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From compressible to incompressible
inhomogeneous flows in the case of large data

Raphaël Danchin and Piotr Bogusław Mucha

We are concerned with the mathematical derivation of the inhomogeneous incom-
pressible Navier–Stokes equations (INS) from the compressible Navier–Stokes
equations (CNS) in the large volume viscosity limit. We first prove a result of
large-time existence of regular solutions for (CNS). Next, as a consequence, we
establish that the solutions of (CNS) converge to those of (INS) when the volume
viscosity tends to infinity. Analysis is performed in the two-dimensional torus T2

for general initial data. Compared to prior works, the main breakthrough is that
we are able to handle large variations of density.

1. Introduction

We are concerned with the compressible Navier–Stokes system{
ρt + div(ρv)= 0 in (0, T )×T2,

ρvt + ρv · ∇v−µ1v− ν∇ div v+∇P = 0 in (0, T )×T2.
(1-1)

Above, the unknown nonnegative function ρ = ρ(t, x) and vector field v =
v(t, x) stand for the density and velocity of the fluid at (t, x). The two real numbers
µ and ν denote the viscosity coefficients and are assumed to satisfy µ > 0 and
ν+µ> 0. We suppose that the pressure function P = P(ρ) is C1 with P ′ > 0, and
that P(ρ̄)= 0 for some positive constant reference density ρ̄. Throughout, we set

e(ρ) := ρ
∫ ρ

ρ̄

P(t)
t2 dt.

Note that e(ρ̄)= e′(ρ̄)= 0 and ρe′′(ρ)= P ′(ρ). Hence e is a strictly convex func-
tion and, for any interval [ρ∗, ρ∗], there exist two constants m∗ and m∗ such that

m∗(ρ− ρ̄)2 ≤ e(ρ)≤ m∗(ρ− ρ̄)2. (1-2)

The system is supplemented with the initial conditions

v|t=0 = v0 ∈ R2 and ρ|t=0 = ρ0 ∈ R+. (1-3)
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We aim at comparing the above compressible Navier–Stokes system with its
incompressible but inhomogeneous version, namely

ηt + u · ∇η = 0 in (0, T )×T2,

ηut + ηu · ∇u−µ1u+∇5= 0 in (0, T )×T2,

div u = 0 in (0, T )×T2.

(1-4)

At the formal level, one can expect the solutions of (1-1) to converge to those of
(1-4) when ν goes to∞. Indeed, the velocity equation of (1-1) may be rewritten

∇ div v = 1
ν
(ρvt + ρv · ∇v−µ1v+∇P)

and thus ∇ div v should tend to 0 when ν→∞. This means that div v should tend
to be independent of the space variable and, as it is the divergence of some periodic
vector field, one must eventually have div v→ 0. As, on the other side, one has
for all values of ν,

ρvt + ρv · ∇v−µ1v is a gradient,

this means that if (ρ, v) tends to some pair (η, u) in a sufficiently strong manner,
then necessarily (η, u) should satisfy (1-4).

The question of finding an appropriate framework for justifying that heuristic
naturally arises. Let us first examine the weak solution framework, as it requires
the fewest assumptions on the data. Regarding system (1-1) with a pressure law
like P(ρ)= a(ργ − ρ̄γ ) for some a > 0 and γ > 1, the state-of-the-art result for
the weak solution theory is as follows (see [Lions 1998; Novotný and Straškraba
2004] for more details):

Theorem 1.1. Assume that the initial data ρ0 and v0 satisfy
√
ρ0 v0 ∈ L2(T

2) and
ρ0 ∈ Lγ (T2). Then there exists a global-in-time weak solution to (1-1) such that

v ∈ L∞(R+; L2(T
2))∩ L2(R+; Ḣ 1(T2)) and e(ρ) ∈ L∞(R+; L1(T

2)) (1-5)

and, for all T > 0,∫
T2

( 1
2ρ|v|

2
+e(ρ)

)
(T, · ) dx +

∫ T

0

(
µ‖∇v‖22+ ν‖ div v‖22

)
dt

≤

∫
T2

( 1
2ρ0|v0|

2
+e(ρ0)

)
dx . (1-6)

For system (1-4), there is a similar weak solution theory that was initiated
by A. Kazhikhov [1974], then continued by J. Simon [1990] and completed by
P.-L. Lions [1996]. However, to the best of our knowledge, it is not known how
to connect system (1-1) to (1-4) in that framework. Justifying the convergence in
that setting may be extremely difficult owing to the fact that the key extra esti-
mate for the density that allows one to achieve the existence of weak solutions for
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(1-1) strongly depends on the viscosity coefficient ν, and collapses when ν goes to
infinity.

This thus motivates us to consider the problem for more regular solutions. Re-
garding system (1-1) in the multidimensional case, recall that the global existence
issue of strong unique solutions has been answered just partially, and mostly in the
small data case; see, e.g., [Danchin 2000; Kotschote 2014; Matsumura and Nishida
1980; Mucha 2003; Mucha and Zajączkowski 2002; 2004; Valli and Zajączkowski
1986]. For general large data (even if very smooth), only local-in-time solutions
are available; see, e.g., [Danchin 2001; Nash 1962].

The theory of strong solutions for the inhomogeneous Navier–Stokes system
(1-4) is more complete; see, e.g., [Danchin and Mucha 2012; Ladyzhenskaya and
Solonnikov 1975; Huang et al. 2013; Li 2017]. In fact, the results are roughly
the same as for the homogeneous (that is with constant density) incompressible
Navier–Stokes system. In particular, we proved in [Danchin 2017] that, in the two-
dimensional case, system (1-4) is uniquely and globally solvable in dimension two
whenever the initial velocity is in H 1 and the initial density is nonnegative and
bounded (initial data with vacuum may thus be considered).

It is tempting to study whether those better properties in dimension two for the
(supposedly) limit system (1-4) may help us to improve our knowledge of system
(1-1) in the case where the volume viscosity is very large. More precisely, we here
want to address the following two questions:

• For regular data with no vacuum, given any fixed T > 0, can we find ν0 so
that the solution remains smooth (hence unique) until time T for all ν ≥ ν0?

• Considering a family (ρν, vν) of solutions to (1-1) and letting ν→∞, can we
show strong convergence to some pair (η, u) satisfying (1-4) and, as the case
may be, give an upper bound for the rate of convergence?

Those two issues have been considered recently in our paper [Danchin and
Mucha 2017], in the particular case where the initial density is a perturbation of
order ν−1/2 of some constant positive density (hence the limit system is just the
classical incompressible Navier–Stokes equation). There, our results were based
on Fourier analysis and involved so-called critical Besov norms. The cornerstone
of the method was a refined analysis of the linearized system about the constant
state (ρ, v)= (ρ̄, 0), thus precluding us from considering large density variations.

