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Monodromy and log geometry

Piotr Achinger and Arthur Ogus

A now classical construction due to Kato and Nakayama attaches a topological
space (the “Betti realization”) to a log scheme over C. We show that in the case
of a log smooth degeneration over the standard log disc, this construction allows
one to recover the topology of the germ of the family from the log special fiber
alone. We go on to give combinatorial formulas for the monodromy and the d,
differentials acting on the nearby cycle complex in terms of the log structures.
We also provide variants of these results for the Kummer étale topology. In the
case of curves, these data are essentially equivalent to those encoded by the dual
graph of a semistable degeneration, including the monodromy pairing and the
Picard—Lefschetz formula.
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1. Introduction

Log geometry was introduced with the purpose of studying compactification and
degeneration in a wide context of geometric and arithmetic situations. For example,
moduli problems usually give rise to spaces U which are not compact, and it is
often desirable to construct an understandable compactification X of U. Typically
the points of D := X \ U correspond to “degenerate but decorated” versions of the
objects classified by points of U. In classical language, one keeps track of the differ-
ence between X and U by remembering the sheaf of functions on X which vanish
on D, a sheaf of ideals in Oy. Log geometry takes the complementary point of view,
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encoding instead the sheaf functions on X which become invertible on U, a sheaf
of multiplicative monoids in Oy. In general, a log scheme is a scheme X endowed
with a homomorphism of sheaves of commutative monoids oy : Mx — Oy; it is
convenient to also require that the induced map oz;(l (O%) — O% be an isomorphism.
Thus there is a natural “exact sequence”:

0—)0;—)Mx—>/\_/lx—>0,

where the quotient is a sheaf of monoids which is essentially combinatorial in
nature. The resulting formalism allows one to study the properties of U locally
along the complement D, and in a relative situation, provides a very appealing
picture of the theory of nearby cycles. Furthermore, log structures behave well
under base change, and the log structure induced on D can often be related to the
“decoration” needed to define the compactified moduli problem represented by X.
In the complex analytic context, a construction of Kato and Nakayama [1999]
gives a key insight into the working of log geometry. Functorially associated to any
fine log analytic space X is a topological space X, together with a natural proper
and surjective continuous map tx : Xjog — Xiop, Where Xiop is the topological
space underlying X. For each point x of Xy, the fiber 7, Y is naturally a torsor
under Hom(My ., S'). The morphism ty fits into a commutative diagram,

Xlog

j log
[2¢

Xtt)p —) Xtop
Jtop
where X* is the open set on which the log structure is trivial and j : X* — X
is the inclusion. If the log scheme X is (logarithmically) smooth over C, then
the morphism jio, is aspheric [Ogus 2003, 3.1.2], and in particular it induces an
top and on Xioq.
Thus tx can be viewed as a compactification of the open immersion j; it has
the advantage of preserving the local homotopy theory of X*. In particular, the

behavior of a locally constant sheaf 7 on X, can be studied locally over points

equivalence between the categories of locally constant sheaves on X

of X \ X*, a very agreeable way of investigating local monodromy.

We shall apply the above philosophy to study the behavior of a morphism
f : X — Y of fine saturated log analytic spaces. Our goal is to exploit the log
structures of X and Y to describe the topological behavior of f locally in a neigh-
borhood of a point y of Y, especially when y is a point over which f is smooth
in the logarithmic sense but singular in the classical sense. The philosophy of log
geometry suggests that (a large part of) this topology can be computed just from
the log fiber X, — y. For example, we show that if Y is a standard log disc
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and X — Y is smooth, proper, and vertical, then the germs of X, and Y., are
homeomorphic to the (open) mapping cylinders of the maps tx, : Xy 10 = X top
and Ty : yiog —> Ytop respectively, compatibly with the map fiop : Xiop = Yiop- (See
Theorem 4.1.1 for a precise statement and Conjecture 4.1.5 for a hoped for gener-
alization.) Furthermore, it is shown in [Illusie et al. 2005, 8.5] that, in the above
context, the classical complex of nearby cycles Wx,y on X, (o, can be computed
directly from the morphism of log spaces X, — y, and in fact can be identified
with (a relative version of) Rty «(Z). (See Section 4 for the precise statement.) In
particular, the map X jo; — ylgg serves as an “‘asymptotic approximation” to the
map X — Y near y.

With the above motivation in mind, we devote our main attention to the study of a
morphism f : X — §, where X is a fine saturated log analytic space and S is the fine
saturated split log point associated to a fine sharp monoid P. To emphasize the geo-
metric point of view, we work mainly in the context of complex analytic geometry,
describing the étale analogs of our main results in Section 6.3. We assume that f is
saturated; this implies that the homomorphism f”: P& = /\/lgp — M % 18 injective
and has torsion-free cokernel. The map Xjog — Siog 18 @ topologlcal fibration, trivial
over the universal cover Slog of Sjog, and the cohomology of Xlog = Xlog X Siog Slog
is isomorphic to the cohomology of a fiber. The fundamental group Ip of Sy, is
canonically isomorphic to Hom(P#P, Z(1)) and acts naturally on this cohomology
and on the “nearby cycle complex” Wy /s := R7x.(Z), where 7x : f(log — Xiop 18
the natural map. This situation is illustrated by the diagram

Xlog Xlog Xtop
Slog Slog Stop =pt.

Our first observation is that if X/S is (log) smooth, then X/C becomes (log)
smooth when X is endowed with the idealized log structure induced from the
maximal ideal of P. Theorem 4.1.6 shows that the normalization of a smooth and
reduced idealized log scheme can be endowed with a natural “compactifying” log
structure which makes it smooth (without idealized structure). This construction
gives a canonical way of cutting our X into pieces, each of whose Betti realizations
is a family of manifolds with boundary, canonically trivialized over Sjog.

We then turn to our main goal, which is to describe the topology of X log- together
with the monodromy action, directly in terms of log geometry. We use the exact
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sequences
0= M > MY - MP s —0 (1-0-1)

(“log Kodaira—Spencer”), and
O—>Z(1)—>0X—>MX/P—>M S—)O (1-0-2)

(“log Chern class™), where My, p := Mx/P, (the quotient in the category of
sheaves of monoids). The sequence (1-0-2) is obtained by splicing together the
two exact sequences:

0—Z(1) > Ox => 0% —> 0 (1-0-3)
and
0—> 0% > M, > MT g —0. (1-0-4)

If £ is a global section of M’;’}p g» its inverse image in Mg X/p 18 an O -torsor, which

defines an invertible sheaf £, on X. The Chern class c¢; (L) € HZ(X Z(1)) is the

image of ¢ under the morphism H°(X, Mxs) — H?(X, Z(1)) defined by (1-0-2).
The spectral sequence of nearby cycles reads:

EPY = H? (Xiop, ¥ /5) = HP 1 (Xiog, 2),

where W§ /s 18 the g-th cohomology sheaf of the nearby cycle complex Wy/s. By
(a relative version of) a theorem of Kato and Nakayama [Illusie et al. 2005, 1.5],
there are natural isomorphisms:

o5 NMF ) g(=q) = W5 . (1-0-5)

It follows that the action of each y € Ip on \IJX /s is trivial, and hence it is also
trivial on the graded groups EZL;? associated to the filtration F of the abutment
HP%9(Xog, Z). Then y — id maps F? HP*4 (X oq, Z) to FPTHPT4 (X 0q, Z) and
induces a map

N, : ED4 — EpFLa-1 (1-0-6)

We explain in Theorem 4.2.2 that (a derived category version of) this map is
given by “cup product” with the extension class in Ext!(W! X/8° )= Extl(Mip/ - Z(1))
obtained from the pushout of the log Kodaira—Spencer extension (1-0-1) along
y € Hom(P#P, Z(1)). We present two proofs: the first, which works only in the
smooth case and with C-coefficients, is an easy argument based on a logarithmic
construction of the Steenbrink complex; the second uses more complicated homo-
logical algebra techniques to prove the result with Z-coefficients.

We also give a logarithmic formula for the d, differentials of the nearby cycle
spectral sequence. Thanks to formula (1-0-5), these differentials can be interpreted
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as maps
Hp(Xtop, /\qu;’(p/S(_q)) g HIH_Z(Xtop, /\q_lMipys(l - CI))

Theorem 4.2.2 shows that these maps are obtained by cup-product with the derived
morphism ./\/l%}p /s ™ Z(1)[2] obtained from the log Chern class sequence (1-0-2),
up to a factor of g!. We do not have a formula for the higher differentials, but recall
from [Illusie 1994, 2.4.4] that, in the case of a projective semistable reduction with
smooth irreducible components, these higher differentials vanish.

To illustrate these techniques, we study the case in which X/S is a smooth
log curve over the standard log point. In this case it is very easy to interpret our
formulas explicitly in terms of the combinatorial data included in the “dual graph”
which is typically attached to the nodal curve X underlying X. The log structure
provides some extra information when X/S§ is log smooth but nonsemistable. In
particular, we recover the classical Picard-Lefschetz formula, and we show that the
d, differential in the nearby-cycle spectral sequence coincides with the differential
in the chain complex computing the homology of the dual graph.

For clarity of exposition, we focus mainly on the complex analytic setting. How-
ever, one of the main strengths of log geometry is the bridge it provides between
analysis and algebra and between Betti, étale, and de Rham cohomologies. For
the sake of arithmetic applications, we therefore also provide a sketch of how to
formulate and prove analogs of our results in the context of the Kummer étale
topology. The case of p-adic cohomology looks more challenging at present.

2. Homological preliminaries

In this section, after reviewing some standard material in Section 2.1, we provide
a few results in homological algebra which will be important in our study of the
nearby cycle complex Wy, s together with its multiplicative structure and the mon-
odromy action of the group Ip.

2.1. Notation and conventions. We follow the conventions of [Berthelot et al.
1982] with regard to homological algebra, particularly when it comes to signs. For
simplicity, we shall work in the abelian category A of sheaves of modules on a
ringed topological space (or more generally a ringed topos) (X, Ax). Readers will
gather from our exposition that keeping track of signs presented a considerable
challenge.

Shifts, cones, and distinguished triangles. 1If A = (A",d" : A" — A"“) is a com-
plex in an abelian category A, the shift Alk] of A by an integer k is the complex
(A"+k(=1)kd@"**). We shall use the canonical identification 1" (A[k]) = H"*(A)
induced by the identity on A”**. If u : A — B is a morphism of complexes, its
shift f[k]: A[k] — B[k] is given by f"+*: Atk — Btk in degree n.
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The mapping cone, written Cone(u) or C (u), is the complex with
Cw)":=B"®A""!

with differential d(b, a) = (db + u(a), —da), which comes with a sequence of
maps of complexes, ‘
AS BS cu) =5 AL, (2-1-1)

where i (b) := (b, 0) and p(b, a) := a. This sign convention is used in [Berthelot
et al. 1982] but differs from the convention used by Kashiwara and Schapira [1990,
Chapter I] and many other authors. A triangle is a sequence of maps in D(A) of
the form A = B > C 3% A[1] (abbreviated as (u, v, w)). A triangle (u, v, w) is
distinguished if it is isomorphic in the derived category to a triangle of the form (2-
1-1). Then (u, v, w) is distinguished if and only if (v, w, —u[1]) is distinguished.
More generally, if (u, v, w) is distinguished, so is

((=D¥ulk], (=D*v[k], (=D wlk]) = (u[k], vk], (=1)*w[k]) forany k € Z.
Total complex and tensor product. Given a double complex
A= (AP, dlT: APT — APTLE gPa . AP4 — AP

in A, its total complex is the complex Tot(A) = (®p+q:n AP, d”), where d” is
given by d? + (=1)Pd}’? on AP, so that the differentials form commutative
squares. The tensor product A ® B of two complexes is by definition the total
complex of the double complex (A? ® BY, d} ®id, id ® d}). Note that the shift
functor (—)[k] equals Ax[k] ® (—), while (—) ® Ax[k] is the “naive shift,” that is,
shift without sign change. Moreover, the cone C(u) of a map u : A — B is the total
complex of the double complex [A % B] where B is put in the zeroth column.

