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Purity of crystalline strata

Jinghao Li and Adrian Vasiu

Let p be a prime. Let n ∈ N∗. Let C be an Fn-crystal over a locally noether-
ian Fp-scheme S. Let (a, b) ∈ N2. We show that the reduced locally closed
subscheme of S whose points are exactly those x ∈ S such that (a, b) is a
break point of the Newton polygon of the fiber Cx of C at x is pure in S, i.e.,
it is an affine S-scheme. This result refines and reobtains previous results of
de Jong and Oort, of Vasiu, and of Yang. As an application, we show that for
all m ∈ N the reduced locally closed subscheme of S whose points are exactly
those x ∈ S for which the p-rank of Cx is m is pure in S; the case n = 1
was previously obtained by Deligne (unpublished) and the general case n ≥ 1
refines and reobtains a result of Zink.

1. Introduction

For a reduced locally closed subscheme Z of a locally noetherian scheme Y, let Z be
the schematic closure of Z in Y. We recall from [Nicole et al. 2010, Definition 1.1]
that Z is called pure in Y if it is an affine Y -scheme. The paper [Nicole et al.
2010] also uses a weaker variant of this purity which in [Li 2015] is called weakly
pure: we say Z is weakly pure in Y if each nonempty irreducible component of
the complement Z − Z is of pure codimension 1 in Z . It is well known that if Z
is pure in Y, then Z is also weakly pure in Y (for instance, see Proposition 13 of
Section 4.4).

Let n and r be natural numbers. Let p be a prime. Let S be a locally noether-
ian Fp-scheme. Let 8S : S → S be the Frobenius endomorphism of S. Let M
be a crystal of the gross absolute crystalline site CRIS(S/Spec(Zp)) introduced
in [Berthelot 1974, Chapter III, Example 1.1.3 and Definition 4.1.1] in locally
free OS/Spec(Zp)-modules of rank r . We assume that we have an isogeny φM :
(8n

S)
∗(M)→M; thus the pair C=(M,φM) is an Fn-crystal of CRIS(S/Spec(Zp)).

If the Fp-scheme S = Spec A is affine, then the pair C = (M, φM) is canonically
identified with a σ n

−F-crystal on A in the sense of [Katz 1979, Subsection (2.1)].
Let ν : [0, r ] → [0,∞) be a Newton polygon, i.e., a nondecreasing piecewise

linear continuous function such that ν(0)= 0 and the coordinates of all its break

MSC2010: primary 11G18, 14F30, 14L05; secondary 11G10, 14G35, 14K10, 14K99, 14L15.
Keywords: Fp-scheme, F-crystal, Newton polygon, p-rank, purity.

519

http://msp.org
http://msp.org/tunis
http://dx.doi.org/10.2140/tunis.2019.1-4
http://dx.doi.org/10.2140/tunis.2019.1.519


520 JINGHAO LI AND ADRIAN VASIU

points are natural numbers. For x ∈ S, let νx be the Newton polygon of the fiber Cx

of C at x . Let Sν be the reduced locally closed subscheme of S whose points are
exactly those x ∈ S such that we have νx = ν; see the Grothendieck–Katz theorem
[Katz 1979, Corollary 2.3.2]. If nonempty, Sν is a stratum of the Newton polygon
stratification of S defined by C.

Let a, b ∈ N be such that 0 ≤ a ≤ r . Let T = T(a,b)(C) be the reduced locally
closed subscheme of S whose points are those x ∈ S such that (a, b) is a break
point of νx . The end break point (r, νx(r)) remains constant under specializations
of x ∈ S. Thus locally in the Zariski topology of S, we can assume that there
exists d ∈ N such that for all x ∈ S we have νx(r) = d and this implies that T is
the reduced locally closed subscheme of S which is a finite union

⋃
ν∈Nr,d,a,b

Sν of
Newton polygon strata Sν indexed by the set Nr,d,a,b of all Newton polygons ν :
[0, r ]→[0,∞) with the two properties that ν(r)= d and (a, b) is a break point of ν.

It is known that T is weakly pure in S; see [Yang 2011, Theorem 1.1.] It is also
known that Sν is pure in S; see [Vasiu 2006, Main Theorem B]. This last result
implies the celebrated result of de Jong and Oort [2000, Theorem 4.1] which asserts
that Sν is weakly pure in S. Strictly speaking, the references of this paragraph work
with n = 1 but their proofs apply to all n ∈ N∗.

In general, a finite union of locally closed subschemes of S which are pure in S is
not pure in S. Therefore the following purity result which refines and reobtains the
mentioned results of de Jong and Oort, of Vasiu, and of Yang, comes as a surprise.

Theorem 1. With the above notation, T is pure in S.

In Section 2 we gather the few preliminary steps that are required to prove
Theorem 1 in Section 3. The following two corollaries are direct consequences of
Theorem 1. The first one for n = 1 just reobtains [Vasiu 2006, Main Theorem B]
in the locally noetherian case.

Corollary 2. Each Newton polygon stratum Sν is pure in S.

The p-rank χ(x) of Cx is the multiplicity of the Newton polygon slope 0 of νx .
Equivalently, χ(x) is the unique natural number such that (0, 0) and (χ(x), 0) are
the only break points of νx on the horizontal axis (i.e., which have the second
coordinate 0).

Corollary 3. Let m ∈ N. We consider the reduced locally closed subscheme Sm

of S whose points are exactly those x ∈ S such that the p-rank χ(x) of Cx is m.
Then Sm is pure in S.

If m > 0, then we have Sm = T(m,0)(C) and if m = 0, then we have S0 =

T(1,0)(C ⊕ E0) where E0 is the pullback to S of the Fn-crystal over Spec(Fp) of
rank 1 and Newton polygon slope 0 which has a Frobenius invariant global section;
therefore, regardless of what m is, Corollary 3 follows from Theorem 1.
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For n = 1 Corollary 3 was first obtained by Deligne [2011] and more recently
by Vasiu [2014] and Li [2015]. Corollary 3 also refines and reobtains a prior result
of Zink which asserts that Sm is weakly pure in S (see [Zink 2001], Proposition 5).

In Section 4 we first follow [Li 2015] to show that Corollary 2 follows directly
from Theorem 1 and then we follow [Vasiu 2014] to include a second proof of
Corollary 3 in the more general context provided by a functorial version of the
Artin–Schreier stratifications introduced in [Vasiu 2013, Definition 2.4.2] which is
simpler, does not rely on Theorem 1, and is based on Theorem 12 of Section 4.2.

