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Nonlocal self-improving properties:
a functional analytic approach

Pascal Auscher, Simon Bortz, Moritz Egert and Olli Saari

A functional analytic approach to obtaining self-improving properties of solu-
tions to linear nonlocal elliptic equations is presented. It yields conceptually
simple and very short proofs of some previous results due to Kuusi–Mingione–
Sire and Bass–Ren. Its flexibility is demonstrated by new applications to nonau-
tonomous parabolic equations with nonlocal elliptic part and questions related
to maximal regularity.

1. Introduction

Recently, there has been a particular interest in linear elliptic integrodifferential
equations of type∫∫

Rn×Rn
A(x, y)

(u(x)− u(y)) · (φ(x)−φ(y))
|x − y|n+2α dx dy

=

∫
Rn

f (x) ·φ(x) dx (φ ∈ C∞0 (R
n)),

where the kernel A is a measurable function on Rn
×Rn with bounds

0< λ≤ Re A(x, y)≤ |A(x, y)| ≤ λ−1 (a.e. (x, y) ∈ Rn
×Rn) (1-1)

and α is a number strictly between 0 and 1. See for example [Bass and Ren 2013;
Biccari et al. 2017a; 2017b; Kuusi et al. 2015; Leonori et al. 2015; Schikorra 2016].
Such fractional equations of order 2α exhibit new phenomena that do not have any
counterpart in the theory of second order elliptic equations in divergence form: In
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[Kuusi et al. 2015], building on earlier ideas in [Bass and Ren 2013], it has been
shown that under appropriate integrability assumptions on f , weak solutions u in
the corresponding fractional L2-Sobolev space Wα,2(Rn) self-improve in integra-
bility and in differentiability. Whereas the former is also known for second-order
equations under the name of “Meyers’ estimate” [Meyers 1963], the improvement
in regularity without any further smoothness assumptions on the coefficients is
a feature of nonlocal equations only [Kuusi et al. 2015, p. 59]. We mention that
[Kuusi et al. 2015] also treats semilinear variants of the equation above, but already
the linear case is of interest for further applications, for example to the stability of
stable-like processes [Bass and Ren 2013].

Up to now, most approaches are guided by the classical strategy for the second-
order case, that is, they employ fractional Caccioppoli inequalities to establish
nonlocal reverse Hölder estimates and then prove a delicate self-improving property
for such inequalities in the spirit of Gehring’s lemma. The purpose of this note is to
present a functional analytic approach which we believe is of independent interest
for several other applications related to partial differential equations of fractional
order as it yields short and conceptually very simple proofs.

Let us outline our strategy that is concisely implemented in Section 3. Writing
the fractional equation in operator form

〈Lα,Au, φ〉 = 〈 f, φ〉, (u, φ ∈Wα,2(Rn)), (1-2)

the left-hand side is associated with a sesquilinear form on the Hilbert spaceWα,2(Rn)

and thanks to ellipticity (1-1) the Lax–Milgram lemma applies and yields invertibil-
ity of 1+Lα,A onto the dual space. Now, the main difference compared with second
order elliptic equations is that we can transfer regularity requirements between
u and φ without interfering with the coefficients A: without making any further
assumption we may write

〈Lα,Au, φ〉 =
∫∫

Rn×Rn
A(x, y)

u(x)− u(y)
|x − y|n/2+α+ε

·
φ(x)−φ(y)
|x − y|n/2+α−ε

dx dy,

which yields boundedness Lα,A :Wα+ε,2(Rn)→Wα−ε,2(Rn)∗. Then the ubiqui-
tous analytic perturbation lemma of Shneiberg [1974] allows one to extrapolate
invertibility to ε > 0 small enough. We can also work in an Lp-setting with hardly
any additional difficulties. In this way, we shall recover some of the results from
[Bass and Ren 2013; Kuusi et al. 2015] on global weak solutions in Section 4 and
discuss some new and sharpened local self-improvement properties in Section 5.

Finally, in Section 6 we demonstrate the simplicity and flexibility of our ap-
proach by proving that for each f ∈ L2(0, T ;L2(Rn)) the unique solution

u ∈ H1(0, T ;Wα,2(Rn)∗)∩L2(0, T ;Wα,2(Rn))
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of the nonautonomous Cauchy problem

u′(t)+Lα,A(t)u(t)= f (t), u(0)= 0,

self-improves to the class H1(0, T ;Wα−ε,2(Rn)∗)∩L2(0, T ;Wα+ε,2(Rn)) for some
ε > 0. Here, each Lα,A(t) is a fractional elliptic operator as in (1-2) with uni-
form upper and lower bounds in t but again we do not assume any regularity on
A(t, x, y) := A(t)(x, y) besides measurability in all variables. We remark that
ε = α and W0,2(Rn) := L2(Rn) would mean maximal regularity, which in general
requires some smoothness of the coefficients in the t-variable. See [Arendt et al.
2017] for a recent survey and the recent paper [Grubb 2018] for related results on
regularity of solutions to such fractional heat equations with smooth coefficients. In
this regard, our results reveal a novel phenomenon in the realm of nonautonomous
maximal regularity. Let us remark that we have recently also explored related
techniques for second-order parabolic systems [Auscher et al. 2017].

2. Notation

Any Banach space X under consideration is taken over the complex numbers and
we shall denote by X∗ the antidual space of conjugate linear functionals X→C. In
particular, all function spaces are implicitly assumed to consist of complex valued
functions. Throughout, we assume the dimension of the underlying Euclidean
space to be n ≥ 2.

Given s ∈ (0, 1) and p ∈ (1,∞), the fractional Sobolev space Ws,p(Rn) consists
of all u ∈ Lp(Rn) with finite seminorm

[u]s,p :=
(∫∫

Rn×Rn

|u(x)− u(y)|p

|x − y|n+sp dx dy
)1

p
<∞.

It becomes a Banach space for the norm ‖ · ‖s,p := (‖ · ‖
p
p + [ · ]

p
s,p)

1/p, where here
and throughout ‖ · ‖p denotes the norm on Lp(Rn). Moreover, Ws,2(Rn) is a Hilbert
space for the inner product

〈u, v〉 :=
∫

Rn
u(x) · v(x) dx +

∫∫
Rn×Rn

(u(x)− u(y)) · (v(x)− v(y))
|x − y|n+2s dx dy.

Frequently it will be more convenient to view Ws,p(Rn) within the scale of Besov
spaces. More precisely, taking φ ∈ S(Rn) with Fourier transform Fφ : Rn

→ [0, 1]
such that Fφ(ξ)= 1 for |ξ | ≤ 1 and Fφ(ξ)= 0 for |ξ | ≥ 2 and defining φ0 := φ

and (Fφ j )(ξ) := Fφ(2− jξ)−Fφ(2− j+1ξ) for ξ ∈ Rn and j ≥ 1, the Besov space
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Bs
p,p(R

n) is the collection of all u ∈ Lp(Rn) with finite norm

‖u‖Bs
p,p(R

n) :=

( ∞∑
j=0

2 jsp
‖φ j ∗ u‖p

p

)1
p
<∞. (2-1)

Different choices of φ yield equivalent norms on Bs
p,p(R

n). Moreover, the Schwartz
class S(Rn), and thus also the space of smooth compactly supported functions
C∞0 (R

n), is dense in any of these spaces, see [Triebel 1983, Section 2.3.3]. Finally,
Ws,p(Rn)= Bs

p,p(R
n) up to equivalent norms [Triebel 1983, Section 2.5.12].

3. Analysis of the Dirichlet form

In this section, we carefully analyze the mapping properties of the Dirichlet form

Eα,A(u, v) :=
∫∫

Rn×Rn
A(x, y)

(u(x)− u(y)) · (v(x)− v(y))
|x − y|n+2α dx dy, (3-1)

which we define here for u, v ∈Wα,2(Rn). Starting from now, α ∈ (0, 1) is fixed
and A : Rn

× Rn
→ C denotes a measurable kernel that satisfies the accretivity

condition (1-1). This entails boundedness

|Eα,A(u, v)| ≤ λ−1
[u]α,2[v]α,2 ≤ λ−1

‖u‖α,2‖v‖α,2

and quasicoercivity

Re Eα,A(u, u)≥ λ[u]2α,2 ≥ λ‖u‖
2
α,2−‖u‖

2
2. (3-2)

Together with the sesquilinear form Eα,A comes the associated operator Lα,A :
Wα,2(Rn)→Wα,2(Rn)∗ defined through

〈Lα,Au, v〉 := Eα,A(u, v),

where 〈 · , · 〉 denotes the sesquilinear duality between Wα,2(Rn) and its antidual,
extending the inner product on L2(Rn).

As an immediate consequence of the Lax–Milgram lemma we can record:

Lemma 3.1. The operator 1 + Lα,A : Wα,2(Rn) → Wα,2(Rn)∗ is bounded and
invertible. Its norm and the norm of its inverse do not exceed λ−1.

The key step in our argument will be to obtain the analogous result on “nearby”
fractional Sobolev spaces Ws,p(Rn). We begin with boundedness, which of course
is the easy part.

Lemma 3.2. Let s, s ′ ∈ (0, 1) and p, p′ ∈ (1,∞) satisfy

s+ s ′ = 2α and 1
p
+

1
p′
= 1.
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Then 1+Lα,A extends from C∞0 (R
n) by density to a bounded operator Ws,p(Rn)→

Ws′,p′(Rn)∗ denoted also by 1+Lα,A, and

|〈u+Lα,Au, v〉| ≤ ‖u‖p‖v‖p′ + λ
−1
[u]s,p[v]s′,p′

for all u ∈Ws,p(Rn) and all v ∈Ws′,p′(Rn).

Proof. Given u, v ∈Wα,2(Rn) we split n+2α = (n/p+ s)+ (n/p′+ s ′) and apply
Hölder’s inequality with exponents 1= 1/∞+ 1/p+ 1/p′ to give

|〈Lα,Au, v〉| =
∣∣∣∣∫∫

Rn×Rn
A(x, y)

(u(x)− u(y)) · (v(x)− v(y))
|x − y|n+2α dx dy

∣∣∣∣
≤ λ−1

[u]s,p[v]s′,p′ .

Again by Hölder’s inequality |〈u, v〉| ≤ ‖u‖p‖v‖p′ , yielding the required estimate
for u, v ∈Wα,2(Rn). Since C∞0 (R

n) is a common dense subspace of all fractional
Sobolev spaces under consideration here (see Section 2) this precisely means that
1+Lα,A extends to a bounded operator from Ws,p(Rn) into the antidual space of
Ws′,p′(Rn). �

Remark 3.3. It follows from Fatou’s lemma that for u and v as in Lemma 3.2 we
still have 〈Lα,Au, v〉 = Eα,A(u, v) with the right-hand side given by (3-1).

We turn to the study of invertibility by means of a powerful analytic perturba-
tion argument going back to Shneiberg [1974]. In essence, the only supplementary
piece of information needed for this approach is that the function spaces for bound-
edness obtained above form a complex interpolation scale.

We denote by [X0, X1]θ , 0< θ < 1, the scale of complex interpolation spaces
between two Banach spaces X0, X1 that are both included in the tempered distri-
butions S ′(Rn). The reader may look up the Appendix for definitions and further
references, but for the understanding of this paper we do not require any further
knowledge on this theory except for the identity[

Ws0,p0(Rn),Ws1,p1(Rn)
]
θ
=Ws,p(Rn) (3-3)

for p0, p1 ∈ (1,∞), s0, s1 ∈ (0, 1), with p, s given by

1
p
=

1−θ
p0
+
θ

p1
, s = (1− θ)s0+ θs1,

and the analogous identity for the antidual spaces. Equality (3-3) is in the sense of
Banach spaces with equivalent norms and the equivalence constants are uniform
for si , pi , θ within compact subsets of the respective parameter intervals. This
uniformity is implicit in most proofs and we provide references where they are
either stated or can be read off particularly easily: this is [Triebel 1983, Sec-
tion 2.5.12] to identify Ws,p(Rn)= Bs

p,p(R
n) up to equivalent norms, [Bergh and
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Löfström 1976, Theorem 6.4.5(6)] for the interpolation and [Bergh and Löfström
1976, Corollary 4.5.2] for the (anti) dual spaces.

Proposition 3.4. Let s, s ′ ∈ (0, 1) and p, p′ ∈ (1,∞) satisfy s + s ′ = 2α and
1/p+ 1/p′ = 1. There exists ε > 0, such that if

∣∣1
2 −

1
p

∣∣< ε and |s−α|< ε, then

1+Lα,A :Ws,p(Rn)→Ws′,p′(Rn)∗

is invertible and the inverse agrees with the one obtained for s = α, p = 2 on their
common domain of definition. Moreover, ε and the norms of the inverses depend
only on λ, n, and α.

Proof. Consider the spaces Ws,p(Rn) and Ws′,p′(Rn)∗ as being arranged in the
(s, 1/p)-plane, where p ∈ (1,∞) but to make sense of our assumption we only
consider parameters s such that additionally s ′ = 2α− s ∈ (0, 1). By Lemma 3.2
we have boundedness

1+Lα :Ws,p(Rn)→Ws′,p′(Rn)∗

at every such (s, 1/p) and Lemma 3.1 provides invertibility at
(
α, 1

2

)
.

Now, consider any line in the (s, 1/p)-plane passing through
(
α, 1

2

)
and take

(s0, 1/p0), (s1, 1/p1) on opposite sides of
(
α, 1

2

)
. Then (3-3) precisely says that

the scale of complex interpolation spaces between Ws0,p0(Rn) and Ws1,p1(Rn) cor-
responds (up to uniformly controlled equivalence constants) to the connecting line
segment. The same applies to Ws′0,p

′

0(Rn)∗ and Ws′1,p
′

1(Rn)∗ on the segment con-
necting (s ′0, 1/p′0) and (s ′1, 1/p′1) through

(
α, 1

2

)
.

According to the quantitative version of Shneiberg’s result, Theorem A.1 of the
Appendix, invertibility at the interior point

(
α, 1

2

)
of this segment implies invert-

ibility on an open surrounding interval. Its radius around
(
α, 1

2

)
depends on an

upper bound for the operator on nearby spaces, the lower bound at the center, and
the constants of norm equivalence. Moreover, the inverses are compatible with the
one computed at

(
α, 1

2

)
. In particular, since we can pick the same interval on every

line segment, this sums up to a two-dimensional ε-neighborhood in the (s, 1/p)-
plane as required. �

4. Weak solutions to elliptic nonlocal problems

We are ready to use the abstract results obtained so far, to establish higher dif-
ferentiability and integrability results for weak solutions u ∈Wα,2(Rn) to elliptic
nonlocal problems of the form

Lα,Au = Lβ,B g+ f. (4-1)
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Here, Lα,A is associated with the form Eα,A in (3-1). In the same way, Lβ,B is
associated with

Eβ,B(g, v) :=
∫∫

Rn×Rn
B(x, y)

(g(x)− g(y)) · (v(x)− v(y))
|x − y|n+2β dx dy,

where starting from now, we fix β ∈ (0, 1) and B ∈ L∞(Rn
×Rn). Just like before,

this guarantees that Eβ,B is a bounded sesquilinear form on Wβ,2(Rn) and hence
that Lβ,B is bounded from Wβ,2(Rn) into its antidual. However, we carefully note
that we do neither assume a lower bound on B nor any relation between α and β.
In particular, β > α is allowed.

In the most general setup that is needed here, weak solutions are defined as
follows.

Definition 4.1. Let f ∈ L1
loc(R

n) and g ∈ L1
loc(R

n) such that Eβ,B(g, φ) converges
absolutely for every φ ∈ C∞0 (R

n). A function u ∈Wα,2(Rn) is called weak solution
to (4-1) if

Eα,A(u, φ)= Eβ,B(g, φ)+
∫

Rn
f ·φ dx (φ ∈ C∞0 (R

n)).

Suppose now that we are given a weak solution u ∈Wα,2(Rn). In order to invoke
Proposition 3.4, we write (4-1) in the form

(1+Lα,A)u = Lβ,B g+ f + u.

Hence, we see that higher differentiability and integrability for u, that is u ∈
Ws,p(Rn) for some s > α and p > 2, follows at once provided we can show
Lβ,B g+ f + u ∈Ws′,p′(Rn)∗ with s ′ < α and p′ < 2 as in Proposition 3.4. So, for
the moment, our task is to work out the compatibility conditions on u, f , and g to
run this argument.

4A. Compatibility conditions for the right-hand side. The standing assumptions
for all results in this section are s ′ ∈ (0, 1), p ∈ (1,∞) and 1/p+ 1/p′ = 1.

We begin by recalling the fractional Sobolev inequality, which will already take
care of u and f .

Lemma 4.2 [Di Nezza et al. 2012, Theorem 6.5]. Suppose s ′ p′ < n and put
1/p′∗ := 1/p′− s ′/n. Then

‖v‖p′∗ . [v]s′,p′ (v ∈Ws′,p′(Rn)).

In particular, Ws′,p′(Rn) ⊂ Lp′∗(Rn) and Lp∗(Rn) ⊂Ws′,p′(Rn)∗ with continuous
inclusions, where 1/p∗ := 1/p+ s ′/n.
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As for g, a dichotomy between the cases 2β ≥ α and 2β < α occurs. This
reflects a dichotomy for the parameter s ′, which typically is close to α. In the first
case, 2β ≥ α, we shall rely on

Lemma 4.3. If 2β − s ′ ∈ (0, 1) and g ∈W2β−s′,p(Rn), then

|〈Lβ,B g, v〉| ≤ ‖B‖∞[g]2β−s′,p[v]s′,p′ (v ∈Ws′,p′(Rn)).

Proof. Write n+ 2β = (n/p+ 2β − s ′)+ (n/p′+ s ′) and note that

|〈Lβ,B g, v〉| ≤
∫∫

Rn×Rn

∣∣∣∣ g(x)− g(y)
|x − y|n/p+2β−s′

∣∣∣∣∣∣∣∣ v(x)− v(y)|x − y|n/p′+s′

∣∣∣∣|B(x, y)| dx dy.

The claim follows from Hölder’s inequality. �

The second case, 2β < α, is slightly more complicated as we need the following
embedding related to the fractional Laplacian (−1)β , compare with [Di Nezza
et al. 2012, Section 3].

Lemma 4.4. Suppose s ′ > 2β, s ′ p′ < n, and put 1/q ′ := 1/p′− (s ′−2β)/n. Then(∫
Rn

(∫
Rn

|v(x)− v(y)|
|x − y|n+2β dy

)q ′

dx
) 1

q ′
. [v]s′,p′ (v ∈Ws′,p′(Rn)).

Proof. Let v ∈Ws′,p′(Rn) and put 1/p′∗ := 1/p′− s ′/n as in Lemma 4.2, so that

1
q ′
=

2β
s ′ p′
+

s ′− 2β
s ′

1
p′∗
:=

1
r1
+

1
r2
.

Note that our assumptions guarantee p′∗, r1, r2 ∈ (1,∞). Denote by M the Hardy–
Littlewood maximal operator defined for f ∈ L1

loc(R
n) via

M f (x) := sup
B3x

1
|B|

∫
B
| f (y)| dy (x ∈ Rn),

where the supremum runs over all balls B ⊂ Rn that contain x . We claim that it
suffices to prove∫

Rn

|v(x)− v(y)|
|x − y|n+2β dy

.

(∫
Rn

|v(x)− v(y)|p
′

|x − y|n+s′ p′ dy
)1

r1
Mv(x)1−p′/r1 (a.e. x ∈ Rn). (4-2)

Indeed, temporarily assuming (4-2), we can take Lq-norms in the x-variable and
apply Hölder’s inequality on the integral in x with exponents 1/q ′ = 1/r1+ 1/r2

to deduce (∫
Rn

(∫
Rn

|v(x)− v(y)|
|x − y|n+2β dy

)q ′

dx
) 1

q ′
. [v]p

′/r1
s′,p′ ‖Mv‖

1−p′/r1
p′∗ .
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The claim follows since we have ‖Mv‖p′∗ . ‖v‖p′∗ . [v]s′,p′ by the maximal
theorem and Lemma 4.2.

Now, in order to establish (4-2) we split the integral at |x − y| = h(x), with
h(x) to be chosen later. Since 2β − s ′ < 0 by assumption, we can write n+ 2β =
n/p′+ s ′+ n/p+ (2β − s ′) and apply Hölder’s inequality to give

∫
|x−y|≤h(x)

|v(x)− v(y)|
|x − y|n+2β dy ≤ h(x)s

′
−2β

(∫
|x−y|≤h(x)

|v(x)− v(y)|p
′

|x − y|n+s′ p′ dy
) 1

p′

≤ h(x)s
′
−2β

(∫
Rn

|v(x)− v(y)|p
′

|x − y|n+s′ p′ dy
) 1

p′
. (4-3)

The remaining integral is bounded by∫
|x−y|≥h(x)

|v(x)− v(y)|
|x − y|n+2β dy

≤

∫
|x−y|≥h(x)

|v(x)|
|x − y|n+2β dy+

∫
|x−y|≥h(x)

|v(y)|
|x − y|n+2β dy,

where the first term equals c|v(x)|h(x)−2β for some dimensional constant c. Next,
on writing

1
|x−y|n+2β =

∫
∞

|x−y|

n+2β
rn

dr
r1+2β

and changing the order of integration, the second term above becomes

(n+ 2β)
∫
∞

h(x)

(
1
rn

∫
h(x)≤|x−y|≤r

|v(y)| dy
)

dr
r1+2β

and thus can be controlled by Cn,βMv(x)h(x)−2β . Since |v| ≤ Mv almost every-
where, we obtain in conclusion∫

|x−y|≥h(x)

|v(x)− v(y)|
|x − y|n+2β dy . h(x)−2βMv(x) (a.e. x ∈ Rn). (4-4)

Finally, we pick h(x) such that the right-hand sides of (4-3) and (4-4) are equal
and obtain (4-2). �

As an easy consequence we obtain the required bounds for Lβ,B .

Corollary 4.5. Suppose s ′ > 2β, s ′ p′ < n, and put 1/q := 1/p+ (s ′− 2β)/n. For
every g ∈ Lq(Rn) there holds

|〈Lβ,B g, v〉|. ‖B‖∞‖g‖q [v]s′,p′ (v ∈Ws′,p′(Rn)).
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Proof. We crudely bound |g(x)− g(y)| ≤ |g(x)| + |g(y)| in the integral represen-
tation for 〈Lβ,B g, v〉 and apply Tonelli’s theorem to give

|〈Lβ,B g, v〉| ≤
∫

Rn
|g(x)|

(∫
Rn

|v(x)− v(y)|
|x − y|n+2β ·

(
|B(x, y)| + |B(y, x)|

)
dy
)

dx

≤ 2‖B‖∞‖g‖q

(∫
Rn

(∫
Rn

|v(x)− v(y)|
|x − y|n+2β dy

)q ′

dx
) 1

q ′
,

the second step being due to Hölder’s inequality. Since the Hölder conjugate of q
is the exponent q ′ appearing in Lemma 4.4, the claimed inequality follows from
that very lemma. �

4B. Proof of a global higher differentiability and integrability result. Combin-
ing Proposition 3.4 with the mapping properties found in the previous section, we
can prove our main self-improvement property for weak solutions of (4-1) . As in
[Kuusi et al. 2015], we impose the additional restriction 2β − α < 1 in the case
that β > α.

Theorem 4.6. There exists ε > 0, depending only on λ, n, α, β with the following
property. Suppose s ∈ (α, 1) and p ∈ [2,∞) satisfy |s − α|, |p − 2| < ε. If
u ∈Wα,2(Rn) is a weak solution to (4-1), then the following conditions guarantee
u ∈Ws,p(Rn):

f ∈ Lr (Rn),
1
r
=

1
p
+

2α−s
n

and
g ∈ Lq(Rn),

1
q
=

1
p
+

2α−2β−s
n

if 2β < α,

or
g ∈W2β−2α+s,p(Rn) if 0≤ 2β −α < 1.

Moreover, there is an estimate

‖u‖s,p . ‖u‖α,2+‖ f ‖+‖g‖,

where the norms of f and g are taken with respect to the function spaces specified
above and the implicit constant depends on λ, n, α, β, s, p and ‖B‖∞.

Proof. As usual we write s+ s ′ = 2α and 1/p+1/p′ = 1. We let ε > 0 as given by
Proposition 3.4. If we can show Lβ,B g+ f +u ∈Ws′,p′(Rn)∗, upon possibly forcing
further restrictions on ε, then by density of C∞0 (R

n) in the fractional Sobolev spaces
we can write the equation for u in the form

(1+Lα,A)u = Lβ,B g+ f + u

and Proposition 3.4 yields u ∈Ws,p(Rn) with bound

‖u‖s,p . ‖Lβ,B g+ f + u‖Ws′,p′ (Rn)∗ . (4-5)
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By assumption and Lemma 4.2 we have u ∈ Lp(Rn) for all p ∈ [2, 2∗] with
1
2∗ =

1
2 −

α
n . Note that here we used our assumption n ≥ 2. For p in this range we

write 1/p = (1− θ)/2+ θ/2∗ with θ ∈ (0, 1) and get for any s ′ ∈ (0, 1) the bound

‖u‖Ws′,p′ (Rn)∗ ≤ ‖u‖p ≤ ‖u‖1−θ2 ‖u‖
θ
2∗ . ‖u‖α,2, (4-6)

where the second step follows from Hölder’s inequality. Next, we have s ′ p′ < 2α <
2≤ n (since s ′ < α and p′ < 2) and hence Lemma 4.2 yields ‖ f ‖Ws′,p′ (Rn)∗ . ‖ f ‖r .
Finally, we consider Lβ,B g.

Suppose first that 2β < α. Upon taking ε smaller, we can assume 2β < s ′, in
which case ‖Lβ,B g‖Ws′,p′ (Rn)∗ . ‖g‖q follows from Corollary 4.5. If, on the other
hand, 2β −α ∈ [0, 1), then we can additionally assume 2β − s ′ ∈ (0, 1) and apply
Lemma 4.3 to give ‖Lβ,B g‖Ws′,p′ (Rn)∗ . ‖g‖2β−2α+s,p. Inserting these estimates on
the right-hand side of (4-5) yields the desired bound for u. �

4C. Comparison to earlier results. As a consequence of our method, the expo-
nents s and p for the higher differentiability and integrability of u in Theorem 4.6
are precisely related to the assumptions on f and g. As far as more qualitative
results are concerned, this is by no means necessary since the following fractional
Sobolev embedding allows for some play with the exponents.

Lemma 4.7 [Bergh and Löfström 1976, Theorems 6.2.4 and 6.5.1]. Let s0, s1, s2 ∈

(0, 1) and 1< p0 ≤ p1 <∞ satisfy s0− n/p0 = s1− n/p1 and s2 < s1. Then

Ws0,p0(Rn)⊂Ws1,p1(Rn)⊂Ws2,p1(Rn)

with continuous inclusions.

As a particular example, we obtain a self-improving property more in the spirit
of [Kuusi et al. 2015, Theorem 1.1]. For this we define the following exponents
related to fractional Sobolev embeddings, see Lemma 4.2,

2∗,α :=
2n

n+ 2α
, 2∗,α−2β :=

2n
n+ 2(α− 2β)

, (4-7)

where the second one will of course only be used when 2β < α.

Corollary 4.8. Let u ∈Wα,2(Rn) be a weak solution to (4-1). Suppose for some
δ > 0 one has f ∈ L2∗,α+δ(Rn)∩L2∗,α (Rn) and

g ∈
{

L2∗,α−2β+δ(Rn)∩L2∗,α−2β (Rn) if 2β < α,
W2β−α+δ,2(Rn) if 0≤ 2β −α < 1.
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Then u ∈Ws,p(Rn) for some s > α, p > 2. Moreover, s and p depend only on
λ, n, α, β.

Proof of Corollary 4.8. Throughout, we will have s ∈ (α, 1) and p ∈ [2,∞). We
consider the case 2β < α first. By the log-convexity of the Lebesgue space norms
we may lower the value δ > 0 as we please and still have the respective assumptions
on f and g. On the other hand, the exponents in Theorem 4.6 satisfy r > 2∗,α and
q > 2∗,α−2β and in the limits s→ α and p→ 2 we get equality. Hence, we can
apply Theorem 4.6 with some choice of s > α and p > 2 and the claim follows.

It remains to deal with the assumption on g in the case 2β − α ∈ [0, 1). But
according to Lemma 4.7 we can find s > α and p > 2 arbitrarily close to α and 2,
respectively, such that W2β−α+δ,2(Rn) ⊂W2β−2α+s,p(Rn) holds with continuous
inclusion and again u ∈Ws,p(Rn) follows by Theorem 4.6. �

As another application we reproduce the main result in [Bass and Ren 2013]
concerning the nonlocal elliptic equation

Lα,Au = f

with f ∈ L2(Rn). We note that this corresponds to taking g = 0 in the general
Equation (4-1). Hence, the entire Section 4A could be skipped except for the first
lemma, thereby making the argument up to this stage particularly simple.

Corollary 4.9. Let f ∈L2(Rn) and let u∈Wα,2(Rn) be a weak solution to Lα,Au= f .
Then

0u(x) :=
(∫

Rn

|u(x)− u(y)|2

|x − y|n+2α dy
)1

2

satisfies

‖0u‖p ≤ c(‖u‖2+‖ f ‖2),

for some p > 2 and a constant c both depending only on λ, n, α.

Proof. We use the notation introduced in Theorem 4.6 and write as usual s+s ′= 2α,
1/p + 1/p′ = 1. According to Lemma 4.2 we have Lr (Rn) ⊂ Ws′,p′(Rn)∗ with
continuous inclusion and if s and p are sufficiently close to α and 2, respectively,
then we have r < 2. Obviously, we also have Lp(Rn) ⊂Ws′,p′(Rn)∗ and p > 2.
Hence, by virtue of the splitting

f = f · 1{| f |<‖ f ‖2}+ f · 1{| f |≥‖ f ‖2} ∈ Lp(Rn)+Lr (Rn)

we obtain f ∈Ws′,p′(Rn)∗ with bound ‖ f ‖Ws′,p′ (Rn)∗ . ‖ f ‖2. Here 1E denotes the
indicator function of the set E ⊂ Rn . Moreover, ‖u‖Ws′,p′ (Rn)∗ . ‖u‖α,2, see (4-6),
and thus we can follow the first part of the proof of Theorem 4.6 in order to find
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s > α, p > 2, and implicit constants depending only on the above mentioned
parameters, such that

‖u‖s,p . ‖ f ‖2+‖u‖α,2.

The pair (s, p) could be chosen anywhere in the (s, p)-plane close to (α, 2) but for
a reason that will become clear later on, we shall impose the relation

n
2
−

n
p
= s−α. (4-8)

Quasicoercivity of the form associated with Lα,A along with the equation for u
yield

λ[u]2α,2 ≤ |Eα,A(u, u)| =
∣∣∣∣∫

Rn
f · u dx

∣∣∣∣≤ 1
2(‖u‖

2
2+‖ f ‖22),

and thus it suffices to prove the estimate ‖0u‖p . ‖u‖s,p to conclude.
To this end, we split

0u(x)= 01u(x)+02u(x)

according to whether or not |x − y| > 1 in the defining integral. Repeating the
argument to deduce (4-4), we obtain

|01u(x)| =
(∫
|x−y|>1

|u(x)− u(y)|2

|x − y|n+2α dy
)1

2

. M(|u|2)(x)
1
2

and as p > 2, we conclude ‖01u‖p . ‖u‖p from the boundedness of the maximal
operator on Lp/2(Rn). As for the other piece, we use Hölder’s inequality with
exponent p/2 on the integral in y, to give

‖02‖p .

(∫
Rn

∫
|x−y|<1

|u(x)− u(y)|p

|x − y|np/2+pα dy dx
)1

p
≤ [u]s,p,

where in the final step we used that np/2+ pα = n+ sp holds thanks to (4-8). �

5. Local results

In Theorem 4.6 and Corollary 4.8, we have obtained global improvements of reg-
ularity for solutions to (4-1) under global assumptions on the right-hand side. We
now discuss some local analogs of this phenomenon. In order to formulate our
main result in this direction, we define for balls B ⊂ Rn a local version of the
fractional Sobolev norm by

‖u‖Ws,p(B) :=

(∫
B
|u(x)|p dx

)1
p
+

(∫∫
B×B

|u(x)− u(y)|p

|x − y|n+sp dx dy
)1

p

and write u ∈Ws,p(B) provided this quantity is finite.
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Theorem 5.1. There exists ε > 0, depending only on λ, n, α, β with the following
property. Suppose s ∈ (α, 1) and p ∈ [2,∞) satisfy |s − α|, |p − 2| < ε. Let
u ∈ Wα,2(Rn) be a weak solution to (4-1) and let B ⊂ Rn be a ball. Then the
following conditions guarantee u ∈Ws,p(B ′) for every ball B ′ b B:

f ∈ Lr (B) for some r with 1
r
≤

1
p
+

2α−s
n

and

g ∈ Lq(B)∩Lt(Rn) for some q, t with

1
q
≤

1
p
+

2α−2β−s
n

,
1
p
≤

1
t
<

1
p
+

2α−s
n

if 2β < α,

or

g ∈W2β−2α+s,p(Rn) if 0≤ 2β −α < 1.

Again, this gives a precise relation between the exponents, but we also state a
more quantitative version. It follows by the exact same reasoning as Corollary 4.8
was obtained from Theorem 4.6 in the previous section and we shall not provide
further details. We are using again the lower Sobolev conjugates defined in (4-7).

Corollary 5.2. Let u ∈Wα,2(Rn) be a weak solution to (4-1) and let B ⊂ Rn be a
ball. Suppose for some δ > 0 it holds that f ∈ L2∗,α+δ(B) and

g ∈
{

L2∗,α−2β+δ(B)∩Lt(Rn) for some t ∈ (2∗,α, 2] if 2β < α,
W2β−α+δ,2(Rn) if 0≤ 2β −α < 1.

Then there exist s > α, p > 2, such that u ∈ Ws,p(B ′) for every ball B ′ b B.
Moreover, s and p depend only on λ, n, α, β.

These statements are astonishingly local in that the assumption on f and part
of that for g are only on the ball where we want to improve the regularity of u. To
the best of our knowledge this has not been noted before. In particular, if f and g
satisfy the assumption for every ball B, then the conclusion for u holds for every
ball B ′. This is the result in [Kuusi et al. 2015]. (Except that they suppose global
integrability of exponent t = 2∗,α−2β+δ instead, which for large δ is not comparable
with the condition in Corollary 5.2. It is possible to modify our argument to work
in the setting of [Kuusi et al. 2015] as well, but we leave this extension to interested
readers, see Remark 5.4.)

For the proof of Theorem 5.1 it is instructive to recall a simple connection be-
tween the condition χu ∈Ws,p(Rn) for some χ ∈C∞0 (B) and the fractional Sobolev
norm ‖ · ‖Ws,p(B): On the one hand, denoting by d > 0 the distance between the
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support of χ and cB we obtain from the mean value theorem,(∫∫
Rn×Rn

|(χu)(x)− (χu)(y)|p

|x − y|n+sp dx dy
)1

p

≤ 2‖χ‖∞

(∫∫
B×B

|u(x)− u(y)|p

|x − y|n+sp dx dy
)1

p

+ 4‖χ‖∞

(∫
B
|u(x)|p

(∫
|x−y|≥d

1
|x − y|n+sp dy

)
dx
)1

p

+ 2‖∇χ‖∞

(∫
B
|u(x)|p

(∫
B

1
|x − y|n+(s−1)p dy

)
dx
)1

p
, (5-1)

where by symmetry and the fact that the integrand is zero when x, y 6∈ supp(χ), we
can assume x ∈ supp(χ) and then distinguish whether or not y ∈ B. As s > 0 and
s− 1< 0, the second and third terms are finite. Hence, we see that u ∈Ws,p(B)
implies χu ∈Ws,p(Rn). On the other hand, if χ = 1 on a smaller ball B ′ b B, then

(∫
B ′
|u(x)|p dx

)1
p
+

(∫∫
B ′×B ′

|u(x)− u(y)|p

|x − y|n+sp dx dy
)1

p
≤ ‖χu‖s,p. (5-2)

Due to these observations and the fact that Lebesgue spaces on a ball are ordered
by inclusion, we see that Theorem 5.1 follows at once from:

Lemma 5.3. There exists ε > 0, depending only on λ, n, α, β with the following
property. Suppose s ∈ (α, 1) and p ∈ [2,∞) satisfy |s − α|, |p − 2| < ε. Let
u ∈Wα,2(Rn) be a weak solution to (4-1) and let χ ∈ C∞0 (R

n). Assume

χ f ∈ Lr (Rn) with 1
r
=

1
p
+

2α−s
n

and if 2β < α assume

χg ∈ Lq(Rn),
1
q
=

1
p
+

2α−2β−s
n

,

g ∈ Lt(Rn),
1
p
≤

1
t
<

1
p
+

2α−s
n

,

whereas if 0≤ 2β −α < 1 assume g ∈W2β−2α+s,p(Rn). Then χu ∈Ws,p(Rn).

The strategy for the proof of this key lemma is as follows. We let u ∈Wα,2(Rn)

be a weak solution to (4-1) and seek to write down a related fractional equation
for χu in order to be able to apply Proposition 3.4. To this end, we note for three
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functions u, χ, φ and x, y ∈ Rn the factorization

(χx ux −χyu y)(φx −φy)

= (χxφx −χyφy)(ux − u y)+ u y(χx −χy)φx + ux(χy −χx)φy

= (χxφx −χyφy)(ux − u y)− (ux − u y)(χx −χy)φy

+ u y(χx −χy)(φx −φy), (5-3)

where ux := u(x) and so on for the sake of readability. This identity plugged into
the definition of Eα,A, see (3-1), yields

〈Lα,A(χu), φ〉 = 〈Lα,Au, χφ〉+ 〈Rα,A,χu, φ〉 (φ ∈ C∞0 (R
n)),

where

〈Rα,A,χu, φ〉 := −
∫∫

Rn×Rn
A(x, y)

(u(x)− u(y)) · (χ(x)−χ(y))
|x − y|n+2α φ(y) dx dy

+

∫∫
Rn×Rn

A(x, y)u(y)
(χ(x)−χ(y)) · (φ(x)−φ(y))

|x − y|n+2α dx dy

provided all integrals are absolutely convergent. We shall check that in the proofs
below. Of course, a similar calculation applies to Lβ,B . Therefore χu ∈Wα,2(Rn)

solves the nonlocal elliptic equation

(1+Lα,A)(χu)=Rα,A,χu−Rβ,B,χg+χu+Lβ,B(χg)+χ f. (5-4)

Proof of Lemma 5.3. We start by taking ε > 0 as provided by Theorem 4.6 but
for some steps we possibly need to impose additional smallness conditions that
depend upon n, α, β through fractional Sobolev embeddings. As usual, we write
s+ s ′ = 2α and 1/p+ 1/p′ = 1.

The claim is χu ∈Ws,p(Rn) and according to Proposition 3.4 we only need to
make sure that the right-hand side in (5-4) belongs to Ws′,p′(Rn)∗. But from the
proof of Theorem 4.6 we know that this is the case for χu ∈Wα,2(Rn) and that the
conditions on χ f and χg are designed to make it work for the last two terms.

We are left with the error terms. We start with Rα,A,χ , which as we recall is
given for φ ∈ C∞0 (R

n) by

〈Rα,A,χu, φ〉 := −
∫∫

Rn×Rn
A(x, y)

(u(x)− u(y)) · (χ(x)−χ(y))
|x − y|n+2α φ(y) dx dy

+

∫∫
Rn×Rn

A(x, y)u(y)
(χ(x)−χ(y)) · (φ(x)−φ(y))

|x − y|n+2α dx dy

:= I+ II.
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Now,∫
Rn

|χ(x)−χ(y)|p

|x − y|n+sp dx

≤

∫
|x−y|≥1

2p
‖χ‖

p
∞

|x − y|n+sp dx +
∫
|x−y|<1

‖∇χ‖
p
∞

|x − y|n+(s−1)p dx

. 1 (5-5)

uniformly in y ∈ Rn since s < 1. Thus, applying Hölder’s inequality first in x and
then in y, we obtain

|II| ≤ λ−1
∫

Rn
|u(y)|

(∫
Rn

|χ(x)−χ(y)|p

|x − y|n+sp dx
)1

p
(∫

Rn

|φ(x)−φ(y)|p
′

|x − y|n+s′ p′ dx
)1

p
′

dy

. ‖u‖p[φ]s′,p′ .

Similarly, but reversing the roles of φ and u, we get

|I| ≤ λ−1
∫

Rn
|φ(y)|

(∫
Rn

|χ(x)−χ(y)|2

|x − y|n+2α dx
)1

2
(∫

Rn

|u(x)− u(y)|2

|x − y|n+2α dx
)1

2

dy

. [u]α,2‖φ‖2.

By making ε > 0 smaller, we can assume 1
2 − α/n ≤ 1/p and 1/p′ − s ′/n ≤ 1

2 ,
which pays for continuous inclusion

Wα,2(Rn)⊂ Lp(Rn) and Ws′,p′(Rn)⊂ L2(Rn),

see Lemma 4.2. Thus,

|〈Rα,A,χu, φ〉|. ‖u‖α,2‖φ‖s′,p′ (φ ∈ C∞0 (R
n))

and by density Rα,A,χu extends to a functional on Ws′,p′(Rn) as required.
It remains to estimate Rβ,B,χg. In case 0≤ 2β−α < 1 and g ∈W2β−2α+s,p(Rn),

we can repeat the argument for bounding I and II by replacing u by g and changing
the indices of integrability and smoothness in Hölder’s inequality accordingly. In
this manner,

|〈Rβ,B,χg, φ〉|. ‖g‖p[φ]s′,p′ + [g]2β−2α+s,p‖φ‖p′

. ‖g‖2β−2α+s,p‖φ‖s′,p′ (φ ∈ C∞0 (R
n)).

In the complementary case 2β < α, there is no smoothness of g to be taken
advantage of. This, however, can be compensated by the fact β < α/2< 1

2 . More
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precisely, we put B̃(x, y) := B(x, y)+ B(y, x) and use the first part of the factor-
ization (5-3) to write the error term differently as

〈Rβ,B,χg, φ〉 =
∫∫

Rn×Rn
B̃(x, y)g(x)

χ(x)−χ(y)
|x − y|n+2β φ(y) dx dy

:=

∫∫
Rn×Rn

B̃(x, y)g(y)
(χ(x)−χ(y)) · (φ(y)−φ(x))

|x − y|n+2β dx dy

−

∫∫
Rn×Rn

B̃(x, y)g(y)
χ(x)−χ(y)
|x − y|n+2β φ(y) dx dy

:= III+ IV,

where we changed x and y in the second step. Now, our assumption is g ∈ Lt(Rn)

with 1/p ≤ 1/t < 1/p+ s ′/n. We let 1/t + 1/t ′ = 1 and obtain from Lemmas 4.2
and 4.7 that the condition on t is precisely to guarantee the continuous inclusions
Ws′,p′(Rn) ⊂Wδ,t ′(Rn) ⊂ Lt ′(Rn) for at least some small δ ∈ (0, 1). This being
said, we use Hölder’s inequality and (5-5) with (s, p) replaced by (2β − δ, t) to
give

|III| ≤ 2
λ

∫
Rn
|g(y)|

(∫
Rn

|χ(x)−χ(y)|t

|x − y|n+(2β−δ)t
dx
)1

t
(∫

Rn

|φ(x)−φ(y)|t
′

|x − y|n+δt ′
dx
)1

t ′
dy

. ‖g‖t‖φ‖s′,p′ .