The present paper aims at shedding a new light on this issue, pointing out dif-
ferent results and techniques than in [Danchin and Mucha 2017]. In particular, we
will go beyond the slightly inhomogeneous case, and will be able to consider large
variations of density. Regarding the techniques, we here meet another motivation
which is strictly mathematical; we want to advertise two tools that can be of some
use in the analysis of systems of fluid mechanics:
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• The first one is a nonstandard estimate with (limited) loss of integrability for
solutions of the transport equation by a non-Lipschitz vector field that was
first pointed out by B. Desjardins [1997] (see Section 3). Proving it requires
a Moser–Trudinger inequality that holds true only in dimension two.1

• The second tool is an estimate for a parabolic system with just bounded coef-
ficients in the maximal regularity framework of L p spaces with p close to 2
(Section 4).

For notational simplicity, we assume from now on that the shear viscosity µ is
equal to 1 (which may always be achieved after a suitable rescaling). Our answer
to the first question then reads as follows:

Theorem 1.2. Fix some T > 0. Let ρ∗ and ρ∗ satisfy 0< 4ρ∗ ≤ ρ∗, and assume

2ρ∗ ≤ ρ0 ≤
1
2ρ
∗. (1-7)

There exists an exponent q > 2 depending only on ρ∗ and ρ∗ such that if ∇ρ0 ∈

Lq(T
2) then for any vector field v0 in W 2−2/q

q (T2) satisfying

ν1/2
‖ div v0‖L2 ≤ 1, (1-8)

there exists ν0 = ν0(T, ρ∗, ρ∗, ‖∇ρ0‖q , ‖v0‖W 2−2/q
q

, P, q) such that system (1-1)
with ν ≥ ν0 has a unique solution (ρ, v) on the time interval [0, T ], fulfilling

v ∈ C([0, T ];W 2−2/q
q (T2)), vt ,∇

2v ∈ Lq([0, T ]×T2),

ρ ∈ C([0, T ];W 1
q (T

2)),
(1-9)

and
ρ∗ ≤ ρ(t, x)≤ ρ∗ for all (t, x) ∈ [0, T ]×T2. (1-10)

Furthermore, there exists a constant Cq depending only on q, a constant CP

depending only on P, and a universal constant C such that for all t ∈ [0, T ],

‖v(t)‖H1 + ν1/2
‖ div v(t)‖L2 +‖ρ(t)− ρ̄‖L2 +‖∇v‖L2([0,t];H1)

+‖vt‖L2(0,t×R2)+ ν
1/2
‖∇ div v‖L2(0,t×R2) ≤ CeC‖v0‖

4
2 E0, (1-11)

‖v(t)‖W 2−2/q
q
+‖vt ,∇

2v, ν∇ div v‖Lq ([0,t]×T2)

≤ Cq
(
‖v0‖W 2−2/q

q
+CP t1/q(1+‖∇ρ0‖Lq ) exp(t1/q ′ I0(t))

)
, (1-12)

and
‖∇ρ(t)‖Lq ≤ (1+‖∇ρ0‖Lq ) exp(t1/q ′ I0(t)), (1-13)

with E0 := 1+‖v0‖H1 +‖ρ0− ρ̄‖L2 and

I0(t) := Cq
(
‖v0‖W 2−2/q

q
+CP t1/q(1+‖∇ρ0‖Lq )e

C E2
0 te

C‖v0‖
4
L2 )
.

1Consequently, we do not know how to adapt our approach to the higher-dimensional case.
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As the data we here consider are regular and bounded away from zero, the
short-time existence and uniqueness issues are clear (one may, e.g., adapt [Danchin
2010] to the case of periodic boundary conditions). In order to achieve large-time
existence, we shall first take advantage of a rather standard higher-order energy
estimate (at the H 1 level for the velocity) that will provide us with a control of ∇v
in L2(0, T ; H 1) in terms of the data and of the norm of ∇ρ in L∞(0, T ; L2). The
difficulty now is to control that latter norm, given that, at this stage, one has no
bound for ∇v in L1(0, T ; L∞). It may be overcome by adapting to our framework
some estimates with loss of integrability for the transport equation, which were first
pointed out in [Desjardins 1997]. However, this is not quite the end of the story
since those estimates involve the quantity

∫ T
0 ‖ div v‖L∞ dt . Then, the key observa-

tion is that the linear maximal regularity theory for the linearization of the momen-
tum equation of (1-1) (neglecting the pressure term and taking ρ ≡ 1) provides, for
all 1<q<∞, a control on ν‖∇ div v‖Lq (0,T ;Lq (T2)) (not just ‖∇ div v‖Lq (0,T ;Lq (T2)))
in terms of ‖v0‖W 2−2/q

q
. In our framework where ρ is not constant, it turns out to

be possible to recover a similar estimate if q is close enough to 2, and thus to
eventually have, by Sobolev embedding,

∫ T
0 ‖ div v‖L∞ dt =O(ν−1). Then, putting

all the arguments together and bootstrapping allows us to get all the estimates of
Theorem 1.2, for large enough ν.

Regarding the asymptotics ν→∞, it is clear that if one starts with fixed initial
data, then uniform estimates are available from Theorem 1.2, only if we assume
that div v0 ≡ 0. Under that assumption, inequalities (1-11) and (1-12) already
ensure that

div v =O(ν−1/2) in L∞(0, T ; L2),

∇ div v =O(ν−1) in Lq(0, T ×T2).

Then, combining with the uniform bounds provided by (1-12) and (1-13), it is not
difficult to pass to the weak limit in system (1-1) and to find that the limit solution
fulfills system (1-4).

In the theorem below, we state a result that involves strong norms of all quantities
at the level of energy norm, and exhibit an explicit rate of convergence.

Theorem 1.3. Fix some T > 0 and take initial data (ρ0, v0) fulfilling the assump-
tions of Theorem 1.2 with, in addition, div v0 ≡ 0. Denote by (ρν, vν) the corre-
sponding solution of (1-1) with volume viscosity ν ≥ ν0. Finally, let (η, u) be the
global solution of (1-4) supplemented with the same initial data (ρ0, v0). Then we
have

sup
t≤T

(
‖ρν(t)− η(t)‖2L2

+‖Pvν(t)− u(t)‖2L2
+‖∇Qvν(t)‖2L2

)
+

∫ T

0

(
‖∇(Pvν − u)‖2L2

+‖∇Qvν‖2H1

)
dt ≤ C0,T ν

−1, (1-14)
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where P and Q are the Helmholtz projectors on divergence-free and potential vec-
tor fields, respectively,2 and where C0,T depends only on T and on the norms of
the initial data.

