) The linear term ϑ1(s, σ ):∥∥∥∥(ϑ1(s, σ ))−
1+ |y|3

∥∥∥∥
L∞
≤ Ce−(s−σ)/2

∥∥∥∥q−( · , σ )
1+ |y|3

∥∥∥∥
L∞
+

Ce−(s−σ)
2

s3/2 ‖qe(σ )‖+
C
s2 ,

‖(ϑ1(s, σ ))e‖L∞ ≤ Ce−(s−σ)/p
‖qe(σ )‖L∞ +Ces−σ s3/2

∥∥∥∥q−( · , σ )
1+ |y|3

∥∥∥∥
L∞
+

C
√

s
.
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(ii) The quadratic term ϑ2(s, σ ):∥∥∥∥(ϑ2(s, σ ))−
1+ |y|3

∥∥∥∥
L∞
≤

C(s− σ)
s2+ε , ‖(ϑ2(s, σ ))e‖L∞ ≤

C(s− σ)
s1/2+ε ,

where ε = ε(p) > 0.

(iii) The correction term ϑ3(s, σ ):∥∥∥∥(ϑ3(s, σ ))−
1+ |y|3

∥∥∥∥
L∞
≤

C(s− σ)
s2 , ‖(ϑ3(s, σ ))e‖L∞ ≤

C(s− σ)
s3/4 .

(iv) The nonlinear term ϑ4(s, σ ):∥∥∥∥(ϑ4(s, σ ))−
1+ |y|3

∥∥∥∥
L∞
≤

C(s− σ)
s2 , ‖(ϑ4(s, σ ))e‖L∞ ≤

C(s− σ)
s3/4 .

Proof. The proof simply follows from definition of the set SA and Lemma 4.2. In
particular, we make use of Lemmas A.8 , A.9 and A.10 to derive the bounds on
the components of the terms B, D and R as follows:

2∑
m∈Nn, |m|=0

|B(q)m(s)|≤
C
s3 ,

∥∥∥∥ B(q)−(s)
1+ |y|3

∥∥∥∥
L∞
≤

C
s2+ε , ‖B(q)e(s)‖L∞≤

C
s1/2+ε ,

and
2∑

m∈Nn, |m|=0

|Rm(s)| ≤
C
s2 ,

∥∥∥∥ R−(s)
1+ |y|3

∥∥∥∥
L∞
≤

C
s2+1/2 , ‖Re(s)‖L∞ ≤

C
s3/4 ,

and
2∑

m∈Nn, |m|=0

|D(q)m(s)| +
∥∥∥∥D(q)−(s)

1+ |y|3

∥∥∥∥
L∞
≤

C ln s
s3 , ‖D(q)e(s)‖L∞ ≤

C
s3/4 ,

where ε = ε(p) > 0. We simply inject these bounds into the a priori estimates
given in Lemma 4.2 to obtain the bounds on (ϑm)− and (ϑm)e for m = 2, 3, 4. The
estimate on ϑ1 directly follows from Lemma 4.2 and the assumption q(s) ∈ SA(s).
This ends the proof of Lemma 4.3. �

By the formula (4-6), the estimates (4-3) and (4-4) simply follow from Lemma 4.3
by addition. This concludes the proof of Proposition 4.1. �

4B. Conclusion of Proposition 3.5. We now give the proof of Proposition 3.5,
which is a consequence of the dynamics of (2-28) given in Proposition 4.1. Indeed,
item (i) of Proposition 3.5 directly follows from the result below.

Proposition 4.4 (control of q(s) by (q0, q1)(s) in SA(s)). There exists A7 ≥ 1 such
that for all A ≥ A7, there exists s7(A)≥ 1 such that for all s0 ≥ s7(A) if

(a) q(s0)= ψd0,d1,s0(y), where (d0, d1) ∈ DA,s0 ,

(b) q(s) ∈ SA(s) for all s ∈ [s0, s1],
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then for all s ∈ [s0, s1], we have

for all i, j ∈ {1, . . . , n}, |q2,i, j (s)|<
A2 ln2 s

s2 , (4-11)∥∥∥∥q−(y, s)
1+ |y|3

∥∥∥∥
L∞
≤

A
2s2 , ‖qe(s)‖L∞ ≤

A2

2
√

s
, (4-12)

where DA,s0 is introduced in Proposition 3.4 and ψd0,d1 is defined as in (3-1).