Truncation functors. We use the truncation functors 7, and 7>, (see [Beilinson
et al. 1982, exemple 1.3.2(i)] or [Kashiwara and Schapira 1990, (1.3.12)—(1.3.13),
p- 33] on the category of complexes of sheaves on X:

< K=[-— K97 !' = Ker(d?) — 0— -- -],
oK =[-— 0— Cok(d?™") — K7t — ...].

These functors descend to the derived category D(X), although they do not pre-
serve distinguished triangles. For a pair of integers a < b, we write T[4 ] = T>¢T<p =
T<pT>q and Tjq,p) = Tq,p—1]. For example, 11y 1K = HY(K)[—q].

Proposition 2.1.1. For each triple of integers (a, b, c) with a < b < ¢, and each
complex K, there is a functorial distinguished triangle:

5
Ta,p) (K) = Ta,0) (K) = T(p,e)(K) = Ta,p)[1]. (2-1-2)
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The map & above is the unique morphism making the triangle distinguished.

Proof. The natural map of complexes 7[4,1)(K) = T[4.)(K) is injective with cok-
ernel

C:= [—>0—> Kb_l/kerdb_l > Kl ... Skerd ' 50— ]
and the evident map C — 175, (K) is a quasi-isomorphism commuting with the

maps from 17, ) (K). This way we obtain the distinguished triangle (2-1-2). For
the uniqueness, observe that given two such maps 8, §’, there is a map

$ 1 7p,e) (K) = Tpp,0) (K)
completing (id, id) to a morphism of distinguished triangles:

5
Ta,b) (K) —— T[a,0) (K) —— T[p,¢) (K) —— T[a,p)[1]

Ta,p) (K) — Ta,e) (K) —— Tp,¢)(K) — Ta,py[1]

Applying the functor 1y ) to the middle square of the above diagram, we see that
¢ =1id, and hence that § =§'. O

First order attachment maps. 1If K is a complex and g € Z, the distinguished trian-
gle (2-1-2) for (a,b,c)=(q—1,q,q+1) is

87([— ] _
HITV K1 = q) = Tig—1.911)(K) = HI(K)[—q] =—5 HI(K)[2—q],

which yields a “first order attachment morphism”
8%t HI(K) — HIT(K)[2], (2-1-3)
embodying the d, differential of the spectral sequence
EY?=HP(X,H1(K)) = H'™(X, K).

Note that 8?( [—¢] is the unique morphism making the triangle above distinguished.
We shall need the following result, stating that the maps § form a “derivation in
the derived category.”

Lemma 2.1.2. Let A and B be complexes in the abelian category A, and let i and
j be integers such that H' (A) and H’ (B) are flat Ax-modules. Then the following
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diagram commutes:

. . S @1H(—1) @8}, . . . .
H (A) @ H/(B) HARIQH/ (B) @ HI(A) @ H/I~1(B)[2]

| |

HH(A® B) HH ! (A® B)(2]
Shen

Here A ® B denotes the derived tensor product.

Proof. Call the diagram in question D(A, B) (i and j are fixed throughout). We
shall first prove that D(A, B) commutes if H?(A) = 0 for ¢ # i. Recall that (S;3 18
the unique map such that the triangle
- : ; R AC I :

HBI = jl = 1j-1,1B = H (B)—j1 =— H/ " (B)[2—j]
is distinguished. Applying Ax[~i]1® (=) = (—=)[—il, we get 857, = (= 1)85[~i]
under the identifications H4(B) = H* (B[—i]), ¢ = j — 1, j. This implies that
D(Ax[—i], B) commutes. Since

A® (=) =H (A[-i1® (=) =H (A) @ (Ax[-i]1® (-)),

we see that D(A, B) commutes as well.

Similarly if #4(B) =0 for g # j: A ® Ax[—i] is the (—i)-th naive shift of A,
preserving exactness, and we have S’Ag Axl—i] = 854[— j] (note that the effect of
naive and usual shift on maps is “the same”), so D(A, Ax[—j]) commutes; again,
so does D(A, B).

To treat the general case, note that D(A, B), even if not commutative, is clearly
a functor of A and B. Let A’ := 7-; A and observe that the natural map A" — A
induces isomorphisms on the objects in the top row of the diagrams D(A’, B) and
D(A, B). Thus D(A, B) commutes if D(A’, B) does, and hence we may assume
that H4(A) = 0 for g > i. Analogously, we can assume that H%(B) =0 for ¢ > j.

Under these extra assumptions, the hypertor spectral sequence (see [EGA 111,
1963, proposition 6.3.2])

E},= @ Tor_,(H (A, H T (B)=HT"AQB)
i'+j'=q
shows that the vertical maps in D(A, B) are isomorphisms. Let

Upp= (right) ! o (bottom) o (left) in D(A, B).

Then D(A, B) commutes if and only if u4 p = (top) := 82 QI+ (-D® 8{;. The
target of u4 p is a product of two terms

HHARI®H/(B) and H'(A)@H/ ' (B)[2];
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let us denote the two projections by p4 and pp.
Let us set A” = H'(A)[—i]; we know that D(A”, B) commutes. This diagram
reads

. . (-D®sy . .

H'(A) ® H/ (B) HI(A) QH/~(B)[2]

H*TI(A® B) _ HH1(A" ® B)[2]
Sian

and the vertical maps are isomorphisms. The map between the top-right corners of
D(A, B) and D(A”, B) induced by the canonical map A — A" is the projection pp.
It follows that pgous g = (—1)' ® §%.

Similarly, considering B” = H/(B)[—j] and the canonical map B — B”, and
using the fact that D(A, B”) commutes, we see that ps oua p = 82 ®1. We
conclude that us p = paoua g+ ppousp= Si‘ ® 1+ (—1)' ® 8%, as desired. O

Maps associated to short exact sequences. Consider a short exact sequence of com-
plexes

0>A3>B5SC—0. (2-1-4)
The map 7 : C(u) — C sending (b, a) to 7 (b) is a quasi-isomorphism.

Definition 2.1.3. In the above situation, &, : C — A[1] is the morphism in the
derived category D(A) defined by

£,:C 5 cuy) =5 AM.

We shall also refer to &, as the map corresponding to the short exact sequence
(2-1-4) (rather than the injection u).

Thus the triangle

AL B C5 A (2-1-5)

is distinguished, and the map H?(§) : H1(C) — HI(A[l]) = HITI(A) agrees with
the map defined by the standard diagram chase in the snake lemma. Moreover,
§u=—&u

In the special case when A and B are objects of A concentrated in a single
degree ¢, the map &, is the unique map making the triangle (2-1-5) distinguished
[Kashiwara and Schapira 1990, 10.1.11].
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2.2. Exterior powers and Koszul complexes. Let us first review some relevant
facts about exterior and symmetric powers. Recall that if E is a flat Ax-module
and g > 0, then the exterior power N E, the symmetric power S E, and the divided
power I'?(E) modules are again flat. For i + j = ¢, there are natural multiplication
and comultiplication transformations:

w:NE®QNE—->NE and n:NE—>NEQNE
w:SEQS'E—S'E and n:S'E— S'E®S/E,
w:T"EQT/E —-TYE and n:T9E—>T'EQT'E.

We shall only use the maps n with i = 1. In this case they are given by the formulas

n(xl/\--./\xq):Z(—l)i_lx,-@)xl/\---)?i---/\xq,
i
n(xl...xq):in®xl...)€l

( lq1] [qn]) — le ®x[q1] . [ql 11 'X;[zq"]-

It follows that each composition
NESEQNT'EL NE
S'EL E®STT'EL SUE,
re 5 E@ri'EL ME

is multiplication by g. Furthermore, 7 is a derivation, by which we mean that the
following diagram commutes:

NE®NE EQN'EQNE)®(NE®E®NE)

MJ{ J/id@t,‘ ®id

n®id,id®n
—

NYE (EN'EQNE)®(E@ NE® N'E)
UJ /
1deu,ideu
E ®/\i+j—1E

where t; : /\iE QF — EQ® /\iE is (—1)! times the commutativity isomorphism
for tensor products. The diagram for the symmetric and divided power products is
similar (without the sign).

In fact, {nq NE—>EQN'E: q > 1} is the unique derivation such that
n1 = id, because the multiplication map p is an epimorphism. This argument fails
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in the derived category, and we will need another argument which gives a slightly
weaker result. To understand the context, let o : E — F be a morphism in D(X),
where E is flat and concentrated in degree zero, and for each ¢, define o, as the
composition

ag : NEL EQNT'EZES Fo NTIE. (2-2-1)

Then the family {aq NE—>FoN'E: q > 1} is a derivation in D(X), in the
sense that the diagram

Ol,'®id,id®0(j

NE@NE (FoN'Ee NE)o(NE® Fo N 'E)
“l lid@z;@id
NYE (FeN'EeNE)o(FRNEaN'E) (222
Oti+jJ/ (M
F ®/\i+j—lE

commutes. We shall see that this property almost determines the maps o .

Proposition 2.2.1. Let E be a flat Ax-module, let F be an object of D(X), and let
{a;:/\jE—> F®/\j_1E:jz 1}

be a family of morphisms in D(X). Let« = oy : E — F, let ag be as in (2-2-1) for

g > 1, and assume that g € 7™ is such that for 1 < j < q, the diagrams

a®id,id®0{}

EQNE—5 (FNE)®(EQ FRN'E)

;/.J/ lid@t@id

NTE (FONE)®(FRE®N'E)
a.//+ll w
FONE

commute, wheret : EQ F — F ® E is the negative of the standard isomorphism.
Then qloy, = qlog.

Proof. The statement is vacuous for ¢ = 1, and we proceed by induction on ¢g. Let
7r = (id, id® 1) o (id ® ¢t ®id) in the diagram above. Then, setting j =g — 1, we
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have the following commutative diagram:

" 1 a®id,id®a;71 - Dy
NE ——EQNE (FONTE)®(E® FQ /N E)

\ l |-

NE FON'E

In other words,

qo, =tro(a@®id, id®a, ;)on.
Similarly,

goy =1ro(@®id,id®@a,_1)on.

Then using the induction hypothesis, we can conclude:
q!a(; =1TFo0 ((q —De®id,id® (¢ — l)!a;_l) on
=1Tpo ((q —De®id,id® (g — 1)!oeq_1) on
=qloy. (|

Next we discuss connecting homomorphisms, exterior powers, and Koszul com-
plexes. Consider a short exact sequence of flat A y-modules

0—>A1>B£>C—>O,

and the associated morphism & =&, : C — A[1] (see Definition 2.1.3). The Koszul
filtration is the decreasing filtration of /\? B defined by

K'NB=Im(NA@ N BLZS N N7 B 5 NB).
There are canonical isomorphisms
NAa®N~'C =G (N\B) (2-2-3)

We can use this construction to give a convenient expression for the composed
morphism &, : N'C - A® A'C[1] defined in Equation (2-2-1) above.

Proposition 2.2.2. Let 0 —> A 5 B S C — 0 be an exact sequence of flat
Ax-modules, with corresponding morphism & :=§&, : C — A[l]in D(X). For each
g €N, let K* be the Koszul filtration on /\' B defined by the inclusion u : A — B
and consider the exact sequence

0> AR N'C 5 NB/KPNB 25 NC— 0
obtained from the filtration K and the isomorphisms (2-2-3) above. Then

Eo, =& = (E@id)on: NC— CONT'C— A N 'C11.



MONODROMY AND LOG GEOMETRY 467
Proof. Observe that the composition
1, id -
NBL BRNT'BEE pe NTIC

annihilates K2/\? B. Then we find the following commutative diagram, in which
the rows are exact:

00— AN"'C —— NB/K*N'B NC 0

| I |

0— s AN ' — BN 'Cc——CcaoN'c——0

We consequently get a commutative diagram in D (X):

&u
NC—" 5 A N 'c[1]

| |

coaN~'c— AN 1]
E®id

O

Let us now recall the definition of the Koszul complex of a homomorphism (see
Mlusie 1971, chapitre I, 4.3.1.3; Kato and Saito 2004, 1.2.4.2]).

