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Generic colourful tori and inverse spectral transform
for Hankel operators

Patrick Gérard and Sandrine Grellier

This paper explores the regularity properties of an inverse spectral transform
for Hilbert–Schmidt Hankel operators on the unit disc. This spectral transform
plays the role of action-angle variables for an integrable infinite dimensional
Hamiltonian system: the cubic Szegő equation. We investigate the regularity
of functions on the tori supporting the dynamics of this system, in connection
with some wave turbulence phenomenon, discovered in a previous work and
due to relative small gaps between the actions. We revisit this phenomenon by
proving that generic smooth functions and a Gδ dense set of irregular functions
do coexist on the same torus. On the other hand, we establish some uniform
analytic regularity for tori corresponding to rapidly decreasing actions which
satisfy some specific property ruling out the phenomenon of small gaps.

1. Introduction

1.1. The cubic Szegő equation. This paper explores the properties of some inverse
spectral transformation related to an integrable infinite dimensional Hamiltonian
system. Introduced in [Gérard and Grellier 2010] as a model of nondispersive
evolution equation, the cubic Szegő equation reads

i∂t u =5(|u|2u), (1)

where u = u(t, x) is a function defined for (t, x) ∈ R×T, T := R/2πZ, such that,
for every t ∈ R, u(t, · ) belongs to the Hardy space L2

+
(T) of L2 functions v on T

with only nonnegative Fourier modes,

for all n < 0, v̂(n)= 0.
Here

v̂(n)=
∫ 2π

0
v(x)e−inx dx

2π
, n ∈ Z
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denotes the Fourier coefficient of v ∈ L2(T), and5 denotes the orthogonal projector
from L2(T) onto L2

+
(T):

5

(∑
n∈Z

cneinx
)
=

∞∑
n=0

cneinx .

It has been proved in [Gérard and Grellier 2010] that (1) is globally well posed on
Sobolev spaces H s

+
(T) := H s(T)∩ L2

+
(T) for all s ≥ 1

2 , with conservation of the
H

1
2 norm. Recall that, for elements in L2

+
(T), the H s Sobolev norm reads

‖v‖2H s =

∞∑
n=0

(1+ n)2s
|v̂(n)|2.

Furthermore, it turns out that (1) enjoys an unexpected Lax pair structure, dis-
covered in [Gérard and Grellier 2010] and studied in [Gérard and Grellier 2012;
2015; 2017]. More precisely, consider, for every u ∈ H

1
2
+
(T), the Hankel operator

Hu : L2
+
(T)→ L2

+
(T) defined as

Hu(h)=5(uh̄).

Notice that Hu is an antilinear realisation of the Hankel matrix 0û , where, for
every sequence α = (αn)n≥0 of complex numbers, 0α denotes the operator on
`2(Z+) given by the infinite matrix (αn+p)n,p≥0. Indeed, if F denotes the Fourier
transform v 7→ v̂ between L2

+
(T) and `2(Z+), it easy to check that

F HuF−1
= 0û ◦ C,

where C denotes the complex conjugation. The Lax pair identity then reads as
follows, see [Gérard and Grellier 2010]. If s > 1

2 and u is a H s
+

solution of (1),
then

d Hu

dt
= [Bu, Hu],

where Bu is a linear anti-self-adjoint operator depending on u. As a consequence,
there exists a one parameter family U (t) of unitary operators on L2

+
(T) such that

for all t ∈ R, Hu(t) =U (t)Hu(0)U (t)∗.

In particular, H 2
u(t) =U (t)H 2

u(0)U (t)
∗. Notice that H 2

u is a linear positive operator
on L2

+
(T), and that

F H 2
u F−1

= 0û0
∗

û ,

thus H 2
u is a trace class operator as soon as u ∈ H

1
2
+
(T), with

Tr(H 2
u )=

∞∑
n=0

(1+ n)|û(n)|2 = ‖u‖2
H

1
2
.
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Consequently, apart from 0, the spectrum of H 2
u is made of eigenvalues, which are

conservation laws of (1).
In fact, a second Lax pair for (1) holds [Gérard and Grellier 2012], which con-

cerns the operator Ku := S∗Hu = Hu S = HS∗u , where S denotes the shift operator
on L2

+
(T), namely multiplication by ei x . Operator Ku is also a Hankel operator,

F KuF−1
= 0̃û ◦ C,

where 0̃α denotes the shifted Hankel matrix (αn+p+1)n,p≥0. Again, it is possible
to prove that

for all t ∈ R, Ku(t) = V(t)Ku(0)V(t)∗,

for some one parameter family V(t) of unitary operators on L2
+
(T), and conse-

quently that the eigenvalues of K 2
u are conservation laws of (1). Denote by (ρ2

j ) j≥1

the positive eigenvalues of H 2
u and by (σ 2

k )k≥1 the positive eigenvalues of K 2
u , so

that the ρ j are the singular values of 0û and the σk are the singular values of 0̃û .
In view of the identity

K 2
u = H 2

u − ( · |u)L2u

and of the min-max theorem, the following interlacing property holds:

ρ1 ≥ σ1 ≥ ρ2 ≥ σ2 ≥ · · · .

1.2. The spectral transform. If u belongs to a dense Gδ subset H
1
2
+,gen(T) of H

1
2
+
(T),

one can establish (see [Gérard and Grellier 2012]) that

ρ1 > σ1 > ρ2 > σ2 > · · ·

We set
s2 j−1 = ρ j , s2k = σk, j, k ≥ 1.

The sr are called the singular values of the pair (Hu, Ku). Of course

∞∑
r=1

s2
r = Tr(H 2

u )+Tr(K 2
u )=

∞∑
n=0

(1+ 2n)|û(n)|2 <∞.

Conversely, given a square summable strictly decreasing sequence (sr )r≥1 of posi-
tive numbers, the set of u ∈ H

1
2
+

such that the sr are the singular values of the pair
(Hu, Ku), in the above sense, is an infinite dimensional torus T ((sr )r≥1) [Gérard
and Grellier 2012] of H

1
2
+
(T). This torus is parametrised by the following explicit

representation [Gérard and Grellier 2017], where we classically identify functions
of L2

+
(T) with holomorphic functions u = u(z) on the unit disc such that

sup
r<1

∫ 2π

0
|u(rei x)|2 dx <∞.
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The current element of the infinite dimensional torus T ((sr )r≥1) is then given by

u(z)= lim
N→∞

〈
CN (z)−1(1N ),1N

〉
, |z|< 1, 1N :=

1
...

