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of the three dimensional Navier–Stokes equations

Jean-Yves Chemin and Isabelle Gallagher

The purpose of this article is to establish bounds from below for the life span
of regular solutions to the incompressible Navier–Stokes system, which involve
norms not only of the initial data, but also of nonlinear functions of the initial
data. We provide examples showing that those bounds are significant improve-
ments to the one provided by the classical fixed point argument. One of the
important ingredients is the use of a scale-invariant energy estimate.

1. Introduction

In this article our aim is to give bounds from below for the life span of solutions
to the incompressible Navier–Stokes system in the whole space R3. We are not
interested here in the regularity of the initial data: we focus on obtaining bounds
from below for the life span associated with regular initial data. Here regular means
that the initial data belongs to the intersection of all Sobolev spaces of nonnegative
index. Thus all the solutions we consider are regular ones, as long as they exist.

Let us recall the incompressible Navier–Stokes system, together with some of
its basic features. The incompressible Navier–Stokes system is the following:

(NS)
@tu��uCu � ruD�rp;

divuD 0 and ujtD0 D u0;

where u is a three dimensional, time-dependent vector field and p is the pressure,
determined by the incompressibility condition divuD 0:

��p D div.u � ru/D
X

1�i;j�3

@i@j .u
iuj /:

This system has two fundamental properties related to its physical origin:

� scaling invariance,

� dissipation of kinetic energy.
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The scaling property is the fact that if a function u satisfies (NS) on a time
interval Œ0; T � with the initial data u0, then the function u� defined by

u�.t; x/
def
D �u.�2t; �x/

satisfies (NS) on the time interval Œ0; ��2T � with the initial data �u0.� � /. This
property is far from being a characteristic property of the system (NS). It is indeed
satisfied by all systems of the form

(GNS)
@tu��uCQ.u; u/D 0 with Qi .u; u/ def

D

X
1�j;k�3

Aij;k.D/.u
juk/;

ujtD0 D u0;

where the Ai
j;k
.D/ are smooth homogeneous Fourier multipliers of order 1. Indeed

denoting by P the projection onto divergence free vector fields

P
def
D Id� .@i@j��1/ij ;

the Navier–Stokes system takes the form

@tu��uCP div.u˝u/D 0;

ujtD0 D u0;

which is of the type (GNS). For this class of systems, the following result holds.
The definition of homogeneous Sobolev spaces PH s is recalled in the Appendix.

Proposition 1.1. Let u0 be a regular three-dimensional vector field. A positive
time T exists such that a unique regular solution to (GNS) exists on Œ0; T �. Let
T ?.u0/ be the maximal time of existence of this regular solution. Then, for any 
in the interval

�
0; 1
2

�
, a constant c exists such that

T ?.u0/� cku0k
� 1


PH
1
2
C2

: (1)

In the case when  D 1
4

for the particular case of (NS), this type of result goes
back to the seminal work of J. Leray [1934]. Let us point out that the same type
of result can be proved for the L3C6=.1�2/ norm.

Proof. This result is obtained by a scaling argument. Let us define the following
function

T
PH
1
2
C2

.r/ def
D inf

˚
T ?.u0/ j ku0k PH

1
2
C2
D r

	
:

We assume that at least one smooth initial data u0 develops singularities, which
means exactly that T ?.u0/ is finite. Let us mention that this lower bound is in fact
a minimum (see [Poulon 2015]). Actually the function T

PH
1
2
C2

may be computed
using a scaling argument. Observe that

ku0k PH
1
2
C2
D r ” kr�

1
2 u0.r

� 1
2 �/k

PH
1
2
C2
D 1:
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As we have T ?.u0/ D r�
1
 T ?

�
r�

1
2 u0.r

� 1
2 �/

�
, we infer that T

PH
1
2
C2

.r/ D

r�
1
 T

PH
1
2
C2

.1/ and thus that

T ?.u0/� cku0k
� 1


PH
1
2
C2

with c
def
D T

PH
1
2
C2

.1/ :

The proposition is proved. �

Now let us investigate the optimality of such a result, in particular concerning the
norm appearing in the lower bound (1). Useful results and definitions concerning
Besov spaces are recalled in the Appendix; the Besov norms of particular interest
in this text are the PB�1

1;2 norm which is given by

kak PB�1
1;2

def
D

�Z 1
0

ket�ak2L1 dt

�1
2

and the Besov norms PB��1;1 for � > 0, which are

kak PB��1;1
def
D sup

t>0

t
�
2 ket�akL1 :

It has been known since [Fujita and Kato 1964] that a smooth initial data in PH
1
2

(corresponding of course to the limit case  D 0 in Proposition 1.1) generates a
smooth solution for some time T > 0. Let us point out that in dimension 3, the
following inequality holds

kak PB�1
1;2
. kak

PH
1
2
:

The norms PB��1;1 are the smallest norms invariant by translation and having a
given scaling. More precisely, we have the following result:

