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For a Galois extension of a complete discrete valuation field with not necessarily
perfect residue field, the filtration by ramification groups on the Galois group is
defined in a joint article [Abbes and Saito 2002] with Ahmed Abbes. Although the
definition there is based on rigid geometry, it was later observed that the use of rigid
geometry can be avoided and the conventional language of schemes suffices [Saito
2009]. In this article, we reformulate the construction in [Abbes and Saito 2002]
in the language of schemes. As a byproduct, we give a generalization for ramified
finite Galois coverings of normal and universally Japanese noetherian schemes and
valuations not necessarily discrete.

All the ideas are present in the 2002 article, possibly in different formulation. As
in that article, the main ingredients in the definition of ramification groups are the
following: First, we interpret a subgroup as a quotient of the fiber functor with a
cocartesian property, Proposition 1.4.2. Thus, the definition of ramification groups
is a consequence of a construction of quotients of the fiber functor, indexed by
elements of the rational value group of valuation.

The required quotients of the fiber functor are constructed as the sets of con-
nected components of geometric fibers of dilatations [Abbes and Saito 2011; Saito
2009] defined by an immersion of the covering to a smooth scheme over the
base scheme. Here a crucial ingredient is the reduced fiber theorem of Bosch,
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Lütkebohmert and Raynaud [Bosch et al. 1995] recalled in Theorem 1.2.5. This
specializes to the finiteness theorem of Grauert and Remmert in the classical case
where the base is a discrete valuation ring. A variant of the filtration is defined
using the underlying sets of geometric fibers of quasifinite schemes without using
the sets of connected components.

To prove the basic properties of ramification groups stated in Theorem 3.3.1
including the rationality of breaks, semicontinuity etc., a key ingredient is a gen-
eralization due to Temkin [2011] of the semistable reduction theorem of curves
recalled in Theorem 1.3.5.

Let X be a normal noetherian scheme and let U ⊂ X be a dense open subscheme.
The Zariski–Riemann space X̃ is defined as the inverse limit of proper schemes X ′

over X such that U ′ = U ×X X ′ → U is an isomorphism. Points of X̃ on the
boundary X̃ U correspond bijectively to the inverse limits of the images of the
closed points by the liftings of the morphisms T = Spec A→ X for valuation rings
A $ K = k(t) for points t ∈U such that T ×X U consists of the single point t .

Let W →U be a finite étale connected Galois covering of the Galois group G.
We will construct in Theorem 3.3.1 filtrations (Gγ

T ) and (Gγ+

T ) on G by ramifica-
tion groups for a morphism T → X as above indexed by the positive part

(0,∞)0Q
⊂ 0Q = 0⊗Q

for the value group 0= K×/A×. To complete the definition, we need to assume that
for every intermediate covering V →U, the normalization Y of X in V is locally of
complete intersection over X to assure the cocartesian property in Proposition 1.4.2.
The required cocartesian property Proposition 3.1.2 is then a consequence of a
lifting property in commutative algebra recalled in Proposition 1.1.5.

The definition depends on X , not only on W →U . In other words, for a normal
noetherian scheme X ′ over X as above, the filtrations (Gγ

T ) and (Gγ+

T ) defined for
X and those for X ′ may be different. This arises from the fact that the formation
of the normalization Y need not commute with base change X ′→ X . To obtain
a definition depending only on W →U , one would need to take the inverse limit
with respect to X ′. This requires that the normalizations over T to be locally of
complete intersection.

By Proposition 1.4.2, the definition of the filtrations (Gγ

T ) and (Gγ+

T ) are re-
duced to the construction of surjections F∞T → FγT and F∞T → Fγ+T for a fiber
functor F∞T . To define them, for each intermediate covering V →U, we take an
embedding Y→ Q of the normalization to a smooth scheme over X . Further taking
a ramified covering and a blow-up X ′, we find an effective Cartier divisor R′ ⊂ X ′

and a lifting T ′→ X ′ of T → X such that the valuation v′(R′) of R′ is γ for each
γ ∈ 0Q. Then, we define a dilatation Q′(R

′) over X ′ to be the normalization of
an open subscheme Q′[R

′
] of the blow-up of the base change Q′ = Q ×X X ′ at
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the closed subscheme Y ×X R′ ⊂ Q×X X ′. To obtain a construction independent
of the choice of X ′, we apply the reduced fiber theorem of Bosch–Lütkebohmert–
Raynaud for Q′(R

′)
→ X ′ to be flat and to have reduced geometric fibers.

Now the desired functor FγT (Y/X) is defined as the set of connected compo-
nents of the geometric fiber of Q′(R

′)
→ X ′ at the image of the closed point by

T ′ → X ′. We recover the construction in [Abbes and Saito 2002] in the classi-
cal case where X = T is the spectrum of a complete discrete valuation ring as
we show in Lemma 3.3.2 using Example 2.1.1(1) and Remark 1.1.2. Its variant
Fγ+T (Y/X) is defined more simply as the geometric fiber of the inverse image
Y ′×Q′[R′] Q′(R

′) with respect to the morphism Y ′ = Y ×X X ′→ Q′[R
′
] lifting the

original immersion Y → Q. The fact that the construction is independent of the
choice of immersion Y → Q is based on a homotopy invariance of dilatations
proved in Proposition 2.1.5.

To study the behavior of the functors FγT and Fγ+T thus defined for the variable γ ,
we use a semistable curve C over X defined by st = f for a nonzero divisor f on
X defining an effective Cartier divisor D ⊂ X such that D ∩U =∅ as a parameter
space for γ . Let D̃ ⊂ C denote the effective Cartier divisor defined by t . Then,
for γ ∈ [0, v(D)]0Q

, there is a lifting T ′ → C of T → X such that v′(D̃) = γ .
Using this together with a local description (Proposition 1.3.3) of Cartier divisors
on a semistable curve over a normal noetherian scheme and a combination of the
reduced fiber theorem and the semistable reduction theorem over a general base
scheme, we derive basic properties of FγT and Fγ+T in Proposition 3.1.8 to prove
Theorems 3.2.6 and 3.3.1.

Convention. In this article, we assume that for a noetherian scheme X , the nor-
malization of the reduced part of a scheme of finite type over X remains to be of
finite type over X . This property is satisfied if X is of finite type over a field, Z, or
a complete discrete valuation ring, for example.

1. Preliminaries

1.1. Connected components.

Definition 1.1.1 [EGA IV2 1965, définition (6.8.1)]. Let f : X→ S be a flat mor-
phism locally of finite presentation of schemes. We say that f is reduced if for
every geometric point s of S, the geometric fiber Xs is reduced.

In [SGA 1 1971, exposé X, définition 1.1], reduced morphism is called separa-
ble morphism. A morphism f of finite presentation is étale if and only if f is
quasifinite, flat and reduced.

We study the sets of connected components of geometric fibers of a flat and
reduced morphism of finite type. Let S be a scheme and let s and t be geometric
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points of S. Let S(s) denote the strict localization. A specialization s ← t of
geometric points means a morphism S(s)← t over S.

Assume that S is noetherian. Let X → S be a flat and reduced morphism of
finite type and let s← t be a specialization of geometric points of S. We define
the cospecialization mapping

π0(Xs)→ π0(X t) (1-1)

as follows. By replacing S by the closure of the image of t , we may assume that
S is integral and that t is above the generic point η of S. By replacing S further
by a quasifinite scheme over S such that the function field is a finite extension
of κ(η) in κ(t), we may assume that the canonical mapping π0(X t)→ π0(Xη) is
a bijection. Let U ⊂ S be a dense open subset such that the canonical mapping
π0(Xη)→ π0(XU ) is a bijection. Then, by [EGA IV4 1967, corollaire (18.9.11)],
the canonical mapping π0(XU )→ π0(X) is also a bijection. Thus, we define the
cospecialization mapping (1-1) to be the composition

π0(Xs)→ π0(X) '
←− π0(Xη) '

←− π0(X t).

We say that the sets of connected components of geometric fibers of X → S
are locally constant if for every specialization s← t of geometric points of S, the
cospecialization mapping π0(Xs)→ π0(X t) is a bijection. By [EGA IV3 1966,
théorème (9.7.7)] and by noetherian induction, there exists a finite stratification
S=

∐
i Si by locally closed subschemes such that the sets of connected components

of geometric fibers of the base change X×S Si→ Si are locally constant for every i .
We call this fact that the sets of connected components of geometric fibers of X→ S
are constructible.

Remark 1.1.2. Let S = SpecOK for a discrete valuation ring OK and let X =
Spec A be an affine scheme of finite type over S. Let s̄→ S be a geometric closed
point. Let X = Spf Â be the formal completion along the closed fiber and let
XK = Sp Â⊗OK K be the associated affinoid variety over an algebraic closure K
of the fraction field K of OK . If X is flat and reduced over S, the cospecialization
mapping π0(X s̄)→ π0(XK ) is a bijection.

Let Y→ S be another flat and reduced morphism of finite type and let f : X→ Y
be a morphism over S. The cospecialization mappings (1-1) form a commutative
diagram

π0(Xs) −−−→ π0(X t)y y
π0(Ys) −−−→ π0(Yt)

(1-2)



RAMIFICATION GROUPS OF COVERINGS AND VALUATIONS 377

Lemma 1.1.3. Let f : X → Y be a morphism of schemes of finite type over a
noetherian scheme S. Assume that X is étale over S and that Y is flat and reduced
over S. Let A denote the subset of X consisting of the images of geometric points
x of X satisfying the following condition:

Let s be the geometric point of S defined as the image of x and let C ⊂ Ys

be the connected component of the fiber containing the image of x. Then,
f −1
s (C)⊂ Xs consists of a single point x.

Then A is closed.

Proof. By the constructibility of connected components of geometric fibers of Y,
the subset A ⊂ X is constructible. For a specialization s← t of geometric points
of S, the upper horizontal arrow in the commutative diagram

Xs //

��

X t

��

π0(Ys) // π0(Yt)

is an injection since X→ S is étale. Hence A is closed under specialization and is
closed. �

We have specialization mappings going the other way for proper morphisms.
Let X be a proper scheme over S. Let s ← t be a specialization of geometric
points of S. Then, the inclusion Xs → X ×S S(s) induces a bijection π0(Xs)→

π0(X ×S S(s)) by [SGA 41/2 1977, IV proposition (2.1)]. Its composition with the
mapping π0(X t)→π0(X×S S(s)) induced by the morphism X t→ X×S S(s) defines
the specialization mapping

π0(Xs)← π0(X t). (1-3)

For a morphism X → Y of proper schemes over S, the specialization mappings
make a commutative diagram

π0(Xs) ←−−− π0(X t)y y
π0(Ys) ←−−− π0(Yt).

(1-4)

Lemma 1.1.4. Let f : X→ Y be a finite unramified morphism of schemes. Let B
denote the subset of X consisting of the images of geometric points x of X satisfying
the following condition:

For the geometric point y of Y defined as the image of x , the fiber X ×Y y
consists of a single point x.

Then, B is open.
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Proof. The complement X B equals the image of the complement X ×Y X X
of the diagonal by a projection. Since X → Y is unramified, the complement
X ×Y X X ⊂ X ×Y X is closed. Since the projection X ×Y X→ X is finite, the
image X B is closed. �

Proposition 1.1.5. Let

Z ′

��

// X ′

f
��

Z //

�

X

(1-5)

be a cartesian diagram of noetherian schemes. Assume that X is normal, the hori-
zontal arrows are closed immersion, the right vertical arrow is quasifinite and the
left vertical arrow is finite. Assume further that there exists a dense open subscheme
U ⊂ X such that U ′ = U ×X X ′→ U is faithfully flat and that U ′ ⊂ X ′ is also
dense.

(1) Let C ⊂ Z be an irreducible closed subset and let C ′ ⊂ f −1(C) be an irre-
ducible component. Then, C ′→ C is surjective.

(2) Let C ⊂ Z be a connected closed subset and let C ′ ⊂ f −1(C) be a connected
component. Then, C ′→ C is surjective.

Proof. (1) By replacing U by a dense open subscheme if necessary, we may assume
that U ′→U is finite. By Zariski’s main theorem, there exists a scheme X ′ finite
over X containing X ′ as an open subscheme. By replacing X ′ by the closure of U ′,
we may assume that U ′ is dense in X ′. Since U ′ is closed in X ′ ×X U , we have
X ′ ×X U = U ′. Since Z ′ = (X ′ ×X Z) ∩ X ′ is closed and open in X ′ ×X Z , by
replacing X ′ by X ′, we may assume that f is finite.

Since f is a closed mapping, it suffices to show that the generic point z of C
is the image of the generic point z′ of C ′. Let x ′ be a point of C ′. Replacing X
by an affine neighborhood of x = f (x ′) ∈ C , we may assume X = Spec A and
X ′ = Spec B are affine. Then, the assumption implies that A→ B is an injection
and B is finite over A. Since x is a point of the closure C = {z}, the assertion
follows from [Bourbaki 1985, Chapter V, Section 2.4, Theorem 3].

(2) Let C1 ⊂ C be an irreducible component such that C1 ∩ f (C ′) is not empty.
Then, there exists an irreducible component C ′1 of f −1(C1) ⊂ f −1(C) such that
C ′1∩C ′ is not empty. By (1), we have C1 = f (C ′1). Since C ′ is a connected compo-
nent of f −1(C) and C ′1∩C ′ 6=∅, we have C ′1⊂C ′ and hence C1= f (C ′1)⊂ f (C ′).
Thus, the complement C f (C ′) is the union of irreducible components of C not
meeting f (C ′) and is closed. Since f (C ′)⊂ C is also closed and is nonempty, we
have C = f (C ′). �
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Corollary 1.1.6. Let

Z ′ //

��

�

X ′

f
��

�

Y ′1oo

f1
��

Y ′
g′
oo

f ′

��

Z // X Y1oo Y
g

oo

(1-6)

be a commutative diagram of noetherian schemes such that the left square is carte-
sian and satisfies the conditions in Proposition 1.1.5. Assume that Y1 ⊂ X is a
closed subscheme, that the middle square is cartesian and that the four arrows
in the right square are finite. Assume that there exists a dense open subscheme
V1 ⊂ Y1 such that V = V1 ×Y1 Y ⊂ Y is also dense and that g|V : V → V1 and
g′|V ′ : V ′ = V ×Y Y ′→ V ′1 = V1×Y1 Y ′1 are isomorphisms.

(1) For any irreducible (resp. connected) component C of Y, we have f −1(g(C))=
g′( f ′−1(C)). Consequently, we have f −1(g(Y ))= g′(Y ′).

(2) Suppose that the mapping Z ×X Y → π0(Y ) is a bijection. Then, the diagram

Z ′ ∩ Y ′1 ←−−− Z ′×X ′ Y ′y y
Z ∩ Y1 ←−−− Z ×X Y

(1-7)

of underlying sets induces a surjection Z ′×X ′ Y ′→ (Z ′∩Y ′1)×Z∩Y1 (Z ×X Y )
of sets. If Z ×X Y → Z ∩ Y1 is surjective, then Z ′×X ′ Y ′→ Z ′ ∩ Y ′1 is also
surjective. Further, if Y ′→ Y is surjective, then Z ′ ∩ Y ′1 → Z ∩ Y1 is also
surjective and the diagram (1-7) is a cocartesian diagram of underlying sets.

(3) The diagram
π0(Z ′) ←−−− Z ′ ∩ Y ′1y y
π0(Z) ←−−− Z ∩ Y1

(1-8)

of sets induces a surjection Z ′ ∩ Y ′1 → π0(Z ′) ×π0(Z) (Z ∩ Y1) of sets. If
Z∩Y1→π0(Z) is surjective, then Z ′∩Y ′1→π0(Z ′) is also surjective. Further
if Z ′ ∩ Y ′1→ Z ∩ Y1 is surjective, the diagram (1-8) is a cocartesian diagram
of sets.

Proof. (1) Let C ⊂ Y be an irreducible component. The inclusion f −1(g(C)) ⊃
g′( f ′−1(C)) is clear. We show the other inclusion. Since V is dense in Y, the
intersection C ∩ V and hence its image g(C) ∩ V1 are not empty. Let C ′ be an
irreducible component of f −1(g(C))⊂Y ′1. Since Y ′1→Y1 is finite and g(C)⊂Y1 is
an irreducible closed subset, we have g(C)= f (C ′) by Proposition 1.1.5(1). Since
f (C ′∩V ′1)= f (C ′)∩V1= g(C)∩V1 is not empty, C ′∩V ′1= g′(g′−1(C ′∩V ′1)) is also
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nonempty and hence is dense in C ′. Since g′−1(C ′∩V ′1)= g′−1(C ′)∩V ′⊂ f ′−1(C)
and since g′ : Y ′→ X ′ is proper, we have C ′ ⊂ g′( f ′−1(C)).

Since a connected component of Y and Y itself are unions of irreducible com-
ponents of Y, the remaining assertions follow from the assertion for irreducible
components.