1

 ∈ CN , (2)

where

CN (z) :=
(

s2 j−1eiψ2 j−1 − zs2keiψ2k

s2
2 j−1− s2

2k

)
1≤ j,k≤N

(3)

and (ψr )r≥1 ∈ T∞ is an arbitrary sequence of angles. Furthermore, the evolution
of the new variables (sr , ψr )r≥1 through the dynamics of (1) is given by

dsr

dt
= 0,

dψr

dt
= s2

r , r = 1, 2, . . . .

A natural question is then the description of the regularity of u in these new vari-
ables. A first type of answer to this question is provided by results due to Peller
and Semmes, see, e.g., [Peller 2003], which characterise the Schatten classes∑

r≥1

s p
r <∞, 0< p <∞,

in terms of the Besov spaces

∞∑
j=0

2 j
∫

T

|1 j u|p dx <∞,

where (1 j u) j≥0 denotes the dyadic blocks of u. In particular, if u is smooth, then
(sr )r≥1 satisfies

∞∑
r=1

s p
r <∞, for all p <∞.

However, the latter condition is far from being sufficient to control high regularity
of u. In fact, Sobolev regularity H s for s > 1

2 cannot be easily described by the
variables (sr , ψr )r≥1, as shown by the following result.

Theorem 1 [Gérard and Grellier 2017]. There exists a dense Gδ subset of initial
data in

C∞
+
(T) :=

⋂
s

H s
+
(T)

such that the corresponding solutions of (1) satisfies, for every s > 1
2 ,

for all M ≥ 1, lim sup
t→∞

‖u(t)‖H s

|t |M
=+∞, lim inf

t→∞
‖u(t)‖H s <∞.
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In other words, in the (sr , ψr )r≥1 representation, the size of the high Sobolev
norms may strongly depend on the angles (ψr )r≥1. The goal of this paper is to
investigate this phenomenon in more detail.

1.3. Overview of the results. Our first result claims that generic smooth functions
u are located on a torus T ((sr )r≥1) containing also very singular functions.

Theorem 2. There exists a dense Gδ subset G of C∞
+
(T) such that every element

u of G belongs to H
1
2
+,gen(T), and the infinite dimensional torus T ((sr )r≥1) passing

through u has a dense Gδ subset — for the H
1
2 topology — which is disjoint of H s

for every s > 1
2 .

Theorem 2 states that, on the tori T ((sr )r≥1) passing through generic smooth
functions, the regularity changes dramatically from C∞ to the outside of H s for
every s > 1

2 . Of course, this result can be seen as a natural extension of Theorem 1
recalled above, of which we use the weaker form that tori T ((sr )r≥1) passing
through generic smooth functions are unbounded in H s for every s > 1

2 . However,
in order to find singular functions on these tori, we combine it with a structure
property of these tori, which we think has its own interest.

Lemma 3. Let s > 1
2 and let (sr )r≥1 be a square summable decreasing sequence

of positive numbers such that the numbers s2
r , r ≥ 1 are linearly independent on Q.

Then we have the following alternatives:

• either T ((sr )r≥1) is a bounded subset of H s ,

• or T ((sr )r≥1) \ H s is a dense Gδ subset of T ((sr )r≥1) for the H
1
2 topology.

The point of Theorem 2 is that, even for fast decaying singular values (sr ), the
regularity of u may be spoiled by the relative smallness of the gaps sr − sr+1 with
respect to sr . In fact, if

uN (z)=
〈
CN (z)−1(1N ),1N

〉
, ψr = 0, r = 1, 2, . . . ,

with the notation introduced above, then, using the positivity property of the Hankel
matrices 0ûN

and 0̃ûN
equivalent to ψr = 0 for all r (see [Gérard and Grellier 2014;

Gérard and Pushnitski 2015]), we prove in the Appendix that

‖uN‖C1(T) ≥

N∑
j=1

s2 j−1s2 j

s2 j−1− s2 j
. (4)

It is then easy to find fast decaying sequences (sr ) such that the above right hand
side tends to infinity as N goes to infinity, which implies that (uN ) is unbounded
in C1(T). However, at this stage we do not know how to conclude that u is not
in C1(T).
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Our two other results state some uniform analytic regularity for tori T ((sr )r≥1)

where the sequence (sr )r≥1 satisfies some specific property ruling out the phenom-
enon of small gaps.

Theorem 4. For every ρ > 0, there exists δ0 > 0 such that, for any δ ∈ (0, δ0), if

for all r ≥ 1, sr+1 ≤ δsr ,

all functions u ∈ T ((sr )r≥1) are holomorphic and uniformly bounded in the disc
|z| < 1+ ρ. Consequently, for any initial datum corresponding to some of these
functions, the solution of the cubic Szegő equation (1) is analytic in the disc of
radius 1+ ρ for all time, and is uniformly bounded in this disc. In particular, the
trajectory is bounded in C∞(T).

Theorem 4 applies in particular to geometric sequences sr = e−rh for h > 0 large
enough. Our last result explores in more detail the case of geometric sequences
sr = e−rh , where h > 0 is arbitrary. In this case, we still obtain some uniform
analytic regularity, but with a constraint on the angles ψr .

Theorem 5. Let h > 0 and θ ∈ R. Assume (sr ) is given by sr = e−rh and (ψr )

by ψr = rθh. Then there exists ρ > 0 such that the corresponding elements of
T ((sr )r≥1) are holomorphic and uniformly bounded in the disc |z|< 1+ ρ.

We do not know whether or not geometric tori are embedded into the space of
analytic functions on T. What we are able to prove is that, for transcendental γ ,
we have the following alternatives:

• either there exists ρ > 0 such that every element of T ((γ r )r≥1) is holomorphic
on the disc |z|< 1+ ρ, with a uniform bound,

• or the nonanalytic elements of T ((γ r )r≥1) form a dense Gδ subset of T ((γ r )r≥1)

for the H
1
2 topology.

This is a special case of an extension of Lemma 3 to analytic regularity (see
Lemma 8).

1.4. Open problems. In view of the above theorems, the most natural open ques-
tion is certainly to decide whether Theorem 4 can be generalised to any parameter
δ < 1. In particular, as we questioned above, if 0< γ < 1, is it true that the infinite
dimensional torus T ((γ r )r≥1) is included in the space of analytic functions on T?

Another question connected to Theorem 2 relies on estimate (4). Assuming that

∞∑
j=1

s2 j−1s2 j

s2 j−1− s2 j
=∞,
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can one infer that the function u ∈ T ((sr )r≥1) characterised by ψr = 0, r = 1, 2, . . . ,
is not C1 on T? In view of Lemma 3, this would imply, if moreover the s2

r are lin-
early independent on Q, that most of the points on this torus would be singular —
say, not in H 2. Then it would be interesting to draw the consequences of this prop-
erty for long term behaviour of solutions of the cubic Szegő equation on this torus.