Proposition 1.2 [Meyer 1997, Lemma 9]. Let d � 1 and let .E; k � kE / be a
normed space continuously included in S 0.Rd /, the space of tempered distributions
on Rd . Assume that E is stable by translation and by dilation, and that a constant
C0 exists such that

8.�; e/ 2 �0;1Œ�Rd ; 8a 2E; ka.� � �e/kE � C0�
��
kakE :

Then a constant C1 exists such that

8a 2E; kak PB�˛1;1
� C1kakE :

Proof. Let us simply observe that, as E is continuously included in S 0.Rd /, a
constant C exists such that for all a in E,

jha; e�j � j
2

ij � CkakE :
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Then by invariance by translation and dilation of E, we infer immediately that

ket�akL1 � C1t
��
2 kakE ;

which proves the proposition. �

Now let us state a first improvement to Proposition 1.1 where the life span is
bounded from below in terms of the PB�1C21;1 norm of the initial data.

Theorem 1.3. With the notation of Proposition 1.1, for any  in the interval
�
0; 1
2

�
,

a constant c0 exists such that

T ?.u0/� TFP.u0/
def
D c0ku0k

� 1


PB
�1C2
1;1

: (2)

This theorem is proved in Section 2; the proof relies on a fixed point theorem
in a space included in the space of L2 in time functions, with values in L1.

Let us also recall that if a scaling 0 norm of a regular initial data is small, then
the solution of (NS) associated with u0 is global. This a consequence of the Koch
and Tataru theorem [2001], which can be translated as follows in the context of
smooth solutions.

Theorem 1.4. A constant c0 exists such that for any regular initial data u0 satisfy-
ing

ku0kBMO�1
def
D sup

t>0

t
1
2 ket�u0kL1 C

�
sup
x2R3

R>0

1

R3

Z R2

0

Z
B.x;R/

jet�u0.y/j
2 dy dt

�1
2

� c0;

the associate solution of (GNS) is globally regular.

Let us remark that

ku0k PB�11;1
� ku0kBMO�1 � ku0k PB�1

1;2
:

We shall explain in Section 2 how to deduce Theorem 1.4 from the Koch and
Tataru theorem [2001].

The previous results are valid for the whole class of systems (GNS). Now let
us present the second main feature of the incompressible Navier–Stokes system,
which is not shared by all systems under the form (GNS) as it relies on a spe-
cial structure of the nonlinear term (which must be skew-symmetric in L2): the
dissipation estimate for the kinetic energy. For regular solutions of (NS) it holds
that

1

2

d

dt
ku.t/k2

L2
Ckru.t/k2

L2
D 0;
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which gives by integration in time

8t � 0; E
�
u.t/

� def
D

1
2
ku.t/k2

L2
C

Z t

0

kru.t 0/kL2 dt
0
D

1
2
ku0k

2
L2
: (3)

T. Tao [2016] pointed out that the energy estimate is not enough to prevent possible
singularities from appearing. Our purpose here is to investigate if this energy esti-
mate can improve the lower bound (2) on the life span for regular initial data. We
recall indeed that for smooth initial data, all Leray solutions — meaning solutions
in the sense of distributions satisfying the energy inequality

E
�
u.t/

�
�
1
2
ku0k

2
L2

(4)

coincide with the smooth solution as long as the latter exists.
What we shall use here is a rescaled version of the energy dissipation inequality

in the spirit of [Chemin and Planchon 2012], on the fluctuation w def
D u�uL with

uL.t/
def
D et�u0.

Proposition 1.5. Let u be a regular solution of (NS) associated with some initial
data u0. Then the fluctuation w satisfies, for any positive t

E
�
w.t/

t
1
4

�
C

Z t

0

kw.t 0/k2
L2

t 0
3
2

dt 0 .Q0L exp ku0k2PB�1
1;2

with Q0L
def
D

Z 1
0

t
1
2 kP.uL � ruL/.t/k

2
L2
dt:

Our main result is then the following:

Theorem 1.6. There is a constant C > 0 such that the following holds. For any
regular initial data of (NS),

T �.u0/ > TL.u0/; (5)

where

TL.u0/
def
D C.Q0L/

�2
�
k@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L
��2 exp.�4ku0k2PB�1

1;2

/;

with Q1L
def
D

Z 1
0

t
3
2

@23�P.uL � ruL/
�
.t/
2
L2
dt :

The main two features of this result are that:

� the statement involves nonlinear quantities associated with the initial data,
namely norms of P.uL � ruL/;

� one particular (arbitrary) direction plays a specific role.

This theorem is proved in Section 4.
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The following theorem shows that the lower bound on T �.u0/ in Theorem 1.6
is, for some classes of initial data, a significant improvement.