(2) Let z′ ∈ Z ′∩Y ′1 and y ∈ Z×X Y be points satisfying f (z′)= g(y) in Z∩Y1. Let
C ⊂ Y be the unique connected component containing y. Since z′ ∈ f −1(g(C))=
g′( f ′−1(C)) by (1), there exists a point y′ ∈ Z ′ ×X ′ f ′−1(C) ⊂ Z ′ ×X ′ Y ′ such
that z′ = g′(y′). Since f ′(y′) ∈ Z ×X Y is a unique point contained in C ∈ π0(Y ),
we have y = f ′(y′). Thus, (z′, y) ∈ (Z ′ ∩ Y ′1)×Z∩Y1 (Z ×X Y ) is the image of
y′ ∈ Z ′×X ′ Y ′.

If Z×X Y→ Z∩Y1 is surjective, then (Z ′∩Y ′1)×Z∩Y1 (Z×X Y )→ Z ′∩Y ′1 is sur-
jective and hence the first assertion implies the surjectivity of Z ′×X ′ Y ′→ Z ′ ∩Y ′1.

If both Z×X Y→ Z∩Y1 and Y ′→Y are surjective, then Z ′×X ′ Y ′= Z×X Y ′→
Z×X Y is also surjective and hence by the commutative diagram (1-7), the mapping
Z ′∩Y ′1→ Z ∩Y1 is a surjection. This implies that the diagram (1-7) with Z ′×X ′ Y ′

replaced by (Z ′ ∩ Y ′1)×Z∩Y1 (Z ×X Y ) is a cocartesian diagram of underlying sets.
Hence the surjectivity of Z ′ ×X ′ Y ′→ Z ′ ∩ Y ′1 ×Z∩Y1 (Z ×X Y ) implies that the
diagram (1-7) is a cocartesian diagram of underlying sets.

(3) Let C ′ ⊂ Z ′ be a connected component and let z ∈ Z ∩ Y1 be a point such that
the connected component C ⊂ Z satisfying f (C ′)⊂C contains z. Since f (C ′)=C
by Proposition 1.1.5(2), the intersection C ′∩ f −1(z)⊂ Z ′∩Y ′1 is not empty. Hence
(C ′, z) ∈ π0(Z ′)×π0(Z) (Z ∩ Y1) is in the image of C ′ ∩ f −1(z)⊂ Z ′ ∩ Y ′1.

The remaining assertions are proved similarly as in (2). �

1.2. Flat and reduced morphisms. Let k = 0 be an integer. Recall that a noether-
ian scheme X satisfies the condition (Rk) if for every point x ∈ X of dimOX,x 5 k,
the local ring OX,x is regular [EGA IV2 1965, définition (5.8.2)]. Recall also that a
noetherian scheme X satisfies the condition (Sk) if for every point x ∈ X , we have
profOX,x = inf(k, dimOX,x) [EGA IV2 1965, définition (5.7.2)].

Proposition 1.2.1. Let f : X → S be a flat morphism of finite type of noetherian
schemes and let k = 0 be an integer. We define a function k : S→ N by k(s) =
max(k− dimOS,s, 0).

(1) If S satisfies the condition (Rk) and if the fiber Xs = X ×S s satisfies (Rk(s))

for every s ∈ S, then X satisfies the condition (Rk).

(2) If X satisfies the condition (Rk) and if f : X → S is faithfully flat, then S
satisfies the condition (Rk).

Proof. (1) Assume dimOX,x 5 k and set s = f (x). Then, we have dimOS,s 5
dimOX,x 5 k and dimOXs ,x = dimOX,x − dimOS,s 5 k(s) by [EGA IV2 1965,
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proposition (6.1.1)]. Hence OS,s and OXs ,x are regular by the assumption. Thus
OX,x is regular by [EGA IV1 1964, chapitre 0IV proposition (17.3.3)(ii)].

(2) This follows from [EGA IV2 1965, proposition (6.5.3)(i)]. �

Proposition 1.2.2. Let f : X → S be a flat morphism of finite type of noether-
ian schemes and let k = 0 be an integer. Let the function k : S → N be as in
Proposition 1.2.1.

(1) If S satisfies the condition (Sk) and if the fiber Xs satisfies (Sk(s)) for every
s ∈ S, then X satisfies the condition (Sk).

(2) If X satisfies the condition (Sk) and if f : X → S is faithfully flat, then S
satisfies the condition (Sk).

(3) If X satisfies the condition (Sk) and if S is of Cohen–Macaulay, then the fiber
Xs satisfies (Sk(s)) for every s ∈ S.

Proof. (1) Let x ∈ X and s= f (x). Then, we have profOS,s = inf(k, dimOS,s) and
profOXs ,x = inf(k(s), dimOXs ,x) by the assumption. By dimOXs ,x = dimOX,x −

dimOS,s [EGA IV2 1965, proposition (6.1.1)], we have

inf(k, dimOS,s)+ inf(k(s), dimOXs ,x)= inf(k, dimOX,x).

Hence the claim follows from profOX,x = profOS,s + profOXs ,x [EGA IV2 1965,
proposition (6.3.1)].

(2) This follows from [EGA IV2 1965, proposition (6.4.1)(i)].

(3) Let x ∈ X and s = f (x). Then by the assumption, we have

profOX,x = inf(k, dimOX,x) and profOS,s = dimOS,s .

By profOXs ,x = profOX,x − profOS,s = 0 [EGA IV2 1965, proposition (6.3.1)]
and dimOXs ,x = dimOX,x − dimOS,s [EGA IV2 1965, proposition (6.1.1)] we
have profOXs ,x = inf(k− dimOS,s, dimOXs ,x)= k(s) and the assertion follows.

�

Corollary 1.2.3. Let f : X → S be a flat morphism of finite type of noetherian
schemes and let U ⊂ X be the largest open subset smooth over S.

(1) Assume that the fiber Xs is reduced for every s ∈ S. Assume further that S is
normal and that for the generic point s of each irreducible component, Xs is
normal. Then X is normal.

(2) For s ∈ S and a geometric point s̄ above s, we consider the following condi-
tions:

(i) The geometric fiber X s̄ is reduced.
(ii) Us is dense in Xs .
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Then, we have (i) ⇒ (ii). Conversely, if X is normal and S is regular of
dimension 5 1, then we have (ii)⇒ (i).

Proof. (1) By Serre’s criterion [EGA IV2 1965, théorème (5.8.6)], S satisfies (R2)

and (S1). By [EGA IV2 1965, proposition (5.8.5)], every fiber Xs satisfies (R1)

and (S0). Further if s is the generic point of an irreducible component, the fiber
Xs satisfies (R2) and (S1). Since the function k(s) for k = 2 satisfies k(s) 5 1
unless s is the generic point an irreducible component and k(s)= 2 for such point,
the scheme X satisfies the conditions (R2) and (S1) by Propositions 1.2.1(1) and
1.2.2(1). Thus the assertion follows by [EGA IV2 1965, théorème (5.8.6)].

(2) (i)⇒ (ii): Since X s̄ is reduced, there exists a dense open subset V ⊂ X s̄ smooth
over s̄. Since f is flat, the image of V in Xs is a subset of Us .

(ii)⇒ (i): Since X satisfies (S2) and S is Cohen–Macaulay of dimension 5 1, the
fiber Xs satisfies (S1) by Proposition 1.2.2(3). Hence the geometric fiber X s̄ also
satisfies (S1) by [EGA IV2 1965, proposition (6.7.7)]. By (ii), X s̄ satisfies (R0).
Hence the assertion follow from [EGA IV2 1965, proposition (5.8.5)]. �

Lemma 1.2.4. Let S be a noetherian scheme and let f : Y → X be a quasifinite
morphism of schemes of finite type over S. Assume that X is smooth over S and that
Y is flat and reduced over S. Assume that there exist dense open subschemes U ⊂ S
and U ×S X ⊂ W ⊂ X such that Y ×X W → W is étale and that for every point
s ∈ S, the inverse image f −1

s (Ws)⊂ Ys = Y ×S s of Ws =W ×S s ⊂ Xs = X ×S s
by fs : Ys→ Xs is dense. Then, Y → X is étale.

Proof. If S is regular, the assumption that Y×XW→W is étale and Corollary 1.2.3(1)
implies that the quasifinite morphism Y → X of normal noetherian schemes is
étale in codimension 5 1. Since X is regular, the assertion follows from the purity
theorem of Zariski–Nagata.

Since X and Y are flat over S, it suffices to show that for every point s ∈ S, the
morphism Ys = Y ×S s→ Xs is étale. Let S′→ S be the normalization of the blow-
up at the closure of s ∈ S. Then, there exists a point s ′ ∈ S′ above s ∈ S such that
the local ring OS′,s′ is a discrete valuation ring. Since the assumption is preserved
by the base change SpecOS′,s′→ S, the morphism Ys′ = Y ×S s ′→ Xs′ = X ×S s ′

is étale. Hence Ys→ Xs is also étale as required. �

The following statement is a combination of the reduced fiber theorem and the
flattening theorem.

Theorem 1.2.5 [Bosch et al. 1995, Theorem 2.1′; Raynaud and Gruson 1971,
théorème (5.2.2)]. Let S be a noetherian scheme and let U ⊂ S be a schemati-
cally dense open subscheme. Let X be a scheme of finite type over S such that
XU = X ×S U is schematically dense in X and that XU →U is flat and reduced.
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Then there exists a commutative diagram

X ←−−− X ′y y
S ←−−− S′

(1-9)

of schemes satisfying the following conditions:

(i) The morphism S′→ S is the composition of a blow-up S∗→ S with center
supported in S U and a faithfully flat morphism S′→ S∗ of finite type such
that U ′ = S′×S U →U is étale.

(ii) The morphism X ′ → S′ is flat and reduced. The induced morphism X ′ →
X ×S S′ is finite and its restriction X ′×S′ U ′→ X ×S U ′ is an isomorphism.

If XU→U is smooth and if S′ is normal, then X ′ is the normalization of X×S S′

by Corollary 1.2.3(1). If XU → U is étale, the first condition in (ii) implies that
X ′→ S′ is étale.

For the morphism S′→ S satisfying the condition (i) in Theorem 1.2.5, we have
the following variant of the valuative criterion.

Lemma 1.2.6. Let S be a scheme and let U be a dense open subscheme. Let S1→ S
be a proper morphism such that U1 = U ×S S1 → U is an isomorphism and let
S′→ S1 be a quasifinite faithfully flat morphism. Let t ∈ U , let A ⊂ K = k(t) be
a valuation ring and let T = Spec A→ S be a morphism extending t→U. Then,
there exist t ′ ∈ U ′ = U ×S S′ above t , a valuation ring A′ ⊂ K ′ = k(t ′) such that
A = A′ ∩ K and a commutative diagram

T ′ −−−→ S′y y
T −−−→ S

(1-10)

for T ′ = Spec A′. Further, if t = T ×S U , then we have t ′ = T ′×S′ U ′.

Proof. Since S1 → S is proper and U1 → U is an isomorphism, the morphism
T → S is uniquely lifted to T → S1 by the valuative criterion of properness. Let
x1 ∈ T ×S1 S′ be a closed point and let t ′ ∈ t ×S1 S′ be a point above t such that x1

is contained in the closure T1 = {t ′} ⊂ T ×S1 S′ with the reduced scheme structure.
Let A′ ⊂ k(t ′) be a valuation ring dominating the local ring OT1,x1 . Then, we have
the commutative diagram (1-10) for T ′ = Spec A′.

Since t ′ is the unique point of t ×T T ′, the equality t = T ×S U implies t ′ =
T ′×S′ U ′. �
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1.3. Semistable curves. Let S be a scheme. Recall that a flat separated scheme X
of finite presentation over S is a semistable curve, if every geometric fiber is purely
of dimension 1 and has at most nodes as singularities.

Example 1.3.1. Let S be a scheme and let D ⊂ S be an effective Cartier divisor.
Let C ′→ A1

S be the blow-up at D ⊂ S ⊂ A1
S regarded as a closed subscheme by

the 0-section. Then, the complement CD ⊂ C ′ of the proper transform of the 0-
section is a semistable curve over S and is smooth over the complement U = S D.
The exceptional divisor D̃ ⊂ CD is an effective Cartier divisor satisfying 05 D̃ 5
D×S CD . The difference D×S CD − D̃ equals the proper transform of A1

D .
If S = Spec A is affine, A1

S = Spec A[t] and if D is defined by a nonzero divisor
f ∈ A, we have CD = Spec A[s, t]/(st − f ) and D̃ ⊂ CD is defined by t .

Lemma 1.3.2. Let S be a scheme and let U ⊂ S be a schematically dense open
subscheme. Let C be a separated flat scheme of finite presentation over S such
that the base change CU = C ×S U is a smooth curve over U. Then, the following
conditions are equivalent:

(1) C is a semistable curve over S.

(2) Étale locally on C and on S, there exist an effective Cartier divisor D⊂ S such
that D ∩U is empty and an étale morphism C→ CD over S to the semistable
curve CD defined in Example 1.3.1.

Proof. This is a special case of [SGA 7II 1973, corollaire 1.3.2]. �

Let S be a normal noetherian scheme and let j : U = S D→ S be the open
immersion of the complement of an effective Cartier divisor D. Let i : D→ S be
the closed immersion and let πD : D→ D denote the normalization. Then, the
valuations at the generic points of irreducible components of D define an exact
sequence 0→ Gm,S→ j∗Gm,U → i∗πD∗ZD of étale sheaves on S.

Let f : C = CD→ S be the semistable curve over S defined in Example 1.3.1.
Let j̃ :UC =C×S U→C denote the open immersion and let ĩ : DC =C×S D→C
denote the closed immersion. Let A ⊂ C be the exceptional divisor and let B =
DC − A ⊂ C be the effective Cartier divisor defined as the proper transform of A1

D .
Let a : A→C and b : B→C and e : E = A∩B→C denote the closed immersions.
Then, the Cartier divisors A, B, DC ⊂ C defines a commutative diagram

f ∗i∗Z //

��

a∗Z⊕ b∗Z

��

f ∗( j∗Gm,U/Gm,S) // j̃∗Gm,UC/Gm,C

(1-11)

of étale sheaves on C .
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Proposition 1.3.3. Let S be a normal noetherian scheme and let D ⊂ S be an
effective Cartier divisor. Let f : C = CD→ S be the semistable curve defined in
Example 1.3.1. Then, the diagram (1-11) induces an exact sequence

0→ f ∗i∗Z→ f ∗( j∗Gm,U/Gm,S)⊕ (a∗Z⊕ b∗Z)→ j̃∗Gm,UC/Gm,C → 0 (1-12)

of étale sheaves on DC .

Proof. Let z be a geometric point of C ; we will show the exactness of the stalks
of (1-12) at z. Replacing S by the strict localization at the image x of z, we may
assume that S is strict local and that x is the closed point. For t ∈ S = S(x),
the Milnor fiber C(z) ×S t at t of the strict localization C(z) at z is geometrically
connected by [EGA IV4 1967, théorème (18.9.7)]. Further, if z ∈ E and if t ∈ D,
the fiber at t of C(z) E(z) has 2 geometrically connected components.

First, we consider the case where C is smooth over S at z. Then, since the
Milnor fiber C(z),t is connected, the canonical morphism f ∗i∗ZD → iC∗ZDC

is
an isomorphism. Hence, the stalk of the lower horizontal arrow (1-11) at z is an
injection. Further, this is a surjection by flat descent.

We assume that C → S is not smooth at z. Let D̃ be a Cartier divisor of C(z)
supported on DC(z) = C(z) ×S D. Then similarly as above, there exists a Cartier
divisor D1 on S supported on D such that D0 = D̃ − f ∗D1 is supported on the
inverse image of A. Define a Z-valued function n on y ∈ E(z)= D as the intersection
number of D0 with the fiber B ×S y. We show that the function n is constant.
By adding some multiple of A to D̃ if necessary, we may assume that D0 is an
effective Cartier divisor of C supported on A. Since B is flat over D, the pull-back
D0×C B is an effective Cartier divisor of B finite flat over D by [EGA IV1 1964,
0IV proposition (15.1.16) c)⇒b)]. Hence the function n is constant. Thus we have
D̃ = f ∗D1+ n · A and the exactness of the stalks of (1-12) at z follows. �

Corollary 1.3.4. Let S be a normal noetherian scheme and let C→ S be a semi-
stable curve. Let x ∈ S be a point and let z ∈ C ×S x be a singular point of the
fiber. Assume that z is contained in the intersection of two irreducible components
C1 and C2 of C ×S x. Let s1 : S→ C and s2 : S→ C be sections meeting with the
smooth parts of C1 and C2 respectively.

Let U ⊂ S be a dense open subscheme such that CU = C ×S U is smooth over
U and let D̃ ⊂ C be an effective Cartier divisor such that D̃ ∩CU is empty. Define
effective Cartier divisors D1 = s∗1 D̃ and D2 = s∗2 D̃ of S as the pull-back of D̃.

Then, on a neighborhood of x , we have either D1 5 D2 or D2 5 D1. Suppose
we have D1 5 D2 on a neighborhood of x. Then, we have D1×S C 5 D̃5 D2×S C
on a neighborhood of z.

Proof. In the notation of the proof of Proposition 1.3.3, we have D̃ = f ∗D1+ n A
for an integer n on an étale neighborhood of z. Hence the assertion follows. �
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We recall a combination the flattening theorem and a strong version of the
semistable reduction theorem for curves over a general base scheme.