1.5. Organisation of the paper. The proof of Theorem 2 is provided in Section 2
after reducing to Lemma 3 and Theorem 1. The proof of Lemma 3 combines
a Baire category argument and some elementary ergodic argument for the cubic
Szegő flow. Section 3 is devoted to the proof of Theorem 4, which is based on
brute force estimates on matrices CN (z). In Section 4, we prove Theorem 5 by
a different approach relying on the theory of Toeplitz operators and a theorem
by Baxter which reduces our analysis to proving that the restriction to T of a
meromorphic function given by an explicit series, has no zero and has index 0,
which can be realised using some elementary complex analysis and the Poisson
summation formula. Finally, the estimate (4) is derived in the Appendix from an
explicit calculation using Cauchy matrices, in the spirit of [Gérard and Grellier
2017; Gérard and Pushnitski 2018].

2. The melting pot property

In this section, we prove Theorem 2. First we reduce the proof to Lemma 3 by the
following classical argument.

Lemma 6. The set of u ∈ C∞
+
(T)∩ H

1
2
+,gen(T) such that the squares sr (u)2, r ≥ 1

of the singular values sr (u) are linearly independent on Q, is a dense Gδ subset
of C∞

+
(T).

Proof. From the proof of [Gérard and Grellier 2012, Lemma 7], we already know
that C∞

+
(T)∩ H

1
2
+,gen(T) is a dense Gδ subset of C∞

+
(T). In fact, we can slightly

modify the proof as follows. For every N , consider the open subset ON made of
functions u ∈ C∞

+
(T) such that the first singular values of Hu and Ku satisfy

ρ1(u) > σ1(u) > ρ2(u) > σ2(u) > · · · ρN (u) > σN (u),

and such that any nontrivial linear combination of

ρ1(u)2, σ1(u)2, ρ2(u)2, σ2(u)2, . . . , ρN (u)2, σN (u)2

with integer coefficients in [−N , N ], is not zero. Approximating elements of
C∞
+
(T) by rational functions, and using the inverse spectral theorem of [Gérard

and Grellier 2012] for rational functions, we easily obtain that ON is dense. The
conclusion follows from Baire’s theorem. �
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Intersecting the dense Gδ subset of C∞
+
(T) provided by this lemma with the one

provided by Theorem 1 — or its weaker form, saying that the corresponding Szegő
trajectories are unbounded in every H s , s > 1

2 — we observe that Theorem 2 is a
consequence of Lemma 3, which we restate for the convenience of the reader.

Lemma 7. Let (sr )r≥1 be a square-summable decreasing sequence of positive num-
bers such that the numbers s2

r , r ≥ 1 are linearly independent on Q and let s > 1
2 .

Then we have the following alternatives:

• either T ((sr )r≥1) is a bounded subset of H s ,

• or T ((sr )r≥1) \ H s is a dense Gδ subset of T ((sr )r≥1) for the H
1
2 topology.

Proof. Recall [Gérard and Grellier 2012; 2017] that, for the H
1
2 topology, T ((sr )r≥1)

is homeomorphic to the infinite dimensional torus T∞, endowed with the product
topology, through the parametrisation given by (2) and (3). In particular, it is a
compact metrisable space. For every s > 1

2 , the function

‖v‖H s =

( ∞∑
n=0

(1+ n)2s
|v̂(n)|2

)1
2

is lower semicontinuous on T ((sr )r≥1). For every positive integer `, consider

F` = {v ∈ T ((sr )r≥1) : ‖v‖H s ≤ `}.

F` is a closed subset of T ((sr )r≥1), and the complement of the union of the F` is
precisely T ((sr )r≥1) \ H s . Hence, by the Baire theorem, either this set is a dense
Gδ subset of T ((sr )r≥1), or there exists `≥ 1 such that F` has a nonempty interior.
Assume that some F` has a nonempty interior, and let us show that T ((sr )r≥1) is a
bounded subset of H s . Let (ψ0

r )r≥1 ∈ T∞ such that the corresponding point v0 in
T ((sr )r≥1) lies in the interior of F`. In view of the product topology on T∞, there
exists some integer N ≥ 1 and some ε > 0 such that all the elements of T ((sr )r≥1)

corresponding to

ψr ∈ ]ψ
0
r − ε, ψ

0
r + ε[, r = 1, . . . , N ,

form an open set U contained in F`. At this stage we appeal to the number theoretic
assumption on the s2

r , which we use classically under the form that the trajectory

{(ψ0
r + ts2

r )r=1,...,N : t ∈ R}

is dense into the torus TN . Since, as recalled in the introduction, this trajectory is
precisely the projection of the trajectory of the cubic Szegő flow 8t on the first
N components, we infer that every element of T ((sr )r≥1) is contained in some
open set 8t(U ). Since the cubic Szegő equation is well-posed on H s [Gérard and
Grellier 2010], we infer that T ((sr )r≥1) is covered by the union of the interiors of
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the Fm for m ≥ 1. By compactness, it is covered by a finite union, which precisely
means that T ((sr )r≥1) is bounded in H s . �

As stated in the introduction for geometric sequences, the following analogous
result holds in the analytic setting.

Lemma 8. Let (sr )r≥1 be a square summable decreasing sequence of positive num-
bers such that the numbers s2

r , r ≥ 1 are linearly independent on Q. Then we have
the following alternatives:

• either there exists ρ > 0 such that every element of T ((sr )r≥1) is holomorphic
on the disc |z|< 1+ ρ, with a uniform bound,

• or the nonanalytic elements of T ((sr )r≥1) form a dense Gδ subset of T ((sr )r≥1)

for the H
1
2 topology.

Proof. The proof is an adaptation of the preceding one (Lemma 3) to the ana-
lytic setting. As, from [Gérard et al. 2015], the cubic Szegő equation propagates
analyticity, the result follows from the Baire theorem applied to the closed sets

F` :=
{
v ∈ T ((sr )r≥1) :

∞∑
n=0

e
n
` |v̂(n)| ≤ `

}
for `≥ 1. �

3. Example of bounded analytic tori

In this section, we prove Theorem 4.
Let u ∈ T ((sr )r≥1). Recall that

u = lim
N→∞

uN , where uN (z) := 〈CN (z)−11N ,1N 〉,

CN (z) :=
(

s2 j−1eiψ2 j−1 − zs2keiψ2k

s2
2 j−1− s2

2k

)
1≤ j,k≤N

,

and

1N =

1
...

1

 ∈ CN .

Our assumption is
sr+1 = εr sr , r ≥ 1,

where the sequence (εr )r≥1 satisfies

0< εr ≤ δ for some δ < 1.