Proof. Since the proof of (4-12) is similar to the one written in [Merle and Zaag
1997], we only deal with the proof of (4-11) and refer to Proposition 3.7 in that
paper for the proof of (4-12). We argue by contradiction to prove (4-11). Let
i, j ∈ {1, . . . , n} and assume that there is s∗ ∈ [s0, s1] such that

for all s ∈ [s0, s∗), |q2,i, j (s)|<
A2 ln2(s)

s2 and |q2,i, j (s∗)| =
A2 ln2(s∗)

s2
∗

.

Assuming that q2,i, j (s∗) > 0 (the negative case is similar), we have on the one hand

q ′2,i, j (s∗)≥
d
ds

(
A2 ln2 s

s2

)
s=s∗

=
2A2 ln s∗

s3
∗

−
2A2 ln2 s∗

s3
∗

.

On the other hand, we have from (4-2),

q ′2,i, j (s∗)≤−
2A2 ln2 s∗

s3
∗

+
C ln s∗

s3
∗

.

Thus the contradiction then follows if 2A2 > C , and this concludes the proof of
Proposition 4.4. �

From Proposition 4.4, we see that if q(s) ∈ ∂SA(s1), the first two components
(q0, q1)(s1)must be in ∂ ŜA(s1), which is the conclusion of item (i) of Proposition 3.5.

The proof of item (ii) of Proposition 3.5 follows from (4-1). Indeed, it is easy to
see from (4-1) that for all i ∈ {1, . . . , n} and for each ε0, εi =±1, if q0(s1)= ε0 A/s2

1
and q1,i (s1)= εi A/s2

1 , it follows that the signs of

dq0

ds
(s1) and

dq1,i

ds
(s1)

are opposite the signs of

d
ds

(
ε0 A
s2

)
(s1) and

d
ds

(
εi A
s2

)
(s1)

respectively. Hence, (q0, q1)(s) will actually leave ŜA(s) at s1 ≥ s0 for s0 large
enough. This concludes the proof of Proposition 3.5.
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Appendix: Some elementary lemmas

Lemma A.1. For each T > 0, there exists only one positive solution of (1-9).
Moreover, the solution ψ satisfies the asymptotic

ψ(t)∼ κα(T − t)−1/(p−1)
|ln(T − t)|−α/(p−1) as t→ T, (A-1)

where

κα = (p− 1)−1/(p−1)
(

p− 1
2

)α/(p−1)

.

Proof. Consider the ODE

ψ ′ = ψ p lnα(ψ2
+ 2), ψ(0) > 0.

The uniqueness and local existence are derived by the Cauchy–Lipschitz property.
Let Tmax, Tmin be the maximum and minimum times of the existence of the positive
solution; i.e., ψ(t) exists for all t ∈ (Tmin, Tmax). We now prove that Tmax <+∞

and Tmin =−∞. By contradiction, we suppose that the solution exists on [0,+∞);
we have

lim
t1→+∞

∫ t1

0

ψ ′

ψ p lnα(ψ2+ 2)
dt = lim

t1→+∞

∫ t1

0
dt =+∞.

Since
∫ t1

0 ψ ′/(ψ p lnα(ψ2
+ 2)) dt is bounded, the contradiction then follows. With

a similar argument we can prove that Tmin = −∞. Let us now prove (A-1). We
deduce from (1-9) that

T − t =
∫
+∞

ψ(t)

du
u p lnα(u2+ 2)

.

Thus, for all δ ∈ (0, p− 1), there exist tδ such that for all t ∈ (tδ, T ), we have∫
+∞

ψ(t)

du
u p+δ ≤ T − t ≤

∫
+∞

ψ(t)

du
u p−δ .

For all t ∈ (tδ, T ) it follows that(
(p−1+δ)(T−t)

)−1/(p−1+δ)
≤ψ(t)≤

(
(p−1−δ)(T−t)

)−1/(p−1−δ)
,

from which we have

lnψ(t)∼− 1
p−1

ln(T − t) as t→ T,

ln(ψ2
+ 2)∼− 2

p−1
ln(T − t) as t→ T.

Hence, we obtain

ψ ′ = ψ p ln(ψ2
+ 2)∼ ψ p

(
−

2
p−1

ln(T − t)
)α

as t→ T, (A-2)
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which yields
ψ ′

ψ p ∼

( 2
p−1

)α
|ln(T − t)|α as t→ T.