Definition 2.2.3. Let u : A — B be homomorphism of A x-modules, and let g > 0.
Then the g-th Koszul complex Kos?(u) of u is the cochain complex whose p-th
term is ['Y"7(A) ® /\’ B and with differential

ar Ao NB 2L rer Ay e A \'B

q
lid@u@id

P (W @BON B —— T ()@ N8
id®u

Observe that Kos? (1) (treated as a chain complex) is AY(# : A — B) in the no-
tation of [Kato and Saito 2004, 1.2.4.2], and is the total degree ¢ part of Kos'(u) in
the notation of [Illusie 1971, chapitre I, 4.3.1.3]. If A and B are flat, Kos? (u)[—¢]
coincides with the derived exterior power of the complex [A — B] (placed in
degrees —1 and 0), see [Kato and Saito 2004, Corollary 1.2.7]. Note that Kos' ()
is the complex [A — B] in degrees 0 and 1, i.e., Kos'(8) = Cone(—6)[—1]. If
u = idy, its Koszul complex identifies with the divided power de Rham complex
of I'"(A). In most of our applications, Ax will contain @, and we can and shall
identify 'Y (A) with S7(A), the g-th symmetric power of A.

We recall the following well-known result (see [Steenbrink 1995, Lemma 1.4]):
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Proposition 2.2.4. Suppose that
0>A5B—>C—0
is an exact sequence of flat A x-modules. Then the natural map
eq - Kos? (u)[qg] > NIC
is a quasi-isomorphism.
Proof. We include a proof for the convenience of the reader. The last nonzero term
of the complex Kos? (u)[q] is /\’ B in degree 0, and the natural map A?B — A’C

induces the morphism e,. The Koszul filtration K on /\' B makes Kos? (u) a filtered
complex, with

K Kos?(u)" := T4 "(A)® K' \'B.

Note that the differential d of Kos?(u) sends K’ Kos?(u) to K*! Kos?(u). Then
the spectral sequence of the filtered complex (Kos? (1), K) has

EY = H'™(Grly Kos? (u)) = Gri Kos? ()t =T/ (A) @ NA® N C,

and the complex (E 11 , d;’j ) identifies with the complex Kos(id4)?~/ ® /\'i Cl—jl,
up to the sign of the differential. This complex is acyclic unless j = ¢, in which
case it reduces to the single term complex A\?C[—g]. It follows that the map
eq[—ql : Kos?(u) — N C[—q] is a quasi-isomorphism. ([

The following technical result compares the various Koszul complexes associ-
ated to u.

Proposition 2.2.5. Let 0 — A 5 B 5 C — 0 be an exact sequence of flat
Ax-modules. For each q > 0, let K be the Koszul filtration of \' B induced by u,
and let

ug: AQN'C - N'B/K*NB
be as in Proposition 2.2.2.

(1) There is a natural commutative diagram of quasi-isomorphisms:

Kos? ()[q] —— Cone((—1)7u,)

x ll"f

NC

(2) There exist morphisms of complexes ¢, and f, as indicated below. Each of
these is a quasi-isomorphism of complexes, and the resulting diagram is com-
mutative. Hence there is a unique morphism g, in D(X) making the following



MONODROMY AND LOG GEOMETRY 469

diagram commute:

€q

Kos? (u)[q] ——— Cone((—1)%u,) ——3 N
Cq ;gq
A®Kos? ' (u)[q] = A N1

(3) In the derived category D(X), g, = (— l)q_léuq, where &,, is the morphism
defined by u, as in Definition 2.1.3. Consequently, g, is (— 14! times cup-
product (on the left) with the morphism &, defined by u.

Proof. The vertical arrows in the following commutative diagram of complexes are

the obvious projections. The first set of these defines the morphism of complexes
a, and the second defines the morphism b, .

MA —— - T2AINB— AN 'B—— s NB

_ (=D
0 AN e N NB/KANB
J»
NC

Here the top row is placed in degrees —¢ through 0, and its differential is the Koszul
differential multiplied by (—1)4, and thus is the complex Kos? (u#)[¢g]. The middle
row is placed in degrees —1 and 0, and hence is the mapping cone of (—1)7u,.
Since the sequence

0> AQN'C—> NB/K*NB—> NC—0

is exact, the map b, is a quasi-isomorphism. We observed in Proposition 2.2.4 that
e, s a quasi-isomorphism, and it follows that a, is also a quasi-isomorphism. This
proves statement (1) of the proposition.

The morphism f; is defined by the usual projection

—1)%u =( —
Cone((—l)quq) — [A®/\q_lC u /\qB/KZ/\qB] M) A®/\q IC.
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The following diagram commutes, with the sign shown, because of the conventions
in (2-1-1) and Definition 2.1.3:

Cone((—1)9u,) —— N'C
/| /
75(—1)‘111,1
A@N'C

One checks easily that the square below commutes, so that the vertical map
defines a morphism of complexes Kos? (1) — A ® Kos?~!(u) whose shift is (S

re-m(A) @ N'B —— " ra—n=1( Ay N"*' B

r]®idJ{ ldﬁd(@id

A@TI N A QN'B —— AQTI" 2N @ N B
id®d,

The diagram of statement (2) in degree g — 1 is given by the following obvious set
of maps:

AIN'B— AN 'Cc———0

17

AN 'B A N'c

and in degree g by

N'B—— N'B/K*N'B—— NI'C

| .

This proves statement (2). It follows that g, = —&1)e,, = (—1)7 _léuq and the
rest of statement (3) then follows from Proposition 2.2.2. O

2.3. t-unipotent maps in the derived category. One frequently encounters unipo-
tent automorphisms of objects, or more precisely, automorphisms y of filtered
objects (C, F) which induce the identity on the associated graded object Gry (C).
Then y — id induces a map Grz(C) — Gr'F_1 C which serves as an approximation
to y. For example, if y is an automorphism of a complex C which acts as the iden-
tity on its cohomology, this construction can be applied to the canonical filtration
7< of C and carries over to the derived category.

Lemma 2.3.1. Let L : A — B be a map in D(A), and let g be an integer such
that the maps H' (\) : H' (A) — H!(B) are zero fori = q — 1, q. Then there exists
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a unique morphism LZ : H1(A)[—q] — HI"Y(B)[1 — q] making the following
diagram commute:

Tg—1,q1(A) ——— HI(A)[—¢]

f[q—lm(k)l lli

Tig—1.q)(B) «—— HI'(B)[1 — ¢q]
The same map L;I fits into the commutative diagram

T<gA —— HI1(A)[—q]

- -

T<yB+—— 1g 1B —— HI'(B)[1 —¢q]
Proof. Consider the following commutative diagram with exact rows and columns:

HOl’l’l(‘L’[q]A, T[q]B[—l]) — Hom(t[q_lyq]A, ‘L’[q]B[—l]) — HOl’l’l(T[q_l]A, T[q]B[—l])
HOl‘Il(T[q]A, ‘K[qfl]B) —_— HOH](‘L'[q,Lq]A, ‘L'[qfl]B) —_— HOIIl(T[q,HA, ‘L'[qfl]B)

Hom(r[q]A, f[q—l,q]B) — Hom(t[q_l,q]A, T[q—l,q]B) — HOI’Il(T[q_l]A, t[q—l,q]B)

Hom(r[q]A, ‘L'[q]B) —_— Hom(r[q_lyq]A, ‘L’[q]B) —_— Hom(r[q_l]A, ‘L’[q]B)

Note that the groups in the top row and the group in the bottom right corner are zero,
as Hom(X, Y) = O if there exists an n € Z such that 7>,X =0 and 7<,_;Y = 0.
Similarly, the left horizontal maps are injective. The first claim follows then by
diagram chasing.

For the second assertion, we can first assume that A =7, A and B =1, B. We
can then reduce further to the case A = 1,1 4)(A) and B = 1141 4)(B), whereupon
the claim becomes identical to the first assertion. (]

Proposition 2.3.2. Let C LakBLC [1] be a distinguished triangle in the
derived category D(A), and consider the corresponding exact sequence

s 1IN A) S (B D HI(C) S HIA) S HIB) > -
Assume that H1 (L) = H?~' (L) = 0, so that we have a short exact sequence

0— HI"Y(B) S HI(C) 5 HI(A) — 0.
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Let
K9 HI(A) — HIN(B)[1]

be the corresponding derived map, as in Definition 2.1.3. Then k1 = (—l)q*ILZ[q],
where Lz is the map defined in Lemma 2.3.1.

Proof. First note that if 1’ : A’ — B’ satisfies H¢~' (1) = H9(1') = 0 and there is
a commutative diagram of the form

with the property that H'(a) and #'(b) are isomorphisms for i = g — 1, ¢, then
the proposition holds for A’ if and only if it holds for A. Indeed, any distinguished
triangle containing A’ fits into a commutative diagram

C’ A’ B’ C'[1]
Ll al lb lc[l]
C—— A B C[1]

i A 14

Applying the functor 7, leaves ' unchanged for i < g, and applying 7>,
leaves ' unchanged for i > g — 1. Thus we may without loss of generality assume
that A = 1(4_1,4)(A) and B = 1j,_1,4)(B). We have a morphism of distinguished
triangles:

HI"V (A — ] — A —25 HI(A)[—q] —— HI" (A2 — 4]

A b e )

HI~Y(B)[1 — q] —— B —2— HI(B)[—q] —— HI~'(B)[2 —q]

The left map being zero by hypothesis, we have A o a = 0, and hence A factors
through b : A — HY(A)[—q]. It thus suffices to prove the assertion with the
morphism H9(A)[—g] — B in place of A. Similarly, since H?(A) = 0, we may
replace B by 7<,_1(B). Thus we are reduced to the case in which A =H?(A)[—q]
and B = #4~1(B)[1 — q]. It follows that C = #%(C)[—g]. Note that A = LK in
this situation. Therefore we have a commutative diagram whose vertical maps are
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isomorphisms:

B[—1] C A B

| | | J

HI~L(B)[—g] —— HI(O)[—q] —— HI(A)[—q] —— HI~ (B)[1 —q]

Since the top row is distinguished, it follows that the bottom row is distinguished
as well. Applying [¢] shows that

(-

w11 (B) S8 qga () S 094y S g1y
is distinguished. This is isomorphic to
. g+l
2191 (B) & 19(C) <> ma 4y LML qa-1 gy

As we observed after Definition 2.1.3, the fact that these complexes are concen-
trated in a single degree implies that the last map is the unique one making the
triangle distinguished. Thus x = (—1)7*!A[g] = (—=1)4T'LY[q], as desired. O

3. Logarithmic preliminaries

3.1. Notation and conventions. For the basic facts about log schemes, especially
the definitions of log differentials and log smoothness, we refer to Kato’s seminal
paper [1989] and the forthcoming book [Ogus 2018]. Here we recall a few essential
notions and constructions for the convenience of the reader.

Monoids and monoid algebras. If (P, +, 0) is a commutative monoid, we denote
by P* the subgroup of units of P, by PT the complement of P*, and by P the
quotient of P by P*. A monoid P is said to be sharp if P* = 0. If R is a fixed
base ring, we write R[P] for the monoid algebra on P over R. This is the free
R-module with basis

e:P— R[P], pr—eéF

and with multiplication defined so that e”e9 = e”*49. The corresponding scheme
Ap := Spec(R[P]) has a natural structure of a monoid scheme. There are two
natural augmentations R[P] — R. The first of these, corresponding to the identity
section of Ap, is given by the homomorphism P — R sending every element to the
identity element 1 of R. The second, which we call the vertex of Ap, is defined by
the homomorphism sending P* to 1 € R and P to 0 € R. The two augmentations
coincide if P is a group.

A commutative monoid P is said to be integral if the universal map P — P®P
from P to a group is injective. An integral monoid P is said to be saturated if
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for every x € P#P such that nx € P for some positive integer n, in fact x € P. A
monoid is fine if it is integral and finitely generated and is foric if it is fine and
saturated and P®P is torsion free. An ideal in a monoid P is a subset of P which
is stable under addition by elements of P. If J is an ideal in P, then R[P, J]
denotes the quotient of the monoid algebra R[P] by the ideal generated by J. The
complement of J in P is a basis for the underlying R-module of R[P, J].