Theorem 1 is due to Li [2015]. While the proof of [Yang 2011, Theorem 1.1]
follows the proof of [de Jong and Oort 2000, Theorem 4.1], the proof of Theorem 1
presented follows [Li 2015] and thus the proofs of [Vasiu 2006, Main Theorem B
and Theorem 6.1]. It is known (see [Nicole et al. 2010, Example 7.1]) that in
general Sm is not strongly pure in S in the sense of [Nicole et al. 2010, Definition
7.1], and therefore Theorem 1 and Corollary 3 cannot be improved in general (i.e.,
are optimal).

We refer to T(a,b)(C), Sν , and Sm as crystalline strata of S associated to C and
certain (basic) discrete invariants of Fn-crystals. Cases of nondiscrete invariants
stemming from isomorphism classes are also studied in the literature (for instance,
see [Vasiu 2006, Section 5.3] and [Nicole et al. 2010, Theorem 1.2 and Corol-
lary 1.5]). Crystalline strata have applications to the study in positive characteristic
of different moduli spaces and schemes such as special fibers of Shimura varieties
of Hodge type (for instance, see [Vasiu 2006] and [Nicole et al. 2010]).

2. Standard reduction steps

The above notation p, S, 8S , Z , n, r , C = (M, φM), Cx , νx , (a, b) ∈ N2,
T = T(a,b)(C), Sν , m, Sm , χ(x), and E0 will be used throughout the paper. For
a fixed Newton polygon ν, let S≥ν be the reduced closed subscheme of S whose
points are exactly those x ∈ S such that the Newton polygon νx is above ν, see
[Katz 1979, Corollary 2.3.2].

In what follows, by an étale cover we mean a surjective finite étale morphism
of schemes. For basic properties of excellent rings we refer to [Matsumura 1980,
Chapter 13]. If V → Y is a morphism of Fp-schemes and if F (or FY ) is an
Fn-crystal over Y, let FV be the pullback of F (or FY ) to an Fn-crystal over V,
i.e., of CRIS(V/Spec(Zp)). Let k(y) be the residue field of a point y ∈ Y. If
V = Spec(k(y))→ Y is the natural morphism, then we denote FV = FSpec(k(y))

simply by Fy (the fiber of F at y).
For an Fp-algebra R, let W (R) be the ring of p-typical Witt vectors with coef-

ficients in R. Let W(R)= (Spec R,Spec(W (R)), can) be the thickening in which
“can” stands for the canonical divided power structure of the kernel of the epimor-
phism W (R)→W1(R)= R. For s ∈N∗, let Ws(R) be the ring of p-typical Witt vec-
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tors of length s with coefficients in R. Let Ws(R)= (Spec R,Spec(Ws(R)), can) be
the thickening defined naturally by W(R). Let 8R be the Frobenius endomorphism
of either W (R) or Ws(R).

The property of a reduced locally closed subscheme being pure in S is local for
the faithfully flat topology of S, and thus until the end we will also assume that
S = Spec A is an affine Fp-scheme and that there exists d ∈ N such that for all
x ∈ S we have νx(r) = d. As the scheme S is locally noetherian and affine, it is
noetherian. To prove Theorem 1, we have to prove that T is an affine scheme.

2.1. Some abelian categories. Let M(Ws(R)) be the abelian category whose ob-
jects are pairs (O, φO), comprised of a Ws(R)-module O and a8n

R-linear endomor-
phism φO : O→ O (i.e., φO is additive and for all z ∈ O and σ ∈Ws(R) we have
φO(σ z) = 8n

R(σ )φO(z)) and whose morphisms f : (O1, φO1)→ (O2, φO2) are
Ws(R)-linear maps f : O1→ O2 satisfying f ◦φO1 = φO2 ◦ f . If t ∈ {0, . . . , s−1},
then by a quasi-isogeny of M(Ws(R)) whose cokernel is annihilated by pt we
mean a morphism f : (O1, φO1)→ (O2, φO2) of M(Ws(R)) which has the fol-
lowing two properties: (i) both O1 and O2 are projective Ws(R)-modules which
have the same positive rank locally in the Zariski topology of Spec(Ws(R)), and
(ii) the cokernel O2/ f (O1) is annihilated by pt. An object (O, φO) of M(Ws(R))
is called divisible by t ∈ {1, . . . , s − 1} if O is a projective Ws(R)-module such
that Im(φO)⊆ pt O .

For l ∈ N∗ we have a natural functor

M(Ws+l(R))→M(Ws(R))

to be referred to, by abuse of language, as the reduction modulo ps functor.
If Y is a Spec(Fp)-scheme, in a similar way we define the scheme Ws(Y ), its

Frobenius endomorphism 8Y , and the abelian category M(Ws(Y )), and speak
about quasi-isogenies of M(Ws(Y )) whose cokernels are annihilated by pt with
t ∈ {0, . . . , s − 1}, about objects of M(Ws(Y )) divisible by t ∈ {1, . . . , s − 1},
and about reduction modulo ps functors M(Ws+l(Y ))→M(Ws(Y )). We have
canonical identifications

M(Ws(R))=M(Ws(Spec R)).

For homomorphisms R→ R1 and morphisms Y1→ Y , we have natural pullback
functors M(Ws(R))→M(Ws(R1)) and M(Ws(Y ))→M(Ws(Y1)).

To prove that T is an affine scheme, we can also assume that the evaluation M
of M at the thickening W1(A) is a free A-module of rank r . The evaluation of φM
at this thickening is a 8n

A-linear endomorphism φM : M→ M.
In what follows we will apply twice the following elementary general fact which

can be also deduced easily from the elementary divisor theorem.
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Fact 4. Let D be a discrete valuation ring and let π ∈ D be a uniformizer of it.
Let s, t ∈ N be such that s > t . Let Ds = D/(π s). Let gs : Dr

s → Dr
s be a Ds-

linear endomorphism such that its cokernel is annihilated by π t. Then for each
x ∈ Dr

s −πDr
s , we have gs(x) ∈ Dr

s −π
t+1 Dr

s .

Proof. Let g : Dr
→ Dr be a D-linear endomorphism which lifts gs . Let E =

Im(g)+π s Dr (one can easily check that E = Im(g) but we will not stop to argue
this). It is a free D-module of rank r which (as π t Coker(gs)= 0) contains π t Dr.
Thus π s Dr

⊆ pE and therefore Im(g) surjects onto the D1-vector space E/πE of
rank r . Hence a Ds-basis of Dr

s maps via gs to a D1-basis of E/πE . From this and
the fact that π t+1 Dr

⊆ πE we get that no element of a Ds-basis of Dr
s is mapped

by gs to π t+1 Dr
s . Thus the fact holds. �

2.2. On (a, b). If (a, b) is (0, 0) or (r, d), then T = S. If a = 0 and b > 0 or if
a = r and b 6= d, then T = ∅. Thus, to prove that T is an affine scheme we can
assume that 1≤ a ≤ r − 1.