This implies

1
p−1

ψ1−p
∼

( 2
p−1

)α∫ T

t
|ln(T−v)|α dv∼

( 2
p−1

)α
(T−t)|ln(T−t)|α as t→T,

which concludes the proof of (A-1). �

Lemma A.2. For all α ∈ (0, 1), θ > 0 and 0< h < 1, the integral

I (h)=
∫ 1

h
(s− h)−αs−θ ds

satisfies:

(i) If α+ θ > 1, then

I (h)≤
( 1

1−α
+

1
α+θ−1

)
h1−α−θ.

(ii) If α+ θ = 1, then

I (h)≤ 1
1−α

+ |ln h|.

(iii) If α+ θ < 1, then

I (h)≤ 1
1−α−θ

.

Proof. See Lemma 2.2 of [Giga and Kohn 1989] �

Lemma A.3 (a version of the Grönwall lemma). If y(t), r(t) and q(t) are contin-
uous functions defined on [t0, t1] such that

y(t)≤ y0+

∫ t

t0
y(s)r(s) ds+

∫ t

t0
h(s) ds for all t ∈ [t0, t1].

Then,

y(t)≤ e
∫ t

t0
r(s) ds

(
y0+

∫ t

t0
h(s)e−

∫ s
t0

r(τ ) dτ ds
)
.

Proof. See Lemma 2.3 of [Giga and Kohn 1989]. �

Lemma A.4. For each T2 < T , δ > 0. There exists ε = ε(T, T2, δ, n, p) > 0 such
that for each v(x, t) satisfying

|∂tv−1v| ≤ C |v|p lnα(v2
+ 2) for all |x | ≤ δ, t ∈ (T2, T ), δ > 0, (A-3)

and
|v(x, t)| ≤ εψ(t) for all |x | ≤ δ, t ∈ (T2, T ), (A-4)

where ψ(t) is the unique positive solution of (1-9). Then, v(x, t) does not blow up
at (0, T ).
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Proof. Since the argument is almost the same as in [Giga and Kohn 1989] treated
for the case α = 0, we only sketch the main step for the sake of completeness. Let
φ ∈ C∞(Rn), φ = 1 if |x | ≤ δ/2, φ = 0 if |x | ≥ δ, and consider ω= φv satisfying

∂tω−1ω = f φ+ g, (A-5)

where

f = ∂tv−1v and g = v1φ− 2∇ · (v∇φ).

By using Duhamel’s formula, we write

ω(t)= e(t−T2)1(ω(T2))+

∫ t

T2

(
e(t−τ)1(φ f )

+ e(t−τ)1(g)
)

dτ for all t ∈ [T2, T ), (A-6)

where et1 is the heat semigroup satisfying the following properties: for all h ∈ L∞,

‖et1h‖L∞ ≤ ‖h‖L∞ and ‖et1
∇h‖L∞ ≤ Ct−1/2

‖h‖L∞ for all t > 0.

The formula (A-6) then yields

‖ω(t)‖L∞ ≤ C +C
∫ t

T2

‖ω(τ)‖L∞
∥∥|v|p−1 lnα(v2

+ 2)(τ )
∥∥

L∞(|x |≤δ)

+C
∫ t

T2

(t − τ)−1/2
‖v(τ)‖L∞(|x |≤δ) dτ (A-7)

for some constant C = C(n, p, φ, T, T2, δ) > 0.
From (A-3), (A-4) and Lemma A.1, we find that for all |x | ≤ δ, and τ ∈ [T2, T ),

|v(τ)|p−1 lnα(v2(τ )+ 2)≤ Cψ p−1(τ ) lnα(ψ2(τ )+ 2)≤ C(T − τ)−1,

and

|v(τ)| ≤ C(T − τ)−1/(p−1)
|ln(T − τ)|−α/(p−1).

