
Tunisian Journal of Mathematics
an international publication organized by the Tunisian Mathematical Society

msp

On the ultimate energy bound of solutions
to some forced second-order evolution equations

with a general nonlinear damping operator

Alain Haraux

2019 vol. 1 no. 1



msp
TUNISIAN JOURNAL OF MATHEMATICS

Vol. 1, No. 1, 2019

dx.doi.org/10.2140/tunis.2019.1.59

On the ultimate energy bound of solutions
to some forced second-order evolution equations

with a general nonlinear damping operator

Alain Haraux

Under suitable growth and coercivity conditions on the nonlinear damping oper-
ator g which ensure nonresonance, we estimate the ultimate bound of the energy
of the general solution to the equation ü(t)+ Au(t)+ g(u̇(t)) = h(t), t ∈ R+,
where A is a positive selfadjoint operator on a Hilbert space H and h is a bounded
forcing term with values in H. In general the bound is of the form C(1+‖h‖4),
where ‖h‖ stands for the L∞ norm of h with values in H and the growth of g
does not seem to play any role. If g behaves like a power for large values of the
velocity, the ultimate bound has quadratic growth with respect to ‖h‖ and this
result is optimal. If h is antiperiodic, we obtain a much lower growth bound and
again the result is shown to be optimal even for scalar ODEs.

1. Introduction

We investigate a specific quantitative aspect of solutions to the equation

ü(t)+ Au(t)+ g(u̇(t))= h(t),

where V is a real Hilbert space, A ∈ L(V, V ′) is a symmetric, positive, coercive
operator, g ∈ C(V, V ′) is monotone and h is a forcing term. This equation has
been intensively studied in the literature when g is a local damping term, covering
the following topics: existence of almost periodic solutions, asymptotic behavior
of the general solution, rate of decay to 0 of the difference of two solutions in
the energy space in the best cases; see, e.g., [Amerio and Prouse 1969; Prouse
1965a; 1965b; 1965c; 1965d; Biroli 1973; Biroli and Haraux 1980; Haraux 1981;
1982; 1985; 1987; 1991; Haraux and Zuazua 1988; Zuazua 1988]. In the more
recent paper [Aloui et al. 2013], a result generalizing the theorems of [Haraux
1987] on boundedness and compactness has been proved for possibly nonlocal
damping terms. However when looking at the arguments of those two papers and
trying to extract an estimate of the solutions for t large, we find immediately that
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the methodology cannot be adapted to that purpose. The present article aims at
improving the situation. Actually we devise a new technique which allows us to
“forget” the influence of the initial data from the very beginning of the estimates,
thus dropping all unnecessary terms related to transient behavior. The plan of the
paper is as follows: In Section 2, we introduce the basic tools used in the state-
ments and proofs of the main results. Section 3 is devoted to a very general case.
Section 4 covers a still rather general case where the damping operator behaves like
a power for large values of the velocity, this for instance allows us to encompass
any polynomial map, and we give a short list of examples in the field of PDEs of
the second order in t for which our result is optimal. In Section 5 we establish two
partial results when the forcing is antiperiodic, a situation which is known (see, e.g.,
[Haraux 1989]) to prevent resonance under weaker conditions on g than the general
periodic case. We obtain a better estimate which is optimal in finite dimensions,
but in the infinite-dimensional setting we can only slightly improve the general
estimate and we do not reach what one might expect to be the optimal result.

2. Functional framework and the initial value problem

We now recall the exact functional framework that shall be used in the formulation
as well as in the proofs of our new results. We follow the presentation from [Aloui
et al. 2013] at the exception of a small difference for the approximation of weak
solutions.

2A. Monotone operators. Let H be a real Hilbert space endowed with an inner
product ( · , · )H. We recall that a map A defined on a subset D= D(A) with values
in H is monotone if

∀ (U, Û ) ∈ D×D, (AU −AÛ,U − Û )H ≥ 0.

In addition A is called maximal monotone if

∀ F ∈H, ∃U ∈ D(A), AU +U = F.

The following result is well known; see [Brezis 1973].

