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Almost sure local well-posedness
for the supercritical quintic NLS

Justin T. Brereton

This paper studies the quintic nonlinear Schrödinger equation on Rd with ran-
domized initial data below the critical regularity H .d�1/=2 for d � 3. The main
result is a proof of almost sure local well-posedness given a Wiener randomiza-
tion of the data in H s for s 2

�
1
2
.d � 2/; 1

2
.d � 1/

�
. The argument further devel-

ops the techniques introduced in the work of Á. Bényi, T. Oh and O. Pocovnicu
on the cubic problem. The paper concludes with a condition for almost sure
global well-posedness.

1. Introduction

Consider the Cauchy problem for the nonlinear Schrödinger equation. Given initial
data � 2H s.Rd /, for .t; x/ 2 R�Rd the solution u.t; x/ 2 C satisfies

iut C�uD˙juj
p�1u;

ujtD0 D �;
(1)

where C and � correspond to the defocusing and focusing cases, respectively. This
equation has conserved mass and energy

M.t/D
1

2

Z
Rd
ju.t; x/j2 dx;

E.t/D
1

2

Z
Rd
jru.t; x/j2 dx˙

1

pC1

Z
Rd
ju.t; x/jpC1 dx:

The NLS equation is also invariant under a dilation symmetry. Given u.t; x/ that
solves (1), the function u�.t; x/D �2=.p�1/u.�2t; �x/ is a solution with rescaled
initial data for every �. Furthermore there is a Sobolev index sc D d

2
�

2
p�1

such
that the homogeneous Sobolev norm ku�k PH sc is constant under this scaling. This
index sc is known as the scaling critical index, and when d

2
�

2
p�1
D sc D 1

the problem is known as energy critical, since the energy scales like PH sc D PH 1.
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Given initial data � 2H s.Rd /, the problem is called subcritical when s > sc and
supercritical when s < sc .

In addition, special pairs of exponents .q; r/ satisfying the bounds 2� q, r �1
and .q; r; d/¤ .2;1; 2/ are called Schrödinger-admissible if

2

q
C
d

r
D
d

2
: (2)

For such a pair we have the well known Strichartz estimate

kS.t/�k
L
q
t L
r
x.R�Rd /

� Ck�k
L2.Rd /

; (3)

where S.t/ denotes the linear Schrödinger semigroup operator eit� that corre-
sponds to solving the linear Schrödinger equation for time t ; see [Strichartz 1977;
Yajima 1987].

It is known that the NLS equation is ill-posed in the supercritical case; for such s
one can construct special initial data � 2H s.Rd / such that for every T > 0, (1)
has no solution on .�T; T / that stays in H s.Rd /, as demonstrated in [Alazard and
Carles 2009; Christ et al. 2003]. Though local well-posedness is not guaranteed, it
is important to determine if there are solutions for most supercritical initial data �.
This leads one to investigate the problem of almost sure well-posedness for initial
data chosen for supercritical randomized initial data. Pocovnicu, Bényi and Oh
have proven almost sure local well-posedness for the energy critical R4 problem
using Xs;b spaces in [Bényi et al. 2015a]. They then proved a separate result for
the cubic equation for all d � 3 using Up and Vp spaces and their adaptations for
the Schrödinger equation in [Bényi et al. 2015b].

In this paper we adapt the techniques of [Bényi et al. 2015a; 2015b] in order
to prove local well-posedness in the quintic case for dimension d � 3. Follow-
ing [Bényi et al. 2015a], we apply a Wiener randomization to the initial data
� 2 H s.Rd /. This randomization method takes a function � 2 H s.Rd / and for
each ! in a probability space � produces a randomized function

�! D
X
n2Zd

gn.!/�.D�n/� (4)

that is in H s.Rd / with probability 1 but gains regularity with probability 0. The
gn.!/ are mean zero, i.i.d. complex random variables that are required to satisfy a
decay condition, the Gaussian being such a random variable. The term �.D�n/

is a Fourier multiplier whose symbol approximates the characteristic function of
the unit cube centered at n in frequency space.

In Section 2 we present several previously known probabilistic bounds on the
Wiener randomization �! of � 2H s.Rd / as well as its linear Schrödinger evolu-
tion S.t/�! . One of these is a probabilistic bound on khrisS.t/�!kLqLr .I�Rd /
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for arbitrarily large values of q; r . For large enough values of q; r this is a norm
that scales subcritically, which means we can approach almost sure local well-
posedness as if it is a subcritical problem.

Our main result is the almost sure local well-posedness of (1) with initial data
�! chosen via the Wiener randomization of any � 2H s.Rd /:

Theorem 1.1. Fix d � 3 and s 2
�
1
2
.d � 2/; 1

2
.d � 1/

�
. Given � 2 H s.Rd / with

Wiener randomization �! , ! 2�, the quintic nonlinear Schrödinger equation is
almost surely locally well-posed. More specifically, there exist c1; c2; � > 0 such
that for sufficiently small T � 1, there is a set �T �� such that

P.�T /� 1� c1e
�c2=T

�k�kHs

and for each ! 2�T , the initial value problem

iut C�uD˙juj
4u;

u.0/D �!

has a unique solution in the function class C..�T; T /!H s.Rd //.

We now provide a brief outline of the proof. In Section 3 we define the Littlewood–
Paley projection operator, as well as the U 2 and V 2 spaces and their Schrödinger
analogues developed by Koch, Tataru and others in [Hadac et al. 2009; Herr et al.
2011]. In Section 4 we present Strichartz estimates as well as a bilinear estimate
for these spaces. The next step is to split the NLS solution u into its linear part
z.t/D S.t/�! and nonlinear part

v.t/D˙

Z t

0

�iS.t � t 0/
�
jvC zj4.vC z/

�
.t 0/ dt 0; (5)

the integral term of Duhamel’s formula. Our probabilistic bounds tells us that z
almost surely has the same regularity as the initial data �! . Therefore the linear part
of the solution is almost surely in the supercritical space H s.Rd /, and it remains to
prove existence of the nonlinear part v.t/. As mentioned earlier, z.t/ is bounded in
subcritical norms, which means we can treat our linear solution z.t/ as a subcritical
perturbative term in the Cauchy problem

ivt C�v D˙.vC z/jvC zj
4;

v.0/D 0
(6)

that is satisfied by the nonlinear part v.
This means almost sure local well-posedness of v.t/ is essentially a subcritical

problem. We prove local existence of the nonlinear part v.t/ using a fixed point
argument based on doing a frequency decomposition of v.t/ and bounding it at
each frequency.
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Global well-posedness is a much harder problem. There is yet to be a proof
of almost sure global well-posedness of any supercritical NLS problem. Pocov-
nicu, Bényi and Oh proved almost sure global well-posedness of v 2 H 1.R4/

for the cubic problem under the assumption that there is a probabilistic bound on
kvkL1H1.R�R4/ in [Bényi et al. 2015b]. It seems difficult to prove such a bound.

One could probably prove a similar result for the 3-dimensional quintic problem,
the energy critical dimension for the quintic problem. Instead we prove almost
sure global well-posedness of v in the subcritical space S1Cc.R�R3/ assuming
the norm kvkL10L10.Œ�T;T ��R3/ does not blow up in finite time. This means that a
probabilistic a priori estimate for kvkL10L10.Œ�T;T ��R3/ implies almost sure global
well-posedness as expressed in the following result:

Theorem 1.2. Assume 7
8
< s < 1 and 0 < c < 1

8
. Suppose we have a probabilistic

a priori estimate for kvkL10L10.Œ�T;T ��R3/, meaning for every T;R > 0 there is a
function ˛.T;R/ and a set �0T;R such that

� for any ! 2�0T;R, if the solution v.t/ to (6) exists on .�T; T / then we have
the bound

kvk
L10L10.Œ�T;T ��R3/

<RI

� P.�0T;R/� 1�˛.T;R/;

� for all T > 0, limR!1 ˛.T;R/D 0.