Likewise, for the term IV, we use the bound (5-5) with (s, p) replaced by (2β, 1)
to conclude that

|IV|.
∫

Rn
|g(y)||φ(y)| dy ≤ ‖g‖t‖φ‖t ′ . ‖g‖t‖φ‖s′,p′ . �

Remark 5.4. As we mentioned after stating Corollary 5.2, the assumption g ∈
L2∗,α−2β (B) ∩ Lt(Rn) for 2β < α can be replaced by one global assumption g ∈
L2∗,α−2β+δ(Rn) with δ > 0 in accordance with the result in [Kuusi et al. 2015]. This
follows from a simple modification of the argument above to give the required
adaptation of Lemma 5.3. We sketch the main idea but leave the precise extensions
to the interested reader. The difference arises from the term Lβ,B g so it suffices
to see that χLβ,B g and χ f belong to the same Ws′,p′(Rn)∗ so that one can apply
Proposition 3.4.

If u is a weak solution to (4-1), then automatically

χLβ,B g ∈Wα,2(Rn)∗

by the assumption on f , the mapping properties of Lα,A and the error term consid-
erations for Rα,A,χu. By Corollary 4.5,

χLβ,B g ∈Wσ ′,τ ′(Rn)∗
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provided that 1/q = 1/τ + (σ ′− 2β)/n. One can check that there is an admissible
choice of σ ′ < α and τ ′ < 2 when q = 2∗,α−2β + δ. By interpolation, we find a
line segment ` connecting (σ ′, 1/τ ′) to

(
α, 1

2

)
so that χLβ,B g ∈Ws′,p′(Rn)∗ for all

(s ′, 1/p′)∈`. Finally, since χ f ∈Lt(Rn) for all t ∈[1, 2∗,α+δ]with δ>0, there is at
least one such t for which we can find (s ′, 1/p′) ∈ ` with 1/t = 1/p+ (2α− s)/n
so that Lemma 4.2 implies f ∈Ws′,p′(Rn)∗ with (s ′, 1/p′) as close to

(
α, 1

2

)
as

desired.

6. An application to fractional parabolic equations

We demonstrate the flexibility of our approach by a new application to fractional
parabolic equations. We shall only treat a particularly interesting special case
with connection to nonautonomous maximal regularity, leaving open the estab-
lishment of a suitable (full) parabolic analog of Theorem 4.6 and its local version,
Theorem 5.1.

We are going to consider the Cauchy problem

∂t u(t)+Lα,A(t)u(t)= f (t), u(0)= 0, (6-1)

where f ∈ L2(0, T ;L2(Rn)), α ∈ (0, 1), and for each t ∈ [0, T ] we let Lα,A(t) :
Wα,2(Rn)→ Wα,2(Rn)∗ be a fractional elliptic operator as in Section 3 satisfy-
ing the ellipticity condition (1-1) uniformly in t . We recall that the associated
sesquilinear forms Eα,A(t) were defined in (3-1). As for the coefficients

A(t, x, y) := A(t)(x, y)

we assume no regularity besides joint measurability in all variables.
Note that we formulated our parabolic problem on [0, T )×Rn from the point of

view of evolution equations using for, X , a Banach space, the space L2(0, T ; X) of
X -valued square integrable functions on (0, T ) and the associated Sobolev space
H1(0, T ; X) of all u ∈ L2(0, T ; X) with distributional derivative ∂t u ∈ L2(0, T ; X).

Definition 6.1. Let f ∈ L2(0, T ;L2(Rn)). A function

u ∈ H1(0, T ;Wα,2(Rn)∗)∩L2(0, T ;Wα,2(Rn))

is called weak solution to (6-1) if u(0)= 0 and∫ T

0
−〈u, ∂tφ〉2+ Eα,A(t)(u, φ) dt

=

∫ T

0
〈 f, φ〉2 dt (φ ∈ C∞0 ((0, T )×Rn)), (6-2)

where 〈 · , · 〉2 denotes the inner product on L2(Rn).
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Remark 6.2. (i) Since Wα,2(Rn) is a Hilbert space, the solution space for u
above embeds into the continuous functions C([0, T ];L2(Rn)) and hence the
requirement u(0)= 0 makes sense [Showalter 1997, Proposition III.1.2].

(ii) C∞0 ((0, T )×Rn) is dense in L2(0, T ;Wα,2(Rn)), by smooth truncation and
convolution. Thus, the integrated Equation (6-2) precisely means that u satis-
fies the parabolic equation in (6-1) almost everywhere on (0, T ) as an equality
in Wα,2(Rn)∗, which contains L2(Rn).

By a famous result of Lions, the Cauchy problem (6-1) has a unique weak so-
lution u for every f ∈ L2(0, T ;L2(Rn)). See [Dautray and Lions 1992, p. 513;
Dier and Zacher 2017, Theorem 6.1] for the case of function spaces over the com-
plex numbers. The following self-improvement property is the main result of this
section.

Theorem 6.3. Let f ∈ L2(0, T ;L2(Rn)). Then there exists ε > 0 such that the
unique weak solution to (6-1) satisfies

u ∈ H1(0, T ;Wα−ε,2(Rn)∗)∩L2(0, T ;Wα+ε,2(Rn)).

Moreover, for some s > α and p > 2 it holds that

u ∈Ws/(2α),p(0, T ;Lp(Rn))∩Lp(0, T ;Ws,p(Rn)),

that is,(∫ T

0

∫
Rn
|u(t, x)|p dx dt

)1
p
+

(∫
Rn

∫ T

0

∫ T

0

|u(t, x)− u(s, x)|p

|t − s|1+sp/(2α) ds dt dx
)1

p

+

(∫ T

0

∫∫
Rn×Rn

|u(t, x)− u(t, y)|p

|x − y|n+sp dx dy dt
)1

p

. eT
(∫ T

0

∫
Rn
| f (t, x)|2 dx dt

)1
2

. (6-3)

The values of ε, s, p and the implicit constant in (6-3) depend only on λ, n, α.

Remark 6.4. (i) Since sp > 2α, the boundedness of the second integral in (6-3)
entails, in particular, u ∈Cγ ([0, T ];Lp(Rn)) with Hölder exponent γ = sp

2α−1,
see fore example [Simon 1990, Cor. 26].

(ii) The largest possible value ε = α with W0,2(Rn) := L2(Rn) would mean maxi-
mal regularity because all three functions in the parabolic equation were in the
same space L2(0, T ;L2(Rn)). See [Arendt et al. 2017] for further background
and (counter-)examples.

For the proof, we shall apply the same scheme as in the stationary case, see
Sections 3 and 4.
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6A. Definition of the parabolic Dirichlet form. One of the immediate challenges
in moving from the elliptic operator to the parabolic operator is the lack of coer-
civity of the operator ∂t +Lα,A(t). However, we can rely on the hidden coercivity
introduced in this context in [Dier and Zacher 2017] (see also [Kaplan 1966]). This
requires us to study the fractional parabolic equation for t ∈ R first, that is,

∂t u(t)+Lα,A(t)u(t)= f (t),

where weak solutions are in the sense of Definition 6.1, but by replacing (0, T )
with R and of course removing the initial condition. Note that we can simply
extend the coefficients by A(t, x, y) := 1 if t /∈ [0, T ] since we are not assuming
any regularity.

For simplicity, put H := L2(Rn) and V := Wα,2(Rn). Let F be the Fourier
transform in t on the vector-valued space L2(R; H) and define the half-order time
derivative D

1
2
t and the Hilbert transform Ht through the Fourier symbols |τ |

1
2 and

−i sgn(τ ), respectively. They are crafted to factorize ∂t = D
1
2
t Ht D

1
2
t . Next, we write

H
1
2 (R; H) for the Hilbert space of all u ∈ L2(R; H) such that D

1
2
t u ∈ L2(R; H) and

define the parabolic energy space

E := H
1
2 (R; H)∩L2(R; V )

equipped with the Hilbertian norm ‖u‖E :=
(
‖u‖2L2(R;V )+‖D

1
2
t u‖2L2(R;H)

) 1
2 . It al-

lows one to define 1+ ∂t +Lα,A(t) as a bounded operator E→ E∗ via

〈(1+ ∂t +Lα,A(t))u, v〉 :=
∫

R

〈u, v〉2+〈Ht D
1
2
t u, D

1
2
t v〉2+ Eα,A(t)(u, v) dt, (6-4)

where 〈 · , · 〉2 denotes the inner product on H = L2(Rn). We state our substitute
for Lemma 3.1 in the parabolic case. It is an extension of Theorem 3.1 in [Dier
and Zacher 2017].

Lemma 6.5. The operator 1+ ∂t + Lα,A(t) : E→ E∗ is bounded and invertible.
Its norm and the norm of its inverse can be bounded only in terms of λ. Moreover,
given f ∈L2(R; H), u := (1+∂t+Lα,A(t))−1 f is a weak solution to ∂t u+Lα,A(t)u=
f − u on R1+n .

Proof. The E→ E∗ boundedness of 1+ ∂t +Lα,A is clear by definition. Next, for
the invertibility, the form

aδ(u, v)

:=

∫
R

〈u, (1+ δHt)v〉2+〈Ht D
1
2
t u, D

1
2
t (1+ δHt)v〉2+ Eα,A(t)(u, (1+ δHt)v) dt

for u, v ∈ E, is bounded and satisfies an accretivity bound for δ > 0 sufficiently
small, for example δ := λ2/2. Indeed, from boundedness and ellipticity of Eα,A(t)
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uniformly in t (see Section 3) and the fact that the Hilbert transform is L2-isometric
and skew-adjoint,

Re aδ(u, u)≥ ‖u‖2L2(R;H)+ δ‖D
1
2
t u‖22+ (λ− λ

−1δ)

∫
R

[u(t, · )]2α,2 dt ≥ λ
2

2
‖u‖2E.

As 〈
(1+ ∂t +Lα,A(t))u, (1+ δHt)v

〉
= aδ(u, v), (u, v ∈ E),

and since (1+ δ2)−
1
2 (1+ δHt) is isometric on E as is seen using its symbol

(1+ δ2)−
1
2 (1− iδ sgn τ),

it follows from the Lax–Milgram lemma that 1+ ∂t +Lα,A(t) is invertible from E

onto E∗. Finally, given f ∈ L2(R; H)⊂ E we can define u := (1+∂t +Lα,A(t))−1 f
and have by definition∫

R

〈Ht D
1
2
t u, D

1
2
t v〉2+ Eα,A(t)(u, v) dt =

∫
R

〈 f − u, v〉2 dt (v ∈ E).

Since for v ∈ C∞0 (R × Rn) we can undo the factorization 〈Ht D
1
2
t u, D

1
2
t v〉2 =

−〈u, ∂tv〉, we see that u is a weak solution to ∂t u+Lα,A(t)u = f − u. �

Remark 6.6. Skew-adjointness of the Hilbert transform and ellipticity of each
sesquilinear form Eα,A(t) yield Re〈(∂t+Lα,A(t))u, u〉 ≥ 0 for every u ∈ E and by the
previous lemma 1+ (∂t +Lα,A(t)) : E→ E∗ is invertible. By definition, this means
that ∂t +Lα,A(t) can be defined as a maximal accretive operator in L2(R1+n) with
maximal domain D := {u ∈ E : (∂t +Lα,A(t))u ∈ L2(R1+n)}.

In order to proceed, we need to link the parabolic energy space E and the
sesquilinear form on the right-hand side of (6-4) with a Dirichlet form on fractional
Sobolev spaces as in Section 3. To this end, note that for u, v ∈ L2(R; H) we obtain
from Plancherel’s theorem applied to the integral in s,∫∫

R×R

〈u(s+ h)− u(s), v(s+ h)− v(s)〉2
|h|2

ds dh

=

∫∫
R×R

|e−ihτ
− 1|2

|h|2
〈Fu(τ ),Fv(τ)〉2 dτ dh = 2π

∫
R

〈D
1
2
t u(t), D

1
2
t v(t)〉2 dt,

where in the second step we evaluated the well-known integral in h to 2π |τ |. This
calculation is understood in the sense that for u = v the left-hand side is finite if
and only if the right-hand side is defined and finite and if both u and v have this
property, then equality above holds true. Consequently, ∂t +Lα,A(t) is the operator
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associated with the parabolic Dirichlet form

Pα,A(t)(u, v)

:=

∫
R

〈Ht D
1
2
t u, D

1
2
t v〉2+ Eα,A(t)(u, v) dt

=
1

2π

∫
Rn

∫∫
R×R

(Ht u(t, x)− Ht u(s, x)) · (v(t, x)− v(s, x))
|t − s|2

ds dt dx

+

∫
R

∫∫
Rn×Rn

A(t, x, y)
(u(t, x)− u(t, y)) · (v(t, x)− v(t, y))

|x − y|n+2α dx dy dt,

defined so far for u, v ∈ E. Here, Ht u( · , x) is understood as the Hilbert transform
of u( · , x) ∈ L2(R) for almost every fixed x ∈ Rn .

6B. Analysis of the parabolic Dirichlet form. The spaces “near” E to examine are
determined by the definition of the parabolic Dirichlet form: For p ∈ (1,∞) and
s ∈ (0, 1)∩ (0, 2α) we let W

s,p
α (R1+n) consist of all functions u ∈ Lp(R1+n) with

finite seminorm

[[u]]s,p :=

(∫
Rn

∫∫
R×R

|u(t, x)− u(s, x)|p

|t − s|1+sp/(2α) ds dt dx

+

∫
R

∫∫
Rn×Rn

|u(t, x)− u(t, y)|p

|x − y|n+sp dx dy dt

)1
p

and put ‖ · ‖W
s,p
α (R1+n) := ‖ · ‖p+[[ · ]]s,p. Again, smooth truncation and convolution

yields that C∞0 (R
1+n) is dense in any of these spaces. Often we shall write more

suggestively

Ws,p
α (R1+n)=Ws/(2α),p(R;Lp(Rn))∩Lp(R;Ws,p(Rn)),

where the vector-valued fractional Sobolev spaces are defined as their scalar-valued
counterpart upon replacing absolute values by norms. But as

Ws/(2α),p(R;Lp(Rn))= Lp(Rn
;Ws/(2α),p(R))

in virtue of Tonelli’s theorem, all fractional Sobolev embeddings stated for the
scalar-valued space Ws/(2α),p(R) remain valid for Ws/(2α),p(R;Lp(Rn)). Note the
scaling in the spaces W

s,p
α (R1+n) adapted to the fractional parabolic equation: one

time derivative accounts for 2α spatial derivatives.
By what we have seen before, Wα,2

α (R1+n) = E up to equivalent norms and
hence 1+ ∂t +Lα,A(t) is invertible from that space onto its antidual by Lemma 6.5.
The following mapping properties are then proved by Hölder’s inequality exactly
as their elliptic counterpart, Lemma 3.2, on making the additional observation that
Ht :W

s,p(R)→Ws,p(R) is bounded. Indeed, this is immediate from the equivalent
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norm (2-1) on Ws,p(R) since the Hilbert transform commutes with convolutions
and is bounded on Lp(R).

Lemma 6.7. Let s, s ′ ∈ (0, 1) and p, p′ ∈ (1,∞) satisfy

s+ s ′ = 2α and 1
p
+

1
p′
= 1.

Then 1 + ∂t + Lα,A(t) extends from C∞0 (R
n) by density to a bounded operator

W
s,p
α (R1+n)→Ws′,p′

α (R1+n)∗.

Remark 6.8. The extensions obtained above are also denoted by 1+∂t +Lα,A and
a comment analogous to Remark 3.3 applies.

Hence, the only ingredient missing in our recipe for self-improvement is the com-
plex interpolation identity replacing (3-3). This can be obtained from [Dachkovski
2003] as follows. We define the vector of anisotropy v and the mean smoothness
γ by

v :=
( 2α(1+n)

n+2α , 1+n
n+2α , . . . ,

1+n
n+2α

)
∈ R1+n,

γ := (1+n)
n+2α s ∈ (0, 1) for s ∈ (0, 1)∩ (0, 2α).

Then, [Dachkovski 2003, Theorem 6.2] identifies W
s,p
α (R1+n) up to equivalent

norms with the anisotropic Besov space Bγ,vp,p(R
1+n). In turn, this space is de-

fined in [Dachkovski 2003] exactly as the ordinary Besov space Bγp,p(R1+n) in
Section 2, upon replacing the scalar multiplication 2 j x = (2 j x0, . . . , 2 j xn) on
R1+n by the anisotropic multiplication 2v j x := (2v0 j x0, . . . , 2vn j xn), where j ∈ R

and subscripts indicate coordinates of (n+ 1)-vectors, and the Euclidean norm |x |
by the anisotropic norm |x |v defined as the unique positive number σ such that∑

j x2
j /σ

2v j = 1. With these modifications, Bγ,vp,p(R
1+n) is the collection of all

u ∈ Lp(R1+n) with finite norm

‖u‖Bγ,vp,p(R1+n) :=

( ∞∑
j=0

2 jγ p
‖φ j ∗ u‖p

p

)1
p
<∞.

Note that this norm now reads exactly as the one in (2-1) on the anisotropic
space Bγp,p(R1+n) because the anisotropy v is only present in the now anisotropic
dyadic decomposition 1 =

∑
∞

j=0 F(φ j )(ξ). With this particular structure of the
norms, complex interpolation works by abstract results exactly as outlined before
in Section 3, see again [Bergh and Löfström 1976, Theorem 6.4.5(6) and Corro-
lary 4.5.2]. Thus, we have[

Ws0,p0
α (Rn),Ws1,p1

α (R1+n)
]
θ
=Ws,p

α (Rn)

for p0, p1 ∈ (1,∞), s0, s1 ∈ (0, 1) ∩ (0, 2α) and the analogous identity for the
antidual spaces both up to equivalent norms with p, s given as before by 1/p =
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(1− θ)/p0+ θ/p1 and s = (1− θ)s0+ θs1. We do not insist on uniformity of the
equivalence constants as in Section 3 and leave the care of checking it to interested
readers.

This interpolation identity and Lemma 6.7 set the stage to apply Shneiberg’s
result as in the proof of Proposition 3.4 to deduce

Proposition 6.9. Fix any line ` passing through
(
α, 1

2

)
in the (s, 1/p)-plane. There

exists ε > 0 depending on `, λ, n, such that for (s, 1/p)∈ ` with |s−α|, |p−2|< ε
and s ′, p′ satisfying s+ s ′ = 2α and 1/p+ 1/p′ = 1, the operator

1+ ∂t +Lα,A(t) :Ws,p
α (R1+n)→Ws′,p′

α (R1+n)∗

is invertible and the inverse agrees with the one obtained for s = α, p = 2 on their
common domain of definition.

6C. Higher differentiability and integrability result. We still need a lemma mak-
ing Proposition 6.9 applicable in the L2-setting of our main result.

Lemma 6.10. Suppose s ∈ (α, 2α), p ∈ [2,∞) and let s+s ′= 2α, 1/p+1/p′= 1.
If 2/p ≥ 1− s ′/n, then L2(R;L2(Rn))⊂Ws′,p′

α (R1+n)∗ with continuous inclusion.

Proof. Since p′s ′ < 2α < 2≤ n by assumption, we can infer from Lemma 4.2 the
continuous embedding

Ws′,p′(Rn)⊂ Lq(Rn)
( 1

p′ −
s′
n ≤

1
q ≤

1
p′
)
.

Likewise, by the vector valued analog of Lemma 4.2 (see the beginning of Section 6B)
we have

Ws′/(2α),p′(R;Lp′(Rn))⊂ Lr (R;Lp′(Rn))
( 1

p′ −
s′
2α ≤

1
r ≤

1
p′
)

Now, the additional condition 2/p ≥ 1− s ′/n along with 2α < n precisely guaran-
tees that we can take q = p = r and therefore

Ws′,p′
α (R1+n)

=Ws′/(2α),p′(R;Lp′(Rn))∩Lp′(R;Ws′,p′(Rn))⊂Lp(R;Lp′(Rn))∩Lp′(R;Lp(Rn)).

Taking into account the convex combinations 1
2 =

1−θ
p +

θ
p′ =

1−θ
p′ +

θ
p for θ = 1

2 ,
standard embeddings for mixed Lebesgue spaces imply that the right-hand space
is continuously included in L2(R;L2(Rn)), see for example [Bergh and Löfström
1976, Theorems 5.1 and 5.2]. The claim follows by duality with respect to the
inner product on L2(R;L2(Rn)). �

Proof of Theorem 6.3. Let f ∈ L2(0, T ;L2(Rn)). Since uniqueness is known, only
existence of a weak solution to (6-1) with the stated properties is a concern. To
this end, we shall argue as in [Dier and Zacher 2017] by restriction from the real
line, where we know how to improve regularity.
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We extend A(t, x, y) := 1 and f (t) := 0 for t /∈ [0, T ]. Then, g(t) := e−t f (t) ∈
L2(R;L2(Rn)) and thus Lemma 6.5 furnishes

v := (1+ ∂t +Lα,A)−1g ∈Wα,2
α (R1+n),

which is a weak solution to

∂tv(t)+Lα,A(t)v(t)= e−t f (t)− v(t) (t ∈ R).

In particular, v is a continuous function on R with values in L2(Rn) (see Remark
6.2(i)). We claim v(0) = 0. Indeed, t 7→ ‖v(t)‖22 is absolutely continuous with
derivative d

dt ‖v(t)‖
2
2 = 2 Re〈∂tv(t), v(t)〉, where 〈 · , · 〉 denotes the Wα,2(Rn)∗–

Wα,2(Rn) duality [Showalter 1997, Proposition 1.2]. By (3-2),

λ

∫ 0

−∞

‖v‖2α,2dt ≤Re
∫ 0

−∞

〈v+Lα,A(t)v, v〉 dt =−Re
∫ 0

−∞

〈∂tv, v〉 dt =−1
2‖v(0)‖

2
2,

where we have used the equation for v along with f (t) = 0 for t ∈ (−∞, 0) in
the second step. Thus, ‖v(0)‖2 = 0. The upshot is that the restriction of etv(t) to
[0, T ] is the unique weak solution u to the Cauchy problem (6-1) and it remains to
prove the additional regularity.

Let s >α, p> 2 sufficiently close to α, 2, so that we have both Lemma 6.10 and
Proposition 6.9 at our disposal. Defining s ′ and p′ as usual, the former guarantees
g ∈Ws′,p′

α (R1+n)∗ and thus the latter yields v ∈W
s,p
α (R1+n). As we have u(t) =

etv(t) for t ∈ [0, T ], restricting to [0, T ] readily yields that the left-hand side of
(6-3) is controlled by

eT (‖v‖p + [[v]]s,p). eT
‖g‖

W
s′,p′
α (R1+n)∗

. eT
‖g‖L2(R;L2(Rn)) . eT

‖ f ‖L2(0,T ;L2(Rn))

as claimed.
Repeating the same argument with s>α and p=2 reveals v∈Ws,2

α (R
1+n) and in

particular u ∈ L2(0, T ;Wα+ε,2(Rn)), where ε := s−α > 0. By Hölder’s inequality
this also implies u ∈ L2(0, T ;Wα−ε,2(Rn)∗). Moreover, from the equation for u
since Lα,A(t) :Wα+ε,2(Rn)→Wα−ε,2(Rn)∗ is bounded by λ−1 uniformly in t due
to Lemma 3.2, we deduce∣∣∣∣∫ T

0
−〈u, ∂tφ〉2 dt

∣∣∣∣≤ ∫ T

0
‖ f (t)‖2‖φ(t)‖2+ λ−1

‖u(t)‖α+ε,2‖φ(t)‖α−ε,2 dt

for all φ ∈ C∞0 ((0, T )×Rn). By density, see Remark 6.2, this remains true for φ ∈
H1(0, T ;Wα−ε,2(Rn)) and we conclude u ∈ H1(0, T ;Wα−ε,2(Rn)∗) as required.

�
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Appendix: Shneiberg’s stability theorem

We provide a self-contained proof of a quantitative version of Shneiberg’s sta-
bility theorem. Quantitative bounds are often required in applications but up to
now have not appeared explicitly in the literature. In principle, both the original
proof [Shneiberg 1974] and the generalization to quasi-Banach spaces [Kalton and
Mitrea 1998] allow one to track parameters.

We need to recall some essentials on complex interpolation theory beforehand.
For general background we refer to [Bergh and Löfström 1976; Triebel 1983]. An
interpolation couple X = (X0, X1) consists of two complex Banach spaces X0, X1

that both are included in the same linear Hausdorff space. In this case their sum
X0+ X1 with norm

‖x‖X0+X1 = inf{‖x0‖X0 +‖x1‖X1 : x = x0+ x1}

is a well-defined Banach space. Let now S= {z ∈C : 0<Re z< 1} be the open unit
strip in the complex plane. The space F(X0, X1) consists of all bounded continuous
functions f : S→ X0+ X1 that are holomorphic in S and whose restrictions to the
boundary lines iR and 1+ iR are continuous functions with values in X0 and X1 that
vanish at infinity, respectively. By the maximum principle, F(X0, X1) becomes a
Banach space for the norm

‖ f ‖F(X0,X1) =max
{
sup t∈R‖ f (it)‖X0, sup t∈R‖ f (1+ it)‖X1

}
.

Given θ ∈ (0, 1), the complex interpolation space Xθ = [X0, X1]θ consists of those
x ∈ X0+ X1 that arise as x = f (θ) for some f ∈ F(X0, X1). It is complete for the
norm

‖ f ‖Xθ = inf{‖ f ‖F(X0,X1) : f (θ)= x}.

These spaces have the following interpolation property. Suppose X = (X0, X1) and
Y = (Y0, Y1) are interpolation couples and the same linear operator T is bounded
X0→ Y0 and X1→ Y1 with norms M0 and M1, respectively. Then T can be viewed
as an operator X0+ X1→ Y0+ Y1 and it maps Xθ boundedly into Yθ with norm
at most M1−θ

0 Mθ
1 . We shall write T ∈ L(X , Y ) in this situation.

Theorem A.1 (quantitative Shneiberg theorem). Let X= (X0, X1) and Y = (Y0, Y1)

be interpolation couples and T ∈ L(X , Y ). Suppose for some θ∗ ∈ (0, 1) the lower
bound

‖T x‖Yθ∗ ≥ κ‖x‖Xθ∗ (x ∈ Xθ∗)

holds for some κ > 0. Then the following hold true:

(i) Given 0< ε < 1
4 , the lower bound

‖T x‖Yθ ≥ εκ‖x‖Xθ (x ∈ Xθ )
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holds provided

|θ − θ∗| ≤
κ(1− 4ε)min{θ∗, 1− θ∗}

3κ + 6M
,

where M =max j=0,1 ‖T ‖X j→Y j .

(ii) If T : Xθ∗→ Yθ∗ is invertible, then the same is true for T : Xθ → Yθ if θ is as
in (i). The inverse mappings agree on Xθ ∩ Xθ∗ and their norms are bounded
by 1/(εκ).

Remark A.2. Qualitatively speaking, (ii) means that the set of parameters θ for
which T : Xθ → Yθ is an isomorphism is open in (0, 1).

Consistency of the inverse as stated in part (ii) is a general feature of complex
interpolation [Kalton et al. 2007, Theorem 8.1]. Here, we are only concerned with
the other assertions. Strictly speaking, the latter article is limited to couples whose
intersection is dense in both members but this becomes important only if one wishes
to consider quasi-Banach spaces. For example, [Kalton et al. 2007, Theorem 8.1]
needs that X0∩ X1 is dense in all spaces [X0, X1]θ , θ ∈ (0, 1). In turn, this is holds
for Banach spaces X0, X1 as above [Bergh and Löfström 1976, Theorem 4.2.2].

Reversing the order of statements, we begin with proving stability of ontoness
with respect to the interpolation parameter θ .

Lemma A.3 (stability of ontoness). Let X = (X0, X1) and Y = (Y0, Y1) be inter-
polation couples and let T ∈ L(X , Y ). Suppose that T : Xθ∗ → Yθ∗ is invertible
for some θ∗ ∈ (0, 1) and let κ > 0 be such that ‖T−1

‖Yθ∗→Xθ∗ ≤ 1/κ . If θ ∈ (0, 1)
satisfies

|θ − θ∗|<
κ min{θ∗, 1− θ∗}

κ +max j=0,1 ‖T ‖X j→Y j

, (A-1)

then T : Xθ → Yθ is onto.

For the proof we need:

Lemma A.4. Let T : X→ Y be a bounded linear operator between Banach spaces
X and Y . If there are constants 0< c< 1 and C > 0 such that for every y in the unit
sphere of Y there exists x ∈ X with ‖x‖X ≤ C and ‖y− T x‖Y ≤ c, then T is onto.

Proof. Given y ∈ Y , we apply the hypotheses inductively to construct a sequence
(xn)n such that for all n = 0, 1, . . . we have

‖xn‖X ≤ Ccn−1
‖y‖Y and ‖y−

n∑
j=1

T x j‖Y ≤ cn
‖y‖Y .

By the first property x =
∑
∞

n=1 xn exists and by the second one T x = y as required.
�
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Proof of Lemma A.3. Pick ε > 0 such that (1+ ε)2|θ − θ∗| is still smaller than the
right-hand side of (A-1). Let us see how we can apply Lemma A.4 to T : Xθ → Yθ .
We fix y in the unit sphere of Yθ . By definition of complex interpolation we find
g ∈ F(Y0, Y1) such that

g(θ)= y, ‖g‖F(Y0,Y1) ≤ (1+ ε). (A-2)

Likewise, since g(θ∗) ∈ Yθ∗ and T−1g(θ∗) ∈ Xθ∗ , there exists f ∈ F(X0, X1) such
that

T f (θ∗)= g(θ∗), ‖ f ‖F(X0,X1) ≤ (1+ ε)‖T
−1g(θ∗)‖Xθ∗ . (A-3)

We complete the proof by showing that x = f (θ) ∈ Xθ fits the assumptions of
Lemma A.4.

To this end, we first use (A-2) and (A-3) to give

‖x‖Xθ ≤ ‖ f ‖F(X0,X1) ≤ (1+ ε)‖T
−1g(θ∗)‖Xθ∗

≤
1+ε
κ
‖g(θ∗)‖Yθ∗ ≤

(1+ε)2

κ
, (A-4)

independently of y. In order to estimate the norm of y− T x , we use the auxiliary
function

h(z) :=


g(z)−T f (z)

z−θ∗
for z 6= θ∗,

g′(θ∗)− T f ′(θ∗) for z = θ∗,

defined on the closure of the unit strip S. As we have T f (θ∗) = g(θ∗), we can
conclude by Riemann’s removable singularity theorem that h is holomorphic in S
with values in Y0+ Y1. We even have h ∈ F(Y0, Y1) by the choices of f and g and
since T ∈ L(X , Y ). From y− T x = (θ − θ∗)h(θ) we obtain

‖y− T x‖Yθ ≤ |θ − θ
∗
|‖h‖F(Y0,Y1) ≤

|θ − θ∗|

min{θ∗, 1− θ∗}
‖g− T f ‖F(Y0,Y1).

Abbreviating M :=max j=0,1 ‖T ‖X j→Y j , we have

‖g− T f ‖F(Y0,Y1) ≤ ‖g‖F(Y0,Y1)+M‖ f ‖F(X0,X1)

≤ (1+ ε)2 κ+M
κ

,

where the second step is due to (A-2) and the comparison between the second and
the last term in (A-4). Combining the previous two estimates, we get a bound for
‖y − T x‖Yθ that is independent of y and strictly smaller than 1 precisely by the
definition of ε at the beginning of the proof. �

Stability of the lower bound in part (i) of Theorem A.1 will follow from a variant
of the Schwarz lemma from complex analysis.
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Lemma A.5. Let (X0, X1) be an interpolation couple and θ∗ ∈ (0, 1). Let r ≤
min{θ∗, 1− θ∗}/2. If |θ − θ∗| ≤ r , then

‖ f (θ)‖Xθ ≥
1
2‖ f (θ∗)‖Xθ∗ −

|θ−θ∗|

2r
‖ f ‖F(X0,X1)

for each f ∈ F(X0, X1).

Proof. Without loss of generality we may assume θ 6= θ∗. We fix f ∈ F(X0, X1).
By definition of complex interpolation we have f (θ) ∈ Xθ . Let us consider any
other g ∈ F(X0, X1) satisfying g(θ) = f (θ). As in the proof of Lemma A.3 the
function

h(z) :=


f (z)−g(z)

z−θ
for z 6= θ,

f ′(θ)− g′(θ) for z = θ,

turns out to belong to F(X0, X1). For z ∈ iR we have |z− θ | ≥ θ ≥ θ∗− r ≥ r by
assumption. The same bound holds for z ∈ 1+ iR. By the definition of the norm
on F(X0, X1) we obtain

‖h‖F(X0,X1) ≤
1
r
‖ f − g‖F(X0,X1)

≤
1
r
‖ f ‖F(X0,X1)+

1
r
‖g‖F(X0,X1).

The upshot is that the norm of f (θ∗) in Xθ∗ can be estimated via h since we have
(θ∗− θ)h(θ∗)= f (θ∗)− g(θ∗). Due to |θ − θ∗| ≤ r we get

‖ f (θ∗)‖Xθ∗ ≤ ‖g+ (θ
∗
− θ)h‖F(X0,X1)

≤ 2‖g‖F(X0,X1)+
|θ−θ∗|

r
‖ f ‖F(X0,X1).

This inequality has been established for every g ∈F(X0, X1) satisfying g(θ)= f (θ).
On passing to the infimum we can replace ‖g‖F(X0,X1) by ‖ f (θ)‖Xθ on the right-
hand side and the claim follows. �

Proof of Theorem A.1. Let θ ∈ (0, 1) and assume |θ − θ∗| ≤ r , where r > 0 will be
subject to several restrictions culminating in the one alluded in the theorem. For
brevity we put again M := max j=0,1 ‖T ‖X j→Y j . The argument is in two steps:
First we prove a lower bound for T on Yθ and then we adjust parameters to prove
the two assertions.

Step 1: A lower bound for T . Let x ∈ Xθ and pick f ∈F(X0, X1) such that f (θ)= x .
Then T f ∈ F(Y0, Y1) satisfies T f (θ)= T x ∈ Yθ and ‖T f ‖F(Y0,Y1) ≤ M‖ f ‖F(X0,X1).
We require r ≤min{θ∗, 1− θ∗}/2 in order to bring into play Lemma A.5, which
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in turn provides the bound

‖T x‖Yθ = ‖T f (θ)‖Yθ ≥
1
2‖T f (θ∗)‖Yθ∗ −

M |θ−θ∗|
2r

‖ f ‖F(X0,X1).

As we have f (θ∗) ∈ Xθ∗ , the assumption on T implies

‖T x‖Yθ ≥
κ

2
‖ f (θ∗)‖Xθ∗ −

M |θ−θ∗|
2r

‖ f ‖F(X0,X1).

In order to get rid of f (θ∗), let us require r ≤min{θ∗, 1− θ∗}/3 because then we
have r ≤min{θ, 1− θ}/2. In turn, this allows us to reapply Lemma A.5 with the
roles of θ and θ∗ interchanged to the effect that

‖T x‖Yθ ≥
κ

2

(
1
2‖ f (θ)‖Xθ −

|θ−θ∗|

2r
‖ f ‖F(X0,X1)

)
−

M |θ−θ∗|
2r

‖ f ‖F(X0,X1).

Since we have obtained this estimate under the restriction r ≤min{θ∗, 1− θ∗}/3
for every f ∈ F(X0, X1) satisfying f (θ) = x , we can pass to the infimum and
conclude

‖T x‖Yθ ≥
(
κ

4
− |θ − θ∗|

κ+2M
4r

)
‖x‖Xθ .

Step 2: Adjusting parameters. If 0< ε < 1
4 , then summa summarum Step 1 yields

the required lower bound provided

|θ − θ∗| ≤ r ≤ 1
3 min{θ∗, 1− θ∗}, κ

4
− |θ − θ∗|

κ+2M
4r

≥ εκ.

These conditions collapse to

|θ − θ∗| ≤ r
κ(1− 4ε)
κ + 2M

≤min{θ∗, 1− θ∗}
κ(1− 4ε)
3κ + 6M

as claimed in (i). Finally, if T : Xθ∗→ Yθ∗ is an isomorphism, then

‖T−1
‖Yθ∗→Xθ∗ ≤

1
κ
.

Consequently, Lemma A.4 guarantees that T : Xθ → Yθ remains onto provided

|θ − θ∗|<min{θ∗, 1− θ∗} κ

κ+M

and this is a larger interval than the one obtained for the lower bound. �
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Saturated morphisms of logarithmic schemes

Takeshi Tsuji

The notion of universally saturated morphisms between saturated log schemes
was introduced by Kazuya Kato. In this paper, we study universally saturated
morphisms systematically by introducing the notion of saturated morphisms be-
tween integral log schemes as a relative analogue of saturated log structures.
We eventually show that a morphism of saturated log schemes is universally
saturated if and only if it is saturated. We prove some fundamental properties
and characterizations of universally saturated morphisms via this interpretation.

Introduction

The notion of universally saturated morphisms between saturated log schemes was
introduced by Kazuya Kato. The purpose of this paper is to study universally
saturated morphisms systematically.

We define saturated morphisms not only for saturated log schemes but also for
integral log schemes (Definitions I.3.5, I.3.7, I.3.12, II.2.10). They are stable under
compositions and base changes (in the category of log schemes) (Proposition II.2.11).
The first important property of saturated morphisms is the following (Propositions
I.3.9, II.2.12):

For a saturated morphism of integral log schemes (X,MX )→ (Y,MY ),
if MY is saturated, then MX is also saturated.

This and the stability of saturated morphisms under base changes imply that
saturated morphisms of saturated log schemes are universally saturated. In fact,
we see that the converse is also true (Proposition II.2.13).

Our main results concerning saturated morphisms are the following:

This paper was written in 1997, and has been circulated among some experts since then. The author
made very minor revisions to the original keeping the reference numbers of theorems, propositions,
etc., unchanged because the original had already been cited in some published papers.
Some of the results of this paper will be absorbed into the book on foundation of logarithmic algebraic
geometry which Arthur Ogus has been writing for years.
MSC2010: 06F05, 14A15.
Keywords: logarithmic structure, logarithmic scheme, saturated morphism.

185

http://msp.org
http://msp.org/tunis
http://dx.doi.org/10.2140/tunis.2019.1-2
http://dx.doi.org/10.2140/tunis.2019.1.185


186 TAKESHI TSUJI

(1) For a prime p and a morphism f : (X,MX )→ (Y,MY ) of fine saturated log
schemes over Fp, f is of Cartier type if and only if f is saturated (Proposition II.2.14,
Theorem II.3.1). (This is an unpublished result of K. Kato.)

(2) Let f : (X,MX )→ (Y,MY ) be an integral morphism of fine saturated log
schemes and assume that we are given a chart QY → MY with Q saturated. We
regard (Y,MY ) as a log scheme over (S,MS) = (Spec(Z[Q]), can. log) by the
chart. If X is quasi-compact, then there exists a positive integer n such that the
base change f ′ : (X ′,MX ′)→ (Y ′,MY ′) of f in the category of fine saturated log
schemes by the morphism (S,MS)→ (S,MS) induced by the multiplication by n
on Q, is saturated (Theorem II.3.4).

(3) For a smooth integral morphism f : (X,MX )→ (Y,MY ) of fine saturated log
schemes, f is saturated if and only if every fiber of the underlying morphism of
schemes of f is reduced (Theorem II.4.2).

This paper consists of two chapters. The first chapter is devoted to the study of
saturated morphisms of monoids. In the second chapter, we deduce some results
on saturated morphisms of log schemes from the results in the first chapter. We
use freely the terminology introduced in [Kato 1989].

I. Saturated morphisms of monoids

I.1. Prime ideals of monoids. Throughout this paper, a monoid means a commu-
tative monoid with a unit element, and its monoid law is written multiplicatively
except for the set of natural numbers N = {0, 1, 2, . . .}, which is regarded as a
monoid by its additive law. A homomorphism of monoids always preserves the
unit elements. For a monoid P, Pgp denotes the group associated to P (cf. [Kato
1989, §1]), and P∗ denotes the group of invertible elements of P.

Definition I.1.1 [Kato 1994, (5.1) Definition]. A subset I of a monoid P is called
an ideal of P if PI ⊂ I . An ideal I of P is called a prime ideal if its complement
P\I is a submonoid of P . We denote by Spec(P) the set of all prime ideals of P.

A morphism of monoids h : P→ Q induces a map

Spec(Q)→ Spec(P), q 7→ h−1(q).

For a submonoid S of a monoid P , we define the monoid S−1 P by S−1 P =
{s−1a | a ∈ P, s ∈ S}/∼, where s−1

1 a1∼ s−1
2 a2 if and only if there exists t ∈ S such

that ts1a2 = ts2a1 [Kato 1994, (5.2) Definition]. If P is integral (see [Kato 1989,
(2.2)]), the last condition is equivalent to s1a2 = s2a1 and S−1 P is canonically
isomorphic to the submonoid of Pgp consisting of elements of the forms s−1a
(s ∈ S, a ∈ P).
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For a prime ideal p of P , we define Pp to be (P\p)−1 P . If P is generated by
a1, . . . , an ∈ P , then P\p is generated by ai contained in P\p, and therefore Pp is
generated by 1−1a1, . . . , 1−1an and a−1

i 1 (ai ∈ P\p). The set Spec(Pp) is identified
with the subset {q∈ Spec(P) | q⊂ p} of Spec(P) by the map Spec(Pp)→ Spec(P)
induced by the morphism P → Pp, a 7→ 1−1a. For r, r′ ∈ Spec(Pp), and the
corresponding prime ideals q, q′ ∈ Spec(P), we have r⊂ r′ if and only if q⊂ q′.

Definition I.1.2. (1) [Kato 1994, (5.4) Definition]. For a monoid P , we define
the dimension dim(P) of P to be the maximal length of a sequence of prime
ideals p0 ) p1 ) · · · ) pr of P . If the maximum does not exist, we define
dim(P)=∞.

(2) For a prime ideal p of a monoid P , we define the height ht(p) of p to be the
maximal length of a sequence of prime ideals p= p0 ) p1 ) · · ·) pr of P. If
the maximum does not exist, we define ht(p)=∞.

By the above identification of Spec(Pp) with a subset of Spec(P), we have
ht(p)= dim(Pp).