Our aim is to prove that, for δ sufficiently small, the functions uN are holomorphic
and uniformly bounded in some disc of radius 1+ ρ, where ρ > 0, independently
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of N . Our strategy is to use that CN (0) is related to a Cauchy matrix, and hence,
that an explicit formula for its inverse is known. We write

CN (z)= CN (0)− zĊN = CN (0)(I − zCN (0)−1ĊN ),

where

ĊN :=

(
s2keiψ2k

s2
2 j−1− s2

2k

)
1≤ j,k≤N

,

and we establish the following lemma.

Lemma 9. For any 0< δ < 1, there exists some constant Cδ > 0 such that, for any
N ≥ 1, ∑

j,k

|(CN (0)−1) j,k | ≤ Cδs1. (5)

There exists a universal constant A > 0 such that, for δ ∈
(
0, 1

2

)
and for any N ≥ 1,

‖CN (0)−1ĊN‖`1→`1 ≤ A δ. (6)

Let us assume Lemma 9 proved. Takeρ>0, and choose δ0 such that Aδ0(1+ρ)≤ 1
2.

Hence, for any δ ∈ (0, δ0), from estimate (6),

(I − zCN (0)−1ĊN )

is invertible for any z with |z| < 1+ ρ and its inverse RN (z) is analytic and has
uniformly bounded norm for any z with |z|< 1+ ρ. Indeed, for any N ≥ 1, and
any z with |z|< 1+ ρ, by the Neumann series identity,

‖RN (z)‖`1→`1 ≤

∞∑
k=0

|z|k‖CN (0)−1ĊN‖
k
`1→`1 ≤

∞∑
k=0

2−k
≤ 2. (7)

Writing

CN (z)−1
= (I − z(CN (0)−1ĊN ))

−1CN (0)−1
= RN (z)(CN (0))−1

we get

uN (z)=
〈
RN (z)CN (0)−1(1N ),1N

〉
.

Using (5) and (7), we conclude that the series defining uN converges uniformly for
|z|< 1+ρ. Hence uN is analytic and uniformly bounded in the disc of radius 1+ρ.
We infer that u is as well analytic in the disc of radius 1+ρ and bounded on this disc.

This completes the proof of Theorem 4, modulo Lemma 9.
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3.1. Proof of Lemma 9. Notice that

CN (0)= diag(s2 j−1eiψ2 j−1)T , T :=

(
1

s2
2 j−1− s2

2k

)
1≤ j,k≤N

.

Since T is a Cauchy matrix, its inverse is explicitly known, so the inverse of CN (0)
is given by

CN (0)−1
=

(
(−1) j+k+Nα

(N )
j β

(N )
k

s2
2 j−1− s2

2k

1
s2 j−1eiψ2 j−1

)
1≤k, j≤N

,

where

α
(N )
j :=

∏
`(s

2
2 j−1− s2

2`)∏
`< j (s

2
2`−1− s2

2 j−1)
∏
`> j (s

2
2 j−1− s2

2`−1)
,

β
(N )
k :=

∏
`(s

2
2`−1− s2

2k)∏
`<k(s

2
2`− s2

2k)
∏
`>k(s

2
2k − s2

2`)
.

In particular,

|α
(N )
j | =

∏
`< j

s2
2`

s2
2`−1

∏
`< j

(
1−

∏2 j−2
r=2` ε

2
r

1−
∏2 j−2

r=2`−1 ε
2
r

)∏
`> j

(
1−

∏2`−1
r=2 j−1 ε

2
r
)(

1−
∏2`−2

r=2 j−1 ε
2
r
)s2

2 j−1(1− ε
2
2 j−1)

≤

∏
`< j

ε2
2`−1

s2
2 j−1∏

∞

m=1(1− δ4m)
.

Indeed, in the first line above, the factors in the second product are bounded by 1,
while, in the third product, the `-factor is bounded by 1

1−δ4(`− j) . Similarly, we have

|β
(N )
k | =

∏
`<k

s2
2`−1

s2
2`

∏
`>k

(
1−

∏2`−2
r=2k ε

2
r

1−
∏2`−1

r=2k ε
2
r

)∏
`<k

(
1−

∏2k−1
r=2`−1 ε

2
r
)(

1−
∏2k−1

r=2` ε
2
r
) s2

2k−1(1− ε
2
2k−1)

≤

∏
`<k

1
ε2

2`−1

s2
2k−1∏

∞

m=1(1− δ4m)
.

Setting

Bδ =
1∏

∞

m=1(1− δ4m)2
,



358 PATRICK GÉRARD AND SANDRINE GRELLIER

we obtain

|(CN (0)−1)k j | ≤ Bδ
s2 j−1s2

2k−1

|s2
2 j−1− s2

2k |

∏
`< j

ε2
2`−1

∏
`<k

1
ε2

2`−1

≤ Bδ


1

1−δ4(k− j)+2

s2
2k−1

s2 j−1

∏
j≤`<k

1
ε2

2`−1
if j < k,

1
1−δ2

s2 j−1 if j = k,

1
1−δ4( j−k−1)+2

s2 j−1
s2

2k−1

s2
2k

∏
k≤`< j

ε2
2`−1 if j > k.

To summarise,

|(CN (0)−1)k j | ≤
Bδ

1− δ2 s2 j−1


δ2(k− j) if j < k,
1 if j = k, k+ 1,
δ2( j−k−1) if j > k+ 1.

(8)

In particular, it gives∑
k, j

|(CN (0)−1) jk | ≤
2Bδ

(1− δ2)2

∑
j≤N

s2 j−1 ≤
2Bδs1

(1− δ2)3
.

This proves estimate (5).
For the second estimate, one has to consider

‖CN (0)−1ĊN‖`1→`1 ≤ sup
`

∑
k

|(CN (0)−1ĊN )k`|.

Recall that

ĊN :=

(
s2`eiψ2`

s2
2 j−1− s2

2`

)
1≤ j,`≤N

.

In particular,

|(ĊN ) j`| ≤
1

1− δ2

{ s2`
s2

2 j−1
if j ≤ `,

1
s2`

if j ≥ `+ 1.