Then given � 2H s.R3/ with Wiener randomization �! , the initial value problem

iut C�uD˙juj
4u;

u.0/D �!

is almost surely globally well-posed, meaning there is a set �T;R � � and con-
stants c1; c2; c3 > 0 such that

P.�T;R/� 1� c1e
�c2R

2

� c3˛.T;R/

and for any ! 2�T;R the above equation has a unique solution in the function
class C..�T; T /!H s.Rd // with v.t/ 2H 1Cc.R3/ for any time t 2 .�T; T /.

2. Randomization of initial data and probabilistic estimates

Our method of randomization is the Wiener decomposition of the frequency space
that was used in [Bényi et al. 2015a] and first introduced in [Zhang and Fang 2012].
Consider a Schwartz class function  2 S.Rd / that approximates the cube of unit
length centered at the origin in Rd , meaning that  is supported on Œ�1; 1�d andP
n2Zd  .� �n/ is identically 1. Then for each n, define the Fourier multiplier �

as
�.D�n/u.x/D F�1Œ .� �n/Fu�: (7)
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Note that this satisfies
P
n2Zd �.D�n/u.x/D u.x/. This provides a decomposi-

tion of the function u into pieces whose frequencies are localized to cubes.
The idea is then to consider a function � 2H s.Rd / and for each ! from a prob-

ability space � create a randomized function
P
n2Zd gn.!/�.D�n/� for some

random variables gn. For each n 2 Zd , let �n and �n be probability distributions
on R, symmetric about 0, such that for some constant c we haveˇ̌̌̌Z

Rd
e�x d�n.x/

ˇ̌̌̌
� ec�

2

and
ˇ̌̌̌Z

Rd
e�x d�n.x/

ˇ̌̌̌
� ec�

2

(8)

for all n 2 Zd , � 2 R. A Gaussian random variable would be an example of a
random variable with these properties. Then define each gn to be an independent,
mean zero, complex random variable on � such that Re.gn/ and Im.gn/ have
distributions �n and �n. We define the Wiener randomization �! of � 2H s.Rd /

to be
�! D

X
n2Zd

gn.!/�.D�n/�: (9)

The main advantage derived from the Wiener randomization is improvedLp.Rd /
estimates on the randomized initial data �! off a small set, as a result of a stronger
Bernstein’s inequality. Despite only requiring that � be in H s , the randomized �!

is in Lp.Rd / with probability 1. In addition, we have a probabilistic bound on
k�!kH s.Rd /, which implies that �! 2H s.Rd / almost surely.

We have the following key bounds on �! and its linear Schrödinger evolution
with proofs from [Bényi et al. 2015a]. We prove the first estimate while omitting
the proofs of the second and third estimates. For all R > 0; s > 0 and � 2H s.Rd /,
we have

P
�
k�!kH s.Rd / >R

�
� c1e

�c2R
2=k�k2

Hs.Rd / ;

P
�
kS.t/�!k

L
q
t L
r
x.Œ0;T ��Rd /

>R
�
� c1e

�c2R
2=T 2=qk�k2

L2.Rd / ;

P
�
k�!k

Lp.Rd /
>R

�
� c1e

�c2R
2=k�k

L2.Rd / :

Lemma 2.1. Given � 2 H s with randomization �! , for all R > 0 there exist
positive constants c1; c2 such that

P
�
k�!kH s.Rd / >R

�
� c1e

�c2R
2=k�k2

Hs.Rd / : (10)

Proof. The proof is taken from [Bényi et al. 2015a]. By Minkowski’s inequality,
we have for p � 2,

E
�
k�!k

p

H s.Rd /

�
�
�khris�!kLp.�/L2.Rd /�p
D

�X
n2Zd

gn.!/hri
s�.D�n/�


Lp.�/


L2.Rd /

�p
: (11)
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By a well known lemma on sums of random variables, stated as Lemma 2.1 in
[Bényi et al. 2015a] and proven in [Burq and Tzvetkov 2008], and the fact that
Fourier multipliers commute, we have

E
�
k�!k

p

H s.Rd /

�
� C

�ppkgnhris�.D�n/�kl2.n2Zd /


L2.Rd /

�p
;

E
�
k�!k

p

H s.Rd /

�
� C

�p
pk�kH s.Rd /

�p
:

(12)

So by Markov’s inequality,

RpP
�
k�!kH s.Rd / >R

�
� C

�p
pk�kH s.Rd /

�p
;

P
�
k�!kH s.Rd / >R

�
�

�
C0
p
pk�kH s.Rd /

�p
Rp

:
(13)

Now let p D
�
R=
�
C0ek�kH s

��2 with C0 taken from above. There are two cases.

� p <2: In this case we cannot use the above work because it assumes p� 2 for
Minkowski’s inequality. Letting c2D 1=.C 20 e

2/ we have e�c2R
2=k�kHs � e�2.

Now choosing c1 � e2 we have

P
�
k�!kH s.Rd / >R

�
� 1� c1e

�2
� c1e

�c2R
2=k�k2

Hs ; (14)

since every probabilistic outcome has probability less than 1.

� p � 2: From the definition of p above and (13), we have

P
�
k�!kH s.Rd / >R

�
� e�p � e�c2R

2=k�k2
Hs : (15)

In both cases the lemma is proven. �

Lemma 2.2. Given � 2 H s with randomization �! , for all R > 0 there exist
positive constants c1; c2 such that

P
�
kS.t/�!k

L
q
t L
r
x.Œ0;T ��Rd /

>R
�
� c1e

�c2R
2=T 2=qk�k2

L2 : (16)

After multiplying R by a small power of T we have the following corollary.

Corollary 2.3. For small � 2
�
0; 1
q

�
and R > 0 there exist c1; c2 such that

P
�
kS.t/�!k

L
q
t L
r
x.Œ0;T ��Rd /

> T �R
�
� c1e

�c2R
2=T 2=q�2�k�k2

L2

� c1e
�c2R

2=k�k2
L2 : (17)

Placing derivatives inside the norm and noting that derivatives commute with
Fourier multipliers such as S.t/ and the map �! �! , we have our main bound:
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Theorem 2.4. Given small � 2
�
0; 1
q

�
and �! chosen according to a Wiener ran-

domization, for all R > 0 there exist c1; c2 such that

P
�
khri

sS.t/�!k
L
q
t L
r
x.Œ0;T ��Rd /

> T �R
�
� c1e

�c2R
2=T 2=q�2�k�k2

Hs

� c1e
�c2R

2=k�k2
Hs : (18)

This bound will be crucial in the proof of local well-posedness. This gives us as
much integrability as we want in bounding a linear solution, which means the linear
solution is bounded in subcritical norms, allowing us to treat local well-posedness
like a subcritical problem.

Lemma 2.5. Given � 2 H s with randomization �! , for all R > 0 there exist
positive constants c1; c2 such that:

P
�
k�!k

Lp.Rd /
>R

�
� c1e

�c2R
2=k�k2

L2 : (19)

Proof. The proofs of Theorem 2.4 and Lemma 2.5 can be found in [Bényi et al.
2015a]. They utilize the same basic argument as above, with some extra steps.
Each proof exploits an improvement of Bernstein’s inequality that results from
the Wiener randomization. Note that gn.!/�.D�n/� has Fourier transform sup-
ported on the unit cube centered at n. Therefore, einxgn.!/�.D�n/� has Fourier
transform supported on the unit cube centered at the origin. Bernstein’s inequality
implies that

keinxgn.!/�.D�n/�kLp . ke
inxgn.!/�.D�n/�kL2 (20)

with no loss of regularity, since multiplying by einx does not affect the Lp norm.
So we obtain the bound kgn.!/�.D � n/�kLp . kgn.!/�.D � n/�kL2 . This is
the key ingredient in the proof that allows one to bound the higher Lp norm of �!

with high probability while only assuming that � 2 L2. �

3. Littlewood–Paley theory and function spaces

3A. Littlewood–Paley theory and dyadic decompositions. In the fixed point proof
we will take the linear and nonlinear parts of our solution and dyadically decom-
pose each into a sum of Littlewood–Paley projections. Given a smooth bump
function  such that  .�/ D 1 for j�j � 1 and  .�/ D 0 for j�j � 2, we have
the following definition from the Littlewood–Paley theory.