Proposition I.1.3 [Kato 1994, (5.5) Proposition]. Let P be a finitely generated
integral monoid. Then:

(1) Spec(P) is a finite set.

(2) dim(P)= rankZ(Pgp/P∗).

(3) For p ∈ Spec(P), ht(p)+ dim(P\p)= dim(P).

Proposition I.1.4. Let f : P → Q be a morphism of monoids and assume that
there exists a positive integer n such that, for any b ∈ Q, bn

∈ f (P) and, for any
a1, a2 ∈ P , f (a1) = f (a2) implies an

1 = an
2 . Then, the morphism Spec(Q) →

Spec(P), q 7→ f −1(q) is bijective and, for q1, q2 ∈ Spec(Q), q1 ⊂ q2 if and only
if f −1(q1) ⊂ f −1(q2). Especially dim(P) = dim(Q) and ht(q) = ht( f −1(q)) for
q ∈ Spec(Q).

Proof. For an element b ∈ Q, there exists a ∈ P such that bn
= f (a) and an

is independent of the choice of a. Hence, we can define a map g from Q to P
by associating an to b. We see easily that the map g is a morphism of monoids
and g ◦ f = n2 and f ◦ g = n2. Now the claim follows from the fact that the
multiplication by n2 on P and on Q induces the identity maps on Spec(P) and on
Spec(Q). �

Let P be a finitely generated saturated monoid (see [Kato 1994, (1.1)]) and
let p be a prime ideal of P of height 1. Then, since dim(Pp) = ht(p) = 1, we
have rankZ(P

gp
p /P∗p )= 1. Since P is saturated by assumption, Pp and Pp/P∗p are

saturated. Hence Pp/P∗p ∼= N. By taking the associated abelian groups and using
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Pgp
p
∼= Pgp, we get an isomorphism Pgp/P∗p ∼= Z. We define the valuation vp

associated to p to be the homomorphism Pgp
→ Pgp/P∗p ∼= Z.

Lemma I.1.5. Let P be a finitely generated saturated monoid and let p be a prime
ideal of P of height 1. Then, we have

Pp = {x ∈ Pgp
| vp(x)≥ 0}.

Proof. By definition, it is trivial that vp(x)≥ 0 for x ∈ Pp. Conversely, if vp(x)≥ 0
for x ∈ Pgp, then there exist y ∈ Pp and z ∈ P∗p such that x = yz. Hence x ∈ Pp. �

Proposition I.1.6 [Kato 1994, (5.8) Proposition (1)]. Let P be a finitely generated
saturated monoid. Then, we have P =

⋂
p Pp, where p ranges over all prime ideals

of P of height 1.

Lemma I.1.7. Let f : P → Q be a morphism of finitely generated saturated
monoids. Let q be a prime ideal of Q of height 1 such that the prime ideal
p = f −1(q) of P is of height 1. Then, there exists a positive integer n such that
vq ◦ f gp

= nvp. We call the integer n the ramification index of f at q.

Proof. Since f (P\p)⊂ Q\q, the morphism f induces a morphism Pp→ Qq and
hence a morphism Pp/P∗p → Qq/Q∗q. Furthermore, if f gp(s−1a) ∈ Q∗q for s ∈ P\p
and a ∈ P , then f (a) ∈ Q∗q. This implies f (a) ∈ Q\q, that is, a ∈ P\p. Hence
s−1a ∈ P∗p . Now we see the lemma easily. �

I.2. Integral morphisms.

Proposition I.2.1 [Kato 1989, Proposition (4.1)(1)]. Let f : P→ Q be a morphism
of integral monoids. Then in the following conditions, (i) and (iv) are equivalent,
and (ii), (iii), and (v) are equivalent.

(i) For any integral monoid P ′ and for any morphism g : P→ P ′, the pushout of
Q← P→ P ′ in the category of monoids is integral.

(ii) The homomorphism Z[P] → Z[Q] induced by f is flat.

(iii) For any field k, the homomorphism k[P] → k[Q] induced by f is flat.

(iv) If a1, a2 ∈ P , b1, b2 ∈ Q and f (a1)b1 = f (a2)b2, there exist a3, a4 ∈ P and
b ∈ Q such that b1 = f (a3)b and a1a3 = a2a4 (which implies b2 = f (a4)b).

(v) The condition (iv) is satisfied and f is injective.

Definition I.2.2. We say a morphism f : P→ Q of integral monoids is integral
if it satisfies the equivalent conditions (i) and (iv) in Proposition I.2.1.

Using the condition (i), we can easily verify the following.

Proposition I.2.3. (1) Let f : P→ Q and g : Q→ R be morphisms of integral
monoids. If f and g are integral, then g ◦ f is integral.
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(2) Let f : P→ Q and g : P→ P ′ be morphisms of integral monoids and let Q′

be the pushout of Q← P→ P ′ in the category of monoids. If f is integral,
then the canonical morphism P ′→ Q′ is integral.

Lemma I.2.4. Let P be a monoid and let G be a subgroup of P. If P is integral,
then P/G is integral.

Proof. Straightforward. �

Proposition I.2.5. Let f : P→ Q be a morphism of integral monoids and let G and
H be subgroups of P and Q respectively such that f (G)⊂ H. Let g : P/G→ Q/H
be the morphism induced by f . Then, f is integral if and only if g is integral.

Proof. Note first that P/G, Q/H and Q/ f (G) are integral by Lemma I.2.4. If f
is integral, then the base change P/G→ Q/ f (G) is also integral. The morphism
Q/ f (G)→ Q/H ∼= (Q/ f (G))/(H/ f (G)) is always integral by Lemma I.2.4 and
the condition (i) of Proposition I.2.1 for integral morphisms. Hence g is integral.
Conversely, suppose g is integral. Since P→ P/G is always integral by the same
reason as above, the composite h of P −→f Q with Q → Q/H is integral. We
will prove that f satisfies the condition (iv) of Proposition I.2.1. Let a1, a2 ∈ P ,
b1, b2 ∈ Q such that f (a1)b1 = f (a2)b2. Since h is integral, there exist a3, a4 ∈ P ,
b ∈ Q, and c ∈ H such that b1 = f (a3)bc and a1a3 = a2a4. This completes the
proof. �

Lemma I.2.6. Let P be a monoid and let S be a submonoid of P. If P is integral,
then S−1 P is integral.

Proof. Straightforward. �

Proposition I.2.7. Let f : P → Q be a morphism of integral monoids and let S
and T be submonoids of P and Q respectively such that f (S)⊂ T . If f is integral,
then the morphism S−1 P→ T−1 Q induced by f is integral.

Proof. Note first that S−1 P , T−1 Q and f (S)−1 Q are integral by Lemma I.2.6.
If f is integral, the base change S−1 P → f (S)−1 Q is integral. The morphism
f (S)−1 Q→ T−1( f (S)−1 Q)∼= T−1 Q is integral by Lemma I.2.6 and the condition
(i) of Proposition I.2.1 for integral morphisms. Hence the morphism S−1 P →
T−1 Q is integral. �

Proposition I.2.8. Let f : P → Q be an integral morphism of integral monoids
such that f −1(Q∗) = P∗. Then f is exact (see Definition I.3.1). Furthermore, if
P∗ = {1}, f gp is injective.

Proof. Take a1, a2 ∈ P such that f gp((a1)
−1a2)∈ Q. Then there exists b1 ∈ Q such

that f (a1)b1 = f (a2) in Q. By the condition (iv) of Proposition I.2.1 for integral
morphisms, there exist a3, a4 ∈ P and b∈ Q such that b1= f (a3)b, 1= f (a4)b and
a1a3 = a2a4. Since f −1(Q∗)= P∗, a4 ∈ P∗ and hence (a1)

−1a2 = (a4)
−1a3 ∈ P.
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The exactness of f implies that Ker( f gp)⊂ P∗. Hence, if P∗={1}, f gp is injective.
�

Corollary I.2.9. Let f : P → Q be an integral morphism of finitely generated
integral monoids. Let q be a prime ideal of Q and let p be the prime ideal f −1(q)

of P. Then ht(p)≤ ht(q).

Proof. The morphism g : Pp/P∗p → Qq/Q∗q induced by f is integral by Propositions
I.2.5 and I.2.7. By Proposition I.2.8, ggp is injective. Hence ht(q) = dim(Qq) =

rankZ(Q
gp
q /Q∗q)≥ rankZ(P

gp
p /P∗p )= dim(Pp)= ht(p). �

Proposition I.2.10. Let f : P → Q and g : Q → R be morphisms of integral
monoids. If g ◦ f is integral and g is exact, then f is integral.

Proof. We will prove that f satisfies the condition (iv) of Proposition I.2.1. Take
a1, a2 ∈ P and b1, b2 ∈ Q such that f (a1)b1 = f (a2)b2. Then (g ◦ f )(a1)g(b1)=

(g ◦ f )(a2)g(b2) and, since g ◦ f is integral, there exist a3, a4 ∈ P and c ∈ R such
that g(b1) = (g ◦ f )(a3)c and a1a3 = a2a4. Since g is exact, b = b1 f (a3)

−1 is
contained in Q. This completes the proof. �

Proposition I.2.11. Let f : P → Q be a morphism of finitely generated integral
monoids. Then the following two conditions are equivalent:

(i) f is integral and f −1(Q∗)= P∗.

(ii) f is exact and, for any b ∈ Q, there exists b′ ∈ Q such that

f gp(Pgp)b∩ Q = f (P)b′.

Lemma I.2.12. Let f : P→ Q be an exact morphism of finitely generated integral
monoids. Let b ∈ Q and define a subset I of Pgp to be {a ∈ Pgp

| f gp(a)b ∈ Q}.
Then, there exists c ∈ P such that cI ⊂ P.

Proof. First we will prove the lemma assuming P and Q are saturated. For a
prime ideal q of Q of height 1, we define cq ∈ P as follows. If vq( f (P)) = 0,
we define cq = 1. If vq( f (P)) 6= 0, we define cq to be an element of P such that
vq( f (cq)) ≥ vq(b). Set c =

∏
q cq, where q ranges over all prime ideals of Q of

height 1. We assert cI ⊂ P . Since f is exact, it suffices to prove f gp(cI ) ⊂ Q.
Let a ∈ Pgp such that f gp(a)b ∈ Q. Let q be a prime ideal of Q of height 1.
By Lemma I.1.5 and Proposition I.1.6, it is enough to prove vq( f gp(ac)) ≥ 0. If
vq( f (P))= 0, then vq( f gp(Pgp))= 0 and hence vq( f gp(ac))= 0. If vq( f (P)) 6= 0,
then

vq( f gp(ac))= vq( f gp(a))+ vq( f (c))≥ vq( f gp(a))+ vq( f (cq))

≥ vq( f gp(a))+ vq(b)= vq( f gp(a)b)≥ 0.

Next we will reduce the general case to the case where P and Q are satu-
rated. Let Psat and Qsat be the saturated monoids associated to P and Q (see
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Definition II.2.2), which are finitely generated by Proposition II.2.4, and let f sat
:

Psat
→ Qsat be the morphism induced by f . Then the morphism f sat is exact.

Define a subset J of (Psat)gp
= Pgp to be {a ∈ (Psat)gp

| f gp(a)b ∈ Qsat
}. Then

we have proven that there exists c ∈ Psat such that cJ ⊂ Psat. By multiplying c by
some element of P, we may assume c ∈ P . Let a1, . . . , ar ∈ Psat be a system of
generators and choose a positive integer n such that an

i ∈ P for all 1≤ i ≤ r . Then

Psat
=
⋃

0≤ni≤n−1 P ·
∏

1≤i≤r ani
i .

Choose d ∈ P such that dai ∈ P for all 1 ≤ i ≤ r . Then dr(n−1)Psat
⊂ P . Hence

dr(n−1)cI ⊂ dr(n−1)cJ ⊂ dr(n−1)Psat
⊂ P . �

Proof of Proposition I.2.11. (i) ⇒ (ii). By Proposition I.2.8, f is exact. Let
I be the set {a ∈ Pgp

| f gp(a)b ∈ Q}. We have P I ⊂ I . By Lemma I.2.12,
there exists c ∈ P such that cI ⊂ P . By [Kato 1994, (5.6) Lemma], there exist
a1, . . . , ar ∈ I such that I =

⋃
1≤i≤r Pai . Set bi = f gp(ai )b∈ f gp(Pgp)b∩Q. Then

f gp(Pgp)b∩Q= f gp(I )b=
⋃

1≤i≤r f (P)bi . If r = 1, we are done. Suppose r ≥ 2.
Since b1b−1

2 ∈ f gp(Pgp) and b1, b2 ∈ Q, by the condition (iv) of Proposition I.2.1
for integral morphisms, there exist d1, d2 ∈ P , b′1 ∈ Q such that b1 = f (d1)b′1 and
b2 = f (d2)b′1. Then b′1 ∈ f gp(Pgp)b∩ Q and we have

f gp(Pgp)b∩Q⊃ f (P)b′1∪
(⋃

3≤i≤r f (P)bi
)
⊃
⋃

1≤i≤r f (P)bi = f gp(Pgp)b∩Q.

Hence f gp(Pgp)b ∩ Q = f (P)b′1 ∪
(⋃

3≤i≤r f (P)bi
)
. Repeating this procedure,

we are reduced to the case r = 1.

(ii) ⇒ (i). It is trivial that the exactness of f implies f −1(Q∗) = P∗. We will
prove that f satisfies the condition (iv) of Proposition I.2.1. Take a1, a2 ∈ P and
b1, b2 ∈ Q such that f (a1)b1 = f (a2)b2. Then, by assumption, there exists b ∈
Q such that f gp(Pgp)b1 ∩ Q = f gp(Pgp)b2 ∩ Q = f (P)b. Choose a3, a4 ∈ P
such that b1 = f (a3)b and b2 = f (a4)b. Then, by f (a1)b1 = f (a2)b2, we have
f (a1a3) = f (a2a4). The element a := (a1a3)

−1a2a4 belongs to Ker( f gp), which
is contained in P since f is exact. By replacing a3 by aa3, we obtain the desired
elements a1, a3 ∈ P and b ∈ Q. �

I.3. p-saturated monoids and p-saturated morphisms.

Definition I.3.1 [Kato 1989, Definition (4.6)(1)]. We say a morphism of integral
monoids f : P→ Q is exact if ( f gp)−1(Q)= P .

Proposition I.3.2. (1) Let f : P→ Q and g : Q→ R be morphisms of integral
monoids. If f and g are exact, then g ◦ f is exact. If g ◦ f is exact, then f is
exact.

(2) Let f : P→ Q and g : P→ P ′ be morphisms of integral monoids and define
a morphism of integral monoids f ′ : P ′→ Q′ by the following cocartesian
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diagram in the category of integral monoids.

Q′
h

←−−− Q

f ′
x f

x
P ′

g
←−−− P

If f is exact, then f ′ is exact.

Proof. The claim (1) is trivial. We prove (2). Let a be an element of (P ′)gp such
that ( f ′)gp(a) ∈ Q′. Since the diagram of abelian groups

(Q′)gp hgp

←−−− Qgp

( f ′)gp

x f gp
x

(P ′)gp ggp

←−−− Pgp

is cocartesian and Q′ = ( f ′)gp(P ′)hgp(Q) in (Q′)gp, there exist b ∈ P ′, c ∈ Q and
d ∈ Pgp such that a = b · ggp(d) and c = f gp(d). Since f is exact by assumption,
d ∈ P and hence a ∈ P ′. �

Definition I.3.3. Let p be a prime. We say an integral monoid P is p-saturated
if the multiplication by p on P is exact (or equivalently, for any a ∈ Pgp, a p

∈ P
implies a ∈ P).

It is easy to see that an integral monoid P is saturated if and only if P is p-
saturated for every prime p.

Example I.3.4. Let n be a positive integer and let P be the submonoid (N×N>0)∪

nN×{0} of N⊕N, which is generated by (n, 0) and (m, 1) (m ∈N, 0≤m ≤ n−1).
Then, for a prime p, P is p-saturated if and only if p - n.

Definition I.3.5. Let p be a prime and let f : P→ Q be a morphism of integral
monoids. Define Q′, f ′ and g by the following cocartesian diagram in the category
of integral monoids:

Q′
g

←−−− Q

f ′
x f

x
P

p
←−−− P

Let h be the unique morphism Q′→ Q such that h ◦ g = p and h ◦ f ′ = f . We
say the morphism f is p-quasi-saturated if h is exact.

Proposition I.3.6. Let p be a prime.

(1) Let f : P→ Q and g : Q→ R be morphisms of integral monoids. If f and g
are p-quasi-saturated, then g ◦ f is p-quasi-saturated.
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(2) Let f : P→ Q and g : P→ R be morphisms of integral monoids and define a
morphism of integral monoids h : R→ S by the following cocartesian diagram
in the category of integral monoids:

S
i

←−−− Q

h

x f
x

R
g

←−−− P

If f is p-quasi-saturated, then h is p-quasi-saturated.

Proof. (1) We have the following commutative diagram of integral monoids in
which the composite of each line is the multiplication by p, j ◦ g′ = g, h ◦ f ′ = f
and each square is cocartesian in the category of integral monoids:

R
j

←−−− R′
i

←−−− R′′ ←−−− R

g′
x x g

x
Q

h
←−−− Q′ ←−−− Q

f ′
x f

x
P

p
←−−− P

If f and g are p-quasi-saturated, h and j are exact. By Proposition I.3.2 (2), i is
exact. Hence j ◦ i is exact and g ◦ f is p-quasi-saturated.

(2) Define morphisms f ′ : P→Q′ and j :Q′→Q (resp. h′ : R→ S′ and k : S′→ S)
using f : P→ Q (resp. h : R→ S) as in Definition I.3.5. Let i ′ : Q′→ S′ be the
morphism induced by g : P→ R and i : Q→ S. Then, we have a commutative
diagram

S
i

←−−− Q

k

x j
x

S′
i ′

←−−− Q′

h′
x f ′

x
R

g
←−−− P.

The outer big square and the lower square are cocartesian in the category of integral
monoids. (For the first one, note k ◦h′ = h and j ◦ f ′ = f .) Hence the upper square
is also cocartesian. Therefore, by Proposition I.3.2 (2), if j is exact, then k is exact.

�
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Definition I.3.7. We say a morphism of integral monoids f : P → Q is quasi-
saturated if it is p-quasi-saturated for every prime p.

Proposition I.3.8. Let n be an integer ≥ 2. Let f : P→ Q be a quasi-saturated
morphism of integral monoids and define an integral monoid Q′ by the cocartesian
diagram in the category of integral monoids

Q′
g

←−−− Q

f ′
x f

x
P

n
←−−− P.

Let h be the unique morphism Q′→ Q such that h ◦ g = n and h ◦ f ′ = f . Then h
is exact.

Proof. It suffices to prove that, if the proposition is true for integers n1 ≥ 2 and
n2 ≥ 2, then it is true also for n3 = n1n2. Consider the following cocartesian
diagrams in the category of integral monoids:

Q2
g2
←−−− Q1

g1
←−−− Q

f2

x f1

x f
x

P
n2
←−−− P

n1
←−−− P

Let h1 : Q1→ Q (resp. h2 : Q2→ Q1) be the unique morphism such that h1◦ f1= f
and h1 ◦g1= n1 (resp. h2 ◦ f2= f1 and h2 ◦g2= n2). Then h3 := h1 ◦h2 : Q2→ Q
is the unique morphism such that h3 ◦ f2 = f and h3 ◦ g2 ◦ g1 = n1n2. Since
f is quasi-saturated, h1 is exact by assumption. Since f1 is quasi-saturated by
Proposition I.3.6 (2), h2 is also exact by assumption. Hence h3 is exact. �

Proposition I.3.9. Let p be a prime and let f : P→ Q be a morphism of integral
monoids. If P is p-saturated (resp. saturated) and f is p-quasi-saturated (resp.
quasi-saturated), then Q is p-saturated (resp. saturated).

Proof. Define an integral monoid Q′ and morphisms of monoids f ′ : P → Q′,
g : Q→ Q′ and h : Q′→ Q as in Definition I.3.5 using p and f : P→ Q. If P
is p-saturated, g is exact by Proposition I.3.2 (2). If f is p-quasi-saturated, h is
exact. Hence h ◦ g = p : Q→ Q is exact, that is, Q is p-saturated. By considering
all p, we obtain the claim in the case when P is saturated. �

Proposition I.3.10. Let p be a prime and let f : P → Q be a morphism of p-
saturated monoids. Then, the following three conditions are equivalent:

(1) The morphism f is p-quasi-saturated.
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(2) For any p-saturated monoid P ′ and any morphism g : P→ P ′, the pushout
of the diagram Q ←−f P −→g P ′ in the category of integral monoids, is p-
saturated.

(3) The pushout of the diagram Q←−f P −→p P in the category of integral monoids,
is p-saturated.

Proof. The implication (1)⇒ (2) follows from Propositions I.3.6 (2) and I.3.9 and
(2)⇒ (3) is trivial. We prove (3)⇒ (1). Define an integral monoid Q′ and a
morphism of integral monoids g : Q→ Q′ and h : Q′→ Q as in Definition I.3.5.
Then, we see that g ◦ h : Q′→ Q′ is the multiplication by p and hence it is exact
by assumption. By Proposition I.3.2 (1), h is exact. �

Corollary I.3.11. Let f : P→ Q be a morphism of saturated monoids. Then, the
following three conditions are equivalent:

(1) The morphism f is quasi-saturated.

(2) For any saturated monoid P ′ and any morphism g : P→ P ′, the pushout of
the diagram Q←−f P −→g P ′ in the category of integral monoids, is saturated.

(3) For every prime p, the pushout of the diagram Q←−f P −→p P in the category
of integral monoids, is saturated.

Definition I.3.12. Let p be a prime. We say a morphism of integral monoids
f : P→ Q is p-saturated (resp. saturated) if f is integral and p-quasi-saturated

(resp. quasi-saturated).

Proposition I.3.13. Let p be a prime and let f : P→ Q be an integral morphism
of p-saturated monoids. Then, the following three conditions are equivalent:

(1) The morphism f is p-saturated.

(2) For any p-saturated monoid P ′ and any morphism g : P→ P ′, the pushout
of the diagram Q←−f P −→g P ′ in the category of monoids, is p-saturated.

(3) The pushout of the diagram Q ←−f P −→p P in the category of monoids, is
p-saturated.

Proposition I.3.14. Let f : P→ Q be an integral morphism of saturated monoids.
Then, the following three conditions are equivalent:

(1) The morphism f is saturated.

(2) For any saturated monoid P ′ and any morphism g : P→ P ′, the pushout of
the diagram Q←−f P −→g P ′ in the category of monoids, is saturated.

(3) For every prime p, the pushout of the diagram Q←−f P −→p P in the category
of monoids, is saturated.

Lemma I.3.15. Let P be an integral monoid and let G be a subgroup of P.
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(1) The monoid P is saturated if and only if P/G is saturated.

(2) The morphism P→ P/G is saturated.

Proof. (1) Straightforward.

(2) The morphism P → P/G is integral by Proposition I.2.5. For any prime p,
the base change of P→ P/G by p : P→ P in the category of monoids is given
by the quotient P→ P/G p. Hence P→ P/G is p-quasi-saturated because the
projection map P/G p

→ P/G is exact. �

Proposition I.3.16. Let f : P → Q be a morphism of integral monoids and let
G and H be subgroups of P and Q respectively such that f (G) ⊂ H. Let g :
P/G → Q/H be the morphism induced by f . Let p be a prime. Then f is p-
saturated if and only if g is p-saturated. In particular, f is saturated if and only if
g is saturated.

Proof. By Proposition I.2.5, we may assume that f and g are integral. If f is
p-saturated, the base change P/G→ Q/ f (G) of f by P→ P/G in the category
of monoids is p-saturated by Propositions I.2.3 (2) and I.3.6 (2). The morphism
Q/ f (G)→ (Q/ f (G))/(H/ f (G)) ∼= Q/H is p-saturated by Lemma I.3.15 (2).
Hence P/G→ Q/H is p-saturated by Propositions I.2.3 (1) and I.3.6 (1). Con-
versely, suppose that P/G→ Q/H is p-saturated. Since P→ P/G is p-saturated,
P → Q/H is p-saturated. Put Q := Q/H . Define a monoid Q′ (resp. Q′) and
morphisms of monoids k : Q → Q′ and h : Q′ → Q (resp. k̄ : Q → Q′ and
h̄ : Q′→ Q) as in Definition I.3.5 using p and f : P→ Q (resp. P −→f Q→ Q).
Then the natural map Q′→ Q′ is the quotient by k(H). Therefore the morphisms
Q′→ Q′ and Q→ Q are exact. Since h̄ is exact, we see that h is also exact by
using Proposition I.3.2 (1). �

Lemma I.3.17. Let P be an integral monoid and let S be a submonoid of P.

(1) If P is saturated, then S−1 P is saturated.

(2) The morphism P→ S−1 P is saturated.

Proof. (1) Straightforward.

(2) The morphism P→ S−1 P is integral by Proposition I.2.7. For a prime p, the
following diagram is cocartesian in the category of monoids:

S−1 P S−1 P
p

oo

P

OO

P
p

oo

OO

Hence P→ S−1 P is p-quasi-saturated. �
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Proposition I.3.18. Let f : P→ Q be a morphism of integral monoids and let S
and T be submonoids of P and Q respectively such that f (S) ⊂ T . Let p be a
prime. If f is p-saturated (resp. saturated), then the morphism S−1 P → T−1 Q
induced by f is p-saturated (resp. saturated).

Proof. If f is p-saturated, then the base change S−1 P → f (S)−1 Q of f by
P → S−1 P in the category of monoids is p-saturated by Propositions I.2.3 (2)
and I.3.6 (2). The morphism f (S)−1 Q→ T−1( f (S)−1 Q)∼= T−1 Q is p-saturated
by Lemma I.3.17 (2). Hence, the morphism S−1 P → T−1 Q is p-saturated by
Propositions I.2.3 (1) and I.3.6 (1). �

Remark I.3.19. For an integral monoid P and a submonoid S of P , the natural
morphism P → S−1 P induces an isomorphism P/S −→∼= S−1 P/Sgp. Therefore,
Propositions I.2.5, I.2.7, I.3.16, and I.3.18 immediately imply the following claim:
Let f : P→ Q be a morphism of integral monoids, and let S and T be submonoids
of P and Q respectively such that f (S) ⊂ T. Let p be a prime. If f is integral
(resp. p-saturated, resp. saturated), then so is the morphism P/S→ Q/T induced
by f .

I.4. A criterion of p-saturated morphisms. In this section, we give a criterion
for an integral morphism of finitely generated integral monoids to be p-saturated
(Theorem I.4.2). As corollaries, we prove that, under certain conditions, p-saturated
morphisms are always saturated (Corollaries I.4.5 and I.4.7).

Proposition I.4.1. Let p be a prime and let f : P→ Q be a morphism of integral
monoids. We consider the following condition on f .

(∗) For any a ∈ P and b ∈ Q such that f (a) | bp, there exists c ∈ P such that
a | cp and f (c) | b.

(1) If P is p-saturated and f is p-quasi-saturated, then f satisfies (∗).

(2) If Q is p-saturated and f satisfies (∗), then f is p-quasi-saturated.

In particular, if P and Q are p-saturated, f is p-quasi-saturated if and only if f
satisfies (∗).

Proof. Consider the following cocartesian diagram in the category of integral
monoids:

Q′
g

←−−− Q

f ′
x f

x
P

p
←−−− P

Let h : Q′→ Q be the unique morphism such that h ◦ g = p and h ◦ f ′ = f . Then
(Q′)gp is canonically identified with

(Pgp
⊕ Qgp)/{(a p, f gp(a)−1) | a ∈ Pgp

}
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and Q′ corresponds to the image of P ⊕ Q. For (a, b) ∈ Pgp
⊕ Qgp, we denote by

(a, b) its image in (Q′)gp. We have hgp((a, b))= f gp(a)bp.

(1) Suppose that P is p-saturated and that f is p-quasi-saturated, that is, h is exact.
Let a ∈ P and b ∈ Q such that f (a) | bp. Then hgp((a−1, b)) = f (a)−1bp

∈ Q.
Hence (a−1, b) ∈ Q′, that is, there exists c ∈ Pgp such that a−1cp

∈ P and
b f gp(c)−1

∈ Q. Since P is p-saturated, a−1cp
∈ P implies c ∈ P. Now we

have a | cp and f (c) | b.

(2) Suppose that Q is p-saturated and that f satisfies (∗). Let a ∈ Pgp and b ∈ Qgp

be elements satisfying hgp((a, b)) = f gp(a)bp
∈ Q. If a is of the form a2a−1

1
(a1, a2 ∈ P), then (a, b)= ((a1a p−1

2
)−1, b f (a2)). Hence we may assume that a is

of the form a−1
2 (a2 ∈ P). Then, since Q is p-saturated, f gp(a)bp

∈ Q implies
b∈ Q and f (a2) | bp. Hence, by (∗), there exists c∈ P such that a2 | cp and f (c) | b,
which implies (a, b)= ((a2)−1cp, f (c)−1b) ∈ Q′. �

Theorem I.4.2. Let p be a prime. Let f : P → Q be an integral morphism of
finitely generated integral monoids such that f −1(Q∗)= P∗. Then f is p-saturated
if and only if f satisfies the following two conditions:

(i) For b ∈ Qgp, if there exists a ∈ P such that f (a)bp
∈ Q, then there exists

a′ ∈ P such that f (a′)b ∈ Q.

(ii) For b ∈ Q, if there exists a ∈ P\P∗ such that f (a) | bp, then there exists
a′ ∈ P\P∗ such that f (a′) | b.

Lemma I.4.3. Let f : P→ Q be an integral morphism of finitely generated integral
monoids such that f −1(Q∗) = P∗. Then, for any b ∈ Q and b′ ∈ f gp(Pgp)b∩ Q,
f gp(Pgp)b∩ Q = f (P)b′ if and only if f (a)-b′ for all a ∈ P\P∗.

Proof. By Proposition I.2.11, there exists b′′ ∈ Q such that f gp(Pgp)b ∩ Q =
f (P)b′′. Take c∈ P such that b′= f (c)b′′. If f (a) -b′ for all a ∈ P\P∗, then c∈ P∗

and hence f gp(Pgp)b∩Q= f (P)b′. Conversely, assume f gp(Pgp)b∩Q= f (P)b′.
Then, for any a ∈ P such that f (a) | b′, there exists a′ ∈ P such that f (a)−1b′ =
f (a′)b′ because f (a)−1b′ ∈ f gp(Pgp)b ∩ Q = f (P)b′. Hence f (a) ∈ Q∗ and
a ∈ P∗. �

Proof of Theorem I.4.2. We use the same notation as in the first paragraph of the
proof of Proposition I.4.1.

First assume that f is p-saturated, that is, the morphism h : Q′→ Q is exact.
Take b ∈ Qgp and a ∈ P such that f (a)bp

∈ Q. Then hgp((a, b)) = f (a)bp
∈ Q.

Since h is exact, (a, b) ∈ Q′, that is, there exists c ∈ Pgp such that ac−p
∈ P and

b f gp(c) ∈ Q. Hence f satisfies the condition (i). Take b ∈ Q such that f (a)-b for
all a ∈ P\P∗. To prove that f satisfies the condition (ii), it suffices to prove that
f (a)-bp for all a ∈ P\P∗. By Lemma I.4.3, f gp(Pgp)b ∩ Q = f (P)b and it is
enough to prove f gp(Pgp)bp

∩Q= f (P)bp. Let a∈ Pgp and suppose f gp(a)bp
∈Q.
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Then hgp((a, b))= f gp(a)bp
∈ Q. Since h is exact, (a, b)∈ Q′, that is, there exists

c ∈ Pgp such that ac−p
∈ P and b f gp(c) ∈ Q. By f gp(Pgp)b∩ Q = f (P)b, there

exists d ∈ P such that f gp(c)b = f (d)b, i.e., f gp(c) = f (d) (∈ Q). Since f is
exact by Proposition I.2.8, c ∈ P and hence a ∈ cp P ⊂ P.

Next assume that f satisfies the conditions (i) and (ii). It suffices to prove
that h is exact. Let a ∈ Pgp, b ∈ Qgp and suppose hgp((a, b)) = f gp(a)bp

∈ Q.
We will prove (a, b) ∈ Q′. By the condition (i), there exists c ∈ P such that
f (c)b ∈ Q, and we have (a, b) = (ac−p, f (c)b). Hence we may assume b ∈ Q.
By Proposition I.2.11, there exists b′ ∈ Q such that f gp(Pgp)b∩Q = f (P)b′. Take
c ∈ P such that b= f (c)b′. Since (a, b)= (acp, b′), it is enough to prove acp

∈ P.
By the condition (ii) and Lemma I.4.3, f gp(Pgp)(b′)p

∩ Q = f (P)(b′)p. Since
f gp(acp)(b′)p

= f gp(a)bp
∈ Q, we obtain f gp(acp) ∈ f (P) ⊂ Q. Since f is

exact by Proposition I.2.8, acp
∈ P . �

Remark I.4.4. Let f : P → Q be an integral morphism of finitely generated
integral monoids such that f −1(Q∗)= P∗. Then, using Lemma I.4.3, we see easily
that the condition (i) (resp. (ii)) in Theorem I.4.2 is equivalent to the condition (i′)
(resp. (ii′)) below:

(i′) The image of Q in Qgp/ f gp(Pgp) is p-saturated.

(ii′) For b ∈ Q, if f gp(Pgp)b∩ Q = f (P)b, then f gp(Pgp)bp
∩ Q = f (P)bp.

Corollary I.4.5. Let p and q be two different primes and let f : P → Q be a
morphism of finitely generated integral monoids. If Q is q-saturated and f is p-
saturated, then f is q-saturated. (Thus, if Q is saturated and f is p-saturated,
then f is saturated.)

Proof. Let S be the submonoid f −1(Q∗) of P , which is the complement of the
prime ideal f −1(Q\Q∗) of P. Then the morphism f uniquely factors as P −→g

S−1 P −→h Q. The monoid S−1 P is finitely generated and integral. The morphism
g is q-saturated by Lemma I.3.17 (2). Since h : S−1 P → Q is the base change
of f : P → Q by g : P → S−1 P , h is p-saturated. Thus, we are reduced to the
case f −1(Q∗) = P∗. By Theorem I.4.2, it suffices to prove that f satisfies the
conditions (i) and (ii) in Theorem I.4.2 for the prime q. The condition (i) follows
from the fact that Q is q-saturated. Indeed, if f (a)bq

∈ Q for a ∈ P and b ∈ Qgp,
then ( f (a)b)q ∈ Q and hence f (a)b ∈ Q. Let b ∈ Q and suppose that there exists
a ∈ P\P∗ such that f (a) | bq. Choose a positive integer m such that q ≤ pm. Then,
f (a) | bpm

and, by Theorem I.4.2, there exists a′ ∈ P\P∗ such that f (a′) | b. �

Definition I.4.6. Let f : P → Q be a morphism of monoids. We say the mor-
phism f is vertical if, for any b ∈ Q, there exists a ∈ P such that b | f (a), that is,
f (a) ∈ bQ.
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Corollary I.4.7. Let p be a prime and let f : P → Q be a morphism of finitely
generated integral monoids. If f is vertical and p-saturated, then f is saturated.

Proof. Let q be any prime different from p. We prove that f is q-saturated. By the
same argument as in the proof of Corollary I.4.5, we may assume f −1(Q∗)= P∗.
Then, it suffices to prove that f satisfies the conditions (i) and (ii) in Theorem I.4.2
for the prime q. The assumption that f is vertical implies that, for any b ∈ Qgp,
there exists a ∈ P such that f (a)b ∈ Q. Hence f satisfies the condition (i). We
can prove that f satisfies the condition (ii) exactly in the same way as in the proof
of Corollary I.4.5. �

Remark I.4.8. (1) If P and Q are not finitely generated, Corollaries I.4.5 and
I.4.7 are not true. We have the following counterexample. Let p be a prime and
set P = {np−m

| n ∈ N,m ∈ N} ⊂ Q. Let n be an integer≥ 2 prime to p and let
f : P→ P be the morphism defined by the multiplication by n. It is easy to see
that P is saturated and the morphism f is integral and vertical. However, for a
prime q, f is q-saturated if and only if q is prime to n. We prove it. If q is prime
to n, then the following diagram is cocartesian in the category of monoids:

P
q

←−−− P

f
x f

x
P

q
←−−− P

Indeed, it is easy to see that this becomes cocartesian after taking the associated
groups. On the other hand, we have f (P)Pq

= P because, for a sufficiently large
integer m, there exist positive integers r and s such that rn+ sq = pm . Hence, by
definition, f is q-saturated. If n is divisible by q , set

m = nq−1, G = Pgp/(Pgp)q (∼= Z/qZ)

and define morphisms of monoids g, h : Pgp
→ G⊕ Pgp by

g(a)= (a mod (Pgp)q , am), h(a)= (0, a).

Then the following diagram is cocartesian:

G⊕ Pgp Pgph
oo

Pgp

g

OO

Pgpq
oo

f gp

OO

The pushout of the diagram P←−f P −→q P is g(P)h(P). On the other hand, we see
easily that g(P)h(P)∩G = {1} and Gq

= {1}. Hence g(P)h(P) is not q-saturated.
By Proposition I.3.13, f is not q-saturated.
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(2) If f is not vertical, Corollary I.4.7 is not true. Indeed, for two integral monoids
P and Q and a prime p, the morphism P→ P⊕Q, a 7→ (a, 1) is integral and it is
p-saturated if and only if Q is p-saturated. By taking the monoid in Example I.3.4
as Q, we obtain a counterexample.

I.5. A criterion of saturated morphisms, I. The purpose of this section is to prove
Theorem I.5.1 below. This is an unpublished result of K. Kato. As a corollary, we
will prove that every integral morphism of finitely generated saturated monoids is
“potentially” saturated (Corollary I.5.4).

Theorem I.5.1. Let f : P → Q be an integral morphism of finitely generated
saturated monoids. Then, the morphism f is saturated if and only if , for every
prime ideal q of Q of height 1 such that the prime ideal f −1(q) of P is of height 1,
the ramification index of f at q (Lemma I.1.7) is 1.

Lemma I.5.2. Let n be a positive integer. Then the morphism n : N→ N is satu-
rated if and only if n = 1.

Proof. Suppose n ≥ 2. First note that the morphism n :N→N is integral. Let m be
an integer ≥ 2 and set d = gcd(n,m), m0 =md−1 and n0 = nd−1. Choose integers
r and s such that s ·m0+ r · n0 = 1 and define morphisms f, g : N→ N⊕Z/dZ

by f (1)= (n0, s) and g(1)= (m0,−r). Then, the diagram

N⊕Z/dZ N
g
oo

N

f

OO

N
m

oo

n

OO

is cocartesian in the category of saturated monoids. Indeed, we see easily that the
diagram becomes cocartesian in the category of abelian groups after taking the
associated groups and that N⊕Z/dZ is the saturation of f (N)+ g(N). If n0 ≥ 2
and m0 ≥ 2, N⊕Z/dZ ) f (N)+ g(N) because (1, 0) 6∈ f (N)+ g(N). Otherwise,
d ≥ 2 and again N⊕Z/dZ ) f (N)+ g(N) because (0, 1 mod d) 6∈ f (N)+ g(N).
Hence the pushout of N←−

m
N −→

n
N in the category of monoids is not saturated

for integers n,m ≥ 2. �

Proof of Theorem I.5.1. First let us prove the necessity. Let q be a prime ideal of
height 1 of Q such that p = f −1(q) is a prime ideal of height 1 of P . Then, by
Propositions I.3.16 and I.3.18, the morphism N∼= Pp/P∗p → Qq/Q∗q ∼= N induced
by f is saturated. Hence, by Lemma I.5.2, the ramification index of f at q is 1.

Next let us prove the sufficiency. First we prove it in the case dim(P) = 1
and f −1(Q∗)= P∗. The set Spec(P) consists of two elements ∅ and P\P∗, and
we have P/P∗ ∼= N. If we choose a lifting e ∈ P of the generator of P/P∗, the
maximal ideal P\P∗ is generated by e. Let p be a prime. We will prove that



202 TAKESHI TSUJI

f satisfies the conditions (i) and (ii) in Theorem I.4.2. The condition (i) follows
from the fact that Q is saturated. Let b ∈ Q and suppose that there exists a ∈ P\P∗

such that f (a) | bp, or equivalently, f (e) | bp. Then, for any prime ideal q of Q
of height 1, vq(bp) ≥ vq( f (e)). By the assumption on f , vq( f (e)) = 1 or 0.
If vq( f (e)) = 1, then vq(b) ≥ 1 and hence vq(b f (e)−1) ≥ 0. If vq( f (e)) = 0,
then vq(b f (e)−1) = vq(b) ≥ 0. By Lemma I.1.5 and Proposition I.1.6, we see
b f (e)−1

∈ Q, that is, f (e) | b.
Now let us consider the general case. Let p be the prime ideal f −1(Q\Q∗) of P.

Then the morphism f factors as P→ Pp→ Q. The first morphism is saturated
and the second morphism is integral by Propositions I.3.18 and I.2.7. Hence we
may assume f −1(Q∗) = P∗. Let p be a prime. Since Q is saturated, f satisfies
the condition (i) in Theorem I.4.2. It remains to prove that f satisfies the condition
(ii′) in Remark I.4.4. Let b ∈ Q and assume f gp(Pgp)b ∩ Q = f (P)b. We will
prove f gp(Pgp)bp

∩ Q = f (P)bp. By Proposition I.2.11, there exists b′ ∈ Q
such that f gp(Pgp)bp

∩ Q = f (P)b′. Choose a ∈ P such that bp
= f (a)b′. By

Proposition I.1.6, it suffices to prove a ∈ P∗p for all prime ideals p of P of height 1.
Let p be a prime ideal of height 1 of P and define an integral morphism of finitely
generated saturated monoids fp : Pp→ Qp by the following cocartesian diagram
in the category of monoids:

Qp ←−−− Q

fp

x f
x

Pp ←−−− P

By Propositions I.2.11 and I.3.2 (2), fp is exact, and therefore f −1
p (Q∗p) = P∗p .

Using Qp = f (P\p)−1 Q, we see that, for every prime ideal s of Qp of height 1
such that the prime ideal f −1

p (s) of Pp is of height 1, the ramification index of fp at
s is 1. So, as we have proven above, the morphism fp is p-saturated. On the other
hand, f gp(Pgp)b ∩ Q = f (P)b implies ( fp)gp((Pp)

gp)b ∩ Qp = fp(Pp)b. Hence,
by Theorem I.4.2 and Remark I.4.4, we have ( fp)gp((Pp)

gp)bp
∩ Qp = fp(Pp)bp.