Lemma 5. Let k be a field of characteristic p. Let ν : [0, r ] → [0,∞) be the
Newton polygon of an Fn-crystal F over k of rank r. Let a, b ∈ N be such that
1 ≤ a ≤ r − 1. Then (a, b) is a break point of ν if and only if (1, b) is a break
point of the Newton polygon

∧a
(ν) of the Fn-crystal over k of rank

(r
a
)

which is
the exterior power

∧a
(F) of F .

Proof. Let α1 ≤ · · · ≤ αr be the Newton polygon slopes of ν. Let β1 ≤ · · · ≤ β(r
a)

be the Newton polygon slopes of
∧a
(ν). We have

β1 =

a∑
i=1

αi and β2 =

( a−1∑
i=1

αi

)
+αa+1 = β1+αa+1−αa.

Thus β1 <β2 if and only if αa <αa+1. Moreover, (a, b) is a break point of ν if and
only if we have αa <αa+1, and (1, b) is a break point of the Newton polygon

∧a
(ν)

if and only if we have β1 < β2. The lemma follows from the last two sentences. �

Based on Lemma 5, to prove that T is an affine scheme, by replacing C with its
exterior power

∧a
(C), we can assume that a = 1.

2.3. A description of T. Let q ∈ N∗ be such that for each x ∈ S the Newton
polygon slopes of the Fnq-crystal over Spec(k(x)) which is the q-th iterate of Cx ,
are all integers. For instance, as each Newton polygon slope of Cx is a rational
number whose denominator is a natural number at most equal to r , we can take
q = r !. Thus by replacing n by nq and C by its q-th iterate, we can assume that,
for each x ∈ S, the Newton polygon slopes of Cx are natural numbers.

We consider the Newton polygon ν1 : [0, r ] → [0,∞) whose graph is Figure 1.
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Figure 1. The Newton polygon ν1 : [0, r ] → [0,∞).

If x ∈ T, then because all Newton polygon slopes of Cx are natural numbers,
these Newton polygon slopes are α1 = b, α2 ≥ b+ 1, αr−1 ≥ b+ 1, and αr =

d−
∑r−1

i=1 αi ≥ b+ 1. Therefore, if x ∈ T then we have x ∈ S≥ν1 . This implies that
T is a subscheme of the closed subscheme S≥ν1 of S. By replacing S with S≥ν1 we
can assume that S = S≥ν1 . Thus S is reduced.

If r(b+1)>d , then S= S≥ν1 = Sν1 = T and thus T is affine. Thus we can assume
that r(b+ 1)≤ d and therefore there exists a Newton polygon ν2 : [0, r ] → [0,∞)
whose graph is Figure 2.

If x ∈ S − T = S≥ν1 − T, then all Newton polygon slopes of Cx are natural
numbers α1 ≥ b+ 1, α2 ≥ b+ 1, αr−1 ≥ b+ 1, and αr = d −

∑r−1
i=1 αi ≥ b+ 1

and thus νx is above ν2. If νx is not above ν2, then as νx is above ν1 (as S = S≥ν1)
we have α1 = b and αi ≥ b+ 1 for i ∈ {2, . . . , r}.

With the last two sentences, we have the identities

T = T(1,b) = S− S≥ν2 = S≥ν1 − S≥ν2 .

Thus, under all the above reduction steps, T is an open subscheme of S.

2.4. On S. The statement that T is an affine scheme is local in the faithfully flat
topology of S and therefore until the end of Section 3 we will assume that A is
a complete local reduced noetherian ring. Thus A is also excellent and therefore
its normalization in its ring of fractions is a finite product of normal complete
local noetherian integral domains. Based on [Vasiu 2006, Lemma 2.9.2], which
is a standard application of Chevalley’s theorem of [Grothendieck 1961, Chap-
ter II, (6.7.1)], to prove that T is an affine scheme we can replace A by one of the
factors of the mentioned finite product. Thus we can assume that A is a normal
complete local noetherian integral domain. We can also assume that T is nonempty
and therefore it is an open dense subscheme of S. Let K be the field of factions of
A and let K be an algebraic closure of it.
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Figure 2. The Newton polygon ν2 : [0, r ] → [0,∞).

3. Proof of Theorem 1

In this section we complete the proof of Theorem 1, i.e., we prove that T is an
affine scheme when a = 1 < r , when for each x ∈ S all Newton polygon slopes
of Cx are natural numbers, when we have S = S≥ν1 = Spec A with A a normal
complete local noetherian integral domain, and when T = T(1,b) = S − S≥ν2 is
open dense in S. Let Eb = (Mb, φMb) be the pullback to S of the Fn-crystal over
Spec(Fp) of rank 1 and Newton polygon slope b defined by the pair (Zp, pb1Zp).
Let η be the generic point Spec K → S of S. Let s, l ∈ N∗.

In Section 3.1 we consider commutative affine group schemes Hs over S of mor-
phisms between certain evaluations of Eb and C. In Section 3.2 we glue morphisms
between different such evaluations in order to introduce good sections above T of
the morphisms Hs → S in Section 3.3. In Section 3.4 we complete the proof of
Theorem 1. The key idea (the plan) can be summarized as follows: under suitable
reductions, for s � 0 via such good sections above T we can identify T with a
closed subscheme of Hs and therefore we can conclude that T is an affine scheme.

If R is a reduced perfect ring of characteristic p, following [Katz 1979] we say
that an Fn-crystal F over Spec R is divisible by b if its evaluation at the endomor-
phism 8n

R of the thickening W(R) is defined by a 8n
R-linear endomorphism whose

q-th iterate for all q ∈ N∗ is congruent to 0 modulo pbq. Thus if y ∈ Spec R, then
the Hodge polygon slopes of Fy are all greater than or equal to b.