Theorem 1.7. Let .; �/ be in
�
0; 1
2

�
� �0; 1Œ. There is a constant C and a family

.u0;"/"2�0;1Œ of regular initial data such that, with the notation of Theorems 1.3
and 1.6,

TFP.u0;"/D C"
2
j log "j�

1
 and TL.u0;"/� C"

�2C�:

This theorem is proved in Section 5. The family .u0;"/"2�0;1Œ is closely related
to the family used in [Chemin and Gallagher 2009] to exhibit families of initial
data which do not obey the hypothesis of the Koch and Tataru theorem and which
nevertheless generate global smooth solutions. However it is too large to satisfy
the assumptions of Theorem 2 in [Chemin and Gallagher 2009] so it is not known
if the associated solution is global.

In the following we shall denote by C a constant which may change from line
to line, and we shall sometimes write A. B for A� CB .

2. Proof of Theorem 1.3

Let u0 be a smooth vector field and let us solve (GNS) by means of a fixed point
method. We define the bilinear operator B by

@tB.u; v/��B.u; v/D�
1
2

�
Q.u; v/CQ.v; u/

�
; and B.u; v/jtD0 D 0: (6)

One can decompose the solution u to (GNS) into

uD uLCB.u; u/:

Resorting to the Littlewood–Paley decomposition defined in the Appendix, let us
define for any real number  and any time T > 0, the quantity

kf kET
def
D sup
j2Z

2�j.1�2/
�
k�jf kL1.Œ0;T ��R3/C 2

2j
k�jf kL1.Œ0;T �IL1.R3//

�
:

Using Lemma 2.1 of [Chemin 1999] it is easy to see that

kuLkE1 . ku0k PB�1C21;1
;

so Theorem 1.3 will follow from the fact that B maps ET �E

T into ET with the

following estimate:

kB.u; v/kET
� CT


kukET

kvkET
: (7)

So let us prove (7). Using again Lemma 2.1 of [Chemin 1999] along with the fact
that the Ai

k;`
.D/ are smooth homogeneous Fourier multipliers of order 1, we have

k�jB.u; v/.t/kL1 .
Z t

0

e�c2
2j.t�t0/

2j
�j �u.t 0/˝v.t 0/Cv.t 0/˝u.t 0/�L1 dt 0:
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We then decompose (componentwise) the product u˝ v following Bony’s para-
product algorithm: for all functions a and b the support of the Fourier transform
of Sj 0C1a�j 0b and Sj 0b�j 0a is included in a ball 2j

0

B where B is a fixed ball
of R3, so one can write for some fixed constant c > 0

ab D
X

2j
0
�c2j

�
Sj 0C1a�j 0bC�j 0aSj 0b

�
;

so thanks to Young’s inequality in time one can write

2�j.1�2/
�
k�jB.u; v/kL1.Œ0;T ��R3/C 2

2j
k�jB.u; v/kL1.Œ0;T �IL1.R3//

�
. B1j .u; v/CB2j .u; v/; (8)

with

B1j .u; v/
def
D 22j

X
2j
0
�maxfc2j ;T�

1
2 g

kSj 0C1ukL1.Œ0;T ��R3/k�j 0vkL1.Œ0;T �IL1.R3//

C 22j
X

c2j�2j
0
<T
� 1
2

kSj 0C1ukL1.Œ0;T ��R3/k�j 0vkL1.Œ0;T �IL1.R3//;

B2j .u; v/
def
D 22j

X
2j
0
�maxfc2j ;T�

1
2 g

kSj 0vkL1.Œ0;T ��R3/k�j 0ukL1.Œ0;T �IL1.R3//

C 22j
X

c2j�2j
0
<T
� 1
2

kSj 0vkL1.Œ0;T ��R3/k�j 0ukL1.Œ0;T �IL1.R3//:

In each of the sums over c2j � 2j
0

< T �
1
2 we write

kf kL1.Œ0;T �IL1.R3// � T kf kL1.Œ0;T ��R3/

and we can estimate the two terms B1j .u; v/ and B2j .u; v/ in the same way: for
` 2 f1; 2g it holds that

B`j .u; v/� kukET kvkET

 
22j

X
2j
0
�maxfc2j ;T�

1
2 g

2�4j
0

CT 22j.1�/
X

c�2j
0�j<.22jT /

� 1
2

22.j
0�j /.1�2/

!

� kukET
kvkET

�
T  CT 22j.1�/

X
c�2j

0�j<.22jT /
� 1
2

22.j
0�j /.1�2/

�
:
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Once it is noticed that

T 22j.1�/
X

c�2j
0�j<.22jT /

� 1
2

22.j
0�j /.1�2/

� 1f22jT�C g.T 2
2j /2�2j . T  ;

the estimate (7) is proved and Theorem 1.3 follows. �

3. Proof of Theorem 1.4

As the solutions given by the Fujita and Kato theorem [1964] and the Koch and
Tataru theorem [2001] are unique in their own class, they are unique in the intersec-
tion and thus coincide as long as the Fujita–Kato solution exists. Thus Theorem 1.4
is a question of propagation of regularity, which is provided by the following lemma
(which proves the theorem).