Choose c ∈ Pp such that b′ = fp(c)bp (in (Qp)
gp
= Qgp). Then fp(c) f (a)= 1 and

hence f (a) ∈ Q∗q, which implies a ∈ P∗p . �

Proposition I.5.3. Let f : P→ Q be an integral morphism of finitely generated sat-
urated monoids. Let n be a positive integer and consider the following cocartesian
diagram in the category of saturated monoids:

Q′
g

←−−− Q

f ′
x f

x
P

n
←−−− P

Then:



SATURATED MORPHISMS OF LOGARITHMIC SCHEMES 203

(1) f ′ is integral.

Let q′ be a prime ideal of height 1 of Q′ and let p (resp. q) be the prime ideal
( f ′)−1(q′) (resp. g−1(q′)) of P (resp. Q). Then:

(2) ht(q)= 1 and f −1(q)= p.

Let nq′ be the ramification index of g at q′.

(3) If ht(p)= 0, then nq′ = 1.

(4) Suppose ht(p) = 1. If we denote by mq′ (resp. mq) the ramification index
of f ′ (resp. f ) at q′ (resp. q), we have mq′ = mq gcd(n,mq)

−1 and nq′ =

n gcd(n,mq)
−1.

Proof. (1) There exists a unique morphism h : Q′→ Q such that h ◦ f ′ = f and
h ◦ g = n. The morphism g ◦ h is the multiplication by n on Q′, which is exact.
Hence h is exact, and the claim follows from Proposition I.2.10.

(2) The second claim follows from the fact that the inverse image of p under n :
P → P is p. For any b ∈ Q′, bn

= g(h(b)) and, for any a1, a2 ∈ Q, g(a1) =

g(a2) implies an
1 = h(g(a1))= h(g(a2))= an

2 . Hence, the first claim follows from
Proposition I.1.4.

(3) The assumption ht(p)= 0 implies vq′(( f ′)gp(Pgp))= 0. Since Q′gp is generated
by ( f ′)gp(Pgp) and ggp(Qgp), we have

Z= vq′((Q′)gp)= vq′(( f ′)gp(Pgp))+ vq′(ggp(Qgp))= nq′vq(Qgp)= nq′Z.

Hence nq′ = 1.

(4) Since (Q′)gp
= ( f ′)gp(Pgp)ggp(Qgp), we have

Z= vq′((Q′)gp)= vq′(( f ′)gp(Pgp))+ vq′(ggp(Qgp))

= mq′vp(Pgp)+ nq′vq(Qgp)= mq′Z+ nq′Z.

Hence (mq′, nq′)= 1. On the other hand, since the ramification index of n : P→ P
at p is n, we have nq′mq = mq′n. The two equalities in (4) follow from these two
facts. �

Corollary I.5.4. Let f : P → Q, n and f ′ : P → Q′ be as in Proposition I.5.3.
Then f ′ is saturated if and only if n is divisible by the least common multiple
of the ramification indices of f at all prime ideals q of Q of height 1 such that
ht( f −1(q))= 1.

Proof. This follows from Proposition I.5.3 and Theorem I.5.1. �
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I.6. A criterion of saturated morphisms, II. In this section, we give several char-
acterizations of saturated morphisms of finitely generated saturated monoids; see
Theorem I.6.3.

Proposition I.6.1. Let f : P→ Q be a morphism of finitely generated saturated
monoids. If f is saturated, P∗ = {1}, Q∗ = {1}, f −1({1}) = {1} and dim(P) =
dim(Q), then f is an isomorphism.

Proof. By Proposition I.2.8, the morphism f gp
: Pgp

→ Qgp is injective. On the
other hand, rankZ(Pgp)= dim(P)= dim(Q)= rankZ(Qgp) by assumption. Hence
Qgp/ f gp(Pgp) is a finite group. Set G = Qgp/ f gp(Pgp) and define morphisms of
monoids g, h : Q → Q ⊕ G by g(b) = (b, 0) and h(b) = (b, b mod f gp(Pgp)).
Then the diagram of saturated monoids

Q⊕G Qh
oo

Q

g

OO

P
f

oo

f

OO

is cocartesian in the category of saturated monoids. Indeed, we see easily that
the diagram becomes cocartesian after taking the associated abelian groups and
that Q ⊕G is the saturated monoid associated to its submonoid h(Q)g(Q) (see
Definition II.2.2). Using Q∗ = {1}, we see h(Q)g(Q) ∩ G = {1}. On the other
hand, since f is saturated, h(Q)g(Q) = Q⊕G. Hence G = {1} and Pgp

= Qgp.
Since f is exact by Proposition I.2.8, P = Q. �

Corollary I.6.2. Let f : P → Q be a saturated morphism of finitely generated
saturated monoids. Let q be a prime ideal of Q and let p be the prime ideal f −1(q)

of P. If ht(q) = ht(p), then the morphism Pp/P∗p → Qq/Q∗q induced by f is an
isomorphism.

Proof. By Propositions I.3.16 and I.3.18, the morphism Pp/P∗p → Qq/Q∗q is satu-
rated. On the other hand, dim(Pp/P∗p )= ht(p)= ht(q)= dim(Qq/Q∗q). Hence the
claim follows from Proposition I.6.1. �

Theorem I.6.3. Let f : P → Q be an integral morphism of finitely generated
saturated monoids such that f −1(Q∗)= P∗. Set mP = P\P∗. Then the following
conditions are equivalent:

(1) f is saturated.

(2) There exists a prime p such that f is p-saturated.

(3) For any b∈ Q, if there exist a positive integer n and a ∈mP such that f (a) | bn ,
then there exists a′ ∈mP such that f (a′) | b.

(4) For any q ∈ Spec(Q) and p= f −1(q) ∈ Spec(P) such that ht(q)= ht(p), the
morphism Pp/P∗p → Qq/Q∗q induced by f is an isomorphism.
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(5) For any q ∈ Spec(Q) and p= f −1(q) ∈ Spec(P) such that ht(q)= ht(p)= 1,
the morphism Pp/P∗p → Qq/Q∗q induced by f is an isomorphism.

(6) For any q ∈ Spec(Q) such that f −1(q)=mP and ht(q)= ht(mP) (= dim(P)),
the morphism P/P∗→ Qq/Q∗q induced by f is an isomorphism.

(7) For any q ∈ Spec(Q) such that f −1(q)=mP and ht(q)= ht(mP) (= dim(P)),
q(Qq/Q∗q)= f (mP)(Qq/Q∗q).

(8) For any field k on which the order of the torsion part of Qgp/ f (P∗) is invert-
ible, k[Q/ f (P∗)]/ f (mP)k[Q/ f (P∗)] is reduced.

(9) There exists a field k such that k[Q/ f (P∗)]/ f (mP)k[Q/ f (P∗)] satisfies (R0).

Theorem I.6.4 [Hochster 1972]. For any finitely generated saturated monoid P
and any field k, the ring k[P] is Cohen–Macaulay.

Proposition I.6.5 (A part of [EGA IV2 1965, Corollaire (6.3.5)]). Let f : X→ Y
be a flat morphism of locally noetherian schemes. Let x ∈ X and y = f (x). If OX,x

is Cohen–Macaulay, then OX,x ⊗OY,y k(y) and OY,y are Cohen–Macaulay.

Corollary I.6.6. Let f : P → Q be an integral morphism of finitely generated
saturated monoids such that f −1(Q∗)= P∗ = {1}. Then, for any field k, the ring
k[Q]/ f (P\{1})k[Q] is Cohen–Macaulay.

Proof. By Propositions I.2.8 and I.2.1, the homomorphism k[P] → k[Q] induced
by f is flat. Hence, the claim follows from Theorem I.6.4 and Proposition I.6.5. �

Lemma I.6.7. Let P be a finitely generated saturated monoid. Then, the surjective
morphism P→ P/P∗ has a section s : P/P∗→ P, which induces an isomorphism
(s, ι) : P/P∗⊕ P∗ ∼= P , where ι is the inclusion P∗ ↪→ P.

Proof. Since P is saturated, Pgp/P∗ is torsion-free and the surjective homomor-
phism Pgp

→ Pgp/P∗ has a section t : Pgp/P∗ → Pgp. It is easy to see that
t (P/P∗)⊂ P and the restriction of t on P/P∗ gives a desired morphism. �

Lemma I.6.8. Let P be a finitely generated integral monoid. Then, for any field k,
the dimension of every irreducible component of Spec(k[P]) is rankZ(Pgp).

Proof. Let a1, a2, . . . , an be a set of generators of P . Then Spec(k[Pgp
]) =

Spec(k[P]a1···an ). Since P is integral, a1 · · · an is a nonzero divisor in k[P]. Hence
the generic point of every irreducible component of Spec(k[P]) is contained in
Spec(k[Pgp

]). Therefore we may assume P = Pgp. Then P ∼= Zr
⊕ C with C

a finite group and k[P] is isomorphic to k[T±1
1 , . . . , T±1

r ] ⊗k k[C], where r =
rankZ Pgp. Hence Spec(k[P])red is a finite disjoint union of schemes of the form
Spec(k ′[T±1

1 , . . . , T±1
r ]) with k ′ finite extensions of k. �

Proposition I.6.9. Let P be a finitely generated saturated monoid and let k be
a field. Set X = Spec(k[P]). Let x ∈ X and let p be the inverse image of the
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maximal ideal of OX,x in P (which is a prime ideal of P). Then ht(p)≤ dim(OX,x).
The equality holds if and only if x is of codimension 0 in the closed subscheme
Y = Spec(k[P]/pk[P]) of X. Furthermore, if the order of the torsion part of
Pgp is invertible in k and ht(p) = dim(OX,x), then the maximal ideal of OX,x is
generated by the image of p.

Proof. Let U be the open subscheme Spec(k[Pp]) of X . Then, the point x is con-
tained in the closed subscheme V =Spec(k[Pp]/pk[Pp]) of U. Note that the scheme
V is an open subscheme of Y . By Lemma I.6.7, Pp

∼= Pp/P∗p ⊕ P∗p and pPp corre-
sponds to {(a, b)∈ Pp/P∗p ⊕P∗p | a 6= 1}. Hence V ∼=Spec(k[P∗p ]). By Lemma I.6.8,
dim(OX,x) ≥ rankZ(Pgp)− rankZ(P∗p )= rankZ(P

gp
p /P∗p )= dim(Pp)= ht(p), and

the equality holds if and only if x is of codimension 0 in V, or, equivalently in Y.
Suppose that the order of the torsion part of Pgp is invertible in k. Then V is a
finite disjoint union of regular schemes. Hence, if x is of codimension 0 in V, the
maximal ideal of OX,x is generated by the image of p. �

Proof of Theorem I.6.3. The implications (1)⇒ (2), (4)⇒ (5), (4)⇒ (6), (6)⇒ (7)
and (8)⇒ (9) are trivial. It follows from Corollary I.4.5 that (2)⇒ (1). Since Q
is saturated, f satisfies the condition (i) in Theorem I.4.2. Hence the equivalence
between (2) and (3) follows from Theorem I.4.2. It follows from Corollary I.6.2
that (1)⇒ (4) and from Theorem I.5.1 that (5)⇒ (1). Now it suffices to prove
(7)⇒ (8) and (9)⇒ (3).

(7)⇒ (8): Let k be a field satisfying the assumption in (8). The morphism g :
P/P∗→ Q/ f (P∗) induced by f is integral,

g−1((Q/ f (P∗))∗)= g−1(Q∗/ f (P∗))= {1} = (P/P∗)∗

and Qgp/ f (P∗) ∼= (Q/ f (P∗))gp. Furthermore, if f satisfies (7), then g also
satisfies (7). Hence, we may assume P∗ = {1}. By Corollary I.6.6, the ring
k[Q]/ f (mP)k[Q] is Cohen–Macaulay, in particular, it satisfies (S1). Hence it suf-
fices to prove that the ring k[Q]/ f (mP)k[Q] satisfies (R0). Set Y = Spec(k[Q]),
X = Spec(k[P]), and Z = Spec(k[Q]/ f (mP)k[Q]). By Propositions I.2.8 and
I.2.1, the morphism Y → X induced by f is flat. Let y be a point of Z of
codimension 0 and let x be the image of y in X , which is the closed point de-
fined by the maximal ideal mPk[P] of k[P]. Since Y is flat over X and Z is
the fiber over x , we have dim(OX,x) = dim(OY,y). Let q be the inverse image of
the maximal ideal of OY,y in Q. Since the inverse image of the maximal ideal
of OX,x in P is mP , we have f −1(q) = mP . By Proposition I.6.9, we have
ht(q)≤ dim(OY,y) and ht(mP)= dim(OX,x). On the other hand, by Corollary I.2.9,
we have ht(mP)≤ ht(q). Hence ht(mP)= ht(q)= dim(OX,x)= dim(OY,y). Since
the order of the torsion part of Qgp is invertible in k, the maximal ideal of OY,y is
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generated by the image of q by Proposition I.6.9. Therefore, if f satisfies the con-
dition (7), then qQq = f (mP)Qq and hence the maximal ideal of OY,y is generated
by the image of f (mP), that is, Z is regular at y.

(9) ⇒ (3): Let g be as in the proof of (7) ⇒ (8). By Proposition I.3.16 and
(1)⇔ (3), we may replace f by g and assume P∗ = {1}. Then, by Corollary I.6.6,
k[Q]/ f (mP)k[Q] is Cohen–Macaulay, so it satisfies (S1). Hence, if f satisfies (9),
then k[Q]/ f (mP)k[Q] is reduced. Let b ∈ Q, let n be a positive integer, and
suppose that there exists a ∈ mP such that f (a) | bn . Then bn

∈ f (mP)k[Q]. If
k[Q]/ f (mP)k[Q] is reduced, then b ∈ f (mP)k[Q]. Hence, b ∈ f (mP)Q. In other
words, there exists a′ ∈mP such that f (a′) | b. �

II. Saturated morphisms of log schemes

II.1. Preliminaries on log schemes. In this section, we prove some fundamental
properties on log schemes.

Lemma II.1.1. Let f1 : M0→ M1 and f2 : M0→ M2 be morphisms of log struc-
tures on a scheme X and let M3 be the pushout of the diagram M1←−

f1 M0 −→
f2 M2

as sheaves of monoids.

(1) The sheaf of monoids M3 endowed with the morphism M3→OX induced by
the structure morphisms M0,M1,M2→OX , is a log structure on X.

(2) The following diagram of sheaves of monoids is cocartesian:

M3/O∗X ←−−− M1/O∗Xx x
M2/O∗X ←−−− M0/O∗X

Proof. Let αi denote the structure morphism Mi →OX for i = 0, 1, 2, 3 and let g1

and g2 denote the canonical morphisms M1→ M3 and M2→ M3 respectively.

(1) First note M3 = g1(M1)g2(M2). Take a1 ∈ M1 and a2 ∈ M2 and assume
α3(g1(a1)g2(a2)) ∈O∗X . Then

α1(a1)= α3(g1(a1)) ∈O∗X and α2(a2)= α3(g2(a2)) ∈O∗X ,

that is, a1 ∈ α
−1
1 (O∗X ) and a2 ∈ α

−1
2 (O∗X ). Let a be the unique section of α−1

0 (O∗X )
such that α0(a)=α2(a2). Then, since f2(a)=a2, we have g1( f1(a))= g2( f2(a))=
g2(a2). Hence g1(a1)g2(a2)= g1(a1 f1(a)) ∈ g1(α

−1
1 (O∗X )). Thus we obtain

α−1
3 (O∗X )= g1(α

−1
1 (O∗X )),

which implies that the morphism α−1
3 (O∗X )→O∗X induced by α3 is an isomorphism.



208 TAKESHI TSUJI

(2) Consider the following two diagrams of sheaves of monoids:

M3/O∗X ←−−− M3
g2
←−−− M2x g1

x f2

x
M1/O∗X ←−−− M1

f1
←−−− M0

M3/O∗X ←−−− M2/O∗X ←−−− M2x x f2

x
M1/O∗X ←−−− M0/O∗X ←−−− M0

The two squares of the first diagram are cocartesian. Hence the outer square of
the second diagram is cocartesian. Since the left square of the second diagram is
cocartesian, the right one is also cocartesian. �

Proposition II.1.2. Consider a cartesian diagram in the category of log schemes:

(Z ,MZ )
h

−−−→ (Y,MY )

k

y g
y

(X,MX )
f

−−−→ (S,MS)

Take z ∈ Z and let x, y and s be the images of z in X , Y and S respectively. Then,
the diagram of monoids

(MZ/O∗Z )z̄ ←−−− (MY /O∗Y )ȳx x
(MX/O∗X )x̄ ←−−− (MS/O∗S)s̄

induced by the above diagram of log schemes is cocartesian in the category of
monoids.

Proof. Let M be the pushout of the diagram

k∗(MX )← ( f ◦ k)∗(MS)= (g ◦ h)∗(MS)→ h∗(MY )

as sheaves of monoids. Then M endowed with the morphism M→ OZ induced
by the structure morphisms k∗(MX )→ OZ and h∗(MY )→ OZ is a log structure
by Lemma II.1.1 (1). One can verify that (Z ,M) satisfies the universal property
of fiber products. Hence MZ ∼= M . Now the claim follows from Lemma II.1.1 (2)
and [Kato 1989, (1.4.1)]. �

Proposition II.1.3 [Kato 1989, Example (2.5)(2)]. Let k be an algebraically closed
field. Let M be an integral log structure on s = Spec(k) and set P = 0(s,M/O∗s ).
Then, there exists a section α of the projection 0(s,M)→ P. Furthermore, such a
section induces an isomorphism of log structures (Ps)

a
−→∼ M.

Proof. Since 0(s,Mgp)/k∗ ∼= Pgp and k∗ is divisible and hence injective as a Z-
module, the projection 0(s,Mgp)→ Pgp has a section α. One sees easily α(P)⊂
0(s,M). One can also verify that the morphism (1, α) : k∗⊕ P→ 0(s,M) is an
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isomorphism and the image of α(P\{1}) under 0(s,M)→ k is 0. These imply
that α induces an isomorphism (Ps)

a
−→∼ M . �

Proposition II.1.4. Let (X,MX ) be a fine log scheme and let α : PX → MX be a
chart of MX . Let x ∈ X and let p be the inverse image of the maximal ideal of OX,x̄

under the morphism P −→αx̄ (MX )x̄ →OX,x̄ , which is a prime ideal of P. Then:

(1) The morphism α induces an isomorphism Pp/P∗p −→∼ (MX/O∗X )x̄ .

(2) Let U be the maximal open subscheme of X on which the image of every
element of P\p under P→0(X,MX )→0(X,OX ) becomes invertible. (Note
that P\p is finitely generated.) Then, the chart α induces a chart (Pp)U→MU

of the restriction MU of MX on U.

Proof. (1) By the definition of associated log structures, the diagram of monoids

P\p −−−→ P

αx̄

y αx̄

y
O∗X,x̄ −−−→ MX,x̄

is cocartesian. Hence αx̄ induces an isomorphism P/(P\p)−→∼ (MX/O∗X )x̄ . Since
the image of P\p in MX,x̄ is contained in O∗X,x̄ , this isomorphism factors as

P/(P\p)→ Pp/P∗p → (MX/O∗X )x̄ .

One sees easily that the first morphism is an isomorphism and hence the second
one is also an isomorphism.

(2) Since the image of P\p in 0(U,MU ) is contained in 0(U,O∗U ), the morphism
α induces a morphism β : (Pp)U → MU . Let x ∈U and let q be the inverse image
of the maximal ideal of OU,x̄ in Pp and set r = P ∩ q. By (1) and the fact that
MX is integral, it suffices to prove that the morphism (Pp)q/(Pp)

∗
q→ (MU/O∗U )x̄

induced by β is an isomorphism. This follows from Pr = (Pp)q and the fact that α
induces an isomorphism Pr/P∗r ∼= (MX/O∗X )x̄ by (1). �

II.2. p-saturated log schemes and p-saturated morphisms.

Definition II.2.1. Let p be a prime. Let MX be a log structure on a scheme X . We
say the log structure MX is p-saturated (resp. saturated) if 0(U,MX ) is p-saturated
(resp. saturated) for every étale X -scheme U. We call a scheme with a p-saturated
(resp. saturated) log structure a p-saturated (resp. saturated) log scheme.

Note that p-saturated (resp. saturated) log structures are integral. We see easily
that a log scheme (X,MX ) is p-saturated (resp. saturated) if and only if MX,x̄ is
p-saturated (resp. saturated) for every point x ∈ X and that an integral log scheme
(X,MX ) is p-saturated (resp. saturated) if and only if (MX/O∗X )x̄ ∼= MX,x̄/O∗X,x̄ is
p-saturated (resp. saturated) for every point x ∈ X .
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Definition II.2.2. Let p be a prime and let P be an integral monoid. We define
P p-sat, the p-saturated monoid associated to P , and Psat, the saturated monoid
associated to P , by

P p-sat
= {a ∈ Pgp

| there exists an integer m ≥ 0 such that a pm
∈ P},

Psat
= {a ∈ Pgp

| there exists an integer n ≥ 1 such that an
∈ P}.

Proposition II.2.3. Let p be a prime. The functor from the category of integral
monoids to the category of p-saturated monoids (resp. saturated monoids) associ-
ating P p-sat (resp. Psat) to P is a left adjoint of the forgetful functor.

Proof. Straightforward. �

Proposition II.2.4. Let p be a prime and let P be a finitely generated integral
monoid. Then P p-sat (resp. Psat) is finitely generated.

Proof. It suffices to prove that Q[P p-sat
] and Q[Psat

] are finitely generated Q[P]-
modules. Let P and P ′ be the image of P and Psat in Pgp/(Pgp)tor, where (Pgp)tor

denotes the torsion part of Pgp. Then, Q[P] is a noetherian integral domain and
Q[P ′] is contained in the integral closure of Q[P], which is finite over Q[P].
Hence Q[P ′] is a finitely generated Q[P]-module. Since Psat

⊃ (Pgp)tor, this
implies that Q[Psat

] is finitely generated over Q[P] and its submodule Q[P p-sat
]

is also finitely generated. �

Proposition II.2.5. Let p be a prime. Let Q be the pushout of a diagram of
monoids P← S→ G. Suppose P is integral (resp. p-saturated, resp. saturated)
and G is a group. Then, Q is integral (resp. p-saturated, resp. saturated). In
particular, if S is integral (resp. p-saturated, resp. saturated), then Q is also the
pushout in the category of integral (resp. p-saturated, resp. saturated) monoids.

Proof. Straightforward, using [Kato 1989, (1.3) Remark]. �

Corollary II.2.6. Let p be a prime. Let f : X → Y be a morphism of schemes
and let MY be a log structure on Y. If MY is p-saturated (resp. saturated), then
f ∗(MX ) is p-saturated (resp. saturated).

Proposition II.2.7. Let p be a prime and let (X,MX ) be a fine p-saturated (resp.
fine saturated) log scheme. Let α : PX→ MX be a chart of MX . Then the morphism
β : P p-sat

X → MX (resp. β : Psat
X → MX ) induced by α is also a chart of MX .

Proof. Let P ′ be P p-sat (resp. Psat). Let αa and βa be the morphisms of log
structures (PX )

a
→ MX and (P ′X )

a
→ MX induced by α and β, respectively. The

morphism αa is an isomorphism by assumption, and we want to prove that βa is
an isomorphism. Let γ be the composition of (αa)−1

: MX −→
∼ (PX )

a and the
morphism of log structures (PX )

a
→ (P ′X )

a induced by the canonical morphism
P→ P ′. Let δ be the composition PX→ P ′X→ (P ′X )

a . Then we have γ ◦βa
◦δ= δ
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and βa
◦ γ ◦ α = α. By using the universality of associated log structures and

Proposition II.2.3, we see that γ ◦βa and βa
◦ γ are the identity maps. �

Corollary II.2.8. Let p be a prime and let (X,MX ) be a fine log scheme. Then
MX is p-saturated (resp. saturated) if and only if , étale locally on X , there exists
a chart PX → MX such that P is p-saturated (resp. saturated).

Proof. The necessity follows from Proposition II.2.7. The sufficiency follows from
the definition of associated log structures and Proposition II.2.5. �

Proposition II.2.9. Let (X,MX ) be a fine saturated log scheme. Then, for any
x ∈ X , there exists a chart PU → MX |U for an étale neighborhood U of x which
induces an isomorphism P ∼= (MX/O∗X )x̄ .

Proof. Set P = (MX/O∗X )x̄ ∼= MX,x̄/O∗X,x̄ . Since P is a finitely generated saturated
monoid such that P∗ = {1}, Pgp is a finitely generated free abelian group. Hence
there exists a section s : P → MX,x̄ of the projection MX,x̄ → P. We see easily
that the inverse image of MX,x̄ under the morphism sgp

: Pgp
→ Mgp

X,x̄ is P. Hence,
by [Kato 1989, Lemma (2.10)], the section s is extended to a chart PU → MX |U

for an étale neighborhood U of x . �

Definition II.2.10. Let p be a prime. We say a morphism of integral log schemes
f : (X,MX )→ (Y,MY ) is p-saturated (resp. saturated) if, for every x ∈ X and
y= f (x)∈Y , the morphism (MY /O∗Y )ȳ→ (MX/O∗X )x̄ induced by f is p-saturated
(resp. saturated).

Note that p-saturated morphisms and saturated morphisms are integral and that
a morphism of integral log schemes is saturated if and only if it is p-saturated for
every prime p.

Proposition II.2.11. Let p be a prime.

(1) Let f : (X,MX )→ (Y,MY ) and g : (Y,MY )→ (Z ,MZ ) be morphisms of
integral log schemes. If f and g are p-saturated (resp. saturated), then g ◦ f
is also p-saturated (resp. saturated).

(2) Let f : (X,MX ) → (Y,MY ) and g : (Y ′,MY ′) → (Y,MY ) be morphisms
of integral log schemes. If f is p-saturated (resp. saturated), then the base
change f ′ : (X ′,MX ′)→ (Y ′,MY ′) of f by g in the category of log schemes,
is also p-saturated (resp. saturated).

Proof. The claim (1) follows from Propositions I.2.3 (1) and I.3.6 (1), and (2) fol-
lows from Propositions II.1.2, I.2.3 (2) and I.3.6 (2). �

Proposition II.2.12. Let p be a prime. Let f : (X,MX )→ (Y,MY ) be a morphism
of integral log schemes. If f is p-saturated (resp. saturated) and MY is p-saturated
(resp. saturated), then MX is p-saturated (resp. saturated).
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Proof. Take x ∈ X and y = f (x) ∈ Y. If MY is p-saturated (resp. saturated), then
(MY /O∗Y )ȳ is p-saturated (resp. saturated). Hence, by Proposition I.3.9, if f is p-
saturated (resp. saturated), then (MX/O∗X )x̄ is p-saturated (resp. saturated). Since
MX is integral, this implies that (MX )x̄ is p-saturated (resp. saturated). �

Proposition II.2.13. Let p be a prime.

(1) Let f : (X,MX )→ (Y,MY ) be an integral morphism of p-saturated (resp.
saturated) log schemes. Then f is p-saturated (resp. saturated) if and only if ,
for any p-saturated (resp. saturated) log scheme (Y ′,MY ′) and any morphism
g : (Y ′,MY ′)→ (Y,MY ), the base change (X ′,MX ′) of (X,MX ) by g in the
category of log schemes is p-saturated (resp. saturated).

(2) Let f : (X,MX )→ (Y,MY ) be an integral morphism of fine and p-saturated
(resp. saturated) log schemes. Then f is p-saturated (resp. saturated) if and
only if , for any fine and p-saturated (resp. saturated) log scheme (Y ′,MY ′)

and any morphism g : (Y ′,MY ′)→ (Y,MY ), the base change (X ′,MX ′) of
(X,MX ) by g in the category of log schemes is p-saturated (resp. saturated).

Proof. The necessity follows from Propositions II.2.11 (2) and II.2.12. Let us prove
the sufficiency. Let f : (X,MX )→ (Y,MY ) be an integral morphism of integral log
schemes. Take x ∈ X and y= f (x)∈ Y. Let k be an algebraic closure of the residue
field of Y at y and set ȳ := Spec(k). Let N be the inverse image of MY under the
canonical morphism i ȳ : ȳ→ Y. Then, by Proposition II.1.3, there exists a section
α of the projection 0(ȳ, N )→ 0(ȳ, N )/k∗ =: P , which induces an isomorphism
(Pȳ)

a ∼= N . Let n be a positive integer and define a morphism g : (ȳ, N )→ (ȳ, N )
by the multiplication by n on P and the identity on k. Let (X ′,MX ′) be the base
change of (X,MX ) by the morphism i ȳ ◦ g : (ȳ, N )→ (Y,MY ). Let x ′ be a point
on X ′ whose image in X is x . Then, by Proposition II.1.2, the following diagram
of monoids is cocartesian:

(MX ′/O∗X ′)x̄ ′ (MX/O∗X )x̄oo

P = N ȳ/k∗

OO

P = N ȳ/k∗ = (MY /O∗Y )ȳ
n

oo

OO

If MX , MY and MX ′ are p-saturated (resp. saturated), then the log structure N
is p-saturated (resp. saturated) and the monoids (MX/O∗X )x̄ , (MY /O∗Y )ȳ , P and
(MX ′/O∗X ′)x̄ ′ are p-saturated (resp. saturated). Now the claim (1) follows from
Propositions I.3.13 and I.3.14. The claim (2) follows from the same propositions
and the fact that N is fine if MY is fine. �

Proposition II.2.14. Let p be a prime and let f : (X,MX )→ (Y,MY ) be a mor-
phism of integral log schemes over Fp. Then f is p-saturated if and only if f is of
Cartier type.
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Proof. This follows from Proposition II.1.2 and the fact that, for x ∈ X and
y = f (x) ∈ Y , the absolute Frobenius of (X,MX ) (resp. (Y,MY )) induces the
multiplication by p on (MX/O∗X )x̄ (resp. (MY /O∗Y )ȳ). �

II.3. Some properties of saturated morphisms.

Theorem II.3.1. Let p and q be two different primes. Let f : (X,MX )→ (Y,MY )

be a morphism of fine log schemes. If f is p-saturated and MX is q-saturated, then
f is q-saturated.

Proof. This follows from Corollary I.4.5. �

By Proposition II.2.14, this theorem implies that a morphism of fine saturated
log schemes over Fp is of Cartier type if and only if it is saturated. This is an
unpublished result of K. Kato.

Definition II.3.2. We say a morphism of log schemes f : (X,MX )→ (Y,MY ) is
vertical if, for every x ∈ X and y = f (x) ∈ Y, the morphism MY,ȳ→ MX,x̄ induced
by f is vertical (Definition I.4.6), or equivalently, the morphism (MY /O∗Y )ȳ →

(MX/O∗X )x̄ induced by f is vertical.

Theorem II.3.3. Let p be a prime and let f : (X,MX )→ (Y,MY ) be a morphism
of fine log schemes. If f is p-saturated and vertical, then f is saturated.

Proof. This follows from Corollary I.4.7. �

Theorem II.3.4. Let f : (X,MX ) → (Y,MY ) be an integral morphism of fine
saturated log schemes and assume that we are given a chart β : QY → MY of
MY with Q saturated. If X is quasi-compact, then there exists a positive integer n
satisfying the following property: Define a fine saturated log scheme (Y ′,MY ′) to
be

(Y,MY )×(Spec(Z[Q]),can. log),g (Spec(Z[Q]), can. log),

where g : (Spec(Z[Q]), can. log)→ (Spec(Z[Q]), can. log) denotes the morphism
induced by the multiplication by n on Q. Then, the base change f ′ : (X ′,MX ′)→

(Y ′,MY ′) of f by the projection (Y ′,MY ′)→ (Y,MY ) in the category of fine satu-
rated log schemes is saturated.

Proof. Note first that the question is étale local on Y and on X . So we may assume
that there exists a chart (α : PX→MX , β, h :Q→ P) of the morphism f . Take x ∈ X
and y= f (x)∈ Y. Let p (resp. q) be the inverse image of the maximal ideal of OX,x̄

(resp. OY,ȳ) in P (resp. Q), which is a prime ideal. Since ((Q\q)n)−1 Q ∼= Qq, we
may replace P , Q by Pp, Qq using Proposition II.1.4, and assume that α (resp. β)
induces an isomorphism P/P∗ ∼= (MX/O∗X )x̄ (resp. Q/Q∗ ∼= (MY /O∗Y )ȳ). Since
MX is saturated and P is integral, P is saturated by Lemma I.3.15. Furthermore,
since the morphism (MY /O∗Y )ȳ→ (MX/O∗X )x̄ is integral by assumption, the mor-
phism h : Q→ P is integral by Proposition I.2.5. Now we can apply Corollary I.5.4
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to h : Q→ P and find a positive integer n satisfying the following property: If
we denote by P ′ the pushout of the diagram Q ←−n Q −→h P in the category of
monoids, then the canonical morphism h′ : Q→ P ′→ (P ′)sat is saturated. We
assert that this n is the desired integer. Let (X ′′,MX ′′) be the base change of (X,M)
by (Y ′,MY ′)→ (Y,MY ) in the category of log schemes. Then, since the diagram
of log schemes

(Spec(Z[P ′]), can. log) −−−→ (Spec(Z[P]), can. log)y y
(Spec(Z[Q]), can. log)

g
−−−→ (Spec(Z[Q]), can. log)

is cartesian, the three strict morphisms

(X,MX )→ (Spec(Z[P]), can. log), (Y,MY )→ (Spec(Z[Q]), can. log),

(Y ′,MY ′)→ (Spec(Z[Q]), can. log)

induce a strict morphism (X ′′,MX ′′)→ (Spec(Z[P ′]), can. log) and hence a strict
morphism (X ′,MX ′)→ (Spec(Z[(P ′)sat

], can. log)). (Recall that we say a mor-
phism of log schemes ϕ : (S,MS)→ (T,MT ) is strict if the morphism ϕ∗(MT )→

MS is an isomorphism.) Thus, we obtain a chart(
((P ′)sat)X ′→ MX ′, QY ′→ MY ′, h′ : Q→ (P ′)sat)

of f ′ such that h′ is saturated. Now the claim follows from Lemma II.3.5 below. �

Lemma II.3.5. Let f : (X,MX )→ (Y,MY ) be a morphism of fine saturated log
schemes. Suppose that there exists a chart (α : PX→MX , β :QY→MY , h :Q→ P)
of f such that P and Q are saturated and h is saturated. Then, the morphism f is
saturated.

Proof. Take x ∈ X and y = f (x) ∈ Y. Let p (resp. q) be the inverse image of
the maximal ideal of OX,x̄ (resp. OY,ȳ) in P (resp. Q), which is a prime ideal.
Then, by Proposition II.1.4 (1), the morphism α (resp. β) induces an isomorphism
Pp/P∗p ∼= (MX/O∗X )x̄ (resp. Qq/Q∗q ∼= (MY /O∗Y )ȳ). Since the morphism Qq/Q∗q→
Pp/P∗p induced by h is saturated by Propositions I.3.16 and I.3.18, the morphism
(MY /O∗Y )ȳ→ (MX/O∗X )x̄ induced by f is saturated. �

II.4. Criteria of saturated morphisms.

Proposition II.4.1. Let f : (X,MX )→ (Y,MY ) be a smooth integral morphism
of fine saturated log schemes. Then, every fiber of the underlying morphism of
schemes of f is Cohen–Macaulay.

Proof. First note that the question is étale local on X and on Y. Take x ∈ X
and y = f (x) ∈ Y. By Proposition II.2.9, we may assume that we have a chart
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β : QY → MY which induces an isomorphism Q ∼= (MY /O∗Y )ȳ . By [Kato 1989,
Theorem (3.5)], we may assume that, there exists a chart of f ,

(α : PX → MX , β : QY → MY , h : Q→ P),

such that h is injective, the order of the torsion part of the cokernel of hgp
:

Qgp
→ Pgp is invertible on X and the morphism X → Y ×Spec(Z[Q]) Spec(Z[P])

induced by the chart is étale. Let p be the inverse image of the maximal ideal of
OX,x̄ in P. By Proposition II.1.4, we may replace P by Pp and assume that α
induces an isomorphism P/P∗ ∼= (MX/O∗X )x̄ . Since P is integral and P/P∗ ∼=
(MX/O∗X )x̄ is saturated, P is saturated by Lemma I.3.15. Since the morphism
(MY /O∗Y )ȳ→ (MX/O∗X )x̄ induced by f is integral by assumption, the morphism
h is integral by Proposition I.2.5. Furthermore, we have h−1(P∗) = Q∗ = {1}.
Hence, by Corollary I.6.6, the ring k[P]/h(Q\{1})k[P] is Cohen–Macaulay for
any field k. If we choose the residue field of Y at y as k, then we have an étale
morphism f −1(y)→ Spec(k[P]/h(Q\{1})k[P]) by the choice of the chart. Hence
f −1(y) is Cohen–Macaulay. �

Theorem II.4.2. Let f : (X,MX )→ (Y,MY ) be a smooth integral morphism of
fine saturated log schemes. Then the following conditions are equivalent:

(1) f is saturated.

(2) There exists a prime p such that f is p-saturated.

(3) Every fiber of the underlying morphism of schemes of f is reduced.

(4) Every fiber of the underlying morphism of schemes of f satisfies (R0).

Proof. By Theorem II.3.1, (1) and (2) are equivalent. By Proposition II.4.1, (3)
and (4) are equivalent. We will prove that (1) and (3) are equivalent.

Take x ∈ X and y = f (x) ∈ Y. As in the proof of Proposition II.4.1, we may
assume that there exists a chart (α : PX → MX , β : QY → MY , h : Q→ P) of the
morphism f such that hgp

: Qgp
→ Pgp is injective, the order of the torsion part of

the cokernel of hgp is invertible on X , the morphism X→ Y ×Spec(Z[Q])Spec(Z[P])
induced by the chart is étale, and the morphism α (resp. β) induces an isomorphism
P/P∗ ∼= (MX/O∗X )x̄ (resp. Q ∼= (MY /O∗Y )ȳ). Furthermore, as in the proof of
Proposition II.4.1, these properties imply that P and Q are saturated, the morphism
h is integral, and h−1(P∗)= Q∗ = {1}. We also see that Qgp is torsion-free, and
the order of the torsion part of Pgp is invertible on X .

(1)⇒ (3): We will prove that f −1(y) is reduced. Since (MY /O∗Y )ȳ→ (MX/O∗X )x̄
is saturated, the morphism h : Q→ P is saturated by Proposition I.3.16. Let k be
the residue field of Y at y. Then the scheme Spec(k[P]/h(Q\{1})k[P]) is reduced,
by Theorem I.6.3. Since f −1(y) is étale over the last scheme by the choice of the
chart, the scheme f −1(y) is also reduced.
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(3)⇒ (1): We will prove that the morphism (MY /O∗Y )ȳ → (MX/O∗X )x̄ induced
by f is saturated. Let k be the residue field of Y at y. Then, by the choice of the
chart, the morphism f −1(y)→ Spec(k[P]/h(Q\{1})k[P]) induced by the chart
is étale. Let P be the quotient P/P∗ and let h̄ : Q→ P be the morphism induced
by h : Q → P. Then, P∗ = {1}, h̄−1(P∗) = Q∗(= {1}), and the morphism h̄ is
integral (Proposition I.2.5). By the choice of the chart of f , we have the following
commutative diagram whose horizontal arrows are isomorphisms:

(MX/O∗X )x̄
∼
←−−− Px f ∗x̄

xh̄

(MY /O∗Y )ȳ
∼
←−−− Q

Hence, by Theorem I.6.3, it suffices to prove that the scheme

Z := Spec(k[P]/h̄(Q\{1})k[P])

satisfies (R0). Choose a section s : P → P of the projection P → P . Such a
section exists and it induces an isomorphism (ι, s) : P∗⊕ P −→∼ P by Lemma I.6.7.
We have h(Q\{1})k[P] = s ◦ h̄(Q\{1})k[P] because, for any b ∈ Q, there exists
a ∈ P∗ such that h(b)= s ◦ h̄(b)a. On the other hand, we see that the morphism
Spec(k[P]/s ◦ h̄(Q\{1})k[P])→ Z = Spec(k[P]/h̄(Q\{1})k[P]) induced by s is
smooth as follows. Since the order of the torsion part of P∗(⊂ Pgp) is invertible
on k, Spec(k[P∗]) is smooth over k and hence Spec(k[P])∼= Spec(k[P∗]⊗k k[P])
is smooth over Spec(k[P]). Now we have smooth morphisms

f −1(y)−→ Spec(k[P]/h(Q\{1})k[P])= Spec(k[P]/s ◦ h̄(Q\{1})k[P])

−→ Z = Spec(k[P]/h̄(Q\{1})k[P]).

Since f −1(y) is reduced by assumption, Z is reduced on an open neighborhood of
the image x0 of x . In fact, x0 is the closed point defined by the ideal generated by
P\{1} because we have s(P\{1})⊂ P\P∗ and the image of P\P∗ in OX,x̄ under
αx̄ : P→OX,x̄ is contained in the maximal ideal. Hence, by Lemma II.4.3 below,
the scheme Z satisfies (R0). �

Lemma II.4.3. Let P be a finitely generated integral monoid such that Pgp is
torsion-free, and let I be an ideal of P. Let k be a field. Then, for any point z of
codimension 0 of the scheme Z := Spec(k[P]/I k[P]), {z} contains the underlying
set of the closed subscheme Spec(k[P]/(P\P∗)k[P]) of Z.

Proof. Let p be the inverse image of the maximal ideal of OZ ,z in P , which
obviously contains I . Then we have p ⊂ P\P∗, and z is of codimension 0 in
the closed subscheme Spec(k[P]/pk[P]) of Z . Hence the claim follows from
Sublemma II.4.4 below. �
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Sublemma II.4.4. Let P be a finitely generated integral monoid such that Pgp is
torsion-free. Then, for any prime ideal p of P and any field k, the ring k[P]/pk[P]
is an integral domain.

Proof. The morphism of monoids P\p→ P induces an isomorphism k[P\p] −→∼

k[P]/pk[P]. The ring k[P\p] is a subring of k[(P\p)gp
], and k[(P\p)gp

] is an
integral domain because (P\p)gp is torsion-free by assumption. �

Definition II.4.5 (cf. [Kato 1994, (2.1) Definition]). Let (X,MX ) be a fine satu-
rated log scheme such that X is locally noetherian. We say (X,MX ) is regular at
x ∈ X if OX,x̄/Ix̄OX,x̄ is regular and

dim(OX,x̄)= dim(OX,x̄/Ix̄OX,x̄)+ rankZ((M
gp
X /O

∗

X )x̄),

where Ix̄ = MX,x̄\O∗X,x̄ and Ix̄OX,x̄ denotes the ideal of OX,x̄ generated by the
image of Ix̄ . We say (X,MX ) is regular if (X,MX ) is regular at every point x ∈ X .

Lemma II.4.6. Let (X,MX ) be a fine saturated log scheme such that X is locally
noetherian, and assume that we are given a chart PX → MX with P saturated.
Let MZar

X be the log structure on the Zariski site [Kato 1994, §1] associated to
P→ 0(X,MX )→ 0(X,OX ). Then, for any x ∈ X , (X,MX ) is regular at x if and
only if (X,MZar

X ) is regular [Kato 1994, (2.1) Definition] at x.