Proposition 2.1. If A is maximal monotone, for each T > 0, each U0 ∈ D(A)
and F = F(t) ∈W 1,1(0, T ;H) there is a unique function U ∈W 1,1(0, T ;H) with
U (t) ∈ D(A) for almost all t ∈ (0, T ), U (0) = U0 and such that for almost all
t ∈ (0, T )

U ′(t)+AU (t)= F(t). (2-1)

In addition if for some Û0 ∈ D(A) and F̂ ∈W 1,1(0, T ;H) we consider the solution
Û ∈W 1,1(0, T ;H) with Û (t) ∈ D(A) for almost all t ∈ (0, T ), Û (0)= Û0 of

Û ′(t)+AÛ (t)= F̂(t),
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then the difference satisfies the inequality

∀ t ∈ [0, T ], |U (t)− Û (t)| ≤ |U0− Û0| +

∫ t

0
|F(s)− F̂(s)| ds.

This proposition allows one to define by density, for any U0 ∈ D(A) and F =
F(t) ∈ L1(0, T ;H), a weak solution of (2-1) such that U (0)=U0 [Brezis 1973].

2B. Functional setting. Throughout this article we let H and V be two Hilbert
spaces with norms respectively denoted by ‖ · ‖ and | · |. We assume that V is
densely and continuously embedded into H. Identifying H with its dual H ′, we
obtain V ↪→ H = H ′ ↪→ V ′. We denote inner products by ( · , · ) and duality
products by 〈 · , · 〉; the spaces in question will be specified by subscripts. The
notation 〈 f, u〉 without any subscript will be used sometimes to denote 〈 f, u〉V ′,V .
The duality map: V → V ′ will be denoted by A. We observe that A is characterized
by the property

∀ (u, v) ∈ V × V, 〈Au, v〉V ′,V = (u, v)V .

2C. Weak solutions. We consider the dissipative evolution equation

ü+ Au+ g(u̇)= h(t), (2-2)

where g ∈ C(V, V ′) satisfies

∀ (v,w) ∈ V × V, 〈g(v)− g(w), v−w〉 ≥ 0. (2-3)

We consider the (generally unbounded) operator A defined on the Hilbert space
H= V × H by

D(A)= {(u, v) ∈ V × V : Au+ g(v) ∈ H}

and

∀ (u, v) ∈ D(A), A(u, v)= (−v, Au+ g(v)).

Lemma 2.2. The operator A is maximal monotone.

Proof. Let U = (u, v) and Û = (û, v̂) be two elements of D(A). We have

(AU−AÛ,U−Û )H =−(u− û, v− v̂)V +
(

Au+g(v)−Aû−g(v̂), v− v̂
)

H

−(u− û, v− v̂)V +
〈
Au+g(v)−Aû−g(v̂), v− v̂

〉
V ′,V

since Au+ g(v) ∈ H and Aû+ g(v̂) ∈ H while v, v̂ are in V. This reduces to

(AU −AÛ,U − Û )H = 〈g(v)− g(v̂), v− v̂〉V ′,V ≥ 0.
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Hence A is monotone. To prove that A is maximal monotone we are left to show
that for any F = (ϕ, ψ) ∈H the system

u− v = ϕ, Au+ g(v)+ v = ψ

has a solution U = (u, v) ∈ D(A). This is equivalent to finding a solution v ∈ V of

Av+ g(v)+ v = ψ − Aϕ ∈ V ′.

But now the operator C ∈ C(V, V ′), defined by

∀ v ∈ V, Cv = Av+ g(v)+ v,

is continuous and coercive since V → V ′ is the sum of a monotone operator and
the coercive duality map. Therefore by Corollary 14, p. 126 from [Brezis 1968],
C is surjective. Finally A is maximal monotone as claimed. �

As a consequence of Proposition 2.1, for any h ∈ L1
loc(R

+, H) and for each
(u0, u1) ∈ V × H there is a unique weak solution

u ∈ C(R+, V )∩C1(R+, H)

of (2-2) such that u(0) = u0 and u̇(0) = u1. This solution can be recovered on
each compact interval [0, T ] by approximating the initial data by elements of the
domain, approximating the forcing term h by C1 functions and passing to the limit;
the limit is independent of the approximating elements so chosen. The next result
shows that in fact the approximation can even be made uniform on R+.