Definition 3.1. Given dyadic N and a function f 2 L2 we define its projection
P�Nf to be the Fourier multiplier such that

2P�Nf .�/D  
� �
N

�
Of .�/:
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Of course the definition applies to a much wider range of distributions, but in
this paper we need only consider functions in L2 or H s for some s > 0.

Note that 2P�Nf is supported on the set j�j � 2N . Now we define the projection
PN that localizes to frequencies in the interval ŒN=2; 2N �.

Definition 3.2. We define P1 D P�1 and for dyadic N > 1,

PNf D P�Nf �P�N=2f:

This defines the projection PNf with frequencies between N=2 and 2N . Also,
we have

P
N PNf D f , so this is indeed a decomposition.

The above info and other results on Littlewood–Paley theory can be found in
the appendix of [Tao 2006].

3B. Strichartz spaces. In this and the following section we introduce the func-
tion spaces needed to prove well-posedness. We start with the standard Strichartz
spaces: Ss.I �Rd / and N s.I �Rd /. Let q; r be a Schrödinger-admissible pair.
Given an interval I D Œt0; t1� we define Ss.I �Rd / to be the set of measurable
functions bounded in the norm

kukSs.I�Rd / D sup
.q;r/ admissible

khri
suk

LqLr .I�Rd /
:

We also define N�s.I �Rd / to be the dual space of Ss.I �Rd /, which satisfies
the bound

kukN s.I�Rd / � inf
.q;r/ admissible

khri
suk

Lq
0
Lr
0
.I�Rd /

:

The key relation between the Strichartz norms is the Strichartz estimate for solu-
tions to the nonlinear Schrödinger equation. Suppose u is a solution to iutC�uDF .
Then

kukSs.Œt0;t1��Rd / . ku.t0/kH s.Rd /CkF kN s.Œt0;t1��Rd /: (21)

3C. Up and V p spaces. Our analysis requires a norm that measures how close
a function is to a linear solution to the Schrödinger equation, so we use the Up

and Vp spaces of Koch and Tataru introduced in [Hadac et al. 2009; Herr et al.
2011]. We start by defining a Up atom, and then the Up and Vp spaces. Suppose
1 � p <1 and �1 < t0 < t1 < � � � < tn �1 is a partition of the real line. We
denote the characteristic function of the k-th interval of this partition by �Œtk�1;tk/.

Definition 3.3. AUp atom is a step function into a Sobolev space a.t/WR!H s.Rd/

of the form
aD

nX
kD1

�k�Œtk�1;tk/; (22)

where
Pn
kD1 k�kk

p

H s.Rd /
D 1.
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The definition applies to any Hilbert space H , but we will only need it for
Sobolev spaces in this paper.

Definition 3.4. The space Up.RIH s/ is the set of measurable functions bounded
in the associated norm:

kukUp.RIH s/ D inf
Up atoms aj

�X
j

j�j j W uD
X
j

�jaj

�
: (23)

For the Vp spaces we continue to partition the real line, and take our norm to
be the p-variation of the given function.

Definition 3.5. The space Vp.RIH s/ is the set of functions bounded under the
Vp norm:

kukVp.RIH s/ D sup
partitions tk

� nX
kD1

ku.tk/�u.tk�1/k
p

H s.Rd /

�1=p
: (24)

In addition, given an interval I , the norms kukUp.I IH s/; kukVp.I IH s/ and any
of the following norms are defined as the restriction norms. For example,

kukUp.I IH s/ D inf
w.t/Du.t/; t2I
w.1/D0Dw.�1/

kwkUp.RIH s/: (25)

Now we want to create a norm that measures how close our function is to a
linear solution to the Schrödinger equation, much like in the definition of the Xs;b

spaces. If u is a linear solution then S.�t /u is a function that is constant in time
with kS.�t /ukU 2.I IH s/ and kS.�t /ukV 2.I IH s/ norms bounded by kukH s . We
define the Up�H

s and Vp�H
s norms as

kukUp�H s.RIH s/ D kS.�t /ukUp.RIH s/;

kukVp�H s.RIH s/ D kS.�t /ukVp.RIH s/;

and the spaces Up�H
s and Vp�H

s are defined as the set of measurable functions
u W R! H s.Rd / bounded in the Up�H

s and Vp�H
s norms, respectively. These

are useful spaces; however, in our proof we will rely on dyadic decomposition and
will need to apply these norms at specific frequencies, so it is more useful to do
computations in a slightly different norm adapted to dyadic decompositions.

Definition 3.6. We define the Xs and Y s norms, and associated spaces, as follows:

kukXs.R/ D

�X
N

N 2s
kPNuk

2
U 2�L

2

�1=2
;

kukY s.R/ D

�X
N

N 2s
kPNuk

2
V 2�L

2

�1=2
:

(26)
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Note that these norms are a little stronger than those above. They bound the
closeness of the function u to a solution to the linear equation at each frequency,
not just generally. Note that we immediately have the embedding Xs ,! Y s as
well as the bound kS.t/�kXs.RIH s/ � k�kH s.Rd /. This bound means that these
spaces are well suited to studying the linear problem.

In addition, we define the following norm for the nonhomogeneous term that
will allow us to exploit duality:

kF kM s.I / D

Z t

t0

S.t � t 0/F.t 0/ dt 0

Xs.I /

: (27)

This is equivalent to the dual norm of Y s, and we have the bound

kF kM s.I / � sup
kvkYs.I/D1

Z
I

Z
Rd
F.t; x/v.t; x/ dx dt (28)

as Lemma 3.5 in [Bényi et al. 2015b]. This is equivalent to

kF kM s.I / � sup
kvk

Y0.I/
D1

Z
I

Z
Rd
hri

sF.t; x/v.x; t/ dx dt: (29)

In addition, we have a bound analogous to the Strichartz estimate (21) for the
M s norm. Suppose u.t; x/ is a solution to the Cauchy problem

iut C�uD F;

ujtD0 D u.0/
(30)

on the interval I . Then we have the bound

kukXs.I / . ku.0/kH s.Rd /CkF kM s.I /: (31)

4. Strichartz estimates

Lemma 4.1. Let q; r be a Schrödinger-admissible pair.

(i) Given an interval I , for any u 2 Y 0.I / we have

kuk
L
q
t L
r
x.I�Rd /

. kukY 0.I /: (32)

(ii) Given an interval I and p � 2.dC2/
d

, for any u 2 Y d=2�.dC2/=p.I / we have

kuk
L
p
t L

p
x .I�Rd /

.
jrjd=2�.dC2/=pu

Y 0.I /

. kukY d=2�.dC2/=p.I /: (33)

Proof. The proof of the first statement is in [Bényi et al. 2015b, Lemma 3.5]. To
prove the second statement note that for 1

p
D

1
r
�
k
d

, Sobolev embedding implies
that
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kuk
Lp.Rd /

.
jrjku

Lr .Rd /
: (34)

Then taking the Lpt .I / norm of both sides we have

kuk
L
p
t;x.I�Rd /

.
jrjku

L
p
t L

r
x.I�Rd /

: (35)

Then by part (i) we have, for 2
p
C
d
r
D

d
2

,jrjku
L
p
t L

r
x.I�Rd /

.
jrjku

Y 0.I /
: (36)

This proves the desired inequality in Rd with exponents that satisfy 2
p
C
d
r
D

d
2

and 1
p
D

1
r
�
k
d

. Substituting, we get k D d
2
�
dC2
p

. �

By selecting q D r D 2.dC2/
d

and p D 2.d C 2/, we obtain the following
corollaries:

Corollary 4.2. For all u 2 Y 0.I / we have

kuk
L
2.dC2/=d
t;x .I�Rd /

. kukY 0.I /: (37)

Corollary 4.3. For all u 2 Y .d�1/=2.I / we have

kuk
L
2.dC2/
t;x .I�Rd /

.
jrj.d�1/=2u

Y 0.I /
. kukY .d�1/=2.I /: (38)

Lastly, the following is a bilinear projection lemma that gives an L2 bound
on the bilinear L2 norm of projections at different frequencies from [Bourgain
1998; Ozawa and Tsutsumi 1998]. In addition there is a version adapted to the
Schrödinger equation from [Visan 2006].