Compared to the question of low Mach number limit studied in, e.g., [Danchin
2002; Feireisl and Novotný 2013], there is an essential difference in the mecha-
nism leading to convergence, as may be easily seen from a rough analysis of the
linearized system (1-1). Indeed, in the case ρ̄ =µ= 1 and P ′(1)= 1 (for notational
simplicity), that linearization (in the unforced case) is given by{

ηt + div u = 0,
vt −1v− ν∇ div v+∇η = 0.

Eliminating the velocity we obtain the damped wave equation

ηt t − (1+ ν)1ηt −1η = 0,

which can be solved explicitly at the level of the Fourier transform. We obtain
two modes, one strongly parabolic, disappearing for ν→∞, and the second one
having the following form, in the high frequency regime:

η(t)∼ η(0)e−t/(1+ν)
→ η(0).

This means that at the same time, we have that η(t) tends strongly to 0 as t→∞
even for very large ν, but that for all t > 0 (even very large), η(t)→ η(0) when ν
tends to∞.

The behavior corresponding to the low Mach number limit is of a different na-
ture, as it corresponds to the linearizationηt +

1
ε

div u = 0,

vt −1v− ν∇ div v+ 1
ε
∇η = 0,

which leads to the wave equation

ηt t − (1+ ν)1ηt −
1
ε21η = 0.

Asymptotically for ε→ 0, the above damped wave equation behaves as a wave
equation with propagation speed 1/ε. Hence, in the periodic setting, we have huge
oscillations that preclude any strong convergence result. However, after filtering by
the wave operator, convergence becomes strong, which entails weak convergence,
back to the original unknowns (see [Danchin 2002] for more details).

The main idea of Theorem 1.3 is just to compute the distance between the com-
pressible and the incompressible solutions, by means of the standard energy norm

2They are defined by Qv := −∇(−1)−1 div v and Pv := v−Qv.
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(in sharp contrast with the approach in [Danchin and Mucha 2017] where critical
Besov norms are used). In order to do so, it is convenient to decompose ρ− η into
two parts

ρ− η = (ρ− ρ̃)+ (ρ̃− η),

where the auxiliary density ρ̃ is the transport of ρ0 by the flow of the divergence-
free vector field Pv. As the bounds of Theorem 1.2 readily ensure that ‖ρ− ρ̃‖q =
O(ν−1), one may, somehow, perform the energy argument as if comparing (ρ̃, v)
and (η, u).

We end the introduction by presenting the main notation that is used throughout
the paper. By ∇ we denote the gradient with respect to space variables, and by ut

the time derivative of the function u. By ‖ · ‖L p(Q) (or sometimes just ‖ · ‖p), we
mean the p-power Lebesgue norm corresponding to the set Q, and L p(Q) is the
corresponding Lebesgue space. We denote by W s

p the Sobolev (Slobodeckij for s
not integer) space on the torus T2, and put H s

=W s
2 . The homogeneous versions

of those spaces (that is, the corresponding subspaces of functions with null mean)
are denoted by Ẇ s

p and Ḣ s.
Generic constants are denoted by C. By A . B we mean that A ≤ C B, and

A ≈ B stands for C−1 A ≤ B ≤ C A.

2. Energy estimates

The aim of this part is to provide bounds via energy-type estimates. We assume
that the density is bounded from above and below. Let us first recall the basic
energy identity.

Proposition 2.1. For any T > 0, sufficiently smooth solutions to (1-1) obey (1-6).

Proof. That fundamental estimate follows from testing the momentum equation
by v and integrating by parts in the diffusion and pressure terms. Indeed, using the
definition of e and the mass equation, we get∫

T2
∇P · v dx =

∫
T2

P ′(ρ)
ρ
∇ρ · (ρv) dx =

∫
T2
∇(e′(ρ)) · (ρv) dx

=−

∫
T2

e′(ρ) div(ρv) dx =
∫

T2
e′(ρ)ρt dx =

d
dt

∫
T2

e(ρ) dx .

Then integrating in time completes the proof. �

Let us next derive a higher-order energy estimate, pointing out the dependency
with respect to the volume viscosity ν.

Proposition 2.2. Assume that there exist positive constants ρ∗ < ρ∗ such that

ρ∗ ≤ ρ(t, x)≤ ρ∗ for all (t, x) ∈ [0, T ]×T2. (2-1)
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Then solutions to (1-1) with µ= 1 fulfill the inequality

‖v(T ),∇v(T ),ρ(T )−ρ̄‖22+ν‖divv(T )‖22+
∫ T

0

(
‖∇

2v,∇v,vt‖
2
2+ν‖divv‖2H1

)
dt

≤C exp(C‖v0‖
4
2)

(
‖v0,∇v0,ρ0−ρ̄‖

2
2+ν‖divv0‖

2
2

+ν−1T ‖v0‖
2
2+ν

−1
∫ T

0
‖∇ρ‖22 dt

)
, (2-2)

provided ν is larger than some ν0 = ν0(ρ∗, ρ
∗, P).

Proof. We take the T2 inner product of the momentum equation with vt , getting∫
T2
ρ|vt |

2 dx + 1
2

d
dt

∫
T2
(|∇v|2+ ν(div v)2) dx +

∫
T2
∇P · vt dx

=−

∫
T2
(ρv · ∇v) · vt dx . (2-3)

Integrating by parts and using the mass equation yields∫
T2
∇P · vt dx =−

∫
T2

P div vt dx

=−
d
dt

∫
T2

P div v dx +
∫

T2
P ′(ρ)ρt div v dx

=−
d
dt

∫
T2

P div v dx −
∫

T2
P ′(ρ) div(ρv) div v dx .

Hence putting this together with (2-3), we have

1
2

d
dt

∫
T2
(|∇v|2+ ν(div v)2− 2P div v) dx +

∫
T2
ρ|vt |

2 dx

=

∫
T2

P ′(ρ) div(ρv) div v dx −
∫

T2
(ρv · ∇v) · vt dx . (2-4)

Now, setting K (ρ)= ρP ′(ρ)− P(ρ), one can check that∫
T2

P ′(ρ) div(ρv) div v dx =
∫

T2
(div v) v·∇(P(ρ)) dx+

∫
T2
ρ∇P ′(ρ) (div v)2 dx

=−

∫
T2

P(ρ) v·∇ div v dx+
∫

T2
K (ρ)(div v)2 dx .