Theorem 1.3.5 [Raynaud and Gruson 1971, théorème (5.2.2); Temkin 2011, The-
orem 2.3.3]. Let S be a noetherian scheme and let U ⊂ S be a schematically dense
open subscheme. Let C → S be a separated morphism of finite type such that
C ×S U → U is a smooth relative curve and that C ×S U ⊂ C is schematically
dense. Then, there exists a commutative diagram

C ←−−− C ′y y
S ←−−− S′

of schemes satisfying the following conditions:

(i) The morphism S′→ S is the composition of a proper modification S1 → S
such that U1 =U ×S S1→U is an isomorphism and a faithfully flat morphism
S′→ S1 such that U ′ =U ×S S′→U1 is étale and U ′ ⊂ S′ is schematically
dense.

(ii) The morphism C ′→ S′ is a semistable curve and the morphism C ′→ C ×S S′

is a proper modification such that C ′×S′ U ′→ C ×S U ′ is an isomorphism.

Corollary 1.3.6. Let S be a noetherian scheme and let U ⊂ S be a schematically
dense open subscheme. Let C→ S be a separated morphism of finite type such that
CU = C ×S U →U is a smooth relative curve and that CU ⊂ C is schematically
dense. Let X→C be a separated morphism of finite type such that XU = X×S U ⊂
X is schematically dense and that XU → CU is flat and reduced. Then, there exists
a commutative diagram

X ←−−− X ′y y
C ←−−− C ′y y
S ←−−− S′

of schemes satisfying the following conditions:

(i) The morphism S′→ S is the composition of a proper modification S1 → S
such that U1 =U ×S S1→U is an isomorphism and a faithfully flat morphism
S′→ S1 such that U ′ =U ×S S′→U1 is étale and U ′ ⊂ S′ is schematically
dense.

(ii) The morphism C ′→ S′ is a semistable curve and the morphism C ′→C×S S′ is
the composition of a proper modification C ′0→C×S S′ such that C ′0×S′U ′→



RAMIFICATION GROUPS OF COVERINGS AND VALUATIONS 387

C ×S U ′ is an isomorphism, a faithfully flat morphism C ′1 → C ′0 such that
C ′1×S′ U ′→ C ′0×S′ U ′ is étale and of a proper modification C ′→ C ′1 such
that C ′×S′ U ′→ C ′1×S′ U ′ is an isomorphism.

(iii) The morphism X ′→ C ′ is flat and reduced, the morphism X ′→ X ×C C ′ is
finite and X ′×S′ U ′→ X ×C C ′×S′ U ′ is an isomorphism.

Proof. By the reduced fiber theorem (Theorem 1.2.5) applied to X → C , there
exists a commutative diagram

X ←−−− X1y y
C ←−−− C1

satisfying the conditions (i) and (ii) of Theorem 1.2.5. Since C1×S U → C ×S U
is étale and C1 ×S U ⊂ C1 is schematically dense, by the combination of the
stable reduction theorem and the flattening theorem (Theorem 1.3.5), there exists
a commutative diagram

C1 ←−−− C ′y y
S ←−−− S′

satisfying the conditions (i) and (ii) of Theorem 1.3.5.
We show that X ′= X1×C1 C ′→C ′→ S′ satisfy the required conditions. By the

construction, S′→ S satisfies the condition (i) and C ′→ S′ is a semistable curve.
Since C1→ C is obtained by applying Theorem 1.2.5 and C ′→ S′ is obtained by
applying Theorem 1.3.5, the composition C ′→ C ′1 = C1×S S′→ C×S S′ satisfies
the condition in (ii). Finally, the base change X ′ → C ′ of a flat and reduced
morphism X1→ C1 is flat and reduced. Since X ′→ C ′ is obtained by applying
Theorem 1.2.5, the morphism X ′→ X ×C C ′ satisfies the condition (iii). �

1.4. Subgroups and fiber functor. For a finite group G, let (Finite G-sets) denote
the category of finite sets with left G-actions.

Definition 1.4.1. We say that a category C is a finite Galois category if there exist
a finite group G and an equivalence of categories F : C → (Finite G-sets). If
F : C → (Finite G-sets) is an equivalence of categories, we say that G is the
Galois group of the finite Galois category C and call the functor F itself or the
composition C→ (Finite-sets) with the forgetful functor also denoted by F a fiber
functor of C .

We say that a morphism F → F ′ of functors F, F ′ : C → (Finite-sets) is a
surjection if F(X)→ F ′(X) is a surjection for every object X of C . For a sub-
group H ⊂ G and for a fiber functor F : C→ (Finite G-sets), let FH denote the
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functor C→ (Finite-sets) defined by FH (X)= H\F(X). The canonical morphism
F→ FH is a surjection.

Surjections F→ FH are characterized as follows.

Proposition 1.4.2 (cf. [Abbes and Saito 2002, Proposition 2.1]). Let C be a finite
Galois category of the Galois group G and let F :C→ (Finite-sets) be a fiber func-
tor. Let F ′ : C→ (Finite-sets) be another functor and let F→ F ′ be a surjection
of functors. Then, the following conditions are equivalent:

(1) For every surjection X→ Y in C , the diagram

F(X) −−−→ F ′(X)y y
F(Y ) −−−→ F ′(Y )

(1-13)

is a cocartesian diagram of finite sets. For every pair of objects X and Y of C ,
the morphism F ′(X)q F ′(Y )→ F ′(X q Y ) is a bijection.

(2) There exists a subgroup H ⊂ G such that F → F ′ induces an isomorphism
FH → F ′.

Proof. (1) ⇒ (2): We may assume C = (Finite G-sets) and F is the forgetful
functor. For X = G, the mapping F(G) = G → F ′(G) is a surjection of finite
sets. Define an equivalence relation ∼ on G by requiring that G/∼→ F ′(G) be
a bijection and set H = {x ∈ G | x ∼ e}. Then, since the group G acts on the
object G of C by the right action, the relation x ∼ y is equivalent to xy−1

∈ H .
Since ∼ is an equivalence relation, the transitivity implies that H is stable under
the multiplication, the reflexivity implies e ∈ H and the symmetry implies that H
is stable under the inverse. Hence H is a subgroup and the surjection F(G)=G→
F ′(G) induces a bijection H\G→ F ′(G).

Let X be an object of C = (Finite G-sets) and regard G × X as a G-set by
the left action on G. Then, since the functor F ′ preserves the disjoint union, we
have a canonical isomorphism F ′(G× X)→ F ′(G)× X→ (H\G)× X . Further,
the cocartesian diagram (1-13) for the surjection G× X→ X in C defined by the
action of G is given by

G× X //

��

(H\G)× X

��

X // F ′(X)

(1-14)

Thus we obtain a bijection H\X→ F ′(X).

(2)⇒ (1): This is clear. �
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Corollary 1.4.3. Let the notation be as in Proposition 1.4.2 and let G ′ be a quo-
tient group. Let C ′ ⊂ C be the full subcategory consisting of objects X such
that F(X) are G ′-sets. Then the subgroup H ′ ⊂ G ′ defined by the surjection
F |C ′ → F ′|C ′ of the restrictions of the functors equals the image of H ⊂ G in
G ′.

Proof. If a G-set X is a G ′-set, the quotient H\X is H ′\X . �

Corollary 1.4.4. Let C be a finite Galois category of Galois group G and let F :
C → (Finite G-sets) be a fiber functor. Let G ′ → G be a morphism of groups
and let F also denote the functor C→ (Finite G ′-sets) defined as the composition
defined by G ′ → G. Let F ′ : C → (Finite G ′-sets) be another functor and let
F → F ′ be a surjection of functors such that the composition with the forgetful
functor satisfies the condition (1) in Proposition 1.4.2.

Let H ⊂ G be the subgroup satisfying the condition (2) in Proposition 1.4.2
and let G ′1 ⊂ G be the image of G ′→ G. Then, the functor F ′ induces a functor
C→ (Finite G ′1-sets) and G ′1 ⊂ G is a subgroup of the normalizer NG(H) of H.

Proof. For an object X of C , F(X) regarded as a G ′-set is a G ′1-set. Since F(X)→
F ′(X) is a surjection of G ′-sets, F ′(X) is also a G ′1-set. Since the left action of
G ′1 ⊂G on the G-set F(G)=G induces an action on F ′(G)= H\G, the subgroup
H is normalized by G ′1. �

2. Dilatations

2.1. Functoriality of dilatations. Let X be a noetherian scheme and we consider
morphisms

D→ X← Q← Y (2-1)

of separated schemes of finite type over X satisfying the following condition:

(i) D ⊂ X , DY = D ×X Y ⊂ Y and DQ = D ×X Q ⊂ Q are effective Cartier
divisors and Y → Q is a closed immersion.

In later subsections, we will further assume the following condition:

(ii) X is normal and Q is smooth over X .

We give examples of constructions of Q for a given Y over X .

Example 2.1.1. Assume that X and Y are separated schemes of finite type over a
noetherian scheme S.

(1) Assume S = Spec A and Y = Spec B are affine. Then, taking a surjection
A[T1, . . . , Tn] → B, we obtain a closed immersion Y → Q = An

S ×S X .

(2) Assume that Y is smooth over S. Then, Q = Y ×S X→ X is smooth and the
canonical morphism Y → Q = Y ×S X is a closed immersion.
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(3) Assume that π : Y → X is finite flat and define a vector bundle Q over X by
the symmetric OX -algebra S•π∗OY . Then the canonical surjection S•π∗OY →

π∗OY defines a closed immersion Y → Q.

For morphisms (2-1) satisfying the condition (i) above, we construct a commu-
tative diagram

Y

��

// Q(D)

�� !!

Y // Q[D] // Q

(2-2)

of schemes over X as follows. Let ID ⊂ OX and IY ⊂ OQ be the ideal sheaves
defining the closed subschemes D ⊂ X and Y ⊂ Q. Let Q′→ Q be the blow-up
at DY = D×X Y ⊂ Q and define the dilatation Q[D] at Y → Q and D to be the
largest open subset of Q′ where IDOQ′ ⊃ IYOQ′ . Since DY is a divisor of Y, by
the functoriality of blow-up, the immersion Y → Q is uniquely lifted to a closed
immersion Y → Q[D]. Let Y and Q(D) be the normalizations of Y and Q[D] and
let Y → Q(D) be the morphism induced by the morphism Y → Q[D]. If there is a
risk of confusion, we also write Q[D] and Q(D) as Q[D.Y ] and Q(D.Y ) in order to
make Y explicit.

Locally, if Q = Spec A and Y = Spec A/I are affine and if D ⊂ X is defined by
a nonzero divisor f , we have

Q[D] = Spec A[I/ f ] (2-3)

for the subring A[I/ f ] ⊂ A[1/ f ] and the immersion Y → Q[D] is defined by the
isomorphism A[I/ f ]/(I/ f )A[I/ f ] → A/I .

Example 2.1.2. Let X be a noetherian scheme and let D ⊂ X be an effective
Cartier divisor.

(1) Let Q be a smooth separated scheme over X and let s : X→ Q be a section.
Let Y = s(X) ⊂ Q be the closed subscheme. Then, Q[D] is smooth over X .
If X is normal, the canonical morphism Q(D)

→ Q[D] is an isomorphism.

(2) Assume that X is normal. Let Q be a smooth curve over X and let s1, . . . , sn :

X→ Q be sections. Define a closed subscheme Y ⊂ Q as the sum
∑n

i=1 si (X)
of the sections regarded as effective Cartier divisors of Q. Assume that D ⊂
s∗n (si (X)) for i=1, . . . , n−1. Then Q(nD)

→X is smooth and Y×Q[nD]Q(nD)
⊂

Q(nD) is the sum
∑n

i=1 s̃i (X) of the sections s̃i : X→ Q(nD) lifting si : X→ Q.
In fact, we may assume that X = Spec A is affine and, locally on Q, take an

étale morphism Q→ A1
X . Then, we may assume that Q = A1

X = Spec A[T ]
and Y is defined by P =

∏n
i=1(T −ai ) for ai ∈ A. We may further assume that

D is defined by a nonzero divisor a ∈ A dividing a1, . . . , an . Then, we have
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Q[nD]
= Spec A[T ][P/an

] and T ′ = T/a satisfies
∏n

i=1(T
′
− ai/a) = P/an

in A[T ][1/a]. Hence we have Q(nD)
= Spec A[T ′] and this equals Q[D.sn(X)]

and is smooth over X . The section Y → Q[nD] is defined by P/an
= 0 and

hence Y ×Q[nD] Q(nD)
⊂ Q(nD) is defined by A[T ′]/

∏n
i=1(T

′
− ai/a).

We study the base change Q[D]×X D.

Lemma 2.1.3. (1) The canonical morphism Q[D]→ Q induces

Q[D]×X D = Q[D]×Q DY → DY . (2-4)

(2) If Y → Q is a regular immersion and if TY Q and TD X denote the normal
bundles, we have a canonical isomorphism

TY Q(−DY )×Y DY = (TY Q×Y DY )⊗(TD X×D DY )
⊗−1
→Q[D]×X D. (2-5)

The isomorphism (2-5) depends only on the restriction DY → Q and not on
Y → Q itself.

(3) Assume that Q is smooth over X and X =Y→ Q is a section. Let T (Q/X) de-
note the relative tangent bundle defined by the symmetric OQ-algebra S•OQ

�1
Q/X .

Then, we have a canonical isomorphism

T (Q/X)(−D)×Q D = (T (Q/X)×Q D)⊗ TD X⊗−1
→ Q[D]×X D. (2-6)

The isomorphism (2-6) depends only on the restriction D→ Q and not on the
section X→ Q itself.

Proof. (1) Since IDOQ[D] ⊃ IYOQ[D] on Q[D] by the definition of Q[D], we have
Q[D]×X D = Q[D]×Q DY . Hence, we obtain a morphism Q[D]×X D→ DY .

(2) Assume that Y → Q is a regular immersion. Then, DY → Q is also a regular
immersion and the normal bundle TDY Q fits in an exact sequence

0→ TDY DQ→ TDY Q→ TD X ×D DY → 0

depending only on D→ X and DY → Q and not on Y → Q. Let Q′→ Q be
the blow-up at DY ⊂ Q. Then, the exceptional divisor Q′×Q DY is canonically
identified with the projective space bundle P(TDY Q) over DY . Its open subset
Q[D]×Q DY is identified as in (2-5) since TDY DQ = TY Q×Y DY .

(3) Since the normal bundle TX Q is canonically identified with the restriction
T (Q/X)×Q X of the relative tangent bundle, the assertion follows from (2). �

We give a sufficient condition for the morphism Y → Q(D) to be an immersion.

Lemma 2.1.4. Assume that X and Y DY are normal and let π : Y → Y be the
normalization. Assume that Y → X is étale and that π∗OY /OY is an ODY -module.
Then, the finite morphism Y → Q(2D) is a closed immersion.
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Proof. Since the assertion is étale local on Q and X , we may assume that Y → X
is finite and that the étale covering Y → X is split. We may further assume that
X, Y and Q are affine and that D is defined by a nonzero divisor f on X . Let
Y = Spec A, Y = Spec A, Q = Spec B, Q[2D]

= Spec B[2D], Q(2D)
= Spec B(2D)

for A = B/I , B[2D]
= B[I/ f 2

] ⊂ B[1/ f ] and the normalization B(2D) of B[2D].
Since Y → X is a split étale covering, it suffices to show that for every idempotent
e ∈ A, there exists a lifting ẽ ∈ B(2D).

Since A/A is annihilated by f , the product f e = g is an element of A. Let
g̃ ∈ B be a lifting of g. Since e2

= e, the element h = g̃2
− f g̃ ∈ B is contained

in I and hence h/ f 2
∈ B[1/ f ] is an element of B[2D]. Thus ẽ = g̃/ f ∈ B[1/ f ] is

a root of the polynomial T 2
− T − h/ f 2

∈ B[2D]
[T ] and is an element of B(2D).

Since ẽ is a lifting of e, the assertion follows. �

We study the functoriality of the construction. We consider a commutative dia-
gram

D×X X ′ �
� ⊂

//

��

D′ �
� ⊂

// X ′

��

Q′oo

��

Y ′oo

��

D �
� ⊂

// X Qoo Yoo

(2-7)

of schemes such that the both lines satisfy the condition (i) on the diagram (2-1).
Then, by the functoriality of dilatations and normalizations, we obtain a commuta-
tive diagram

Y ′ −−−→ Q′[D
′
]
←−−− Q′(D

′)
←−−− Y ′y y y y

Y −−−→ Q[D] ←−−− Q(D)
←−−− Y .

(2-8)

The diagram (2-8) induces a morphism

Q′(D
′)
×Q′[D′] Y

′
→ Q(D)

×Q[D] Y. (2-9)

Let x̄ be a geometric point of D and let x̄ ′ be a geometric point of D×X X ′ above x̄ .
Then the diagram (2-8) also induces a mapping

π0(Q′
(D′)
x̄ ′ )→ π0(Q

(D)
x̄ ) (2-10)

of the sets of connected components of the geometric fibers.
First we study the dependence on Q.