3.1. Moduli group schemes of morphisms. For an A-algebra B and an Fn-crystal
F over B, let Es(F) be the evaluation of F at the thickening Ws(B); it is an object
of the category M(Ws(B)). In particular, we write Es(CB) = (Ms,B, φMs,B ) and
let Es(Eb,B) = (Ns,B, φNs,B ). Thus we have M = M1,A, φM = φM1,A , and Ns,B =

Ws(B). Moreover φNs,B : Ns,B → Ns,B is the 8n
B-linear endomorphism which

maps 1 to pb and φMs,B : Ms,B→ Ms,B is a 8n
B-linear endomorphism and we have
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Ms,B =Ws(B)⊗Ws(A) Ms,A. The kernel of the epimorphism Ws(B)→W1(B)= B
is a nilpotent ideal. Based on this and the fact that M is a free A-module of rank r ,
we get that each Ms,B is a free Ws(B)-module of rank r .

We consider the commutative affine group scheme Hs over S which represents
the following functor: for an A-algebra B, the abelian group

Hs(B)= HomM(Ws(B))(Es(Eb,B), Es(CB))

is the group of all Ws(B)-linear maps f : Ns,B→ Ms,B which satisfy the identity
f ◦φNs,B = φMs,B ◦ f . The S-scheme Hs is of finite presentation (for n = 1, see [

Vasiu 2006, Lemma 2.8.4.1], the proof of which applies to all n ∈ N∗).
Let x ∈ S be a point of codimension 1. Thus the local ring Dx :=OS,x of S at x

is a discrete valuation ring. Let Ex be a complete discrete valuation ring which
dominates Dx and has a residue field which is algebraically closed. Let Px be the
perfection of Ex . We recall that CPx is the pullback of C via the natural morphism
Spec Px → S. As S = S≥ν1 , the Newton polygon slopes of the two fibers of CPx

are greater than or equal to b. Thus from [Katz 1979, Theorem 2.6.1], we get the
existence of an Fn-crystal D over Spec Px which is divisible by b and which is
equipped with an isogeny

ψx : D→ CPx

whose cokernel is annihilated by pt for some t ∈N. Based on the proof of [loc. cit.],
we can assume that

t = (r − 1)b

depends only on r and b.

Proposition 6. We assume that the point x ∈ S of codimension 1 belongs to T. Then
there exists a unique Fn-subcrystal Db of D which is isomorphic to the pullback
Eb,Px of Eb. Moreover, Db has a unique direct supplement in D.

Proof. We know that for y ∈ Spec Px , all Hodge polygon slopes of Dy are at least b.
If all Hodge polygon slopes of Dy are at least b+1, then all Newton polygon slopes
of Dy are at least b+ 1. As under the morphism Spec Px → S, the point y maps to
either x ∈ T or η ∈ T and as ψx is an isogeny, (1, b) is a break point of the Newton
polygon of Dy . From the last three sentences we get that (1, b) is a point of the
Hodge polygon of Dy .

Thus for each point y ∈ Spec Px , (1, b) is a break point of the Newton polygon
of Dy and is a point of the Hodge polygon of Dy . Due to this, from [Katz 1979,
Theorem 2.4.2] we get that there exists a unique direct sum decomposition,

D = Db⊕D>b,

into Fn-crystals over Spec Px , where Db is of rank 1 and each fiber of it at a point
y ∈ Spec Px has all Hodge and Newton polygon slopes equal to b and where D>b
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is of rank r − 1 and each fiber of it at a point y ∈ Spec Px has all Newton polygon
slopes greater than b (and has all Hodge polygon slopes greater than or equal to b).

As D is divisible by b, Db and D>b are also divisible by b.
As Px is perfect, for each l ∈N∗ we have W (Px)/(pl)=Wl(Px) and the module

of differentials �1
Wl (Px )

is 0. Thus, from [Berthelot and Messing 1990, Proposition
1.3.3] we get that an Fn-crystal over Spec Px is uniquely determined by its evalu-
ation at the thickening W(Px). The evaluation of Eb,Px at the thickening W(Px) is
canonically identified with (W (Px), pb8n

Px
) and the evaluation of Db at the thick-

ening W(Px) can be identified with (W (Px), pb8b), where 8b :W (Px)→W (Px)

is a 8n
Px

-linear endomorphism such that 8b(1) generates W (Px).
As Px is the perfection of Ex and as Ex is complete and has an algebraically

closed residue field, the rings W (Px) and Wl(Px) are strictly henselian and p-
adically complete. We check that these properties imply that there exists a unit υ
of W (Px) such that we have

8b(υ)=8
n
Px
(υ)8b(1)= υ.

If n = 1, then from [Berthelot and Messing 1990, Proposition 2.4.9] we get that
for each l ∈ N∗ there exists a unit υl ∈ W (Px) such that 8b(υl)− υl ∈ pl W (Px),
and the proof of [loc. cit.] confirms that we can assume that υl+1− υl ∈ pl W (Px).
Thus for n = 1 we can take υ to be the p-adic limit of the sequence (υl)l≥1. This
argument applies entirely for n > 1.

Multiplication by υ defines an isomorphism

(W (Px), pb8n
Px
)→ (W (Px), pb8b)

which defines an isomorphism Eb,Px → Db. �

From now we will assume that x ∈ T. We consider a composite morphism

jx [s] : Es(Eb,Px )→ Es(Db)→ Es(D)= Es(Db)⊕ Es(D>b)

in which the first arrow is an isomorphism and the second arrow is the split monomor-
phism associated to the direct sum decomposition.

Let
ix(s) : Es(Eb,Px )→ Es(CPx )

be the composite of jx [s] with the morphism ψx [s] : Es(D)→ Es(CPx ) which is the
evaluation of the isogeny ψx at the thickening Ws(Px) (i.e., which is the reduction
modulo ps of ψx ). From now on, we will take s > t = (r − 1)b. We note that
ψx [s] is a quasi-isogeny whose cokernel is annihilated by pt and whose domain is
divisible by b.
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3.2. Gluing morphisms. For each point x ∈ T of codimension 1 (i.e., whose local
ring Dx is a discrete valuation ring), we follow [Vasiu 2006, Section 2.8.3] to show
the existence of a finite field extension Kx of K and of an open subset Tx of the
normalization of T in Spec Kx such that Tx has a local ring which is a discrete
valuation ring D+x that dominates Dx and moreover we have a morphism

iTx (s) : Es(Eb,Tx )→ Es(CTx )

of the category M(Ws(Tx)) which is the composite of a split monomorphism with
a quasi-isogeny whose cokernel is annihilated by pt and whose domain is divisible
by b.

To check this, with the notations of Section 3.1 we consider four identifications,

Es(CDx )= (Ws(Dx)
r , φs,x), Es(Eb,Dx )= (Ws(Dx), pb8n

Dx
),

Es(Db)= (Ws(Px), pb8n
Px
), Es(D>b)= (Ws(Px)

r−1, pbφs,>b,x).