As (CN (0)−1ĊN )k` =
∑

j (CN (0)−1)k j (ĊN ) j`, we get from the preceding estimate
(8) on |(CN (0)−1)k j | that:

• If k > `,

|(CN (0)−1ĊN )k`|

≤
Bδ

(1− δ2)2

(∑
j≤`

s2`

s2 j−1

∏
j≤r≤k−1

ε2
2r +

∑
`+1≤ j≤k

s2 j−1

s2`

∏
j≤r≤k−1

ε2
2r

+

∑
j≥k+1

s2 j−1

s2`

∏
k+1≤r≤ j−1

ε2
2r−1

)
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≤
Bδ

(1− δ2)2

(∑
j≤`

δ2(`− j)+1δ2(k− j)
+

∑
`+1≤ j≤k

δ2( j−`−1)+1δ2(k− j)

+

∑
j≥k+1

δ2( j−`−1)+1δ2( j−k−1)

)

≤ δ
Bδ

(1− δ2)2

(
2δ2(k−`)

∑
s≥0

δ4s
+

∑
`+1≤ j≤k

δ2( j−`−1)δ2(k− j)
)
,

then since∑
k: k≥`+1

∑
`+1≤ j≤k

δ2( j−`−1)δ2(k− j)
=

∑
j≥`+1

∑
k≥ j

δ2( j−`−1)δ2(k− j)
=

1
(1− δ2)2

,

one gets ∑
k: k>`

|(CN (0)−1ĊN )k`| ≤
δBδ

(1− δ2)4

(
1+ 3δ2

1+ δ2

)
.

• If k < `,

|(CN (0)−1ĊN )k`|

≤
Bδ

(1− δ2)2

(∑
j≤k

s2`

s2 j−1

∏
j≤r≤k−1

ε2
2r +

∑
k+1≤ j≤`

s2`

s2 j−1

∏
k+1≤r≤ j−1

ε2
2r−1

+

∑
j≥`+1

s2 j−1

s2`

∏
k+1≤r≤ j−1

ε2
2r−1

)

≤
Bδ

(1− δ2)2

(∑
j≤k

δ2(`− j)+1δ2(k− j)
+

∑
k+1≤ j≤`

δ2(`− j)+1δ2( j−k−1)

+

∑
j≥`+1

δ2( j−`−1)+1δ2( j−k−1)

)

≤
δBδ

(1− δ2)2

(
2δ2(`−k)

∑
s≥0

δ4s
+

∑
k+1≤ j≤`

δ2(`− j)δ2( j−k−1)
)

and, as before, ∑
k: k<`

|(CN (0)−1ĊN )k`| ≤
δ Bδ

(1− δ2)4

(
1+ 3δ2

1+ δ2

)
.

• For k = `,

|(CN (0)−1ĊN )kk |

≤
Bδ

(1− δ2)2

(∑
j≤`

s2`

s2 j−1

∏
j≤r≤k−1

ε2
2r +

∑
j≥k+1

s2 j−1

s2`

∏
k+1≤r≤ j−1

ε2
2r−1

)
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≤
Bδ

(1− δ2)2

(∑
j≤`

δ2(`− j)+1δ2(k− j)
+

∑
j≥k+1

δ2( j−`−1)+1δ2( j−k−1)
)

≤
Bδ

(1− δ2)2

(∑
j≤k

δ4(k− j)+1
+

∑
j≥k+1

δ4( j−k−1)+1
)

= 2
δBδ

(1− δ2)2(1− δ4)
.

Eventually, if δ ≤ 1
2 , say, we obtain, with a universal constant A,

‖(CN (0)−1ĊN )‖`1→`1 ≤ sup
`

∑
k

|(CN (0)−1ĊN )k`| ≤ Aδ.

This completes the proof of Lemma 9.

4. The totally geometric spectral data

In this section, we consider the totally geometric case and prove Theorem 5. For
some fixed h > 0 and θ ∈ R, we consider the symbol u with spectral data (sr , ψr )

with sr = e−rh and ψr = rθh. In particular, sr+1 = sr e−h so that, for h suffi-
ciently large, it becomes a particular case of subgeometric spectral data treated in
Theorem 4. However, the result here does not require any smallness on e−h .

Our strategy here is to use Toeplitz operators and a stability result from [Baxter
1963].

4.1. Background on Toeplitz operators. Let us first introduce some basic notation.
For a continuous function 8 on T, we denote by T (8) the Toeplitz operator of
symbol 8 defined on L2

+
(T) by

T (8)( f )=5(8 f )

or equivalently, the operator defined on `2(N) by

(T (8)((ak))) j :=

∞∑
k=0

8̂( j − k)ak, j ∈ N.

For any integer N , we denote by TN (8) the truncated operator defined by

TN (8) :=5N T (8)5N .

Here
5N : `

2(N)→ `2(N)

is the orthogonal projector:

(x0, x1, x2, . . . ) 7→ (x0, x1, x2, . . . , xN−1).
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The operator TN corresponds to the N × N truncated Toeplitz matrix

(8̂( j − k))0≤ j,k≤N−1.

Recall that a sequence of N × N matrices (AN )N≥1 is said to be stable if there is
an N0 such that the matrices AN are invertible for all N ≥ N0 and

sup
N≥N0

‖A−1
N ‖`2→`2 <∞.

Theorem 10 [Baxter 1963; Böttcher and Grudsky 2000]. The sequence (TN (8))N≥1

is stable if and only if T (8) is invertible.

Let us emphasise that the operators are considered as operators acting on `2(N)

or L2
+
(T) so that the stability is evaluated in the `2(N) norm. The characterisa-

tion of the invertibility of Toeplitz operators is well known. We recall it for the
convenience of the reader.

Theorem 11. Let 8 be a continuous function on the unit circle. If 8 has index
0 and does not vanish on the circle, then T8 is invertible on L2

+
(T). Under these

hypotheses, 8= eϕ =8+8− with

8+ = e5(ϕ) and 8− = e(I−5)(ϕ)

and the inverse of T8 is given by T8−1
+

T8−−1 .

As an immediate consequence, one gets the following characterisation of the
stability of truncated Toeplitz operators.

Corollary 12. Let 8 be a continuous function on the unit circle. The sequence of
truncated Toeplitz operators (TN (8)) is stable if and only if 8 has no zero on the
unit circle and has index 0.

We are going to use this argument to prove Theorem 5.

4.2. Totally geometric spectral data and Toeplitz operators. We claim that in the
case of totally geometric spectral data, the explicit formula giving uN involves the
inverse of a truncated Toeplitz operator. From direct computation, one has

CN (z)=
(
ω2 j−1

− zω2k

|ω|4 j−2− |ω|4k

)
1≤ j,k≤N

=

(
1

ω̄2 j−1

1− zω2(k− j)+1

1− |ω|4(k− j)+2

)
1≤ j,k≤N

,

where ω = e−h(1−iθ). In that case, if TN (z) and TN ,r (z) denote the matrices

TN (z)=
(

1− zω2(k− j)+1

1− |ω|4(k− j)+2

)
1≤ j,k≤N

and

TN ,r (z)=
(
r k− j 1− zω2(k− j)+1

1− |ω|4(k− j)+2

)
1≤ j,k≤N

,



362 PATRICK GÉRARD AND SANDRINE GRELLIER

we get from our explicit formula, for any r > 0,

uN (z)= 〈TN (z)−1(ω̄2 j−1),1〉 =
〈
TN ,r (z)−1(r− j ω̄2 j−1)1≤ j≤N ), (r k)1≤k≤N

〉
.