Hence, if (2-1) is fulfilled then we have

d
dt

∫
T2

(
|∇v|2+ ν(div v)2− 2P(ρ) div v

)
dx +

∫
T2
ρ|vt |

2 dx

≤ C
∫

T2

(
|v · ∇ div v| + (div v)2+ |v · ∇v|2

)
dx . (2-5)
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Next, taking the L2 scalar product of the momentum equation with 1v we get∫
T2
(|1v|2+ν|∇ divv|2)dx−

∫
T2
ρvt ·1v dx−

∫
T2
∇P·1v dx ≤

∫
T2
|ρv·∇v1v|dx .

Note that

−

∫
T2
∇P ·1v dx =−

∫
T2
∇P · ∇ div v dx ≤ C

∫
T2
|∇ρ||∇ div v| dx .

Then, combining with the basic energy identity and with (2-5) and introducing

E(v, ρ) :=
∫

T2

(
ρ|v|2+ 2e(ρ)+ |∇v|2+ ν (div v)2− 2P(ρ) div v

)
dx, (2-6)

we find,

d
dt

E(v, ρ)+
∫

T2
ρ|vt |

2 dx + 1
ρ∗

∫
T2

(
|∇v|2+|∇2v|2+ ν(div v)2+ ν|∇ div v|2

)
dx

≤

∫
T2
|vt ·1v| dx

+C
∫

T2

(
(div v)2+ |v · ∇ div v| + ρ|v · ∇v|2+ 1

ρ∗
|∇ρ||∇ div v|

)
dx . (2-7)

Hence, setting

D(v) := ‖∇v‖2H1 +‖
√
ρ vt‖

2
L2
+ ν‖ div v‖2H1,

inequality (2-7) implies that for large enough ν,

d
dt

E(v, ρ)+ 1
ρ∗

D(v)≤ C
∫

T2

(
|v|2 |∇v|2+ (|v| + |∇ρ|)|∇ div v|

)
dx .

Of course, from the Ladyzhenskaya inequality, we have∫
T2
|v · ∇v|2 dx ≤ C‖v‖2 ‖∇v‖22 ‖1v‖2.

Therefore, we end up with

d
dt

E(v, ρ)+ 1
ρ∗

D(v)≤ C
(
‖v‖22 ‖∇v‖

2
2 ‖∇v‖

2
2+ ν

−1(‖v‖22+‖∇ρ‖
2
2)
)
.

Let us notice that if ν ≥ ν0(ρ∗, ρ
∗, P) then we have, according to (1-2),

E(v, ρ)≈ ‖v‖2H1 +‖ρ− ρ̄‖
2
L2
+ ν‖ div v‖2L2

. (2-8)

Hence the Gronwall inequality yields

E(v(T ), ρ(T ))+ 1
ρ∗

∫ T

0
D(t) dt ≤ exp

(
C
∫ T

0
‖v‖22 ‖∇v‖

2
2 dt

)
×

(
E(v0, ρ0)+

C
ν

∫ T

0
exp

(
−C

∫ t

0
‖v‖22 ‖∇v‖

2
2 dt

)
(‖v‖22+‖∇ρ‖

2
2) dt

)
.
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Remembering that the basic energy inequality implies∫ T

0
‖v‖22 ‖∇v‖

2
2 dt ≤ C‖v0‖

4
2,

one may conclude that

E(v(T ), ρ(T ))+ 1
ρ∗

∫ T

0
D(v) dt

≤ exp(C‖v0‖
4
2)

(
E(v0, ρ0)+

C
ν

(
‖v0‖

2
2 T +

∫ T

0
‖∇ρ‖22 dt

))
,

which obviously yields (2-2). �

3. Estimates with loss of integrability for the transport equation

We are concerned with the proof of regularity estimates for the transport equation

ρt + v · ∇ρ+ ρ div v = 0 (3-1)

in some endpoint case where the transport field v fails to be in L1(0, T ;Lip) by a
little.

More exactly, we aim at extending the results in [Desjardins 1997] to transport
fields that are not divergence-free. Our main result is:

Proposition 3.1. Let 1 ≤ q ≤ ∞ and T > 0. Suppose ρ0 ∈ W 1
q (T

2) and v ∈
L2(0, T ; H 2(T2)) are such that div v ∈ L1(0, T ; L∞(T2)) ∩ L1(0, T ;W 1

q (T
2)).

Then the solution to (3-1) fulfills for all 1≤ p < q ,

sup
t<T
‖∇ρ(t)‖p ≤ K

(
‖∇ρ0‖q +‖ρ0‖∞ sup

t<T

∥∥∥∥∫ t

0
∇ div v dτ

∥∥∥∥
q

)
× exp

(
CT

∫ T

0
‖∇

2v‖22 dt
)

exp
(∫ T

0
‖ div v‖∞ dt

)
,

where K is an absolute constant, and the constant C depends only on p and q.

Proof. We proceed by means of the standard characteristics method: our assump-
tions guarantee that v admits a unique (generalized) flow X , a solution to

X (t, y)= y+
∫ t

0
v(τ, X (τ, y)) dτ. (3-2)

Then, setting

u(t, y) := v(t, X (t, y)) and a(t, y)= ρ(t, X (t, y)), (3-3)

(3-1) can be rewritten as

da(t, y)
dt

=−(div v)(t, X (t, y)) · a(t, y), (3-4)
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the unique solution of which is given by

a(t, y)= exp
(
−

∫ t

0
(div v)(τ, X (τ, y)) dτ

)
a0(y). (3-5)

From the chain rule and the Leibniz formula, we thus infer

∇ya(t, y)= exp
(
−

∫ t

0
(div v)(τ, X (τ, y)) dτ

)
×

(
∇y a0(y)− a0(y)

∫ t

0
(∇ div v)(τ, X (τ, y)) · ∇y X (τ, y) dτ

)
.

Our goal is to estimate all these quantities in the Eulerian coordinates. Note that
by (3-2) and the Gronwall lemma, we obtain pointwisely that, setting Y (t, · ) :=
(X (t, · ))−1,

|∇y X (t, y)| ≤ exp
(∫ t

0
|∇xv(τ, X (τ, y))| dτ

)
,

|∇x Y (t, x)| ≤ exp
(∫ t

0
|∇yu(τ, Y (τ, x))| dτ

)
.

(3-6)

As ∇xρ(t, x)=∇y a(t, Y (t, x)) · ∇x Y (t, x), we get

|∇ρ(t, x)| ≤ exp
(

3
∫ t

0
|∇v(τ, X (τ,Y (t, x)))|dτ

)
×

(∣∣∇ρ0(Y (t, x))
∣∣+∣∣ρ0(Y (t, x))

∣∣∣∣∣∣∫ t

0
∇ divv

(
τ, X (τ,Y (t, x))

)
dτ
∣∣∣∣).