Log structures. A prelog structure on a ringed space (X, Ox) is a homomorphism
o from a sheaf of commutative monoids M to the multiplicative monoid underly-
ing Ox. A log structure is a prelog structure such that the induced map

a (0% — 0%

is an isomorphism. The trivial log structure is the inclusion Oy — Oyx. A ringed
spaceX endowed with a log structure oy is referred to as a log space. An idealized
log space is a log space (X, ax) together with a sheaf of ideals Lx in My such that
ax (Kx) =0 [Ogus 2003, 1.1; 2018, §II1I, 1.3]. A prelog structure  : P — Ox on
a ringed space factors through a universal associated log structure «“ : P¢ — Oy.
A log structure o on X is said to be fine (resp. fine and saturated) if locally on
X there exists a fine (resp. fine and saturated) constant sheaf of monoids P and
a prelog structure P — Ox whose associated log structure is «. There is an evi-
dent way to form a category of log schemes, and the category of fine (resp. fine
saturated) log schemes admits fiber products, although their construction is subtle.
Grothendieck’s deformation theory provides a geometric way to define smoothness
for morphisms of log schemes, and many standard “degenerate” families become
logarithmically smooth when endowed with a suitable log structure. A morphism
of integral log spaces f : X — Y is vertical if the quotient M,y of the map
flzg(/\/ly) — My, computed in the category of sheaves of monoids, is in fact a
group. We shall use the notions of exactness, integrality, and saturatedness for
morphisms of log schemes, for which we refer to the above references and also to
[Tsuji 2019; Illusie et al. 2005].

If P is a commutative monoid and 8 : P — A is a homomorphism into the
multiplicative monoid underlying a commutative ring A, we denote by Spec(f) the
scheme Spec A endowed with the log structure associated to the prelog structure
induced by B. In particular, if R is a fixed base ring and P — R[P] is the canonical
homomorphism from P to the monoid R-algebra of P, then Ap denotes the log
scheme Spec(P — R[P]), and if P is fine and R = C, we write A7 for the log
analytic space associated to Ap. (If the analytic context is clear, we may just write
Ap for this space.) If v: P — R is the vertex of Ap (the homomorphism sending
P* to zero and P* to 1), the log scheme Spec(v) is called the split log point
associated to P; it is called the standard log point when P = N. If J is an ideal
in the monoid P, we let Ap ; denote the closed idealized log subscheme of Ap
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defined by the ideal J of P. The underlying scheme of Ap ; is the spectrum of the
algebra R[P, J], and the points of A%’ ; are the homomorphisms P — C sending
J to zero.

If P is a toric monoid, the log analytic space A%' is a partial compactification of
its dense open subset A}, := A%, and the (logarithmic) geometry of A%' expresses
the geometry of this compactified set, a manifold with boundary. The underlying
topological space of A} is Hom(P, C*), and its fundamental group |p (the “log
inertia group”) will play a fundamental role in what follows.

3.2. Some groups and extensions associated to a monoid. Let us gather here the
key facts and notations we shall be using. If P is a toric monoid (i.e., if P is fine
and saturated and P#P is torsion free) we define

Tp := Hom(P, S"), where S! :={z € C:|z] =1},
Rp :=Hom(P, R>),

where Rs := {r € R:r >0, with its multiplicative monoid law},

Ip :=Hom(P, Z(1)), where Z(1) :={2nin:n e Z} C C,
Vp := Hom(P, R(1)), where R(1) :={ir : r e R} C C,
Lp := {affine mappings |p — Z(1)},

x : P® = Hom(Tp,S"), p Xp where x,(0) =0 (p),
%1 P® = Hom(lp, Z(1)) CLp, pr> ip where 7,(y) ==y (p).

An affine mapping f :|p — Z(1) can be written uniquely as a sum f = f(0)+#,
where /& is a homomorphism |p — Z(1). Since P is toric, the map x is an iso-
morphism, so h = x, for a unique p € P&P. Thus the group Lp is a direct sum
Z(1) @ P?P, which we write as an exact sequence

0— Z(1) = Lp > P2 — 0, (3-2-1)

for reasons which will become apparent shortly.

The inclusion S' — C* is a homotopy equivalence, and hence so is the induced
map Tp — A}, for any P. Thus the fundamental groups of A} and Tp can be
canonically identified. The exponential mapping 6 +— ¢’ defines the universal
covering space R(1) — S!, and there is an induced covering space Vp — Tp. The
subgroup |p = Hom(P, Z(1)) of Vp acts naturally on Vp by translation:

(v,y)—v+y ifveVpandy €lp.

The induced action on Tp is trivial, and in fact | » can be identified with the covering
group of the covering Vp — Tp, i.e., the fundamental group of Tp. (Since the group
is abelian we do not need to worry about base points.) We view |p as acting on the
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right on the geometric object Vp and on the left on the set of functions on Vp: if
f is a function on Vp, we have

rHw=fw+y).
In particular, if f is constant, then y f = f, and if p € PP,

YXp = Xp +v(P). (3-2-2)

It follows that the set Lp of affine mappings |p — Z(1) is stable under the |p-
action (3-2-2). The homomorphism y : P8 — Lp is a canonical splitting of the
exact sequence (3-2-1), but the splitting is not stable under the action of 1p, as the
formula (3-2-2) shows. The formula also shows that the exact sequence (3-2-1) can
be viewed as an extension of trivial | p-modules. Any f € Lp extends naturally to
an affine transformation Vp — R(1), and in fact Lp is the smallest | p-stable subset
of the set of functions Vp — R(1) containing y, for all p € PP,

The dual of the extension (3-2-1) has an important geometric interpretation.
Consider the group algebra Z[lp] with basis e : |p — Z[lp]. It is equipped with
a right action of 1p defined by e’y = ¢®*7. Its augmentation ideal J is generated
by elements of the form e% — 1 for 8 € |p and is stable under the action of 1p. The
induced action on J/J? is trivial, and there is an isomorphism of abelian groups:

Ailp—> J/J? y [ — €. (3-2-3)
Identifying |p with J/J2, we have a split exact sequence of | p-modules:
0—lp—Z[1p))J*—>Z—0, (3-2-4)

where the action of |p on |p and on Z is trivial.

Proposition 3.2.1. There is a natural isomorphism
Lp => Hom(Z[lp]/J2, Z(1)),

compatible with the structures of extensions (3-2-1) and (3-2-4) and the (left) ac-
tions of | p. The boundary map 0 arising from the extension (3-2-1)

9:P® — H'(Ip, Z(1)) = Hom(lp, Z(1)) = PP
is the identity.

Proof. Since Z[lp] is the free abelian group with basis |p, the map f — hy from
the set of functions f :1p — Z(1) to the set of homomorphisms Z[lp] — Z(1) is
an isomorphism, compatible with the natural left actions of |p. If f :1p — Z(1),
then hy annihilates J if and only if f(y) = f(0) for every y, i.e., if and only if
f €Z(Q) C Lp. Furthermore, Ay annihilates J 2 if and only if for every pair of
elements y, § of Ip,

hp((e® — 1) (e — 1)) =0,
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i.e., if and only if

f@+y)—f@®—f)+f0)=0.

But this holds if and only if f(§4+7y)— f(0) = f(8) — f(0)+ f(y) — f(0), i.e.,
if and only if f — f(0) belongs to x (P#P), i.e., if and only if f € Lp.

To check the claim about the boundary map 9, and in particular its sign, we
must clarify our conventions. If I' is a group and E is a I'-module, then we view
H'(T, E) as the set of isomorphism classes of E-torsors in the category of I'-sets.
If the action of I" on E is trivial and L is such a torsor, then for any £ € L and any
y €I, the element ¢, ,, := y (¢) — £ is independent of the choice of £, the mapping
Y — ¢r,, is a homomorphism ¢;, : I' — E, and the correspondence L > ¢, is
the isomorphism

¢:H (T, E) > Hom(T, E). (3-2-5)

To verify the claim, let p be an element of PP, Then d(p) € H'(Ip, Z(1)) is
the Z(1)-torsor of all f € L p whose image under &€ : Lp — P®P is p. Choose any
such f, and write f = f(0) + x,. Thenif y €lp, we have y (f) = f + y(p), and
thus

Ip)—=> o) =y(f)—f=rP) =X ¥

This equality verifies our claim. (]

3.3. Betti realizations of log schemes. Since the Betti realization X, of an fs-log
analytic space X plays a crucial role here, we briefly review its construction. As a
set, Xjog consists of pairs (x, o), where x is a point of X and o is a homomorphism
of monoids making the following diagram commute:

Oy, —— Mxx

fo(x)l o

C— s!
The map 7y : Xjog — X sends (x,0) to x. A (local) section m of Mx gives
rise to a (local) function arg(m) : Xjog — S', and the topology on Xog 1s the
weak topology coming from the map tx and these functions. The map ty is
proper, and for x € X, the fiber 7, Y(x) is naturally a torsor under the group
Ty, :=Hom(MY,, S'). Thus the fiber is connected if and only if MY, is torsion
free, and if this is the case, the fundamental group lx . of the fiber is canonically
isomorphic to Hom(M x,x» Z(1)). The map tx : Xiog — Xiop is characterized by
the property that for every topological space T, the set of morphisms 7" — Xjog
identifies with the set of pairs (p, ¢), where p : T — Xiop is a continuous map
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andc: p~! (/\/l%(p) — SlT is a homomorphism from p~! (Mip) to the sheaf SlT of
continuous S'-valued functions on 7 such that ¢(f) = arg(f) for all f € p! (0%)

When X = Ap ;, the construction of Sj,e can be understood easily as the intro-
duction of “polar coordinates.” The multiplication map R> x S! — C maps polar
coordinates to the standard complex coordinate. Let Rp j :={p € Rp : p(J) =0}.
Multiplication induces a natural surjection:

T:RpyxTp— AL, (p,0) > po. (3-3-1)

lo
Then A, g = Rp,; x Tp, and 7 corresponds to the canonical map t Al - The expo-
nential map induces a universal covering

~1 1
n:ApS :=Rp; xVp—>Ap%, (3-3-2)

whose covering group identifies naturally with 1p. Thus the group Ip is also the
fundamental group of A;’%J

Remark 3.3.1. If X is a smooth curve endowed with the compactifying log struc-
ture induced by the complement of a point x, then Ty : Xjo; — Xiop is the “real
oriented blow-up”of X at x, and there is a natural bijection between 7, '(x) and
the set of “real tangent directions” (7, X \ {0})/R. at x. Below we provide a more
general and robust identification of this kind.

If X is any log analytic space and ¢ is a global section of /\/lip , let LZ* denote the
sheaf of sections of Mgp which map to g. This sheaf has a natural structure of an
O-torsor, and we let £, denote the corresponding invertible sheaf of Ox-modules
and £; its dual. A local section m of L} defines a local generator for the invertible
sheaf £,. If (x, o) is a point of X),; and m is a local section of EZ, let m(x) be
the value of m in the one-dimensional C-vector space L, (x) and let ¢, € E; (x)
be the unique linear map £(x) — C taking m(x) to o (m). If m’ is another local
section of E;, there is a unique local section u of O% such that m’ = um, and then
G = |lu(x)|"¢,,. Indeed,

G (M(x)) = u(x) " Py (m' (x)) = u(x) "o (m)
= u(x) " argu(x))o (m) = [u ()|~ ¢ (m(x)).

Thus ¢, and ¢,, have the same image in the quotient of £g (x) by the action of R-.
This quotient corresponds to the set of directions in the one-dimensional complex
vector space E; (x). If L is any one-dimensional complex vector space, it seems
reasonable to denote the quotient L/R- by S!(L). Thus we see that there is a
natural map: B : Ty (x) — SI(EV (x)). The source of this continuous map is a
torsor under Ty , = Hom(M S ) and its target is naturally a torsor under S'.
One verifies immediately that 1f ; € Hom(M¥%, S and o € Ty ! (x), then B(¢o) =

¢(q)B (o).
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When ay is the log structure coming from a divisor D on X, the divisor D gives
rise to a global section ¢ of My, the invertible sheaf L, is the ideal sheaf defining
D, and L(j (x) is the normal bundle to D at x. In particular, if X is a curve, then
Liqv (x) = T (X) and Sl(E;/ (x)) is the aforementioned space (T, (X) \ {0})/R- of
real tangent directions at x.