We consider for |ζ | = r , |ω|2 < r < 1, z ∈ C, the symbol

8(z, ζ ) :=
∑
`∈Z

1− zω2`+1

1− |ω|4`+2 ζ
`.

The transpose of the matrix(
r k− j 1− zω2(k− j)+1

1− |ω|4(k− j)+2

)
j,k≥1

corresponds to the matrix of the Toeplitz operator of symbol

8(z, r · ) : ζ 7→8(z, rζ ).

We are going to prove the following result.

Proposition 13. There exist |ω|2 < r < 1 and ρ > 0 such that the function ζ 7→
8(z, rζ ) has no zero and has index 0 on the unit circle, for every z such that
|z|< 1+ ρ.

Assuming this result proved, we obtain by Corollary 12 that, uniformly in z,
|z| < 1 + ρ, ‖TN ,r (z)−1

‖`2→`2 is bounded (or more precisely the norm of its
transpose is bounded). As |ω|2 < r < 1, we obtain that the sequence (uN (z))N

with
uN (z)=

〈
TN ,r (z)−1(r− j ω̄2 j−1)1≤ j≤N ), (r k)1≤k≤N

〉
is uniformly bounded and converges to u(z) for any z, |z|< 1+ ρ. We conclude
as in the previous section. This ends the proof of Theorem 5.

It remains to prove Proposition 13, which is the objective of the next subsections.
As a preliminary, observe that, for |ω|2 < |ζ |< 1, γ = |ω|2,

8(z, ζ )= Fγ (ζ )− zωFγ (ζω2),

where

Fγ (ζ )=8(0, ζ )=
∑
j∈Z

ζ j

1− γ 2 j+1 , γ = |ω|2. (9)

We collect some basic properties of function Fγ in the following lemma.

Lemma 14. The function Fγ has a meromorphic extension in C \ {0} given by

Fγ (ζ )=
∑
`∈Z

γ `

1− ζγ 2` . (10)
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Its only poles in C \ {0} are the γ 2`, ` ∈ Z and Fγ (γ 2`+1)= 0, ` ∈ Z. Furthermore

Fγ

(
1
ζ

)
=−ζ Fγ (ζ ), Fγ

(
ζ

γ 2

)
= γ Fγ (ζ ). (11)

Proof. Let us give another expression of Fγ . By assumption,

γ < |ζ |< 1,

hence, |ζ |> γ 2 and

Fγ (ζ )=
∞∑
j=0

ζ j

1− γ 2 j+1 +

∞∑
j=0

ζ− j−1

1− γ−2 j−1

=

∞∑
j=0

ζ j
∞∑
`=0

γ (2 j+1)`
−

∞∑
j=0

ζ− j−1γ 2 j+1

1− γ 2 j+1

=

∞∑
`=0

γ `
∞∑
j=0

(ζγ 2`) j
− γ ζ−1

∞∑
`=0

γ `
∞∑
j=0

(ζ−1γ 2`+2) j

=

∞∑
`=0

γ `

1− ζγ 2` −

∞∑
`=0

γ `+1

ζ − γ 2`+2 ,

and we obtain (10). The other properties are elementary consequences of this
equality. �

Remark 15. Set γ = e−πτ , τ > 0. From the second identity (11), we observe that
the meromorphic function

Gτ (w)= e2iπw(Fγ (e2iπw))2

satisfies
for all λ ∈ Z+ iτZ, Gτ (w+ λ)= Gτ (w),

which means that Gτ is an elliptic function relative to the lattice Z+ iτZ. Since
Gτ has only double poles at the lattice points, with singularity

1
(ζ − 1)2

∼−
1

4π2w2

at w = 0, and since it cancels at points i τ2 +Z+ iτZ, we infer that

Gτ (w)=−
1

4π2

(
Pτ (w)−Pτ

(
i τ

2

))
,

where
Pτ (w)=

1
w2 +

∑
λ 6=0

( 1
(w−λ)2

−
1
λ2

)
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denotes the Weierstrass P function relative to the lattice Z+ iτZ. See, e.g., [Saks
and Zygmund 1952].

4.3. Ruling out the zeroes on the unit circle. In this section, we prove the follow-
ing lemma.

Lemma 16. There exists ρ > 0 such that 8(z, ζ ) does not vanish in a neighbour-
hood of the circle |ζ | = 1 for any z such that |z| ≤ 1+ ρ.

Lemma 16 is a consequence of the following result.

Lemma 17. For every γ ∈ (0, 1),

γ
1
2 max
|ζ |=γ
|Fγ (ζ )|< min

|ζ |=1
|Fγ (ζ )|.

Proof. First of all we rewrite both sides of the above inequality. If ζ = eiθ ,

Fγ (ζ )=
∞∑

k=0

γ k

1− γ 2keiθ +

∞∑
`=1

γ−`

1− γ−2`eiθ

=

∞∑
k=0

γ k

1− γ 2keiθ +

∞∑
`=1

γ `

γ 2`− eiθ

=
1

1− eiθ +

∞∑
`=1

γ `(1+ γ 2`)(1− e−iθ )

1+ γ 4`− 2γ 2` cos θ

= (1− e−iθ )

(
1

2(1− cos θ)
+

∞∑
`=1

γ `(1+ γ 2`)

1+ γ 4`− 2γ 2` cos θ

)
,

hence

|Fγ (ζ )| =
1

2|sin(θ/2)|
+ 2|sin(θ/2)|

∞∑
`=1

γ `(1+ γ 2`)

1+ γ 4`− 2γ 2` cos θ

= |sin(θ/2)|
∑
`∈Z

γ `(1+ γ 2`)

1+ γ 4`− 2γ 2` cos θ
.

Similarly, if ζ = γ eiϕ , we have

Fγ (ζ )=
∞∑

k=0

γ k

1− γ 2k+1eiϕ +

∞∑
`=0

γ−`−1

1− γ−2`−1eiϕ

=

∞∑
k=0

γ k

1− γ 2k+1eiϕ +

∞∑
`=0

γ `

γ 2`+1− eiϕ

=

∞∑
`=0

γ `(1+ γ 2`+1)(1− e−iϕ)

1+ γ 4`+2− 2γ 2`+1 cosϕ
,
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so that

|Fγ (ζ )| = 2|sin(ϕ/2)|
∞∑
`=0

γ `(1+ γ 2`+1)

1+ γ 4`+2− 2γ 2`+1 cosϕ

= |sin(ϕ/2)|
∑
`∈Z

γ `(1+ γ 2`+1)

1+ γ 4`+2− 2γ 2`+1 cosϕ
.