2D. Density of strong solutions.

Lemma 2.3. For any h ∈ L2
loc(R

+, H), for each (u0, u1) ∈ V × H and for each
δ > 0 there exists (w0, w1) ∈ D(A) and k ∈ C1(R+, H) for which the solution
w ∈W 1,1

loc (R
+, V )∩W 2,1

loc (R
+, H) of

ẅ+ Aw+ g(ẇ)= k(t), w(0)= w0, ẇ(0)= w1,

satisfies
∀ t ≥ 0, ‖u(t)−w(t)‖+ |u̇(t)− ẇ(t)| ≤ δ,

and in addition

∀ t ∈ R+,

∫ t+1

t
|k(s)− h(s)|2 ds ≤ 2δ.

Proof. It suffices to use the last result of Proposition 2.1 by observing that for any
h ∈ L2

loc(R
+, H) we can find k ∈ C1(R+, H) such that

∀ n ∈ N,

∫ n+1

n
|k(s)− h(s)|2 ds ≤ δ2−2n−2.
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Choosing (w0, w1) ∈ D(A) such that

‖w0− u0‖+ |w1− v1| ≤ δ2−1

the result follows immediately �

3. A general ultimate bound

We now give a quite different proof, in a slightly more general case, of a result
stated in [Haraux 1985, Remark 1.2(b), p. 167]. We assume that h ∈ S2(R+, H)
with

S2(R+, H)=
{

f ∈ L2
loc(R

+, H) : sup
t∈R+

∫ t+1

t
| f (s)|2 ds <∞

}
and we set

‖h‖S2(R+,H) =

(
sup
t∈R+

∫ t+1

t
|h(s)|2 ds

)1/2

.

In particular if h ∈ L∞(R+, H), then h ∈ S2(R+, H) and ‖h‖S2(R+,H)≤‖h‖L∞(R+,H).

Theorem 3.1. Assume that g ∈ C(V, V ′) satisfies the condition (2-3) and

∃ γ > 0 , ∃C1 ≥ 0, ∀ v ∈ V, 〈g(v), v〉 ≥ γ |v|2−C1, (3-1)

∃ K > 0, ∃C2 ≥ 0, ∀ v ∈ V, ‖g(v)‖V ′ ≤ C2+ K 〈g(v), v〉. (3-2)

Then any solution u ∈ C(R+, V ) ∩ C1(R+, H) of (2-2) is bounded on R+ in the
sense that u has bounded range in V and u̇ has bounded range in H. In addition
we have for some constant K depending only on A and g

lim sup
t→∞

(|u̇(t)|2+‖u(t)‖2)≤ K (1+‖h‖4S2(R+,H)).

Proof. The boundedness result is known for local damping operators g, see the
second case of Theorem IV.2.1.1 of [Haraux 1987], and in the general case it can
be proved by adapting in this case the method from [Aloui et al. 2013]. However
even in the local case these results cannot provide a reasonable estimate of the
ultimate bound. We start by an estimate in the case of a strong solutions; i.e., we
assume

u ∈W 1,1
loc (R

+, V )∩W 2,1
loc (R

+, H).

The general case will follow by density. Let

E(t)= 1
2(|u̇|

2
+‖u‖2).
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Under the regularity conditions [u0, v0] ∈ V ×V, g(v0) ∈ H and h ∈W 1,1
loc (R

+, H),
the function: t→ E(t) is absolutely continuous and we have, for all t ∈ R+

d
dt

E(t)= (h, u̇)−〈g(u̇), u̇〉. (3-3)

In addition t→ (u(t), u̇(t)) is absolutely continuous and

d
dt
(u(t), u̇(t))= |u̇|2−‖u‖2−〈g(u̇), u〉+ (h, u).

By using (3-2), we obtain

d
dt
(u(t), u̇(t))≤ |u̇|2−‖u‖2+‖u‖

(
P|h| +C2+ K 〈g(u̇), u̇〉

)
(3-4)

with
P = sup{|u| : u ∈ V, ‖u‖ = 1}.