Now, the Ws(Px)-linear map ψs,Px : Ws(Px)
r
→ Ws(Px)

r defining ψx [s] and the
8n

Px
-linear map φs,>b,x :Ws(Px)

r−1
→Ws(Px)

r−1 involve a finite number of coor-
dinates of Witt vectors of length s and therefore are defined over Ws(Bx), where
Bx is a finitely generated Dx -subalgebra of Px . We can choose Bx such that the
resulting Ws(Bx)-linear map ψs,Bx : Ws(Bx)

r
→ Ws(Bx)

r has a cokernel annihi-
lated by pt. The faithfully flat morphism Spec Bx → Spec Dx has quasisections
(see [Grothendieck 1967, Corollary 17.16.2]) and therefore there exists a finite
field extension Kx of K and a discrete valuation ring D+x of the normalization T
in Kx which dominates Dx and for which we have a Dx -homomorphism Bx→ D+x .
The Ws(D+x )-linear map ψs,D+x : Ws(D+x )

r
→ Ws(D+x )

r which is the natural ten-
sorization of ψs,Bx induces (via restriction to the first factor Ws(D+x ) of Ws(D+x )

r )
a morphism iD+x (s) : Es(Eb,D+x )→ Es(CD+x ) of the category M(Ws(D+x )) which
is the composite of a split monomorphism with a quasi-isogeny whose cokernel
is annihilated by pt and whose domain is divisible by b. It is easy to see that
there exists an open subset Tx of the normalization of T in Kx which has D+x as
a local ring and for which there exists a morphism iTx (s) : Es(Eb,Tx )→ Es(CTx ) of
the category M(Ws(Tx)) that has all the desired properties and that extends the
morphism iD+x (s) of the category M(Ws(D+x )).

By working with s+ l instead of s, we can assume that there exists l ∈N, l� 0
such that iTx (s) : Es(Eb,Tx )→ Es(CTx ) is the reduction modulo ps of a morphism

iTx (s+ l) : Es+l(Eb,Tx )→ Es+l(CTx )

of the category M(Ws+l(Tx)).
Let Is be the set of morphisms Es(Eb,K )→ Es(CK ) which lift to morphisms

Es+l(Eb,K )→ Es+l(CK ) for some l � 0. From [Vasiu 2006, Theorem 5.1.1(a)]
(applied for l � 0 which depends only on b and r) we get that each element
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of Is is the evaluation at the thickening Ws(K ) of a morphism of Fn-crystals
Eb,K → CK (strictly speaking [loc. cit.] is stated for n = 1 but its proof works
for all n ∈ N∗). This implies that Is is a finite set whose elements are all pullbacks
of morphisms of M(Ws(L)), where L is a suitable finite field extension of K
contained in K. By replacing S with its normalization in L , we can assume that
L = K. As inside Kx we have an identity D+x ∩ K = Dx , inside Ws(Kx) we have
an identity Ws(D+x )∩Ws(K )=Ws(Dx). From the last three sentences we get that
the pullback iD+x (s) of iTx (s) to a morphism of M(Ws(D+x )) is the pullback of a
morphism of M(Ws(Dx)). Based on this we can assume that there exists an open
subscheme Ux of T which contains x and which has the property that there exists
a morphism

iUx (s) : Es(Eb,Ux )→ Es(CUx )

of the category M(Ws(Ux)) such that iTx (s) is the pullback of it.
We consider an identification CK = (Q, φQ), where Q=W (K )r and φQ :Q→Q

is a 8n
K

-linear endomorphism. The Newton polygon νη of CK has the Newton
polygon slope b with multiplicity 1 and therefore there exists a unique nonzero
direct summand Qb of Q such that we have φQ(Qb) = pb Qb. The rank of the
W (K )-module Qb is 1. Let zb ∈ Qb be such that Qb=W (K )zb and φQ(zb)= pbzb;
it is unique up to multiplication by units of W (Fpn ).

We have a canonical identification Eb,K = (W (K ), pb8n
K ). The morphism

Es(Eb,K )→ Es(CK ) defined by iTx (s) is an element of Is and therefore it is the re-
duction modulo ps of a morphism λx : (W (K ), pb8n

K )→ (Q, φQ) of Fn-crystals
over K. Clearly λx(1) ∈ Qb and thus there exists a unique element τx ∈ W (Fpn )

such that we have

λx(1)= τx zb.

As iTx (s) is the composite of a split monomorphism with a quasi-isogeny whose
cokernel is annihilated by pt from Fact 4 applied with D = W (K ) we get that
τx modulo pt+1 is a nonzero element of Wt+1(Fpn ). Therefore we can write
τx = ptx ux , where ux ∈W (Fpn ) is a unit and where tx ∈ {0, . . . , t}.

From now on, we will take s > 2t . We consider the morphism

θx := pt−tx u−1
x iUx (s) : Es(Eb,Ux )→ Es(CUx )

of the category M(Ws(Ux)); its pullback to a morphism of M(Ws(Tx)) is the com-
posite of a split monomorphism with a quasi-isogeny whose cokernel is annihilated
by pt+tx and thus also by p2t and whose domain is divisible by b. The pullback
of θx to a morphism of M(Ws(K )) is the reduction modulo ps of the morphism
pt−tx u−1

x λx : (W (K ), pb8n
K )→ (Q, φQ) which maps 1 to pt zb and which does

not depend on the point x ∈ T of codimension 1.
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Let U be the open subscheme of T which is the union of all Ux ’s. From the
previous paragraph we get that the θx ’s glue together to define a morphism

θ : Es(Eb,U )→ Es(CU )

of the category M(Ws(U )).
By replacing S with its normalization in any of the finite field extensions Kx

of K, we can assume that there exists an open dense subscheme U0 of U such
that the pullback θU0 : Es(Eb,U0)→ Es(CU0) of θ to a morphism of M(Ws(U0)) is
the composite of a split monomorphism with a quasi-isogeny whose cokernel is
annihilated by p2t and whose domain is divisible by b: under such a replacement,
we can take U0 to be Tx itself.

3.3. Good section of Hs. We have codimT (T −U ) ≥ 2 and the morphism θ is
defined by a section θ :U → Hs denoted in the same way.

Let Is be the schematic closure θ(U ) of θ(U ) in Hs . As the scheme Hs is
affine and noetherian and as U is an integral scheme, the scheme Is is also affine,
noetherian, and integral. We have a commutative diagram:

Is

affine
��

U �
�

//

open θ

77

T �
�

// S

We consider the pullback Js of Is to T :

Js
� � open

//

ξ affine
��

Is

affine
��

U �
�

open
//

/ �

open
??