Proposition 2.1.5. Suppose X = X ′, Y = Y ′ and D = D′ and let x̄ be a geometric
point of D.
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(1) Assume that Q′ → Q is smooth and let T = T (Q′/Q) denote the relative
tangent bundle of Q′ over Q. Then Q′[D]→ Q[D] is also smooth and there
exists a cartesian diagram

T (−D)×Q′ DY

�
��

Q′[D]×X Doo

��

DY Q[D]×X D
(2-4)

oo

(2-11)

(2) Assume that Q and Q′ are smooth over X. Then, the square

Q′[D] ←−−− Q′(D)y y
Q[D] ←−−− Q(D)

(2-12)

is cartesian. The induced morphism Q′(D)×Q′[D] Y→ Q(D)
×Q[D] Y (2-9) is an

isomorphism over Y and the induced mapping π0(Q′
(D)
x̄ )→ π0(Q

(D)
x̄ ) (2-10)

is a bijection.

Proof. (1) First, we show the case where Q′ → Q admits a section Q → Q′

extending Y → Q′. The section Q→ Q′ defines a section Q[D]→ Q′×Q Q[D].
Define (Q′×Q Q[D])[DQ[D] .Q

[D]
] to be the dilatation of Q′×Q Q[D] for the section

Q[D]→ Q′×Q Q[D] and a divisor DQ[D] = D×X Q[D] over Q[D]. We show that
the canonical morphism Q′[D]→ Q′×Q Q[D] induces an isomorphism

Q′[D]→ (Q′×Q Q[D])[DQ[D] .Q
[D]
]
. (2-13)

Since the question is étale local on Q′, we may assume that Q′ = An
Q and the

section Q→ Q′ is the 0-section. Further, we may assume that Q = Spec A and
Y = Spec A/I are affine and that D ⊂ X is defined by a nonzero divisor f on
X . We set A′ = A[T1, . . . , Tn] and Q′ = Spec A′. The 0-section Q → Q′ is
defined by the ideal J = (T1, . . . , Tn) ⊂ A′. We have Q[D] = Spec A[I/ f ] and
Q′[D]=Spec A′[I ′/ f ] for I ′= I A′+ J . Since A′[I ′/ f ]= A[I/ f ][T1/ f, . . . , Tn/ f ]
as a subring of A′[1/ f ], we obtain an isomorphism (2-13).

By the isomorphism (2-13) and Example 2.1.2(1), the morphism Q′[D]→ Q[D]

is smooth. Further, by Lemma 2.1.3(3), we obtain a cartesian diagram (2-11),
depending only on D → X , DY → Q and DY → Q′ but not on the choice of
section Q→ Q′ extending Y → Q′.

We prove the general case. Since Q′ → Q has a section on Y ⊂ Q, locally
on Q, there exist a closed subscheme Q1 ⊂ Q′ étale over Q such that Y → Q′

is induced by Y → Q1. For the smoothness of Q′[D]→ Q[D], since the assertion
is étale local, we may assume that Q1 = Q is a section. Hence the smoothness
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Q′[D]→ Q[D] follows. Further since the cartesian diagram (2-11) defined étale
locally is independent of the choice of section, we obtain (2-11) for Q′ by patching.

(2) First, we show the case where Q′→ Q is smooth. Then by (1), Q′[D]→ Q[D] is
also smooth and the fibered product Q(D)

×Q[D] Q′[D] is normal. Hence the square
(2-12) is cartesian and the morphism (2-9) is an isomorphism. By the cartesian
squares (2-12) and (2-11), Q′(D)x̄ is a vector bundle over Q(D)

x̄ . Hence (2-10) is a
bijection.

We show the general case. A morphism f : Q′ → Q is decomposed as the
composition of the projection pr2 : Q

′
×X Q→ Q and a section of the projection

pr1 : Q
′
×X Q→ Q′. Hence, the cartesian squares (2-12) and the bijections (2-10)

for the projections imply those for f respectively. The cartesian square (2-12) for
f implies an isomorphism (2-9) for f . �

Corollary 2.1.6. Assume that Q and Q′ are smooth over X. Then, the morphism
Q′(D

′)
×Q′[D′] Y ′ → Q(D)

×Q[D] Y (2-9) is independent of Q′ → Q. Let x̄ be a
geometric point of D and let x̄ ′ be a geometric point of D′ above x̄. Then the
mapping π0(Q′

(D′)
x̄ ′ )→ π0(Q

(D)
x̄ ) (2-10) is independent of morphism Q′→ Q.

Proof. Decompose a morphism Q′ → Q as Q′ → Q′ ×X Q → Q. Then the
isomorphism (2-9) and the bijection (2-10) for Q′→ Q′×X Q are the inverses of
those for the projection Q′×X Q→ Q′. Hence the assertion follows. �

By the canonical isomorphism (2-9), the finite scheme Y ×Q[D] Q(D) over Y is
independent of Q. We write it as Y (D).

Lemma 2.1.7. Suppose that the squares

D′ //

��

�

X ′

��

D // X

Q′ //

��

�

Y ′

��

Q // Y
are cartesian.

(1) The morphism Q′[D
′
]
→ Q[D] ×Q Q′ is a closed immersion and Q′(D

′)
→

Q(D)
×Q Q′ is finite. Consequently, the morphism Q′(D

′)
×Q′ Y ′→ Q(D)

×Q Y
is finite if Y ′→ Y is finite. Further, if Q and Q′ are normal, then Q′(D

′) equals
the normalization of Q(D)

×Q Q′ in Q′ D′×X ′ Q′.

(2) If Q′→ Q is flat, the square

Q′[D
′
] //

��
�

Q′

��

Q[D] // Q
is cartesian.
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Proof. Since the assertion is local on a neighborhood of Y ′ ⊂ Q′, we may assume
that Q=Spec A, Y =Spec A/I , Q′=Spec A′ and Y ′=Spec A′/I A′ are affine and
that D is defined by a nonzero divisor f on X . Then, we have Q[D] = Spec A[I/ f ]
and Q′[D

′
]
= Spec A′[I A′/ f ].

(1) Since A[I/ f ] ⊗A A′ → A′[I A′/ f ] is a surjection, the morphism Q′[D
′
]
→

Q[D] ×Q Q′ is a closed immersion. The remaining assertions follow from this
immediately.

(2) If A→ A′ is flat, the injection A[I/ f ] → A[1/ f ] induces an injection

A′⊗A A[I/ f ] → A′⊗A A[1/ f ] = A′[1/ f ].

Hence the surjection A′⊗A A[I/ f ] → A′[I A′/ f ] is an isomorphism. �

The construction of Q(D) commutes with base change if Q(D)
→ X is flat and

reduced.

Lemma 2.1.8. Suppose that the diagram (2-7) is cartesian and D′ = D ×X X ′.
Assume that one of the following conditions is satisfied:

(i) X ′ is normal, Q→ X is smooth and Q(D)
→ X is flat and reduced.

(ii) X ′→ X is smooth.
Then the square

Q(D)
←−−− Q′(D

′)y y
X ←−−− X ′

(2-14)

is cartesian.

Proof. By Lemma 2.1.7(1), Q′(D
′) is the normalization of Q(D)

×X X ′. If the
condition (i) is satisfied, then Q(D)

×X X ′ is normal by Corollary 1.2.3(1). If
X ′→ X is smooth, then Q(D)

×X X ′ is smooth over Q(D) and is normal. Hence
the square (2-14) is cartesian in both cases. �

We study the dependence on D and show that the canonical morphism contracts
the closed fiber.

Lemma 2.1.9. Suppose X = X ′, Y = Y ′ and Q = Q′, and that D1 = D′ − D
is an effective Cartier divisor of X. Then, the morphism Q[D

′
]
→ Q[D] (resp.

Q(D′)
→ Q(D)) induces a morphism Q[D

′
]
×Q D1,Y → D1,Y ⊂ Y ⊂ Q[D] (resp.

Q(D′)
×Q D1,Y → Q(D)

×Q[D] D1,Y ⊂ Q(D)).

Proof. We consider the immersion Y → Q[D] lifting Y → Q. Then, the mor-
phism Q[D

′
]
→ Q[D] induces an isomorphism Q[D

′
]
→ (Q[D])[D1] to the dilatation

(Q[D])[D1] of Q[D] for Y → Q[D] and D1 ⊂ X . Hence the morphism (2-4) defines
a morphism Q[D

′
]
×Q D1,Y → D1,Y . The assertion for Q(D′) follows from this. �
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2.2. Dilatations and complete intersection. We give a condition for the right square
in (2-7) to be cartesian.

Lemma 2.2.1. Let S be a noetherian scheme and let Q → P be a quasifinite
morphism of smooth schemes of finite type over S. If Q→ P is flat on dense open
subschemes, then Q → P is flat and locally of complete intersection of relative
virtual dimension 0.

Proof. Let U ⊂ P and V ⊂ Q be dense open subschemes such that V →U is flat.
Then the relative dimension of V→ S is the same as that of U→ S. Hence, we may
assume that the relative dimensions of P→ S and Q→ S are the same integer n.

The morphism Q→ P is the composition of the graph Q→ Q×S P and the
projection Q ×S P → P . For every point x ∈ P , the fiber Q ×P x → Q ×S x
is a regular immersion of codimension n. Hence by [EGA IV3 1966, proposi-
tion (15.1.16) c)⇒b)] applied to the immersion Q→ Q×S P over P, the immersion
Q→ Q×S P is also a regular immersion of codimension n and Q→ P is flat. �

Lemma 2.2.2. Let S be a noetherian scheme and let Y → X be a morphism of
schemes of finite type over S.

(1) Suppose that there exists a cartesian diagram

Q

��
�

Yoo

��

P Xoo

(2-15)

of schemes of finite type over S satisfying the following conditions:
P and Q are smooth over S and Q → P is quasifinite and is flat
on dense open subschemes. The horizontal arrows are closed immer-
sions.

Then Y → X is quasifinite, flat and locally of complete intersection of relative
virtual dimension 0.

(2) Conversely, suppose that Y → X is finite (resp. quasifinite) and locally of
complete intersection of relative virtual dimension 0. Then Y → X is flat and,
locally on X (resp. locally on X and on Y ), there exists a cartesian diagram
(2-15) satisfying the following conditions:

P and Q are smooth of the same relative dimension over S and
Q → P is quasifinite and flat. The horizontal arrows are closed
immersions.

Proof. (1) By Lemma 2.2.1, the quasifinite morphism Q→ P is flat and locally
of complete intersection. Hence Y → X is also quasifinite, flat and locally of
complete intersection of relative virtual dimension 0.
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(2) Since the assertion is local, we may assume that S, X and Y are affine. Take a
closed immersion

Q1 = Am
X ← Y.

Since the immersion Y → Q1 is a regular immersion of codimension m and since
Y → X is finite (resp. quasifinite), after shrinking X (resp. Q1 and Y ), we may
assume that the ideal defining Y ⊂ Q1 is generated by m sections f1, . . . , fm of
OQ1 . Also take a closed immersion P1=An

S← X and an open subscheme Q ⊂Am
P1

to obtain a cartesian diagram

Q

��
�

Q1oo

��

Yoo

P1 Xoo

(2-16)

Taking sections f̃1, . . . , f̃m of OQ lifting f1, . . . , fm after shrinking Q if necessary,
define a morphism Q→ P = Am

P1
. Then, we obtain a cartesian diagram

Q

�
��

Q1oo

��
�

Yoo

��

P Am
X

oo Xoo

(2-17)

where the lower right horizontal arrow Am
X → X is the 0-section.

The schemes P = An+m
S and Q ⊂ An+m

S are smooth over S. Since Y → X is
quasifinite, after replacing Q by a neighborhood of Y if necessary, the morphism
Q→ P is quasifinite. Since Q and P are smooth of the same relative dimension
over S, the morphism Q→ P is flat on dense open subschemes. By Lemma 2.2.1,
the quasifinite morphism Q→ P is flat and hence Y → X is also flat. �

We give examples of construction of the diagram (2-15).

Example 2.2.3. Assume that X and Y are schemes of finite type over a noetherian
scheme S.

(1) Assume X = Spec A and Y = Spec B are affine. Let

A[T1, . . . , Tn]/( f1, . . . , fn)→ B

be an isomorphism and define a morphism

Q = An
X = Spec A[T1, . . . , Tn] → P = An

X

by f1, . . . , fn . Then, we obtain a cartesian diagram (2-15) by defining the section
X→ P = An

X to be the 0-section.
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(2) Assume that X and Y are smooth over a noetherian scheme S. Then, we obtain
a cartesian diagram

Y //

��
�

Q = Y ×S X

��

X // P = X ×S X
Consider a cartesian diagram (2-15) satisfying the conditions of Lemma 2.2.2(1)

and let D ⊂ X be an effective Cartier divisor. Assume that Q(D)
→ P (D) is étale

on a neighborhood of Q(D)
×X D. Let x̄ be a geometric point of D and let 0x̄

denote the geometric point above the origin of the vector space P (D)x̄ over x̄ . Then,
since Q(D)

x̄ → P (D)x̄ is finite étale, we have an action of the fundamental group
π1(P

(D)
x̄ , 0x̄) on

Y (D)x̄ = Q(D)
x̄ ×P(D)x̄

0x̄ .

The action on Y (D)x̄ is compatible with the canonical mapping Y (D)x̄ → π0(Q
(D)
x̄ )

with respect to the trivial action on π0(Q
(D)
x̄ ) and is transitive on the inverse image

of each element of π0(Q
(D)
x̄ ).

Since Q[D]→ P [D]×P Q is an isomorphism by Lemma 2.1.7(2), for a geometric
point ȳ of Yx̄ and for the geometric point 0ȳ of Q[D]ȳ above P (D)x̄ , we have canonical
isomorphisms Q[D]ȳ =Q[D]×Q ȳ→ P [D]x̄ = P (D)x̄ and π1(Q

[D]
ȳ , 0ȳ)→π1(P

(D)
x̄ , 0x̄).

The action of π1(P
(D)
x̄ , 0x̄) on Y (D)x̄ is compatible with the action of π1(Q

[D]
ȳ , 0ȳ)

on Y (D)x̄ ×Yx̄ ȳ. For a morphism Q′→ Q, the canonical morphism π1(Q′
[D]
ȳ , 0ȳ)→

π1(Q
[D]
ȳ , 0ȳ) is compatible with the actions on Y (D)x̄ ×Yx̄ ȳ.

We study the relation between the étaleness of Q(D)
→ P (D) and the annihilator

of OY (D) ⊗OY �
1
Y/X .

Lemma 2.2.4. Let
Q

��
�

Yoo

��

P Xoo

be a cartesian diagram of separated schemes of finite type over X. Assume that P
and Q are smooth over X and that the vertical arrows are quasifinite and flat.

Assume that there exists an effective Cartier divisor D1 ⊂ D = D1+ D0 of X
such that OY (D)⊗OY �

1
Y/X is annihilated by ID1 ⊂OX and that we have an equality

D0 = D of underlying sets. Then, there exists an open neighborhood W ⊂ Q[D] of
Q[D]×X D such that Q[D]→ P [D] is étale on W (Q[D]×X D).

Proof. It suffices to show that each irreducible component Z ⊂ Q[D] of the inverse
image of the support of �1

Q/P is either a subset of Q[D] ×X D or does not meet
Q[D]×X D, since Q[D]→ Q is an isomorphism on the complement of the inverse
images of D. Assume that Z is not a subset of Q[D]×X D but does meet Q[D]×X D
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and regard Z as an integral closed subscheme of Q[D]. Then, D×X Z ⊂ Z is a
nonempty effective Cartier divisor.

Since the assertion is étale local on Q and X , we may assume that Y → X is
faithfully flat and finite. Let T0 ⊂ Z ×X Y (D) be the closure of the complement
Z×X Y (D) D×X (Z×X Y (D)) and let T be its normalization. Then, since Y → X
is finite surjective, T → Z is also finite surjective. Hence DT = D×X T ⊂ T is a
nonempty effective Cartier divisor.

By the assumption that OY (D) ⊗OY �
1
Y/X is annihilated by ID1 ⊂ OX , the OT -

module OT ⊗OY �
1
Y/X is annihilated by ID1 · OT . Since DT is a scheme over

Q[D] ×X D, we have an isomorphism ODT ⊗OQ �
1
Q/P → ODT ⊗OY �

1
Y/X by

Lemma 2.1.3(1). Thus ODT ⊗OQ �
1
Q/P is also annihilated by ID1 ·ODT . Since

D=D1+D0, this means an inclusion ID1 ·OT⊗OQ�
1
Q/P ⊂ID0 ·ID1 ·OT⊗OQ�

1
Q/P .

By Nakayama’s lemma, we have ID1 ·OT ⊗OQ �
1
Q/P = 0 on a neighborhood of

D0×X T.
Since Z is a subset of the inverse image of support of �1

Q/P , the annihilator ideal
of OT ⊗OQ �

1
Q/P is 0. This contradicts to that D0×X T = DT is nonempty. �

Lemma 2.2.5. Assume X is normal and let

Q

��
�

Yoo

��

P Xoo

be a cartesian diagram of separated schemes of finite type over X. Assume that P
and Q are smooth over X and that the vertical arrows are quasifinite and flat.

Let Y0 be a closed subscheme of Y étale over X satisfying an equality DY0 = DY

of underlying sets and let J0 ⊂ODY be the nilpotent ideal defining DY0 ⊂ DY . Let
n= 1 be an integer satisfying J n

0 = 0 and let D0⊂ D be an effective Cartier divisor
on X satisfying nD0 5 D.