Recall that the Jacobian of the change of coordinates (t, y)→ (t, x) is given by

JX (t, y)= exp
(∫ t

0
div v(τ, X (τ, y)) dτ

)
≤ exp

(∫ t

0
‖ div v‖∞ dτ

)
. (3-7)

Hence taking the L p(T
2) norm and using the Hölder inequality with 1/p =

1/q + 1/m, we get

‖∇ρ(t)‖p ≤ exp
(

1
q

∫ t

0
‖ div v‖∞ dτ

)
×

(
‖∇ρ0‖q +‖ρ0‖∞

∥∥∥∥∫ t

0
∇ div v(τ, X (τ, · )) ds

∥∥∥∥
q

)
×

∥∥∥∥exp
(

3
∫ t

0
|∇v(τ, X (τ, · ))| dτ

)∥∥∥∥
m
. (3-8)

To bound the last term, we write that for all β > 0,∫ t

0
|∇v(τ, X (τ, · ))| dτ ≤ β

∫ t

0

|∇v(τ, X (τ, · ))|2

‖∇2v(τ, · )‖22
dτ + 1

4β

∫ t

0
‖∇

2v(τ, · )‖22 dτ.
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Hence using the Jensen inequality

exp
(∫ t

0
φ(s) ds

)
≤

1
t

∫ t

0
etφ(s) ds,

we discover that∫
T2

exp
(

3m
∫ t

0
|∇v(τ, X (τ, x))| dτ

)
dx

≤ exp
(

m
4β

∫ t

0
‖∇

2v‖22 dτ
)

1
t

∫ t

0

∫
T2

exp
(

9mβt
|∇v(τ, X (τ, x))|2

‖∇2v‖22

)
dx dτ.

In the last integral we change coordinates and get∫
T2

exp
(

3m
∫ t

0
|∇v(τ, X (τ, x))| dτ

)
dx

≤
1
t

exp
(

m
4β

∫ t

0
‖∇

2v‖22 dτ
)

×

(∫ t

0

∫
T2

exp
(

9mβt
|∇v(τ, x)|2

‖∇2v‖22

)
dx dτ

)
exp

(∫ t

0
‖ div v‖∞ dτ

)
.

At this stage, to complete the proof, it suffices to apply the following Trudinger
inequality, see for example [Adams 1975], to f = ∇v: there exist constants δ0 and
K such that for all f in H 1(T2),∫

T2
exp

(
δ0
| f (x)− f̄ |2

‖∇ f ‖22

)
dx ≤ K with f̄ :=

1
|T2|

∫
T2

f dx . (3-9)

Then, taking β so small that 9mβt = δ0, we end up with∫
T2

exp
(

3m
∫ t

0
|∇v(τ, X (τ, x))| dτ

)
dx

≤ C exp
(

9mt
4δ0

∫ t

0
‖∇

2v‖22 dτ
)

exp
(∫ t

0
‖ div v‖∞ dτ

)
. (3-10)

Combining with (3-8) completes the proof of the proposition. �

4. Linear systems with variable coefficients

Here we are concerned with the proof of maximal regularity estimates for the linear
system {

ρut −1u− ν∇ div u = f in (0, T )×TN,

u|t=0 = u0 in TN,
(4-1)

assuming only that ρ = ρ(t, x) is bounded by above and from below (no time or
space regularity whatsoever).
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In contrast with the previous section, we do not need the space dimension to
be 2. As we want to keep track of the dependency with respect to ν for ν→∞,
we shall assume throughout that ν ≥ 0 for simplicity.

Theorem 4.1. Let T > 0. Assume that ν ≥ 0 and that

0< ρ∗ ≤ ρ(t, x)≤ ρ∗ for (t, x) ∈ [0, T ]×TN. (4-2)

There exist positive constants 2∗, 2∗ depending only on ρ∗ and ρ∗, with 2∗ < 2< 2∗,
such that for all r ∈ (2∗, 2∗) we have

‖ut ,∇
2u, ν∇ div u‖Lr ((0,T )×TN )

≤ C(r, ρ∗, ρ∗)
(
‖ f ‖Lr ((0,T )×TN )+‖u0‖W 2−2/r

r (TN )

)
. (4-3)

Proof. First, we reduce the problem to the one with null initial data, solving{
ρ∗ūt −1ū− ν∇ div ū = 0 in (0, T )×TN,

ū|t=0 = u0 in TN.
(4-4)

Applying the divergence operator to the equation yields

ρ∗(div ū)t − (1+ ν)1 div ū = 0.

Hence the basic maximal regularity theory for the heat equation in the torus gives

(1+ ν)‖∇ div ū‖L p((0,T )×TN ) ≤ C‖ div u0‖W 1−2/p
p (TN )

. (4-5)

Then we restate system (4-4) in the form

ρ∗ūt −1ū = ν∇ div ū, (4-6)
and get

‖ūt ,∇
2ū‖L p(TN×(0,T )) ≤ K p

(
ν‖∇ div ū‖L p((0,T )×TN )+‖u0‖W 2−2/p

p (TN )

)
≤ K p

(
ν

1+ ν

)
‖u0‖W 2−2/p

p (TN )
.

Therefore, as ν ≥ 0, we end up with

‖ūt ,∇
2ū, ν∇ div ū‖L p((0,T )×TN ) ≤ K p‖u0‖W 2−2/p

p (TN )
. (4-7)

Next we look for u in the form

u = w+ ū, (4-8)
where w fulfills

ρwt −1w− ν∇ divw = f + (ρ∗− ρ)ūt =: g, w|t=0 = 0. (4-9)

Thanks to (4-2) and (4-9), we have

‖g‖L p((0,T )×TN ) ≤ ‖ f ‖L p((0,T )×TN )+ K p(ρ
∗
− ρ∗)‖u0‖W 2−2/p

p (TN )
. (4-10)
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Now, setting h := g+ (ρ∗− ρ)wt , system (4-9) reduces to{
ρ∗wt −1w− ν∇ divw = h in (0, T )×TN,

w|t=0 = 0 in TN.
(4-11)

We claim that for all p ∈ (1,∞) we have

‖ρ∗wt‖L p((0,T )×TN ) ≤ C p‖h‖L p((0,T )×TN ) (4-12)

with C p→ 1 for p→ 2.

Indeed, to see that C2 = 1, we just take the L2 scalar product of (4-11) with wt ,
which yields

ρ∗‖wt‖
2
L2+

1
2

d
dt
(
‖∇w‖2L2+ν‖ div v‖2L2

)
=

∫
TN

hwt dx≤ 1
2
ρ∗‖wt‖

2
L2+

1
2ρ∗
‖h‖2L2 .