T �
�

open
// S

Lemma 7. The affine morphism ξ : Js→ T is an isomorphism.

Proof. To prove that ξ is an isomorphism, we can assume that T = S = Spec A
is an affine scheme. As ξ is an affine morphism, Js = Spec B is also an affine
scheme. Since U is open dense in both T and Is , T and Js have the same field
of fractions K. As codimT (T −U )≥ 2 and as U is an open subscheme of both T
and Js , we have Ap= Bp for each prime p∈ S= T of height 1. As A is a noetherian
normal domain, inside K we have

A ⊆ B ⊆
⋂

q∈Spec B of height 1

Bq ⊆

⋂
p∈Spec A of height 1

Ap = A

(see [Matsumura 1980, (17.H), Theorem 38] for the equality part; the first inclusion
is defined by ξ ). Therefore A = B. �
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Lemma 7 allows us in what follows to identify T itself with an open dense
subscheme of Is (i.e., with Js).

3.4. End of the proof. In this subsection we will show that for s � 0, we have
T = Is . This will complete the proof of Theorem 1 as Is is an affine scheme.

It remains to show that the assumption that for s� 0 we have T 6= Is leads to
a contradiction. This assumption implies that there exists an algebraically closed
field k of characteristic p and a morphism ζ0 : Spec(k[[X ]])→ Is with the properties
that under it the generic point of Spec(k[[X ]]) maps to U0 and its special point maps
to Is − T.

Let P = k[[X ]]perf be the perfection of k[[X ]], let κ be the perfect field which is
the field of fractions of P, and let ζ :Spec P→ Is be the morphism defined naturally
by ζ0. To the composite of ζ with the closed embedding Is → Hs corresponds a
morphism

ω : Es(Eb,P)→ Es(CP)

of the category M(Ws(P)) whose pullback ωκ to a morphism of M(Ws(κ)) is
equal to the pullback θκ : Es(Eb,κ)→ Es(Cκ) of θ .

We have a natural identification Es(Eb,P)= (Ws(P), pb8n
P) and we consider an

identification Es(CP)= (Ws(P)r , φ). Thus we have a Ws(P)-linear map

ω :Ws(P)→Ws(P)r

such that ω ◦ pb8n
P = φ ◦ω. We consider an isogeny D→ CP whose cokernel is

annihilated by pt and with D divisible by b, again see [Katz 1979, Theorem 2.6.1]
(here t = (r − 1)b as stated before Proposition 6). Thus we also have an isogeny
ι : CP → D whose cokernel is annihilated by pt. We consider its evaluation

ι[s] : Es(CP)→ Es(D)

at the thickening Ws(P). Under an identification Es(D) = (Ws(P)r , pbϕ) with
ϕ : Ws(P)r → Ws(P)r as a 8n

P -linear endomorphism, we get a Ws(P)-linear
endomorphism ι[s] : Ws(P)r → Ws(P)r such that we have ι[s] ◦ φ = pbϕ ◦ ι[s].
We consider the composite morphism

ρ = ι[s] ◦ω : Es(Eb,P)→ Es(D)

identified with a Ws(P)-linear map ρ : Ws(P)→ Ws(P)r such that ρ ◦ pb8n
P =

pbϕ ◦ ρ. Let
γ = ρ(1)= (γ1, . . . , γr ) ∈Ws(P)r .

From the identity ρ ◦ pb8P = pbϕ ◦ ρ we get that the image of ϕ(γ ) − γ in
Ws−b(P)r is 0. Writing γ = puδ, where u ∈ N and δ ∈ Ws(P)r − pWs(P)r , we
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get that the image of ϕ(δ)− δ in Ws−b−u(P)r is 0. Let δ̄ ∈ Pr
− 0 be the image in

Pr
=W1(P) of δ (i.e., the reduction modulo p of δ).

Lemma 8. If s ≥ 3t + 1, then we have u ≤ 3t . Therefore, if moreover we have
s ≥ 3t + b+ 1, then the image of ϕ(δ)− δ in Ws−b−3t(P)r is 0.

Proof. To check this we can work over Ws(κ). As the generic point of Spec P
maps to U0, ωκ = θκ : Es(Eb,κ)→ Es(Cκ) is the pullback of the morphism θU0 . The
pullback ρκ of ρ to M(Ws(κ)) is a composite morphism

ρκ = ι[s]κ ◦ θκ : Es(Eb,κ)→ Es(Dκ)

and therefore it is the composite of a split monomorphism with a quasi-isogeny
whose cokernel is annihilated by p2t (as θU0 has this property) and with a quasi-
isogeny whose cokernel is annihilated by pt (as ι is an isogeny whose cokernel is
annihilated by pt ). Therefore, ρκ is also the composite of a split monomorphism
with a quasi-isogeny whose cokernel is annihilated by p3t. This implies that the
image of γ in W3t+1(κ) is nonzero (see Fact 4 applied with D =W (κ)) and there-
fore we have u ≤ 3t . �

Lemma 9. If s ≥ 3t + b+ 1, then the image of δ̄ in kr
=W1(k)r is nonzero.

Proof. We show that the assumption that the image of δ̄ ∈ Pr
− 0 in kr

=W1(k)r

is 0 leads to a contradiction. This assumption implies that there exists a largest
positive rational number c of denominator a power of p such that we have

δ̄ ∈ X c Pr
⊂ Pr

= (k[[X ]]perf)r .

Let ϕ̄ : Pr
→ Pr be the P-linear endomorphism which is the reduction modulo p

of ϕ. From Lemma 8 we get that δ̄ = ϕ̄(δ̄). Thus δ̄ ∈ ϕ̄(X c Pr )⊆ X pnc Pr and this
implies that pnc ≤ c which is a contradiction. �

From the inequality u ≤ 3t (see Lemma 8) and from Lemma 9 we get that for
s ≥ 3t + b + 1 the pullback ωk of ω to a morphism of M(Ws(k)) is such that
its reduction modulo p3t+1 is nonzero. For s > 3t + b+ 1+ l with l ∈ N∗ large
enough but depending only on b and r , the reduction of ωk modulo ps−l lifts to
a morphism E0,k→ Dk (see [Vasiu 2006, Theorem 5.1.1(a)], which, again, stated
for n = 1, applies to all n ∈N∗) which is nonzero. Thus Dk has Newton polygon
slope b with multiplicity at least 1. From this and the existence of the isogeny ι we
get that Ck has Newton polygon slope b with multiplicity at least 1. This implies
that the special point of Spec(k[[X ]]) under the composite of ζ0 : Spec(k[[X ]])→ Is

with the morphism Is→ S does not map to a point of Sν2 = S− T and so it maps
to a point of T. This is a contradiction, and ends the proof of Theorem 1. �
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4. Applications of Theorem 1

In Section 4.1 we prove Corollary 2. In Section 4.2 we follow [Vasiu 2013] to in-
troduce generalized Artin–Schreier systems of equations and Artin–Schreier strat-
ifications. In Section 4.3 we refine and reobtain Corollary 3 in the context of these
stratifications. Section 4.4 contains some complements, including Proposition 13,
which prove that “pure in” implies “weakly pure in”. Until the end let A be an
arbitrary Fp-algebra.