Lemma 4.4. For dyadic N1 �N2 and �1; �2 2 L2 we have

kPN1S.t/�1PN2S.t/�2kL2.I�Rd /

.N .d�1/=2
1 N

�1=2
2 kPN1�1kL2.Rd /kPN2�2kL2.Rd /: (39)

Corollary 4.5. For N1 �N2 and u1; u2 2 Y 0.I / we have

kPN1u1PN2u2kL2.I�Rd /

.N .d�1/=2�
1 N

�1=2C
2 kPN1u1kY 0.I /kPN2u2kY 0.I /: (40)

Proof. The proof is found in [Bényi et al. 2015b] as Lemma 3.5. �

This will be a key ingredient in the proof of local well-posedness because it
allows us to gain half a derivative from higher frequency terms. In addition, we
use the following 3-dimensional bilinear estimate that solely consists of Strichartz
norms.
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Theorem 4.6. For dyadic N1 �N2 and any small ı > 0 we have

kPN1u1PN2u2kL2.I�R3/

.N .d�1/=2�ı
1 N

�1=2Cı
2

�
kPN1u1.0/kL2.R3/

Ck.i@t C�/PN2u2kL3=2L18=13.I�R3/

�
�
�
kPN2u2.0/kL2.R3/

Ck.i@t C�/PN2u2kL3=2L18=13.I�R3/

�
: (41)

Proof. The proof is found in [Visan 2006] as Lemma 2.5. �
This will be a key ingredient in the proof of Theorem 1.2 in Section 6.

5. Almost sure local well-posedness

We now begin the proof of Theorem 1.1. Given some � 2H s.Rd /, let �! be its
Wiener randomization, and recall that z.t/D S.t/�! denotes the linear part of the
NLS solution and v.t/ is the solution to (6).

Even though we do not have long term bounds on the H s norm of v, we know
that v.0/ D 0. Exploiting our probabilistic bound on z.t/ in subcritical norms,
we show that for � 2

�
d�1
2
; sC 1

2

�
the norm kvkX�..�T;T // is bounded for small

enough time T .
Our method is a fixed point argument. We define

�v.t/D˙

Z t

0

�iS.t � t 0/
�
jvC zj4.vC z/

�
.t 0/ dt 0 (42)

and note that v is a solution if and only if �v D v. We now prove the following
proposition, which is the bulk of our fixed point argument.

Proposition 5.1. Assume s and � satisfy the bounds

d

2
> sC

1

2
> � >

d�1

2
: (43)

Given � 2H s.Rd / with randomization �! , there exists small � > 0 such that for
every R > 0 and sufficiently small T � 1 depending on R, we have

� k�vkX�.Œ0;T //.T �
�
kvk5X�.Œ0;T //CR

5
�

off a set of measure c1e�c2R
2=k�k2

Hs ,

� k�v1��v2kX�.Œ0;T //

. T �
�
R4Ckv1k

4
X
�
.Œ0;T //Ckv2k

4
X
�
.Œ0;T //

�
kv1� v2kX�.Œ0;T //

off a set of measure c1e�c2R
2=k�k2

Hs .

This stems from Theorem 2.4, which tells us that for � < 1
q

we have

P
�
khri

szkLqt L
r
x.Œ0;T /�Rd / � T

�R
�
� 1� c1e

�c2R
2=k�k2

Hs ; (44)

allowing us to gain a factor of T .
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Proof. We only prove the bound on k�vkX�.Œ0;T //, as the proof of the bound on
k�v1��v2kX�.Œ0;T // is similar. For dyadic N � 1 define

�N .v/D P�N�.v/

D P�N

�
˙

Z t

0

�iS.t � t 0/
�
jvC zj4.vC z/

�
.t 0/ dt 0

�
D˙

Z t

0

�iS.t � t 0/P�N
�
jvC zj4.vC z/.t 0/

�
dt 0:

By (29) we have

k�N vkX� D
P�N �.vC z/jvC zj4�M�

� sup
kv6kY0�1

Z T

0

Z
Rd
hr
�
ijvC zj4.vC z/P�N v6 dx dt:

Now, noting that

k�vkX� D lim
N!1

k�N vkX�

D sup
kv6kY0�1

Z T

0

Z
Rd
hr
�
ijvC zj4.vC z/v6 dx dt;

it suffices to show that for small � > 0 this integral is � CT � .R5Ckvk5
X
�/kv6kY 0

off a set of measure c1e�c2R
2=k�k2

Hs . We do this by proving the boundZ T

0

Z
Rd
hri

�
jvC zj4.vC z/v6 dx dt � CT

� .R5Ckvk5
X
�/kv6kY 0 (45)

via case by case analysis of terms of the form hri�Œw1w2w3w4w5�v6, where each
wi is either vi D v or zi D z (or its complex conjugate), and each is dyadically
decomposed into

P
Ni�1; dyadic PNivi and

P
Nj�1; dyadic PNj zj . Dyadic decom-

position allows us to assume the derivatives are placed on the highest frequency
term, or split them between two comparably high frequency terms. Also, we just
write wi instead of PNiwi as we sum over dyadic integers Ni � 1.

We consider four main cases based on whether each wi is a vi or zi , and which
two terms have the highest frequencies:

� Case 1: All five terms are v.

� Case 2: At least one term is a v and it has one of the two highest frequencies.

� Case 3: The two highest frequencies are on z terms.

� Case 4: The two highest frequencies are on a z term and the v6 term.

These four cases are then divided into smaller subcases:
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� Case 1: v1v2v3v4v5v6.
In this case all terms are v. We do not do dyadic decompositions; instead we cut

the frequency space into 5 pieces based on which frequency is largest, and assume
without loss of generality that �1 is. We split into two cases, based on the value
of �, which determines which exponents we can use in Hölder’s inequality.

(1a) � < d
2
�
1
4

.
Noting that � < d

2
�
1
4

, we apply Hölder’s inequality with t exponents

�1 D
2.dC2/

d.2d�4��1/
; �2 D � � � D �5 D

4.dC2/

dC2�d.d�2�/
; �6 D

2.dC2/

d

and x exponents

�1 D
2.dC2/

8�C4�3d
; �2 D � � � D �5 D

2.dC2/

d�2�
; �6 D

2.dC2/

d

and Lemma 4.1:

I D

Z T

0

Z
Rd
hri

�v1v2v3v4v5v6 dx dt

� khri
�v1kL�1L�1kv2kL�2L�2kv3kL�3L�3kv4kL�4L�4kv5kL�5L�5kv6kL�6

� kv1kY �T
�
kv2kL�2L�2kv3kL�3L�3kv4kL�4L�4kv5kL�5L�5kv6kY 0

� T �
5Y
iD1

kvikY �kv6kY 0

for some � > 0.

(1b) d
2
�
1
4
� � < sC 1

2
.