Lemma 3.1. A constant c0 exists which satisfies the following. Let u be a regular
solution of (GNS) on Œ0; T Œ associated with a regular initial data u0 such that

kukK
def
D sup

t2Œ0;T Œ

t
1
2 ku.t/kL1 � c0 :

Then T ?.u0/ > T .

Proof. The proof is based on a paralinearization argument (see [Chemin 1999]).
Observe that for any T less than T ?.u0/, u is a solution on Œ0; T Œ of the linear
equation

(PGNS)
@tv��vCQ.u; v/D 0;

vjtD0 D u0;

with Q.u; v/ def
D

X
j2Z

Q.SjC1u;�j v/C
X
j2Z

Q.�j v; Sju/:

In the same spirit as (6), let us define PB.u; v/ by

@tPB.u; v/��PB.u; v/D�Q.u; v/ and PB.u; v/jtD0 D 0: (9)

A solution of (PGNS) is a solution of

v D uLCPB.u; v/:

Let us introduce the space FT of continuous functions with values in PH
1
2 , which

are elements of L4.Œ0; T �I PH 1/, equipped with the norm

kvkFT
def
D

�X
j2Z

2j k�j vk
2
L1.Œ0;T ŒIL2/

�1
2

Ckvk
L4.Œ0;T ŒI PH1/

:
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Notice that the first part of the norm was introduced in [Chemin and Lerner 1995]
and is a larger norm than the supremum in time of the PH

1
2 norm. Moreover it

holds that

kuLkFT . ku0k PH 1
2
:

Let us temporarily assume the following inequality:

kPB.u; v/kFT . kukKkvkFT : (10)

Then it is obvious that if kukK is small enough for some time Œ0; T Œ, the linear
equation (PGNS) has a unique solution in FT (in the distribution sense) which
satisfies in particular, if c0 is small enough,

kvkFT � Cku0k PH
1
2
C
1
2
kvkFT :

As u is a regular solution of (PGNS), it therefore satisfies

8t < T; kuk
L4.Œ0;t�I PH1/

� 2Cku0k PH
1
2
;

which implies that T ?.u0/ > T , so the lemma is proved provided we prove inequal-
ity (10).

Let us observe that for any j in Z,

@t�jPB.u; v/���jPB.u; v/D��jQ.u; v/ : (11)

By definition of Q, we have�jQ.u; v/.t/kL2
�

X
j 02Z

X
1�i;k;`�3

�
k�jA

i
k;`.D/.Sj 0C1u�j 0v/kL2 Ck�jA

i
k;`.D/.�j 0vSj 0u/kL2

�
:

As the Ai
k;`
.D/ are smooth homogeneous Fourier multipliers of order 1, we infer

that for some fixed nonnegative integer N0

k�jQ.u; v/.t/kL2

. 2j
X

j 0�j�N0

�
kSj 0C1u.t/�j 0v.t/kL2 Ck�j 0v.t/Sj 0u.t/kL2

�
. 2j

X
j 0�j�N0

�
kSj 0C1u.t/kL1k�j 0v.t/kL2 Ck�j 0v.t/kL2kSj 0u.t/kL1

�
. 2j ku.t/kL1

X
j 0�j�N0

k�j 0v.t/kL2 :
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Using relation (11) and the definition of the norm on FT , we infer that

k�jPB.u; v/.t/kL2 �
Z t

0

e�c2
2j .t�t 0/

k�jQ.u; v/.t 0/kL2 dt
0

. 2j
Z t

0

e�c2
2j .t�t 0/

ku.t 0/kL1
X

j 0�j�N0

k�j 0v.t
0/kL2 dt

0

. 2j kukKkvkFT

X
j 0�j�N0

cj 02
�
j 0

2

Z t

0

e�c2
2j .t�t 0/ 1

p
t 0
dt 0;

where .cj /j2Z denotes a generic element of the sphere of `2.Z/. Thus we have, for
all t less than T,

2
j
2 k�jPB.u; v/.t/kL2.kukKkvkFT

X
j 0�j�N0

cj 02
�
j 0�j
2

Z t

0

2j e�c2
2j .t�t 0/ 1

p
t 0
dt 0:

Thanks to Young’s inequality, we have
X

j 0�j�N0

cj 02
�
j 0�j
2 . cj and we deduce that

2
j
2 k�jPB.u; v/.t/kL2 . cj kukKkvkFT

Z t

0

2j e�c2
2j .t�t 0/ 1

p
t 0
dt 0: (12)

As we have Z t

0

2j e�c2
2j .t�t 0/ 1

p
t 0
dt 0 .