Proof. Let p be the inverse image of the maximal ideal of OX,x̄ in P. Then p is also
the inverse image of the maximal ideal of OX,x because the morphism OX,x→OX,x̄

is local. Hence, by Proposition II.1.4 and the corresponding fact for log structures
in Zariski topology, the canonical morphisms PX → MX on X ét and PX → MZar

X
on XZar induce isomorphisms Pp/P∗p ∼= MX,x̄/O∗X,x̄ and Pp/P∗p ∼= MZar

X,x/O
∗

X,x . In
particular rankZ((M

gp
X /O

∗

X )x̄) = rankZ(((MZar
X )gp/O∗X )x). On the other hand, if

we set Ix̄ = MX,x̄\O∗X,x̄ and Ix = (MZar
X )x\O∗X,x , we have Ix̄OX,x̄ = pOX,x̄ and

IxOX,x = pOX,x . Hence OX,x̄/Ix̄OX,x̄ is the strict henselization of OX,x/IxOX,x .
So OX,x̄/Ix̄OX,x̄ is regular if and only if OX,x/IxOX,x is regular. Now the lemma
is a direct consequence of the definition. �

Theorem II.4.7 (cf. [Kato 1994, (4.1) Theorem]). Let (X,MX ) be a fine saturated
log scheme. If (X,MX ) is regular, then X is Cohen–Macaulay and normal.

Proof. Since the question is étale local on X , the proposition follows from [Kato
1994, (4.1) Theorem], Lemma II.4.6 and Corollary II.2.8. �

Proposition II.4.8 (cf. [Kato 1994, (8.2) Theorem]). Let f : (X,MX )→ (Y,MY )

be a smooth morphism of fine saturated log schemes. If (Y,MY ) is regular, then
(X,MX ) is regular.
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Proof. Since the question is étale local on X and on Y, as in the proof of Proposition
II.4.1, we may assume that there exists a chart

(α : PX → MX, β : QY → MY, h : Q→ P)

of the morphism f such that P and Q are saturated, h is injective, the order of the
torsion part of the cokernel of hgp

: Qgp
→ Pgp is invertible on X and the morphism

X→ Y ×Spec(Z[Q]) Spec(Z[P]) induced by the chart is étale. Then the proposition
follows from Lemma II.4.6 and [Kato 1994, (8.1) and (8.2) Theorem]. �

Lemma II.4.9 (cf. [Kato 1994, (7.3) Corollary]). Let (X,MX ) be a regular fine
saturated log scheme. Let x ∈ X and assume that we are given a chart α : PX→MX

with P saturated such that the inverse image of the maximal ideal of OX,x̄ under
P −→αx̄ MX,x̄ → OX,x̄ is P\P∗. Then, for any prime ideal p of P , there exists a
point y ∈ X which satisfies the following conditions:

(1) x ∈ {y}.

(2) The inverse image of the maximal ideal of OX,ȳ in P is p.

(3) The image of p in OX,ȳ generates the maximal ideal.

(4) dim(OX,y)= ht(p).

Proof. Let MZar
X be the log structure on the Zariski site associated to

P→ 0(X,M)→ 0(X,OX ).

By Lemma II.4.6, (X,MZar
X ) is regular. Since the homomorphism OX,x →OX,x̄ is

local, the inverse image of the maximal ideal of OX,x in P is also P\P∗. Hence
the canonical morphism P/P∗→ MZar

X,x/O
∗

X,x is an isomorphism. Thus the map
Spec(MZar

X,x)→ Spec(P) induced by P → MZar
X,x is bijective. Let q be the prime

ideal of MZar
X,x corresponding to p under this bijection. Then, q is generated by the

image of p and ht(q) = ht(p). Hence, by [Kato 1994, (7.3) Corollary], the ideal
pOX,x(= qOX,x) is a prime ideal of height ht(p)(= ht(q)). Let y ∈ Spec(OX,x)⊂ X
be the point corresponding to the prime ideal. We assert that y satisfies the required
conditions. The conditions (1), (3) and (4) are trivial. For (2), it suffices to prove
that the inverse image of the maximal ideal of OX,y in P is p. Let p′ be the
inverse image. By the analogue of Proposition II.1.4 (1) for log structures in Zariski
topology, we have Pp′/P∗p′ ∼= (M

Zar
X /O∗X )y . Since the image of p (⊂ P) in OX,y

generates the maximal ideal and (X,MZar
X ) is regular, we have ht(p)= ht(pOX,x)=

dim(OX,y) = rankZ((MZar
X /O∗X )y) = rankZ(Pp′/P∗p′) = ht(p′). (The last equality

follows from Proposition I.1.3 (2).) Since p⊂ p′, this implies p= p′. �

Lemma II.4.10. Let (X,MX ) be a regular fine saturated log scheme and assume
that we are given a chart PX → MX with P saturated. Let x be a point of X of
codimension 1 such that MX,x̄ 6= O∗X,x̄ and let p denote the inverse image of the
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maximal ideal of OX,x̄ in P. Then, p is a prime ideal of height 1 and the composite
P→OX,x̄ −→

vx̄ Z coincides with the valuation vp associated to p, where vx̄ denotes
the discrete valuation of OX,x̄ .

Proof. Note first that OX,x̄ is a discrete valuation ring by Theorem II.4.7. By
Proposition II.1.4 (1), we have Pp/P∗p ∼= MX,x̄/O∗X,x̄ . Since (X,MX ) is regular
and MX,x̄/O∗X,x̄ 6= {1}, the group Mgp

X,x̄/O
∗

X,x̄ has rank 1 and the maximal ideal
of OX,x̄ is generated by the image of Ix̄ := MX,x̄\O∗X,x̄ . By Proposition I.1.3 (2),
ht(p) = 1. On the other hand, we see easily that Ix̄ is generated by the image of
p and hence the maximal ideal of OX,x̄ is generated by the image of p. Since the
inverse image of O∗X,x̄ under the morphism Pp→OX,x̄ is P∗p , this implies that the
composite P→OX,x̄ −→

vx̄ Z coincides with vp. �

Theorem II.4.11. Let f : (X,MX )→ (Y,MY ) be a smooth integral morphism of
fine saturated log schemes and assume that (Y,MY ) is regular. Then f is saturated
if and only if , for every point y of Y of codimension 1 such that MY,ȳ 6=O∗Y,ȳ , the
fiber of the underlying morphism of schemes of f over y satisfies (R0).

Proof. The necessity follows from Theorem II.4.2. We will prove the sufficiency.
By Proposition II.4.8, (X,MX ) is regular. Take x ∈ X and y = f (x) ∈ Y. We will
prove that the morphism (MY /O∗Y )ȳ→ (MX/O∗X )x̄ induced by f is saturated. By
Proposition II.1.4 (2), we may assume that we have a chart of f ,

(α : PX → MX , β : QY → MY , h : Q→ P),

such that α (resp. β) induces an isomorphism P/P∗ ∼= (MX/O∗X )x̄ (resp. Q/Q∗ ∼=
(MY /O∗Y )ȳ). By Lemma I.3.15, P and Q are saturated. By Proposition I.2.5, h
is integral. Let p be a prime ideal of P of height 1 such that the prime ideal
q := h−1(p) of Q is also of height 1. By Theorem I.5.1, it suffices to prove that the
ramification index of h at p is 1. By Lemma II.4.9, there exists a point x ′ ∈ X of
codimension 1 such that the inverse image of the maximal ideal of OX,x̄ ′ in P is p
and the maximal ideal is generated by the image of p. Set y′ = f (x ′). Then, since
the homomorphism OY,ȳ′→OX,x̄ ′ is local, the inverse image of the maximal ideal
of OY,ȳ′ in Q is q and hence β induces an isomorphism Qq/Q∗q ∼= (MY /O∗Y )ȳ′ by
Proposition II.1.4 (1). Since (Qq)

gp/Q∗q is of rank 1 and (Y,MY ) is regular, we
have dim(OY,ȳ′)≥ 1. On the other hand, the underlying morphism of schemes of
f is flat by [Kato 1989, Corollary (4.5)]. Hence

dim(OY,ȳ′)= dim(OX,x̄ ′)= 1

and the codimension of x ′ in f −1(y′) is 0. Since MY,ȳ′ 6=O∗Y,ȳ′ , the maximal ideal
of OX,x̄ ′ is generated by the image of the maximal ideal of OY,ȳ′ by the assumption
on f . By Lemma II.4.10, it follows that the ramification index of h at p is 1. �
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Quantum mean-field asymptotics and multiscale analysis

Zied Ammari, Sébastien Breteaux and Francis Nier

We study, via multiscale analysis, a defect-of-compactness phenomenon which
occurs in bosonic and fermionic quantum mean-field problems. The approach
relies on a combination of mean-field asymptotics and second microlocalized
semiclassical measures. The phase space geometric description is illustrated by
various examples.
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1. Introduction

Motivations. Over the past three decades, microlocal and semiclassical analysis
has provided interesting mathematical techniques for the study of quantum field
theory and quantum many-body theory; see for instance [Ammari and Nier 2008;
Brunetti and Fredenhagen 2000; Fournais et al. 2015; Fröhlich et al. 2007; Gérard
and Wrochna 2014; Ivrii and Sigal 1993; Lieb and Yau 1987; Amour et al. 2001].
In the present article we follow this fruitful stream of ideas and study the mathe-
matical problem of defect of compactness for density matrices in the bosonic or
fermionic Fock spaces. Previously, in a series of papers [Ammari and Nier 2008;
2009; 2011; 2015], the authors have introduced Wigner (or semiclassical) measures
of density matrices in the bosonic Fock space and showed that it is a very useful
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tool to study the mean-field approximation of Bose gases. Moreover, it was noticed
that a certain defect of compactness of density matrices is one of the difficulties that
occurs in this context. So towards a better understanding of these concentration
and defect-of-compactness phenomena we introduced here a multiscale analysis
inspired by second microlocalization. We believe that this approach will be of
interest to the study of the mean-field theory of Fermi and Bose gases; see, e.g.,
[Bach et al. 2016; Benedikter et al. 2014; Fournais et al. 2015]. We indeed provide
here some simple applications to the Bose and Fermi free gases and leave more
involved applications to further investigations.

Let us briefly describe the main question we consider here. As mentioned before,
in the analysis of general bosonic mean-field problems the following defect-of-
compactness problem arises. In fact, if %" are density matrices in the (fermionic or
bosonic) Fock space and  .p/" are its p-particle reduced density matrices, one may
have

lim
"!0

TrŒ .p/"
Qb�D TrŒ .p/0

Qb� (1)

for any p-particle compact observable Qb, while it is not true for a general bounded Qb;
e.g.,

lim
"!0

TrŒ .p/" � > TrŒ .p/0 �:

This reflects the difference between the weak� convergence of trace-class opera-
tors and convergence with respect to the trace norm. In the fermionic case, it
is even worse, because mean-field asymptotics cannot be described in terms of
finitely many quantum states and the right-hand side of (1) is usually 0, while
lim"!0 TrŒ .p/" � > 0 (see Proposition 4.6). From the analysis of finite-dimensional
partial differential equations, it is known that such a defect of compactness can
be localized geometrically with accurate quantitative information by introducing
scales and small parameters within semiclassical techniques; see, e.g., [Gérard
1991; Gérard et al. 1997; Tartar 1990]. We are thus led to introduce two small
parameters " > 0 for the mean-field asymptotics and h > 0 for the semiclassical
quantization of finite-dimensional p-particle phase space. The small parameter "
stands for 1

n
, where n!1 is the typical number of particles, while h is the rescaled

Planck constant measuring the proximity of quantum mechanics to classical me-
chanics. Such scaling appears already in the mathematical physics literature with
a specific relation between h and " depending on the considered problem; see, e.g.,
[Fournais et al. 2015; Narnhofer and Sewell 1981; Lieb and Yau 1987]. The com-
bined analysis of this article is concerned with the general situation when "D ".h/
with limh!0 ".h/ D 0. In order to keep track of the information at the quantum
level, especially in the bosonic case, we also introduce finite-dimensional multi-
scale observables in the spirit of [Bony 1986; Fermanian-Kammerer and Gérard
2002; Fermanian Kammerer 2005; Nier 1996].
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Framework. The 1-particle space Z is a separable complex Hilbert space endowed
with the scalar product h ; i (antilinear in the left-hand side). For a Hilbert space h

the set of bounded operators is denoted by L.h/, while the Schatten classes are
denoted by Lp.h/, 1 � p � 1, the case p D 1 corresponding to the space of
compact operators. Let �˙.Z / be the bosonic (C) or fermionic (�) Fock space
built on the separable Hilbert space Z :

�˙.Z /D

?M
n2N

Sn˙Z ˝n;

where tensor products and direct sums are Hilbert completed. The operator Sn
˙

is
the orthogonal projection given by

Sn˙.f1˝ � � �˝fn/D
1

nŠ

X
�2Sn

s˙.�/f�.1/˝ � � �˝f�.n/; (2)

where sC.�/ equals 1, while s�.�/ denotes the signature of the permutation � and
Sn is the n-symmetric group.

The dense set of many-body state vectors with a finite number of particles is

�fin
˙ .Z /D

?;algM
n2N

Sn˙Z ˝n;

where the ?; alg superscript stands for the algebraic orthogonal direct sum. We
shall also use the notation ŒA; B�C D ŒA; B�D adAB D AB �BA for the commu-
tator of two operators and the notation ŒA; B��DABCBA for the anticommutator.

One way to investigate the mean-field asymptotics relies on parameter-dependent
canonical .anti-/commutation relations (CCR or CAR). The small parameter " > 0
has to be thought of as the inverse of the typical number of particles and the CCR
(resp. CAR) relations are given by

Œa˙.g/; a˙.f /�˙ D Œa
�
˙.g/; a

�
˙.f /�˙ D 0; Œa˙.g/; a

�
˙.f /�˙ D "hg; f i:

Let .%"/">0 be a family of normal states (i.e., nonnegative and normalized trace-
class operators) on the Fock space �˙.Z /, depending on " > 0; we want to in-
vestigate the asymptotic behavior of reduced density matrices, defined below, as
"! 0, by possibly introducing another scale h > 0 on the p-particle phase space,
with "D ".h/ and limh!0 ".h/D 0.

Outline. In Section 2, we recall how Wick observables are used to define the re-
duced density matrices  .p/" . Note that it is much more convenient here, in the
general grand canonical framework, to work with nonnormalized reduced density
matrices. Some symmetrization formulas are also recalled in this section. In
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Section 3, we present the geometry of the classical p-particle phase space and
introduce the formalism of double scale semiclassical measures, after [Fermanian
Kammerer 2005; Fermanian-Kammerer and Gérard 2002]. In Section 4, we com-
bine the mean-field asymptotics with semiclassical analysis, the two parameters "
and h being related through "D ".h/ with limh!0 ".h/D 0. Instead of studying
the collection of nonnormalized reduced density matrices . .p/

".h/
/p2N, it is more

convenient to associate generating functions

z 7! TrŒ%".h/ e
z d�˙.a

Q;h/�;

and to use holomorphy arguments presented there. In Section 5, some classical ex-
amples with various asymptotics illustrate the general framework: coherent states
in the bosonic setting; simple Gibbs states in the fermionic case; more involved
Gibbs states in the bosonic case, which make explicit the separation of condensate
and noncondensate phases for rather general noninteracting steady Bose gases. The
appendices collect or revisit known things about multiscale semiclassical measures,
the (PI)-condition of bosonic mean-field problems, Wick composition formulas,
and traces of non-self-adjoint second quantized contractions.

2. Wick observables and reduced density matrices

2A. Wick observables.

Notation. For n 2 N, the operator Sn
˙

given in (2) is an orthogonal projection in
Z ˝n so that .Sn

˙
/� D Sn

˙
. However, we consider Sn

˙
as a bounded operator from

Z ˝n onto Sn
˙

Z ˝n, and its adjoint, denoted by Sn;�
˙
W Sn
˙

Z ˝n!Z ˝n, is nothing
but the natural embedding.

Let Qb 2 L.Sp
˙

Z ˝pISq
˙

Z ˝q/. The Wick quantization of Qb is the operator on
�fin
˙
.Z / defined by

QbWick
jSnCp
˙

Z˝.nCp/
D "

pCq
2

p
.nCp/Š .nC q/Š

nŠ
SnCq
˙

. Qb˝ IdZ˝n/S
nCp;�
˙

:

In the bosonic case, an element Qb 2L.Sp
C

Z ˝pISq
C

Z ˝q/ is determined by a related
“symbol” Z 3 z 7! b.z/D hz˝q; Qbz˝pi which is a homogeneous polynomial. So
b admits Gâteaux differentials

@kNz@
k0

z b.w/Œu1; : : : ; uk; v1; : : : ; vk0 �D
N@u1 � � �

N@uk@v1 � � � @vk0b.w/;

where N@u; @v are the complex directional derivatives relative to u; v 2 Z at the
point w 2Z . In particular, we have the relation

Qb D
1

qŠ pŠ
@
q
Nz@
p
z b:
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Observe that b.w/ admits higher Gâteaux derivatives with the natural identification
of @k

0

z b.w/ as a continuous form on Sk0
C

Z ˝k and @k
Nzb.w/ as a vector in Sk

C
Z ˝k.

With the above form-vector identification we define, for any symbols b1; b2,

@kzb1.w/ � @
k
Nzb2.w/D @

k
zb.w/Œ@

k
Nzb.w/� 2 C:

We shall also use the notation bWick D QbWick.

Examples.

(a) The annihilation operator a˙.f /, f 2 Z , is the Wick quantization of Qb D
hf j WZ ˝1 DZ 3 ' 7! hf; 'i 2Z ˝0 D C.

(b) The creation operator a�
˙
.f /, f 2Z , is the Wick quantization of Qb D jf i W

Z ˝0 D C 3 � 7! �f 2Z ˝1 DZ .

(c) For Qb 2 L.Z / its Wick quantization QbWick is nothing but

d�˙. Qb/jSn
˙

Z˝n D "Œ
Qb˝ IdZ ˝ � � �˝ IdZ C � � �C IdZ ˝ � � �˝ IdZ ˝

Qb�:

A particular case is QbD IdZ associated with the scaled number operator (N˙;"D1
stands for the usual "-independent number operator):

QbWick
D d�˙.IdZ /DN˙ D "N˙;"D1:

When Qb is self-adjoint one has

d�˙. Qb/D i@te
�it d�˙.

Qb/
jtD0 D i@t�˙.e

�i"t Qb/jtD0;

while for a contraction C 2 L.Z IZ /,

�˙.C /jSn
˙

Z˝n D C ˝ � � �˝C:

From the definition of the Wick quantization one easily checks the following prop-
erties; see [Ammari 2004].

Proposition 2.1. For Qb 2 L.Sp
˙

Z ˝pISq
˙

Z ˝q/ :

� Œ QbWick�� D Œ Qb��Wick.

� The operator .1CN˙/
�m
2 QbWick .1CN˙/

�m
0

2 extends to a bounded operator
on �˙.Z / if mCm0 � pC q with.1CN˙/

�m
2 QbWick .1CN˙/

�m
0

2


L.�˙.Z //

� Cm;m0k QbkL.Sp
˙

Z ISq
˙

Z /; (3)

with Cm;m0 independent of Qb and of " 2 .0; "0/.

� . Qb � 0/() . QbWick � 0/, while this makes sense only for q D p.
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Wick quantized operators are generally unbounded operators on�˙.Z / (e.g., N˙)
but they are well-defined on the dense set �fin

˙
.Z /, which is preserved by their

action. Hence QbWick
1 ı QbWick

2 makes sense at least on �fin
˙
.Z / and the following

composition law holds true.

Proposition 2.2 (composition of Wick operators). Let Qbj 2L.S
pj
˙

Z ˝pjISqj
˙

Z ˝qj/,
j D 1; 2. Then

QbWick
1 ı QbWick

2 D

minfp1;q2gX
kD0

.˙1/.p1�k/.p2Cq2/
"k

kŠ
. Qb1]

k Qb2/
Wick; (4)

where

Qb1]
k Qb2 WD

p1Š

.p1�k/Š

q2Š

.q2�k/Š
Sq1Cq2�k
˙

. Qb1˝Id˝q2�k/.Id˝p1�k˝Qb2/S
p1Cp2�k;�
˙

:

For the reader’s convenience, the proof of Proposition 2.2 is provided in Appen-
dix C.

In the bosonic case the symbols b.z/D hz˝q; Qbz˝pi are convenient for writing
the composition of Wick quantized operators. If b1]Wickb2 denotes the symbol of
QbWick
1 ı QbWick

2 , the composition law is summarized below; see [Ammari and Nier
2008, Proposition 2.7].

Proposition 2.3 (composition of Wick symbols in the bosonic case). We have

b1]
Wickb2.z/D e

"@z1 �@Nz2b1.z1/b2.z2/jz1Dz2Dz D

minfp1;q2gX
kD0

"k

kŠ
@kzb1.z/ � @

k
Nzb2.z/:

The commutator of Wick operators in the bosonic case is given by

ŒbWick
1 ; bWick

2 �D

�maxfminfp1;q2g;minfp2;q1ggX
kD1

"k

kŠ
fb1; b2g

.k/

�Wick

;

where the k-th order Poisson bracket is given by

fb1; b2g
.k/.w/D @kzb1.w/ � @

k
Nzb2.w/� @

k
zb2.w/ � @

k
Nzb1.w/:

Proposition 2.4. Let p, m, m0 2 N such that mCm0 � 2p � 2. Then, there exist
coefficients Cj1;:::;jk � 0 such that, for any Qb 2 L.ZIZ/,

d�˙. Qb/
p
� . Qb˝p/Wick

D

p�1X
kD1

"p�k
X

0�j1�����jk
j1C���CjkDp

Cj1;:::;jk .S
k
˙
Qbj1 ˝ � � �˝ Qbjk Sk;�

˙
/Wick (5)

and the estimate.1CN˙/
�m
2 .d�˙. Qb/

p
� . Qb˝p/Wick/.1CN˙/

�m
0

2


L.�˙.Z//

� "Bp k Qbk
p

L.Z/

holds in both the bosonic and fermionic cases, with Bp the p-th Bell number.
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Remark 2.5. The p-th Bell number Bp can be defined as the number of partitions
of a set with p elements and satisfies Bp < .0:792p=ln.pC 1//p , see [Berend and
Tassa 2010], and hence it grows much slower than pŠ .

Proof. We first prove formula (5) by induction on p 2 N�.
For p D 1, formula (5) holds because d�˙. Qb/D . Qb/Wick.
We then set rp. Qb/ WD d�˙. Qb/p�. Qb˝p/Wick. Assuming the result holds for some

p 2 N�, one can compute

d�˙. Qb/
pC1
D . Qb˝p/Wick. Qb/Wick

C rp. Qb/
Wick. Qb/Wick

using the composition formula (4) for

. Qb˝p/Wick. Qb/Wick
D . Qb˝pC1/Wick

Cp" .Sp
˙
Qb˝p�1˝ Qb2 Sp;�

˙
/Wick

and for

"p�k.Sk˙ Qb
j1 ˝ � � �˝ Qbjk Sk;�

˙
/Wick. Qb/Wick

D "pC1�.kC1/.SkC1
˙
Qb˝ Qbj1 ˝ � � �˝ Qbjk SkC1;�

˙
/Wick

C k"pC1�k
�
Sk˙. Qb

j1 ˝ � � �˝ Qbjk /Sk;�
˙

Sk˙ . Qb˝ Id˝j1C���Cjk�1Z /Sk;�
˙

�Wick
;

which yields the expected form for rpC1. Qb/, and achieves the induction.
We then remark that the sum of coefficients of order k,

S2.p; k/D
X

0�j1�����jk
j1C���CjkDp

Cj1;:::;jk ;

satisfies the recurrence relation S2.p; k/D kS2.p� 1; k/CS2.p� 1; k� 1/, with
S2.p; 1/ D 1 D S2.1; k/ for all p; k 2 N�, where the S2.p; k/ are the Stirling
numbers of the second kind. Observe that, for M

2
� k, and for any Qc 2 L.Sk

˙
Z˝k/,

k QcWick.1CN˙/
�M
2 kL.�˙.Z// � kQckL.Sk

˙
Z˝k ISk

˙
Z˝k/:

We thus get,.1CN˙/
�m
2 .d�˙. Qb/

p
� . Qb˝p/Wick/.1CN˙/

�m
0

2


L.�˙.Z//

�

p�1X
kD1

"p�kS2.p; k/ k Qbk
p

L.Z/

and the estimate then follows from
Pp�1

kD1
"p�kS2.p;k/�"

Pp

kD1
S2.p;k/D"Bp ,

with Bp the p-th Bell number. �

2B. Reduced density matrices. Reduced density matrices emerge naturally in the
study of correlation functions of quantum gases [Spohn 1980]. In particular, in
quantum mean-field theory they are the main quantities to be analyzed; see, e.g.,
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[Bardos et al. 2000; Knowles and Pickl 2010; Lewin et al. 2016]. However, we shall
work with nonnormalized reduced density matrices, which are easier to handle.
Going back to the more natural reduced density matrices with trace equal to 1
requires attention when normalizing and taking the limits.

Definition 2.6. Let %" 2 L1.�˙.Z // (" > 0 is fixed here) be such that %" � 0,
TrŒ%"�D 1 and Tr.%"ecN˙/ <1 for some c > 0. The nonnormalized reduced den-
sity matrix of order p 2N,  .p/" 2L1.Sp

˙
Z ˝p/, is defined by duality according to,

for all Qb 2 L.Sp
˙

Z ˝pISp
˙

Z ˝p/; TrŒ .p/"
Qb�D TrŒ%" QbWick�:

The definition makes sense owing to the number estimate (3) and to

.1CN˙/
ke�cN˙ 2 L.�˙.Z //:

When TrŒ .p/" � ¤ 0, the normalized density matrix N .p/" is defined by N .p/" D


.p/
" =TrŒ .p/" �; that is, for all Qb 2 L.Sp

˙
Z ˝p/,

TrŒ N .p/"
Qb�D

TrŒ%" QbWick�

TrŒ%".IdSp
˙

Z˝p /
Wick�

D
TrŒ%" QbWick�

TrŒ%"N˙.N˙� "/ � � � .N˙� ".p� 1//�
:

These normalized reduced density matrices N .p/" are commonly used, especially
when %" 2 L1.S˙Z ˝n/, with n" � 1, for the following reason: when %" 2
L1.Sn

˙
Z ˝n/ lies in the n-particle sector in the mean-field regime n"! 1, one has

TrŒ N .p/"
Qb�DTrŒ%". Qb˝IdZ˝.n�p//� and lim

n"�1
"!0

TrŒ N .p/"
Qb�D lim

n"�1
"!0

TrŒ .p/"
Qb�; (6)

since for n > p,

QbWickˇ̌
Sn
˙

Z˝n
D "p

nŠ

.n�p/Š
Sn˙. Qb˝ IdZ˝.n�p//S

n;�
˙

and "p n.n� 1/ � � � .n�pC 1/! 1 when n"! 1.
Moreover, one often works with kernels of (normalized) reduced density ma-

trices N .p/" when Z D L2.M I dv/ with the following relation deduced from the
left-hand side of (6):

N .p/" .x1; : : : ;xpIx
0
1; : : : ;x

0
p/D

Z
Mn�p

%".x1; : : : ;xp;xIx
0
1; : : : ;x

0
p;x/dv

˝.n�p/.x/:

But, if the states %" are not localized on the n-particles then  .p/" and N .p/" do
not coincide even asymptotically in the mean-field regime (i.e., the right-hand
side of (6) may not hold true). As well there is no simple relation between the



QUANTUM MEAN-FIELD ASYMPTOTICS AND MULTISCALE ANALYSIS 229

nonnormalized density matrices  .pC1/" and  .p/" . Actually, we have

.SpC1
˙

. Qb˝ IdZ /S
pC1;�
˙

/Wickˇ̌
SnCpC1
˙

Z˝.nCpC1/

D "pC1
.nCpC 1/Š

nŠ
SnCpC1
˙

. Qb˝ IdZ˝nC1/S
nCpC1;�
˙

D ".nC 1/ QbWickˇ̌
SnCpC1
˙

Z˝.nCpC1/
;

from which we deduce

TrŒ .pC1/" . Qb˝ IdZ /�D TrŒ%".N˙� "p/ QbWick�;

while
TrŒ .p/"

Qb�D TrŒ%" QbWick�;

where we have again identified  .pC1/" as an element of L1.Z ˝.pC1//. We thus
conclude with the following important remark.

Remark 2.7. Assume %"D%"1Œ��ı."/;�Cı."/�.N˙/with �>0 and lim"!0 ı."/D0.
Then the following simple asymptotic relations between  .p/" and  .p

0/
" (or the

normalized versions N .p/" and N .p
0/

" ) hold true for any p0 > p and any Qb 2
L.Sp
˙

Z ˝pISp
˙

Z ˝p/,

lim
"!0

TrŒ .p
0/

" . Qb˝ IdZ˝.p
0�p//�D �

p0�p lim
"!0

TrŒ .p/"
Qb�;

lim
"!0

TrŒ N .p
0/

" . Qb˝ IdZ˝.p
0�p//�D lim

"!0
TrŒ N .p/"

Qb�:

We shall use recurrently with variations the following lemma, with the notation

Qb1ˇ � � �ˇ Qbp D
1

pŠ

X
�2Sp

Qb�.1/˝ � � �˝ Qb�.p/

for Qb1; : : : ; Qbp 2 L.Z /.
We also abbreviate .Sp

˙
. Qb1 ˇ � � � ˇ Qbp/S

p;�
˙
/Wick by . Qb1 ˇ � � � ˇ Qbp/Wick and

.Sp
˙
. Qb˝p/Sp;�

˙
/Wick by. Qb˝p/Wick.

Lemma 2.8 (quantum symmetrization lemma). In the bosonic and fermionic cases
for any p 2 N, the equality

Sp
˙
. Qb1˝ � � �˝ Qbp/S

p;�
˙
D Sp
˙
. Qb1ˇ � � �ˇ Qb�.p//S

p;�
˙

(7)

holds in L.Sp
˙

Z ˝pISp
˙

Z ˝p/ for all Qb1; : : : ; Qbp 2 L.Z IZ /.
As a consequence, under the assumptions of Definition 2.6, the nonnormalized

(resp. normalized if possible) reduced density matrix  .p/" (resp. N .p/" ), p 2 N, is
completely determined by the set of quantities fTrŒ%". Qb˝p/Wick�; Qb 2 Bg when B is
any dense subset of L1.Z IZ /.
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Remark 2.9. While computing TrŒ .p/" � or studying N .p/" one can simply add to
B the element IdZ owing to Sp

˙
Id˝pZ Sp;�

˙
D IdSp

˙
Z˝p . For " > 0 fixed it is not

necessary because compact observables are sufficient to determine the total trace
owing to

TrŒ .p/" �D sup
B2L1.Sp

˙
Z˝p/

0�B�Id

TrŒ .p/" B�:

However, while considering weak�-limits as "! 0, adding the identity operator
IdSp
˙

Z˝p to the set of compact observables, or possibly replacing B by the Calkin
algebra CId.Z /˚L1.Z /, is useful in order to control the asymptotic total mass.

Proof. For Qb1; : : : ; Qbp 2 L.Z /, we decompose

Sp
˙
. Qb1˝ � � �˝ Qbp/S

p;�
˙

Sp
˙
. 1˝ � � �˝ p/

as

Sp
˙

�
1

pŠ

X
� 02Sp

s˙.�
0/. Qb1 � 0.1//˝ � � �˝ . Qbp � 0.p//

�

D
1

pŠ pŠ

� X
�2Sp

X
� 02Sp

s˙.�/s˙.�
0/. Qb�.1/ �ı� 0.1//˝ � � �˝ . Qb�.p/ �ı� 0.p//

�
:

Setting � 00 D � ı � 0, with s˙.� 00/ D s˙.�/s˙.�
0/ yields (7), after noting that

Qb1 ˇ � � � ˇ Qbp D
1
pŠ

P
�2Sp

Qb�.1/ ˝ � � � ˝ Qb�.p/ commutes with Sp
˙

in both the
bosonic and fermionic cases.

Now the nonnormalized reduced density matrix is determined by

TrŒ .p/"
zB�D TrŒ%" zBWick�

for zB 2 L1.Sp
˙

Z ˝p/ as L1.Sp
˙

Z ˝p/ is the dual of L1.Sp
˙

Z ˝p/. But zB 2
L1.Sp

˙
Z ˝p/means zBDSp

˙
zB 0Sp;�
˙

with zB 02L1.Z ˝p/, while the algebraic ten-
sor product L1.Z /˝

algp is dense in L1.Z ˝p/.
With the estimateˇ̌

TrŒ%" zBWick�
ˇ̌
D
ˇ̌
TrŒe

c
2

N%"e
c
2

N e�
c
2

N zBWicke�
c
2

N �
ˇ̌

� C TrŒ%"ecN �k zBkL.Sp
˙

Z˝pISp
˙

Z˝p/;

it suffices to consider zB D Sp
˙
zB 0Sp;�
˙

with zB 0 2 L1.Z /˝
algp. By linearity and

density,  .p/" is determined by the quantities TrŒ%" zBWick� with zB 0 D Qb1˝ � � �˝ Qbp ,
Qbi 2 B. We conclude with

Sp
˙
. Qb1˝ � � �˝ Qbp/S

p;�
˙
D Sp
˙
. Qb1ˇ � � �ˇ Qbp/S

p;�
˙
;
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and the polarization identity

Qb1ˇ � � �ˇ Qbp D
1

2ppŠ

X
"iD˙1

"1 � � � "p

� pX
iD1

"i Qbi

�̋ p

: �

Remark 2.10. In the bosonic case, the nonnormalized reduced density matrices  .p/"

are also characterized by the values of TrŒ .p/" B� for B in

B D
˚
j ˝pih ˝pj W  2Z

	
[fId˝pZ g:

This does not hold in the fermionic case.

The rest of the article is devoted to the asymptotic analysis of  .p/" as "! 0.
In particular we shall study their concentration at the quantum level while testing
with fixed observable Qb (with Qb compact) and their semiclassical behavior after
taking semiclassically quantized observables, e.g., a.x; hDx/ with some relation
"D ".h/ between " and h.

3. Classical phase-space and h-quantizations

When Z D L2.M 1; dx/, with M 1 D M a smooth manifold with volume mea-
sure dx, the classical 1-particle phase space is X 1DX D T �M 1 and we will focus
on the h-dependent quantization which associates with a symbol a.x; �/D a.X/,
X 2 X 1 an operator aQ;h D a.x; hDx/ with the standard semiclassical quantiza-
tion or when M 1 D Rd , aQ;h D aW;h D aW .htx; h1�tDx/, by using the Weyl
quantization, t 2 R being fixed.

Note that in later sections the parameters " and h will be linked through "D ".h/
with limh!0 ".h/ D 0. In relation with the symmetrization result, Lemma 2.8,
we introduce the adapted p-particle phase space which was also considered in
[Dereziński 1998], and the corresponding semiclassical observables.

3A. Classical p-particle phase space. A fundamental principle of quantum me-
chanics is that identical particles are indistinguishable. The classical description is
thus concerned with indistinguishable classical particles. If one classical particle
is characterized by its position-momentum .x; �/ 2 X 1 D T �M 1, x 2M being
the position coordinate and � the momentum coordinates, p indistinguishable par-
ticles will be described by their position-momentum coordinates .X1; : : : ; Xp/D
.x1; �1; : : : ; xp; �p/2Xp=SpD .T �M/p=SpDT

�.Mp/=Sp , where the quotient
by Sp simply implements the identification,

for all � 2Sp; .X�.1/; : : : ; X�.p//� .X1; : : : ; Xp/:

The grand canonical description of a classical particles system then takes place in
the disjoint union G

p2N

Xp=Sp D
G
p2N

.T �M/p=Sp:
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A p-particle classical observable will be a function on Xp=Sp and, when the
number of particles is not fixed, a collection of functions .a.p//p2N, each a.p/

being a function on Xp=Sp. The situation is presented in this way in [Dereziński
1998]. A p-particle observable is a function a.p/ on Xp=Sp and a p-particle
classical state is a probability measure (and when the normalization is forgotten, a
nonnegative measure) on Xp=Sp.

However while quantizing a classical observable, it is better to work in Xp,
which equals T �.Mp/, a function a.p/ on Xp=Sp being nothing but a function
on Xp which satisfies,

for all � 2Sp; ��a.p/ D a.p/;

where,

for all .X1; : : : ; Xp/ 2 Xp; ��a.p/.X1; : : : ; Xp/D a
.p/.X�.1/; : : : ; X�.p//;

and
a.p/ D

1

pŠ

X
�2Sp

��a.p/:

In the same way, we define for a Borel measure � on Xp and � 2Sp , the measure
��� by

R
Xp �

�a.p/ d� D
R
Xp a

.p/ d.���/ for all a.p/ 2 C0c .Xp/, or alternatively
���.E/D �.�

�1.E// for all Borel subsets E of Xp. A nonnegative measure on
Xp=Sp is identified with a nonnegative measure � on Xp such that,

for all � 2Sp; ��� D � D
1

pŠ

X
Q�2Sp

Q���: (8)

Lemma 3.1 (classical symmetrization lemma). Any Borel measure�.p/ on Xp=Sp
is characterized by the quantities

˚R
Xp a

˝p d�.p/ W a 2 C
	

where the tensor power
a˝p means a˝p.X1; : : : ; Xp/D

Qp
iD1 a.Xi / and C is any dense set in C01.X 1/D

ff 2 C0.X 1/ W limX!1 f .X/D 0g.

Proof. By the Stone–Weierstrass theorem the subalgebra generated by the algebraic
tensor product C˝algp is dense in C01.Xp/. Hence it suffices to consider

a1ˇ � � �ˇ ap D
1

pŠ

X
�2Sp

a�.1/˝ � � �˝ a�.p/; ai 2 C:

We conclude again with the polarization identity

a1ˇ � � �ˇ ap D
1

2ppŠ

X
"iD˙1

"1 � � � "p

� pX
iD1

"iai

�̋ p

: �

We will work essentially with M D Rd and X D T �Rd and therefore on
Xp D T �Rdp � R2dp and recall the invariance properties, if possible, by a change
of variable in order to extend it to the general case. Remember that on Rdp,
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the standard and Weyl semiclassical quantization are asymptotically equivalent:
a.x; hDx/�a

W .x; hDx/DO.h/ when a 2 S.1; dX2/ (supX2T �Rdp j@
˛
Xa.X/j<

1 for all ˛ 2 N2d ). Moreover on Rdp, aW .x; hDx/ is unitary equivalent to
aW .htx; h1�tDx/ for any fixed t 2 R so that result can be adapted to different
scalings.

3B. Semiclassical and multiscale measures. We recall the notions of semiclassi-
cal (or Wigner) measures and multiscale measures in the finite-dimensional case.
We start with the results on M D RD (think of D D dp) and review the invariance
properties for applications to some more general manifolds M.

3B1. In the Euclidean space. On RD the semiclassical Weyl quantization of a
symbol a 2 S 0.R2D/ will be written aW;h D aW .htx; h1�tDx/, with t > 0 fixed,
while cW .x;Dx/ is given by its kernel:

ŒcW .x;Dx/�.x; y/D

Z
Rd
ei��.x�y/c

�
xCy

2
; �

�
d�

.2�/d
:

Definition 3.2. Let .h/h2E with 0 2 E , E � .0;C1/, be a family of trace-class
nonnegative operators on L2.RD/ such that limh!0 TrŒh� <C1. The semiclassi-
cal quantization a 7! aW;hD aW .htx; h1�tDx/ is said to be adapted to the family
.h/h2E if

lim
ı!0C

lim sup
h2E
h!0

Re TrŒ.1��.ı � /W;h/h�D 0

for some � 2 C10 .T
�RD/ such that �� 1 in a neighborhood of 0.

The set of Wigner measures M.h; h 2 E/ is the set of nonnegative measures �
on T �RD such that there exists E 0 � E , 0 2 E 0, such that,

for all a 2 C10 .T
�RD/; lim

h2E 0
h!0

TrŒha
W;h�D

Z
T �RD

a.X/ d�.X/:

The following well-known statement, see [Colin de Verdière 1985; Helffer et al.
1987; Gérard 1991; Gérard et al. 1997; Lions and Paul 1993; Shnirel’man 1974],
results from the asymptotic positivity of the semiclassical quantization and it is ac-
tually the finite-dimensional version of bosonic mean-field Wigner measures (with
the change of parameter "D 2h); see [Ammari and Nier 2008, Section 3.1].

Proposition 3.3. Let .h/h2E with 0 2 E , E � .0;C1/, such that h � 0 and
limh!0 TrŒh� <C1. The set of semiclassical measures M.h; h2 E/ is nonempty.
The semiclassical quantization aW;h is adapted to the family .h/h2E if and only if
any � 2M.h; h 2 E/ satisfies �.R2D/D limh!0 TrŒh�.

Remark 3.4. (1) The manifold version, with aQ;h D a.x; hDx/ instead of aW;h

results from the semiclassical Egorov theorem.
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(2) By reducing E to some subset E 0 (think of subsequence extraction), one can
always assume that there is a unique semiclassical measure.

(3) While considering a time evolution problem, or adding another uncountable
parameter, .t;h/h2E;t2R, finding simultaneously the subset E 0 for all t 2 R

requires some compactness argument with respect to the parameter t 2 R,
usually obtained by equicontinuity properties.

We now review the multiscale measures introduced in [Fermanian-Kammerer
and Gérard 2002; Fermanian Kammerer 2005]. For the reader’s convenience, de-
tails are given in Appendix A, concerning the relationship between Proposition 3.5
below and the more general statement of [Fermanian Kammerer 2005].

The class of symbols S .2/ is defined as the set of a 2 C1.R2D �R2D/ such that

� there exists C > 0 such that for all Y 2 R2D, a. � ; Y / 2 C10 .B.0; C //;

� there exists a function a1 2 C10 .R
2D � S2D�1/ such that a.X;R!/ !

a1.X; !/, as R!1, in C1.R2D �S2D�1/.