Noting that � � d
2
�
1
4

we apply Hölder’s inequality with t exponents �1 D1,
�2 D � � � D �5 D 8.d C 2/=.d C 4/, �6 D 2.d C 2/=d and x exponents �1 D 2,
�2 D � � � D �5 D 4.d C 2/, �6 D 2.d C 2/=d and Lemma 4.1:

I D

Z T

0

Z
Rd
hri

�v1v2v3v4v5v6 dx dt

� khri
�v1kL�1L�1kv2kL�2L�2kv3kL�3L�3kv4kL�4L�4kv5kL�5L�5kv6kL�6

� kv1kY �T
�
kv2kL�2kv3kL�3kv4kL�4kv5kL�5kv6kY 0

� T �kv1kY �

5Y
iD2

kvikY .d=2/�.1=4/kv6kY 0

for some � > 0.
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� Case 2: v1w2w3w4z5v6, N1 &N2; N3; N4; N5.
In this case there is at least one v term and the highest frequency term is a v.

Therefore we can assume the derivatives fall on the v1 term with the highest fre-
quency.

(2a) w2; w3; w4 are all z terms, N5 �N4 �N3 �N2 �N
1=2.d�1/
1 .

We have assumed that v1 has the highest frequency: N1 �N2; N3; N4; N5. Now
we apply Hölder’s inequality, Lemma 4.1 and our probabilistic bound on the linear
term, Theorem 2.4, and note that s > 1

2
. Setting � D 2.dC2/=d and � D 2.dC2/,

we have

I D

Z T

0

Z
Rd
hri

�v1z2z3z4z5v6 dx dt

� khri
�v1kL�kz2kL�kz3kL�kz4kL�kz5kL�kv6kL�

� kv1kY �.N2N3N4N5/
�s

5Y
iD2

khri
szikL�kv6kY 0

� kv1kY �.N2N3N4N5/
�1=2

5Y
iD2

khri
szikL�kv6kY 0

� kv1kY �.N2/
�2

5Y
iD2

khri
szikL�kv6kY 0

� kv1kY �.N1/
�1=.d�1/

5Y
iD2

khri
szikL�kv6kY 0 :

Noting that N1 is the highest frequency, the sum over all frequencies is bounded
by kvkY �T

�R4kv6kY 0 off a set of measure c1e�c2R
2=k�k2

Hs .

(2b) w2; w3; w4 are all z terms, N2 �N
1=2.d�1/
1 .

We apply Hölder’s inequality, Theorem 2.4, Lemma 4.1 and our bilinear esti-
mate Corollary 4.5, utilizing the assumption that N2 �N

1=2.d�1/
1 . This time with

� D 2.d C 2/=d and � D 3.d C 2/, we have

I D

Z T

0

Z
Rd
hri

�v1z2z3z4z5v6 dx dt

� khri
�v1z2kL2kz3kL�kz4kL�kz5kL�kv6kL�

�N
�1
2
C

1 kv1kY �N
1
2
.d�1/�

2 kz2kY 0kz3kL�kz4kL�kz5kL�kv6kL�

�N
�1
2
C

1 kv1kY �N
1
4

1 kz2kY 0T
0CR3kv6kY 0

�N
�1
4
C

1 kv1kY �T
0CR4kv6kY 0 ;

which is � kvkY �T
0CR4 off a set of small measure.
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(2c) w2 D v2 is a v term, and the others can be anything.
In this case we still have N1 �Ni ; i D 2; : : : ; 6. Applying Hölder’s inequality,

Lemma 4.1, Theorem 2.4 and Corollary 4.5 with � D 2.d C 2/ and � D 4.d C 2/,
we have

I D

Z T

0

Z
Rd
hri

�v1w2w3w4z5v6 dx dt

� khri
�v1v2kL2kw3kL�kw4kL�kz5kL�kv6kL�=d

�N
�1
2
C

1 kv1kY �N
1
2
.d�1/�

2 kv2kY 0kw3kL�kw4kL�kz5kL�kv6kY 0

�N
�1
2
C

1 kv1kY �kv2kY
1
2
.d�1/
kw3kL�kw4kL�kz5kL�kv6kY 0 :

Now if w3 is a v term, then kw3kL� . kv3kY .d�1/=2 as required. If w3 is a z
term, then kw3kL� � T 0CR off a set of small measure. So either way this term is
bounded.

If w4 is a z term then, again, kw4kL� � T 0CR off a set of small measure. The
only trouble is if w4 is a v term, in which case our inequality only gives us

kw4kL� .
jrj.d=2/�.1=4/v4Y 0
.N 1=4

4 kv4kY .d�1/=2 :

There is an extra quarter derivative; however, since N1 is the biggest frequency
we have N 1=4

4 �N
1=4
1 , which is absorbed by the N�1=2C1 term.

Therefore each term in this case is bounded by T 0C.kvk5
X
� CR

5/kv6kY 0 off a
set of measure c1e�c2R

2=k�k2
Hs .

� Case 3: w1w2w3z4z5v6, N4 �N5 &N1; N2; N3; N6.
In this case the two biggest frequencies are on z terms, z4 and z5. The first three

terms are denoted wi , i D 1; 2; 3 and represent either v or z. Assume without loss
of generality that N1 �N2 � � � � �N4 �N5 �N6. Applying Hölder’s inequality
for exponents

�1 D � � � D �3 D 2.d C 2/; �4 D �5 D
4.dC2/

dC1
; �6 D

2.dC2/

d
;

Lemma 4.1 and Theorem 2.4 we haveZ T

0

Z
Rd
w1w2w3z4hri

�z5v6 dx dt

� kw1kL�1kw2kL�2kw3kL�3khri
�=2z4kL�4khri

�=2z5kL�5kv6kL�6 :

For 1
2
� < s this term is bounded by

T 0CR2.kvk3
Y .d�1/=2

CT 0CR3/kv6kY 0
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off a set of measure c1e�c2R
2=k�k2

Hs . Note that � < sC 1
2
< 2s so � satisfies the

requirements.

� Case 4: w1w2w3w4z5v6, N5 �N6 &N1; N2; N3; N4.
This is the biggest case by far and we divide it into several subcases based on

how many v terms there are.

(4a) z1z2z3z4z5v6, N5 �N6 &N1; N2; N3; N4.
Assume without loss of generality N1�N2�N3�N4.N5�N6. By Hölder’s

inequality with exponents .2; 8; 8; 8; 8/, Corollary 4.5 and Theorem 2.4, we have

I D

Z T

0

Z
Rd
z1z2z3z4hri

�z5v6 dx dt

� kz1v6kL2kz2kL8kz3kL8kz4kL8khri
�z5kL8

.N
1
2
.d�1/�sC

1 N
�1
2
C

5 khri
sz1kY 0kv6kY 0kz2kL8kz3kL8kz4kL8khri

�z5kL8

.N
1
2
.d�1/C

1 .N1N2N3N4/
�sN

�C�1
2
�sC

5

5Y
iD2

khri
szikY 0khri

szikL8kv6kY 0 :

When sC 1
2
> � and s > 1

8
.d � 1/ the powers of the frequencies are negative and

the sum is bounded by T 0CR5kv6kY 0 . We have assumed sC 1
2
> � � 1

2
.d �1/ in

the statement of the theorem, and note that for d � 3, 1
2
.d � 2/ > 1

8
.d � 1/ and

therefore we only require s > 1
2
.d � 2/; however,

s > �� 1
2
�
1
2
.d � 2/:

Thus, this term is bounded by T 0CR5kv6kY 0 off a set of measure c1e�c2R
2=k�k2

Hs .
In all following cases, we can assume there is at least one v, at least one z and

that N5 and N6 are the highest frequencies.