Assume that Y (D) = Y ×Q[D] Q(D) is étale over X. Then OY (D) ⊗OY �
1
Y/X is

annihilated by the ideal ID−D0 ⊂OX defining D− D0 ⊂ X.

Proof. Let I ⊂ I0 ⊂ OQ and ID ⊂ ID0 ⊂ OX be the ideals defining the closed
subschemes Y0 ⊂ Y ⊂ Q and D0 ⊂ D⊂ X . Let Y (n)0 ⊂ Q denote the closed scheme
defined by the ideal In

0 ⊂OQ . Let Q[D0.Y0]→ Q denote the dilatation for Y0→ Q
and D0. We also define a dilatation Q[nD0.Y

(n)
0 ]→ Q for Y (n)0 → Q and nD0.

Since Y0 is étale over X , the scheme Q[D0.Y0] is smooth over X by Example 2.1.2(1)
and equals its normalization Q(D0.Y0). The canonical morphism Q[D0.Y0]→Q[nD0.Y

(n)
0 ]

is finite and induces an isomorphism Q(D0.Y0)→ Q(nD0.Y
(n)
0 )on the normalizations.

By the assumptions J n
0 = 0 and nD0 5 D, we have In

0 ⊂ I + ID ⊂ I + InD0 .
Hence we have a morphism Q[nD0]→ Q[nD0.Y

(n)
0 ]. Further, by nD0 5 D, we obtain

a morphism Q(D)
→ Q(D0.Y0) of normalizations.
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The dilatation P [D] of P for the section X → P and D is smooth over X by
Example 2.1.2(1) and hence is equal to the normalization P (D). Since Y (D)→ X
is étale and since each square of the diagram

Y (D) −−−→ Q(D)y y
Y −−−→ Q[D] −−−→ Qy y y
X −−−→ P [D] −−−→ P

is cartesian by Lemma 2.1.7(2), the quasifinite morphism Q(D)
→ P (D) of nor-

mal schemes is étale on a neighborhood W ⊂ Q(D) of Y (D) by [EGA IV4 1967,
théorème (18.10.16)].

The commutative diagram

Q(D) //

��

Q(D0.Y0) // Q

��

P (D) // P

of schemes defines a commutative diagram

OW ⊗�
1
Q(D)/X OW ⊗�

1
Q(D0 .Y0)/X

oo OW ⊗�
1
Q/X

oo

OW ⊗�
1
P(D)/X

OO

OW ⊗�
1
P/X

OO

oo

of locally free OW -modules. Since Q(D)
→ P (D) is étale on W, the left vertical

arrow is an isomorphism.
Since X→ X and Y0→ X are étale, the lower horizontal arrow (resp. the upper

right horizontal arrow) induces an isomorphism OW ⊗�
1
P/X→ ID ·OW ⊗�

1
P(D)/X

(resp. OW ⊗ �
1
Q/X → ID0 · OW ⊗ �

1
Q(D0 .Y0)/X ). Hence ID−D0 · OW ⊗ �

1
Q/X =

ID ·OW ⊗�
1
Q(D0 .Y0)/X

is contained in the image of OW ⊗�
1
P/X . Or equivalently,

OW ⊗OQ �
1
Q/P is annihilated by ID−D0 . Hence its pull-back OY (D) ⊗OY �

1
Y/X is

also annihilated by ID−D0 . �

3. Ramification

3.1. Ramification of quasifinite schemes. Let X be a normal noetherian scheme
and let D be an effective Cartier divisor of X . Let Y be a quasifinite scheme over
X such that DY = D×X Y ⊂ Y is a Cartier divisor.
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Locally on X , there exists a smooth scheme Q over X and a closed immersion
Y → Q over X . Then, by Proposition 2.1.5 and Corollary 2.1.6, the scheme Y (D)

over Y defined as Y ×Q[D] Q(D) is canonically independent of Q. Hence a finite
scheme Y (D) over Y is defined by patching. Similarly, for a geometric point x̄
above x ∈ D, the set π0(Q

(D)
x̄ ) of connected components of the geometric fiber is

canonically independent of Q.

Definition 3.1.1. Let X be a normal noetherian scheme and let D be an effective
Cartier divisor of X . Let Y be a quasifinite scheme over X such that DY = D×X Y ⊂
Y is a Cartier divisor and let Y be the normalization of Y. Let x̄ be a geometric
point above a point x ∈ D.

By taking a closed immersion Y → Q to a smooth scheme Q over X defined
on a neighborhood of x , we define finite sets F D

x̄ (Y/X) and F D+
x̄ (Y/X) by

F D
x̄ (Y/X)= π0(Q

(D)
x̄ ), F D+

x̄ (Y/X)= Y (D)x̄ (3-1)

equipped with canonical mappings

Y x̄
ϕD+

x̄ //

ϕD
x̄
��

F D+
x̄ (Y/X)

��xx

F D
x̄ (Y/X) // Yx̄

(3-2)

induced by the morphisms in (2-2):

Y //

��

Y (D)

��||

Q(D) // Q

We consider a commutative diagram

Y ′ //

��

X ′

��

D′? _
⊃

oo D×X X ′? _
⊃

oo

��

x̄ ′oo

��

Y // X D? _
⊃

oo x̄oo

(3-3)

of noetherian schemes. We assume that X ′ is normal, D′⊂ X ′ is an effective Cartier
divisor, Y ′ is quasifinite over X ′ and that D′Y ′ ⊂ Y ′ is an effective Cartier divisor.
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Then, the commutative diagram (2-8) induces a commutative diagram

Y ′x̄ ′
ϕD′+

x̄ ′
−−−→ F D′+

x̄ ′ (Y ′/X ′) −−−→ F D′
x̄ ′ (Y

′/X ′) −−−→ Y ′x̄ ′y y y y
Y x̄

ϕD+
x̄

−−−→ F D+
x̄ (Y/X) −−−→ F D

x̄ (Y/X) −−−→ Yx̄ .

(3-4)

For effective Cartier divisors D and D′ of a scheme X defined by the ideal
sheaves ID, ID′ ⊂ OX and for x ∈ D, we write D < D′ at x if we have a strict
inclusion ID,x % ID′,x . If X = X ′, Y = Y ′, x̄ = x̄ ′ and if D < D′ at the image
x of x̄ as Cartier divisors, further we have an arrow F D′

x̄ (Y/X)→ F D+
x̄ (Y/X)

making the two triangles obtained by dividing the middle square commutative by
Lemma 2.1.9.

Proposition 3.1.2. Assume that Y → X is quasifinite, flat and locally of complete
intersection and that the normalization Y of Y is étale over X.

(1) The arrows in diagram (3-2)

Y x̄
ϕD+

x̄ //

ϕD
x̄
��

F D+
x̄ (Y/X)

��xx

F D
x̄ (Y/X) // Yx̄

are surjections.

(2) Let Y ′ → Y be a surjective morphism locally of complete intersection of
quasifinite and flat schemes over X. Assume that the normalization Y ′ of
Y ′ is étale over X. Then, the diagram

Y ′x̄
ϕD+

x̄
−−−→ F D+

x̄ (Y ′/X) −−−→ F D
x̄ (Y

′/X) −−−→ Y ′x̄y y y y
Y x̄

ϕD+
x̄

−−−→ F D+
x̄ (Y/X) −−−→ F D

x̄ (Y/X) −−−→ Yx̄

(3-5)

is a cocartesian diagram of surjections.

Proof. By replacing X by the strict localization X(x̄), we may assume that x̄→ X
is a closed immersion and that Y → X is finite.

(1) By Lemma 2.2.2(2), we may assume that there exist smooth schemes P and
Q over X and a cartesian diagram

Y //

��
�

Q

��

X // P
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of schemes over X such that the horizontal arrows are closed immersions and that
the vertical arrows are quasifinite and flat. We verify that the diagram

Q(D)
x̄ −−−→ Q(D)

←−−− Y (D) ←−−− Yy �
y y y

P (D)x̄ −−−→ P (D) ←−−− X X

(3-6)

satisfies the assumptions in Corollary 1.1.6. Since P [D]→ X is smooth, we have
P (D) = P [D]. By Lemma 2.1.7.2, the diagram

Q

��

�

Q[D]oo

��
�

Yoo

��

P P [D]oo Xoo

is cartesian. Hence the middle square in (3-6) is also cartesian.
The diagram (3-6) satisfies the finiteness assumption in Corollary 1.1.6, by

Lemma 2.1.7(1). Since X = X(x̄) is strictly local, the assumption that the canon-
ical mapping x̄ → π0(X) is a bijection is satisfied. Since P (D)x̄ is a vector space
over x̄ and is connected, the mapping x̄ → P (D)x̄ ∩ X → π0(P

(D)
x̄ ) are bijec-

tions of sets consisting of single elements. We may assume that the finite étale
morphism Y → X is surjective since if otherwise the assertion is trivial. Hence
by Corollary 1.1.6(2) (resp. (3)), the mapping Y x̄ → Y (D)x̄ = F D+

x̄ (Y/X)
(
resp.

F D+
x̄ (Y/X)= Y (D)x̄ → π0(Q

(D)
x̄ )= F D

x̄ (Y/X)
)

is surjective.
Similarly, applying Corollary 1.1.6(2) to the diagram

Yx̄ //

��

�

Y

��
�

Y

��

oo Yoo

��

x̄ // X Xoo X

we see that Y x̄ → Yx̄ is a surjection.

(2) By Lemma 2.2.2(2), we may assume that there exists smooth schemes Q and
Q′ over X and a cartesian diagram

Y ′ −−−→ Q′y y
Y −−−→ Q

of schemes over X such that the horizontal arrows are closed immersions and that
the vertical arrows are quasifinite and flat.
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We verify that the diagram

Q′(D)x̄
//

��
�

Q′(D)

��

Y ′(D)oo

��

Y ′oo

��

Q(D)
x̄

// Q(D) Y (D)oo Yoo

satisfies the assumptions in Corollary 1.1.6. The middle square is cartesian by
Lemma 2.1.7(2). The finiteness assumption in Corollary 1.1.6 is satisfied by Lemma
2.1.7(1). Since the finite étale covering Y → X is split and X is connected, the as-
sumption that the canonical mapping Y x̄→ π0(Y ) is a bijection is satisfied. By (1),
Y x̄ → Y (D)x̄ → π0(Q

(D)
x̄ ) are surjective. We may assume that Y and Y ′ are finite

over X . Since Y ′→ Y is surjective, the morphism Y ′→ Y of finite étale schemes
over X is also surjective. Hence by Corollary 1.1.6(2) (resp. (3)), the right square
(resp. the middle square) of (3-5) is a cocartesian diagram of surjections.

Similarly, applying Corollary 1.1.6(2) to the diagram

Y ′x̄ //

��

�

Y ′

��

�

Y ′oo

��

Y ′oo

��

Yx̄ // Y Yoo Yoo

we see that the big rectangle in (3-5) is a cocartesian diagram of surjections. �

Corollary 3.1.3. Assume that Y → X is locally of complete intersection and that
the normalization Y is étale over X. Let P and Q be smooth schemes over X
and let

Y //

��
�

Q

��

X // P

be a cartesian diagram of schemes over X such that the horizontal arrows are
closed immersions and that the vertical arrows are quasifinite and flat. Then, the
mapping Y x̄ → F D+

x̄ (Y/X) is an injection on the inverse image of y ∈ Y if and
only if Q(D)

→ P (D) is étale on the inverse image of y by Y (D)→ Y.

Proof. Since the assertion is étale local, we may assume that Y → X and Q→ P
are finite and that y is the unique point of the inverse image of x . Then, by
Proposition 3.1.2(1), Y x̄ → Y (D)x̄ = F D+

x̄ (Y/X) ⊂ Q(D)
x̄ is a bijection of finite

sets. Hence Q(D)
→ P (D) is étale at x by [EGA IV4 1967, théorème (18.10.16)].

�
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Definition 3.1.4. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let Y be a quasifinite scheme over X such that V =U×X Y→U
is étale. Let D be an effective Cartier divisor of X such that U ∩ D is empty and
that DY = D×X Y is an effective Cartier divisor.

(1) For x ∈ D, we consider the following condition on X, Y and D:

(RF) There exist an open neighborhood W of x ∈ X , a smooth scheme Q over
W and a closed immersion Y ×X W→ Q such that the normalization Y of
Y is étale over W and that the normalization Q(D) of the dilatation Q[D]

is flat and reduced over W.

If the condition (RF) is satisfied at every x ∈ D, we say that Y over X
satisfies the condition (RF) for D.

(2) Let x ∈ D and assume that Y over X satisfies the condition (RF) for D at x .
Let y be a point of Y ×X x ⊂ Y ×X D. We say that the ramification of Y → X
is bounded by D (resp. by D+) at y, if the mapping ϕD

x̄ : Y x̄ → F D
x̄ (Y/X)(

resp. ϕD+
x̄ : Y x̄ → F D+

x̄ (Y/X)
)

is an injection on the inverse image of y.
We say that the ramification of Y → X is bounded by D (resp. by D+) at

x , if the mapping ϕD
x̄ : Y x̄→ F D

x̄ (Y/X) (resp. ϕD+
x̄ : Y x̄→ F D+

x̄ (Y/X)) is an
injection.

If ramification is bounded by D, it is bounded by D+. We show that the condi-
tion (RF) is independent of the choice of Q.

Lemma 3.1.5. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let Y be a quasifinite scheme over X such that V =U ×X Y →U
is étale. Let D be an effective Cartier divisor of X such that U ∩ D is empty and
that DY ⊂ Y is an effective Cartier divisor. Let x ∈ D.

(1) Assume that Y over X satisfies (RF) for D at x. Let W ⊂ X be an open
neighborhood of x , let Q be a smooth scheme over W and let Y ×X W → Q
be a closed immersion. Then, there exists an open neighborhood W ′ ⊂W of x ,
such that (Q×W W ′)(D×X W ′)

→W ′ is flat and reduced.

(2) Let X ′ → X be a morphism of normal noetherian scheme such that U ′ =
U×X X ′ is a dense open subscheme and that D′Y ′ = DY ×X X ′⊂ Y ′= Y×X X ′

is an effective Cartier divisor. Let x ′ be a point of D′ = D×X X ′ above x. We
consider the following conditions:

(i) Y over X satisfies (RF) for D at x.
(ii) Y ′ over X ′ satisfies (RF) for D′ at x ′.

We have (i)⇒ (ii). Conversely, if X ′→ X is smooth at x ′, we have (ii)⇒ (i).

Proof. (1) Set DW = D×X W. After shrinking W if necessary, we may assume that
there exist a smooth scheme Q0 over W and a closed immersion Y×X W→Q0 such
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that Q(DW )
0 → W is flat and reduced. Since Q(DW )← (Q×W Q0)

(DW )→ Q(DW )
0

are smooth by Proposition 2.1.5, the assertion follows.

(2) (i)⇒(ii): This follows from Lemma 2.1.8.

(ii)⇒(i): After shrinking X ′ if necessary, we may assume that X ′→ X is smooth.
Let W be an open neighborhood of x , let Y ×X W → Q be a closed immersion to
a smooth scheme Q over W and let W ′ =W ×X X ′. Then the morphism

(Q×W W ′)(D
′
×X ′W

′)
→ Q(D×X W )

×W W ′

is an isomorphism by Lemma 2.1.8. Hence the assertion follows. �

Lemma 3.1.6. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let Y be a quasifinite scheme over X such that V =U ×X Y →U
is étale. Let D and D′, with D ⊂ D′, be effective Cartier divisors of X such that
U ∩ D′ is empty and that D′Y ⊂ Y is an effective Cartier divisor. Let x ∈ D and
assume that Y over X satisfies (RF) for D and D′ at x.

Let y ∈ Y be a point above x. If the ramification of Y over X is bounded by D+
at y and if D < D′ at x , then the ramification of Y over X is bounded by D′ at y.

Proof. It follows from Lemma 2.1.9. �

Lemma 3.1.7. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let Y be a quasifinite scheme over X such that V =U ×X Y →U
is étale. Let D be an effective Cartier divisor of X such that U ∩ D is empty and
that DY ⊂ Y is an effective Cartier divisor. Assume that Y over X satisfies the
condition (RF) for D.

Let S⊂ DY (resp. S+⊂ DY ) denote the subset consisting of points y ∈ DY where
the ramification of Y → X is bounded by D (resp. by D+).

(1) We have S ⊂ S+.

(2) The subset S ⊂ DY is closed and the subset S+ ⊂ DY is open.

Proof. (1) It follows from the commutative diagram (3-2).

(2) By Lemma 1.1.3 applied to Y → Q(D), we see that S is closed. Similarly, by
Lemma 1.1.4 applied to Y → Y (D) we see that S+ is open. �

Proposition 3.1.8. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let Y be a quasifinite scheme over X such that V =U ×X Y →U
is étale. Let D be an effective Cartier divisor of X such that U ∩ D is empty and
that DY ⊂ Y is an effective Cartier divisor.