The estimate (A-7) becomes

‖ω(t)‖L∞ ≤ C +Cε p−1
∫ t

T2

(T − τ)−1
‖ω(τ)‖L∞ dτ

+Cε
∫ t

T2

(t − τ)−1/2(T − τ)−1/(p−1)
|ln(T − τ)|−α/(p−1) dτ. (A-8)

In particular, we now consider 0< λ� 1
2 fixed, then we have

(T−τ)−1/(p−1)
|ln(T−τ)|−α/(p−1)

≤C(α,λ)(T−τ)−(1/(p−1)+λ) for all τ∈(T2,T ).
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Hence, we rewrite (A-8) as

‖ω(t)‖L∞ ≤ C +Cε p−1
∫ t

T2

(T − τ)−1
‖ω(τ)‖L∞ dτ

+Cε
∫ t

T2

(t − τ)−1/2(T − τ)−(1/(p−1)+λ) dτ, (A-9)

where C(n, p, φ, α, ε, λ, p). Beside that, by the change of variables s = T − τ ,
h = T − t we have∫ t

T2

(t − τ)−1/2(T − τ)−θ(p,λ) dτ =
∫ T−T2

h
(s− h)−1/2(s)−θ(p,λ) ds, (A-10)

where θ(p, λ)= (1/(p− 1)+ λ).

Case 1: If θ(p, λ) < 1
2 , by using (iii) of Lemma A.2 we deduce from (A-9), (A-10)

that

‖ω(t)‖L∞ ≤ C +Cε p−1
∫ t

T2

(T − s)−1
‖ω(s)‖L∞ ds.

Therefore, by Lemma A.3,

‖ω(t)‖L∞ ≤ C(T − t)−Cε p−1
. (A-11)

Choose ε small enough such that Cε p−1
≤ 1/(2(p− 1)). Then, we conclude from

(A-11) that

|v(x, t)| ≤ C(T − t)−1/(2(p−1)) for |x | ≤ 1
2 , t ≤ T. (A-12)

By using parabolic regularity theory and the same argument as in Lemma 3.3 of
[Giga and Kohn 1987], we can prove that (A-12) actually prevents blowup.

Case 2: θ(λ, p)= 1
2 is similar to the first case. By using (ii) of Lemma A.2, (A-9)

and (A-10) we get

‖ω(t)‖L∞ ≤ C(1+ |ln(T − t)|)+Cε p−1
∫ t

T2

(T − s)−1
‖ω(s)‖L∞ ds.

However, we derive from Lemma A.3 that

‖ω(t)‖L∞ ≤ C(T − t)−K ε p−1
, (A-13)

where C = C(n, p, φ, T, T2, δ). We now take ε small enough such that Cε p−1
≤

1/(2(p− 1)), which follows (A-12).

Case 3: For θ(λ, p) > 1
2 , by using Lemmas A.2, A.3 and similar arguments we

obtain
|v(x, t)| ≤ C(T − t)1/2−θ(p,λ) for all |x | ≤ δ, t ∈ [T2, T ).

Repeating the step in finite steps would end up with (A-12). This concludes the
proof of Lemma A.4. �
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The following lemma gives the asymptotic behavior of h(s) and ψ1(s).

Lemma A.5. Let h(s) and ψ1(s) be defined as in (2-3) and (2-4) respectively. Then
we have:

(i)
1

ln(ψ2
1 (s)+ 2)

=
p− 1

2s
+
α(p− 1) ln s

2s2 + O
(

1
s2

)
as s→+∞. (A-14)

(ii) h(s)=
1

p− 1

(
1−

α

s
−
α2 ln s

s2

)
+ O

(
1
s2

)
as s→+∞. (A-15)

Proof. (i) Consider ψ(t) the unique positive solution of (1-9). We have

T − t =
∫
+∞

ψ(t)

dx
x p lnα(x2+ 2)

. (A-16)

An integration by parts yields

T − t =
1

ψ p−1(t) lnα(ψ2(t)+ 2)

×

(
1

p− 1
−

2α
(p− 1)2 ln(ψ2(t)+ 2)

+ O
(

1

(ln2(ψ2(t)+ 2))

))
. (A-17)

Let us write ψ(t)= ψ1(s), where s =− log(T − t); then we have

ln(ψ1(s))=
s

p− 1
−

α

(p− 1)
ln(ln(ψ1(s)))+ O(1) as s→+∞, (A-18)

from which we deduce that

ln(ψ1(s))=
s

p− 1
−
α ln(s)
p− 1

+ O(1) as s→+∞, (A-19)

which is the conclusion (i).

(ii) From (2-3) and (A-17), we have

h(s)=
1

p− 1
−

2α
(p− 1)2 ln(ψ2

1 (s)+ 2)
+ O

(
1

ln2(ψ2
1 (s)+ 2)

)
. (A-20)

Using (A-14), we conclude the proof of (A-15), as well as Lemma A.5. �

Lemma A.6. Let N be defined as in (2-11). We have

N (w̄, s)=
pw̄2

2
+ O

(
|w̄| ln s

s2

)
+ O

(
|w̄|2

s

)
+ O(|w̄|3) as (w̄, s)→ (0,+∞).