Introducing
8(t)= 2E(t) ∀ t ≥ 0,

we are reduced to estimating the upper limit bound for 8(t). Let us introduce

M = lim sup
t→∞

8(t)

and let us consider a sequence of times tn tending to infinity for which

8(tn)≥ M − 1
n
.

In addition, for n large enough we have tn ≥ τ and

8(tn − τ)≤ M + 1
n
,

where τ is any fixed positive number to be chosen later. Therefore by integrating
(3-3) on [tn − τ, tn] we find∫ tn

tn−τ
〈g(u̇), u̇〉 dt ≤ 1

n
+

∫ tn

tn−τ
〈h, u̇〉 dt ≤ 1

n
+
γ

2

∫ tn

tn−τ
|u̇|2 dt + 1

2γ

∫ tn

tn−τ
|h|2 dt.

As a consequence of (3-1) we deduce∫ tn

tn−τ
〈g(u̇), u̇〉 dt ≤ 2

n
+

1
γ

∫ tn

tn−τ
|h|2 dt +C3, (3-5)∫ tn

tn−τ
|u̇|2 dt ≤

C4

n
+C5

∫ tn

tn−τ
|h|2 dt +C6, (3-6)

which provide an average bound of the kinetic part independent of the initial data
and the transient behavior. This is remarkable since we only used the properties
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8(tn)≥ M − 1/n and 8(tn − τ)≤ M + 1/n to express the fact that t is large. By
combining these two estimates we also find an estimate of the form

|8(t)−8(s)| ≤ C7

(
1+

∫ tn

tn−τ
|h|2 dt

)
, (3-7)

which is valid for all s, t in [tn− τ, tn]. As a consequence if we had an L1 estimate
of the total energy instead of the kinetic part, the proof would be completed with
exponent 2 instead of 4. The difficulty in fact comes from the potential energy.
From (3-4), by integrating on [tn − τ, tn] we find∫ tn

tn−τ
‖u‖2 dt

≤

∫ tn

tn−τ
|u̇|2 dt +

∫ tn

tn−τ

[
‖u‖

(
P|h| +C2+ K 〈g(u̇), u̇〉

)]
dt +

∣∣[(u(t), u̇(t))]tntn−τ
∣∣

Recalling the notation M = lim supt→∞ 8(t) we find∫ tn

tn−τ
‖u‖2 dt

≤

∫ tn

tn−τ
|u̇|2 dt +M1/2

∫ tn

tn−τ

(
P|h| +C2+ K 〈g(u̇), u̇〉

)
dt +C8 M, (3-8)

where C8 does not depend on τ . Combining (3-6) and (3-8) we obtain∫ tn

tn−τ
8(t)dt

≤C5

∫ tn

tn−τ
|h|2 dt+C9+M1/2

∫ tn

tn−τ

(
P|h|+C2+K 〈g(u̇), u̇〉

)
dt+C8 M (3-9)

and by (3-5) this implies∫ tn

tn−τ
8(t) dt ≤ C10

(
1+

∫ tn

tn−τ
|h|2 dt

)
(1+M1/2)+C8 M. (3-10)

Finally by combining this last inequality with (3-7) we end up with

(τ −C8)M ≤ C11

(
1+

∫ tn

tn−τ
|h|2 dt

)
(1+M1/2). (3-11)

Fixing τ ≥ 1+C8, the result now follows easily since∫ tn

tn−τ
|h|2 dt ≤ (1+ τ)‖h‖2S2 .

The general case of weak solutions follows easily from density, relying on
Lemma 2.3. �



66 ALAIN HARAUX

Remark 3.2. This ultimate bound has been obtained under the most general known
assumption ensuring boundedness of trajectories. It seems not to depend on the
kind of damping operator as long as the coerciveness and growth conditions are
satisfied. We have absolutely no idea whether it has a chance to be optimal in some
cases. A more natural quadratic estimate is valid in many cases, as we shall see in
the next section.

4. The case of a power-like damping term

For the main result of this section, we need to introduce an additional Banach
space Z such that

V ⊂ Z ⊂ H

with continuous embeddings. The norm in Z of a vector z ∈ Z will be denoted
by ‖z‖Z .

4A. Main result.