Let C be a semistable curve over X such that CU = C ×X U → U is smooth.
Let x ∈ X be a point of D and let z ∈ C be a singular point of the fiber Cx . Assume
that there exist two irreducible components C1 and C2 of the fiber Cx meeting at z
and let ζ1 and ζ2 be their generic points. Let D1 ⊂ D2 be effective Cartier divisors
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on X and let D̃ ⊂ C be an effective Cartier divisor such that D1 < D2 at x and
that D̃ = Di ×X C = Di,C on a neighborhood of ζi for i = 1, 2.

Assume that YC = Y ×X C over C satisfies the condition (RF) for D̃ at z.

(1) Y over X satisfies the condition (RF) for D1 and D2 at x.

(2) We have a commutative diagram

F D2+
x̄ (Y/X)

��

// F D̃+
z̄ (YC/C)

��

// F D1+
x̄ (Y/X)

��

F D2
x̄ (Y/X)

88

// F D̃
z̄ (YC/C)

88

// F D1
x̄ (Y/X)

(3-7)

(3) The lower left horizontal arrow F D2
x̄ (Y/X)→ F D̃

z̄ (YC/C) in (3-7) is an injec-
tion. The upper right horizontal arrow F D̃+

z̄ (YC/C)→ F D1+
x̄ (Y/X) in (3-7)

is an injection on the image of Y x̄ .

Proof. (1) Since ζ1 and ζ2 are contained in any open neighborhood of z, the scheme
YC over C satisfies (RF) for D̃ at ζ1 and ζ2. Since C→ X is smooth at ζ1 and ζ2,
the scheme Y over X satisfies (RF) for D1 and D2 at x by Lemma 3.1.5(2).

(2) Let D1,C and D2,C be the pull-backs of D1 and D2 to C . Then, we have
D1,C < D̃ < D2,C at z. Hence by (3-4) with the slant arrow added, we obtain a
commutative diagram

F D2,C+

z̄ (YC/C)

��

// F D̃+
z̄ (YC/C)

��

// F D1,C+

z̄ (YC/C)

��

F D2,C
z̄ (YC/C)

77

// F D̃
z̄ (YC/C)

77

// F D1,C
z̄ (YC/C)

(3-8)

Since Y over X satisfies (RF) for D1 and D2 at x by (1), the pull-back defines
canonical isomorphisms from the left and right columns of (3-7) to those of (3-8)
by Lemma 2.1.8. Thus we obtain (3-7).

(3) By functoriality of cospecialization mappings, we obtain a commutative dia-
gram

F D2,C

ζ̄2
(YC/C)

��

F D2,C
z̄ (YC/C)

cosp.
oo

��

F D2
x̄ (Y/X)oo

xx

F D̃
ζ̄2
(YC/C) F D̃

z̄ (YC/C).
cosp.
oo

(3-9)

By Lemma 2.1.8 and by D̃= D2,C at ζ2, the composition F D2
x̄ (Y/X)→ F D̃

ζ̄2
(YC/C)

is a bijection. Hence F D2
x̄ (Y/X)→ F D̃

z̄ (YC/C) is injective.
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Since the second assertion is étale local on X , we may assume that Y → X
is finite. By functoriality of specialization mappings, we obtain a commutative
diagram

F D̃+
z̄ (YC/C)

��xx

F D̃+
ζ̄1
(YC/C)

sp.
oo

��

Y x̄

zz

oo

F D1+
x̄ (Y/X) // F D1,C+

z̄ (YC/C) F D1,C+

ζ̄1
(YC/C).

sp.
oo

The vertical arrow F D̃+
z̄ (YC/C) → F D1,C+

z̄ (YC/C) is an injection on the image
of Y x̄ , since the composition F D̃+

ζ̄1
(YC/C)→ F D1,C+

z̄ (YC/C) is a bijection. Hence
the assertion follows. �

3.2. Ramification and valuations. In the rest of the article, A denotes a valuation
ring and K denotes its fraction field. Let v : K× → 0 = K×/A× denote the
valuation.

Definition 3.2.1. Let X be a normal separated noetherian scheme, let U ⊂ X be
a dense open subscheme and let A be a valuation ring. We say that a morphism
T = Spec A→ X is U-external if T ×X U consists of a single point t .

For a morphism T = Spec A→ X and an effective Cartier divisor D ⊂ X , let
v(D) ∈ 0 denote the valuation v( f ) of a nonzero divisor f defining D ⊂ X on a
neighborhood of the image of T .

Let X̃ = lim
←−−

X ′ be the inverse limit of proper schemes X ′→ X such that U ′ =
U ×X X ′→U is an isomorphism. Then, points of X̃ U correspond bijectively to
the inverse limits of the images of the closed points by the liftings of U-external
morphisms T → X defined by valuation rings of the residue fields of points of U
by [Fujiwara and Kato 2018, Theorem E.2.11].

Lemma 3.2.2. Let X be a normal noetherian scheme, let U ⊂ X be a dense open
subscheme, let t ∈ U be a point, let A $ K = k(t) be a valuation ring and let
T = Spec A→ X be a U-external morphism.

(1) Let g ∈ 0(U ′,O×U ′) be an invertible function defined on an open neighborhood
U ′ ⊂U of t ∈U such that v(g)= γ = 0. Then, there exists a normal scheme
X ′ of finite type over X such that U ×X X ′ = U ′, g is extended to a nonzero
divisor on X ′ defining an effective Cartier divisor R′ ⊂ X ′, and U ′ = X ′ D′

is the complement of an effective Cartier divisor D′ ⊂ X ′ and a U ′-external
morphism T → X ′ lifting T → X and v(R′)= γ .

(2) Let K ′ be a finite separable extension of K = k(t) and let A′ $ K ′ be a
valuation ring such that A′ ∩ K = A. Set T ′ = Spec A′ and let γ > 0 be a
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positive element of the value group 0′ of A′. Then, there exist a commutative
diagram

U ′ //

��
�

X ′

��

T ′oo

��

U // X Too

of schemes, a point t ′ ∈U ′ above t , an isomorphism K ′→ k(t ′) over K and an
effective Cartier divisor R′ of X ′ satisfying the following conditions (i)–(iv):
(i) X ′ is a normal scheme of finite type over X.

(ii) The left square is cartesian and U ′ is a dense open subscheme of X ′ étale
over U.

(iii) T ′→ X ′ is a U ′-external morphism extending t ′→U ′.
(iv) R′ ∩U ′ =∅ and v′(R′)= γ .

(3) Let
U ′ //

��

X ′

��

T ′

��

oo x̄ ′

��

oo

U1 //

��

X1

��

T1

��

oo x̄1

��

oo

U // X Too x̄oo

be a commutative diagram, let t1 ∈U1 and t ′ ∈U ′ be points above t ∈U and
let R1 ⊂ X1 and R′ ⊂ X ′ be effective Cartier divisors satisfying the following
conditions (a)–(d):
(a) X1 and X ′ are normal noetherian schemes and X1→ X is of finite type.
(b) The left square and the left parallelogram are cartesian and U1→ U is

étale. The open subschemes U1 ⊂ X1 and U ′ ⊂ X ′ are dense.
(c) T1 = Spec A1 and T ′ = Spec A′ for valuation rings A1 $ K1 = k(t1) and

A′ $ K ′ = k(t ′) satisfying A1∩K = A′∩K = A. The morphism T1→ X1

is U1-external and T ′→ X ′ is U ′-external.
(d) R1 ∩U1 and R′ ∩U ′ are empty and we have v1(R1)5 v′(R′) in 0′

Q
.

Then, there exist a commutative diagram

U ′1 // X ′1

��

T ′1oo

��

x̄ ′1oo

��

U ′×U U1 // X ′×X X1 T ′×T T1oo x̄ ′×x̄ x̄1oo

and t ′1 ∈U ′1 above t satisfying the following conditions (i)–(iv):
(i) X ′1 is a normal scheme of finite type over X ′.
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(ii) U ′1 is U ′×X ′ X ′1 and is a dense open subscheme of X ′1.
(iii) T ′1 = Spec A′1 for a valuation ring A′1 ⊂ K ′1 = k(t ′1).
(iv) For the pull-backs R′1= R1×X1 X ′1 and R′2= R′×X ′ X ′1, we have R′15 R′2.

Proof. (1) Let Z and Z ′ be closed subschemes such that U = X Z and U ′= X Z ′.
By replacing X by the normalization of the blow-up at Z and at Z ′ and by the
valuative criterion of properness, we may assume that U = X D and U ′ = X D′

are the complements of effective Cartier divisors D, D′ ⊂ X .
Let x ∈ X be the image of the closed point of T and let W = Spec B ⊂ X

be an open neighborhood of x such that D ∩ W, D′ ∩ W are principal divisors
defined by f, f ′ ∈ B. Then we have U ′ ∩W = W D′ ∩W = Spec B[1/ f ′]. Set
g = h/ f ′n ∈ B[1/ f ′]. The function g and hence also h ∈ B are also invertible
on U ′ ∩W. Set α = v( f ), α′ = v( f ′) ∈ 0. Since T → X is U-external, we have
0+[1/α] = 0. Hence after replacing f by its power, we may assume that α′ 5 α.

Let W ′→W be the normalization of the blow-up at the ideals ( f ′n, h) and ( f, f ′).
Since f , f ′ and h are invertible on U ′ ∩W, the morphism W ′→ W induces an
isomorphism U ′×X ′W ′→U ′∩W. Since W ′→W is proper, the morphism T→W
is uniquely lifted to T →W ′. Since the generic point t ∈ T is the unique point of
U ×X T ⊃ (U ′×X ′ W ′)×W ′ T , the morphism T →W ′ is U ′-external.

Let x ′ ∈W ′ be the image of the closed point of T. Since the ideals ( f ′n, h) and
( f, f ′) of OW,x ′ are principal ideals and since v(h) = v( f ′n) and v( f ′) = v( f ),
there exists an open neighborhood X ′ of x ′ ∈ W such that U ′ ⊂ X ′, where we
have inclusions ( f ′n) ⊃ (h) and ( f ) ⊃ ( f ′). Then, g = h/ f ′n defines a Cartier
divisor R′ on X ′ satisfying R′ ∩U ′ =∅ and v(R′)= γ . We also have an inclusion
U ×X X ′ = X ′ D ×X X ′ ⊂ X ′ D′ ×X X ′ = U ′ ×X X ′ = U ′. Since the other
inclusion is obvious, we have U ′ =U ×X X ′.

(2) We may take an étale scheme U1→U such that t ′ = Spec K ′ = t ×U U1 and
a finite scheme X1→ X containing U1 as a dense open scheme. After shrinking
U1 if necessary, we may take an invertible function g ∈ 0(U1,O×U1

) such that
γ = v′(g). Since T ′ is a localization of the normalization of T×X X1, the morphism
t ′→U1 ⊂ X1 is uniquely extended to T ′→ X1.

Then, by (1) applied to the open subschemes U1 ⊂U ×X X1 ⊂ X1, to the mor-
phism T ′→ X1 and to the invertible function g ∈0(U1,O×U1

), the assertion follows.

(3) Let T(x̄), T1,(x̄1) and T ′(x̄ ′) denote the strict localizations. We take a point t̃ ′1 ∈
T ′(x̄ ′)×T(x̄) T1,(x̄1) above the generic point of T ′(x̄ ′). Then the normalization T̃ ′1 of T ′(x̄ ′)
in t̃ ′1 is T̃ ′1 = Spec A′sh

1 for a strictly local valuation ring A′sh
1 . Let t ′1 ∈ t ′ ×t t1 ⊂

T ′×T T1 be the image of t̃ ′1 and set K ′1= k(t ′1) and A′1= A′sh
1 ∩K ′1. Let T ′1=Spec A′1

and x̄ ′1 be the geometric point of T ′1 defined by a geometric closed point of T̃ ′1.
Let X ′0 be the normalization of X ′×X X1 in U ′1 = U ′×U U1. Define effective

Cartier divisors of X ′0 by R′0,1= R1×X1 X ′0 and R′0,2= R′×X ′ X ′0. Let X ′1→ X ′0 be
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the normalization of the blow-up at R′0∩R′1= R′0×X ′0 R′1 and define effective Cartier
divisors of X ′1 by R̄′1 = R1×X1 X ′1 and R̄′2 = R′×X ′ X ′1. Since X ′1→ X ′×X X1 is
proper, the morphism t ′1→ t ′×t t1 ⊂U ′×U U1 is uniquely lifted to T ′1→ X ′1 by
the valuative criterion of properness.

Let x ′1 ∈ X ′1 be the image of the closed point of T ′1. The intersection R̄′1 ∩ R̄′2 ⊂
X ′1 is the exceptional divisor and hence is an effective Cartier divisor. Since
v′1(R̄

′

1) 5 v
′

1(R̄
′

2), on an open neighborhood X ′1 ⊂ X ′1 of x ′1, we have R̄′1 ∩ R̄′2 =
R̄′1 5 R̄′2 by Nakayama’s lemma. �

Let X be a normal noetherian scheme and let U ⊂ X be a dense open subscheme.
Let t ∈U and let T =Spec A→ X be a U-external morphism defined by a valuation
ring A $ K = k(t) of the residue field at a point t ∈U . Let x̄ and t̄ be geometric
points of T supported on the closed point and on the generic point respectively.
Recall that T(x̄) denotes the strict localization and that a specialization x̄← t̄ is a
morphism T(x̄)← t̄ of schemes.

Let A′ be a valuation ring and let T ′=Spec A′→ T be a faithfully flat morphism.
We identify 0 as a subgroup of the value group 0′ of A′ by the canonical injection
0→ 0′. Let x̄ ′ and t̄ ′ be geometric points of T ′ above x̄ and t̄ respectively. We
say that a specialization x̄ ′← t̄ ′ is a lifting of x̄← t̄ if the diagram

x̄ ′ −−−→ T ′ ←−−− T ′(x̄ ′) ←−−− t̄ ′y y y y
x̄ −−−→ T ←−−− T(x̄) ←−−− t̄

is commutative.
We consider a commutative diagram

X ′ ←−−− T ′y y
X ←−−− T

(3-10)

of schemes equipped with an effective Cartier divisor R′ ⊂ X ′ and a lifting x̄ ′← t̄ ′

to T ′ of the specialization x̄← t̄ satisfying the following conditions (i)–(iii):

(i) X ′ is a normal noetherian scheme of finite type over X such that U ′ =U ×X

X ′ ⊂ X ′ is a dense open subscheme étale over U .

(ii) T ′ = Spec A′ → X ′ is a U ′-external morphism defined by a valuation ring
A′ $ K ′ = k(t ′) of the residue field at a point t ′ ∈ U ′ above t such that
A′ ∩ K = A.

(iii) R′ ∩U ′ =∅ and v′(R′)= γ in the value group 0′ of A′.

For elements α 5 β of a totally ordered group 0, let (α, β)0 ⊂ 0 denote the
subset {γ ∈ 0 | α < γ < β}. Similarly, we define (α, β]0, (α,∞)0 ⊂ 0 etc.
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Definition 3.2.3. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let t ∈ U , let A $ k(t) be a valuation ring of the residue field
at t and let T = Spec A→ X be a U-external morphism. Let γ ∈ (0,∞)0Q

for
0Q=0⊗Q. Let Y be a quasifinite flat scheme over X such that V = Y ×X U→U
is étale.

We define a commutative diagram

F∞T (Y/X)

ϕ
γ

T
��

ϕ
γ+

T // Fγ+T (Y/X)

��xx

FγT (Y/X) // F0+
T (Y/X)

(3-11)

as the inverse limit of

Y ′x̄ ′

ϕR′
x̄ ′

��

ϕ
R′+
x̄ ′ // F R′+

x̄ ′ (Y ′/X ′)

��ww

F R′
x̄ ′ (Y

′/X ′) // Yx̄

(3-12)

for commutative diagrams (3-10) satisfying the conditions (i)–(iii) and for Y ′ =
Y ×X X ′.

We say that the ramification of Y over X at T is bounded by γ (resp. by γ+) if
F∞T (Y/X)→ FγT (Y/X) (resp. F∞T (Y/X)→ Fγ+T (Y/X)) is an injection.

By Lemma 3.2.2, the limit is a filtered limit.

Lemma 3.2.4. (1) There exist a commutative diagram (3-10) satisfying the con-
ditions (i)–(iii), an effective Cartier divisor R′ ⊂ X ′ satisfying R′ ∩U ′ = ∅
and x ′ ∈ R′ such that Y ′ over X ′ satisfies (RF) for R′ at the image x ′ ∈ R′ of
the closed point of T ′.

(2) For x ′ ∈ R′ ⊂ X ′ satisfying the condition in (1), the canonical morphism from
(3-11) to (3-12) is an isomorphism. The diagram (3-11) is a diagram of finite
sets.

Proof. (1) By Lemma 3.2.2(1), after replacing X by a normal scheme of finite type
over X if necessary, we may assume that there exist an effective Cartier divisor
R ⊂ X such that v(R) = γ and a closed immersion Y → Q over X to a smooth
scheme Q over X . Applying Theorem 1.2.5 and the remark following it to Y → X
and to Q(R)

→ X and taking the normalizations, we obtain a morphism X ′→ X
of finite type of normal noetherian schemes satisfying the following properties:
The morphism X ′ → X is the composition of a blow-up X∗ → X with center
supported in X U and a faithfully flat morphism X ′→ X∗ of finite type such that
U ′ = X ′×X U →U is étale. The normalization of Y ×X X ′ is étale over X ′. The
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morphism Q′(R
′)
→ X ′ is flat and reduced. Hence Y ′ over X ′ satisfies the condition

(RF) for R′. The morphism T → X is lifted to T ′→ X ′ by Lemma 1.2.6.