Z t

0

1
p
t � t 0

1
p
t 0
dt 0;

we infer finally thatX
j2Z

2j k�jPB.u; v/k2
L1.Œ0;T �IL2/

. kuk2Kkvk
2
FT
: (13)

Moreover returning to inequality (12), we have

2jk�jPB.u; v/kL4.Œ0;T �IL2/.cj kukKkvkFT

Z t

0

2
3j
2 e�c2

2j .t�t 0/ 1
p
t 0
dt 0

L4.RC/

:

The Hardy–Littlewood–Sobolev inequality implies thatZ t

0

2
3j
2 e�c2

2j .t�t 0/ 1
p
t 0
dt 0

L4.RC/

. 1:

Since thanks to the Minkowski inequality we have

kPB.u; v/k2
L4.Œ0;T �I PH1/

�

X
j2Z

22j k�jPB.u; v/k2
L4.Œ0;T �IL2/

;

and together with inequality (13) this concludes the proof of inequality (10) and
thus the proof of Lemma 3.1. �
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4. Proof of Theorem 1.6

The plan of the proof of Theorem 1.6 is the following: as previously we look for
the solution of (NS) in the form

uD uLCw;

where we recall that uL.t/D e
t�u0. Moreover we recall that the solution u satisfies

the energy inequality (4). By construction, the fluctuation w satisfies

(NSF) @tw��wC .uLCw/ � rwCw � ruL D�uL � ruL�rp; divw D 0:

Let us prove that the life span of w satisfies the lower bound (5). The first step
of the proof consists in proving Proposition 1.5, stated in the introduction. This
is achieved in Section 4A. The next step is the proof of a similar energy estimate
on @3w— that contrary to the scaled energy estimate of Proposition 1.5, the next
result is useful in general only locally in time. It is proved in Section 4B.

Proposition 4.1. With the notation of Proposition 1.5 and Theorem 1.6, the fluctu-
ation w satisfies the following estimate:

E.@3w/.t/

.
�
Q0L

�
t
1
2 sup
t 02.0;t/

k@3w.t/k
4
L2
Ck@3u0k

2

PB
� 3
2
1;1

�
C

p
Q0LQ

1
L

�
exp.2ku0k2PB�1

1;2

/:

Combining both propositions, one can conclude the proof of Theorem 1.6. This
is performed in Section 4C.

4A. The rescaled energy estimate on the fluctuation: proof of Proposition 1.5.
An L2 energy estimate on (NSF) gives

1

2

d

dt
kw.t/k2

L2
Ckrw.t/k2

L2

D�

X
1�j;k�3

Z
R3
wj @ju

k
Lw

k.t; x/ dx�
�
P.uL � ruL/jw

�
.t/ :

From this, after an integration by parts and using the fact that the divergence of w
is zero, we infer that

1

2

d

dt

�
kw.t/k2

L2

t
1
2

�
C
kw.t/k2

L2

2t
3
2

C
krw.t/k2

L2

t
1
2

�
kw.t/kL2kuL.t/kL1krw.t/kL2

t
1
2

C
kP.uL � ruL/.t/kL2kw.t/kL2

t
1
2

�

Let us observe that
kP.uL � ruL/.t/kL2kw.t/kL2

t
1
2

D t
1
4 kP.uL � ruL/.t/kL2

kw.t/kL2

t
3
4

�
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Using a convexity inequality, we infer that

d

dt

�
kw.t/k2

L2

t
1
2

�
C
kw.t/k2

L2

2t
3
2

C
krw.t/k2

L2

t
1
2

�
kw.t/k2

L2
kuL.t/k

2
L1

t
1
2

C t
1
2 kuL.t/ � ruL.t/k

2
L2
:

Thus we deduce that

d

dt

�
kw.t/k2

L2

t
1
2

exp
�
�

Z t

0

kuL.t
0/k2L1 dt

0

��
C exp

�
�

Z t

0

kuL.t
0/k2L1 dt

0

��
kw.t/k2

L2

2t
3
2

C
krw.t/k2

L2

t
1
2

�
� exp

�
�

Z t

0

kuL.t
0/k2L1 dt

0

�
t
1
2 kP.uL � ruL/.t/k

2
L2
;

from which we infer by the definition of the PB�1
1;2 norm and of Q0L that

8t � 0;

kw.t/k2
L2

t
1
2

C

Z t

0

�
kw.t 0/k2

L2

2t 0
3
2

C
krw.t/k2

L2

t 0
1
2

�
dt 0 �Q0L exp ku0k2PB�1

1;2

: (14)

Proposition 1.5 follows. �

4B. Proof of Proposition 4.1. Now let us investigate the evolution of @3w in L2.
Applying the partial differentiation @3 to (NSF), we get

@t@3w��@3wC .uLCw/ � r@3wC @3w � ruL

D�@3uL � rw� @3w � rw�w � r@3uL� @3.uL � ruL/�r@3p: (15)

The difficult terms to estimate are those which do not contain explicitly @3w. So
let us define

.a/ def
D �

�
@3uL � rwj@3w

�
L2
; .b/ def

D �
�
w � r@3uLj@3w/L2 ;

.c/ def
D �

�
@3.uL � ruL/j@3w

�
L2
:

The third term is the easiest. By integration by parts and using the Cauchy–Schwarz
inequality along with (14) we haveˇ̌̌̌Z 1