Then for any fixed p0 ∈ (1,∞)\ {2}, the standard maximal regularity estimate is

‖ρ∗wt‖L p0 ((0,T )×TN ) ≤ K p0‖h‖L p0 ((0,T )×TN ),

and the Hölder inequality gives us for all θ ∈ [0, 1],

‖z‖Lr ((0,T )×TN ) ≤ ‖z‖
1−θ
L2((0,T )×TN )

‖z‖θL p0 ((0,T )×TN )
with 1

r
=

1−θ
2
+
θ

p0
.

Therefore C p ≤ Cθ
p0

, whence lim sup C p ≤ 1 for p→ 2 (as θ→ 0).

Now, remembering the definition of h, we write for all p ∈ (1,∞),

‖ρ∗wt‖L p((0,T )×TN ) ≤ C p
(
‖g‖L p((0,T )×TN )+‖(ρ

∗
− ρ)wt‖L p((0,T )×TN )

)
≤ C p‖g‖L p((0,T )×TN )+C p

(
1−

ρ∗

ρ∗

)
‖ρ∗wt‖L p((0,T )×TN ).

Therefore, if3

1−C p

(
1−

ρ∗

ρ∗

)
≥

1
2
ρ∗

ρ∗
, (4-13)

then we end up with

‖ρ∗wt‖L p((0,T )×TN ) ≤
2ρ∗C p

ρ∗
‖g‖L p((0,T )×TN ). (4-14)

Let us emphasize that (4-13) is fulfilled for p close enough to 2, due to C p→ 1
for p→ 2.

It is now easy to complete the proof: We rewrite (4-11) in the form{
−1w− ν∇ divw = g− ρwt in (0, T )×TN,

w|t=0 = 0 in TN.

3Clearly, we just need that 1−C p(1−ρ∗/ρ∗)> 0. However taking that slightly stronger condition
allows us to get a more explicit inequality.
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Then one concludes as before that

‖∇
2w, ν∇ divw‖L p((0,T )×TN ) ≤ K p‖g− ρwt‖L p((0,T )×TN )

≤ K p
(
‖g‖L p((0,T )×TN )+ ρ

∗
‖wt‖L p((0,T )×TN )

)
.

Hence, putting together with (4-14) and assuming that p is close enough to 2,

‖wt ,∇
2w, ν∇ divw‖L p((0,T )×TN ) ≤ Cρ∗,ρ∗‖g‖L p((0,T )×TN ). (4-15)

Then combining with (4-10) and (4-7) completes the proof. �

5. Final bootstrap argument

In what follows, we fix some 0<ρ∗<ρ∗ and denote by 2∗ and 2∗ the corresponding
Lebesgue exponents provided by Theorem 4.1. We assume that the initial data
(ρ0, v0) satisfies all the requirements of Theorem 1.2

Take some time T such that 1≤ T ≤ ν (stronger conditions will appear below),
and assume that we have a solution (ρ, v) to (1-1) on [0, T ] × T2, fulfilling the
regularity properties of Theorem 1.2 for some 2< q <min(2∗, 4), and

exp
(∫ T

0
‖ div v‖∞ dt

)
≤ 2. (5-1)

Then it is clear that ρ obeys

ρ∗ ≤ ρ ≤ ρ
∗ on [0, T ]×T2. (5-2)

For all p ∈ [2, q], define Ap(T ) := ‖∇ div v‖L1(0,T ;L p(T2)) and assume that, for
some small enough constant c0 > 0, we have

Aq(T )≤ c0. (5-3)

Clearly, if K c0 ≤ log 2, where K stands for the norm of the embedding Ẇ 1
q (T

2) ↪→

L∞(T2), then (5-1) is fulfilled. We shall assume in addition that c0ρ
∗
≤ 1.

We are going to show that if (5-3) is fulfilled then, for sufficiently large ν, all
the norms of the solution are under control. Then, bootstrapping, this will justify
(5-3) a posteriori.

Step 1: high-order energy estimate for v. Let E2
0 := 1+‖v0‖

2
H1 +‖ρ0− ρ̄‖

2
2. By

(2-2) we easily get, remembering that ν−1T ≤ 1,

‖v‖2L∞(0,T ;H1)
+ ν‖ div v‖2L∞(0,T ;L2)

+‖ρ− ρ̄‖2L∞(0,T ;L2)

+

∫ T

0

(
‖∇v‖2H1 +‖vt‖

2
2+ ν‖∇ div v‖22

)
dt

≤ CeC‖v0‖
4
2
(
E2

0 + ν
−1T ‖∇ρ‖2L∞(0,T ;L2)

)
. (5-4)
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Step 2: regularity estimates at L p level for the density. From Proposition 3.1, we
find that there exists an absolute constant K such that for all r ∈ [2, q), there exists
some constant Cr > 0 such that

sup
t∈[0,T ]

‖∇ρ(t)‖r ≤ K
((
‖∇ρ0‖q + ρ

∗Aq(T )
)

exp
(

Cr T
∫ T

0
‖∇

2v‖22 dt
))
.

Hence, bounding the last term according to (5-4), and using (5-3) and the definition
of E0,

sup
t∈[0,T ]

‖∇ρ(t)‖r ≤ K (‖∇ρ0‖q + 1) exp(Cr E2
0 T eC‖v0‖

4
2)

× exp
(
Crν

−1T 2eC‖v0‖
4
2‖∇ρ‖2L∞(0,T ;L2)

)
. (5-5)

Taking r = 2, we deduce that if

C2ν
−1T 2eC‖v0‖

4
2‖∇ρ‖2L∞(0,T ;L2)

≤ log 2,

then we have

sup
t∈[0,T ]

‖∇ρ(t)‖2 ≤ 2K (‖∇ρ0‖q + 1) exp(C2 E2
0 T eC‖v0‖

4
2). (5-6)

Using an obvious connectivity argument, we conclude that (5-6) holds whenever

ν >
4K 2C2

log 2
(‖∇ρ0‖q + 1)2 exp(2C2 E2

0 T eC‖v0‖
4
2)T 2eC‖v0‖

4
2 . (5-7)

Reverting to (5-4), we readily get, taking a larger constant C if need be,

‖v‖2L∞(0,T ;H1)
+ ν‖ div v‖2L∞(0,T ;L2)

+‖ρ− ρ̄‖2L∞(0,T ;L2)

+

∫ T

0

(
‖∇v‖2H1 +‖vt‖

2
L2
+ ν‖∇ div v‖2L2

)
dt ≤ CeC‖v0‖

4
2 E2

0 . (5-8)

Of course, combining (5-6) with (5-5) ensures that for all r ∈ [2, q), we have

sup
t∈[0,T ]

‖∇ρ(t)‖Lr ≤ K (‖∇ρ0‖q + 1) exp(Cr E2
0 T eC‖v0‖

4
2). (5-9)

Step 3: maximal regularity at L p level for the velocity. We rewrite the velocity
equation as

ρ∂tv−1v− ν∇ div v =−∇P − ρv · ∇v.