(A-21)

Proof. From the definition (2-11) of N, let us write

N (w̄, s)= N1(w̄, s)+ N2(w̄, s),
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where

N1(w̄, s)= h(s)
(
|w̄+ 1|p−1(w̄+ 1)− (w̄+ 1)

)
− w̄,

N2(w̄, s)= h(s)|w̄+ 1|p−1(w̄+ 1)
(

lnα(ψ2
1 (w̄+ 1)2+ 2)

lnα(ψ2
1 + 2)

− 1
)
.

From (A-15) and a Taylor expansion, we find that

N1(w̄,s)=
pw̄2

2
−
αw̄

s
+O

(
|w̄| lns

s2

)
+O

(
|w̄|2

s

)
+O(|w̄|3) as (w̄,s)→(0,+∞).

We now claim the following

N2(w̄, s)=
αw̄

s
+ O

(
|w̄| ln s

s2

)
+ O

(
|w̄|2

s

)
as (w̄, s)→ (0,+∞). (A-22)

Then, the proof of (A-21) simply follows by addition.
Let us now give the proof of (A-22) to complete the proof of Lemma A.6 . We

set
f (w̄)= lnα(ψ2

1 (w̄+ 1)2+ 2), |w̄| ≤ 1
2 .

We apply Taylor expansion to f (w̄) at w̄ = 0 to find that

f (w̄)= lnα(ψ2
1 + 2)+ 2α lnα−1(ψ2

1 + 2)
ψ2

1

ψ2
1 + 2

w̄+
f ′′(θ)

2
(w̄)2,

where θ is between 0 and w̄, and

f ′′(θ)= α(α− 1) lnα−2(ψ2
1 (θ + 1)2+ 2)

(
2(θ + 1)ψ2

1

ψ2
1 (θ + 1)2+ 2

)2

+α lnα−1(ψ2
1 (θ + 1)2+ 2)

(4ψ1− 2ψ4
1 (θ + 1)2)

(ψ2
1 (θ + 1)2+ 2)2

.

Since |θ | ≤ 1
2 , one can show that

| f ′′(θ)| ≤ C lnα−1(ψ2
1 + 2) for all |θ | ≤ 1

2 .

Thus, we have

f (w̄)= lnα(ψ2
1 + 2)+ 2α lnα−1(ψ2

1 + 2)w̄

+ O
(
|w̄|2 lnα−1(ψ2

1 + 2)
)
+ O

(
|w̄| lnα−1(ψ2

1 + 2)
ψ2

1

)
as s→+∞. This yields

lnα(ψ2
1 (w̄+ 1)2+ 2)

lnα(ψ2
1 + 2)

= 1+
2αw̄

ln(ψ2
1 + 2)

+O
(
|w̄|2

ln(ψ2
1 + 2)

)
+O

(
|w̄|

ln(ψ2
1 + 2)ψ2

1

)
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as (w̄, s)→ (0,+∞). From this and (A-14) we derive

lnα(ψ2
1 (w̄+ 1)2+ 2)

lnα(ψ2
1 (s)+ 2)

− 1=
α(p− 1)w̄

s
+ O

(
ln s|w̄|

s2

)
+ O

(
|w̄|2

s

)
. (A-23)

From the definition of N2, (A-15), (A-23) and the fact that

|w̄+ 1|p−1(w̄+ 1)= 1+ pw̄+ O(|w̄|2) as w̄→ 0,

we conclude the proof of (A-22) as well as Lemma A.6. �

Lemma A.7. For all |z| ≤ K1, there exists C(K1) such that for all s ≥ 1 we have∣∣∣∣h(s)|z|p−1z
lnα(ψ2

1 z2
+ 2)

lnα(ψ2
1 + 2)

−
|z|p−1z
p− 1

∣∣∣∣≤ C(K1)

s
, (A-24)

where h(s) satisfies the asymptotic (2-5).

Proof. We consider f (z)= lnα(ψ2
1 z2
+ 2) for all z ∈ R; then we write

lnα(ψ2
1 z2
+ 2)= lnα(ψ2

1 + 2)+
∫
|z|

1
f ′(v) dv.