0

.c/.t/ dt

ˇ̌̌̌
D

ˇ̌̌̌Z 1
0

Z
R3
@23
�
P.uL � ruL/.t; x/

�
�w.t; x/ dx dt

ˇ̌̌̌

�

�Z 1
0

t
3
2

@23P.uL � ruL/.t/
2
L2
dt

�1
2
�Z 1

0

kw.t/k2
L2

t
3
2

dt

�1
2

�

p
Q0LQ

1
L exp

�
1
2
ku0k

2
PB�1
1;2

�
:
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Now let us estimate the contribution of .a/ and .b/. By integration by parts, we
get, thanks to the divergence free condition on uL,

.a/D
�
@3uL˝wjr@3w

�
L2

and .b/D
�
w˝ @3uLjr@3w/L2 :

The two terms can be estimated exactly in the same way since they are both of the
form Z

R3
w.t; x/@3uL.t; x/r@3w.t; x/ dx:

We haveˇ̌̌̌Z
R3
w.t; x/@3uL.t; x/r@3w.t; x/ dx

ˇ̌̌̌
� kw.t/kL2k@3uL.t/kL1kr@3wkL2

�
1
100
kr@3wk

2
L2
C 100kw.t/k2

L2
k@3uL.t/k

2
L1 :

The first term will be absorbed by the Laplacian. The second term can be under-
stood as a source term. By time integration, we get indeedZ T

0

kw.t/k2
L2
k@3uL.t/k

2
L1 dt �

Z T

0

kw.t/k2
L2

t
3
2

�
t
3
4 k@3uL.t/kL1

�2
dt

� k@3u0k
2

PB
� 3
2
1;1

Z 1
0

kw.t/k2
L2

t
3
2

dt;

so it follows, thanks to Proposition 1.5, thatZ T

0

Z
R3
w.t; x/@3uL.t; x/r@3w.t; x/ dx dt

�
1
100

Z T

0

kr@3w.t/k
2
L2
dt CCk@3u0k

2

PB
� 3
2
1;1

Q0L exp ku0k2PB�1
1;2

:

The contribution of the quadratic term in (15) is estimated as follows: Writing, for
any function a,

kakLph L
q
v

def
D

�Z
ka.x1; x2; �/k

p

Lq.R/
dx1 dx2

�1
p

;

we have by Hölder’s inequalityˇ̌̌̌Z
R3
@3w.t; x/ � rw.t; x/@3w.t; x/ dx

ˇ̌̌̌
� k@3w.t/k

2
L2vL

4
h
krwkL1v L2h

� k@3w.t/kL2krh@3w.t/kL2krw.t/k
1
2

L2
kr@3w.t/k

1
2

L2
;
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where we have used the inequalities

kakL1v L2h
. k@3ak

1
2

L2
kak

1
2

L2
and kakL2vL

4
h
. kak

1
2

L2
krhak

1
2

L2
(16)

with rh
def
D .@1; @2/. The first inequality comes from

ka.�; x3/k
2
L2h
D

1
2

Z x3

�1

�
@3a. � ; z/ja. � ; z/

�
L2h
dz

�
1
2

Z
R

k@3a. � ; z/kL2h
ka. � ; z/kL2h

dz

� k@3akL2kakL2 ;

while the second simply comes from the embedding PH
1
2

h �L
4
h and an interpolation.

By Young’s inequality it follows thatˇ̌̌̌Z
R3
@3w.t; x/ � rw.t; x/@3w.t; x/ dx

ˇ̌̌̌
�

1
100
kr@3wk

2
L2
CCkrw.t/k2

L2
k@3w.t/k

4
L2

�
1
100
kr@3w.t/k

2
L2
C

�
sup
t 02Œ0;t�

k@3w.t
0/k4
L2

�
t
1
2

krw.t/k2
L2

t
1
2

,

from which we infer by Proposition 1.5 thatˇ̌̌̌Z
R3
@3w.t; x/ � rw.t; x/@3w.t; x/ dx

ˇ̌̌̌
�

1
100
kr@3w.t/k

2
L2
C

�
sup
t 02Œ0;t�

k@3w.t
0/k4
L2

�
t
1
2Q0L exp ku0k2PB�1

1;2

:

Finally, after an integration by parts we findZ
R3
@3w.t; x/ � ruL.t; x/@3w.t; x/ dx

� k@3w.t/kL2kuL.t/kL1kr@3w.t/kL2

�
1
100
kr@3w.t/k

2
L2
CCk@3w.t/k

2
L2
kuL.t/k

2
L1 ;

so plugging all these estimates together we infer thanks to Gronwall’s inequality
that

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt

.
�
T
1
2Q0L sup

t 02Œ0;t�

k@3w.t
0/k4
L2
Ck@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L

�
exp

�
2ku0k

2
PB�1
1;2

�
:

Proposition 4.1 is proved. �
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4C. End of the proof of Theorem 1.6.