(4b) v1z2z3z4z5v6, N5 �N6 &N1; N2; N3; N4.
Assume without loss of generality that N2 �N3 �N4 �N5 �N6 �N1.
Noting that N2 � N3; N4, we set � D 6.d C 2/=.d C 1/ and apply Hölder’s

inequality, Corollary 4.5 and Theorem 2.4 to obtain

I D

Z T

0

Z
Rd
v1z2z3z4hri

�z5v6 dx dt

� kz2v6kL2kv1kL2.dC2/kz3kL�kz4kL�khri
�z5kL�

.N
�1
2
C

6 N
1
2
.d�1/�

2 kz2kY 0kv6kY 0kv1k
Y
1
2
.d�1/

.N3N4/
�sN

��s
5 R3

.N ��s� 1
2
C

6 N
1
2
.d�1/�s�

2 .N3N4/
�sT 0CR4kv1k

Y
1
2
.d�1/
kv6kY 0

.N ��s� 1
2
C

6 .N2N3N4/
1
6
.d�1/�s

kv1k
Y
1
2
.d�1/

T 0CR4kv6kY 0 :
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When s > 1
6
.d � 1/ the powers of the frequencies are negative, and the sum is

bounded by kvkY .d�1/=2T
0CR4kv6kY 0 . And indeed, s > 1

6
.d � 1/, since we have

s > 1
2
.d � 2/ and d � 3.

(4c) v1v2z3z4z5v6, N5 �N6 &N1; N2; N3; N4.
Assume without loss of generality that N1 � N2; N3 � N4 � N5 � N6. With

� D 6.d C 2/=.d C 1/, by Hölder’s inequality, Corollary 4.5 and Theorem 2.4 we
have

I D

Z T

0

Z
Rd
v1v2z3z4hri

�z5v6 dx dt;

� kv1v6kL2kv2kL2.dC2/kz3kL�kz4kL�khri
�z5kL�

.N
�1
2
C

6 N
1
2
.d�1/�

1 kv1kY 0kv6kY 0kv2k
Y
1
2
.d�1/

.N3N4/
�s.N5/

�T 0CR3

.N 0�
1 .N3N4/

�sN
��s� 1

2
C

5 kv1k
Y
1
2
.d�1/
kv2k

Y
1
2
.d�1/

T 0CR3kv6kY 0

.N 0�
1 N 0�

2 .N3N4/
�sN

��s� 1
2
C

5 kv1k
Y
1
2
.d�1/
kv2k

Y
1
2
.d�1/

T 0CR3kv6kY 0 :

Since sC 1
2
> �, all powers of the frequencies are negative and the sum is bounded

by kvk2
Y .d�1/=2

T 0CR3kv6kY 0 .

(4d) v1v2v3z4z5v6, N5 �N6 &N1; N2; N3; N4.
Assume without loss of generality that N1 � N2 � N3; N4 � N5. Setting

� D 2.d C 2/ and � D 4.d C 2/=d , by Hölder’s inequality, Corollary 4.5 and
Theorem 2.4 we have

I D

Z T

0

Z
Rd
v1v2v3z4hri

�z5v6 dx dt;

� kv1v6kL2kv2kL�kv3kL�kz4kL�khri
�z5kL�

.N
�1
2
C

6 N
1
2
.d�1/�

1 kv1kY 0kv6kY 0kv2k
Y
1
2
.d�1/
kv3k

Y
1
2
.d�1/

N�s4 N
��s
5 T 0CR2

.N 0�
1 N�s4 N

��s� 1
2
C

5 kv1k
Y
1
2
.d�1/
kv2k

Y
1
2
.d�1/
kv3k

Y
1
2
.d�1/

T 0CR2kv6kY 0 :

Since sC 1
2
> �, all powers of the frequencies are negative and the sum is bounded

by kvk3
Y .d�1/=2

T 0CR2kv6kY 0 .

(4e) v1v2v3v4z5v6, N5 �N6 &N1; N2; N3; N4.
Assume without loss of generality that N1 �N2 �N3 �N4 �N5. Again with

� D 2.d C 2/ and � D 4.d C 2/=d , by Hölder’s inequality, Corollary 4.5 and
Theorem 2.4 we have



ALMOST SURE LOCAL WELL-POSEDNESS FOR THE SUPERCRITICAL QUINTIC NLS 445

I D

Z T

0

Z
Rd
v1v2v3v4hri

�z5v6 dx dt;

� kv1v6kL2kv2kL�kv3kL�kv4kL�khri
�z5kL�

.N
�1
2
C

6 N
1
2
.d�1/�

1

�kv1kY 0kv6kY 0kv2k
Y
1
2
.d�1/
kv3k

Y
1
2
.d�1/
kv4k

Y
1
4
d
N
��s
5 T 0CR

.N 0�
1 N

� 1
4
.d�2/

4 N
��s� 1

2
C

5

�kv1k
Y
1
2
.d�1/
kv2k

Y
1
2
.d�1/
kv3k

Y
1
2
.d�1/
kv4k

Y
1
2
.d�1/

T 0CRkv6kY 0 :

Since sC 1
2
> �, all powers of the frequencies are negative and the sum is bounded

by kvk4
Y .d�1/=2

T 0CRkv6kY 0 off a set of small measure.

In each case the term is bounded by CT � .R5Ckvk5
Y
�/kv6kY 0 , for some � > 0.

This completes the proof of the first part of the proposition. The proof of

k�v1��v2kX� � CT
� .R4Ckv1k

4
X
� Ckv2k

4
X
�/kv1� v2kX�

off a set of measure c1e�c2R
2=k�k2

Hs is similar and is omitted. �

Using this key proposition we can close the fixed point argument in the final
theorem.

Proof of Theorem 1.1. Let Br denote the ball of radius r in X�.Œ0; T // with
1
2
d > s C 1

2
> � � 1

2
.d � 1/ as in the previous proposition. We claim that for

small enough T and small but fixed r the map � is a contraction on Br outside a
set of measure c1e�c2R

2=k�k2
Hs . See Section 1.6 of [Tao 2006] for an overview of

contraction based fixed point arguments.
To apply the theory for fix point arguments we require, off a small set, the

contraction conditions

� k�vkX�.Œ0;T // � r for v 2 Br ,

� k�v1��v2kX�.Œ0;T // �
1
2
kv1� v2kX�.Œ0;T //.

By the bounds from the proposition, we have, for all R and some fixed constant C ,
k�vkX� � CT

� .R5C r5/ and k�v1 � �v2kX� � Ckv1 � v2kX�T
� .2r4CR4/

off a set of measure c1e�c2R
2=k�kHs .

The contraction conditions are satisfied if we select r; R; T such that

r �R;

CT �R5 �
r

8
:

(46)

We can fix a value of r to satisfy the first bound. Selecting T such that T �R�5=�
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the second bound of a contraction is satisfied, and we conclude that the map � has
a fixed point in Br .

Therefore, for sufficiently small T , the equation �v D v has a solution in B
for every �! off this set of measure c1e�c2R

2=k�k2
Hs . Setting ˛ D �2�=5, there

exists a set �T �� of measure � 1� c1e�c2=T
˛k�k2

Hs such that for t 2 Œ0; T / the
Duhamel equation

v.t/D˙

Z t

0

�iS.t � t 0/
�
jvC zj4.vC z/

�
.t 0/ dt 0 (47)

has a unique solution in X�.Œ0; T //. The same argument proves the existence of a
solution in X�..�T; 0�/ on a set of the same measure. Taking u.t/D S.t/�Cv.t/
we have a solution on the interval .�T; T / in the class

H s.Rd /CC..�T; T /!H �.R3//�H s.Rd /: �

6. A condition for global well-posedness

We now present the proof of Theorem 1.2. The proof relies upon the following
proposition.