Recalling from (2-5) that h(s)= 1/(p− 1)+ O(1/s), we have∣∣∣∣h(s)|z|p−1z
lnα(ψ2

1 z2
+ 2)

lnα(ψ2
1 + 2)

−
|z|p−1z
p− 1

∣∣∣∣
≤

C |z|p

lnα(ψ2
1 + 2)

∫
|z|

1
| f ′(v)| dv+

C |z|p

s
. (A-25)

From (i) of Lemma A.5 we have

1
ln(ψ2

1 + 2)
≤

C
s
.

Thus it is sufficient to show that

A(z) :=
|z|p

lnα−1(ψ2
1 + 2)

∫
|z|

1
| f ′(v)| dv ≤ C(K1) for all |z| ≤ K1,

where

f ′(v)= α lnα−1(ψ2
1v

2
+ 2)

2vψ2
1

ψ2
1v

2+ 2
.

For 1≤ |z| ≤ K1, it is trivial to see that |A(z)| ≤ C(K1). For |z|< 1, we consider
two cases:

Case 1: α− 1≥ 0. Then

A(z)≤ 2|α||z|p
∫ 1

|z|

1
v

dv ≤ C(K1).
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Case 2: α− 1< 0. Then

A(z)≤ 2|α||z|p
lnα−1(ψ2

1 z2
+ 2)

lnα−1(ψ1+ 2)

∫ 1

|z|

1
v

dv.

• If ψ1z2
≥ 1 then

A(z)≤ 2|α|
ln1−α(ψ2

1 + 2)

ln1−α(ψ1+ 2)
|z|p

∫ 1

|z|

1
v

dv ≤ C(K1).

• If ψ1z2
≤ 1 then |z| ≤ v ≤ ψ−1/2

1 we deduce that

|A(z)| ≤ 2|α|ψ (1−p)/2
1

ln1−α(ψ2
1 + 2)

ln1−α(2)
|z|
∫ 1

|z|

1
v

dv ≤ C(K1). �

Lemma A.8 (control of the nonlinear term D in SA(s)). For all A ≥ 1, there exists
σ3(A)≥ 1 such that for all s ≥ σ3(A), q(s) ∈ SA(s) implies

for all |y| ≤ 2K
√

s, |D(q, s)| ≤ C(K )
ln s(1+ |y|)4

s3 , (A-26)

and
‖D(q, s)‖L∞(Rn) ≤

C
s
. (A-27)

Proof. From the definition (2-32) of D, we have the decomposition

D(q, s)= D1(q, s)+ D2(q, s),

where
D1(q, s)=

(
h(s)− 1

p−1

)(
|q +ϕ|p−1(q +ϕ)− (q +ϕ)

)
,

D2(q, s)= h(s)|q +ϕ|p−1(q +ϕ)L(q +ϕ, s),

h(s) admits the asymptotic behavior (A-15), and L is defined in (2-33). The proof
of (A-26) will follow once we show for all |y| ≤ 2K

√
s∣∣∣∣D1−

(
α(|y|2− 2n)

4ps2 −
α

s
q
)∣∣∣∣≤ C

(1+ |y|4) ln s
s3 , (A-28)∣∣∣∣D2+

(
α(|y|2− 2n)

4ps2 −
α

s
q
)∣∣∣∣≤ C

(1+ |y|4) ln s
s3 . (A-29)

Let us give a proof of (A-28). From the definition of SA(s), we note that if q(s) ∈
SA(s), then

for all y ∈ Rn, |q(y, s)| ≤
C A2 ln2 s(1+ |y|3)

s2 , (A-30)

‖q(s)‖L∞(Rn) ≤
C A2
√

s
. (A-31)
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From the definition (2-26) of ϕ and (A-31), we see that for all |y| ≤ 2K
√

s, there
exists a positive constant C(K ) such that

0< 1
C(K )

≤ (q +ϕ)(y, s)≤ C(K ). (A-32)

Using Taylor expansion and the asymptotic (A-15), we write

D1(q, s)=
(
−

α

(p− 1)s
+O

(
ln s
s2

))(
ϕ p
−ϕ+ (pϕ p−1

−1)q
)
+O(q2). (A-33)

Using again the definition of ϕ and a Taylor expansion, we derive

ϕ p
= 1−

(|y|2− 2n)
4s

+ O
(

1+ |y|4

s2

)
,

ϕ = 1−
(|y|2− 2n)

4ps
+ O

(
1+ |y|4

s2

)
,

pϕ p−1
− 1= p− 1−

(p− 1)(|y|2− 2n)
4ps

+ O
(

1+ |y|4

s2

)
as s→+∞. Inserting (A-30) and these estimates into (A-33) yields (A-28).