Theorem 4.1. Assume that g ∈ C(V, V ′) satisfies the condition (2-3) and for some
α ≥ 0 we have

∃ γ > 0, ∃C1 ≥ 0, ∀ v ∈ V, 〈g(v), v〉 ≥ γ ‖v‖α+2
Z −C1, (4-1)

∃ K > 0 , ∃C2 ≥ 0, ∀ v ∈ V, ‖g(v)‖V ′ ≤ C2+ K‖v‖α+1
Z . (4-2)

Then any solution u ∈ C(R+, V ) ∩ C1(R+, H) of (2-2) is bounded on R+ in the
sense that u has bounded range in V and u̇ has bounded range in H. In addition
we have for some constant K depending only on A and g

lim sup
t→∞

(|u̇(t)|2+‖u(t)‖2)≤ K (1+‖h‖2S2(R+,H)).

Proof. We start as in the proof of Theorem 3.1; by integrating (3-3) on [tn − τ, tn]
we find∫ tn

tn−τ
〈g(u̇), u̇〉 dt ≤ 1

n
+

∫ tn

tn−τ
〈h, u̇〉 dt

≤
1
n
+
γ

2

∫ tn

tn−τ
‖u̇‖α+2

Z dt +C(γ )
∫ tn

tn−τ
|h|(α+2)/(α+1) dt.

As a consequence of (4-1) we deduce, since n ≥ 1,∫ tn

tn−τ
〈g(u̇), u̇〉 dt ≤ C(γ, τ )

(∫ tn

tn−τ
|h|2 dt

)(α+2)/(2α+2)

+C3, (4-3)∫ tn

tn−τ
|u̇|2 dt ≤ C4+C5(γ, τ )

∫ tn

tn−τ
|h|2 dt. (4-4)
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From (4-3) we also deduce, since 1
2 ≤ (α+ 2)/(2α+ 2) the important new estimate∫ tn

tn−τ
‖u̇‖α+1

Z dt ≤ C6+C7(γ, τ )

(∫ tn

tn−τ
|h|2 dt

)1/2

(4-5)

and by (4-2) this implies∫ tn

tn−τ
‖g(u̇)‖V ′ dt ≤ C8+C9(γ, τ )

(∫ tn

tn−τ
|h|2 dt

)1/2

. (4-6)

Recalling the notation M = lim supt→∞8(t) we now find∫ tn

tn−τ
‖u‖2 dt≤

∫ tn

tn−τ
|u̇|2 dt+C9(γ,τ )M1/2

(∫ tn

tn−τ
|h|2 dt

)1/2

+C10 M+C11, (4-7)

where C10 does not depend on τ . Then by using Cauchy–Schwarz∫ tn

tn−τ
‖u‖2 dt ≤ C12(γ, τ )

∫ tn

tn−τ
|h|2 dt + (C10+ 1)M +C11. (4-8)

By choosing τ large enough we obtain, as a consequence of (4-8) and (4-4), the
inequality ∫ tn

tn−τ
8(t) dt ≤ C12(γ )

∫ tn

tn−τ
|h|2 dt +C13. (4-9)

We conclude by using

|8(t)−8(s)| ≤ C14(γ )

(
1+

∫ tn

tn−τ
|h|2 dt

)
, (4-10)

which is valid for all s, t in [tn − τ, tn] and follows easily from (4-3) and (4-4). �

Remark 4.2. This result is optimal. For instance if we consider an eigenvector ϕ
of A corresponding to the eigenvalue λ > 0, then for each k > 0, kϕ is a stationary
solution of the equation with source term h(t)≡ kλϕ for any dissipative operator g.
This shows that the ultimate bound of the energy is at least quadratic with respect
to the size of the source term.

4B. Examples. In this section, � denotes a bounded open domain of RN with C2

boundary and α ≥ 0, c > 0. We consider four simple special cases.

Example 1 (the wave equation with local damping).{
ut t + c|ut |

αut −1u = h(t, x) in R+×�,

u = 0 on R+× ∂�.
(4-11)

Here V = H 1
0 (�), H = L2(�) and Z = Lα+2(�). We assume (N − 2)α ≤ 2.
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Example 2 (the wave equation with nonlinear averaged damping).{
ut t + c

(∫
�

ut
2(t, x) dx

)α/2ut −1u = h(t, x) in R+×�,

u = 0 on R+× ∂�.
(4-12)

Here V = H 1
0 (�) and H = L2(�)= Z .