On the space Xj,; one can make sense of logarithms of sections of M y. There
is an exact sequence of abelian sheaves

0—Z(1) = Lx 5> 1/ (M) = 0, (3-3-3)
where Ly is defined via the Cartesian diagram

Ly —— R(Dx,,

—1, 4 48P 1
TX (MX ) T leog
There is also a homomorphism

€:17,'(Ox) = Lx, fr> (exp f, Im(f)), (3-3-4)
and the sequence

0— 14 (Ox) = Lx — 1 (M$) = 0 (3-3-5)

is exact. When the log structure on X is trivial the map € is an isomorphism, and
the exact sequence (3-3-3), called the “logarithmic exponential sequence” reduces
to the usual exponential sequence on X.

We can make this construction explicit in a special “charted” case.

Proposition 3.3.2. Let X := A} ;, where J is an ideal in a sharp toric monoid P,
let n : Xlog — Xjog be the covering (3-3-2), and let Tx := tx on. Then on 5(, the
pullback

0—Z7Z(1)— Lp— P -0,

of the extension (3-3-3) along the natural map P® — T, 1(/\/tip ) identifies with
the sheafification of the extension (3-2-1). This identification is compatible with
the actions of | p.

Proof. It is enough to find a commutative diagram

0 —— Z(1) Lp pep 0

o

0 —— Z(1) — ni(Ls) — T3 (MF) —— 0
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We define a map Lp — n3(Ls) as follows. Every f € Lp can be written uniquely
as f = f(0)+ xp, where p € P# and f(0) € Z(1). Let (p, 0) be a point of S‘log,
with image (p, o) € Sjog. Then the pair (f(6), p) € R(1) x P# defines an element
of Ls (p,s), because

o (p) =exp(0(p)) = exp(x,(6)) =exp(f(0) — f(0)) = exp(f(9)),
since f(0) € Z(1). O

4. Logarithmic degeneration

4.1. Log germs and log fibers. We begin with an illustration of the philosophy
that the local geometry of a suitable morphism can be computed from its log fibers.
We use the following notation and terminology. If T : X’ — X is a continuous map
of topological spaces, then Cyl(7) is the (open) mapping cylinder of t, defined as
the pushout in the diagram

X —— X' x [0, 00)

X — Cyl(7)

where the top horizontal arrow is the embedding sending x” € X’ to (x/,0). In
Cyl(t), the point (x’, 0) becomes identified with the point 7(x). A commutative
diagram

induces a mapping Cyl; : Cyl(zx) — Cyl(zy).

Theorem 4.1.1. Let f : X — Y be a morphism of fine saturated log analytic spaces,
where Y is an open neighborhood of the origin v of the standard log disc An.
Assume that f is proper, smooth, and vertical. Then after Y is replaced by a
possibly smaller neighborhood of v, there is a commutative diagram

Cyl(tx,) — Xtop
Cylfvl J/ftop
Cyl(zy) — Ytop

in which the horizontal arrows are isomorphisms. (The arrows are neither unique nor
canonical, and depend on a choice of a trivialization of a fibration; see Lemma 4.1.3.)
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Proof. Note that since the stalks of My are either 0 or N, the morphism f is
automatically exact. We may assume that ¥ = {z € C: |z| < €} for some ¢ > 0. Then
Yiog = viog X [0, €) = S! x [0, 0o). With this identification, the map ty is just the
collapsing map shrinking S' x 0 to a point, and hence induces a homeomorphism
Cyl(ty) — Yiop. The following lemma generalizes this construction.

Lemma 4.1.2. Let X be a fine log analytic space and let X+ be the closed sub-
space of X on which the log structure is nontrivial, endowed with the induced log
structure. Then the diagram

+
X log X log

+
X top X top

is cocartesian as well as cartesian.

Proof. The diagram is cartesian because formation of Xj,, is compatible with
strict base change. To see that it is cocartesian, observe that since 7y is surjective
and proper, X, has the quotient topology induced from Xjo.. Since 7x is an
isomorphism over Xop \ X t’;p, the equivalence relation defining ty is generated by
the equivalence relation defining tx+. It follows that the square is a pushout, i.e.,
is cocartesian. (|

Let Y be an open disc as above and fix an identification Yioe = S! x [0, 00).

Lemma 4.1.3. Let f : X — Y be a smooth and proper morphism of fine saturated
log analytic spaces, where Y is an open log disc as above. Then there exist a
homeomorphism X, 1og X [0, 00) — Xjog and a commutative diagram

Xv,log x [0, 00) —— Xlog

fv,lng Xidl J{flog

Vlog X [0, 00) —— Ylog

where the restrictions of the horizontal arrows to X, j0g X 0 and vieg X 0 are the
inclusions.

Proof. Since Y is a log disc, the morphism f is automatically exact. Then by
[Nakayama and Ogus 2010, 5.1], the map fj, is a topological fiber bundle, and
since Y}og is connected, all fibers are homeomorphic. Let r : Yiog = S!'x[0, €) — Vlog
be the obvious projection and let i : viog — Yioz be the embedding at 0. Then
fu.log X id identifies with the pullback of fi,g along ir. The space of isomorphisms
of fibrations f, 1og X id — fiog 18 a principal G-bundle, where G is the group of
automorphisms of the fiber, endowed with the compact open topology. Since ir
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is homotopic to the identity, it follows from [Husemoller 1994, IV, 9.8] that this
principal G-bundle is trivial, proving the lemma. U

The diagram of Lemma 4.1.3 forms the rear square of the following diagram:

Xv,log x [0, 00) Xlog
Cyl(-cxv) ....................................................... > XtOp flog

fvlogXid

flop
Cyly, Vlog X [0, 00) Ylog
T
Ty

Cyl(Ty) iy Yigp

The map 7, from the definition of the mapping cylinder, is part of the pushout
diagram which identifies a point (xjog, 0) with 7x, (x) € X, 1op € Xiop, and the
existence of the dotted arrows follows. Because the morphism f is vertical, the
subset Xt of X where the log structure is nontrivial is just X,, and Lemma 4.1.2
tells us that the morphism ty is also a pushout making the same identifications.
Thus the horizontal arrows are homeomorphisms, and Theorem 4.1.1 follows. [

Remark 4.1.4. Although we shall not go into details here, let us mention that the
same result, with the same proof, holds if X — Y is only relatively smooth, as
defined in [Nakayama and Ogus 2010].

More generally, suppose that P is a sharp toric monoid and that Y is a neigh-
borhood of the vertex v of Ap. Note that v has a neighborhood basis of sets of the
form Vp :={y € Ap : |y| € V}, where V ranges over the open neighborhoods of
the vertex of Rp. If f : X — Vp is a morphism of log spaces, let g: X — V :=|f],
and note that X, jo; = g 1 0)=(tyo flog)_l(v). For each x € X, the fiber t;I(x)
is a torsor under the action of Ty , := Hom(/\?x,x, S"). For p € V C Rp, let
F(p):=p~(R.), a face of P, and let G(p) be the face of ./\_/lx,x generated by the
image of F'(p) in MX,x via the homomorphism fxb P — /Wx,x. Then we set

Ty, :=Hom(P/F(p),S") € Tp,
Tx,, :=Hom(Mx /G(p),S") € Tx.. .
There is a natural map Ty, , — Ty, , induced by fxb .

Conjecture 4.1.5. With the notation of the previous paragraph, let f : X —Y =Vp
be a smooth proper and exact morphism of fine saturated log analytic spaces. Then,
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after possibly shrinking V, there is a commutative diagram

Xylog X V ——— Xiop

fv,logXidl J/ftop

Viog X V = Yiog — Yiop

where the bottom arrow is (the restriction of ) the map ty (3-3-1), and the top arrow
is the quotient map which identifies (x1, p1) and (x2, p2) if and only if:

(D p1 = p2,
(2) tx(x1) = tx(x2),

(3) x1 and x» are in the same orbit under the action OfTXm,.) (p) on r;l (T(x)).

In particular, the log fiber f, : X, — v determines f topologically in a neighbor-
hood of v.

This conjecture is suggested by Remark 2.6 of [Nakayama and Ogus 2010],
which implies that such a structure theorem holds locally on X.

Motivated by the above philosophy, we now turn to a more careful study of log
schemes which are smooth over a log point S. We shall see that the normaliza-
tion of such a scheme provides a canonical way of cutting it into pieces, each of
whose Betti realizations is a manifold with boundary and is canonically trivialized
over Sjog. In fact this cutting process works more generally, for ideally smooth log
schemes.

Theorem 4.1.6. Let X be a fine, smooth, and saturated idealized log scheme over
a field k such that Kx C My is a sheaf of radical ideals. Let € : X' — X be the
normalization of the underlying scheme X.

(1) The set U of points x such that Kx 5z = M; ¢ for some (equivalently every)
geometric point X over x is an open and dense subset of X. Its underlying
scheme U is smooth over k, and its complement Y is defined by a coherent
sheaf of ideals J in Mx.

(2) The log scheme X' obtained by endowing X' with the compactifying log struc-
ture associated to the open subset € ' (U) is fine, saturated, and smooth
over k.

(3) Let X" be the log scheme obtained by endowing X' with the log structure
induced from X. There exists a unique morphism h : X" — X' such that h is
the identity. The homomorphism h” : Mx: — My is injective and identifies
My with a sheaf of faces in My, and the quotient Mx»,x' is a locally
constant sheaf of fine sharp monoids.
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Proof. All these statements can be checked étale locally on X. Thus we may
assume that there exists a chart 8 : (Q, K) — (Mx, Kx) for X, where (Q, K) is
a fine saturated idealized monoid, where the order of Q®P is invertible in k, and
where the corresponding morphism b : X — Ao k) is étale [Ogus 2018, IV, 3.3.5].
Thanks to the existence of the chart, we can work with ordinary points instead
of geometric points. Furthermore we may, after a further localization, assume
that the chart is local at some point x of X, so that the map Q — My, is an
isomorphism. Since Ky  is a radical ideal, it follow that the same is true of K.
Statements (1)—(3) are stable under étale localization, so we are reduced to proving
them when X = A k).

Since K is a radical ideal of Q, it is the intersection of a finite number of primes
p1, ..., Pr, and we may assume that each p; minimal among those ideals containing
K [Ogus 2018, 1, 2.1.13]. Let qy, . . ., g5 be the remaining prime ideals of Q which
contain K and let

Ji=qiN---Ngs.

Ifx € X, let By : Q — My« be the homomorphism induced by 8 and let q, :=
ﬂ;l(/\/l;x). Then x € Y if and only if K, C q , which is the case if and only
if gy = q; for some i, or equivalently, if and only if J C q,. Thus Y is the closed
subscheme of X defined by the coherent sheaf of ideals J associated to J.

To see that U is dense, observe that the irreducible components of X are defined
by the prime ideals p; of Q above. Let ¢; be the generic point of the irreducible
component corresponding to p;. Then K, = Q;rl_, so ¢ € U. It follows that U is
dense in X. To see that U is smooth, let x be a point of U and replace 8 by its
localization at x. Then it follows from the definition of U that K = Q" and hence
that Ap ¥ = Ap+ which is indeed smooth over k.

To prove statement (2) we continue to assume that X = A ). For each minimal
p; over K, let F; be the corresponding face. Then Ap ,, = Af,. Since Q is saturated,
so is each F;, and hence each scheme X, := Af, is normal. Thus the disjoint union
|_I{AF,} is the normalization of Ay k. A point x” of X s, lies in e~ (U) if and only
if its image in A, lies in Age. It follows from [Ogus 2018, III, 1.9.5] that the
compactifying log structure on X, is coherent, charted by F', and hence from
[Ogus 2018, IV, 3.1.7] that the resulting log scheme X %,- is smooth over k. Thus
X'/k is smooth. This completes the proof of statements (1) and (2).