Then Theorem 4.1 ensures that for all p ∈ [2, q),

Vp(T )≤ C p
(
‖v0‖W 2−2/p

p
+‖∇P + ρv · ∇v‖L p(0,T×T2)

)
(5-10)

with Vp(T ) := ‖v‖L∞(0,T ;W
2−2/p
p )
+‖vt ,∇

2v, ν∇ div v‖L p(0,T×T2).
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By the Hölder inequality

‖v · ∇v‖L p(0,T×T2) ≤ T 1/s
‖v‖L∞(0,T ;Ls)‖∇v‖L4(0,T ;L4) with 1

s
+

1
4
=

1
p
.

Hence using embedding and inequality (5-8),

‖v · ∇v‖L p(0,T×T2) ≤ CT 1/p−1/4 E2
0eC‖v0‖

4
2,

and reverting to (5-10) and using (5-9) thus yields for some constant CP depending
only on the pressure law,

Vp(T )≤ C p
(
‖v0‖W 2−2/p

p
+CP T 1/p(‖∇ρ0‖q + 1)eC E2

0 T eC‖v0‖
4
2

+ T 1/p−1/4 E2
0eC‖v0‖

4
2
)
. (5-11)

Step 4: regularity estimate at Lq level for the density. The standard estimate for
the transport equation with Lipschitz velocity field yields

sup
t≤T
‖∇ρ(t)‖q ≤ (‖∇ρ0‖q + ρ

∗Aq(T )) exp(‖∇v‖L1(0,T ;L∞)).

Hence, remembering (5-3) and using the embedding Ẇ 1
p(T

2) ↪→ L∞(T2) to handle
the last term, we get

sup
t≤T
‖∇ρ(t)‖q ≤ (‖∇ρ0‖q + 1) exp(CT 1/p′Vp(T )).

Then one can bound Vp(T ) according to (5-11) and eventually get

sup
t≤T
‖∇ρ(t)‖q ≤ (‖∇ρ0‖q + 1) exp(T 1/p′ I p

0 (T )), (5-12)

with I p
0 (T ) := C p

(
‖v0‖W 2−2/p

p
+CP T 1/p(‖∇ρ0‖q + 1)eC E2

0 T eC‖v0‖
4
2
)
.

Step 5: maximal regularity at Lq level for the velocity. Let us use again Theorem 4.1,
but with Lebesgue exponent q . We have

Vq(T )≤ Cq
(
‖v0‖W 2−2/q

q
+‖∇P‖Lq (0,T×T2)+‖ρv · ∇v‖Lq (0,T×T2)

)
. (5-13)

The last term may be bounded as in (5-11) (with q instead of p), and the pressure
term may be handled thanks to (5-12). In the end we get

Vq(T )≤ Cq
(
‖v0‖W 2−2/q

q
+CP T 1/q(‖∇ρ0‖Lq + 1) exp(T 1/q ′ I q

0 (T ))
)
.

Step 6: final bootstrap. In order to complete the proof, it suffices to check that if
ν is large enough then we do have (5-3). This is just a consequence of the fact that

Aq(T )≤ T 1/q ′
‖∇ div v‖Lq (0,T×T2) ≤

1
ν

T 1/q ′Vq(T ).

Hence it suffices to choose ν fulfilling (5-7) and

ν ≥ T 1/q ′Cq
(
‖v0‖W 2−2/q

q
+CP T 1/q(‖∇ρ0‖Lq + 1) exp(T 1/p′ I q

0 (T ))
)
.
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6. The incompressible limit issue

The aim of this section is to prove Theorem 1.3. In what follows the time T is fixed,
and ν is larger than the threshold viscosity ν0 given by Theorem 1.2. Throughout,
we shall agree that C0,T denotes a “constant” depending only on T and on the norms
of the initial data appearing in Theorem 1.2. Let us consider the corresponding
solution (ρ, v). Then inequality (1-11) already ensures that all the terms with Qv
in (1-14) are bounded as required.

In order to bound the other terms of (1-14), it is convenient to restate system (1-1)
in terms of the divergence-free part Pv and potential part Qv of the velocity field v,
and in terms of the discrepancy r := ρ − ρ̃ between ρ and the “incompressible”
density ρ̃ defined as the unique solution of the transport equation

ρ̃t +Pv · ∇ρ̃ = 0, ρ̃|t=0 = ρ0. (6-1)
As r fulfills

rt +Pv · ∇r =− div(ρQv), r |t=0 = 0, (6-2)

we have for all t ∈ [0, T ],

‖r(t)‖q ≤
∫ t

0

(
‖ρ divQv‖q +‖Qv · ∇ρ‖q

)
dτ. (6-3)

Now, we have

‖Qv · ∇ρ‖Lq (0,T×T2) ≤ ‖Qv‖Lq (0,T ;L∞)‖∇ρ‖L∞(0,T ;Lq )

and, by virtue of the Poincaré inequality,

‖ρ divQv‖Lq (0,T×T2) ≤ Cρ∗‖∇ divQv‖Lq (0,T×T2).

Therefore, taking advantage of Sobolev embedding and of inequality (1-12), we
end up with

sup
0≤t≤T

‖r(t)‖q ≤ C0,T ν
−1. (6-4)

Next, we restate the second equation in (1-1) as

ρ̃Pvt + ρ̃Pv · ∇Pv−1Pv+∇Q+ K = 0, (6-5)

where Q := P − (1+ ν) div v and K = K1+ K2+ K3+ K4, with

K1 := rPvt , K2 := ρQvt , K3 := rPv ·∇Pv, K4 := ρ(Qv ·∇Pv+v ·∇Qv).

Subtracting (1-4) from (6-5) yields

η(Pv− u)t + ηu · ∇(Pv− u)−1(Pv− u)+∇(Q−5)+ K + L = 0 (6-6)
with

L := (ρ̃− η)Pvt + (ρ̃− η)Pv · ∇Pv+ η(Pv− u) · ∇Pv.
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Of course, initially, we have

Pv− u|t=0 = 0, ρ̃− η|t=0 = 0.

Now, we take the L2 scalar product of (6-6) with Pv−u getting, since div u = 0,

1
2

d
dt

∫
T2
η|Pv− u|2 dx +

∫
T2
|∇(Pv− u)|2 dx

=

∫
T2

K · (u−Pv) dx +
∫

T2
L · (u−Pv) dx . (6-7)

To analyze the terms of the right-hand side, we need some information coming
from the continuity equations. The difference of ρ̃ and η fulfills

(ρ̃− η)t + u · ∇(ρ̃− η)=−(Pv− u) · ∇ρ̃.