(2) By (1) and Lemma 3.2.2, among commutative diagrams (3-10) those such that
the base change Y ′ = Y ×X X ′ over X ′ satisfies the condition (RF) for R′ at x ′ are
cofinal. Hence the assertion follows from Lemma 2.1.8. �

We study functoriality of the construction of FγT (Y/X) and Fγ+T (Y/X). We
consider a commutative diagram

Y ′ −−−→ X ′ ←−−− T ′ ←−−− x̄ ′ ←−−− t̄ ′y y y y y
Y −−−→ X ←−−− T ←−−− x̄ ←−−− t̄

(3-13)

together with dense open subschemes U ⊂ X and U ′ ⊂ U ×X X ′ ⊂ X ′ and γ ∈
(0,∞)0Q

and γ ′ ∈ (0,∞)0′
Q

satisfying the following properties:

(i) X ′→ X is a morphism of normal noetherian schemes.

(ii) T = Spec A → X and T ′ = Spec A′ → X ′ are U-external and U ′-external
morphisms for valuation rings A $ K = k(t) and A′ $ K ′ = k(t ′) of the
residue fields at t ∈U and t ′ ∈U ′. The morphism T ′→ T is faithfully flat.

(iii) Y→ X and Y ′→ X ′ are quasifinite and flat morphisms such that Y×X U→U
and Y ′×X ′ U ′→U ′ are étale.

(iv) γ 5 γ ′.

(v) x̄ ′← t̄ ′ is a lifting of x̄← t̄ .

Lemma 3.2.5. We keep the notation above.

(1) We have a commutative diagram

F∞T ′ (Y
′/X ′) //

��

Fγ ′+

T ′ (Y
′/X ′) //

��

Fγ ′

T ′ (Y
′/X ′) //

��

F0+
T ′ (Y

′/X ′)

��

F∞T (Y/X) // Fγ+

T (Y/X) // Fγ

T (Y/X) // F0+
T (Y/X)

(3-14)

of finite sets. Further if γ < γ ′, we have an arrow

Fγ
′

T (Y
′/X ′)→ Fγ+T (Y/X)

making the two triangles obtained by dividing the middle square commutative.

(2) If the left square in (3-13) is cartesian and if γ = γ ′, the vertical arrows in
(3-14) are bijections.



414 TAKESHI SAITO

Proof. By Lemma 3.2.4(1), we may assume that there exists an effective Cartier
divisor R ⊂ X such that R ∩U =∅ and v(R)= γ and that Y over X satisfies the
condition (RF) for R. Further by Lemma 3.2.4(1) and Lemma 3.2.2(3), we may
assume that there exists an effective Cartier divisor R′ ⊂ X ′ such that R′ ∩U ′ =∅,
v′(R′)= γ and R′= R×X X ′ and that Y ′ over X ′ satisfies the condition (RF) for R′.
Then, by Lemma 3.2.4(2), we may identify FγT (Y/X)= F R

x̄ (Y/X), Fγ+T (Y/X)=
F R+

x̄ (Y/X) and Fγ
′

T ′ (Y
′/X ′)= F R′

x̄ ′ (Y
′/X ′), Fγ

′
+

T ′ (Y
′/X ′)= F R′+

x̄ ′ (Y ′/X ′).

(1) The assertion now follows from the functoriality of dilatation (3-4).

(2) In the notation above, we may further assume that R′ = R×X X ′. Hence the
assertion follows from Lemma 2.1.8. �

Let T h be the henselization at the closed point x ∈ T and let th
∈ T h denote

the generic point. Then, the absolute Galois group DT = Gal(t̄/th) acts on the
specialization x̄ ← t̄ of geometric points of T . Hence the commutative diagram
(3-11) admits a canonical action of DT .

Theorem 3.2.6. Let the notation be as in Definition 3.2.3. Then, there exist an ele-
ment β0 ∈ (0,∞)0Q

and finite pairs (αi , βi )i∈I of elements of [0, β0]0Q
satisfying

the following properties (i)–(iii):

(i) [0, β0]0Q
=
⋃

i∈I [αi , βi ]0Q
.

(ii) For γ > β0 (resp. γ = β0), FγT (Y/X)← F∞T (Y/X) (resp. Fγ+T (Y/X)←
F∞T (Y/X)) is an injection.

(iii) Let i ∈ I and γ ∈ (αi , βi )0Q
. Then, FγT (Y/X)← Fβi

T (Y/X) is an injection
and Fαi+

T (Y/X)← Fγ+T (Y/X) is an injection on the image of F∞T (Y/X).

Proof. Since we may take base change, we may assume that Y → X is finite and
that the normalization Y → X is finite étale. Hence by Lemma 2.1.4, we may
assume that there exists an effective Cartier divisor R ⊂ X such that R ∩U =∅
and Y → Y (R) is a closed immersion.

Set β0 = v(R) ∈ 0. Then, by Lemma 3.2.4, after replacing X if necessary, we
may assume that Y over X satisfies the condition (RF) for R. Since Y → Y (R) is a
closed immersion and F∞T (Y/X)→ Y x̄ is a bijection, Y x̄ = F∞T (Y/X)→ Y (R)x̄ =

Fβ0+
T (Y/X) is an injection. For γ > β0, the composition

Fβ0+
T (Y/X)← FγT (Y/X)← Fγ+T (Y/X)← F∞T (Y/X)

is an injection. Hence the condition (ii) is satisfied.
Let Q be a smooth scheme over X and let Y → Q be a closed immersion. As

in Example 1.3.1, we define a semistable curve CR→ X by the effective Cartier
divisor R ⊂ X . Define an effective Cartier divisor R̃ ⊂ CR to be the exceptional
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divisor. Applying Corollary 1.3.6 to (Q ×X CR)
[R̃]
→ CR → X and taking the

normalizations, we obtain a commutative diagram

CR ←−−− C ′y y
X ←−−− X ′

where YC ′ = Y ×X C ′ over C ′ satisfies the condition (RF) for R′ = R̃×CR C ′ and
C ′→ X ′ is a semistable curve.

By Lemma 1.2.6, there exist a finite extension K ′ of K and a valuation ring
A′ such that A = A′ ∩ K and that T → X is lifted to T ′ = Spec A′ → X ′. Let
x ′ ∈ X ′ denote the image of the closed point of T ′. Further, for γ ∈ [0, β0]0Q

, after
replacing K ′ by a finite extension if necessary, we may assume that γ is an element
of [0, β0]0′ .

Let I1 be the set of irreducible components of the fiber C ′×X ′ x ′. For i ∈ I1, let
Ci ⊂ C ′×X ′ x ′ denote the corresponding connected component. Let I2 denote the
set of singular points of the fiber C ′×X ′ x ′. For i ∈ I2, let zi ⊂ C ′×X ′ x ′ denote
the corresponding singular point. Set I = I1q I2.

Since the assertion is étale local on X ′, we may assume that for each i ∈ I1,
there exists a section si : X ′→ C ′. For i ∈ I1, set αi = βi = v

′(s∗i R′) ∈ 0′+. Since
αi = v

′(R̃) for the composition T ′ → X ′ → C ′ → CR , we have αi ∈ [0, β0]0Q
.

For i ∈ I2, if zi is contained in two irreducible components Ci1 and Ci2 such that
αi1 5 αi2 ∈ 0

′+, we define αi = αi1 5 βi = αi2 ∈ [0, β0]0Q
. If zi is contained in a

unique irreducible component Ci1 , we define αi = βi = αi1 ∈ [0, β0]0Q
.

We show that the condition (i) is satisfied. Since αi , βi ∈ [0, β0]0Q
for i ∈ I , we

have the inclusion
[0, β0]0Q

⊃
⋃

i∈I [αi , βi ]0Q
.

Let γ be an element of [0, β0]0Q
. Then, we may assume γ ∈ [0, β0]0′ . Then, since

T ′→ X has a lifting to T ′→ CR such that v′(R̃)= γ and since C ′→ CR ×X X ′

is proper and birational, there exists a unique lifting T ′→ C ′ of T ′→ CR by the
valuative criterion. If the image of the closed point by T ′→ C ′ is contained in the
smooth part Ci ∩C ′sm

x of an irreducible component Ci ⊂C ′x for i ∈ I1, then we have
γ = αi . If the image of the closed point by T → C ′ is the singular point zi ∈ C ′x
for i ∈ I2, then we have γ ∈ [αi , βi ]0Q

by Corollary 1.3.4. Thus, the condition (i)
is also satisfied.

We show that the condition (iii) is satisfied. For i ∈ I1 or i ∈ I2 such that αi = βi ,
there is nothing to prove. Assume that i ∈ I2 and zi is contained in two irreducible
components Ci1 and Ci2 such that αi = αi1 < βi = αi2 ∈ 0

′+ and let γ ∈ (αi , βi )0Q
.

Then, we may assume γ ∈ (αi , βi )0′ . By Corollary 1.3.4, after replacing T ′ by
an extension if necessary, we may take a morphism T ′→ C ′ such that the image
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of the closed point x ′ ∈ T ′ is zi and v′(R′) = γ . Since FγT (Y/X) = F R′
z̄i
(YC ′/C ′)

and Fγ+T (Y/X)= F R′+
z̄i

(YC ′/C ′) by Lemmas 3.2.5(2) and 3.2.4(2), the assertion
follows from Proposition 3.1.8. �

We study some variants.
Let X be a normal noetherian scheme, let U be a dense open subscheme and let

V →U be a finite étale morphism. We consider a cartesian diagram

Y ′

��
�

Voo

��

X ′ Uoo

(3-15)

of schemes of finite type over X satisfying the following conditions: the horizontal
arrows are dense open immersions, X ′ is normal, X ′→ X is a proper birational
morphism inducing the identity on U and Y ′ is finite flat over X ′.

Let A ⊂ K = k(t) be a valuation ring of the residue field at a point t ∈ U and
let T = Spec A→ X be a U-external morphism. Let x ∈ T denote the closed point
and let x̄ be a geometric point above x . For γ ∈ 0Q,>0, we define

F∞T (V/U )

��

// Fγ+T (V/U )

xx ��

FγT (V/U ) // F0+
T (V/U )

(3-16)

to be the inverse limit of

F∞T (Y
′/X ′)

��

// Fγ+T (Y ′/X ′)

ww ��

FγT (Y
′/X ′) // F0+

T (Y ′/X ′).

(3-17)

Let TV denote the normalization of T in V ×X T. For X ′ in (3-15), let X ′T ⊂ X ′

denote the reduced closed subscheme supported on the closure of t ∈U ⊂ X ′ and
let x ′ ∈ X ′T denote the image of the unique morphism T → X ′ lifting T → X .
Then, since A = lim

−−→X ′→X OX ′T ,x , we have F0+
T (V/U )= TV ×T x̄ .

Lemma 3.2.7. Suppose that the normalization TV of T in V ×X T is finite and flat
over T. Then, there exists a finite and flat Y ′→ X ′ such that TV = Y ′×X ′ T. For
such Y ′→ X ′, the diagram (3-16) is isomorphic to (3-17).

Proof. Since A = lim
−−→X ′→X OX ′T ,x in the notation above, the existence of finite flat

Y ′→ X ′ such that TV = Y ′ ×X ′ T follows. By the flattening theorem [Raynaud
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and Gruson 1971, théorème (5.2.2)], such Y ′→ X ′ are cofinal among commutative
diagrams (3-15). Hence the assertion follows from Lemma 3.2.5(2). �

For a normal noetherian scheme X , a formal Q-linear combination R =
∑

i ri Di

with positive coefficients ri = 0 of irreducible closed subsets Di of codimension 1
is called an effective Q-Cartier divisor if a nonzero multiple is an effective Cartier
divisor. The union

⋃
i Di for ri > 0 is called the support of R. For an open subset

U ⊂ X , if U does not meet the support of R, we write R ∩U = ∅ by abuse of
notation. For a U-external morphism T = Spec A → X , the valuation v(R) is
defined as an element of [0,∞)0Q

.

Definition 3.2.8. Let X be a normal noetherian scheme and let U ⊂ X be a dense
open subscheme. Let Y be a quasifinite flat scheme over X such that V =Y×X U→
U is finite étale. Let R be an effective Q-Cartier divisor of X such that U ∩ R is
empty and let x ∈ X be a point contained in the support of R.

We say that the ramification of Y over X is bounded by R (resp. by R+) at x ,
if for every U-external morphism T → X , the ramification of Y → X is bounded
by v(R) (resp. by v(R)+) in the sense of Definition 3.2.3.

Lemma 3.2.9. Let the notation be as in Definition 3.2.8. Then, the following con-
ditions (1), (1′) and (2) are equivalent:

(1) The ramification of Y → X is bounded by R (resp. by R+) in the sense of
Definition 3.2.8.

(1′) The condition in Definition 3.2.8 with T restricted to be a discrete valuation
ring is satisfied.

(2) For every morphism f : X ′→ X of finite type, of normal noetherian schemes
such that U ′=U×X X ′→U is étale, that R′= f ∗R is an effective Cartier divi-
sor and that Y ′= Y ×X X ′→ X ′ satisfies the condition (RF) in Definition 3.1.4
for R′, the ramification of Y ′→ X ′ is bounded by R′ (resp. by R′+) at every
point of R′ in the sense of Definition 3.1.4.

Proof. (1′)⇒(2): Let X ′→ X be as in (2) and let x ′ ∈ R′ be a point. Let X ′1→ X ′

be the normalization of the blow-up at the closure of x ′. Then, the local ring
A′ = OX ′1,x

′

1
at the generic point x ′1 of an irreducible component of the inverse

image of x ′ is a discrete valuation ring. The morphism T ′ = Spec A′→ X ′1→ X ′

is U ′-external and the image of the closed point is x ′.
For γ ′ = v′(R′), by Lemma 3.2.4(2), the commutative diagram (3-12) is canon-

ically identified with

F∞T ′ (Y
′/X ′)

ϕ
γ ′

T ′
��

ϕ
γ ′+
T ′ // Fγ ′+

T ′ (Y
′/X ′)

��
xx

Fγ ′

T ′ (Y
′/X ′) // Y ′x̄ ′
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Further, this commutative diagram is canonically identified with (3-11) for γ =
v(R) by Lemma 3.2.5(2). Hence the assertion follows.

(2)⇒(1): Let T → X be a U-external morphism and let γ = v(R). Then by
Lemma 3.2.4(2), the commutative diagram (3-11) is canonically identified with
(3-12). Hence the assertion follows.

(1)⇒ (1′): This implication is obvious. �

Proposition 3.2.10. Let the notation be as in Definition 3.2.8 and assume that the
ramification of Y over X is bounded by R+. Assume that Y is locally of complete
intersection over X and let

Q

��
�

Yoo

��

P Xoo

be a cartesian diagram of schemes over X such that P and Q are smooth over X ,
the vertical arrows are quasifinite and flat and the horizontal arrows are closed
immersions.

Let X ′ be a normal noetherian scheme over X such that R′ = R×X X ′ is an ef-
fective Cartier divisor and Y ′ = Y ×X X ′ over X ′ satisfies the condition (RF) for R′.

Then, the morphism Q′(R
′)
→ P ′(R

′) is étale on a neighborhood of Q′(R
′)
×X ′ R′.

This implies [Saito 2009, Lemma 1.13 6)⇒4)] since Q′(R
′)
×X ′ R′→ P ′(R

′)
×X ′ R′

is finite by Lemma 2.1.7(1).

Proof. First, we show that we may assume that there exist a closed subscheme
Y ′0 ⊂ Y ′ étale over X ′, an integer n = 1 and an effective Cartier divisor D′0 ⊂ R′

satisfying the following conditions: We have an equality R′Y ′0 = R′Y ′ of underlying
sets. Let J ′0 ⊂ OR′Y ′

be the nilpotent ideal defining R′Y ′0 ⊂ R′Y ′ . Then, we have
J ′n0 = 0 and (n+ 1)D′0 = R′.

Under the condition (RF), the formation of Q′(R
′)
→ P ′(R

′) commutes with base
change by Lemma 2.1.8 and Example 2.1.2(1). Since Q′(R

′) and P ′(R
′) are flat

over X ′, the étaleness of Q′(R
′)
→ P ′(R

′) is checked fiberwise. Hence, we may take
base change. Let x ′ ∈ R′ be a point and let X ′′→ X ′ be the normalization of the
blow-up at the closure of x ′. Then, there exists a point x ′′ ∈ X ′′ above x ′ such
that the local ring OX ′′,x ′′ is a discrete valuation ring. Hence, by replacing X ′ by
SpecOX ′′,x ′′ , we may assume that X ′ is the spectrum of a discrete valuation ring.