Example 3 (a clamped plate equation with nonlinear structural averaged damping).{
ut t − c

(∫
�
|∇ut |

2 dx
)α/2

1ut +1
2u = h(t, x) in R+×�,

u = |∇u| = 0 on R+× ∂�.
(4-13)

Here V = H 2
0 (�), H = L2(�) and Z = H 1

0 (�).

Example 4 (a simply supported plate equation with nonlinear structural averaged
damping).{

ut t − c
(∫
�
|∇ut |

2 dx
)α/2

1ut +1
2u = h(t, x) in R+×�,

u =1u = 0 on R+× ∂�.
(4-14)

Here V = H 2
∩ H 1

0 (�), H = L2(�)and Z = H 1
0 (�).

As a consequence of Theorem 4.1 we obtain immediately:

Corollary 4.3. In all four examples, let h ∈ S2(R+, H). Then any solution u ∈
C(R+, V )∩C1(R+, H) of (2-2) is bounded on R+ in the sense that u has bounded
range in V and u̇ has bounded range in H. In addition we have for some constant K
independent of h and the initial data

lim sup
t→∞

(|u̇(t)|2+‖u(t)‖2)≤ K (1+‖h‖2S2(R+,H)).

Remark 4.4. In [Aloui et al. 2013], for the four previous examples, the authors
proved the existence of a unique almost periodic solution when h is an S2-almost
periodic source. In this case (in particular if h is periodic), the ultimate bound
coincides with the supremum of the energy of the almost periodic solution. Actu-
ally, if we try to estimate directly the periodic solution, some boundary (in time)
term disappears but the main part of the estimate is not much simpler. In addition
we know that the estimate is essentially optimal, only the multiplicative constants
might be worked out if one wants a more precise inequality.

5. Partial results in the antiperiodic case

If g is odd and h is τ -antiperiodic, i.e., if we have

h(t + τ)=−h(t),

the interesting solutions are the antiperiodic ones; see, e.g., [Haraux 1989] for
existence results. Since such solutions have mean value 0, the solution can be
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estimated through its time-derivative, and because the estimate of the derivative is
generally much better, we can expect an improvement on the energy bound.

This idea is perfectly valid if H is finite-dimensional, since then u and u̇ belong
to the same space, but otherwise we have a problem to reach the norm of u in V.
At the present time we do not know what happens if dim H =∞. For the time
being we can only prove the following partial results.

Proposition 5.1. Assume that V = H, h ∈ C(R, H) is τ -antiperiodic, that g ∈
C(H, H) satisfies the condition (2-3) and for some α ≥ 0 we have

∃ γ > 0, ∃C1 ≥ 0, ∀ v ∈ H, 〈g(v), v〉 ≥ γ |v|α+2
−C1, (5-1)

∃ K > 0, ∃C2 ≥ 0, ∀ v ∈ H, |g(v)| ≤ C2+ K |v|α+1. (5-2)

Then any τ -antiperiodic solution u of (2-2) is such that

sup
t∈R

(|u̇(t)|2+ |u(t)|2)≤ C
(
1+‖h‖2/(α+1)

L∞(R,H)

)
,

where C is independent of h.

Proof. The starting point is the same as for the proof of Theorem 4.1. From∫ 2τ

0
〈g(u̇), u̇〉 dt ≤ C(γ, τ )

(∫ 2τ

0
|h|2 dt

)(α+2)/(2α+2)

+C3 (5-3)

we deduce, taking account of property (5-1), the more precise estimate∫ 2τ

0
|u̇|2 dt ≤ C4+C5(γ, τ )

(∫ 2τ

0
|h|2 dt

)1/(α+1)

, (5-4)

which implies, since u has mean value 0,

sup
t∈[0,2τ ]

|u(t)|2 ≤ C
(
1+‖h‖2/(α+1)

L∞(R,H)

)
. (5-5)

To obtain the uniform bound on u̇, the trick now consists in evaluating the max-
imum of 8(t) = |u̇|2+ |A1/2u|2. At a maximum point θ the derivative vanishes,
which gives

〈g(u̇), u̇〉 = (h, u̇);

hence

|u̇(θ)|2 ≤ C ′(1+ |h|2/(α+1)).