4.1. Proof of Corollary 2. To prove Corollary 3, in this subsection we can assume
that S = Spec A and d ∈ N are as in the paragraph before Section 2.1. We can also
assume that ν(r) = d as otherwise Sν = ∅ is pure in S. Let l ∈ N be such that
the Newton polygon ν has exactly l + 1 breaking points denoted as (a0, b0) =

(0, 0), . . . , (al, bl)= (r, d).
We have obvious identities

Sν =
[

S≥ν
l⋂

i=0
T(al ,bl )(C)

]
red
= [S≥ν ×S (T(a0,b0)(C))S × · · ·×S T(al ,bl )(C)]red.

From Theorem 1 we get that each T(al ,bl )(C) is an affine scheme. We recall that
S≥ν is a reduced closed subscheme of S. From the last three sentences we get that
Sν is an affine scheme, i.e., is pure in S. �

4.2. Artin–Schreier stratifications. Let x0, x1,. . . , xr be free variables. For i, j ∈
{1, . . . , r} let Pi, j (x0) ∈ A[x0] be a polynomial which is a linear combination with
coefficients in A of the monomials xq

0 with q ∈ N either 0 or a power of p. By a
generalized Artin–Schreier system of equations in r variables over A we mean a
system of equations of the form

xi =

r∑
j=1

Pi, j (x
p
j ) i ∈ {1, . . . , r}

to which we associate the A-algebra

B = A[x1, . . . , xr ]/

(
x1−

r∑
j=1

P1, j (x
p
j ), x2−

r∑
j=1

P2, j (x
p
j ), . . . , xr−

r∑
j=1

Pr, j (x
p
j )

)
.

Each equation of the form xi =
∑r

j=1 Pi, j (x
p
j ) will be called as a generalized Artin–

Schreier equation, and its degree ei ∈ N is defined as follows. We have ei = 0 if
and only if for all j ∈ {1, . . . , r} the polynomial Pi, j (x0) is a constant, and if ei > 0
then ei is the largest integer such that there exists a j ∈ {1, . . . , r} with the property
that the degree of Pi, j (x

p
j ) is pei.
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Let e =max{e1, . . . , er }; we call it the degree of the generalized Artin–Schreier
system of equations in r variables over A. Following [Vasiu 2013], when e ≤ 1 we
drop the word “generalized”.

Proposition 10. The morphism ε : Spec B→ Spec A is étale and surjective and its
geometric fibers have a number of points equal to a power of p.

Proof. If ei > 1, then by adding, for each j ∈ {1, . . . , r} such that the degree of
Pi, j (x

p
j ) is pei , an extra variable yi, j and an equation of the form yi, j = x p

j , the
generalized Artin–Schreier equation xi =

∑r
j=1 Pi, j (x

p
j ) gets replaced by several

generalized Artin–Schreier equations of degrees less than ei . By repeating this pro-
cess of adding extra variables and equations which (up to isomorphisms between
Spec A-schemes) do not change the morphism ε :Spec B→Spec A, we can assume
that e ≤ 1. Thus the proposition follows from [Vasiu 2013, Theorem 2.4.1(a) and
(b)]. �

Definition 11 is a natural extrapolation of [Vasiu 2013, Definition 2.4.2] which
applies to étale morphisms ε : Spec B→ Spec A as in Proposition 10.

Definition 11. Let ε : SpecB→ Spec A be an étale morphism between affine Fp-
schemes.

(a) We assume that A is noetherian. Then by the Artin–Schreier stratification of
Spec A associated to ε : SpecB→ Spec A in reduced locally closed subschemes
V1, . . . , Vq we mean the stratification defined inductively by the following property:
for each l ∈ {1, . . . , q} the scheme Vl is the maximal open subscheme of the reduced
scheme of (Spec A)−

(⋃l−1
q=1 Vq

)
which has the property that the morphism εVl :

(Spec B)×Spec A Vl→ Vl is an étale cover.

(b) Let µ1 > µ2 > · · ·> µv be the shortest sequence of strictly decreasing natural
numbers such that each fiber of the morphism ε : Spec B→ Spec A has a number of
geometric points equal to µl for some l ∈ {1, . . . , v}. Then by the functorial Artin–
Schreier stratification of Spec A associated to ε : SpecB→ Spec A we mean the
stratification of Spec A in reduced locally closed subschemes U1, . . . ,Uv defined
inductively by the following property: for each l ∈ {1, . . . , v} the scheme Ul is the
maximal open subscheme of the reduced scheme of (Spec A)−

(⋃l−1
q=1 Uq

)
which

has the property that the morphism εUl : (Spec B)×Spec A Ul→Ul is an étale cover
whose fibers all have a number of geometric points equal to µl .

The existence of the stratification V1, . . . , Vq of Spec A is a standard piece of
algebraic geometry. The existence of the sequence µ1 > µ2 > · · · > µv follows
from the facts that each étale morphism is locally quasifinite and that SpecB is
quasicompact. The existence of the stratification U1, . . . ,Uv of Spec A is implied
by [Grothendieck 1967, Proposition 18.2.8 and Corollary 18.2.9], which show that
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one can define Ul directly and functorially as follows: each Ul is the set of all
points x ∈ Spec A such that the fiber of ε at x has exactly µl geometric points.

Theorem 12. Let ε : SpecB→ Spec A be an étale morphism between affine Fp-
schemes. Then the functorial Artin–Schreier stratification of Spec A associated to
ε : SpecB→ Spec A in reduced locally closed subschemes U1, . . . ,Uv is pure, i.e.,
for each l ∈ {1, . . . , v}, the stratum Ul is pure in Spec A.