Testing it by (ρ̃− η) and defining q∗ by 1/q∗+ 1/q = 1
2 , we find that

sup
t≤T
‖(ρ̃− η)(t)‖2 ≤

∫ T

0
‖Pv− u‖q∗ ‖∇ρ̃‖q dt.

As ρ̃ satisfies (6-1), we have for all t ∈ [0, T ],

‖∇ρ̃(t)‖q ≤ ‖∇ρ̃0‖q e
∫ t

0 ‖∇Pv‖∞ dτ .

Therefore, thanks to (1-13) and Sobolev embedding,

sup
t≤T
‖(ρ̃− η)(t)‖2 ≤ C0,T

∫ T

0
‖Pv− u‖q∗ dt. (6-8)

One can now estimate all the terms of the right-hand side of (6-7). Regarding the
first term of L , we have∫ T

0

∫
T2
(ρ̃− η)Pvt · (Pv− u) dx dt

≤

∫ T

0
‖ρ̃− η‖2 ‖Pvt‖q ‖Pv− u‖q∗ dt

≤ C0,T

(∫ T

0
‖Pv− u‖q∗ dt

)(∫ T

0
‖Pvt‖

2
q dt

)1/2(∫ T

0
‖Pv− u‖2q∗ dt

)1/2

.

Hence taking θ ∈ (0, 1) below according to the Gagliardo–Nirenberg inequality,
and remembering that q > 2 and that H 1(T2) ↪→ Lm(T

2) for all m <∞, we get∫ T

0

∫
T2
(ρ̃− η)Pvt · (Pv− u) dx dt

≤ C0,T

∫ T

0
‖∇(Pv− u)‖2θ2 ‖Pv− u‖2−2θ

2 dt

≤
1
8

∫ T

0
‖∇(Pv− u)‖22 dt +C0,T

∫ T

0
‖Pv− u‖22 dt.

(6-9)
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Next, we write∣∣∣∣∫
T2
(ρ̃− η)(Pv · ∇Pv) · (Pv− u) dx

∣∣∣∣≤ ‖ρ̃− η‖2 ‖Pv · ∇Pv‖q ‖Pv− u‖q∗;

hence, arguing exactly as above,∣∣∣∣∫ T

0

∫
T2
(ρ̃− η)(Pv · ∇Pv) · (Pv− u) dx dt

∣∣∣∣
≤

1
8

∫ T

0
‖∇(Pv− u)‖22 dt +C0,T

∫ T

0
‖Pv− u‖22 dt.

Similarly, we have∣∣∣∣∫ T

0

∫
T2
η((Pv− u) · ∇Pv) · (Pv− u) dx dt

∣∣∣∣≤ ρ∗∫ T

0
‖∇Pv‖∞ ‖Pv− u‖22 dt.

Regarding K1, we have, defining q̃ by 2/q + 1/q̃ = 1,∣∣∣∣∫ T

0

∫
T2

rPvt ·(Pv−u) dx dt
∣∣∣∣≤ ∫ T

0
‖r‖q ‖Pv‖q ‖Pv−u‖q̃ dt

≤
1
8

∫ T

0
‖∇(Pv−u)‖22 dt+C0,T

∫ T

0
‖Pv−u‖22 dt,

and for K2, one can write that∫
T2
ρQvt · (Pv− u) dx = d

dt

∫
T2
ρQv · (Pv− u) dx −

∫
T2
(ρ(Pv− u))t ·Qv dx .

For the last term, we have, using that ρt =− div(ρv) and integrating by parts,∫
T2
(ρ(Pv−u))t ·Qv dx =

∫
T2
ρ(Pv−u)t ·Qv dx+

∫
T2
ρt(Pv−u)·Qv dx

=

∫
T2
ρ(Pv−u)t ·Qv dx+

∫
T2
(ρv)·(∇(Pv−u)·Qv)dx

+

∫
T2
(ρv)·((Pv−u)·∇Qv)dx .

The first term is of order ν−1 after time integration on [0, T ], since it may be
bounded by ∣∣∣∣∫

T2
(ρ(Pv− u))t ·Qv dx

∣∣∣∣≤ ρ∗‖Qv‖2(‖Pvt‖2+‖ut‖2).

For the second term, one may write∣∣∣∣∫
T2
(ρv) · (∇(Pv−u) ·Qv) dx

∣∣∣∣≤ 1
8

∫
T2
‖∇(Pv−u)‖22 dx+C(ρ∗)2‖v‖2

∞
‖Qv‖22,
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and for the last one, we have∣∣∣∣∫
T2
(ρv) · ((Pv− u) · ∇Qv) dx

∣∣∣∣≤ ρ∗‖v‖∞ ‖Pv− u‖2 ‖∇Qv‖2.

In the same way, we get∣∣∣∣∫ T

0

∫
T2
(K3+ K4) · (Pv− u) dx dt

∣∣∣∣
≤

∫ T

0
‖Pv− u‖q∗

(
‖Qv‖q ‖∇Pv‖2+‖∇Qv‖q ‖v‖2

)
dt,

whence using (1-12) and the Poincaré inequality to handle the terms with Qv,∣∣∣∣∫ T

0

∫
T2
(K3+ K4) · (Pv− u) dx dt

∣∣∣∣≤ 1
8

∫ T

0
‖Pv− u‖2H1 dt + ν−2C0,T .

Summing up, we return to (6-7) and integrate to find

ρ∗ sup
t≤T
‖(Pv− u)(t)‖22+

∫ T

0
‖∇(Pv− u)‖22 dt

≤ sup
t≤T

∣∣∣∣∫
T2
(ρQv)(t) · (Pv− u)(t) dx

∣∣∣∣+C0,T

∫ T

0
‖Pv− u‖22 dt +C0,T ν

−1.

But we see that∣∣∣∣∫
T2
ρQv.(Pv− u) dx

∣∣∣∣ ≤ 1
2ρ∗‖Pv− u‖22+C‖Qv‖22 ≤

1
2ρ∗‖Pv− u‖22+C0,T ν

−1.

So altogether, we get after using the Gronwall lemma,

sup
t≤T

(
‖(Pv− u)(t)‖22+‖(ρ̃− η)(t)‖

2
2
)
+

∫ T

0
‖∇(Pv− u)‖22 dt ≤ C0,T ν

−1.

Recalling (6-4) and ρ̃−η= r+(ρ̃−η) completes the proof of Theorem 1.3. �
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