To define the morphism #, it will be convenient to first introduce an auxiliary log
structure. Let (’)/X, C Oy = Oy be the sheaf of nonzero divisors in O and let M’
be its inverse image in M x~ via the map axr i Myxr — Oxr. Then M’ is a sheaf of
faces in M x~, and the induced map o’ : M" — Oy is a log structure on X'. If X’ is
a geometric point of U’, then ICX/ w = MX, -/, S0 the map MX,, o = Ox’ is zero.
Hence M/ , = O*, > and thus o’ is trivial on U’. It follows that there is a natural
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morphism from «’ to the compactifying log structure ay; x'. We check that this
morphism is an isomorphism at each point x” of X’. Since both log structures are
trivial if x’ € U’, we may assume that x’ € Y’ := X"\ U’ and that X admits a chart 8
as above, local at € (x"). Let F be the face of Q such that x' € Xp. Ifg €p:= Q\F,
then ax»(B(g)) vanishes in Oy,. If on the other hand g € F, then B(g) is a nonzero
divisor on X r Thus ﬂfl(M;,) = F. Since F is a chart for Mx’ and M, is a face
of My» ,, it follows that the map M’, — My . is an isomorphism. The inverse
of this isomorphism followed by the inclusion M’ — My~ defines a morphism of
log structures &’ — ax» and hence a morphism of log schemes % : X” — X’ with
h=id.

To prove that 4 is unique, note that since M’ — M x is an isomorphism and «x
is injective, the homomorphism o’ : M — Oy is also injective. Let A’ : X" — X’
be any morphism of log schemes with A’ = id and let m be a local section of M.
Then ax(h”(m)) = ay (m) is a nonzero divisor in Oy, so the homomorphism
h"” : My — Mx» necessarily factors through M’. Since o’ o b = ay’ and o’ is
injective, necessarily 1" = h".

We have already observed that the image M’ of A" is a sheaf of faces of M,
and it follows that the quotient monoid My, x is sharp. To check that it is locally
constant, we may assume that X admits a chart as above and work on the subscheme
X' of X" defined by a face F as above. Then " : Q — M is a chart for My».
Assume that B” is local at a point x” of X” and that §” is a generization of x”.
Then MX”/X’,x” = Q/F and MXH/XI,g// = QG/FG, where G = ,Bg/,l (O;/f”)'
Since G C F, the cospecialization map

Q/F = Q¢/Fs
is an isomorphism. It follows that M x~,x- is (locally) constant. O
Let us now return to the case of smooth log schemes over a log point.

Corollary 4.1.7. Let f : X — S be a smooth and saturated morphism from a fine
saturated log scheme to the log point Spec(P — k), where P is a fine saturated and
sharp monoid. Let € : X' — X be the normalization of the underlying scheme X.

(1) The set U :={x € X : Mx/s s =0} is a dense open subset of X. Its underlying
scheme U is smooth over C, and € induces an isomorphism
U'=¢'()—U.
(2) The log scheme X' obtained by endowing X' with the compactifying log struc-
ture associated to the open subset U’ is fine, saturated and smooth over C.

(3) Let X" be the log scheme obtained by endowing X' with the log structure
induced from X. There exist a unique morphism h : X" — X' such that h is
the identity.
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(4) The homomorphism f° induces an isomorphism P — Mx» /x'- Thus there
is a unique homomorphism p : Mx» — Py such that p o f"° =id. The
homomorphism h° : Mx: — Mx» induces isomorphisms Mx = p~1(0) and
M — 6*(./\/1%5 )

Proof. Let Kx € My be the sheaf of ideals generated by f b(/\/lj{). Since X/S
is saturated, this is a radical sheaf of ideals of My [Ogus 2018, I, 4.8.14]. Since
X — S is smooth, so is the base changed map (X, Kx) — (S, Mg), and since
(S, /\/l;r) — S is smooth, it follows that (X, Kx) — S is smooth. Note that if
x € U, then P8 — M%g ; 1s an isomorphism, and since f is exact, it follows that
P = My z and hence that Ky z = M;i. Conversely, if Cx ; = M;x’ then PT
and M}r  both have height zero, and since f is saturated it follows from statement
(2) of [Ogus 2018, I, 4.8.14] that P — M ; is an isomorphism and hence that
Myx,s = 0. Thus the open set U defined here is the same as the set U defined in
Theorem 4.1.6. Hence statements (1), (2), and (3) follow from that result.

We check that the map P — My, x is an isomorphism locally on X, with
the aid of a chart as in the proof of Theorem 4.1.6. Then My~ x = Q/F, where
F is the face corresponding to a minimal prime p of the ideal K of Q generated
by Pt. Then Q/F and P have the same dimension, so p € Q and P™ C P
have the same height. Then it follows from (2) of [Ogus 2018, 4.18.4] that the
homomorphism P — Q/F is an isomorphism. It remains only to prove that the
map /Vlig — e*(/\/lip /s) is an isomorphism. We have a commutative diagram

E*(Mip/s)

-

A 48P A gp
MX/ E— MX// E— MX///X/ (4_1_1)

A

M)

The rows and columns of this diagram are short exact sequences, and the diagonal
map on the bottom right is an isomorphism. It follows that the diagonal map on
the top left is also an isomorphism. O

Proposition 4.1.8. With the hypotheses of Corollary 4.1.7, let g : X" — X' x §
be the morphism induced by f o€ and h. The morphism of underlying schemes
g is an isomorphism, and g induces an isomorphism of abelian sheaves: g"P :
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M‘%(p,x e Mip,,. The horizontal arrows in the commutative diagram

" 8log /
X, — X

log log X Slog
Ty l J/ protys
” 8top ,
Xtop Xtop

are isomorphisms.

Proof. Since h is an isomorphism and S is a point, the morphism g is also an isomor-
phism. Since My »s = My @ Py and Py = My /x5 it follows from the horizon-
tal exact sequence in diagram (4-1-1) that the homomorphism /\7“;}9X g™ /W‘fﬁ, is
an isomorphism, and hence the same is true of g"2P. It follows that 8log 18 bijective,
and since it is proper, it is a homeomorphism. O

The corollary below shows that the fibration Xjo; — Sjog = Tp can be cut into
pieces (the connected components of X {Og), each of which is a trivial fibration
whose fiber is a manifold with boundary, in a canonical way. We shall make
the gluing data needed to undo the cuts more explicit in the case of curves; see
Section 7.1.

Corollary 4.1.9. With the hypotheses of Corollary 4.1.7, there is a natural commu-
tative diagram

X/

p
log %X Tp — Xlog

RN

Tp
where X {Og is a topological manifold with boundary and where p is a proper sur-
Jective morphism with finite fibers and is an isomorphism over Ulqg.

Proof. Let p := €108 © g, ;, which is proper and surjective and has finite fibers.
Recall from [Nakayama and Ogus 2010, 2.14] that X fog is a topological manifold

with boundary, and that its boundary is Yl’og. U

4.2. Log nearby cycles. Let f : X — S be a morphism of fine saturated log
schemes, where S is the split log point associated to a sharp monoid P. We assume
that for every x € X, the map PP — Mip’ . 1s injective, and that the quotient group
/W‘;”(p/ g 1s torsion free. These assumptions hold if, for example, f is smooth and
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saturated. We form the following commutative diagram:

f , (4-2-1)
-;og ;ng flop l
~ ns s
Slog Slog Stop
Ts
where the squares are Cartesian. Thus Siog = Tp, Siog = Vp, X315 = Xtop X Siog,

and Xjog = Xlog X 51, Slog- We let Tx =Ty onx, Txg = Txgon, and Ts :=Tx ong,
so that we have the diagram

- Tx/s ~
Xlog I Xtop xVp —— Xg,log
lﬂ (4-2-2)
fx fXS
Xiop-

The logarithmic inertia group |p acts on §1og over Syop and hence also on f(log
over Xyop. Our goal is to describe the cohomology of Xjg, together with its Ip-
action, using this diagram and the log structures on X and S. We set

\IJ?(/S = R1Tx,Z, (resp. Wyx/s:= Rix.Z),

viewed as a sheaf (resp. object in the derived category of sheaves) of Z[l p]-modules
on Xp. When § is the standard log point and f is obtained by base change from
a smooth proper morphism over the standard log disk, the complex Wy s can be
identified with the usual complex of nearby cycles, as was proved in [Illusie et al.
2005, 8.3]. Then H*(f(]og, Z) = H*(Xop, Wx/s), and there is the (Leray) spectral
sequence

EPY = HP (Xop, ¥ /) = H' ™ (Xiog, 7).

Our first ingredient is the following computation of the cohomology sheaves \IJ;’( /s

Theorem 4.2.1 [Kato and Nakayama 1999, Lemma 1.4]. Let f : X — S be a
saturated morphism of log schemes, where X is fine and saturated and S is the
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split log point over C associated to a fine sharp monoid P. Then on the topological
space Xop associated to X, there are canonical isomorphisms

o NMF g(=q) => W§ (4-2-3)
for all q. In particular, the logarithmic inertia group | p acts trivially on lIJ?( /s

Proof. The construction of these isomorphisms depends on the logarithmic expo-
nential sequence (3-3-3) on X,g. In the absolute case it is shown in [Kato and Naka-
yama 1999] that the boundary map associated to (3-3-3) induces a homomorphism
/Wip — R'7x.(Z(1)), and then one finds by cup-product the homomorphisms ¢
for all ¢ > 0. These can be seen to be isomorphisms by using the proper base
change theorem to reduce to the case in which X is a log point.

The argument in our relative setting is similar. Let Mx,p be the quotient of the
sheaf of monoids Mx by P. Since Pt — Mgp is injective, the sequence

0= O > MP)p = MPg—0 (4-2-4)

is exact. The homomorphism P& — f _I(Mip) — Mip does not lift to Lx on
Xog, but the map x : P8 — Ly (defined at the beginning of Section 3.2) defines
such a lifting on S‘log and hence also on f(log. Letting Ly, p be the quotient of Lx
by x (P®P), we find an exact sequence:

0— Z(1) = Lx/p — Ty fwm /P) -0 (4-2-5)
The boundary map associated with this sequence produces a map

which factors through M X /s because, locally on X, the inclusion Oy — Mx/p fac-
tors through Tx.(Lx,p). Then cup product induces maps N M /S — R9Tx,(Z(1))
for all ¢, which we can check are isomorphisms on the stalks. The map Tx/g is
proper, and its fiber over a point (x, v) of X, xVp is a torsor under Hom(M x5 x, sh.
It follows that the maps /\qM"}g(p/S’x — (R9Tx/54(Z(1)) x,v) are isomorphisms. In
particular, the sheaves R97x/s,(Z(1)) are locally constant along the fibers of 7 :
Xiop X Vp — Vp. Then it follows from [Kashiwara and Schapira 1990, 2.7.8] that
the map m* R, (RTx,5+(Z(1)) = RTx/s+(Z(1)) is an isomorphism. Thus the maps
(RTx+(Z(1))x = (RTx/5%x(Z(1))(x,v) are isomorphisms, and the result follows. []

Our goal is to use the Leray spectral sequence for the morphism Ty to describe
the cohomology of X]Og together with its monodromy action. In fact it is conve-
nient to work on the level of complexes, in the derived category. The “first order
attachment maps” defined in Section 2.1 are maps

84 - wgff/s — \pX/S[z]
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On the other hand, the “log Chern class” sequence (1-0-2) defines a morphism

chy/s : MY)s = Z(1)[2]

and hence for all g > 0, maps
ch /s s NTME g — NI ME (D121,
defined as the composition

NME s ME @ N MT
chy/s ®id _ ~ _
—— 7RI N Mg = NI M (D121,

where 7 is the comultiplication map as defined in Section 2.2. We show below that

the maps 69 and chX /s agree, at least after multiplication by g!.

To describe the monodromy action p of Ip on Wy, observe that, since each
y € |p acts trivially on W$ /s> the endomorphism 4, := p, —id of W5 annihilates
\IJX /s and hence induces maps (see Section 2.3)

R S Tt}
On the other hand, the pushout of the “log Kodaira—Spencer” sequence (1-0-1)
along y : P8P — Z(1) is a sequence
0—2Z(1) > MY, - MY s — 0.