This implies

max
t∈[0,2τ ]

8(t)=8(θ)≤ C ′′
(
1+‖h‖2/(α+1)

L∞(R,H)

)
and the conclusion follows immediately. �
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Remark 5.2. This result is optimal. For instance if we consider an eigenvector
ϕ of A corresponding to the eigenvalue λ > 0, then for each k > 0, we have
uk(t)= k cos(λ1/2t)ϕ is a solution of the equation

ü+ Au+ g(u̇)= g(−kλ1/2 sin(λ1/2t)ϕ)=: h(t)

and the L∞ norm of the source term is less than a constant times kα+1 for k large.
Both u and h are antiperiodic.

We have a weaker result (intermediate between Theorem 4.1 and Proposition 5.1)
which is also valid in the infinite-dimensional setting and can be stated as follows:

Proposition 5.3. Assume that the conditions of Theorem 4.1 are satisfied with
(4-2) reinforced into

∃ K > 0, ∃C2 ≥ 0, ∀ v ∈ V, ‖g(v)‖Z ′ ≤ C2+ K‖v‖α+1
Z . (5-6)

Then any τ -antiperiodic solution u ∈ C1(R, V )∩C2(R, H) of (2-2) is such that

sup
t∈R

(|u̇(t)|2+‖u(t)‖2)≤ C
(
1+‖h‖(α+2)/(α+1)

L2([0,τ ],H)

)
,

where C is independent of h.

Proof. The starting point is the same as for the proof of Theorem 4.1. From the
inequality ∫ 2τ

0
〈g(u̇), u̇〉 dt ≤ C3

(
1+

∫ 2τ

0
|h|2 dt

)(α+2)/(2α+2)

(5-7)

we deduce the estimate∫ 2τ

0
|u̇|2 dt ≤ C4

(
1+

(∫ 2τ

0
|h|2 dt

)1/(α+1))
, (5-8)

but also ∫ 2τ

0
‖u̇‖α+1

Z dt ≤ C5

(
1+

(∫ 2τ

0
|h|2 dt

)1/2)
(5-9)

and by (5-6) this implies∫ 2τ

0
‖g(u̇)‖Z ′ dt ≤ C6

(
1+

(∫ 2τ

0
|h|2 dt

)1/2)
. (5-10)

From (5-9), since u has mean value 0, we deduce

sup
t∈[0,2τ ]

‖u(t)‖Z ≤ C7
(
1+‖h‖1/(α+1)

L2([0,2τ ],H)

)
. (5-11)

The two last inequalities imply immediately∣∣∣∣∫ 2τ

0
〈g(u̇), u〉 dt

∣∣∣∣≤ C8
(
1+‖h‖(α+2)/(α+1)

L2([0,2τ ],H)

)
.
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Now, multiplying the equation by u and integrating on the period we find easily
after combining with (5-8)∫ 2τ

0
8(t) dt ≤ C9

(
1+‖h‖(α+2)/(α+1)

L2([0,2τ ],H)

)
,

with 8(t)= |u̇|2+‖u‖2. Since

8′(t)= (h, u̇)−〈g(u̇), u̇〉

by 2τ -periodicity and the inequality 8′ ≤ |h||u̇| +C1, we find as a consequence of
(5-8)

8(t)≤
∫ t

t−τ
8(s) ds+C10

(
1+‖h‖(α+2)/(α+1)

L2([0,2τ ],H)

)
and the conclusion follows easily by using τ -antiperiodicity. �

Remark 5.4. This result is certainly not optimal but it is all we can prove for the
moment even in the most basic examples. Our result requires additional regular-
ity on u; this is usually achieved by assuming some regularity on h. When g is
monotone, usually the antiperiodic solution is unique and depends continuously
on h in L2, so that the estimate will be easy to transfer to the general case in the
examples. This is important since we cannot derive strong estimates on solutions
which are not antiperiodic and therefore approximation by strong solutions has to
be performed within the antiperiodic class.
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