Proof. As the étale morphism ε : SpecB→ Spec A is of finite presentation and due
to the functorial part, we can assume that A is a finitely generated Fp-algebra and
thus an excellent ring. We follow [Vasiu 2014]. By replacing Spec A by its closed
subscheme (Spec A)−

(⋃l−1
q=1 Uq

)
endowed with the reduced structure, we can

assume that l = 1 and that A is reduced. Thus U1 is an open dense subscheme of
Spec A. Based again on [Vasiu 2006, Lemma 2.9.2], to prove that U1 is an affine
scheme, we can replace A by its normalization in its ring of fractions. Thus by
passing to connected components of Spec A, we can assume that A is an excellent
normal domain. Thus B =

∏w
l=1 Bl is a finite product of excellent normal domains

which are étale A-algebras. Let Kl be the field of fractions of Bl . Let L be the finite
Galois extension of the field of fractions K of A generated by the finite separable
extensions Kl’s of K. By replacing A by its normalization in L (again based on [
Vasiu 2006, Lemma 2.9.2]), we can assume K = K1 = · · · = Kw. This implies that
each Spec(Bl) is an open subscheme of Spec A and thus

U1 =
w⋂

l=1
Spec(Bl)

= (Spec(B1))×Spec A (Spec(B2))×Spec A · · · ×Spec A (Spec(Bw))

is the affine scheme Spec(B1⊗A⊗ · · ·⊗A Bw). �

4.3. A second proof of Corollary 3. We will use Theorem 12 to obtain a second
proof of Corollary 3 which is simpler and independent of Theorem 1. We can
assume that S = Spec A is affine and let φM : M→ M be as in Section 2.1.

The identities Sm = T(m,0)(C) if m > 0 and S0 = T(1,0)(C ⊕ E0) show that Sm

is a reduced locally closed subscheme of S. Thus by replacing S by Sm , we can
assume that Sm is an open dense subscheme of S = Sm .

We consider the equation
φM(z)= z (1)

in z ∈ M. For x ∈ S we have χ(x) = dimFpn (ϑx), where ϑx is the Fpn -vector
space of solutions of the tensorization of (1) over A with an algebraic closure of
the residue field k(x) of S at x .

From now on we will forget about C and just work with the free A-module M
of rank r and its 8n

A-linear endomorphism φM : M→ M and we only assume that
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we have an open dense subset Sm of S = Spec A defined by the following property:
for x ∈ S, we have x ∈ Sm if and only if dimFpn (ϑx)= m.

With respect to a fixed A-basis {v1, . . . , vr } of M, by writing z =
∑r

i=1 xivi ,
(1) defines a generalized Artin–Schreier system of equations in the r variables
x1, . . . , xr of the form

xi = L i (x
pn

1 , . . . , x pn

r ), i ∈ {1, . . . , r},

where each L i is a homogeneous polynomial of total degree at most 1. Let

B = A[x1, . . . , xr ]/(x1− L1(x
pn

1 , . . . , x pn

r ), . . . , xr − Lr (x
pn

1 , . . . , x pn

r )),

let ε : Spec B→ S and let U1, . . . ,Uv be the functorial Artin–Schreier stratification
of S associated to ε : Spec B → S. Let pµ1 > pµ2 > · · · > pµv be the shortest
sequence of strictly decreasing of powers of p by natural numbers such that for each
l ∈ {1, . . . , v}, every geometric fiber of the morphism εUl : Spec B×S Ul→Ul has a
number of geometric points equal to pµl, see Proposition 10 and Definition 11(b).

The fact that the morphism ε : Spec B → S is étale (see Proposition 10) is
equivalent to [Zink 2001, Proposition 3]. We consider the lower semicontinuous
function (see [Grothendieck 1967, Proposition 18.2.8])

µ : S→ N

defined by the rule: µ(x) = pn dimFpn (ϑx ) is the number of geometric points of
ε : Spec B→ S above x (i.e., is the number of elements of ϑx ). We get that µl is
divisible by n for all l ∈ {1, . . . , v} and (as Sm is dense in S) we have µ1 = mn.
Moreover, for x ∈ S and q ∈ N we have µ(x)= pnq if and only if x ∈ Sq . We con-
clude that Sm =U1 and therefore (see Theorem 12) Sm is an affine scheme. �

4.4. Complements. For the sake of completeness, we include a proof of the fol-
lowing well-known result (to be compared with [Vasiu 2006, Remark 6.3(a)]).

Proposition 13. Let Z be a reduced locally closed subscheme of a locally noether-
ian scheme Y. If Z is pure in Y, then Z is weakly pure in Y.

Proof. We can assume that Z ( Z = Y. By localizing Y at the generic point of an
irreducible component of Z − Z , we can assume that Y = Z = Spec C is a local
affine scheme of dimension at least 1 and Z is the complement in Y of the closed
point of Y and we have to prove that C has dimension 1. By passing to a connected
component of the normalization of the reduced completion Ĉred of C in the ring
of fractions of Ĉred, we can assume that C is in fact an integral normal local ring
which is not a field.

We show that the assumption that dim(C)≥ 2 leads to a contradiction. As the
open dense subscheme Z of Y is pure in Y, Z is the spectrum of a C-subalgebra
of the field of fractions of C which contains C and which is contained in the
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intersection of all the localizations of C at points of Y of codimension 1 in Y (as
these points belong to Z ). As dim(C)≥ 2, from [Matsumura 1980, (17H), Theorem
38] we get that this intersection is C and thus we have Z = Spec C = Y. This is a
contradiction. Thus dim(C)= 1. �

Remark 14. Suppose A is a local noetherian Fp-algebra of dimension at least 2.
Let m be the maximal ideal of A. Suppose M = Ar is equipped with a 8n

A-linear
endomorphism φM : M→ M such that for each nonclosed point x of S = Spec A,
with the notation of Section 4.3 we have dimFpn (ϑx) = m. Then Sm = U1 being
pure in S, it is also weakly pure in S (see Proposition 13) and thus S− Sm cannot
be m as codimS(m) ≥ 2. Therefore we have Sm = S and in this way we reobtain
[Zink 2001, Proposition 5] . One can view Theorem 12 as a generalization and a
refinement of [Zink 2001, Proposition 5].

Remark 15. For q ∈ N∗ we define recursively an A-linear map

φ
(q)
M : A⊗Fnq

A ,A M→ M

as follows: let φ(1)M : A⊗Fn
A,A M→ M be the A-linear map defined by φM , and we

have the recursive formula φ(q)M = φ
(1)
M ◦ (1A⊗Fn

A,A φ
(q−1)
M ). Deligne [2011] proved

the case n = 1 of Theorem 12 using ranks of images of φ(q)M for q � 0 at points
x ∈ S = Spec A and properties of Grassmannians.
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