The stalk of this sequence at each point of X is a splittable sequence of finitely
generated free abelian groups, so the exterior power construction of Section 2.2
provides a sequence

0= N MP (1) > NMF /KN MF — NME s — 0,
which gives rise to a morphism in the derived category
k8 NME g — NTIME (DI (4-2-6)

Recall from Proposition 2.2.2 that «, is “cup product with «,” that is, that «,, =
(1d®«k) o (id® y) o n. We show below that this morphism agrees with the mon-
odromy morphism A7 up to sign. We shall provide a version of this result for the
étale topology in Theorem 6.3.4. A similar formula, in the context of a semistable
reduction and étale cohomology, is at least implicit in statement (4) of a result of
T. Saito [2003, 2.5].

Theorem 4.2.2. Let S be the split log point associated to a fine sharp and saturated
monoid P and let f : X — S be a saturated morphism of fine saturated log analytic
spaces.
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(1) For each g = 0, the following diagram commutes:

X/S

NME (—q) —25 NTLME (1 = g)2]

qlgql J/q!aql

-1
WY)s Wi gl2]

84

(2) For each q > 0 and each y € |p, the following diagram commutes:

NME s (—q) —— N7 M (1 - I

ULIJ/ laql

Wi)s LR

(=971

Proof. The main ingredient in the proof of statement (1) is the quasi-isomorphism
[0x =5 M 5] = <1 Wxys(1), (4-2-7)
which is obtained as follows. The exact sequence (4-2-5) defines an isomorphism
in DY(X, 7)
ZQ) = [Lx/p — Ty (MX/p)],

and there is an evident morphism of complexes,
[f;l(OX) - Ty (MX/P)] [L:X/P — Ty (MX/P)]’

defined by the homomorphism € : t; (Ox) — Lx (3-3-4). Using these two mor-
phisms and adjunction, we find a morphism

[0x =5 M ,] = REx(@(1)) = Wy s(1).

Since this morphism induces an isomorphism on cohomology sheaves in degrees 0
and 1, it induces a quasi-isomorphism after the application of the truncation func-
tor 7<1. This is the quasi-isomorphism (4-2-7). Since the map §' of the complex
( B MS X/ P) is precisely the map chy/s, we see that the diagram in statement (1)
commutes when g = 1.

To deduce the general case, we use induction and the multiplicative structure on
cohomology. Let E := M%(p ¢(=1) and let F := Z[2]. Using the isomorphisms o,
we can view 87 as a morphism NE — A 'E[2] = F® \Y'E. Lemma 2.1.2
asserts that the family of maps §¢ form a derivation in the sense that diagram (2-2-2)
commutes. Then by the definition of ch()f( /s it follows from Proposition 2.2.1 that
q! ch‘)’(/s = ¢q!67 for all g.
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We defer the proof of the monodromy formula described in statement (2) to
Section 5 (with complex coefficients) and Section 6 (the general case). U

5. Monodromy and the Steenbrink complex

Our goal in this section is to extend Steenbrink’s formula (4-2-7) for <1 Wx/s to
all of Wy 5. We shall see that there is a very natural logarithmic generalization of
the classical Steenbrink complex [1975/76, §2.6] which computes the logarithmic
nearby cycle complex C ® Wx/s. The advantage of this complex is that it is a
canonical differential graded algebra with an explicit action of | p, from which it
is straightforward to prove the monodromy formula of Theorem 4.2.2 (tensored
with C). Since the construction is based on logarithmic de Rham cohomology, we
require that X /S be (ideally) smooth. Note that once we have tensored with C, there
is no point in keeping track of the Tate twist, since there is a canonical isomorphism
C(1) = C.

5.1. Logarithmic construction of the Steenbrink complex. Steenbrink’s original
construction, which took place in the context of a semistable family of analytic
varieties over a complex disc with parameter z, was obtained by formally adjoin-
ing the powers of log z to the complex of differential forms with log poles. Our
construction is based on the logarithmic de Rham complex on X, constructed in
[Kato and Nakayama 1999, §3.5].

Let us begin by recalling Kato’s construction of the logarithmic de Rham com-
plex on X [Kato 1989; Illusie et al. 2005]. If f : X — Y is a morphism of log
analytic spaces, the sheaf of logarithmic differentials €2 k /y 18 the universal target
of a pair of maps

d:Ox — Qk/y, dlog : MY — Qﬁ(/y,

where d is a derivation relative to Y, where dlog is a homomorphism of abelian
sheaves annihilating the image of ./\/l%p, and where dax (m) = ax (m)dlog(m) for
every local section m of My. The sheaf Q! Xy 1 locally free if f is a smooth
morphism of (possibly 1deahzed) log spaces. Then X/5 = /\ Ql X/ and there
is a natural way to make @ @ %,y into a complex satisfying the usual derivation
rules and such that d o dlog = 0. In particular the map dlog : Mgp - Q ; Y factors
through the sheaf of closed one-forms, and one finds maps

opr : CR® N M,y — H (Q,y). (5-1-1)

When § = C (with trivial log structure) and X /C is ideally log smooth, these maps
fit into a commutative diagram of isomorphisms (see [Kato and Nakayama 1999,
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Proposition 4.6] and its proof):

[Bwi ODR i .
CONMY —— H' (Qy,0)

o

RiTX*(C)

As explained in [Kato and Nakayama 1999, §3.2], to obtain the de Rham com-
plex on X 10g, one begins with the construction of the universal sheaf of 7, ((’) x)-
algebras (’) which fits into a commutative diagram

Ly — O

RN

' (Ox).
This sheaf of 7, '(Ox) modules admits a unique integrable connection
1 1
d:04% > 0 ® =10 TX h! x/c)

such that d(¢) = dn (£) (see (3-3-3)) for each sectlon £ of Lx and which is com-
patible with the multiplicative structure of (’) g The de Rham complex of this
connection is a complex whose terms are sheaves of O ¢_modules on Xog, denoted
by QXI/OE In particular, lel/oé = Olog ®,- 1Oy Ty (Q /C)

When S i 1s the split log point assocmted to a fine sharp saturated monoid P,
the sheaf (’) < on the torus Sjog = Tp is locally constant, and hence is determined
by F(Slog, n ((9 %)) together with its natural action of |p. These data are easy to
describe explicitly. The structure sheaf Oy is C and Q. S/C is C® P&, Twisting the
exact sequence (3-2-1) yields the sequence

0—>Z—Lp(—1)— P®(—-1)— 0.

For each n, the map Z — Lp(—1) induces a map S (Lp(—1)) = §"(Lp(—1)),
and we let
O :=1im §"(Lp(—1)).

The action of Ip on Lp induces an action on O'oe p_» compatible with its ring structure.
Let N,Op denote the image of the map S"(Lp( 1)) — lim $"(Lp(— 1)) = Ok,
Then N. defines an | p-invariant filtration on O o€ The action of |p on Gr Olii)g =
S™(P&P(—1)) is trivial and thus the action on (9 p_ 1S unipotent.

The splitting x defines a sphttmg P& (—1) — Lp(—1) and thus an isomorphism
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this isomorphism is “canonical” but not | p-equivariant.
For y € 1p, denote by p,, the corresponding automorphism of @?g , and let
Ay i=log(py) =Y (=1 (p, —id)'/i. (5-1-2)

1

The above formula defines, a priori, an endomorphism of Q ® @lgg, but, as we shall
soon see, in fact this endomorphism preserves Ol,?g .

Claim 5.1.1. For y € |p = Hom(P#(—1), Z), the endomorphism X,, of Q ® @l;fg
defined above is given by interior multiplication with y:

@lf(’)g = SY(PEP(=1)) 2 PE(—-1)® S"(PE(—-1)) @) S (PEP(—1)) = (7)1;))%’

where 1 is the map defined in Section 2.2. The subspace N,,(’)lﬁg of (bl;,)g is the
annihilator of the ideal J"*' of the group algebra Z[p)].

Proof. Let V := Q ® P& (—1) and let ¢ be an element of Hom(V, Q). Interior
multiplication by ¢ is the unique derivation A of the algebra S*V such that A(v) =
¢ (v) for all v € V. There is also a unique automorphism p of SV such that
p(w) = v+ ¢() for all v € V. We claim that A = log p, or, equivalently, that
p = expA. (These are well-defined because p —id and A are locally nilpotent.)
Since A is a derivation of S°V, we have

Mab)/kt =" (Wa/iY(AIb/)Y),

i+j=k

exp(L)(ab) =Y " 1*(ab)/k! = (Z Al (a)/i!) (Z A (b)/j!)
k i J

= exp(A(a)) - exp(A(D)).
Thus exp A is an automorphism of the algebra S*V. Since it sends v to v+ ¢ (v), it
agrees with p, as claimed.
If vy, vy, ..., v, is a sequence of elements of V, then

hence

P2 vy) = (V1 + W) (W2 + @ (v2) - (v + @ (V)
=vlv2"'vn+2¢(vi)vl"'ﬁi"‘vn‘i‘Ry

where the symbol v; means that the i-th element is omitted and where R € N,,_,S" V.
In particular, p — id maps N,S°V to N,_1S’V and acts on Gr, S'V = §"V as
interior multiplication by ¢. Since GrV §°(P&(—1)) is torsion free, the analo-
gous results hold for S*(P8(—1)). The augmentation ideal J of the group al-
gebra Z[Ip] is generated by elements of the form y — 1, and it follows that J
takes N,l@‘;’g to Nn_lf’)lgg and hence that J"*! annihilates Nncbiﬁ’g. Moreover,
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the natural map S” |p — J"/J"*! is an isomorphism and identifies the pairing
J /I Gl @g’g — Z with the standard pairing S" Ip xS" P#(1) — Z. Since
this pairing is nondegenerate over (), it follows that Nn@igg is the annihilator
of J*1, O

The map x : P® — Lp defines a homomorphism P& — 5%(Ls) and hence also

a homomorphism P& — %S*ni’;((??g). In fact, one checks easily that the induced
map

C® DRt — I'(S, 15(05*)) (5-1-3)

is an isomorphism, compatible with the action of | . The map d : @?g — @?g@)ﬁg I
identifies with the map

n:C@S'PgP—>C®S'ng®ng:p1---pnr—>Zpl---ﬁi---pn(g)pi, (5-1-4)
i

and the action of y € Ip on @l]())g is given by the unique ring homomorphism taking
p®ltopR@1+y(p).

More generally, suppose that x is a point of a fine saturated log analytic space X.
Let Q := My, and choose a splitting of the map My — Q. This splitting
induces an isomorphism 7, ) = Tg, which admits a universal cover Vo — Tp.
An element g of Q% defines a function Vo — R(1) which in fact is a global
section of the pullback of Ly C Ol}?g to Vp. Since Ol}?g is a sheaf of rings, there
is an induced ring homomorphism: S*(Q®P) — I'(Vp, Ol)?g). These constructions
result in the Proposition 5.1.2 below. For more details, we refer again to [Kato and
Nakayama 1999, 3.3; Ogus 2003, 3.3.4; 2018, V, §3.3].

Proposition 5.1.2. Let x be a point oi fine saturated log analytic space X. Then a
choice of a splitting Mx , — Q 1= Mx . yields:

(1) an isomorphism: r;l(x) = Tp :=Hom(Q, sh,

(2) a universal cover: Vg := Hom(Q, R(1)) — r};l(x),

(3) for each i, an isomorphism QS(’X ® S0 = TI'(Vg, ﬁ;l(Qi)’;Og)), where

nx:Vo—To— tgl(x) — Xiog
is the natural map.