Consequently,

min
|ζ |=1
|Fγ (ζ )| − γ

1
2 max
|ζ |=γ
|Fγ (ζ )| =min

θ∈T
|sin(θ/2)|

∑
`∈Z

γ `(1+ γ 2`)

1+ γ 4`− 2γ 2` cos θ

−max
ϕ∈T
|sin(ϕ/2)|

∑
`∈Z

γ `+1/2(1+ γ 2`+1)

1+ γ 4`+2− 2γ 2`+1 cosϕ

Set, for x ∈ R, θ ∈ T \ {0},

fγ,θ (x)= |sin(θ/2)|
γ x(1+ γ 2x)

1+ γ 4x − 2γ 2x cos θ
.

Then we are reduced to proving that

inf
θ∈T\{0}

∑
k∈Z

fγ,θ (k)− sup
ϕ∈T\{0}

∑
k∈Z

fγ,ϕ
(
k+ 1

2

)
> 0.

Applying the Poisson summation formula, we have∑
k∈Z

fγ,θ (k)=
∑
n∈Z

f̂γ,θ (2πn),
∑
k∈Z

fγ,ϕ
(
k+ 1

2

)
=

∑
n∈Z

(−1)n f̂γ,ϕ(2πn),

where

f̂γ,θ (ξ)= |sin(θ/2)|
∫

R

γ x(1+ γ 2x)

1+ γ 4x − 2γ 2x cos θ
e−i xξ dx

=
|sin(θ/2)|
|log γ |

∫
∞

0

(1+ t2)t−iξ/ log γ

1+ t4− 2t2 cos θ
dt

=
|sin(θ/2)|
2|log γ |

∫
∞

0

(1+ y)y−iξ/2 log γ− 1
2

1+ y2− 2y cos θ
dy,

where we have set t = γ x , y = t2. We calculate the above integral by introducing
the holomorphic function

g(z)=
|sin(θ/2)|
2|log γ |

(1+ z)z−iξ/2 log γ− 1
2

1+ z2− 2z cos θ
,

on the domain C \R+, where the argument of z belongs to (0, 2π). Integrating on
the contour of Figure 1 and making R→∞, ε→ 0, we obtain, by the residue
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R

ε

Figure 1. Contour for the proof of Lemma 17.

theorem, assuming θ ∈ (0, 2π) with no loss of generality,

f̂γ,θ (ξ)(1+ eπξ/ log γ )

= 2iπ
[
Res(g(z), z = eiθ )+Res(g(z), z = e−iθ )

]
=

iπ sin(θ/2)
|log γ |

(
2 cos(θ/2)

2i sin θ
eθξ/2 log γ

+
2 cos(θ/2)

2i sin θ
e(2π−θ)ξ/2 log γ

)
=

π

2|log γ |

(
eθξ/2 log γ

+ e(2π−θ)ξ/2 log γ ).
We infer

f̂γ,θ (ξ)=
π

2|log γ |
cosh

(
(π − θ)ξ/(2 log γ )

)
cosh

(
πξ/(2 log γ )

) , θ ∈ (0, 2π).

Finally, for θ, ϕ ∈ (0, 2π),∑
k∈Z

fγ,θ (k)−
∑
k∈Z

fγ,ϕ
(
k+ 1

2

)
=

π

2|log γ |

(∑
n∈Z

cosh
(
(π − θ)πn/(log γ )

)
cosh

(
π2n/(log γ )

)
−

∑
n∈Z

(−1)n
cosh

(
(π −ϕ)πn/(log γ )

)
cosh

(
π2n/(log γ )

) )

=
π

|log γ |

(
∞∑

n=1

cosh
(
(π − θ)πn/(log γ )

)
cosh

(
π2n/(log γ )

)
+

∞∑
n=1

(−1)n+1 cosh
(
(π −ϕ)πn/(log γ )

)
cosh

(
π2n/(log γ )

) )
≥

π

|log γ |

∞∑
n=1

1
cosh

(
π2n/(log γ )

) ,
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since the second series is an alternating series of the form

∞∑
n=1

(−1)n+1an,

with an decaying to 0 as n→∞. Therefore

min
|ζ |=1
|Fγ (ζ )| − γ

1
2 max
|ζ |=γ
|Fγ (ζ )| ≥

π

|log γ |

∞∑
n=1

1
cosh

(
π2n/(log γ )

) > 0. �

Lemma 17 implies that 8 has no zeroes for |ζ | = 1 and |z| ≤ 1. By continuity,
it has no zeroes in a neighbourhood of this set. Hence Lemma 16 is proved.

4.4. Studying the index. Let us first recall the definition of the index. For 0 <
R <∞, we denote by CR the circle

{z ∈ C : |z| = R}.

Let f be a holomorphic function near CR , with no zero on CR . The index on CR

around 0 of f is given by

Ind f (CR)(0) :=
1

2iπ

∫
CR

f ′(ζ )
f (ζ )

dζ.

In this section, we prove the following lemma.

Lemma 18. For any r < 1 sufficiently close to 1, the function

ζ 7→ Fγ (rζ )

has index zero on the unit circle.

Notice that 8(0, rζ )= Fγ (rζ ). As the index is valued in Z and the map z 7→
8(z, ζ ) is smooth, Lemma 18 implies that the index of ζ 7→8(z, rζ ) is zero for
any z with |z| ≤ 1+ ρ as long as r is sufficiently close to 1.

Corollary 19. For any r < 1 sufficiently close to 1, the function

ζ 7→8(z, rζ )

has index zero for any z.

This corollary will complete the proof of Proposition 13.

Proof of Lemma 18. We could use Remark 15 in order to reduce to properties of
the Weierstrass P function. However, for the convenience of the reader, we prefer
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to give a self-contained proof. Let us assume that R is chosen so that R 6= γ 2`,
` ∈ Z and Fγ 6= 0 on CR . We consider the index of Fγ on CR around 0:

I (R) := IndFγ (CR)(0) :=
1

2iπ

∫
CR

F ′γ (ζ )

Fγ (ζ )
dζ.

The statement of Lemma 18 is equivalent to

I (1−) := lim
R→1−

I (R)= 0.