4C1. Control of the fluctuation. To make notation lighter let us set

ML
def
D
�
k@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L
�

exp.2ku0k2PB�1
1;2

/:

Proposition 4.1 provides the existence of a constant K such that the following a
priori estimate holds

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt

�KT
1
2Q0L sup

t2Œ0;T �

k@3w.t/k
4
L2

exp.2ku0k2PB�1
1;2

/CKML:

Let T � be the maximal time of existence of u, hence of w, and recalling that
w.t D 0/D 0, set T1 to be the maximal time T for which

sup
t2Œ0;T �

k@3w.t/k
2
L2
� 2KML:

Then on Œ0; T1� it holds that

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt � 4K3T

1
2

1 Q
0
LM

2
L CKML

�KML

�
1C 4K2T

1
2

1 Q
0
LML

�
:

This implies that

T1 � T� with T�
def
D

�
1

8K2Q0LML

�2
,

and on Œ0; T�� it holds that

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3w.t/k
2
L2
dt � 3

2
KML: (17)

4C2. End of the proof of the theorem. Under the assumptions of Theorem 1.6 we
know that there exists a unique solution u to (NS) on some time interval Œ0; T �Œ,
which satisfies the energy estimate. Let us prove that this time interval contains
Œ0; T��. Since the initial data u0 belongs to L2, we may assume that u is a global
Leray solution, meaning that

8t � 0; E.u.t//� 1
2
ku0k

2
L2
: (18)

Moreover one clearly has

sup
t�0

k@3uL.t/k
2
L2
C

Z 1
0

kr@3uL.t/k
2
L2
dt � k@3u0k

2
L2
;
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so together with (17) this implies that on Œ0; T��,

sup
t2Œ0;T �

k@3w.t/k
2
L2
C

Z T

0

kr@3u.t/k
2
L2
dt . k@3u0k2L2 CML: (19)

Let us prove that these estimates provide a control on u in PH 1 on Œ0; T��. After dif-
ferentiation of (NS) with respect to the horizontal variables and an energy estimate,
we get for any ` in f1; 2g and after an integration by parts

1

2

d

dt
k@`u.t/k

2
L2
Ckr@`u.t/k

2
L2
D�

Z
R3
@`.u � ru/ � @`u .t; x/ dx

� kukL1v L4h
kru.t/kL2vL

4
h
k@2`u.t/kL2 :

Similarly to (16) we have

kuk2
L1v L4h

. kuk2
L1v

PH
1
2

h

.
Z x3

�1

�
@3u. � ; z/ju. � ; z/

�
PH
1
2

h

dz . k@3ukL2krhukL2 ;

so using (16) we infer thatˇ̌̌̌Z
R3
@`.u � ru/ � @`u.t; x/ dx

ˇ̌̌̌
� Ck@3u.t/k

1
2

L2
krhu.t/k

1
2

L2
kru.t/k

1
2

L2
krrhu.t/k

1
2

L2
k@2`u.t/kL2

�
1
100
krrhu.t/k

2
L2
CCk@3uk

2
L2
krhuk

2
L2
kru.t/k2

L2
:

We obtain

d

dt
krhu.t/k

2
L2
Ckrrhu.t/k

2
L2
. k@3uk2L2krhuk

2
L2
kru.t/k2

L2
;

and Gronwall’s inequality implies that

krhu.t/k
2
L2
C

Z t

0

krrhu.t
0/k2
L2
dt 0

� krhu0k
2
L2

exp
�Z t

0

k@3u.t
0/k2
L2
kru.t 0/k2

L2
dt 0
�
:

The fact that we control krukL2t .L2x/ and k@3ukL1t .L2x/ thanks to (18) and (19)
implies that on Œ0; T�� we have

sup
t2Œ0;T �

kru.t/k2
L2
C

Z T

0

kr
2u.t/k2

L2
dt � kru0k

2
L2

exp
�
ku0kL2.KML/

1
2

�
:

This means that there is a unique, smooth solution at least on Œ0; T��, completing
the proof of Theorem 1.6. �
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5. Comparison of both life spans: proof of Theorem 1.7

Let us introduce the notation

f".x1; x2; x3/
def
D cos

�
x1
"

�
f
�
x1;

x2
"˛
; x3

�
;

where " is a given number, assumed to be small, and ˛ is a fixed parameter in the
open interval �0; 1Œ. We assume the initial data is given by the following expression

u0;".x/D
A"
"

�
0; "˛.�@3�/"; .@2�/"

�
; (20)

where � is a smooth compactly supported function and the parameter A"� 1 will
be tuned later.

