Vol. 2, No. 1, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
Statement, 2023
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 2576-7666
ISSN (print): 2576-7658
Author index
To appear
 
Other MSP Journals
Fronts d'onde des représentations tempérées et de réduction unipotente pour $\mathrm{SO}(2n+1)$

Jean-Loup Waldspurger

Vol. 2 (2020), No. 1, 43–95
Abstract

Soit G le groupe spécial orthogonal SO(2n + 1) défini sur un corps p-adique F. Soit π une représentation admissible et irreductible de G(F) qui est tempérée et de réduction unipotente. On démontre que π admet un front d’onde et l’on en donne une méthode de calcul dans certains cas particuliers.

Let G be a special orthogonal group SO(2n + 1) defined over a p-adic field F. Let π be an admissible irreducible representation of G(F) which is tempered and of unipotent reduction. We prove that π has a wave front set. In some particular cases, we give a method to compute this wave front set.

Keywords
representation of unipotent reduction, unipotent orbit, dual orbit, wave front set
Mathematical Subject Classification 2010
Primary: 22E50
Milestones
Received: 22 June 2018
Accepted: 20 November 2018
Published: 22 March 2019
Authors
Jean-Loup Waldspurger
CNRS IMJ-PRG
Paris
France