By definition, I is valued in Z and is continuous on the intervals corresponding to
the circles avoiding the zeroes and the poles of Fγ . From properties (11), one has

I (R)+ I
( 1

R

)
=−1, I (Rγ 2)= I (R). (12)

In particular,

I (R)+ I
(γ 2

R

)
=−1 (13)

and
I (1+)= I ((γ 2)+), (14)

where I (r±)= limt→r± I (t). We are going to compute I ((γ 2)+) in another way,
using the zeroes and the poles of Fγ .

Let us first collect some basic relations. Let n be the number of zeroes in the
annulus

{z ∈ C : γ < |z|< 1}.

Since there are no poles inside this annulus, one has

n = I (1−)− I (γ+). (15)

From Equation (13) with R = 1− and R = γ+,

I (1−)+ I ((γ 2)+)=−1 and I (γ+)+ I (γ−)=−1.

Subtracting these equalities gives I (1−)− I (γ+)= I (γ−)− I ((γ 2)+), hence

n = I (γ−)− I ((γ 2)+). (16)

Denote by m the number of zeroes on Cγ . As γ is a zero of Fγ , m ≥ 1, and

m = I (γ+)− I (γ−) (17)

since there is no pole on Cγ . Denote by N the number of zeroes on C1. Then

I (1+)− I (1−)= N − 1, (18)

since 1 is the only pole on C1.
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Now, we compute I ((γ 2)+):

I ((γ 2)+)= I (γ−)− n from (16)

= I (γ+)−m− n from (17)

= I (1−)− n−m− n from (15)

= I (1+)− (N − 1)−m− 2n from (18).

Recalling (14), we conclude that N + 2n + m = 1, so n = 0 and N + m =
1. Since m ≥ 1, this implies N = 0 and m = 1. From (18) and the equality
I (1+)+ I (1−)=−1 (Equation (13) with R = 1+), one concludes I (1+)=−1 and
I (1−)= 0 as required. �

Appendix: A formula for the C1 norm

Let u ∈ L2
+
(T) be a rational function corresponding to the finite list of singular

values ρ1 > σ1 > · · ·> ρN > σN and angles ψr = 0 for r = 1, . . . , 2N . Then we
checked in [Gérard and Grellier 2012; 2014] that this cancellation of the angles
precisely corresponds to the positivity of the operators 0û and 0̃û on `2(Z+). The
representation formula (2), (3) then reduces to

u(z)= 〈CN (z)−1(1N ),1N 〉,

with

CN (z) :=
(

s2 j−1− s2kz
s2

2 j−1− s2
2k

)
1≤ j,k≤N

, (19)

Furthermore, the positivity of the Hankel matrices 0û and 0̃û implies the positivity
of the Fourier coefficients of u, since, denoting by (en)n≥0 the canonical basis
of `2(Z+),

〈0ûen, en〉 = û(2n), 〈0̃ûen, en〉 = û(2n+ 1).

Therefore the C1 norm of u on T is given by

S(u) :=
∞∑

n=1

nû(n).

The lemma below explicitly computes S(u).

Lemma 20. S(u)=
N∑

k=1

σk

( N∏
j=1

ρ j + σk

ρ j − σk

)(∏
6̀=k

σk + σ`

σ`− σk

)
,

where every term in the above sum is positive.

Proof. We have

S(u)= u′(1)=
〈
Ċ C (1)−1(1), tC (1)−1(1)

〉
,
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with

C (1) :=
(

1
ρ j + σk

)
1≤ j,k≤N

, Ċ :=

(
σk

ρ2
j − σ

2
k

)
1≤ j,k≤N

.

Notice that C (1) is a Cauchy matrix, so that the expression of C (1)−1(1) is explicit.
We have

C (1)−1(1)=

(∏N
j=1(ρ j + σk)∏
6̀=k(σk − σ`)

)
1≤k≤N

. (20)

Let us give a simple proof of this formula, inspired from calculations in [Gérard
and Pushnitski 2018]. Denote by xk, k = 1, . . . , N , the components of C (1)−1(1).
We have

N∑
k=1

xk

ρ j + σk
= 1, j = 1, . . . , N .

Consider the polynomial functions

Q(ρ) :=
N∏

k=1

(ρ+ σk), P(ρ) := Q(ρ)
N∑

k=1

xk

ρ+ σk
.

Then Q has degree N , P has degree at most N − 1 and

P(ρ j )= Q(ρ j ), j = 1, . . . N .

Since Q−P is a unitary polynomial of degree N which cancels at ρ j , j = 1, . . . , N ,
we have

Q(ρ)− P(ρ)=
N∏

j=1

(ρ− ρ j ).

Consequently,

P(−σk)=−

N∏
j=1

(−σk − ρ j )= (−1)N−1
N∏

j=1

(σk + ρ j ).

Since

xk =
P(−σk)

Q′(−σk)
,

this yields (20). Similarly, we have

tC (1)−1(1)=

(∏N
`=1(ρ j + σ`)∏
i 6= j (ρ j − ρi )

)
1≤ j≤N

. (21)
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Coming back to the proof of Lemma 20, we have, in view of (20) and (21),

S(u)=
N∑

j,k=1

µ
(N )
jk , µ

(N )
jk := σk

ρ j + σk

ρ j − σk

(∏
i 6= j

ρi + σk

ρ j − ρi

)(∏
`6=k

ρ j + σ`

σk − σ`

)
.

Multiplying and dividing µ(N )jk by
∏

i 6= j (ρi − σk), we have, for every k,

N∑
j=1

µ
(N )
jk =

σk R(σk)∏
6̀=k(σk − σ`)

N∏
i=1

ρi + σk

ρi − σk
,

with

R(σ )=
N∑

j=1

∏
i 6= j

ρi − σ

ρ j − ρi

∏
6̀=k

(ρ j + σ`).

Notice that, for every j = 1, . . . , N ,

R(ρ j )= (−1)N−1
∏
6̀=k

(ρ j + σ`).

Since R has degree N − 1, we infer

R(σ )= (−1)N−1
∏
6̀=k

(σ + σ`),

so that
N∑

j=1

µ
(N )
jk =

σk(−1)N−1∏
6̀=k(σk + σ`)∏

6̀=k(σk − σ`)

N∏
i=1

ρi + σk

ρi − σk
,

which is the claimed formula. The positivity of each term is an easy consequence
of the inequalities ρ1 > σ1 > ρ2 > σ2 > · · · . �

As a consequence of Lemma 20, we retain the following inequality, obtained
after discarding most of the factors bigger than 1 in each of the products.

Corollary 21. ‖u‖C1 ≥

N∑
k=1

σk(ρk + σk)

ρk − σk
.

Notice that this implies inequality (4). Unfortunately, at this stage we do not
have arguments allowing us to extend this inequality to nonrational functions u,
which would imply that u /∈ C1 if

∞∑
k=1

ρkσk

ρk − σk
=∞.
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