We now turn to the proof of (A-29). Recall from (2-33) the definition of L ,

L(q +ϕ, s)

=
2αψ2

1

ln(ψ2
1 + 2)(ψ2

1 + 2)
(q +ϕ− 1)+

1
lnα(ψ2

1 + 2)

∫ q+ϕ

1
f ′′(v)(q +ϕ− v) dt,

where f (v)= lnα(ψ2
1v

2
+ 2), v ∈ R. From (A-32) and a direct computation, we

estimate ∣∣∣∣ 1
lnα(ψ2

1 + 2)

∫ q+ϕ

1
f ′′(v)(q +ϕ− v) dv

∣∣∣∣≤ C(K )
|q +ϕ− 1|2

s
,

which yields∣∣∣∣L(q +ϕ, s)−
2αψ2

1 (q +ϕ− 1)
ln(ψ2

1 + 2)(ψ2
1 + 2)

∣∣∣∣≤ C(K )
|q +ϕ− 1|2

s
. (A-34)

From (A-14) and (A-34), we then have∣∣∣∣L(q +ϕ, s)−
α(p− 1)(q +ϕ− 1)

s

∣∣∣∣≤ C(K )
(
|q +ϕ− 1|2

s
+

ln s|q +ϕ− 1|
s2

)
,

and additionally we have

|q +ϕ− 1| ≤
C(1+ |y|2)

s
,
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which implies∣∣∣∣L(q +ϕ, s)−
α(p− 1)(q +ϕ− 1)

s

∣∣∣∣≤ C(K )
ln s(1+ |y|4)

s3 . (A-35)

Moreover, from definition of D2 and (A-35) we deduce that∣∣∣D2(q, s)− α
s
(
ϕ p+1

−ϕ p
+ ((p+ 1)ϕ p

− pϕ p−1)q
)∣∣∣≤ C

(1+ |y|4) ln s
s3 ,

and

ϕ p+1
−ϕ p

=−
(|y|2− 2)

4ps
+ O

(
1+ |y|4

s2

)
,

(p+ 1)ϕ p
− pϕ p−1

= 1−
(|y|2− 2)

2s
+ O

(
1+ |y|4

s2

)
as s→+∞, which yields (A-29).

We now prove (A-27). From (A-15) and the boundedness of q and ϕ, we have

|D1(q, s)| ≤ C
s
.

It is sufficient to prove that for all y ∈ Rn,

|D2(q, s)| ≤
C(K )

s
.

Indeed, from definition (2-33) of L we deduce that

D2(q, s)= h(s)|q +ϕ|p−1(q +ϕ)
lnα(ψ2

1 z2
+ 2)

lnα(ψ2+ 2)
− h(s)|q +ϕ|p−1(q +ϕ).

Using Lemma A.7 we deduce

|D2(q, s)| ≤
C(K )

s
. �

Lemma A.9. For s large enough, we have:

(i) estimates on V :

|V (y, s)| ≤
C(1+ |y|2)

s
for all y ∈ Rn,

and

V =−
(|y|2− 2n)

4s
+ Ṽ with Ṽ = O

(
1+ |y|4

s2

)
for all |y| ≤ K

√
s.

(ii) estimates on R:

|R(y, s)| ≤ C
s

for all y ∈ Rn,
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and

R(y, s)=
cp

s2 + R̃(y, s) with R̃ = O
(

1+ |y|4

s3

)
for all |y| ≤ K

√
s.

Proof. The proof simply follows from Taylor expansion. We refer to Lemmas B.1
and B.5 in [Zaag 1998] for similar proofs. �

Lemma A.10 (estimates on B(q)). For all A > 0 there exists σ5(A) > 0 such that
for all s ≥ σ5(A), q(s) ∈ SA(s) implies

|B(q(y, s))| ≤ C |q|2, (A-36)

and
|B(q)| ≤ C |q| p̄, (A-37)

with p̄ =min(p, 2).

Proof. See Lemma 3.6 in [Merle and Zaag 1997] for the proof of this lemma. �
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