Those symbols are quantized according to

a.2/;h D a
W;h
h

; ah.X/D a

�
X;

X

h
1
2

�
:

A geometrical interpretation of those double scale symbols can be given by match-
ing the compactified quantum phase space with the blow-up at r D 0 of the macro-
scopic phase space; see Figure 1.

quantum
quantum

macro macro

� �

1

1

1

x x
0

0

Figure 1. On the left-hand side, the macroscopic phase space with
its sphere at infinity. On the right-hand side, the matched quantum
and macroscopic phase spaces for which the quantum sphere at
infinity and the r D 0 macroscopic sphere coincide.
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Proposition 3.5. Let .h/h2E be a bounded family of nonnegative trace-class op-
erators on L2.RD/ with limh!0 TrŒh� <C1. There exist E 0 � E , 0 2 E 0, nonneg-
ative measures � and �.I / on R2D and S2D�1, and a 0 2 L1.L2.RD// such that
M.h; h 2 E 0/D f�g and, for all a 2 S .2/,

lim
h2E 0
h!0

TrŒha
.2/;h�D

Z
R2Dnf0g

a1

�
X;

X

jX j

�
d�.X/

C

Z
S2D�1

a1.0; !/ d�.I /.!/CTrŒa.0; x;Dx/0�:

Definition 3.6. M.2/.h; h 2 E/ denotes the set of all triples .�; �.I /; 0/ which
can be obtained in Proposition 3.5 for suitable choices of E 0 � E , 0 2 E 0.

Remark 3.7. Actually when aW;h D aW .
p
hx;
p
hDx/, this trace class operator

0 is nothing but the weak�-limit of h. Take simply Qa.X; Y /D �.X/˛.Y / with
�; ˛ 2 C10 .R

2D/, �� 1 in a neighborhood of 0 for which

lim
h!0
k Qa.2/;h�˛W .x;Dx/kL.L2/ D 0:

The above results says limh!0 TrŒh˛W .x;Dx/�D TrŒ0˛W .x;Dx/� for all ˛ 2
C10 .R

2D/ � L2.R2D; dX/, and by the density of the embeddings C10 .R
2D/ �

L2.R2D; dx/ � L2.L2.RD// � L1.L2.RD//, the test observable ˛W .x;Dx/
can be replaced by any compact operator K 2 L1.L2.RD; dx//. Moreover the
relationship between � and the triple .1.0;C1/.jX j/�; �.I /; 0/ can be completed
in this case by

�.f0g/D

Z
S2D�1

d�.I /.!/CTrŒ0�; (9)

and �.I / � 0 is equivalent to �.f0g/D TrŒ0�.

Because products of spheres are not spheres, handling the part �.I / in the p-
particle space, D D dp, is not straightforward within a tensorization procedure;
see Figure 2.

Actually we expect in the applications that a well chosen quantization will lead
to �.I / D 0. This leads to the following definition.

Definition 3.8. Assume that the quantization aW;hD aW .
p
hx;
p
hDx/ is adapted

to the family .h/h2E , h � 0, TrŒh�D 1. We say that the quantization aW;h D
aW .
p
hx;
p
hDx/ is separating for the family .h/h2E if one of the three following

(equivalent) conditions is satisfied:

(1) For any triple .�; �.I /; 0/ 2M.2/.h; h 2 E/, we have �.I / D 0.

(2)
M.h; h 2 E 0/D f�g;

w�-lim
h2E 0;h!0

h D 0 in L1.L2.RD//

�
D) �.f0g/D TrŒ0�:

(3) For any triple .�; �.I /; 0/ 2M.2/.h; h 2 E/, we have �.f0g/D TrŒ0�.
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X2

X1

quantum scale
in X2

qu
an

tu
m

sc
al

e
in
X
1

quantum scale in X2

Figure 2. Tensor product of two blow-ups. The product of the two
matching spheres is not a sphere: the corners of the gray square
correspond to the case when the quantum variables jX1j and jX2j
go to infinity without any proportionality rule.

Remark 3.9. This terminology expresses the fact that the mass localized at any
intermediate scale vanishes asymptotically when �.I / � 0. Accordingly, the micro-
scopic quantum scale and the macroscopic scale are well-identified and separated.

Hence we can get all the information by computing the weak�-limit of h
and the semiclassical measure � and then by checking a posteriori the equality
�.f0g/D TrŒ0�.

This will suffice when the quantum part corresponds, within a macroscopic scale,
to a point in the phase space. When M D Rd, we have enough flexibility by
choosing the small parameter h > 0 and using some dilation in RD in order to
reduce many problems to such a case. On a manifold M if we can first localize
the analysis around a point x0 2M, the problem can be transferred to RD and then
analyzed with the suitable scaling.

3B2. On a compact manifold. We now consider another interesting case of a smooth
compact manifold M with the semiclassical calculus aQ;h D a.x; hDx/. This
case is not completely treated in [Fermanian Kammerer 2005] because the geo-
metric invariance properties do not follow only from the microlocal equivariance
of semiclassical calculus. We assume Z D L2.M; dx/ to be defined globally on
the compact manifold M (e.g., by introducing a metric, dx being the associated
volume measure).

Remark 3.10. When M is a general manifold, replace aW;h in Definition 3.2
by aQ;h D a.x; hDx/, and �.ı � / with ı ! 0 by some increasing sequence of
compactly supported cut-off functions .�n/n2N such that

S
n2N �

�1
n .f1g/D T �M.

To adapt Proposition 3.5 to the case of a compact manifold, we consider another
notion instead of the symbols S .2/. For the observables we shall consider the pair
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.K; a/, where K 2 L1.L2.M; dx// and a 2 C10 .S
�M t .T �M nM//, with

S�M t .T �M nM/ being described in local coordinates through the identification

M � Œ0;1/�SD�1 3 .x; r; !/ 7!

�
.x; !/ 2 S�M if r D 0;
.x; �Dr!/ 2 T �M nM otherwise:

We have identified the 0-section of the cotangent bundle T �M with M. After
introducing an additional parameter ı > 0, ı � h, and a C1 partition of unity
.1��/C�� 1 on T �M with 1�� 2 C10 .T

�M/, 1��� 1 in a neighborhood
of M, we can quantize a as

a.2/Q;ı;h D Œ�.x; �/a.x; hı�1�/�Q;ı :

Note that K and the quantization of a are geometrically defined modulo O.ı/
when h� ı in L.L2.M; dx//: use local charts for the semiclassical calculus with
parameter ı, while L1.L2.M; dx// is globally defined like all natural spaces asso-
ciated with L2.M; dx/. Actually in local coordinates the seminorms of the symbol
�.x; �/a.x; hı�1�/ in S.1; dx2 C d�2/ are uniformly bounded with respect to
h 2 .0; ı� by seminorms of a in C10 ..T

�M nM/t S�M/. Moreover, when the
symbol a is nonnegative one has.�a. � ; hı�1 � //Q;ı �ReŒ.�a. � ; hı�1 � //Q;ı �

� Caı; (10)

kakL1 CCaı � ReŒ.�a. � ; hı�1 � //Q;ı �� �Caı; (11)

uniformly with respect to h 2 .0; ı�.

Proposition 3.11. Let .h/h2E be a family of nonnegative trace class operators on
L2.M; dx/ such that limh!0 TrŒh� <C1. Then there exist E 0 � E , 0 2 E 0, with
M.h; h 2 E 0/ D f�g, a nonnegative measure �.I / on S�M and a nonnegative
0 2 L1.L2.M; dx// such that, for any K 2 L1.L2.M; dx//,

lim
h2E 0
h!0

TrŒhK�D TrŒ0K�;

and, for any a2C10 .S
�Mt.T �M nM//, and any partition of unity .1��/C��1

with 1�� 2 C10 .T
�M/, 1��� 1 in a neighborhood of M,

lim
ı!0

lim
h2E 0
h!0

TrŒh a
.2/Q;ı;h�D

Z
T �MnM

a.X/ d�.X/C

Z
S�M

a.X/ d�.I /.X/:

Additionally .�.I /; 0/ is related to � by

�.E/D �.I /.�
�1.E//C �0.E/

for any Borel setE �M identified withE�f0g, when � WS�M!M is the natural
projection and �0 is defined by

R
M '.x/ d�0.x/D TrŒ0'�, where ' 2 C1.M/ is

identified with the multiplication operator by the function '.
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Proof. When h is bounded in L1.L2.M; dx//, after extraction of a sequence
hn! 0 from E , we have M..hn/n2N/ D f�g, and the weak�-limit 0 of .hn/,
and the associated measure �0 are well-defined objects on the manifold M.

Let us construct a measure Q� on

.T �M nM/tS�M D f.x; r!/ W x 2M; ! 2 Sd�1; r 2 Œ0;1/g

and a subset E 0 � E , 0 2 E 0, such that

lim
ı!0

lim
h2E 0
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �D

Z
.T �MnM/tS�M

a d Q� (12)

holds for all a 2 C10 ..T
�M nM/tS�M/.

Fix first the partition of unity .1��/C�� 1, 1�� 2 C10 .T
�M/, 1��� 1 in

a neighborhood of M, and ı D ı0 > 0. For a given a 2 C10 ..T
�M nM/tS�M/,

the inequalities (10) and (11) imply that one can find a subsequence .hk;�;ı0;a/k2N

of .hn/n2N such that

lim
k!1

TrŒhk;�;ı0;a.�a. � ; hk;�;ı0;aı
�1
0 � //

Q;ı0 �D `�;ı0;a 2 C: (13)

For a different partition of unity .1� Q�/C Q�� 1 the symbol Œ�� Q��a.x; hı�10 �/ is
supported in C�1

�; Q�;ı0
� j�j � C�; Q�;ı0 and equals

Œ�� Q��a.x; hı�10 �/D Œ�� Q��a0

�
x;

�

j�j

�
C hr�; Q�;ı0;h.x; �/;

where a0 D ajS�M and with r�; Q�;ı0;h uniformly bounded in S.1; dx2Cd�2/. For
ı0 > 0 fixed, the operator Œ.�� Q�/a0�Q;ı0 is a compact operator and we obtain

lim
h!0

TrŒh.�a. � ;hı
�1
0 �//

Q;ı0 ��TrŒh. Q�a. � ;hı
�1
0 �//

Q;ı0 �DTrŒ0..�� Q�/a0/Q;ı0 �:

Therefore the subsequence extraction, which ensures the convergence (13), can
be done independently of the choice of Q� and by taking Q�.x; �/ D �.x; ıı�10 �/

independently of ı > 0. For Ea D .hk;a/k2N such a sequence of parameters, the
limits can be compared by

` Q�;ı;a � `�;ı0;a D lim
h2Ea
h!0

TrŒh. Q�a. � ; hı
�1
� //Q;ı ��TrŒh.�a. � ; hı

�1
0 � //

Q;ı0 �

D TrŒ.. Q�.ıı�10 /��/a0/
Q;ı00�: (14)

By choosing Q�D � above, the inequality 0 � .���.ıı�10 //a0 � �a0 for a0 � 0
and ı � ı0, and the ı0-Gårding inequality impliesˇ̌

TrŒ.. Q�.ıı�10 /��/a0/
Q;ı00�

ˇ̌
� TrŒ.�a0/Q;ı00�CO.ı0/
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uniformly with respect to ı � ı0. Thus the quantity `�;ı;a satisfies the Cauchy crite-
rion as ı! 0 because s-limı0!0 .�a0/

Q;ı0 D 0 and 0 is fixed in L1.L2.M; dx//.
Hence the limit

`�;a D lim
ı!0

`�;ı;a D lim
ı!0

lim
h2Ea
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �

exists for any fixed a 2 C10 ..T
�M nM/tS�M/. Using (14) with ı D ı0, but a

general pair .�; Q�/, and taking the limit as ı! 0 shows ` Q�;a D `�;a D `a. The
inequalities (10) and (11) give 0� `a � kakL1 . By the usual diagonal extraction
process according to a countable set N � C10 ..T

�M nM/tS�M/ dense in the
set of continuous functions with limit 0 at infinity, we have found a subset E 0 � E ,
0 2 E 0, and a nonnegative measure Q� such that (12) holds. Note that we have also
provedZ

.T �MnM/tS�M

a d Q� D lim
ı!0

lim
h2E 0
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �

D lim
ı!0

lim
h2E 0
h!0

TrŒ.h� 0/.�a. � ; hı
�1
� //Q;ı �;

where neither limit depends on the partition of unity .1��/C�� 1 with 1�� 2
C10 .T

�M/ equal to 1 in a neighborhood of M.
We still have to compare Q� and �. For this take a2C10 .T

�M/ and set a0.x; !/D
'.x/D a.x; 0/. The symbol identity

a.x; hı�1�/D a.x; hı�1�/.1��/C a.x; hı�1�/�

D '.x/.1��/C a.x; hı�1�/�C hra;�;ı;h;

with ra;ı;�;h uniformly bounded in S.1; dx2C d�2/ with respect to h, leads after
ı-quantization toZ

T �M

a d� D lim
h2E 0
h!0

TrŒha
Q;h�

D lim
h2E 0
h!0

TrŒh.'.x/.1��//
Q;ı �C lim

h2E 0
h!0

TrŒh.�a. � ; hı
�1
� //Q;ı �:

For ı > 0 fixed, .'.x/.1��//Q;ı is a fixed compact operator so that the first limit is

lim
h2E 0
h!0

TrŒh.'.x/.1��//
Q;ı �D TrŒ0.'.x/.1��//Q;ı �;

while the second one is exactly the quantity occurring in the definition of Q�. Taking
the limit as ı ! 0 with s-limı!0.'.x/.1� �//Q;ı D '.x/, yields �jT �MnM D
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Q�jT �MnM . Finally setting �.I / D Q�jS�M yields, for any a 2 C10 .T
�M/,Z

T �M

a d� D

Z
T �MnM

a d�C

Z
S�M

a0 d�.I /C

Z
M

' d�0;

which implies the relation for the measures. �

Definition 3.12. M.2/.h; h 2 E/ denotes the set of all triples .�; �.I /; 0/ which
can be obtained in Proposition 3.11 for suitable choices of E 0 � E , 0 2 E 0.

We note that the equality �.M/D TrŒ0� implies �.I / � 0 and this leads, as in
the previous case, to the following definition.

Definition 3.13. On a compact manifold M, assume that the quantization aQ;h D
a.x; hDx/ is adapted to the family .h/h2E , with h 2 L1.L2.M//, h � 0 and
limh!0 TrŒh� <1. We say that the quantization is separating if for any E 0 � E ,
0 2 E 0,

M.h; h 2 E 0/D f�g;
w�-lim
h2E 0;h!0

h D 0 in L1.L2.M//

�
D) �.f� D 0g/D TrŒ0�:

While doing the double scale analysis of the nonnormalized reduced density
matrices N .p/

h
, especially with the help of tensorization arguments, we will simply

study their weak�-limit in L1 and their semiclassical measures. The equality of
Definition 3.8 or 3.13 will be checked a posteriori in order to ensure �.I / � 0.

4. Mean-field asymptotics with h-dependent observables

We now combine the mean-field asymptotics with semiclassically quantized observ-
ables. This means that the parameter " appearing in CCR (resp. CAR) relations
in Section 2 is bound to the semiclassical parameter h of Section 3 parametrizing
observables aW;h (or aQ;h):

"D ".h/ > 0 with lim
h!0

".h/D 0:

So, from now on we consider families of density matrices on the fermionic or
bosonic Fock space �˙.Z / labeled as .%".h//h2E with their reduced density ma-
trices denoted by . .p/

".h/
/h2E . Firstly, we give a sufficient condition in terms of

semiclassical 1-particle observables and of the family .%".h//h2E so that a quan-
tization aW;h defined on the p-particle phase space Xp is adapted to the nonnor-
malized reduced density matrix  .p/

".h/
for all p 2 N. After this, the quantum and

classical symmetrization results, Lemmas 2.8 and 3.1, then provide simple ways
to identify the weak�-limits  .p/0 or the semiclassical measures associated with the
family . .p/

".h/
/h2E for all p 2 N. According to the discussion in Section 2 about

Definitions 3.8 and 3.13, a simple mass argument allows one to check that all the
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multiscale information has been classified. Recall that if

lim
h!0

TrŒ .p/
".h/

�D lim
h!0

TrŒ%".h/N
p
˙
�D T .p/

then the semiclassical measures �.p/ 2M.
.p/

".h/
; h 2 E/ (or multiscale asymptotic

triples .�.p/; �.p/
.I/
; 
.p/
0 /) have a total mass equal to T .p/.

Remember that the nonnormalized reduced density matrices  .p/
".h/

are defined
for h > 0 by,

for all Qb 2 L.Sp
˙

Z ˝p/; TrŒ .p/
".h/
Qb�D TrŒ%".h/ Qb

Wick�:

They are well-defined and uniformly bounded trace-class operators with respect
to h 2 E , as soon as TrŒ%".h/N

p
˙
� is bounded uniformly with respect to h 2 E for

every p 2N. Actually, it is more convenient in many cases, and not so restrictive,
to work with exponential weights in terms of the number operator N˙.

Hypothesis 4.1. The family .%".h//h2E in L1.�˙.Z // satisfies:

(i) For all h 2 E , we have %".h/ � 0 and TrŒ%".h/�D 1.

(ii) There exist c; C > 0 such that TrŒ%".h/ecN˙ �� C for all h 2 E .

When the 1-particle phase space is X 1 D T �Rd we use the Weyl quantization
on Xp D T �Rdp , aQ;h D aW;h D aW .htx; h1�tDx/, x 2 Rdp , and when M 1 is
a compact manifold, Xp D T �Mp, we use aQ;h D a.x; hDx/, x 2Mp.

Proposition 4.2. Assume Hypothesis 4.1. Let � 2 C10 .T
�M 1/ satisfy 0 � � � 1

and � � 1 in a neighborhood of 0 (resp. in a neighborhood of the null section
f.x; �/ 2 T �M W � D 0g DM ) when M D Rd (resp. M is a compact manifold)
and let �ı.X/D �.ıX/ (resp. �ı.x; �/D �.x; ı�/). For c0 < c, where c is given
by Hypothesis 4.1.ii/, if

sc0;�.ı/D lim sup
h!0

Re TrŒ%".h/.e
c0N˙ � ec

0d�˙.�
Q;h

ı
//�! 0 as ı! 0; (15)

then for all p 2 N, the quantization aQ;h is adapted to the family  .p/
".h/

.

Lemma 4.3. Let A2L.Z / and ˛�kAk. For z in the open discD.0; ˛=kAk/�C,
the operator ezd�˙.A/e�˛N˙ D ed�˙.zA�˛IdZ / is a contraction in �˙.Z / and
the function z 7! ed�˙.zA�˛IdZ / is holomorphic in D.0; ˛=kAk/ with

1

pŠ
d�˙.A/

pe�˛N˙ D e�˛N˙
1

pŠ
d�˙.A/

p

D
1

2i�

Z
jzjDr

ed�˙.zA�˛IdZ /
dz

zpC1
; (16)

which holds true in L.�˙.Z // for all p 2 N and all r 2 .0; ˛=kAk/.
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Assume moreover that A;B 2 L.Z /, and ˛ > ˛0 DmaxfkAk; kBkg. Then:

(1) For all z 2D.0; ˛=˛0/,

k.ezd�˙.B/� ezd�˙.A//e�˛N˙kL.�˙.Z // �
˛kB �AkL.Z /

˛0.˛�˛0/e
:

(2) For all p 2 N and r 2 .0; ˛=˛0/,

k.d�˙.B/
p
� d�˙.A/

p/e�˛N˙kL.�˙.Z // �
˛pŠ kB �AkL.Z /

˛0.˛�˛0/erp
:

Proof of Lemma 4.3. After setting A0 D zA with jzj < ˛=kAk so that kA0k < ˛,
notice that ke".A

0�˛/k � e"kA
0ke�"˛ < 1. Hence, the operators �˙.e�".A

0�˛//D

e�˛N˙ed�˙.A
0/ D ed�˙.A

0/e�˛N˙ are contractions on �˙.Z /. The holomorphy
and the Cauchy formula are then standard.

For the second statement, set B 0 D zB and A0 D zA, jzj < ˛=˛0, and use
Duhamel’s formula:

e�d�˙.˛�B
0/
� e�d�˙.˛�A

0/

D

Z 1

0

e�.1�t/d�˙.˛0�A
0/ d�˙.B

0
�A0/e�.˛�˛0/N˙e�td�˙.˛0�B

0/ dt:

Since e�.1�t/d�˙.˛0�A
0/ and e�td�˙.˛0�A

0/ are contractions, the inequality

kd�˙.B
0
�A0/e�.˛�˛0/N˙k �

˛

˛0
kB �Ak sup

n2N

"ne�.˛�˛0/"n �
˛kB �Ak

˛0.˛�˛0/e

yields part (1).
Part (2) follows from (16) and part (1). �

Proof of Proposition 4.2. Fix p 2N. We want to find Q� 2 C10 .T
�Mp/, 0� Q�� 1,

and Q� � 1 in a neighborhood of fX 2 R2dp W X D 0g (resp. f.x; �/ 2 T �Mp W

� D 0g DMp) when Mp D Rdp (resp. when M is a compact manifold), such that

lim
ı!0

lim sup
h!0

T .ı; h/D 0;

with
T .ı; h/ WD Re TrŒ .p/

".h/
.IdSp

˙
Z˝p � Q�

Q;h

ı
/�

D Re TrŒ%".h/.IdSp
˙

Z˝p � Q�
Q;h

ı
/Wick�:

We know that �˝p 2C10 .T
�Mp/, with 0��˝p�1. Take Q� such that �˝p� Q��1.

For a constant �ı > 0 to be fixed, the inequalities of symbols

0� �
˝p

ı
� Q�ı � 1;

0� �ı C �ıh� 1C �ıh
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and the semiclassical calculus imply

k.1� Q�ı/
Q;h
�ReŒ.1� Q�ı/

Q;h�kL.Z˝p/ � Cıh;

k�
Q;h

ı
�ReŒ�Q;h

ı
�k � Cıh;

0� ReŒ.1��˝p
ı
/Q;h�CC 0ıhD 1� .ReŒ�Q;h

ı
�/˝pCC 0ıh

� .1C 2�ıh/
p
� .ReŒ.�ı C �ıh/

Q;h�/˝pCC 00ı h in L.Z ˝p/

for some constants Cı ; C 0ı ; C
00
ı
> 0, chosen according to p 2 N, ı > 0 and �ı > 0.

Moreover for ı > 0 fixed, the constant �ı can be chosen so that

0� ReŒ.�ı C �ıh/
Q;h�� 1C 2�ıh:

With
k.1CN˙/

pe�
c0

2
N˙kL.�˙.Z // � Cp;c0 ;

the number estimate (3) and the positivity property . Qb � 0/) . QbWick � 0/, writing

%".h/ D e
� c
2

N˙e
c
2

N˙%".h/e
c
2

N˙e�
c
2

N˙ ;

leads to

T .ı; h/ WD Re TrŒ%".h/.IdSp
˙

Z˝p � Q�
Q;h

ı
/Wick�

D TrŒ%".h/.IdSp
˙

Z˝p �ReŒ Q�Q;h
ı

�/Wick�COı.h/

� TrŒ%".h/..1C 2�ıh/
p
� .ReŒ.�ı C �ıh/

Q;h�/˝p/Wick�COı.h/:

We now use Proposition 2.4 for

T .ı; h/�Tr
�
%".h/

�
d�˙.1C2�ıh/

p
�d�˙.ReŒ.�ıC�ıh/

Q;h�/p
��
COı.hC".h//:

The two operators A D d�˙.1C 2�ıh/ and B D d�˙.ReŒ.�ı C �ıh/Q;h�/ are
commuting self-adjoint operators such that 0 � B � A, so that 0 � Ap � Bp �
Cp;c0 Œe

c0A� ec
0B�. We deduce

T .ı;h/�Cp;c0 TrŒ%".h/e
cN˙e�cN˙.ed�˙.c

0.1C2�ıh//�ed�˙.c
0ReŒ.�ıC�ıh/Q;h�//�

COı.hC".h//:

We apply Lemma 4.3 with zD 1, AD c0.1C2�ıh/ and BD c0, or AD c0 ReŒ.�ıC
�ıh/

Q;h� and B D c0�Q;h
ı

, and finally

˛Dc>˛0D
cC c0

2
�c0maxf1C2�ıh; k.�ıC�ıh/

Q;h
k; k�

Q;h

ı
kg for h�hı;c;c0

and we get

T .ı; h/� Re TrŒ%".h/.e
c0N˙ � ec

0d�˙.�
Q;h

ı
//�COı.hC ".h//:
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We thus obtain
lim sup
h!0

T .ı; h/� sc0;�.ı/

and our assumption limı!0 sc0;�.ı/D 0 gives the desired conclusion. �

Notation. For any open set��C the Hardy spaceH1.�/ is the space of bounded
holomorphic functions on �.

Proposition 4.4. Assume Hypothesis 4.1. Then:

(i) The set E can be reduced to E 0 so that M.
.p/

".h/
; h 2 E 0/D f�.p/g for all p 2N,

where �.p/ is a nonnegative measure on T �Mp=Sp , i.e., a measure on .T �M/p

with the invariance (8).

(ii) When (15) is satisfied, this implies

lim
h2E 0
h!0

TrŒ .p/
".h/

�D

Z
T �Mp

d�.p/.X/ for all p 2 N:

(iii) For any a 2 C10 .R
2d / there exists ra > 0 such that the function ˆa;h W s 7!

TrŒ%".h/esd�˙.a
W;h/� is uniformly bounded in H1.D.0; ra// and, locally uni-

formly in s,

lim
h2E 0
h!0

ˆa;h.s/Dˆa;0.s/ WD

1X
pD0

sp

pŠ

Z
T �Mp

a˝p.X/ d�.p/.X/: (17)

Conversely, if we know that ˆa;h converges, pointwise on the interval .�ra; ra/
or in D0..�ra; ra//, to some functionˆa;0 as h! 0, h2 E , then M.

.p/

".h/
; h2 E/D

f�.p/g for all p 2 N and ˆa;0 is equal to (17) with E 0 D E .

Proof. The uniform bound

TrŒ .p/
".h/

�� TrŒ%".h/hN˙i
p�� Cp;c TrŒ%".h/e

cN˙ �

and Hypothesis 4.1 ensure for each p 2 N the existence of E.p/ � E.p�1/ � E ,
02E.p/, such that M.

.p/

".h/
; h2E.p//Df�.p/g (see Proposition 3.3 and Remark 3.4).

A diagonal extraction with respect to p determines E 0 � E , 0 2 E 0, such that
M.

.p/

".h/
; h 2 E 0/D f�.p/g for all p 2 N.

The second statement (ii) is a straightforward application of Proposition 4.2 and
Proposition 3.3.

In the statement (iii), the holomorphy of the function ˆa;h on the domain
D.0; c=kaW;hk/ follows by Lemma 4.3. Hypothesis 4.1 now combined with

ke�cN˙ezd�˙.˛
W;h/
k D k�.e".z˛

W;h�c//k � 1 and kaW;hk � Ca
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provides the uniform boundedness with respect to h 2 E of ˆa;h in H1.D.0; ra//
with ra D c=Ca. Moreover, Lemma 4.3(2) shows that ˆa;h is given by the entire
function

ˆa;h.s/D

1X
pD0

sp

pŠ
TrŒ%".h/d�˙.a

W;h/p�;

which is absolutely convergent on s 2D.0; ra/ uniformly in h2 E since the estimate

kd�˙.a
W;h/pe�cN˙kL.�˙.Z // .

pŠ

r
p
a

(18)

holds true uniformly for all p 2 N and h 2 E . According to (i) and Proposition 2.4,

lim
h2E 0
h!0

TrŒ%".h/d�˙.a
W;h/p�D lim

h2E 0
h!0

TrŒ%".h/..a
W;h

/˝p/Wick�

D lim
h2E 0
h!0

TrŒ .p/
".h/

.a
W;h

/˝p�D

Z
T �Mp

a˝p d�.p/:

Hence, by dominated convergence, ˆa;h converges locally uniformly in D.0; ra/
to ˆa;0 given by (17) and consequently ˆa;0 belongs to H1.D.0; ra// as well.

Moreover, assume for any a 2 C10 .R
2d / the convergence of ˆa;h to ˆa;0 in

a weak topology on the interval .�ra; ra/ as h 2 E , h ! 0. Let �.p/1 ; �
.p/
2 2

M.
.p/

h
; h 2 E/, for p 2N. Then according to (i) and the first part of (iii), one has,

for any s 2 .�ra; ra/,

ˆa;0.s/D

1X
pD0

sp

pŠ

Z
T �Mp

a˝p.X/d�
.p/
1 .X/D

1X
pD0

sp

pŠ

Z
T �Mp

a˝p.X/d�
.p/
2 .X/:

The uniform estimate (18) shows that ˆa;0 admits a holomorphic extension on
D.0; ra/ and consequentlyZ

T �Mp

a˝p.X/ d�
.p/
1 .X/D

Z
T �Mp

a˝p.X/ d�
.p/
2 .X/

for all p 2N. Thanks to Lemma 3.1, the measures �.p/1 and �.p/2 are determined by
integrating with all the test functions a˝p , a 2 C10 .T

�M/. So �.p/1 D �
.p/
2 , which

ends the proof. �

Replacing the semiclassical symmetrization Lemma 3.1 by the quantum ones,
Lemma 2.8 in the above proof leads to the following similar result for the quantum
part.

Proposition 4.5. Assume Hypothesis 4.1. For all K 2 L1.Z / there exists rK > 0
such that the set f‰K;h; h 2 Eg of functions ‰K;h.s/ WD TrŒ%".h/esd�˙.K/� is
bounded in H1.D.0; rK//.
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The pointwise or D0..�rK ; rK//-convergence limh2E; h!0‰K;hD‰K;0 is equiv-
alent to w�-limh2E; h!0 

.p/

h
D 

.p/
0 (remember L1 D .L1/�) with

‰K;0.s/D

1X
pD0

TrŒ .p/0 K˝p�
sp

pŠ
:

Let us consider a specific feature of the fermionic case:

Proposition 4.6. Let .%"/"2E be a family of nonnegative, trace-1 operators in
L1.��.Z//. Let  .p/" denote the corresponding nonnormalized reduced density
matrices of order p. If  .p/0 2 L1.Sp�Z˝p/ is such that,

for all K 2 L1.Sp�Z
˝p/; lim

"2E
"!0

TrŒ .p/" K�D TrŒ .p/0 K�;

then  .p/0 D 0.
As a consequence, the weak�-limits  .p/0 always vanish in the fermionic case.

Proof. First consider K a nonnegative finite-rank operator. Then

lim
"2E
"!0

TrŒ%"KWick�D TrŒ .p/0 K�:

For fermions, KWick � "p TrŒK�, and hence TrŒ%"KWick� � ".h/p ! 0 as "! 0.
Since any finite-rank operator is of the form K DK1�K2C i.K3�K4/ for some
nonnegative finite-rank operators Kj , j 2 f1; 2; 3; 4g, the limit TrŒ%"KWick�! 0D

TrŒ .p/0 K� holds for any finite-rank operator K. Hence, by density of the finite-rank
operators in the compact operators for the operator norm, TrŒ .p/0 K�D 0 for any
K 2 L1.Sp�Z˝p/, i.e.,  .p/0 D 0. �

5. Examples

5A. h-dependent coherent states in the bosonic case. We first recall our nor-
malization for a coherent state. If we use the identification S0

˙
Z � C, then the

vacuum-state vector is defined as �D .1; 0; 0; : : : / 2 �˙.Z/. We then introduce
the usual field operators ˆ.f / D .1=

p
2/.a�.f /C a.f //, with f 2 Z, and the

Weyl operators are W.f / D exp..i=
p
2/ˆ.f //. A coherent state is a pure state

Ez DW.
p
2z=.i"//�, with z 2 Z . One then can also speak of a coherent state

for the corresponding density matrix jEzihEzj. One of the useful properties of
coherent states is that

b.z/D hE.z/; bWickE.z/i: (19)

See, e.g., [Ammari and Nier 2008, Proposition 2.10]. The case of coherent states
is simple:
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Proposition 5.1. Let .z"/"2.0;1� be a bounded family of Z , choose the semiclassi-
cal quantization a 7!aW;hDaW .

p
hx;
p
hDx/, and fix a function "D ".h/! 0 as

h! 0. Up to an extraction, z".h/*z0 2Z weakly, and M.jz".h/ihz".h/j; h2 E/D
f�g. Assume that the semiclassical quantization aW;h D aW .

p
hx;
p
hDx/ is

adapted to .jz".h/ihz".h/j/h and separating for .jz".h/ihz".h/j/h. Then the family
.%".h/ D jEz".h/ihEz".h/ j/h2E has


.p/

".h/
D jz

˝p

".h/
ihz
˝p

".h/
j

as (nonnormalized) reduced density matrices of order p, for which the quantiza-
tion is adapted and separating, and

M.2/.
.p/

".h/
; h 2 E/D f.�˝p; 0; jz˝p0 ihz

˝p
0 j/g:

Proof. Formula (19) yields, for B 2 L.Sp
C
Z˝p/,

hz
˝p

".h/
; Bz

˝p

".h/
i D hEz".h/ jB

Wick
jEz".h/i D TrŒ%".h/B

Wick�D TrŒ .p/
".h/

B�;

which implies the result. �

The case of coherent states, although simple, can already exhibit interesting
behaviors for some families .z"/"2.0;1�. Indeed,

Remark 5.2. Let .zj;".h//h2.0;1�, j 2 f1; 2g, be families of Z such that

� z1;".h/! z1;0 2 Z as h! 0, and

� .z2;".h//h2.0;1� converges weakly to 0,

lim
R!1

lim sup
h!0

k.1��.R�1 � //W;hz2;".h/k D 0

for some � 2 C10 .R
2d /, �� 1 around 0 (no mass escaping at infinity in the

phase space), and M.jz2;".h/ihz2;".h/j; h 2 E/D f�2g, with �2.f0g/D 0.

Then .jz1;".h/ C z2;".h/ihz1;".h/ C z2;".h/j/h2.0;1� satisfies the assumptions of
Proposition 5.1, and z0 D z1;0, � D kz1;0k2ı0C �2.

5B. Gibbs states. For a given nonnegative self-adjoint hamiltonianH defined in Z

with domainD.H/, the Gibbs state at positive temperature 1
ˇ

and with the chemical
potential � < 0 is given by

!".A/D
TrŒ�˙.e�ˇ.H��//A�
TrŒ�˙.e�ˇ.H��//�

D TrŒ%"A�:

In general %" 2 L1.�˙.Z // as soon as e�ˇ.H��/ 2 L1.Z / (in the bosonic case
H �0 and �<0 imply ke�ˇ.H��/kL.Z/<1, see Lemma D.1). Moreover the quasi-
free state formula, see [Bratteli and Robinson 1981], with "-dependent quantization
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gives

TrŒ%"N˙�D "TrŒe�ˇ.H��/.1� e�ˇ.H��//�1�

and additionally, in the case of bosons,

TrŒ%"W.f /�D exp
�
�
1
4
"hf; .1C e�ˇ.H��//.1� e�ˇ.H��//�1f i

�
:

5B1. The fermionic case. This case is simpler than the bosonic case for two rea-
sons: first because the quantum part vanishes (see Proposition 4.6), and second
because there is no singularity to handle. To fix the ideas we consider the sim-
ple case when H is the harmonic oscillator. Actually one can treat more general
pseudodifferential operators, and we do that below in the more interesting case of
bosons and Bose–Einstein condensation.

Proposition 5.3. Let ˇ > 0, H D 1
2
jX j2W;h, �."/ be such that �."/ � C" for

some constant C > 0, and assume that "D ".h/D hd. Let

%".h/ D
��.e

�ˇ.H��."///

TrŒ��.e�ˇ.H��."///�

and  .p/
".h/

be its nonnormalized reduced density matrix of order p � 1. Then

M.2/.
.p/

".h/
; h 2 .0; 1�/D f.�.p/; 0; 0/g;

where

d�.p/ D

�
e�

ˇ
2
jX j2

1C e�
ˇ
2
jX j2

dX

.2�/d

�̋ p

:

Proof. From Remark 3.7 and Proposition 4.6, any

.�.p/; �
.p/
I ; 

.p/
0 / 2M.2/.

.p/

".h/
; h 2 .0; 1�/

satisfies  .p/0 D 0.
Since we are considering a Gibbs state, the Wick formula yields


.p/

".h/
D pŠSp

˙

.1/˝p

".h/
Sp;�
˙
:

Moreover, in the fermionic case,


.1/

".h/
D ".h/

C

1CC
for %".h/ D

��.C /

TrŒ��.C /�
I

that is to say, with ".h/D hd,


.1/

".h/
D hd

e�ˇ.H��/

1C e�ˇ.H��/
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in our case. The semiclassical calculus combined with the Helffer–Sjöstrand func-
tional calculus formula yields

e�ˇ.
1
2
jX j2W;h��/

1C e�ˇ.
1
2
jX j2W;h��/

D

�
e�

ˇ
2
jX j2

1C e�
ˇ
2
jX j2

�W;h
CO.h/ in L.Z/:

For details we refer the reader to, e.g., [Dimassi and Sjöstrand 1999; Helffer and
Nier 2005] or to the proof of Proposition 5.6. Again by the semiclassical calculus
we know hdaW;h is uniformly bounded in L1.L2.Rd // for a 2 C10 .R

2d /. This
leads to

TrŒ.aW;h/˝p .p/
".h/

�D TrŒaW;h .1/
".h/

�pCO.h/

D Tr
��

e�
ˇ
2
jX j2

1C e�
ˇ
2
jX j2

�W;h
hdaW;h

�p
CO.h/:

We finally use

hd TrŒaW;hbW;h�D
Z

R2d
a.X/b.X/

dX

.2�/d
;

which implies

lim
h!0

TrŒ.aW;h/˝p  .p/
".h/

�D

�Z
R2d

e�
ˇ
2
jX j2

1C e�
ˇ
2
jX j2

a.X/
dX

.2�/d

�p
:

Hence

d�.p/.X/D

�
e�

ˇ
2
jX j2

1C e�
ˇ
2
jX j2

dX

.2�/d

�˝p
: �

5B2. Parameter-dependent Gibbs states and Bose–Einstein condensation in the
bosonic case. The Bose–Einstein condensation phenomenon occurs when H has
a ground state kerH D C 0 and the chemical potential is scaled according to

�ˇ�D
"

�C
for some fixed �C > 0:

An especially interesting case is when H is a semiclassically quantized symbol
with semiclassical parameter h related to ", or "D ".h/ according to our previous
notations. The quantum and semiclassical parts arise simultaneously when "D hd.
Two cases will be considered: the first one concerns Z DL2.Rd / with a nondegen-
erate bottom-well hamiltonian; the second one Z D L2.M/ with the semiclassical
Laplace–Beltrami operator on the compact Riemannian manifold M.

In the first case, let S.hXim; dX2=hXi2/ denote the Hörmander class of sym-
bols satisfying j@ˇXa.X/j �Cˇ hXi

m�ˇ, and let ˛ 2S.hXi2; dX2=hXi2/ be elliptic
in this class with a unique nondegenerate minimum at X D 0 (e.g., the symbol of



250 ZIED AMMARI, SÉBASTIEN BRETEAUX AND FRANCIS NIER

the harmonic oscillator hamiltonian). We can even consider small perturbations of
this situation after setting

H D ˛W;hCBh��0.˛
W;h
CBh/; ˛W;h D ˛.

p
hx;
p
hDx/; "D hd ;

where

BhDBh� 2L.L2.Rd //; kBhkD o.h/; �0.˛
W;h
CBh/D inf �.˛W;hCBh/:

It is convenient in this case to introduce the linear symplectic transformation
T 2 Sp2d .R/ such that tX tT �1 Hess˛.0/T �1X D

Pd
jD1 ǰX

2
j and to introduce

some unitary quantization UT of T, i.e., a unitary operator on L2.Rd / such that
U �T b

WUT D b.T
�1 � /W.

Proposition 5.4. Under the above assumptions with dimension d � 2, for any
p 2N, we have M.2/.

.p/

".h/
; h 2 E/D f.�.p/; 0;  .p/0 /g (see Definition 3.12), where


.p/
0 D pŠ �

p
C j 

˝p
0 ih 

˝p
0 j with  0.x/D UT

e�
1
2
x2

�
d
4

and

�.p/ D
X
�2Sp

��

� pX
kD0

1

.p� k/Š
�kC ı

˝k
0 ˝ �.ˇ; � /

˝p�k

�
;

with

d�.ˇ;X/D
e�ˇ˛.X/

1� e�ˇ˛.X/

dX

.2�/d
:

The proof is given in Section 5B4 and needs some preliminaries, which are given
in Proposition 5.6 and Lemma 5.7.

Another even simpler case, related to the example M D Td presented in [Am-
mari and Nier 2008], is Z D L2.M; dvg.x// when .M; g/ is a compact Riemann-
ian manifold with volume dvg.x/ and

H D�h2�g CBh��0.�h
2�g CBh/;

where �g is the Laplace Beltrami operator on .M; g/ and Bh D B�h 2 L.L
2.M//,

kBhk D o.h
2/.

Proposition 5.5. Under the above assumptions with d � 3, for any p 2 N, we
have M.2/.

.p/

".h/
; h 2 E/D f.�.p/; 0;  .p/0 /g, where


.p/
0 D pŠ �

p
C j 

˝p
0 ih 

˝p
0 j;  0 D

1

vg.M/
1
2

;

�.p/ D
X
�2Sp

��

� pX
kD0

1

.p� k/Š
�kC

�
1

vg.M/
dvg.x/˝ ı0.�/

�̋ k

˝ �.ˇ/˝.p�k/
�
;
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with

d�.ˇ;X/D
e�ˇ j�j

2
g.x/

1� e�ˇ j�j
2
g.x/

dx d�

.2�/d
;

and

j�j2g.x/ D
X
i;j�d

gij .x/�i�j when g D
X
i;j�d

gij .x/ dx
i dxj; .gij /

�1
D .gij /:

We shall focus on the first case, which requires a more careful analysis, while
�.�h2�g/D h

2�.��g/ reduces the problem even more easily to the integrabil-
ity of e�ˇ j�j

2
g.x/=.1� e�ˇ j�j

2
g.x//, valid when d � 3. The proof of Proposition 5.5

is left as an exercise, which requires the adaptation of the following arguments in
the case of Proposition 3.11 with the associated Definitions 3.13 and 3.12.

5B3. Semiclassical asymptotics with a singularity at X D 0. We give here a gen-
eral semiclassical result in T �Rd, which involves traces and symbols with a singu-
larity at X D 0.

Proposition 5.6. Consider the hamiltonian H D ˛W;h C Bh � �0.˛W;h C Bh/,
with ˛W;h D ˛.

p
hx;
p
hDx/, ˛ 2 S.hXi2; dX2=hXi2/ elliptic and real such that

˛.0/D 0 is the unique nondegenerate minimum, Bh D B�h 2 L.L
2.Rd //, kBhk D

o.h/, and �0.˛W;hCBh/D inf �.˛W;hCBh/. Assume that f 2 C1..0;C1/IR/
is decreasing and satisfies

0� f .u/� Cu��1 ; lim
u!0C

u�0f .u/D f0 2 R; 0 < �0 < d < �1:

For c > 0, the operator f .H C ch
d
�0 / is trace class with

lim sup
h!0C

hdkf .H C ch
d
�0 /kL1.L2.Rd // <C1:

Moreover the convergence

lim
h!0

hd TrŒf .H C ch
d
�0 /aW;h�D

f0

c�0
a.0/C

Z
R2d

f .˛.X//a.X/
dX

.2�/d

holds for all a 2 S.1; dX2/. Finally, all the above estimates and convergences hold
uniformly with respect to c 2 .1=A;A/ for any fixed A > 1.