Then, we may assume that Y ′ ⊂ Q′ is a union of sections X ′→ Q′. There exists
a disjoint union Y ′0 ⊂ Y ′ of sections such that we have an equality R′Y ′0 = R′Y ′ of
underlying sets. Let n = 1 be an integer satisfying J ′n0 = 0 in the notation above.
After replacing X ′ by a ramified covering if necessary, there exists an effective
Cartier divisor D′0 of X ′ satisfying (n+ 1)D′0 = R′.
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The finite morphism Y ′(R
′)
→ X ′ is étale by Corollary 3.1.3. Hence by the

existence of Y ′0, D′0 and n and by Lemma 2.2.5, the OY ′(R′)-module OY ′(R′)⊗OY �
1
Y/X

is annihilated by InD′0 . Hence by Lemma 2.2.4, there exists an open neighborhood
W1⊂Q′(R

′) of Q′(R
′)
×X ′ R′ such that Q′(R

′)
→ P ′(R

′) is étale on W1 (Q′(R
′)
×X ′ R′).

The morphism Q′(R
′)
→P ′(R

′) is étale also on a neighborhood W2 of Y ′(R
′)
⊂Q′(R

′).
Since the vector bundle P ′(R

′)
×X ′ R′→ R′ has irreducible fibers, W2 ⊂ Q′(R

′) is
dense in the fiber of every point of R′ by Proposition 1.1.5(1). Hence the assertion
follows from Lemma 1.2.4. �

3.3. Ramification groups.

Theorem 3.3.1. Let X be a connected normal noetherian scheme and let U ⊂ X be
a dense open subscheme. Let G be a finite group, W →U be a connected G-torsor
and let C be the category of finite étale schemes over U trivialized by W. Assume
that for every morphism V1→ V2 of C , the morphism Y1→ Y2 of normalizations
of X in V1 and in V2 is locally of complete intersection.

Let t ∈ U and let T = Spec A→ X be a U-external morphism for a valuation
ring A $ K = k(t). Let x̄ (resp. t̄) be a geometric point above the closed point x
(resp. the generic point t) of T and let x̄← t̄ be a specialization. Fix a lifting of x̄
to the normalization TW of T in W ×X T and let Ix̄ ⊂ G be the inertia group at the
image of the lifting of x̄ to the normalization YW of X in W by TW → YW .

For an object V of C , let Y denote the normalization of X in V and consider the
fiber functor sending V to F∞T (Y/X).

(1) There exist decreasing filtrations Gγ

T ⊃ Gγ+

T of G indexed by γ ∈ (0,∞)0Q

such that, for every object V of C , the canonical surjections F∞T (Y/X)→
Fγ+T (Y/X)→ FγT (Y/X) induce bijections

Gγ+

T \F
∞

T (Y/X)→ Fγ+T (Y/X), Gγ

T \F
∞

T (Y/X)→ FγT (Y/X). (3-18)

For Ix̄ = G0+
T , the mapping

G0+
T \F

∞

T (Y/X)→ F0+
T (Y/X) (3-19)

is a bijection.

(2) There exists a finite increasing sequence 0= α0 < α1 < · · ·< αn of elements
of [0,∞)0Q

such that we have

Gαi−1+ = Gγ
= Gγ+

= Gαi for γ ∈ (αi−1, αi )0Q
, 15 i 5 n,

Gαn+ = Gγ
= Gγ+

= 1 for γ ∈ (αn,∞)0Q
.

(3-20)

(3) Let DT ⊂G be the decomposition group of T in W×X T. Then, DT normalizes
Gγ and Gγ+.



420 TAKESHI SAITO

Proof. (1) Let V ′→ V be a morphism in the category C and let Y ′→ Y be the
morphism of normalizations of X . By Proposition 3.1.2 and Lemma 3.2.4(2), the
diagram

F∞T (Y
′/X) −−−→ Fγ+T (Y ′/X) −−−→ FγT (Y

′/X) −−−→ F0+
T (Y ′/X)y y y y

F∞T (Y/X) −−−→ Fγ+T (Y/X) −−−→ FγT (Y/X) −−−→ F0+
T (Y/X)

(3-21)

is a cocartesian diagram of surjections. Further, the functors FγT and Fγ+T pre-
serve disjoint unions. Hence by Proposition 1.4.2, we obtain filtrations (Gγ

T )γ and
(Gγ+

T )γ indexed by γ ∈ (0,∞)0Q
characterized by the bijections (3-18). For γ = 0,

the bijection (3-19) follows from F0+
T (Y/X)= Yx̄ .

(2) Since C has only finitely many connected objects and

F∞T (Y/X)→ Fγ+T (Y/X)→ FγT (Y/X)

are surjections, the claim follows from Theorem 3.2.6.

(3) Since the surjections F∞T (Y/X)→ Fγ+T (Y/X)→ FγT (Y/X) are compatible
with the actions of DT ⊂ G, the subgroup DT ⊂ Dx̄ normalizes Gγ and Gγ+ by
Corollary 1.4.4. �

By the definition of the filtrations, the ramification of Y/X at T is bounded by γ
(resp. by γ+) if and only if the action of Gγ

T (resp. of Gγ+

T ) on F∞T (Y/X) is trivial.
By Corollary 1.4.3, the filtrations (Gγ ) and (Gγ+) are compatible with quotients.
We have the following functoriality. Let

X ′ ←−−− T ′y y
X ←−−− T

be a commutative diagram of schemes. Assume that X ′→ X is a morphism of
normal connected noetherian schemes and let U ′ ⊂U ×X X ′ ⊂ X ′ be a dense open
subscheme. The horizontal arrows T → X and T ′→ X ′ are U-external and U ′-
external and the vertical arrow T ′→ T is faithfully flat. Let W ′ be a connected
G ′-torsor over U ′ for a finite group G ′ and let W ′ → W be a morphism over
U ′ → U compatible with a morphism G ′ → G of finite groups. Assume that
W ′→U ′ satisfies the complete intersection property as in Theorem 3.3.1 and let
(G ′γ

′

) and (G ′γ
′
+) be the filtrations of G ′ indexed by γ ′ ∈ (0,∞)0′

Q
. Then, for

γ ∈ (0,∞)0Q
, the morphism G ′→ G induces

G ′γ → Gγ , G ′γ+→ Gγ+ (3-22)

by the functoriality Lemma 3.2.5(1).
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We consider a variant. Let A $ K be a valuation ring and let L be a finite
Galois extension of K of Galois group G. We define a filtration of G by ramifi-
cation groups under the following assumptions: For every intermediate extension
K ⊂ M ⊂ L , the normalization AM of A in M is a valuation ring finite flat and
of complete intersection over A. There exist an irreducible normal noetherian
scheme X such that K is the residue field at the generic point t and a morphism
T = Spec A→ X extending t→ X .

Let T → X be as above and let M be an intermediate extension. Then by
Lemma 3.2.2(1), Spec AM is the limit of T ×X ′ Y ′ for normal schemes X ′ of finite
type over X equipped with a lifting T → X ′ of T → X and finite flat schemes
Y ′ → X ′ such that U ′ = U ×X X ′ → U is an isomorphism for a dense open
subscheme U ⊂ X and U ′ ×X ′ Y ′→ U ′ is a finite étale covering corresponding
to M . Since AM is assumed to be finite flat locally of complete intersection over A,
there exists a finite flat scheme Y ′M → X ′ locally of complete intersection such that
U ′×X ′ Y ′M →U ′ is finite étale and T ×X ′ Y ′M = Spec AM .

Thus, there exist a dense open subscheme U ⊂ X and a normal scheme X ′ of fi-
nite type over X satisfying the following conditions: The morphism U ′=U×X X ′→
U is an isomorphism. The morphism T → X is lifted to T → X ′. For every inter-
mediate extension M , there exists a finite flat scheme Y ′M→ X ′ locally of complete
intersection such that U ′×X ′ Y ′M →U ′ is finite étale and T ×X ′ Y ′M = Spec AM .

Then applying Theorem 3.3.1, we obtain filtrations (Gγ

T ) and (Gγ+

T ) by normal
subgroups of G = DT indexed by (0,∞)0Q

.

In the rest of the article, we consider the case where X = T = SpecOK for a
complete discrete valuation ring OK . For a finite Galois extension of the fraction
field K of the Galois group G, the decreasing filtrations (Gr )r>0 and (Gr+)r=0 by
normal subgroups indexed by rational numbers are defined.

Lemma 3.3.2. Let K be a complete discrete valuation field and let L be a finite Ga-
lois extension of the Galois group G = Gal(L/K ). Then, the filtration by ramifica-
tion groups of G defined in [Abbes and Saito 2002] is the same as that defined here.

Proof. Let M be an intermediate extension and let Y = SpecOM → Q = An
OK

be
a closed immersion defined by taking a system of generators of OM over OK as in
Example 2.1.1(1). Then, the affinoid varieties used in the definition in [Abbes and
Saito 2002] are the generic fibers of the formal completions of dilatations of Q(r).
Since the geometric connected components of the affinoid varieties are canonically
identified with those of the closed fibers as in Remark 1.1.2, the assertion follows.

�

Let L be a finite separable extension of degree n of K and let Y = SpecOL for
the integer ring OL . We recall the classical case where OL is generated by one
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element over OK , using the Herbrand function. Take a closed immersion

Y = SpecOL → Q = A1
X = SpecOK [T ],

and let P ∈ OK [T ] be the monic polynomial such that we have an isomorphism
OK [T ]/(P)→OL .

Let K ′ be a finite separable extension containing the Galois closure of L and let
X ′ = SpecOK ′ . Let v′ : K ′→Q∪ {∞} be the valuation extending the normalized
valuation of K . Let r > 0 be a rational number in the image of v′ and let R′⊂ X ′ be
the effective Cartier divisor such that v′(R′)= r . Let Q′ ⊃ Y ′ be the base change
of Q ⊃ Y by X ′→ X and let Q′(r) = Q′(R

′) denote the dilatation. We compute
Q′(r) using the Herbrand function, whose definition we briefly recall.

Decompose P as P =
∏n

i=1(T − ai ) in OK ′[T ] and set bi = ai − an ∈OK ′ . Set
P(T1+an)=

∏n
i=1(T1−bi )= T n

1 + c1T n−1
1 +· · ·+ cn−1T1 in OK ′[T1]. Changing

the numbering if necessary, we assume that the valuations si = v
′(bi ) ∈ Q are

increasing in i . Note that the increasing sequence s0= 05 s15 · · ·5 sn−1< sn =∞

is independent of the choice of an . The valuation v′(cn−1) =
∑n−1

k=1 sk equals the
valuation v′(DL/K ) of the different DL/K . It is further equal to the length of the OL -
module �1

OL/OK
divided by the ramification index eL/K by [Serre 1968, Chapter III

§6 corollaire 2 à la proposition 11].
The largest piecewise linear convex continuous function

p : [0, n− 1] → [0, v′(DL/K )]

such that the graph is below the points (0, 0) and (k, v(ck)) for k = 1, . . . , n− 1 is
defined by

p(x)=
k−1∑
i=1

si + sk(x − k+ 1) (3-23)

on [k − 1, k] for k = 1, . . . , n− 1. The graph of p is the Newton polygon of the
polynomial P(T1+an). The Herbrand function ϕ : [0,∞)→[0,∞) is a piecewise
linear concave continuous function defined by

ϕ(s)=
n−1∑
i=1

min(si , s)+ s. (3-24)

We have

ϕ(s)=
k−1∑
i=1

(n− i + 1) · (si − si−1)+ (n− k+ 1) · (s− sk−1) (3-25)

on [sk−1, sk) for k = 1, . . . , n.
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Example 3.3.3. Let s ∈ (sk−1, sk]Q, r = ϕ(s) and let t be an element of a finite
separable extension K ′ of K such that v(t) = s. By (3-25) and Example 2.1.2,
Q′(r) is obtained as an iterated dilatation defined inductively by Q′0 = Q′,

Q′i =Q′((n−(i−1))·(si−si−1))

i−1 for 0< i < k and Q′(r)=Q′((n−(k−1))·(s−sk−1))

k−1 .

Hence Q′(r) → X ′ is smooth. Let C ⊂ Q′(r) ×X ′ x ′ be the connected compo-
nent meeting the section s ′n : X ′→ Q′(r) lifting sn : X → Q defined by T = an .
Then, SpecOK ′[T ′] for T ′ = T1/t is a neighborhood of C ⊂ Q′(r). Further, on
SpecOK ′[T ′], the closed subscheme Y ′(r) ⊂ Q′(r) is defined by

∏n
i=k(T

′
− bi/t).

Consequently, the surjections

Y x̄ = {a1, . . . , an} → Fr
X (Y/X)

and
Y x̄ → Fr+

X (Y/X)

are given by the equivalence relations v′(ai − a j ) = s and v′(ai − a j ) > s, re-
spectively. In particular, rL/K = ϕ(sn−1)= v

′(DL/K )+ sn−1 is the unique rational
number r such that the ramification of Y over X is bounded by r+ but not by r .

We give a slightly simplified proof of the proposition below giving characteri-
zations of unramified extensions and tamely ramified extensions.

Lemma 3.3.4 [Serre 1968, chapitre III §7 proposition 13; Abbes and Saito 2002,
Proposition A.3]. Let L be a finite separable extension of a complete discrete val-
uation field K . Assume that OL is generated by one element over OK and let
rL/K = ϕ(sn−1)= v

′(DL/K )+ sn−1 be as in Example 3.3.3.

(1) The following conditions are equivalent:
(i) L is an unramified extension of K .

(ii) rL/K = 0.
(iii) rL/K < 1.

(2) The following conditions are equivalent:
(i) L is a tamely ramified extension of K .

(ii) rL/K = 0 or 1.
(iii) rL/K 5 1.

Proof. By [Abbes and Saito 2002, Proposition A.3], we have v′(DL/K )=1−1/eL/K

and equality holds if and only if L/K is tamely ramified. We have sn−1 = 0
and equality holds if and only if L is unramified. If L is ramified, we have
sn−1= 1/eL/K and equality holds if and only if L is tamely ramified. The assertions
follows from these observations. �

Proposition 3.3.5 [Abbes and Saito 2002, Proposition 6.8]. Let L be a finite sepa-
rable extension of a complete discrete valuation field K .



424 TAKESHI SAITO

(1) The following conditions are equivalent:
(i) L is an unramified extension of K .

(ii) The ramification of L over K is bounded by 1.

(2) The following conditions are equivalent:
(i) L is a tamely ramified extension of K .

(ii) The ramification of L over K is bounded by 1+.

Proof. For both (1) and (2), (i)⇒(ii) follows from Example 3.3.3 and Lemma 3.3.4,
since OL is generated by one element over OK .

We show (ii)⇒(i).

(1) Let L be a finite separable extension such that the ramification over K is
bounded by 1 and assume that L was ramified over K .

Let G be the Galois group of a Galois closure of L over K and let 1 $ I ⊂
G=Gal(L/K ) be the inertia subgroup. By replacing K and L by the subextensions
corresponding to I and to a maximal subgroup H $ I , we may assume that L is a
cyclic extension of prime degree since I is solvable.

Then, either the ramification index eL/K is 1 and the residue extension is a
purely inseparable extension of degree p or L is totally ramified extension. Hence
OL is generated by one element and the assertion follows from Example 3.3.3 and
Lemma 3.3.4.

(2) If the integer ring OL is generated by one element over OK , the assertion
follows from Example 3.3.3 and Lemma 3.3.4. We prove the general case by
reducing to this case by contradiction.

Let L be a finite separable extension such that the ramification over K is bounded
by 1+ and assume that L was wildly ramified over K .

Let G be the Galois group of a Galois closure of L over K and let 1 $ P ⊂
I ⊂ G = Gal(L/K ) be the wild inertia subgroup and the inertia subgroup. By
replacing K and L by the subextensions corresponding to I and to a maximal
subgroup H $ P , we may assume that [L : K ] = mp for an integer m prime to p.

Since an algebraic closure F̃ of the residue field F of K is a perfect closure of
the separable closure, we may construct a henselian separable algebraic extension
K̃ of ramification index 1 of residue field F̃ as a limit lim

−−→
Kλ of finite separable

extensions of ramification index 1. Since the composition L K̃ is a totally ramified
extension of K̃ , there exists a finite separable extension K ′ = Kλ of ramification
index 1 such that L ′ = L Kλ is a totally ramified extension of K ′.

By the functoriality (3-22), the ramification of L ′ over K ′ is bounded by 1+.
Since L ′ is totally ramified over K ′, the integer ring OL ′ is generated by one element
over OK ′ . Hence, L ′ is tamely ramified over K ′ and we have [L ′ : K ′] = m.

By construction, there exists a sequence K ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Kn = K ′ such
that K0 is an unramified extension of K and that Ki is an extension of Ki−1 of
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degree p of ramification index 1 with inseparable residue field extension for each
i = 1, . . . , n. Since [L K0 : K0] = mp, we have n > 0. By taking the smallest
such n, we may assume [L Kn−1 : Kn−1] = mp.

Further, by the functoriality (3-22), we may replace K and L by Kn−1 and L Kn−1.
Hence, we may assume that [K ′ :K ]= p and K ′⊂ L . Since [K ′ :K ]= p, the integer
ring OK ′ is generated by one element over OK . Since K ′ ⊂ L , the ramification of
K ′ over K is bounded by 1+. Hence K ′ is tamely ramified over K . This contradicts
the assumption that the residue field extension of K ′ over K is inseparable. �
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