Proposition 6.1. Suppose 0 < c < 1
8

, 7
8
< s < 1 and k�!kH s.R3/ <R. There exists

a small positive constant �� 1
R

such that for any interval Œt1; t2� satisfying

jt1� t2j � 1; kvkL10L10.Œt1;t2��R3/
< � and khri

szk
LqLr .Œt1;t2��R3/

< �

for the pairs .q; r/ 2
˚
.10; 10/;

�
15
2
; 15
7

�
;
�
30
7
; 15

�	
, we have

kvkS1Cc.Œt1;t2��R3/ . kv.t1/kH1Cc.R3/CC.�/:

We first give the proof of Theorem 1.2 given that Proposition 6.1 is true. The
rest of the paper is devoted to proving Proposition 6.1.

Proof of Theorem 1.2. Assume Proposition 6.1 and the hypothesis of Theorem 1.2,
that there exists such a function ˛. Fix values T;R and a set �0T;R satisfying the
properties outlined in Theorem 1.2. By Theorem 2.4 and Lemma 2.1 there is a set
�T;R � �

0
T;R of measure at least 1� c1e�c2R

2=T k�kHs �˛.T;R/ such that for
any ! 2�T;R and .q; r/ 2

˚
.1; 2/; .10; 10/;

�
15
2
; 15
7

�
;
�
30
7
; 15

�	
we have

khri
szk

LqLr .Œ�T;T ��R3/
<R; (48)

and for any solution v to (6) we have

kvk
L10L10.Œ�T;T ��R3/

<R: (49)

Now assume that ! is indeed in the set �T;R. Note that by the local well-
posedness theory a solution exists on some short time interval .�t; t /. Suppose for
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sake of contradiction there is a pair of times �T < Tmin < 0 < Tmax < T such that
the solution v.t/ cannot be extended in H 1Cc past .Tmin; Tmax/.

We know that kvkL10L10..Tmin;Tmax/�R3/ <R and we have

khri
szk

LqLr .Œ�T;T ��R3/
<R

for each necessary pair .q; r/. Therefore, we can split ŒTmin; Tmax� into a finite num-
ber of subintervals I on which kvkL10L10.I�R3/ < � and khriszkLqLr .I�R3/ < �

for .q; r/ 2
˚
.10; 10/;

�
15
2
; 15
7

�
;
�
30
7
; 15

�	
.

This means that on each subinterval Œti ; tiC1�, the conditions of Proposition 6.1
are met, and therefore the kvkS1Cc.Œti ;tiC1��R3/ norm is finite. Therefore, there
exists a solution in the space S1Cc.Œti ; tiC1��R3/ on each successive interval
Œti ; tiC1�, which implies that the kvkL1H1Cc norm is bounded at each endpoint.
This means the S1Cc norm is bounded on the next interval. Iterating this argument
over each subinterval, this implies the S1Cc norm of the nonlinear solution v.t/
is bounded on the whole interval ŒTmin; Tmax�. In addition, kv.Tmin/kH1Cc and
kv.Tmax/kH1Cc are both finite. Therefore, one can apply the local well-posedness
theory to extend the solution beyond ŒTmin; Tmax�, which is a contradiction. �

This concludes the proof of Theorem 1.2. It remains to prove Proposition 6.1.

Proof of Proposition 6.1. The nonlinear part of the solution v satisfies the differen-
tial equation

ivt C�v D .vC z/jvC zj
4
D vjvj4Cf .v; z/ (50)

for the function f .v; z/D .vC z/jvC zj4� vjvj4 . jzj5Cjzj � jvj4.
By the Strichartz estimates (21), we have the bound

kvkS1Cc.Œt1;t2��R3/

. kv.t1/kH1Cc C
vjvj4

N 1Cc.Œt1;t2��R3/
Ckf .v; z/kN 1Cc.Œt1;t2��R3/: (51)

So we need to bound the two remaining terms.

Lemma 6.2. If v is a solution to (50), thenvjvj4
N 1Cc.Œt1;t2��R3/

. �4kvkS1Cc.Œt1;t2��R3/:

Proof. Note that the pair
�
10
3
; 10
3

�
is Schrödinger-admissible and has Hölder con-

jugate
�
10
7
; 10
7

�
. Therefore, by (21) we havev � jvj4

N 1Cc.Œt1;t2��R3/
.
hri1Ccv � jvj4

L10=7L10=7.Œt1;t2��R3/

. khri1Ccvk
L10=3L10=3.Œt1;t2��R3/

kvk4
L10L10.Œt1;t2��R3/

. kvkS1Cc.Œt1;t2��R3/kvk
4
L10L10.Œt1;t2��R3/

. �4kvkS1Cc.Œt1;t2��R3/: �
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Proposition 6.3. Assume 0 < c < 1
8

, f .v; z/D .vC z/jvC zj4� vjvj4 and that z
and v satisfy the R and � bounds in the proposition, where z is the linear solution
and v is the solution to (6). Then we have

kf kN 1Cc.Œt1;t2��R3/ . khri1Ccf kL3=2L18=13.Œt1;t2��R3/

.
p

�7R
�p
�RCkv1.t1/kH1.R3/

Ckhriu5k
L3=2L18=13.Œt1;t2��R3/

�
: (52)

Proof. Observing that
�
3; 18

5

�
is Schrödinger-admissible, we have

kf kN 1Cc.Œt1;t2��R3/ � kf kL3=2W 1Cc;18=13.Œt1;t2��R3/

. sup
kw6k

L3L18=5.Œt1;t2��R3/
�1

Z t2

t1

Z
x

hri
1CcŒf �w6 dw: (53)

The function f .v; z/ is a sum of terms of the form w1w2w3w4z5, where each
wi is either a v or z term. We dyadically decompose these first five terms (not w6),
refer to PNiwi as wi , and sum over all frequencies N1–N5 and combinations of
v; z in integrals of the form

khri
1Ccf k

L3=2L18=13.Œt1;t2��R3/

. sup
kw6k

L3L18=5.Œt1;t2��R3/
�1

Z t2

t1

Z
x

hri
1CcŒw1w2w3w4v5�w6 dw: (54)

We can assume that the 1C c derivatives fall on the term with highest frequency.
Before going through cases, we prove the following lemmas that combine interpo-
lation with the bilinear estimate, Theorem 4.6.

Lemma 6.4. If N1 � N2, then for any pair of dyadic components v1 D PN1v,
z2 D PN2z we have the bound

kv1z5kL30=11L15=8.Œt1;t2��R3/

.N�1=4�sCı=22 kv1k
1=2

L10L10.Œt1;t2��R3/

�
�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�1=2p
�R: (55)

Proof. First note that for N1 �N2 we have the bilinear estimate Theorem 4.6:

kv1z2kL2L2.Œt1;t2��R3/

.N�1=2Cı2 N 1�ı
1

�
kv1.t1/kL2.R3/Cku

5
k
L3=2L18=13.Œt1;t2��R3/

�
kz.t1/kL2.R3/;
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kv1z2kL2L2.Œt1;t2��R3/

.N�1=2�sCı2

�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�
R: (56)

Also, by Hölder’s inequality

kv1z2kL30=7L30=17.Œt1;t2��R3/
� kv1kL10L10.Œt1;t2��R3/

kz2kL30=4L30=14.Œt1;t2��R3/

�N�s2 kv1kL10L10.Œt1;t2��R3/
�: (57)

Now note that

1

30=11
D
1=2

2
C
1=2

30=7
;

1

15=8
D
1=2

2
C

1=2

30=17
: (58)

Interpolating with exponents 1
2
; 1
2

yields

kv1z5kL30=11L15=8.Œt1;t2��R3/

.N�1=4�sCı=22 kv1k
1=2

L10L10.Œt1;t2��R3/

�
�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�1=2p
�R: (59)

This completes the proof. �

Lemma 6.5. If N2 � N1, then for any pair of dyadic components v1 D PN1v,
z2 D Pn2z we have the bound

kv1z2kL30=11L15=8.Œt1;t2��R3/

.N�3=4Cı=21 N
1=2�s
2

�
�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�p
�R: (60)