The following lemma gives, in a simple way, useful inequalities for our purpose,
which are deduced with elementary arguments, and in a robust way with respect to
the perturbation Bh, from more accurate and sophisticated results on the spectrum
of ˛W;h; see [Charles and Vũ Ngo. c 2008; Dimassi and Sjöstrand 1999].

Lemma 5.7. Let ˛ 2 S.hXi2; dX2=hXi2/ be real-valued, elliptic, which means
1C ˛.X/ � C�1hXi2, with a unique nondegenerate minimum at X D 0 and set
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˛0.X/ D
1
2
jX j2. Let Bh D B�

h
2 L.L2.Rd // be such that kBhk D o.h/. The

ordered eigenvalues are denoted by �j .˛W;hCBh/ and �j .˛
W;h
0 / for j 2 N:

� For j D 0, we have �0.˛W;hCBh/D TrŒHess˛.0/�hC o.h/ and the associated
spectral projection satisfies

lim
h!0

1f�0.˛W;hCBh/g.˛
W;h
CBh/D .�

�de�jTX j
2

/W .x;Dx/ in L1.L2.Rd //;

where T 2 Sp2d .R/ is such that tX tT �1 Hess˛.0/T �1X D
Pd
jD1 ǰX

2
j .

� There exist h0 > 0 and C 0 � 1 such that, for all j > 0 and h 2 .0; h0/,

1
2
C 0�1hd � C 0�1�j .˛

W;h
0 /

� �j .˛
W;h
CBh/��0.˛

W;h
CBh/� C

0�j .˛
W;h
0 /: (20)

Remark 5.8. Of course �.˛W;h0 / D
˚
h
�
d
2
C jnj

�
W n 2 Nd

	
and the bounds (20)

are actually written in order to use this later. But for an easy use of the min-max
principle it is better to write the eigenvalues �j .˛

W;h
0 / in increasing order, with

repetition according to their multiplicity.

Proof of Lemma 5.7. We start by noting that 1C˛ 2 S.hXi2; dX2=hXi2/ is fully
elliptic in the sense that .1C˛/�1 2 S.hXi�2; dX2=hXi2/. Therefore

.1C˛/]W;h
1

1C˛
D 1C h2RC.h/;

1

1C˛
]W;h.1C˛/D 1C h2R�.h/

with R˙.h/ uniformly bounded in S.hXi�2; dX2=hXi2/. The semiclassical cal-
culus with the metric dX2=hXi2 then says

.1C˛W;h/�1 D Œ.1C˛/�1�W;hCO.h2/ in S
�
hXi�2;

dX2

hXi2

�
: (21)

The same of course also holds for �˛0.X/ D 1
2
� jX j2 with � 2 .0;C1/ fixed.

Therefore ˛W;hCBh and ˛W;h0 are self-adjoint with the same domain D.˛W;h/D
D.˛

W;h
0 /DD.˛

W;1
0 /, and they have a compact resolvent. We shall collect all the

necessary information by comparing the eigenvalues of ˛W;hCBh and ˛W;h0 in
the intervals .�1; 2jˇjh�, Œ0; 2� and Œ1;C1Œ, with jˇj D

Pd
jD1 ǰ . For the first

part, we refer to the ready-made simple statement of [Charles and Vũ Ngo. c 2008,
Theorem 4.5] and complete the other parts with simple pseudodifferential calculus
and the min-max principle.

Interval .�1; 2jˇjh�: By Theorem 4.5 of [Charles and Vũ Ngo. c 2008], there exist
a family of real numbers .!hn/h>0;n2Nd and, for any t > 0, a constant Ct > 0 such
that

�.˛W;h/\ .�1; th�D f!hn ; n 2 Nd g\
�
1
2
jˇjh; th

�
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and ˇ̌̌̌
!hn �

dX
jD1

h ǰ

�
1
2
Cnj

�ˇ̌̌̌
� Cth

3
2 :

As kBhk D o.h/, the min-max principle with ˛W;h and ˛W;hCBh then gives,

�.˛W;hCBh/\ .�1; th�D f!
h
n C o.h/; n 2 Ng\ Œ0; th�:

By choosing tD2jˇj, the operator ˛W;hCBh is nonnegative with �0.˛W;hCBh/D
1
2
jˇjhC o.h/ and the spectral gap is bounded from below by, for all j 2 N n f0g,

�j .˛
W;h
CBh/��0.˛

W;h
CBh/� �1.˛

W;h
CBh/��0.˛

W;h
CBh/

� ˇmhC o.h/�
1
2
ˇmh;

(22)

with ˇm Dminfˇ1; : : : ; ˇd g.
Let T 2 Sp2d .R

d / be such that tX tT �1 Hess˛.0/T �1X D
Pd
jD1 ǰX

2
j , let

UT be a unitary operator such that U �T b
WUT D b.T �1 � /W and set 'T .x/ D

.�/�
d
4 UT e

� 1
2
x2 . We compute

h'T ; .˛
W;h
CBh/'T i D TrŒU �T ˛

W;hUT j'Idih'Idj�C o.h/

D

Z
R2d

˛.
p
hT �1X/e�jX j

2 dX

�d
C o.h/:

But since ˛.T �1X/D
Pd
jD1

1
2 ǰ jXj j

2CP3.X/CO.jX j4/, with P3 a homoge-
neous polynomial of degree 3, we obtain

h'T ; .˛
W;h
CBh/'T i D

1
2
hjˇjC o.h/D �0.˛

W;h
CBh/C o.h/:

With the spectral gap (22) this implies that the ground state  h0 of ˛W;h C Bh
satisfies limh!0 k h0 �'T kL2 D 0 and

lim
h!0
k1f�0.˛W;hCBh/g.˛

W;h
CBh/��

�d .e�jTX j
2

/W;1kL1 D 0:

Interval Œ0; 2�: Our assumptions on ˛ provide a constant C2� 1 such that C�12 ˛0�

˛ � C2˛0 and therefore

C�12 ˛0

1CC�12 ˛0
�

˛

1C˛
�

C2˛0

1CC2˛0
;

as x 7! x
1Cx

is increasing on R�. Since all those symbols belong to S.1; dX2/,
the semiclassical Fefferman–Phong inequality for the constant metric dX2, see
[Hörmander 1985, Lemma 18.6.1], says

C�12 ˛
W;h
0

1CC�12 ˛
W;h
0

�O.h2/�
˛W;h

1C˛W;h
�

C2˛
W;h
0

1CC2˛
W;h
0

CO.h2/;
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after using �
˛:

1C˛:

�W;h
D

˛W;h:

1C˛W;h:

CO.h2/:

With k.1C˛W;h/�1�.1C˛W;hCBh/�1kDO.kBhk/D o.h/ and x
1Cx
D 1� 1

1Cx
,

we deduce

C�12 ˛
W;h
0

1CC�12 ˛
W;h
0

� o.h/�
˛W;hCBh

1C˛W;hCBh
�

C2˛
W;h
0

1CC2˛
W;h
0

C o.h/:

For r D 2.1CC2/ and h0 > 0 small enough, the above operators have a discrete
spectrum in

�
0; r
1Cr

�
with eigenvalues in this interval, while the function x 7! x

1Cx

increases on Œ0;C1/. Hence the min-max principle implies that there exists C 02� 1
such that�
�j .˛

W;h
CBh/� 2

�
D)

�
C 0�12 �j .˛

W;h
0 /� o.h/� �j .˛

W;h
CBh/� C

0
2�j .˛

W;h
0 /C o.h/

�
(23)

holds for all j 2N. With the spectral gap (22) and �0.˛W;hCBh/D 1
2
jˇjhCo.h/

we conclude that (20) holds when �j .˛W;hCBh/� 2.

Interval Œ1;C1/: Our assumptions on ˛ provide a constant C1 � 1 such that

C�21 �

�
1C˛0

1C˛

�2
� C 21 :

With (21), the semiclassical Gårding inequality then gives for h0 small enough

max
˚
k.1C˛

W;h
0 /.1C˛W;h/�1k; k.1C˛W;h/.1C˛

W;h
0 /�1k

	
� 2C1:

Owing to kBhk D o.h/, this is also true when ˛W;h is replaced by ˛W;hCBh. We
obtain for all  2D.˛W;10 /,

.2C1/
�2
h ; .1C˛

W;h
0 /2 i�h ;.1C˛W;hCBh/

2 i�.2C1/
2
h ; .1C˛

W;h
0 /2 i;

and the min-max principle gives, for all j 2 N,

.2C1/
�2�j ..1C˛

W;h
0 /2/� �j ..1C˛

W;h
CBh/

2/� .2C1/
2�j ..1C˛

W;h
0 /2/:

By taking the square roots, for all j 2 N,

.2C1/
�1.1C�j .˛

W;h
0 //� 1C�j .˛

W;h
CBh/� 2C1.1C�j .˛

W;h
0 //;

which yields (20) for �j .˛W;hCBh/� 1. �

Proof of Proposition 5.6. With H D ˛W;hCBh � �0.˛W;hCBh/, Lemma 5.7
provides a constant C 0 > 0 such that,

for all j 2 N n f0g; C 0�1�j .˛
W;h
0 /� �j .H/� C

0�j .˛
W;h
0 /;
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while �0.H/D 0 and the ground state of H is the same as the one of ˛W;hCBh.
When the function f is nonnegative and decaying, we deduce

T rŒf .H C ch
d
�0 /�D f .ch

d
�0 /C

1X
jD1

f .�j .H/C ch
d
�0 /

� f .ch
d
�0 /C

1X
jD1

f .�j .H//

� f .ch
d
�0 /C

X
n2Nd

n¤0

f .C�14 hjnj/; (24)

with C4 D C3.1C 4jˇj=ˇm/, and for R > 0,

TrŒf .H C ch
d
�0 /1ŒR;C1/.H/�D

X
�j .H/�R

f .�j .H/C ch
d
�0 /

�

X
n2Nd

hjnj� R
2C3

f .C�14 hjnj/:

Apply (24) first, with f D s��0hsi��1C�0 :

hd TrŒf .H C ch
d
�0 /�� c��0 CChd

X
n2Nd

n¤0

.hjnj/��0hhjnji��1C�0 :

After splitting the sum into
P
hjnj�1 and

P
hjnj�1 and with #fn 2Nd W jnj Dmg D

C d�1
mCd�1

DO.md�1/, it becomes

hd TrŒf .H C ch
d
�0 /�

� c��0 CC 0hd
dh�1eX
mD1

h��0md�1��0 CC 0hd
1X

mDbh�1c

h��1md�1��1 :

� c��0 CC 00hd��0dh�1ed��0 CC 00hd��1bh�1cd��1 � c��0 CC 000;

owing to �1>d and �02 .0; d/. With a function f .s/D s��0�.s=ı/with 0���1
compactly supported and decaying on Œ0;C1/ we get similarly

lim
ı!0C

lim sup
h!0

hd TrŒf .H C ch
d
�0 /�� c��0 D 0;

while with f .s/ D hsi��1 , the truncated trace TrŒf .H C ch
d
�0 /1Œı�1;C1/.H/�

satisfies
lim
ı!0C

lim sup
h!0

hd TrŒf .H C ch
d
�0 /1Œı�1;C1/.H/�D 0:
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The comparison of �j .H/ with �j .˛
W;h
0 /, j 2 N, stated in Lemma 5.7 does not

depend on the parameter c. Neither do the constants C3, C4, C , C 0, C 00 and C 000

(f is nonnegative and decaying) depend on c. Therefore the previous asymptotic
trace estimates are uniform with respect to c 2

�
1
A
; A
�

for any fixed A > 1.
Thus if � 2 C10 .R/ is a cut-off function such that 0 � � � 1, �� 1 in .�1; 1/

and if a general f 2 C1..0;C1// fulfills all the assumptions of Proposition 5.6,
then

lim
ı!0C

lim sup
h!0C

hd
Œf .H C ch d�0 /1.0;C1/.H/Œ�.ı�1H/C .1��.ıH//�L1 D 0:

(25)
For g2 C10 .R/, with an almost analytic extension Qg2 C10 .C/, the Helffer–Sjöstrand
formula

g.˛W;h/D
1

2i�

Z
C

@ Nz Qg.z/.z�˛
W;h/ dz ^ d Nz;

combined with the semiclassical Beals criterion [Dimassi and Sjöstrand 1999; Helf-
fer and Nier 2005; Nataf and Nier 1998] with the constant metric dX2 implies

g.˛W;h/�g.˛/W;h D h r.h/W;h;

with r.h/ uniformly bounded (with respect to h) in S.1; dX2/. Since .1C ˛/ 2
S.hXi2; dX2=hXi2/ is an invertible elliptic symbol,

.1C˛W;h/�N � Œ.1C˛/�N �W;h D h2r 0.h/W;h;

with r 0.h/ uniformly bounded in S.hXi�2N�2; dX2=hXi2/ � S.hXi�2N; dX2/.
For a function fı 2 C10 ..0;C1//, we take g.s/D .1C s/Nfı.s/ and write

fı.˛
W;h/D g.˛W;h/.1C˛W;h/�N;

so that

fı.˛
W;h/�fı.˛/

W;h

D Œg.˛W;h/�g.˛/W;h�.1C˛W;h/�N Cg.˛/W;h.1C˛W;h/�N �fı.˛/
W;h

D h r 00.h/W;h;

with r 00.h/ uniformly bounded in S.hXi�2N; dX2/. In particular, hd r 00.h/W;h is
uniformly bounded in L1.L2.Rd // if we choose N > d .

Similarly, the Helffer–Sjöstrand formula can be used to prove g.H C ch
d
�0 /�

g.˛W;h/D o.h/ in L.L2.Rd //. With hd Œ.1CH C ch
d
�0 /�N � .1C˛W;h/�N �D

o.h/ in L1.L2.Rd // due to

.1CH C ch
d
�0 /�1 D Œ1C .1C˛W;h/�1.BhC ch

d
�0 /��1.1C˛W;h/�1;
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the same trick as above transforms the L.L2.Rd // estimate into

hd Œfı.H C ch
d
�0 /�fı.˛

W;h/�D o.h/ in L1.L2.Rd // (26)

Note again that this holds uniformly with respect to c 2
�
1
A
; A
�

for any fixed A> 1.
Now take fı.s/D.1��.ı�2s//�.ı2s/f .s/ for which we note that the inequality,

for all s � 0; 1� .1��.ı�2s//�.ı2s/� �.ı�1s/C .1��.ıs//

as soon as ı < ı� implies,

for all s � 0; 0� f .s/�fı.s/� f .s/Œ�.ı
�1s/C .1��.ıs//�: (27)

In the expression hd TrŒf .H C ch
d
�0 aW;h�, we decompose f .H C ch

d
�0 / into

.I /C .II /C .III /, where

.I /D fı.H C ch
d
�0 /;

.II /D .f .H C ch
d
�0 /�fı.H C ch

d
�0 //1.0;C1/.H/;

.III /D 1f0g.H/f .ch
d
�0 /:

We now conclude with the following steps:

� The estimate (26) yields

lim
h!0

hd TrŒfı.H C ch
d
�0 /aW;h�D lim

h!0
hd TrŒfı.˛/

W;haW;h�

D

Z
R2d

fı.˛.X//a.X/
dX

.2�/d
;

which provides the contribution of .I /.

� The upper bound (27) combined with (25) leads to

lim
ı!0C

lim sup
h!0

ˇ̌
hd Tr

�
Œf .H C chd=�0/�fı.H C ch

d
�0 /�1.0;C1/.H/a

W;h
�ˇ̌
D 0;

which says that .II / has a null contribution in the limit ı! 0.

� The contribution of .III / is simply computed as

hd TrŒf .H C ch
d
�0 /1f0g.H/a

W;h�D
f0

c�0
h h0 ; a

W;h h0 i;

where  h0 is the ground state of H Cch
d
�0 with k h���

d
4 e�

1
2
x2
k! 0 as h! 0.

This implies limh!0h h; aW;h hi D a.0/.

� Finally, the assumptions on f ensure f .˛/ 2 L1.R2d / and

lim
ı!0

Z
R2d

fı.˛.X//a.X/ dX D

Z
R2d

f .˛.X//a.X/ dX: �
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5B4. Semiclassical analysis of the reduced density matrices in the bosonic case.

Proof of Proposition 5.4. This will be made in two parts: we first compute the
semiclassical measures �.p/ and then identify the weak�-limit  .p/0 .

For the first part Proposition 4.4 says that it suffices to find the limit ˆa;0.s/ of
ˆa;h.s/ for a2C10 .T

�Rd /, real-valued, and s2 .�ra; ra/. Actually Proposition 5.6
allows to consider more generally a 2 S.1; dX2/. For a 2 S.1; dX2/, real-valued,
take s 2 R, jsj< ra D 1=.�CCa/, 4kaW;hk � Ca and set

DTa;h.s/D log TrŒ%"�.e"sa/�D�TrŒlog.1�CBs/�CTrŒlog.1�C/�;

ˆa;h.s/D TrŒ%"�.e"sa
W;h

/�D expDTa;h.s/; "D hd ;

with C D e�ˇ.HC
"

ˇ�C
/ and Bs D e"sa

W;h

.
Assume s 2 .�ra; ra/ and compute

DTa;h.s/D

Z 1

0

Tr
�

Cts zBts

1�Cts zBts
"saW;h

�
dt

D

Z 1

0

Tr
�
"sf

�
H C

"

ˇ
.��1C � tsa.0//

�
aW;h

�
dt

C

Z 1

0

Tr
�
"sŒ�.1�Cts/

�1
C .1�Cts zBts/

�1�aW;h
�
dt;

with

Cts D e
�ˇ.HC "

ˇ
.��1C �tsa.0///; zBts D e

"ts.a�a.0//W;h; f .u/D
e�ˇu

1� e�ˇu
:

Note that for t 2 Œ0; 1� the parameter 1
ˇ
.��1C � tsa.0// remains in a compact subset

of .0;C1/. Proposition 5.6 implies for all t 2 Œ0; 1�

lim
h!0

Tr
�
"sf

�
H C

"

ˇ
.��1C � tsa.0//

�
aW;h

�
D

�C sa.0/

1� t�C sa.0/
C s

Z
R2d

e�ˇ˛.X/

1� e�ˇ˛.X/
a.X/

dX

.2�/d
:

With the uniform control with respect to 1
ˇ
.��1C �tsa.0//Dc2

�
1
A
; A
�

in Proposition
5.6, we obtain for the first term

lim
h!0

Z 1

0

Tr
�
"sf

�
H C

"

ˇ
.��1C � tsa.0//

�
aW;h

�
dt

D� log.1� s�Ca.0//C s
Z

R2d

e�ˇ˛.X/

1� e�ˇ˛.X/
a.X/

dX

.2�/d
:
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For the remainder term, define…h0Dj 
h
0 ih 

h
0 j, where h0DUT .�

�d
4 e�

x2

2 /Co.h0/

is the ground state of H , and write

.1�Cts zBts/

D 1�Cts�Cts. zBts�1/D .1�Cts/

�
1C

Cts

1�Cts
.1� zBts/

�
D .1�Cts/

�
1C

Cts

1�Cts
…h0.1�

zBts/C
Cts

1�Cts
.1�…h0/.1�

zBts/

�
D .1�Cts/

�
1Cf

�
"

ˇ
.��1C �tsa.0//

�
…h0.1�

zBts/„ ƒ‚ …
I

C
Cts

1�Cts
.1�…h0/.1�

zBts/„ ƒ‚ …
II

�
:

We know

"�f

�
"

ˇ
.��1C � tsa.0//

�
D

1

��1C � tsa.0/
CO."/D

1

��1C � tsa.0/
C o.h/:

We write

"�1.1� zBts/ 
h
0 D�

Z 1

0

e"uts.a�a.0//
W;h

ts.a� a.0//W;h h0 du;

where  h0 D �
�d
4 UT e

�x
2

2 C o.h0/, and a.X/� a.0/ � C minf1; jX jg for some
C > 0 implies limh!0 k.a�a.0//W;h h0 kL2.Rd / D 0. Therefore the term I in the
above brackets satisfies

I D f

�
"

ˇ
.��1C � tsa.0//

�
…h0.1�

zBts/D o.h
0/ in L1.L2.Rd //:

Note that we have also proved

.1� zBts/…
h
0 �…

h
0.1�

zBts/D o."/ in L.L2.Rd //:
By using

k1� zBtsk DO."/;
 Cts

1�Cts
.1�…h0/

DO
�
1

h

�
;

and

lim
h!0
k"

Cts

1�Cts
kL1 D lim

h!0
Tr
�
"f

�
H C

"

ˇ
.��1C � tsa.0//

��
D

�C

1� t�C sa.0/
C s

Z
R2d

e�ˇ˛.X/

1� e�ˇ˛.X/

dX

.2�/d
;

the term II in the above brackets satisfies

kIIkL1 DO.1/; kIIk DO."h�1/D o.h0/;II � Cts

1�Cts
.1�…h0/.1�

zBts/.1�…
h
0/


L1
D o.h0/:
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Again all these estimates are uniform with respect to t 2 Œ0; 1�, owing to the uni-
formity of the estimates in Proposition 5.6 with respect to c D 1

ˇ
.��1C � tsa.0//.

By expanding the Neumann series .1C I C II /�1 D
P1
kD0.�1/

k.I C II /k we
deduce�

1C
Cts

1�Cts
.1� zBts/

��1
D 1�

Cts

1�Cts
.1�…h0/.1�

zBts/.1�…
h
0/CRh;

with kRhkL1 D o.h
0/. With k".1�Cts/�1k DO.1/ we finally obtain

"sŒ.1�Cts/
�1
� .1�Cts zBts/

�1�

D
s"Cts

1�Cts
.1�…h0/.1�

zBts/.1�…
h
0/.1�Cts/

�1
CR0h; kR

0
hkL1 D o.h

0/;

while k"Cts.1�Cts/�1kL1DO.1/, k1� zBkDO."/ and k.1�…h0/.1�Cts/
�1kD

O.h�1/.
With 4kaW;hk�Ca, the remainder term tends to 0 as h! 0 and we have proved,

for all s 2 .�ra; ra/,

lim
h!0

ˆa;h.s/Dˆa;0.s/D
1

1� s�Ca.0/
exp

�
s

Z
R2d

e�ˇ˛.X/

1� e�ˇ˛.X/
a.X/

dX

.2�/d

�
:

By expanding the generating function according to Proposition 4.4, we obtain

lim
h!0

TrŒ%"..aW;h/˝p/Wick�D

pX
kD0

1

.p�k/Š
�kCa.0/

k

Z
R2d.p�k/

a˝.p�k/d�.ˇ/˝p�k :

with

d�.ˇ/D
e�ˇ˛.X/

1� e�ˇ˛.X/

dX

.2�/d
:

The possibility to take a 2 S.1; dX2/ means that our quantization is adapted to all
the  .p/

h
.

Now in order to identify the weak�-limits of the  .p/
h

we compute the Wigner
measure associated with %".h/. Remember, see (28) and (29),

TrŒ%"W.
p
2�f /�D exp

�
�
"�2

2

�
f;
1C e

�ˇ.HC "
ˇ�C

/

1� e
�ˇ.HC "

ˇ�C
/
f

��
:

By using the orthonormal basis of eigenvectors . hj /j2N of H with associated
eigenvalues �hj , �h0 D 0, �hj � ch for j > 0, we obtain

log.TrŒ%".h/W.
p
2�f /�/D��2�C jhf; 

h
0 ij

2
CO."h�1/:
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With k h0 � 0kL2 D o.h/,  0.x/D �
�d
4 UT e

�x
2

2 , we obtain, after decomposing
f D f0 0˚

? f 0,Z
L2
e2i� Rehf;zi d�.z/D lim

h!0
TrŒ%".h/W.

p
2�f /�D e��

2�C jf0j
2

:

We deduce, as in [Ammari and Nier 2008, Section 7.5; 2011, Section 4.4],

M.%".h/; h 2 E/D
��

e
�
jz0j

2

�C

��C
L.dz0/

�
˝ ı0.z

0/

�
.z D z0 0˚

? z0/;

and

.p/
0 D pŠ�

p
C j 

˝p
0 ih 

˝p
0 j for all p 2 N:

The fact that �.p/
.I/
� 0 for all p 2 N, now comes from

TrŒ .p/0 �D pŠ �
p
C D �

.p/.f0g/: �

Appendix A. Multiscale measures

We now recall facts about multiscale measures, introduced in [Fermanian-Kammerer
and Gérard 2002; Fermanian Kammerer 2005]. For this we need a new class of
symbols. Let D0;D00;D000 2 N be such that D0CD00CD000 DD and set

F D
˚
XD.x0; x00; x000; � 0; � 00; � 000/ 2 R2D W x0D0; x00D� 00D0

	
:

The class of symbols S .2/F is defined as the set of

.X; Y /! a.X; Y / 2 C1.R2D �RD
0C2D00/

(note that RD
0C2D00 Š F?, hence the notation S .2/F ) such that

� there exists C >0 such that for all Y 2RD
0C2D00, we have a. � ; Y /2C10 .B.0; C //;

� there exists a function a1 2 C10 .R
2D � SD

0C2D00�1/ such that a.X;R!/!
a1.X; !/ as R!1 in C1.R2D �SD

0C2D00�1/.

Those symbols are quantized according to

a.2/;h D a
W;h
h

; ah.X/D a

�
X;

x0

h
1
2

;
X 00

h
1
2

�
X D .x0; x00; x000; � 0; � 00; � 000/:

Theorem 0.1 in [Fermanian Kammerer 2005], which also considers the case when
.x0=h

1
2 ; X 00=h

1
2 / is replaced by .x0=hs; X 00=hs/, s < 1

2
, says the following.

Proposition A.1. Let .h/h2E be a bounded family of nonnegative trace-class op-
erators on L2.R2D/ with limh!0 TrŒh� <C1. There exist E 0 � E , 0 2 E 0, with
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M.h; h 2 E 0/ D f�g, a nonnegative measure �.I / on F � SD
0C2D00�1 and a

L1.L2.R2D00//-measure m on F �RD
0

such that the convergence

lim
h2E 0
h!0

TrŒha
.2/;h�D

Z
R2DnF

a1.X;
.x0; X 00/

j.x0; X 00/j
/ d�.X/

C

Z
F�SD

0C2D00�1

a1.X; !/ d�.I /.X; !/

CTr
�Z
F�RD

0
a.X; x0; z;Dz/ dm.X; x

0/

�
holds for all a 2 S .2/F .

Remark A.2. With this scaling and when aW;hDaW .x;hDx/Da.x;hDx/CO.h/,
t D 0, Fermanian Kammerer [2005] checked the equivariance by the semiclassical
Egorov theorem. Hence, this construction is naturally extended to the case when
T �RD is replaced by T �M and F is replaced by a submanifold of T �RD on
which the symplectic form has constant rank.

In Proposition 3.5 we use the simple case of the above result whenD0DD000D 0
and D00 D D. Note that in this case F � RD

0

D f0g and the trace-class-valued
measure is nothing but a trace-class operator 0.

Appendix B. Wigner measures in the bosonic case and condition (PI)

Bosonic mean-field analysis is like semiclassical analysis in infinite dimension.
Let Z be a separable complex Hilbert space and �C.Z / be the associated bosonic
Fock space. With the scaled CCR relations

ŒaC.g/; a
�
C.f /�D "hg; f i; ŒaC.g/; aC.f /�D Œa

�
C.g/; a

�
C.f /�D 0

and after setting

ˆ.f /D
aC.f /C a

�
C
.f /

p
2

; W.f /D eiˆ.h/; (28)

mean-field Wigner measures were introduced in [Ammari and Nier 2008]. Actually
the parameter "�1 represents the typical number of particles. Let .%"/"2E , 02 E , be
a family of normal states (normalized nonnegative trace-class operators) in �C.Z /.
Under the sole uniform estimate TrŒ%".1CN /ı � � Cı for some ı > 0, Wigner
measures are defined as Borel probability measures on Z and characterized by
their characteristic function as follows: � 2M.%"; " 2 E/ if and only if there exists
E 0 � E , 0 2 E 0, such that,

for all f 2Z ; lim
"2E 0
"!0

TrŒ%"W.
p
2�f /�D

Z
Z

e2i� Rehf;zi d�.z/: (29)
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Assuming TrŒ%"N k
C
��C k for all k 2N (or as in Hypothesis 4.1, TrŒ%"ecNC ��C ),

M.%"; " 2 E/D f�g implies

lim
"!0

TrŒ%" QbWick�D

Z
Z

hz˝p; Qbz˝pi d�.z/ (30)

holds for all compact Qb 2 L1.Sp
C

Z ˝p/. In particular with the definition of non-
normalized reduced density matrices we obtain,

for all p 2 N; w�- lim
"!0

 .p/" D 
.p/
0 D

Z
Z

jz˝pihz˝pj d�.z/:

This w�-limit can be transformed to a k kL1 if and only if the restriction to compact
Qb in (30) can be removed. It actually suffices to check that (30) holds for Qb 2
L1.Sp

C
Z ˝p/ and Qb D IdSp

C
Z˝p , as shows the following result.

Proposition B.1. For a family .%"/"2E in L1.H/, 02E , such that %"�0, TrŒ%"�D1,
M.%"; " 2 E/D f�g, the conditions (PI) and (P) are equivalent:�
.PI/ W for all ˛ 2 N; lim

"!0
TrŒ%"N ˛�D

Z
Z

jzj2˛ d�.z/ <1

�
()

�
.P/ W for all b 2 Palg.Z /; lim

"!0
TrŒ%"bWick�D

Z
Z

b d�

�
;

where

Pp;q.Z /D fb WZ 3 z 7! b.z/D hz˝q; Qbz˝pi 2 C W Qb 2 L.Sp
C

Z ˝pISq
C

Z ˝q/g;

and Palg.Z /D˚
alg
p;q2NPp;q.Z /.

We give below the proof, which rectifies a minor mistake in [Ammari and Nier
2011].

Proof. For ˛ 2N�, we have .jzj2˛/Wick DN .N � "/ � � � .N � .˛� 1/"/. Hence the
condition (PI) is equivalent to

.PI/0 W for all ˛ 2 N; lim
"!0

TrŒ%".jzj2˛/Wick�D

Z
Z

jzj2˛ d�.z/ <1:

Hence the condition (PI) is a particular case of (P) and it is sufficient to prove
.PI/0) .P/. From now, assume (PI)0.

We want to prove (P) for a general b 2Palg.Z /D
Lalg
p;q2N Pp;q.Z /. Let us first

consider the “diagonal” case b 2 Pp;p.Z /, p 2 N�. Using the decomposition Qb D
QbR;C� QbR;�C i QbI;C� i QbI;� with all the Qb� � 0 we can assume Qb� 0. For such a Qb,
there exists a nondecreasing sequence . Qbn/n�0 of nonnegative compact operators
in L1.Sp

C
Z /˝p such that limn!1 Qbn D Qb in the weak operator topology. Recall



264 ZIED AMMARI, SÉBASTIEN BRETEAUX AND FRANCIS NIER

from [Ammari and Nier 2011, Proposition 2.9] that the convergence in the (P)
condition always holds when the kernel Qb is compact; thus,

for all n 2 N;

Z
Z

bn d�D lim
"!0

TrŒ%" bWick
n �� lim inf

"!0
TrŒ%" bWick�:

Using bn.z/Dhz˝p; Qbnz˝pi!hz˝p; Qbz˝piD b.z/ as n!1 and Fatou’s lemma
yield Z

Z

b d�� lim inf
"!0

TrŒ%"bWick�: (31)

The same arguments with Qb replaced by jbjPp;p IdSp
C

Z˝p �
Qb � 0 provide

lim inf
"!0

TrŒ%".j QbjSp
C
Z˝p jzj

2p
� b.z//Wick��

Z
.j QbjSp

C
Z˝p jzj

2p
� b.z// d�.z/:

With (PI)0 condition, the jzj2p terms can be removed on both sides and thus

lim sup
"!0

TrŒ%"bWick��

Z
Z

b d�: (32)

The inequalities (31) and (32) show that the convergence in the (P) condition holds
for all b 2 Pp;p.Z / such that Qb � 0, and hence for all b 2 Pp;p.Z /.

We now consider the general case b 2 Pp;q.Z /. There exists a sequence of
compact operators Qbn 2 L1.S

p
C

Z ˝p;Sq
C

Z ˝q/ such that,

for all n2N; jbnjPp;q D j
QbnjL.Sp

C
Z˝p;Sq

C
Z˝q/� j

QbjL.Sp
C

Z˝p;Sq
C

Z˝q/D jbjPp;q

and,

for all z 2Z ; lim
n!1

bn.z/D lim
n!1

hz˝q; Qbnz
˝p
i D hz˝q; Qbz˝pi D b.z/:

For any fixed n 2 N,

lim sup
"!0

ˇ̌̌̌
TrŒ%"bWick��

Z
Z

b.z/ d�.z/

ˇ̌̌̌
� lim sup

"!0

ˇ̌
TrŒ%".bWick

� bWick
n /�

ˇ̌
C lim sup

"!0

ˇ̌̌̌
TrŒ%"bWick

n ��

Z
Z

bn d�

ˇ̌̌̌
C

Z
Z

jbn� bj d�; (33)

where the second term of the right-hand side vanishes because Qbn is a fixed compact
operator. Using the Cauchy–Schwarz inequality with TrŒ%"�D 1 givesˇ̌

TrŒ%".bWick
� bWick

n /�
ˇ̌
� TrŒ%".bWick

� bWick
n /.bWick;�

� bWick;�
n /�

1
2 :

From the proved result when p D q, we deduce

lim sup
"!0

ˇ̌
TrŒ%".bWick

� bWick
n /�

ˇ̌
�

�Z
Z

jb� bnj
2 d�.z/

� 1
2

: (34)
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With
R

Z jzj
r.pCq/ d�.z/ <1 and,

for all n 2 N; for all z 2Z ; jb.z/� bn.z/j
r
� .2jbjPp;q /

r
jzjr.pCq/;

Lebesgue’s convergence theorem yields

lim
n!1

Z
Z

jb� bnj
r d�D 0 (35)

for r 2 f1; 2g. Combining (33), (34) and (35) proves (P) for any b 2 Pp;q.Z /. �

Appendix C. The composition formula of Wick quantized operators

We give an algebraic proof for the composition formula (4) of two Wick quantized
operators on a finite- or infinite-dimensional separable complex Hilbert space Z .
This proof holds in both the bosonic and fermionic cases. It uses only the definition
of the Wick quantization, and it involves neither creation and annihilation operators,
nor the canonical commutation or anticommutation relations.

We define ŒŒm; n�� WD fm; : : : ; ng for m � n 2 N. The action of the symmetric
group SŒŒ1;n�� on product vectors in Z ˝n, � � .z1˝ � � � ˝ zn/ D z�1 ˝ � � � ˝ z�n ,
zj 2Z , is extended to Z ˝n by linearity and density. With this notation,

Sn˙ D
1

nŠ

X
SŒŒ1;n��

s˙.�/ � � :

We begin with a preliminary lemma on a special set of permutations.

Lemma C.1. Let k; p; q;K 2 N such that k 2 ŒŒmaxf0; pC q �Kg;minfp; qg��,
and

S.k/ WD
˚
� 2SŒŒ1;K��

ˇ̌
card

�
�.ŒŒp� kC 1; p� kC q��/\ ŒŒ1; p��

�
D k

	
:

(1) The cardinal of S.k/ is

cardS.k/D
�q
k

��p
k

�
kŠ
.K � q/Š .K �p/Š

.K � .qCp� k//Š
:

(2) Any permutation � 2S.k/ can be factorized as � D � .1/� .2/� .3/� .4/, where

� .1/ 2SŒŒ1;p��; � .3/ 2SŒŒp�kC1;p�kCq��;

� .2/ 2SŒŒpC1;K��; � .4/ 2SŒŒ1;K��nŒŒp�kC1;p�kCq��:

Note that:

� There is no uniqueness of such a decomposition.

� For A� B an element of SA is identified with the corresponding element of
SB which is the identity on B nA.

� The permutations � .1/ and � .2/ commute, and so do � .3/ and � .4/.
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Proof. (1) We count the number of permutations in S.k/. We first choose k in-
tegers out of ŒŒp � k C 1; p � k C q�� and k integers out of ŒŒ1; p��. There are�q
k

��p
k

�
such possible choices and kŠ possible permutations for each of these choices.

Then the remaining q � k integers of ŒŒp � kC 1; p � kC q�� have to be sent in
ŒŒpC 1;K��. There are .q � k/Š

�K�p
q�k

�
possibilities for that. In the same way we

have .p � k/Š
�K�q
p�k

�
possibilities for the remaining integers of ŒŒ1; p�� that come

from ŒŒ1;K�� n ŒŒp � k C 1; p � k C q��. Finally the K � k � .q � k/ � .p � k/
remaining integers on both sides can be permuted in .K � q � pC k/Š different
ways, so that

cardS.k/D
�q
k

��p
k

�
kŠ .q� k/Š

�K�p
q�k

�
.p� k/Š

�K�q
p�k

�
.K � q�pC k/Š

and this gives the result.

(2) LetAD��1.ŒŒ1;p��/\ŒŒp�kC1;p�kCq��. There exists � .3/2SŒŒp�kC1;p�kCq��
such that � .3/.A/D ŒŒp� kC 1; p��. Then

� � .3/�1.ŒŒp� kC 1; p��/D �.A/� ŒŒ1; p��:

Hence there exists � .1/ 2SŒŒ1;p�� such that � .1/.j /D� � .3/�1.j / on ŒŒp�kC1; p��.
Similarly, there exists � .2/ 2 SŒŒpC1;K�� such that � .2/.j / D � � .3/�1.j / on
ŒŒp C 1; p � k C q��. Note that � .1/ and � .2/ commute. Finally, we set � .4/ D
� .2/�1� .1/�1�� .3/�1. By construction, � .4/.j /D j for j 2 ŒŒp�kC1; p�kCq��,
hence � .4/ 2SŒŒ1;K��nŒŒp�kC1;p�kCq�� and � D � .1/� .2/� .3/� .4/ (as � .4/ and � .3/

commute). �

Notation 1. On L.Z ˝pIZ ˝q/, the equivalence relation Š is defined by

AŠ B () Sq
˙
ASp;�
˙
D Sq
˙
B Sp;�
˙
:

Lemma C.2. Let Qbj 2 L.S
pj
˙

Z ˝pj ISqj
˙

Z ˝qj / and nj such that n1Cp1 D n2C
q2 DWK. Then

. Qb1˝ Id˝n1/SK;�
˙

SK˙ . Qb2˝ Id˝n2/

Š

X
k

.˙1/.p2Cq2/.k�p1/
n2Š n1Š

K 0Š KŠ kŠ
. Qb1]

k Qb2/˝ Id˝K
0

;

where k 2 ŒŒmaxf0; p1C q2�Kg;minfp1; q2g��, and K 0 DK � q2�p1C k.

Proof. Using the partition SŒŒ1;K�� D
F
k
zS.k/ into subsets

zS.k/ WD
˚
� 2SŒŒ1;K��

ˇ̌
card

�
�.ŒŒ1; q2��/\ ŒŒ1; p1��

�
D k

	
for k 2 ŒŒmaxf0; p1C q2�Kg;minfp1; q2g�� yields

. Qb1˝Id˝n1/SK;�
˙

SK˙ . Qb2˝Id˝n2/D
1

KŠ

X
k

X
Q�2zS.k/

. Qb1˝Id˝n1/s˙. Q�/ Q� �. Qb2˝Id˝n2/:
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We fix k and Q� 2 zS.k/. A cyclic permutation �r WD .1 2 3 � � � r/ acting on Z˝r

defines the shift operator �r � D .1 2 3 � � � r/ � and then � WD Q� �k�p1K is in S.k/

(with p D p1 and q D q2) and

. Qb1˝Id˝n1/s˙. Q�/ Q��
k�p1
K �

p1�k
K �. Qb2˝Id˝n2/�k�p1p2Cn2

�
p1�k
p2Cn2

�

Š . Qb1˝Id˝n1/s˙.�/� �.˙1/K.k�p1/.Id˝p1�k˝Qb2˝Id˝K
0

/.˙1/.p2Cn2/.k�p1/

Š .˙1/.KCp2Cn2/.k�p1/. Qb1˝Id˝n1/s˙.�/� �.Id˝p1�k˝Qb2˝Id˝K
0

/

holds for operators in L.Z ˝q1Cn1 IZ ˝p2Cn2/. We used

s˙.�/D s˙. Q�/s˙.�
k�p1
K /D s˙. Q�/.˙1/

K.k�p1/

and

.�
p1�k
p2Cn2

� / ıSp2Cn2
˙

D .˙1/.p2Cn2/.p1�k/Sp2Cn2
˙

:

Owing to the factorization � D � .1/� .2/� .3/� .4/ of Lemma C.1 with � .i/� .iC1/D
� .iC1/� .i/ for i 2 f1; 3g, we get

. Qb1˝Id˝n1/s˙.�/� � .Id˝p1�k˝ Qb2˝Id˝K
0

/

Š . Qb1˝Id˝n1/s˙.�/.� .1/� .2/� .3/� .4//� .Id˝p1�k˝ Qb2˝Id˝K
0

/

Š s˙.�/..b1 �
.1/
� /˝Id˝n1� .2/� / � .4/ � .Id˝p1�k˝.� .3/ � Qb2/˝Id˝K

0

/

Š s˙.�/. Qb1s˙.�
.1//˝s˙.�

.2//Id˝n1/s˙.� .4//.Id˝p1�k˝s˙.� .3// Qb2˝Id˝K
0

/

Š . Qb1˝Id˝n1/ .Id˝p1�k˝ Qb2˝Id˝K
0

/

Š Œ. Qb1˝Id˝q2�k/.Id˝p1�k˝ Qb2/�˝Id˝K
0

Š

�
p1Š

.p1�k/Š

q2Š

.q2�k/Š

��1
. Qb1]

k Qb2/˝Id˝K
0

:

We conclude with the first statement of Lemma C.1 which counts the terms inP
Q�2zS.k/ because card. zS.k//D card.S.k//. �

Proof of Proposition 2.2. For n1; n2 such that n1 C p1 D n2 C q2 DW K, using
Lemma C.2,

"�
p1Cq1Cp2Cq2

2 � QbWick
1
QbWick
2

ˇ̌
Sn2Cp2
˙

Z˝n2Cp2

D

p
KŠ .n1C q1/Š

n1Š

p
.n2Cp2/ŠKŠ

n2Š

�Sq1Cn1
˙

. Qb1˝ Id˝n1/Sp1Cn1;�
˙

Sp2Cq2
˙

. Qb2˝ Id˝n2/Sp2Cn2;�
˙
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D

X
k

.˙1/.p2Cq2/.k�p1/
p
.n1C q1/Š .n2Cp2/Š

n1Š n2Š
KŠ

n2Š n1Š

K 0Š KŠ kŠ

�Sq1Cn1
˙

.. Qb1]
k Qb2/˝ Id˝K

0

/Sp2Cn2;�
˙

D

X
k

.˙1/.p2Cq2/.k�p1/
p
.q2C q1� kCK 0/Š .p2Cp1� kCK 0/Š

K 0Š kŠ

�Sq1Cn1
˙

.. Qb1]
k Qb2/˝ Id˝K

0

/Sp2Cn2;�
˙

;

where K 0 WDK � q2�p1C k.
With p2C n2 D p2Cp1 � kCK 0 and q1C n1 D q2C q1 � kCK 0, we thus

obtain the equality of operators

QbWick
1
QbWick
2 D

X
k

.˙1/.p2Cq2/.k�p1/
"k

kŠ
. Qb1]

k Qb2/
Wick

restricted to Sn2Cp2
˙

Z ˝n2Cp2 . �

Appendix D. A general formula for TrŒ�˙.C /�

The following result about traces of the second quantized operator �˙.C / is often
presented for self-adjoint trace-class operators, although it is valid without self-
adjointness. We recall here the general version for the sake of completeness. It
relies on a simple holomorphy argument and can be compared with Lidskii’s theo-
rem, which says that for any trace-class operator T, we have TrŒT �D

P
�2�.T / �.