Let us recall that Lemma 3.1 of [Chemin and Gallagher 2009] claims in partic-
ular that

8� > 0; kf"k PB��p;1
� C�"

�C ˛
p and kf"k PB��1;1

� c�"
� : (21)

This implies that

ku0;"k PB�1C21;1
. A""�2 ; ku0;"k PB�11;1 � ku0;"k PB�11;2 � A";

and k@3u0;"k
PB
� 3
2
1;1

. A""
1
2 :

(22)

With the notation of Theorem 1.3 it therefore holds that

TFP.u0;"/� C"
2A
� 1


" :

Let us now compute TL.u0;"/. Recalling that uL.t/D e
t�u0;", we can write

u1L@1u
1
LCu

2
L@2u

1
L D

�
A"
"

�2
et�f"e

t�g";

u1L@1u
2
LCu

2
L@2u

2
L D

�
A"
"

�2
et� zf"e

t�
zg":

where f , g, zf , zg are smooth compactly supported functions. Now let us estimateZ 1
0

t
1
2

et�f" et�g"2L2 dt:
for f and g given smooth compactly supported functions. We writeZ 1

0

t
1
2 ket�f"e

t�g"k
2
L2
dt D

Z 1
0

t
3
2 ket�f" e

t�g"k
2
L2
dt

t

�

Z 1
0

.t
3
8 ket�f"kL4/

2.t
3
8 ket�g"k/

2
L4
dt

t
;
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thanks to the Hölder inequality. The Cauchy–Schwarz inequality and the definition
of Besov norms imply thatZ 1
0

t
1
2 ket�f"e

t�g"k
2
L2
dt

�

�Z 1
0

�
t
3
8 ket�f"kL4

�4 dt
t

�1
2
�Z 1

0

�
t
3
8 ket�g"kL4

�4 dt
t

�1
2

� kf"k
2

PB
� 3
4

4;4

kg"k
2

PB
� 3
4

4;4

:

It is easy to check that

kf"k
PB
� 3
4

4;4

. "
3C˛
4 ;

so it follows (since P is a homogeneous Fourier multiplier of order 0) that

Q0L . A
4
""
˛�1: (23)

For the initial data (20), differentiations with respect to the vertical variable @3
have no real influence on the term uL.t/ � ruL.t/. Indeed, we have

@23
�
uL.t/ � ruL.t/

�
D @23uL.t/ � ruL.t/C2@3uL.t/ �@3ruL.t/CuL.t/ �@

2
3ruL.t/;

and it is then obvious that @23
�
uL.t/ � ruL.t/

�
is a sum of term of the type�

A"
"

�2
et�f"e

t�g":

Then following the lines used to estimate the term Q0L, we writeZ 1
0

t
3
2 ket�f"e

t�g"k
2
L2
dt

�

�Z 1
0

.t
5
8 ket�f"kL4/

4 dt

t

�1
2
�Z 1

0

.t
5
8 ket�g"kL4/

4 dt

t

�1
2

� kf"k
2

PB
� 5
4

4;4

kg"k
2

PB
� 5
4

4;4

:

It is easy to check that

kf"k
PB
� 5
4

4;4

. "
5C˛
4 ;

so it follows that

Q1L . A
4
""
˛C1:
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Together with (22) and (23), we infer that

Q0L
�
k@3u0k

2

PB
� 3
2
1;1

Q0LC
p
Q0LQ

1
L
�

exp.4ku0k2PB�1
1;2

/

. A4""
˛�1.A6""

˛
CA4""

˛/ exp.C0A2"/

. A10" "
2˛�1 exp.C0A2"/

because A" is larger than 1. Let us choose some � in �0; �Œ and then

A"
def
D

�
C0

�� log "

�1
2
�

Then with the notation of Theorem 1.6 we have

TL D CA
�20
" "2.1�2˛C�/:

Let us choose �0 in ��; �Œ. By definition of A" we get that

TL � C"
2.1�2˛C�0/:

Choosing ˛ D 1� .�� �0/=4 concludes the proof of Theorem 1.7. �

Appendix: A Littlewood–Paley toolbox

Let us recall some well-known results on Littlewood–Paley theory (see for instance
[Bahouri et al. 2011] for more details).

Definition A.1. Let � 2 S.R3/ be such that y�.�/ D 1 for j�j � 1 and y�.�/ D 0
for j�j > 2. We define, for j 2 Z, the function �j .x/

def
D 23j�.2jx/, and the

Littlewood–Paley operators

Sj
def
D �j � � and �j

def
D SjC1�Sj :

Homogeneous Sobolev spaces are defined by the norm

kak PH s
def
D

�X
j2Z

22jsk�jak
2
L2

�1
2

:

This norm is equivalent to

kak PH s �

�Z
R3
j�j2sjFa.�/j2 d�

�1
2

;

where F is the Fourier transform. Finally let us recall the definition of Besov norms
of negative index.
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Definition A.2. Let � be a positive real number and .p; q/ in Œ1;1�2. Let us define
the homogeneous Besov norm k � k PB��p;q by

kak PB��p;q
D
t �2 ket�akLpLq.RCIdt

t
/
:

Let us mention that thanks to the properties of the heat flow, for p1 � p2 and
q1 � q2, we have the following inequality, valid for any regular function a

kak
PB
���3. 1p1

� 1
p2
/

p2;q

. kak PB��p1;q and kak PB��p;q2
. kak PB��p;q1 :

An equivalent definition using the Littlewood–Paley decomposition is

kak PB��p;q
�

�X
j2Z

2�j�qk�jak
q
Lp

�1
q

:
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