Proof. The bilinear estimate Theorem 4.6 tells us that

kv1z2kL2L2.Œt1;t2��R3/

.N�1=2Cı1 N 1�ı
2

�
�
kv1.t1/kL2.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�
kz.t1/kL2.R3/

kv1z2kL2L2.Œt1;t2��R3/

�N
�3=2Cı
1 N 1�s

2

�
kv1kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�
R: (61)

Also, by Hölder’s inequality we have

kv1z2kL30=7L30=17.Œt1;t2��R3/
. kv1kL1L2.Œt1;t2��R3/

kz2kL30=7L15.Œt1;t2��R3/

.N�11 N�s2 kv1kS1.Œt1;t2��R3/�: (62)
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So with exponents 1
2
; 1
2

we interpolate between the L2L2 and L30=7L30=17

bounds, and apply the Strichartz estimate to get

kv1z2kL30=11L15=8.Œt1;t2��R3/

.N�3=4Cı=21 N
1=2�s
2

�
�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�p
�R; (63)

completing the proof. �

Lemma 6.6. If N1 �N2 then for z1 D PN1z, z2 D Pn2z we have

kz1z2kL30=11L15=8.Œt1;t2��R3/
�N

�1=4�sCı=2
2 N

1=2�s
1 R�: (64)

Proof. The proof is identical to that of Lemma 6.4 except that v1 has been replaced
with z1, which is put in an L10L10 norm. �

In analyzing terms of the form w1w2w3w4v5, there are two cases for where the
highest frequencies occur:

� Case 1: The highest frequency is on a z term.

� Case 2: The highest frequency is on a v term.

Throughout these cases we utilize the facts that kvkLqLr . kvkS1 for 2
q
C
3
r
D
1
2

and kvkLqLr . kvkS0 for .q; r/ Schrödinger admissible. We also use the above
three lemmas. Now we begin the analysis of cases.

Case 1: In this case the highest frequency is on z5. We have all the derivatives
falling on z5.

(1a) v1w2w3w4z5 case.
Applying Hölder’s inequality, Lemma 6.4 and our assumptions about � we have

I D

Z t2

t1

Z
x

v1w2w3w4hri
1Ccz5w6 dw

�N 1Cc
5 kw2kL10L10.Œt1;t2��R3/

kw3kL10L10.Œt1;t2��R3/
kw4kL10L10.Œt1;t2��R3/

�kv1z5kL30=11L15=8.Œt1;t2��R3/
kw6kL3L18=5

�N
3=4Cc�sCı=2
5 kw2kL10L10.Œt1;t2��R3/

kw3kL10L10.Œt1;t2��R3/

�kw4kL10L10.Œt1;t2��R3/
kv1k

1=2

L10L10.Œt1;t2��R3/

�
�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�1=2
�
p
�Rkw6kL3L18=5 : (65)
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For c < 1
8

, s > 7
8

and ıD 0C, the power ofN5 is negative, and the sum converges.
The wi terms are all bounded by kvikL10L10.Œt1;t2��R3/ or �. So this is bounded by
�4R1=2

�
kv1.t1/kH1.R3/Ckhriu

5kL3=2L18=13.Œt1;t2��R3/

�
1=2.

(1b) z1z2z3z4z5 case.
Applying Hölder’s inequality, Lemma 6.6, and our � bounds we have

I D

Z t2

t1

Z
x

z1z2z3z4hri
1Ccz5w6 dw

�N 1Cc
5 kz2kL10L10.Œt1;t2��R3/

kz3kL10L10.Œt1;t2��R3/

�kz4kL10L10.Œt1;t2��R3/
kz1z5kL30=11L15=8.Œt1;t2��R3/

kw6kL3L18=5

�N
1=2�s
1 N

3=4�sCcCı
5 kz2kL10L10kz3kL10L10

�kz4kL10L10�Rkw6kL3L18=5 : (66)

For s > 7
8

and c < 1
8

and ı D 0C, both powers are negative and this is bounded
by �4R.

Case 2: In this case the highest frequency falls on v, meaning N1 �N2; : : : ; N5.
Applying Hölder’s inequality, Lemma 6.5, and our � bounds, for N5 �N1 we have

I D

Z t2

t1

Z
x

hri
1Ccv1w2w3w4z5w6 dw

�N 1Cc
1 kw2kL10L10.Œt1;t2��R3/

kw3kL10L10.Œt1;t2��R3/

�kw4kL10L10.Œt1;t2��R3/
kv1z5kL30=11L15=8.Œt1;t2��R3/

kw6kL3L18=5

�N
�1=4CcCı=2
1 N

1=2�s
5 kw2kL10L10.Œt1;t2��R3/

kw3kL10L10.Œt1;t2��R3/

�kw4kL10L10.Œt1;t2��R3/

�
kv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�
�
p
�Rkw6kL3L18=5 : (67)

As in case (1a), the kwikL10L10.Œt1;t2��R3/ terms are all bounded by either �
or kvkL10L10.Œt1;t2��R3/. Thus, for c < 1

8
the sum over frequencies is bounded by

p

�7R
�
kv1.t1/kH1.R3/Ckhriu

5
kL3=2L18=13.Œt1;t2��R3/

�
:

So in all cases the integral is bounded by
p

�7R
�p
�RCkv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�
:

This completes the proof of Proposition 6.3. �

So combining Lemma 6.2, Proposition 6.3 and the fact that �� 1 we arrive at
the following pair of inequalities:
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kvkS1Cc.Œt1;t2��R3/

. kv.t1/kH1Cc Ckhri
1Ccf k

L3=2L18=13.Œt1;t2��R3/
,

khri
1Ccf k

L3=2L18=13.Œt1;t2��R3/

.
p

�7R
�p
�RCkv1.t1/kH1.R3/Ckhriu

5
k
L3=2L18=13.Œt1;t2��R3/

�
:

So all that remains is to bound

khriu5k
L3=2L18=13.Œt1;t2��R3/

� khriv5k
L3=2L18=13.Œt1;t2��R3/

Ckhrif k
L3=2L18=13.Œt1;t2��R3/

: (68)

First observe that

khriv5k
L3=2L18=13.Œt1;t2��R3/

� khriv � v4k
L3=2L18=13.Œt1;t2��R3/

� khrivk
L15=4L90=29.Œt1;t2��R3/

kvk4
L10L10.Œt1;t2��R3/

� kvkS1.Œt1;t2��R3/kvk
4
L10L10.Œt1;t2��R3/

. khriv5k
L3=2L18=13.Œt1;t2��R3/

kvk4
L10L10.Œt1;t2��R3/

C
�
kv.t1/kH1.R3/Ckf kN 1.Œt1;t2��R3/

�
kvk4

L10L10.Œt1;t2��R3/

and for kvkL10L10.Œt1;t2��R3/ less than � we have

khriv5k
L3=2L18=13.Œt1;t2��R3/

. �4
�
kv.t1/kH1.R3/Ckf kN 1.Œt1;t2��R3/

�
: (69)

Noting that kvkL10L10.Œt1;t2��R3/ is small and combining Proposition 6.3, (68)
and (69), we have

khri
1Ccf k

L3=2L18=13.Œt1;t2��R3/

.
p

�7R
�p
�RCkv.t1/kH1.R3/Ckhrif kL3=2L18=13.Œt1;t2��R3/

�
.
p

�7R
�p
�RCkv.t1/kH1.R3/Ckhri

1Ccf k
L3=2L18=13.Œt1;t2��R3/

�
: (70)

For �� 1
R

this implies that

khri
1Ccf k

L3=2L18=13.Œt1;t2��R3/
.
p

�7R
�p
�RCkv.t1/kH1.R3/

�
:

This gives us the necessary bound on f .
Combining this result with Lemma 6.2, we have

kvkS1Cc.Œt1;t2��R3/ . kv.t1/kH1Cc.R3/CC.�/ (71)

for sufficiently small �� 1
R

, which completes the proof of Proposition 6.1. �
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