Lemma D.1. For any trace-class operator C 2 L1.Z / (which is assumed to be a
strict contraction in the bosonic case,˙DC), its second quantized version �˙.C /
is trace-class in �˙.Z / and

TrŒ�˙.C /�D exp.�TrŒlog.1�C/�/:

Proof. When C DC � 2L1.Z / using an orthonormal basis of eigenvectors .en/n2N

in Z with the corresponding eigenvalues .�n/n2N, and

�˙.Z /Š
O
n2N

�˙.Cen/;

(the infinite tensor product of Hilbert spaces with a stabilizing sequence un D�n
with �n 2 �˙.Cen/ the vacuum vector), we obtain

� in the bosonic case with kCk< 1,

TrŒ�C.C /�D
Y
n2N

TrŒ�C.�nIdC/�D
Y
n2N

1

1��n
D exp

�
�

X
n2N

log.1��n/
�

D exp.�TrŒlog.1�C/�/;
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� in the fermionic case,

TrŒ��.C /�D
Y
n2N

TrŒ��.�nIdC/�D
Y
n2N

.1C�n/D exp
�
C

X
n2N

log.1C�n/
�

D exp.TrŒlog.1CC/�/:

The functoriality of �˙ for the polar decompositionC DU jC j is given by �˙.C /D
�˙.U /�˙.jC j/, while kCk< 1,kjC jk< 1 in the bosonic case. Hence �˙.C /
is trace-class when C 2 L1.Z / (and kCk< 1 in the bosonic case).

Set CDL1.Z / in the fermionic case and CDL1.Z /\fC 2L.Z / W kCk<1g in
the bosonic case. In both cases C is an open convex set on which the two sides of
the equality are holomorphic functions. Actually the holomorphy of the left-hand
side comes from series expansion

TrŒ�˙.C /�D
1X
nD0

TrŒSn˙C
˝nSn;�

˙
�;

which converges uniformly in

B.C0; ıC0/D fC 2 L
1.Z / W kC �C0kL1.Z / < ıC0g

for ıC0 > 0 small enough, for any C0 2L1.Z / (satisfying additionally kC0k< 1 in
the bosonic case). Actually the estimate kCkL1.Z / � A (and kCk � % with % < 1
in the bosonic case) implies kjC jkL1.Z / � A (and kjC jk � % in the bosonic case).
Now the inequality ˇ̌

TrŒSn˙C
˝nSn;�

˙
�
ˇ̌
� TrŒSn˙jC j

˝nSn;�
˙
�;

and the formula in the self-adjoint case with
1X
nD0

TrŒSn�jC j
˝nSn;�� �� exp.A/ (fermions)

or
1X
nD0

TrŒSnCjC j
˝nSn;�

C
�� exp

�
A

1� %

�
(bosons);

ensures the uniform convergence of the series.
For any C 2 C, we know C and ReC D 1

2
.C CC �/ belong to C so that C.s/D

ReC C is ImC belongs to C when s 2 !0 D .�ı; ı/C i.�ı; ı/ and when s 2
!1 D .1� ı; 1C ı/C i.�ı; ı/ for ı > 0 small enough. By the convexity of C, we
have C.s/ 2 C for all s 2 ! D .�ı; 1C ı/C i.�ı; ı/. When s 2 i.�ı; ı/, C.s/ is
self-adjoint and the equality holds. The holomorphy of both sides with respect to
s 2 ! implies that the equality holds true for all s 2 !, in particular when sD 1. �
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A nonlinear estimate of the life span of solutions
of the three dimensional Navier–Stokes equations

Jean-Yves Chemin and Isabelle Gallagher

The purpose of this article is to establish bounds from below for the life span
of regular solutions to the incompressible Navier–Stokes system, which involve
norms not only of the initial data, but also of nonlinear functions of the initial
data. We provide examples showing that those bounds are significant improve-
ments to the one provided by the classical fixed point argument. One of the
important ingredients is the use of a scale-invariant energy estimate.

1. Introduction

In this article our aim is to give bounds from below for the life span of solutions
to the incompressible Navier–Stokes system in the whole space R3. We are not
interested here in the regularity of the initial data: we focus on obtaining bounds
from below for the life span associated with regular initial data. Here regular means
that the initial data belongs to the intersection of all Sobolev spaces of nonnegative
index. Thus all the solutions we consider are regular ones, as long as they exist.

Let us recall the incompressible Navier–Stokes system, together with some of
its basic features. The incompressible Navier–Stokes system is the following:

(NS)
@tu��uCu � ruD�rp;

divuD 0 and ujtD0 D u0;

where u is a three dimensional, time-dependent vector field and p is the pressure,
determined by the incompressibility condition divuD 0:

��p D div.u � ru/D
X

1�i;j�3

@i@j .u
iuj /:

This system has two fundamental properties related to its physical origin:

� scaling invariance,

� dissipation of kinetic energy.
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The scaling property is the fact that if a function u satisfies (NS) on a time
interval Œ0; T � with the initial data u0, then the function u� defined by

u�.t; x/
def
D �u.�2t; �x/

satisfies (NS) on the time interval Œ0; ��2T � with the initial data �u0.� � /. This
property is far from being a characteristic property of the system (NS). It is indeed
satisfied by all systems of the form

(GNS)
@tu��uCQ.u; u/D 0 with Qi .u; u/ def

D

X
1�j;k�3

Aij;k.D/.u
juk/;

ujtD0 D u0;

where the Ai
j;k
.D/ are smooth homogeneous Fourier multipliers of order 1. Indeed

denoting by P the projection onto divergence free vector fields

P
def
D Id� .@i@j��1/ij ;

the Navier–Stokes system takes the form

@tu��uCP div.u˝u/D 0;

ujtD0 D u0;

which is of the type (GNS). For this class of systems, the following result holds.
The definition of homogeneous Sobolev spaces PH s is recalled in the Appendix.

Proposition 1.1. Let u0 be a regular three-dimensional vector field. A positive
time T exists such that a unique regular solution to (GNS) exists on Œ0; T �. Let
T ?.u0/ be the maximal time of existence of this regular solution. Then, for any 
in the interval

�
0; 1
2

�
, a constant c exists such that

T ?.u0/� cku0k
� 1


PH
1
2
C2

: (1)

In the case when  D 1
4

for the particular case of (NS), this type of result goes
back to the seminal work of J. Leray [1934]. Let us point out that the same type
of result can be proved for the L3C6=.1�2/ norm.

Proof. This result is obtained by a scaling argument. Let us define the following
function

T
PH
1
2
C2

.r/ def
D inf

˚
T ?.u0/ j ku0k PH

1
2
C2
D r

	
:

We assume that at least one smooth initial data u0 develops singularities, which
means exactly that T ?.u0/ is finite. Let us mention that this lower bound is in fact
a minimum (see [Poulon 2015]). Actually the function T

PH
1
2
C2

may be computed
using a scaling argument. Observe that

ku0k PH
1
2
C2
D r ” kr�

1
2 u0.r

� 1
2 �/k

PH
1
2
C2
D 1:
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As we have T ?.u0/ D r�
1
 T ?

�
r�

1
2 u0.r

� 1
2 �/

�
, we infer that T

PH
1
2
C2

.r/ D

r�
1
 T

PH
1
2
C2

.1/ and thus that

T ?.u0/� cku0k
� 1


PH
1
2
C2

with c
def
D T

PH
1
2
C2

.1/ :

The proposition is proved. �

Now let us investigate the optimality of such a result, in particular concerning the
norm appearing in the lower bound (1). Useful results and definitions concerning
Besov spaces are recalled in the Appendix; the Besov norms of particular interest
in this text are the PB�1

1;2 norm which is given by

kak PB�1
1;2

def
D

�Z 1
0

ket�ak2L1 dt

�1
2

and the Besov norms PB��1;1 for � > 0, which are

kak PB��1;1
def
D sup

t>0

t
�
2 ket�akL1 :

It has been known since [Fujita and Kato 1964] that a smooth initial data in PH
1
2

(corresponding of course to the limit case  D 0 in Proposition 1.1) generates a
smooth solution for some time T > 0. Let us point out that in dimension 3, the
following inequality holds

kak PB�1
1;2
. kak

PH
1
2
:

The norms PB��1;1 are the smallest norms invariant by translation and having a
given scaling. More precisely, we have the following result:

Proposition 1.2 [Meyer 1997, Lemma 9]. Let d � 1 and let .E; k � kE / be a
normed space continuously included in S 0.Rd /, the space of tempered distributions
on Rd . Assume that E is stable by translation and by dilation, and that a constant
C0 exists such that

8.�; e/ 2 �0;1Œ�Rd ; 8a 2E; ka.� � �e/kE � C0�
��
kakE :

Then a constant C1 exists such that

8a 2E; kak PB�˛1;1
� C1kakE :

Proof. Let us simply observe that, as E is continuously included in S 0.Rd /, a
constant C exists such that for all a in E,

jha; e�j � j
2

ij � CkakE :
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Then by invariance by translation and dilation of E, we infer immediately that

ket�akL1 � C1t
��
2 kakE ;

which proves the proposition. �

Now let us state a first improvement to Proposition 1.1 where the life span is
bounded from below in terms of the PB�1C21;1 norm of the initial data.

Theorem 1.3. With the notation of Proposition 1.1, for any  in the interval
�
0; 1
2

�
,

a constant c0 exists such that

T ?.u0/� TFP.u0/
def
D c0ku0k

� 1


PB
�1C2
1;1

: (2)

This theorem is proved in Section 2; the proof relies on a fixed point theorem
in a space included in the space of L2 in time functions, with values in L1.

Let us also recall that if a scaling 0 norm of a regular initial data is small, then
the solution of (NS) associated with u0 is global. This a consequence of the Koch
and Tataru theorem [2001], which can be translated as follows in the context of
smooth solutions.

Theorem 1.4. A constant c0 exists such that for any regular initial data u0 satisfy-
ing

ku0kBMO�1
def
D sup

t>0

t
1
2 ket�u0kL1 C

�
sup
x2R3

R>0

1

R3

Z R2

0

Z
B.x;R/

jet�u0.y/j
2 dy dt

�1
2

� c0;

the associate solution of (GNS) is globally regular.

Let us remark that

ku0k PB�11;1
� ku0kBMO�1 � ku0k PB�1

1;2
:

We shall explain in Section 2 how to deduce Theorem 1.4 from the Koch and
Tataru theorem [2001].

The previous results are valid for the whole class of systems (GNS). Now let
us present the second main feature of the incompressible Navier–Stokes system,
which is not shared by all systems under the form (GNS) as it relies on a spe-
cial structure of the nonlinear term (which must be skew-symmetric in L2): the
dissipation estimate for the kinetic energy. For regular solutions of (NS) it holds
that

1

2

d

dt
ku.t/k2

L2
Ckru.t/k2

L2
D 0;
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which gives by integration in time

8t � 0; E
�
u.t/

� def
D

1
2
ku.t/k2

L2
C

Z t

0

kru.t 0/kL2 dt
0
D

1
2
ku0k

2
L2
: (3)

T. Tao [2016] pointed out that the energy estimate is not enough to prevent possible
singularities from appearing. Our purpose here is to investigate if this energy esti-
mate can improve the lower bound (2) on the life span for regular initial data. We
recall indeed that for smooth initial data, all Leray solutions — meaning solutions
in the sense of distributions satisfying the energy inequality

E
�
u.t/

�
�
1
2
ku0k

2
L2

(4)

coincide with the smooth solution as long as the latter exists.
What we shall use here is a rescaled version of the energy dissipation inequality

in the spirit of [Chemin and Planchon 2012], on the fluctuation w def
D u�uL with

uL.t/
def
D et�u0.

Proposition 1.5. Let u be a regular solution of (NS) associated with some initial
data u0. Then the fluctuation w satisfies, for any positive t

E
�
w.t/

t
1
4

�
C

Z t

0

kw.t 0/k2
L2

t 0
3
2

dt 0 .Q0L exp ku0k2PB�1
1;2

with Q0L
def
D

Z 1
0

t
1
2 kP.uL � ruL/.t/k

2
L2
dt:

Our main result is then the following:

Theorem 1.6. There is a constant C > 0 such that the following holds. For any
regular initial data of (NS),

T �.u0/ > TL.u0/; (5)

where

TL.u0/
def
D C.Q0L/

�2
�
k@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L
��2 exp.�4ku0k2PB�1

1;2

/;

with Q1L
def
D

Z 1
0

t
3
2

@23�P.uL � ruL/
�
.t/
2
L2
dt :

The main two features of this result are that:

� the statement involves nonlinear quantities associated with the initial data,
namely norms of P.uL � ruL/;

� one particular (arbitrary) direction plays a specific role.

This theorem is proved in Section 4.
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The following theorem shows that the lower bound on T �.u0/ in Theorem 1.6
is, for some classes of initial data, a significant improvement.

Theorem 1.7. Let .; �/ be in
�
0; 1
2

�
� �0; 1Œ. There is a constant C and a family

.u0;"/"2�0;1Œ of regular initial data such that, with the notation of Theorems 1.3
and 1.6,

TFP.u0;"/D C"
2
j log "j�

1
 and TL.u0;"/� C"

�2C�:

This theorem is proved in Section 5. The family .u0;"/"2�0;1Œ is closely related
to the family used in [Chemin and Gallagher 2009] to exhibit families of initial
data which do not obey the hypothesis of the Koch and Tataru theorem and which
nevertheless generate global smooth solutions. However it is too large to satisfy
the assumptions of Theorem 2 in [Chemin and Gallagher 2009] so it is not known
if the associated solution is global.

In the following we shall denote by C a constant which may change from line
to line, and we shall sometimes write A. B for A� CB .

2. Proof of Theorem 1.3

Let u0 be a smooth vector field and let us solve (GNS) by means of a fixed point
method. We define the bilinear operator B by

@tB.u; v/��B.u; v/D�
1
2

�
Q.u; v/CQ.v; u/

�
; and B.u; v/jtD0 D 0: (6)

One can decompose the solution u to (GNS) into

uD uLCB.u; u/:

Resorting to the Littlewood–Paley decomposition defined in the Appendix, let us
define for any real number  and any time T > 0, the quantity

kf kET
def
D sup
j2Z

2�j.1�2/
�
k�jf kL1.Œ0;T ��R3/C 2

2j
k�jf kL1.Œ0;T �IL1.R3//

�
:

Using Lemma 2.1 of [Chemin 1999] it is easy to see that

kuLkE1 . ku0k PB�1C21;1
;

so Theorem 1.3 will follow from the fact that B maps ET �E

T into ET with the

following estimate:

kB.u; v/kET
� CT


kukET

kvkET
: (7)

So let us prove (7). Using again Lemma 2.1 of [Chemin 1999] along with the fact
that the Ai

k;`
.D/ are smooth homogeneous Fourier multipliers of order 1, we have

k�jB.u; v/.t/kL1 .
Z t

0

e�c2
2j.t�t0/

2j
�j �u.t 0/˝v.t 0/Cv.t 0/˝u.t 0/�L1 dt 0:
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We then decompose (componentwise) the product u˝ v following Bony’s para-
product algorithm: for all functions a and b the support of the Fourier transform
of Sj 0C1a�j 0b and Sj 0b�j 0a is included in a ball 2j

0

B where B is a fixed ball
of R3, so one can write for some fixed constant c > 0

ab D
X

2j
0
�c2j

�
Sj 0C1a�j 0bC�j 0aSj 0b

�
;

so thanks to Young’s inequality in time one can write

2�j.1�2/
�
k�jB.u; v/kL1.Œ0;T ��R3/C 2

2j
k�jB.u; v/kL1.Œ0;T �IL1.R3//

�
. B1j .u; v/CB2j .u; v/; (8)

with

B1j .u; v/
def
D 22j

X
2j
0
�maxfc2j ;T�

1
2 g

kSj 0C1ukL1.Œ0;T ��R3/k�j 0vkL1.Œ0;T �IL1.R3//

C 22j
X

c2j�2j
0
<T
� 1
2

kSj 0C1ukL1.Œ0;T ��R3/k�j 0vkL1.Œ0;T �IL1.R3//;

B2j .u; v/
def
D 22j

X
2j
0
�maxfc2j ;T�

1
2 g

kSj 0vkL1.Œ0;T ��R3/k�j 0ukL1.Œ0;T �IL1.R3//

C 22j
X

c2j�2j
0
<T
� 1
2

kSj 0vkL1.Œ0;T ��R3/k�j 0ukL1.Œ0;T �IL1.R3//:

In each of the sums over c2j � 2j
0

< T �
1
2 we write

kf kL1.Œ0;T �IL1.R3// � T kf kL1.Œ0;T ��R3/

and we can estimate the two terms B1j .u; v/ and B2j .u; v/ in the same way: for
` 2 f1; 2g it holds that

B`j .u; v/� kukET kvkET

 
22j

X
2j
0
�maxfc2j ;T�

1
2 g

2�4j
0

CT 22j.1�/
X

c�2j
0�j<.22jT /

� 1
2

22.j
0�j /.1�2/

!

� kukET
kvkET

�
T  CT 22j.1�/

X
c�2j

0�j<.22jT /
� 1
2

22.j
0�j /.1�2/

�
:



280 JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

Once it is noticed that

T 22j.1�/
X

c�2j
0�j<.22jT /

� 1
2

22.j
0�j /.1�2/

� 1f22jT�C g.T 2
2j /2�2j . T  ;

the estimate (7) is proved and Theorem 1.3 follows. �

3. Proof of Theorem 1.4

As the solutions given by the Fujita and Kato theorem [1964] and the Koch and
Tataru theorem [2001] are unique in their own class, they are unique in the intersec-
tion and thus coincide as long as the Fujita–Kato solution exists. Thus Theorem 1.4
is a question of propagation of regularity, which is provided by the following lemma
(which proves the theorem).

Lemma 3.1. A constant c0 exists which satisfies the following. Let u be a regular
solution of (GNS) on Œ0; T Œ associated with a regular initial data u0 such that

kukK
def
D sup

t2Œ0;T Œ

t
1
2 ku.t/kL1 � c0 :

Then T ?.u0/ > T .

Proof. The proof is based on a paralinearization argument (see [Chemin 1999]).
Observe that for any T less than T ?.u0/, u is a solution on Œ0; T Œ of the linear
equation

(PGNS)
@tv��vCQ.u; v/D 0;

vjtD0 D u0;

with Q.u; v/ def
D

X
j2Z

Q.SjC1u;�j v/C
X
j2Z

Q.�j v; Sju/:

In the same spirit as (6), let us define PB.u; v/ by

@tPB.u; v/��PB.u; v/D�Q.u; v/ and PB.u; v/jtD0 D 0: (9)

A solution of (PGNS) is a solution of

v D uLCPB.u; v/:

Let us introduce the space FT of continuous functions with values in PH
1
2 , which

are elements of L4.Œ0; T �I PH 1/, equipped with the norm

kvkFT
def
D

�X
j2Z

2j k�j vk
2
L1.Œ0;T ŒIL2/

�1
2

Ckvk
L4.Œ0;T ŒI PH1/

:
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Notice that the first part of the norm was introduced in [Chemin and Lerner 1995]
and is a larger norm than the supremum in time of the PH

1
2 norm. Moreover it

holds that

kuLkFT . ku0k PH 1
2
:

Let us temporarily assume the following inequality:

kPB.u; v/kFT . kukKkvkFT : (10)

Then it is obvious that if kukK is small enough for some time Œ0; T Œ, the linear
equation (PGNS) has a unique solution in FT (in the distribution sense) which
satisfies in particular, if c0 is small enough,

kvkFT � Cku0k PH
1
2
C
1
2
kvkFT :

As u is a regular solution of (PGNS), it therefore satisfies

8t < T; kuk
L4.Œ0;t�I PH1/

� 2Cku0k PH
1
2
;

which implies that T ?.u0/ > T , so the lemma is proved provided we prove inequal-
ity (10).

Let us observe that for any j in Z,

@t�jPB.u; v/���jPB.u; v/D��jQ.u; v/ : (11)

By definition of Q, we have�jQ.u; v/.t/kL2
�

X
j 02Z

X
1�i;k;`�3

�
k�jA

i
k;`.D/.Sj 0C1u�j 0v/kL2 Ck�jA

i
k;`.D/.�j 0vSj 0u/kL2

�
:

As the Ai
k;`
.D/ are smooth homogeneous Fourier multipliers of order 1, we infer

that for some fixed nonnegative integer N0

k�jQ.u; v/.t/kL2

. 2j
X

j 0�j�N0

�
kSj 0C1u.t/�j 0v.t/kL2 Ck�j 0v.t/Sj 0u.t/kL2

�
. 2j

X
j 0�j�N0

�
kSj 0C1u.t/kL1k�j 0v.t/kL2 Ck�j 0v.t/kL2kSj 0u.t/kL1

�
. 2j ku.t/kL1

X
j 0�j�N0

k�j 0v.t/kL2 :



282 JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

Using relation (11) and the definition of the norm on FT , we infer that

k�jPB.u; v/.t/kL2 �
Z t

0

e�c2
2j .t�t 0/

k�jQ.u; v/.t 0/kL2 dt
0

. 2j
Z t

0

e�c2
2j .t�t 0/

ku.t 0/kL1
X

j 0�j�N0

k�j 0v.t
0/kL2 dt

0

. 2j kukKkvkFT

X
j 0�j�N0

cj 02
�
j 0

2

Z t

0

e�c2
2j .t�t 0/ 1

p
t 0
dt 0;

where .cj /j2Z denotes a generic element of the sphere of `2.Z/. Thus we have, for
all t less than T,

2
j
2 k�jPB.u; v/.t/kL2.kukKkvkFT

X
j 0�j�N0

cj 02
�
j 0�j
2

Z t

0

2j e�c2
2j .t�t 0/ 1

p
t 0
dt 0:

Thanks to Young’s inequality, we have
X

j 0�j�N0

cj 02
�
j 0�j
2 . cj and we deduce that

2
j
2 k�jPB.u; v/.t/kL2 . cj kukKkvkFT

Z t

0

2j e�c2
2j .t�t 0/ 1

p
t 0
dt 0: (12)

As we have Z t

0

2j e�c2
2j .t�t 0/ 1

p
t 0
dt 0 .

Z t

0

1
p
t � t 0

1
p
t 0
dt 0;

we infer finally thatX
j2Z

2j k�jPB.u; v/k2
L1.Œ0;T �IL2/

. kuk2Kkvk
2
FT
: (13)

Moreover returning to inequality (12), we have

2jk�jPB.u; v/kL4.Œ0;T �IL2/.cj kukKkvkFT

Z t

0

2
3j
2 e�c2

2j .t�t 0/ 1
p
t 0
dt 0

L4.RC/

:

The Hardy–Littlewood–Sobolev inequality implies thatZ t

0

2
3j
2 e�c2

2j .t�t 0/ 1
p
t 0
dt 0

L4.RC/

. 1:

Since thanks to the Minkowski inequality we have

kPB.u; v/k2
L4.Œ0;T �I PH1/

�

X
j2Z

22j k�jPB.u; v/k2
L4.Œ0;T �IL2/

;

and together with inequality (13) this concludes the proof of inequality (10) and
thus the proof of Lemma 3.1. �
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4. Proof of Theorem 1.6

The plan of the proof of Theorem 1.6 is the following: as previously we look for
the solution of (NS) in the form

uD uLCw;

where we recall that uL.t/D e
t�u0. Moreover we recall that the solution u satisfies

the energy inequality (4). By construction, the fluctuation w satisfies

(NSF) @tw��wC .uLCw/ � rwCw � ruL D�uL � ruL�rp; divw D 0:

Let us prove that the life span of w satisfies the lower bound (5). The first step
of the proof consists in proving Proposition 1.5, stated in the introduction. This
is achieved in Section 4A. The next step is the proof of a similar energy estimate
on @3w— that contrary to the scaled energy estimate of Proposition 1.5, the next
result is useful in general only locally in time. It is proved in Section 4B.

Proposition 4.1. With the notation of Proposition 1.5 and Theorem 1.6, the fluctu-
ation w satisfies the following estimate:

E.@3w/.t/

.
�
Q0L

�
t
1
2 sup
t 02.0;t/

k@3w.t/k
4
L2
Ck@3u0k

2

PB
� 3
2
1;1

�
C

p
Q0LQ

1
L

�
exp.2ku0k2PB�1

1;2

/:

Combining both propositions, one can conclude the proof of Theorem 1.6. This
is performed in Section 4C.

4A. The rescaled energy estimate on the fluctuation: proof of Proposition 1.5.
An L2 energy estimate on (NSF) gives

1

2

d

dt
kw.t/k2

L2
Ckrw.t/k2

L2

D�

X
1�j;k�3

Z
R3
wj @ju

k
Lw

k.t; x/ dx�
�
P.uL � ruL/jw

�
.t/ :

From this, after an integration by parts and using the fact that the divergence of w
is zero, we infer that

1

2

d

dt

�
kw.t/k2

L2

t
1
2

�
C
kw.t/k2

L2

2t
3
2

C
krw.t/k2

L2

t
1
2

�
kw.t/kL2kuL.t/kL1krw.t/kL2

t
1
2

C
kP.uL � ruL/.t/kL2kw.t/kL2

t
1
2

�

Let us observe that
kP.uL � ruL/.t/kL2kw.t/kL2

t
1
2

D t
1
4 kP.uL � ruL/.t/kL2

kw.t/kL2

t
3
4

�
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Using a convexity inequality, we infer that

d

dt

�
kw.t/k2

L2

t
1
2

�
C
kw.t/k2

L2

2t
3
2

C
krw.t/k2

L2

t
1
2

�
kw.t/k2

L2
kuL.t/k

2
L1

t
1
2

C t
1
2 kuL.t/ � ruL.t/k

2
L2
:

Thus we deduce that

d

dt

�
kw.t/k2

L2

t
1
2

exp
�
�

Z t

0

kuL.t
0/k2L1 dt

0

��
C exp

�
�

Z t

0

kuL.t
0/k2L1 dt

0

��
kw.t/k2

L2

2t
3
2

C
krw.t/k2

L2

t
1
2

�
� exp

�
�

Z t

0

kuL.t
0/k2L1 dt

0

�
t
1
2 kP.uL � ruL/.t/k

2
L2
;

from which we infer by the definition of the PB�1
1;2 norm and of Q0L that

8t � 0;

kw.t/k2
L2

t
1
2

C

Z t

0

�
kw.t 0/k2

L2

2t 0
3
2

C
krw.t/k2

L2

t 0
1
2

�
dt 0 �Q0L exp ku0k2PB�1

1;2

: (14)

Proposition 1.5 follows. �

4B. Proof of Proposition 4.1. Now let us investigate the evolution of @3w in L2.
Applying the partial differentiation @3 to (NSF), we get

@t@3w��@3wC .uLCw/ � r@3wC @3w � ruL

D�@3uL � rw� @3w � rw�w � r@3uL� @3.uL � ruL/�r@3p: (15)

The difficult terms to estimate are those which do not contain explicitly @3w. So
let us define

.a/ def
D �

�
@3uL � rwj@3w

�
L2
; .b/ def

D �
�
w � r@3uLj@3w/L2 ;

.c/ def
D �

�
@3.uL � ruL/j@3w

�
L2
:

The third term is the easiest. By integration by parts and using the Cauchy–Schwarz
inequality along with (14) we haveˇ̌̌̌Z 1

0

.c/.t/ dt

ˇ̌̌̌
D

ˇ̌̌̌Z 1
0

Z
R3
@23
�
P.uL � ruL/.t; x/

�
�w.t; x/ dx dt

ˇ̌̌̌

�

�Z 1
0

t
3
2

@23P.uL � ruL/.t/
2
L2
dt

�1
2
�Z 1

0

kw.t/k2
L2

t
3
2

dt

�1
2

�

p
Q0LQ

1
L exp

�
1
2
ku0k

2
PB�1
1;2

�
:
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Now let us estimate the contribution of .a/ and .b/. By integration by parts, we
get, thanks to the divergence free condition on uL,

.a/D
�
@3uL˝wjr@3w

�
L2

and .b/D
�
w˝ @3uLjr@3w/L2 :

The two terms can be estimated exactly in the same way since they are both of the
form Z

R3
w.t; x/@3uL.t; x/r@3w.t; x/ dx:

We haveˇ̌̌̌Z
R3
w.t; x/@3uL.t; x/r@3w.t; x/ dx

ˇ̌̌̌
� kw.t/kL2k@3uL.t/kL1kr@3wkL2

�
1
100
kr@3wk

2
L2
C 100kw.t/k2

L2
k@3uL.t/k

2
L1 :

The first term will be absorbed by the Laplacian. The second term can be under-
stood as a source term. By time integration, we get indeedZ T

0

kw.t/k2
L2
k@3uL.t/k

2
L1 dt �

Z T

0

kw.t/k2
L2

t
3
2

�
t
3
4 k@3uL.t/kL1

�2
dt

� k@3u0k
2

PB
� 3
2
1;1

Z 1
0

kw.t/k2
L2

t
3
2

dt;

so it follows, thanks to Proposition 1.5, thatZ T

0

Z
R3
w.t; x/@3uL.t; x/r@3w.t; x/ dx dt

�
1
100

Z T

0

kr@3w.t/k
2
L2
dt CCk@3u0k

2

PB
� 3
2
1;1

Q0L exp ku0k2PB�1
1;2

:

The contribution of the quadratic term in (15) is estimated as follows: Writing, for
any function a,

kakLph L
q
v

def
D

�Z
ka.x1; x2; �/k

p

Lq.R/
dx1 dx2

�1
p

;

we have by Hölder’s inequalityˇ̌̌̌Z
R3
@3w.t; x/ � rw.t; x/@3w.t; x/ dx

ˇ̌̌̌
� k@3w.t/k

2
L2vL

4
h
krwkL1v L2h

� k@3w.t/kL2krh@3w.t/kL2krw.t/k
1
2

L2
kr@3w.t/k

1
2

L2
;
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where we have used the inequalities

kakL1v L2h
. k@3ak

1
2

L2
kak

1
2

L2
and kakL2vL

4
h
. kak

1
2

L2
krhak

1
2

L2
(16)

with rh
def
D .@1; @2/. The first inequality comes from

ka.�; x3/k
2
L2h
D

1
2

Z x3

�1

�
@3a. � ; z/ja. � ; z/

�
L2h
dz

�
1
2

Z
R

k@3a. � ; z/kL2h
ka. � ; z/kL2h

dz

� k@3akL2kakL2 ;

while the second simply comes from the embedding PH
1
2

h �L
4
h and an interpolation.

By Young’s inequality it follows thatˇ̌̌̌Z
R3
@3w.t; x/ � rw.t; x/@3w.t; x/ dx

ˇ̌̌̌
�

1
100
kr@3wk

2
L2
CCkrw.t/k2

L2
k@3w.t/k

4
L2

�
1
100
kr@3w.t/k

2
L2
C

�
sup
t 02Œ0;t�

k@3w.t
0/k4
L2

�
t
1
2

krw.t/k2
L2

t
1
2

,

from which we infer by Proposition 1.5 thatˇ̌̌̌Z
R3
@3w.t; x/ � rw.t; x/@3w.t; x/ dx

ˇ̌̌̌
�

1
100
kr@3w.t/k

2
L2
C

�
sup
t 02Œ0;t�

k@3w.t
0/k4
L2

�
t
1
2Q0L exp ku0k2PB�1

1;2

:

Finally, after an integration by parts we findZ
R3
@3w.t; x/ � ruL.t; x/@3w.t; x/ dx

� k@3w.t/kL2kuL.t/kL1kr@3w.t/kL2

�
1
100
kr@3w.t/k

2
L2
CCk@3w.t/k

2
L2
kuL.t/k

2
L1 ;

so plugging all these estimates together we infer thanks to Gronwall’s inequality
that

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt

.
�
T
1
2Q0L sup

t 02Œ0;t�

k@3w.t
0/k4
L2
Ck@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L

�
exp

�
2ku0k

2
PB�1
1;2

�
:

Proposition 4.1 is proved. �



A NONLINEAR ESTIMATE OF THE LIFE SPAN OF 3D NAVIER–STOKES EQUATIONS 287

4C. End of the proof of Theorem 1.6.

4C1. Control of the fluctuation. To make notation lighter let us set

ML
def
D
�
k@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L
�

exp.2ku0k2PB�1
1;2

/:

Proposition 4.1 provides the existence of a constant K such that the following a
priori estimate holds

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt

�KT
1
2Q0L sup

t2Œ0;T �

k@3w.t/k
4
L2

exp.2ku0k2PB�1
1;2

/CKML:

Let T � be the maximal time of existence of u, hence of w, and recalling that
w.t D 0/D 0, set T1 to be the maximal time T for which

sup
t2Œ0;T �

k@3w.t/k
2
L2
� 2KML:

Then on Œ0; T1� it holds that

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt � 4K3T

1
2

1 Q
0
LM

2
L CKML

�KML

�
1C 4K2T

1
2

1 Q
0
LML

�
:

This implies that

T1 � T� with T�
def
D

�
1

8K2Q0LML

�2
,

and on Œ0; T�� it holds that

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt � 3

2
KML: (17)

4C2. End of the proof of the theorem. Under the assumptions of Theorem 1.6 we
know that there exists a unique solution u to (NS) on some time interval Œ0; T �Œ,
which satisfies the energy estimate. Let us prove that this time interval contains
Œ0; T��. Since the initial data u0 belongs to L2, we may assume that u is a global
Leray solution, meaning that

8t � 0; E.u.t//� 1
2
ku0k

2
L2
: (18)

Moreover one clearly has

sup
t�0

k@3uL.t/k
2
L2
C

Z 1
0

kr@3uL.t/k
2
L2
dt � k@3u0k

2
L2
;
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so together with (17) this implies that on Œ0; T��,

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3u.t/k
2
L2
dt . k@3u0k2L2 CML: (19)

Let us prove that these estimates provide a control on u in PH 1 on Œ0; T��. After dif-
ferentiation of (NS) with respect to the horizontal variables and an energy estimate,
we get for any ` in f1; 2g and after an integration by parts

1

2

d

dt
k@`u.t/k

2
L2
Ckr@`u.t/k

2
L2
D�

Z
R3
@`.u � ru/ � @`u .t; x/ dx

� kukL1v L4h
kru.t/kL2vL

4
h
k@2`u.t/kL2 :

Similarly to (16) we have

kuk2
L1v L4h

. kuk2
L1v

PH
1
2

h

.
Z x3

�1

�
@3u. � ; z/ju. � ; z/

�
PH
1
2

h

dz . k@3ukL2krhukL2 ;

so using (16) we infer thatˇ̌̌̌Z
R3
@`.u � ru/ � @`u.t; x/ dx

ˇ̌̌̌
� Ck@3u.t/k

1
2

L2
krhu.t/k

1
2

L2
kru.t/k

1
2

L2
krrhu.t/k

1
2

L2
k@2`u.t/kL2

�
1
100
krrhu.t/k

2
L2
CCk@3uk

2
L2
krhuk

2
L2
kru.t/k2

L2
:

We obtain

d

dt
krhu.t/k

2
L2
Ckrrhu.t/k

2
L2
. k@3uk2L2krhuk

2
L2
kru.t/k2

L2
;

and Gronwall’s inequality implies that

krhu.t/k
2
L2
C

Z t

0

krrhu.t
0/k2
L2
dt 0

� krhu0k
2
L2

exp
�Z t

0

k@3u.t
0/k2
L2
kru.t 0/k2

L2
dt 0
�
:

The fact that we control krukL2t .L2x/ and k@3ukL1t .L2x/ thanks to (18) and (19)
implies that on Œ0; T�� we have

sup
t2Œ0;T �

kru.t/k2
L2
C

Z T

0

kr
2u.t/k2

L2
dt � kru0k

2
L2

exp
�
ku0kL2.KML/

1
2

�
:

This means that there is a unique, smooth solution at least on Œ0; T��, completing
the proof of Theorem 1.6. �
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5. Comparison of both life spans: proof of Theorem 1.7

Let us introduce the notation

f".x1; x2; x3/
def
D cos

�
x1
"

�
f
�
x1;

x2
"˛
; x3

�
;

where " is a given number, assumed to be small, and ˛ is a fixed parameter in the
open interval �0; 1Œ. We assume the initial data is given by the following expression

u0;".x/D
A"
"

�
0; "˛.�@3�/"; .@2�/"

�
; (20)

where � is a smooth compactly supported function and the parameter A"� 1 will
be tuned later.

Let us recall that Lemma 3.1 of [Chemin and Gallagher 2009] claims in partic-
ular that

8� > 0; kf"k PB��p;1
� C�"

�C ˛
p and kf"k PB��1;1

� c�"
� : (21)

This implies that

ku0;"k PB�1C21;1
. A""�2 ; ku0;"k PB�11;1 � ku0;"k PB�11;2 � A";

and k@3u0;"k
PB
� 3
2
1;1

. A""
1
2 :

(22)

With the notation of Theorem 1.3 it therefore holds that

TFP.u0;"/� C"
2A
� 1


" :

Let us now compute TL.u0;"/. Recalling that uL.t/D e
t�u0;", we can write

u1L@1u
1
LCu

2
L@2u

1
L D

�
A"
"

�2
et�f"e

t�g";

u1L@1u
2
LCu

2
L@2u

2
L D

�
A"
"

�2
et� zf"e

t�
zg":

where f , g, zf , zg are smooth compactly supported functions. Now let us estimateZ 1
0

t
1
2

et�f" et�g"2L2 dt:
for f and g given smooth compactly supported functions. We writeZ 1

0

t
1
2 ket�f"e

t�g"k
2
L2
dt D

Z 1
0

t
3
2 ket�f" e

t�g"k
2
L2
dt

t

�

Z 1
0

.t
3
8 ket�f"kL4/

2.t
3
8 ket�g"k/

2
L4
dt

t
;
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thanks to the Hölder inequality. The Cauchy–Schwarz inequality and the definition
of Besov norms imply thatZ 1
0

t
1
2 ket�f"e

t�g"k
2
L2
dt

�

�Z 1
0

�
t
3
8 ket�f"kL4

�4 dt
t

�1
2
�Z 1

0

�
t
3
8 ket�g"kL4

�4 dt
t

�1
2

� kf"k
2

PB
� 3
4

4;4

kg"k
2

PB
� 3
4

4;4

:

It is easy to check that

kf"k
PB
� 3
4

4;4

. "
3C˛
4 ;

so it follows (since P is a homogeneous Fourier multiplier of order 0) that

Q0L . A
4
""
˛�1: (23)

For the initial data (20), differentiations with respect to the vertical variable @3
have no real influence on the term uL.t/ � ruL.t/. Indeed, we have

@23
�
uL.t/ � ruL.t/

�
D @23uL.t/ � ruL.t/C2@3uL.t/ �@3ruL.t/CuL.t/ �@

2
3ruL.t/;

and it is then obvious that @23
�
uL.t/ � ruL.t/

�
is a sum of term of the type�

A"
"

�2
et�f"e

t�g":

Then following the lines used to estimate the term Q0L, we writeZ 1
0

t
3
2 ket�f"e

t�g"k
2
L2
dt

�

�Z 1
0

.t
5
8 ket�f"kL4/

4 dt

t

�1
2
�Z 1

0

.t
5
8 ket�g"kL4/

4 dt

t

�1
2

� kf"k
2

PB
� 5
4

4;4

kg"k
2

PB
� 5
4

4;4

:

It is easy to check that

kf"k
PB
� 5
4

4;4

. "
5C˛
4 ;

so it follows that

Q1L . A
4
""
˛C1:
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Together with (22) and (23), we infer that

Q0L
�
k@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L
�

exp.4ku0k2PB�1
1;2

/

. A4""
˛�1.A6""

˛
CA4""

˛/ exp.C0A2"/

. A10" "
2˛�1 exp.C0A2"/

because A" is larger than 1. Let us choose some � in �0; �Œ and then

A"
def
D

�
C0

�� log "

�1
2
�

Then with the notation of Theorem 1.6 we have

TL D CA
�20
" "2.1�2˛C�/:

Let us choose �0 in ��; �Œ. By definition of A" we get that

TL � C"
2.1�2˛C�0/:

Choosing ˛ D 1� .�� �0/=4 concludes the proof of Theorem 1.7. �

Appendix: A Littlewood–Paley toolbox

Let us recall some well-known results on Littlewood–Paley theory (see for instance
[Bahouri et al. 2011] for more details).

Definition A.1. Let � 2 S.R3/ be such that y�.�/ D 1 for j�j � 1 and y�.�/ D 0
for j�j > 2. We define, for j 2 Z, the function �j .x/

def
D 23j�.2jx/, and the

Littlewood–Paley operators

Sj
def
D �j � � and �j

def
D SjC1�Sj :

Homogeneous Sobolev spaces are defined by the norm

kak PH s
def
D

�X
j2Z

22jsk�jak
2
L2

�1
2

:

This norm is equivalent to

kak PH s �

�Z
R3
j�j2sjFa.�/j2 d�

�1
2

;

where F is the Fourier transform. Finally let us recall the definition of Besov norms
of negative index.
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Definition A.2. Let � be a positive real number and .p; q/ in Œ1;1�2. Let us define
the homogeneous Besov norm k � k PB��p;q by

kak PB��p;q
D
t �2 ket�akLpLq.RCIdt

t
/
:

Let us mention that thanks to the properties of the heat flow, for p1 � p2 and
q1 � q2, we have the following inequality, valid for any regular function a

kak
PB
���3. 1p1

� 1
p2
/

p2;q

. kak PB��p1;q and kak PB��p;q2
. kak PB��p;q1 :

An equivalent definition using the Littlewood–Paley decomposition is

kak PB��p;q
�

�X
j2Z

2�j�qk�jak
q
Lp

�1
q

:
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