If y € lp := Hom(P#P, Z(1)) then the action of p, on I'(Vy, Ol)?g) is given by
exp(A, ), where A, is interior multiplication by y. ([

Since C® (7)11(,)g is a module with connection on the log point S, its pull-back
f *(@Lﬂ’g) to X has an induced connection f*(C® @l;,)g) — @ffg ® QL e

In the following definition and theorem we use the notation of diagrams (4-2-1)
and (4-2-2), and if F is a sheaf on Xjog (resp. Siog), we write F for its pullback to

X log (resp. Siog)-
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Definition 5.1.3. Let f : X — S be a smooth morphism of fine saturated log
analytic spaces over the split log point S associated to a fine sharp monoid P. The
Steenbrink complex of X/S is the de Rham complex

. > . ~ Pl 1 .
Ky :=0pf ®z Qy /e = Txex ([ ¥ (O5%) ® T3, (x/0))
of the Ox-module with connection f *@lsog, given by
SPPROy - SP¥R Qﬁ(/c, p+— p®dlogp

endowed with its natural | p-action.

Theorem 5.1.4. Let S be the split log point associated to a fine sharp and saturated
monoid P and let f : X — S be a smooth saturated morphism of ﬁne saturated
log analytic spaces. Let Q log X(Q log) on Xlog = Xlog X Sio, Slog Then in
the derived category D (X top, C[I rl) of complexes of sheaves of C[lp]-modules
on Xop, there are natural isomorphisms

~ e & ~
REx.(C) = Rix.(Qy8) <= Ky/s-
Proof. It is proved in [Kato and Nakayama 1999, 3.8] that, on the space Xqg, the
natural map
C— Q;’(]/OE
is a quasi-isomorphism. Its pullback via ny is a quasi-isomorphism
1 1
C— nX(QX;)(%) = X/O(I%
on Xlog, invariant under the action of |p. Applying the derived functor R7x., we
obtain the isomorphism

1
Rix.(C) =5 Rix,(Q37%)
in the theorem.
The natural map flo_g1 (Olsog) — Ol;g induces a map

T Al 1
FH(O5%) @ T (Qyy0) = Q.
and hence by adjunction a map
O @ Q0 — Rixa(S00).

The lemma below shows that this map is an isomorphism and completes the proof
of the theorem. ]

Lemma 5.1.5. The terms of the complex SNZ;i(lOg are acyclic for Tx,, and for each q

the natural map

I
KX/S — rX*(QX/ﬁég)
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is an isomorphism.

Proof. The morphism ty/,g in diagram (4-2-1) is proper and the left upper square
is Cartesian, and hence 7x/s is also proper. Let X = (x, 6) be a point in X log =~
Xiop X Vp. By the proper base change theorem, the natural map

j ~ ~— 1
(R'Ex/5: Q2% )5 — H' (¢ )s(8), Q%))

is an isomorphism. (Here the term on the right means the i-th cohomology of the
sheaf-theoretic restriction of Q‘)]( /%g to the fiber.) The fiber 7, /ls (x) is a torsor under

the group
Tx/s,x := Hom(My/s :S') € Tx x := Hom(My ,, SH).

Hence the fiber is homeomorphic to this torus, and Q?(’}%g is locally constant on the
fiber, as follows from Proposition 5.1.2. Since the fiber is a K (7, 1), its cohomol-
ogy can be calculated as group cohomology. More precisely, view x as a log point
(with its log structure inherited from X), so that we have a morphism of log points
x — § and hence a morphism: Xjog —> Siog. Then a choice of a point x of 7y 1()c)
allows us to make identifications

tgl(x)leogETX’x and ‘E;/IS()?)ETX/S,X.

The second torus has a universal cover Vy s , 1= Hom(M x /8,x>» R(1)), and every
locally constant sheaf F on Ty/s , is constant when pulled back to this cover, so the
natural map I'(Vx,s , F) — F is an isomorphism. These groups have a natural
action of the covering group ly,s » = Hom(/\/lx/s «»Z(1)). Then

(f);/ls(x% F) = H' (Ix/s,x. Fo)-
In our case, we have

q.,log log A /8P
QX/d: = 0x:® QX/C =SMx)© QX/C x
Choosing a splitting of P& — MSP X.xo We can write
TP ~
SMx _Sng®SMX/Sx,

compatibly with the action of ly/s . Let V := C@MX/SX, and for y € Ixs ,» C
Hom(V, ), let A, denote interior multiplication by y on S°V. An analog of
Claim 5.1.1 shows that p, = exp Ag. Then a standard calculation shows that

ifi =0,

ifi >0.

Here is one way to carry out this calculation. As we have seen, the represen-

tation (S°V, p) of Ix,s . is the exponential of the locally nilpotent Higgs field
A: S8V — SV ®V given by the exterior derivative. It follows from [Ogus 2003,

C
H' (lX/Sx, Ces Mx/s x) = {0
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1.44] that one can use Higgs cohomology to calculate the group cohomology of
such locally unipotent representations. In our case the Higgs complex of A iden-
tifies with the de Rham complex of the symmetric algebra S*V, and the result
follows.

We conclude that H' (T /IS (%), Q‘)’(’}%g) vanishes if i > 0, and that the natural map

Al 1 1 e &l
0p* @ QY. — H (T /s (). Q%)

Qq~ log

is an isomorphism. Then the proper base change theorem implies that R’ Ty /s 2/c

vanishes for i > 0 and that the natural map

~ Al ~ 1
7, (O ® 2% 10) — x5 QL %).

is an isomorphism. But the map 7 is just the projection X, x Vp — X, so for
any abelian sheaf 7 on Xop, R’ fxs*f§57: =0and F= fxs*f;}S}", by [Kashiwara
and Schapira 1990, 2.7.8]. Since Tx = Tx; o Tx/s, we conclude that R"fx*(ff}’(’}%g)
vanishes if i > 0 and that the natural map @lsog ® 931( c = ‘E;(*(Qg(’}%g) is an iso-

morphism. The lemma follows. U

Corollary 5.1.6. In the situation of Theorem 5.1.4, the maps opr (5-1-1) factor
through isomorphisms

Proof. There is an evident inclusion 2% c = K% /s> and hence we find natural

maps

C@/\_/lip — HI(Q.X/@) — Hl(K;(/S)-

It follows from the formula (5-1-4) that the image of each element of PP becomes
exact in K )1( /s> and hence this composed map factors through C® Mip /s~ The maps
in the statement of the corollary are then obtained by cup product. We now have a
commutative diagram

T

R17x,(0),

where the vertical arrow is the isomorphism coming from Theorem 5.1.4. Since ¢

is an isomorphism by Theorem 4.2.1, the horizontal arrow is also an isomorphism.
]
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5.2. Monodromy and the canonical filtration. The filtration N. of @lsog is stable
under |p and the connection and hence induces a filtration of the complex K /s
Claim 5.1.1 shows that N,, corresponds to the n-th level of the “kernel” filtration
defined by the monodromy action on the complex Ky ;. We shall see that this
filtration coincides up to quasi-isomorphism with the canonical filtration <. Since
we prefer to work with decreasing filtrations, we set

Al
N¥K§ 5 = (Nt OG®) @ Q% e
and
TFK?

X/Ss =

Ky, ifk=<0,
0 otherwise.

In particular, NOK;(/S = Q.X/S and NIK%/S =0, so NiKk/S C TiK;(/S for all i,
that is, the filtration N° is finer than the filtration 7.

Recall from [Deligne 1971, 1.3.3] that if F is a filtration of a complex K", the
“filtration décalée” F is the filtration of K* defined by

F'K":={x e F'™K":dx e F"™" " K"}.
Then there are natural maps
Ey" (K, F) = Grl K" — H"(Gri" K*) = ETHK F)
inducing quasi-isomorphisms
(ES (K, F),di"y — (B UK, F), dyT ).

This equation says that the natural maps (induced by the identity map of K°), are
quasi-isomorphisms

(Eg " (K", F),dy ") — (EY1 (K", F), dy")q) (5-2-1)

where the symbol [¢]" means the naive shift of the complex (which does not change
the sign of the differential). More generally, there are isomorphisms of spectral
sequences, after a suitable renumbering [Deligne 1971, 1.3.4]:
(Ey'(K*, F),d)") — (E;((K', F). d} ).
Let N° denote the filtration décalée of N *, and similarly for 7°; note that Ti= T<—,
the “filtration canonique.” Since the filtration N is finer than 7, the filtration N
is finer than the filtration 7, and we find a morphism of filtered complexes

(K50 N = (K5, T). (5-2-2)
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Theorem 5.2.1. Let f : X — S be a smooth and saturated morphism of fine satu-
rated log analytic spaces, where S is the split log point associated to a sharp toric
monoid. Then there are natural filtered quasi-isomorphisms

(KE(/S’ N.) l) (KE(/S’ f‘) (; (\IJX/S’ f‘).

The existence of the second filtered quasi-isomorphism of the theorem follows
from the canonicity of the filtration T and Theorem 5.1.4. The proof that the
first arrow is a filtered quasi-isomorphism is a consequence of the following more
precise result.

Recall from Definition 2.2.3 that associated to the homomorphism

0:CQMgw — <C®./\_/l§(p
we have for each ¢ a complex Kos?*(6) and whose n-th term is given by
Kos™9(0) =C® ST" Mg @ A" MY .
Theorem 5.2.2. Let f : X — S be as in Theorem 5.1.4, let K, /s be the Steenbrink
complex on Xqp, and let
0> CoOMP L coMP S CoMy—0
be the exact sequence of sheaves of C-vectors spaces on X obtained by tensoring
the log Kodaira—Spencer sequence (1-0-1) with C.

(1) For each q > 0, there are natural morphisms of complexes:
Gr}/q Ky/s = E;’q(K;(/S,N)[— Ik = Kos' . (0) = C®/\qMX/S ql,

where the first and last maps are quasi-isomorphisms and the second map is
an isomorphism. (The notation [—¢] means the naive shift of the complex,
and Kos; is the complex defined in Definition 2.2.3.)

(2) The morphism of spectral sequences induced by the map of filtered complexes
(K;(/S, N°) — (K;(/S, T") is an isomorphism at the E,-level and beyond.
(3) The map of filtered complexes (K;(/S, N°) - (KE(/S, T°) is a filtered quasi-

isomorphism.

Proof. The first arrow in (1) is the general construction of Deligne as expressed in
Equation (5-2-1). It follows from the definitions that

Ey""(Ky5, N) = Gr" K§ { = SPMT ® QY L.
Since the elements of S? Mgp are horizontal sections of Gr Np Olog the differen-
tial dp of the complex EO (K x/s0 N ) can be identified with the identity map
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of S? /W‘ng tensored with the differential of € . Then the isomorphism (5-1-1)
allows us to write:
SPMT @HIP(Qy ) ECRSPMT NP MY if0<p=<gq.

EPYKy o, N) =
: X/s 0 otherwise.

The isomorphism appearing above is the identity of S? ./\_/lf;p tensored with the iso-
morphism (5-1-1). The differential d; ”* becomes identified with a map

COSPMPN I —— Cosr TP o NP

l |

Kos? =74 (0) Kos?~P+1-4(p)

It follows from formula (5-1-4) that this differential is indeed the Koszul differen-
tial. Thus we have found the isomorphism

E}* (K 5, N)[—q]" = Kos™? ().

The quasi-isomorphism Kos™?(0) = /\? Mip/ s[—q] comes from Proposition 2.2.4.
This completes the proof of statement (1) of the theorem.
We have natural maps of filtered complexes

(K;(/S, N°) — (K;(/S, T"), hence also (K;(/S, N') — (K;(/S, T').

These maps produce the map of spectral sequences in statement (2). Consider the
spectral sequence associated to the filtered complex (K /s> T"), in the category of
abelian sheaves. We have

K§ ¢ ifp=0,

—p.q . _ P pd—P __
Ey " (Kxys, T) = Grp” Ky 5 = {0 otherwise,

hence an isomorphism of complexes,
(EQ".d) = Ky s,
and of cohomology groups,

HI(Kys) if p=0,

E "9 (Kxs,T) =
1 Ky, T) {0 otherwise.

Thus the complex E i’q(K , T) is isomorphic to the sheaf H?(Kx/s), viewed as a
complex in degree zero, and the spectral sequence degenerates at E{. Then

EQS(K, T) = E) (K, T) =H(Ky ) = R1%x (C) = N'C® Mg,

by Corollary 5.1.6. Since the maps are all natural, statement (2) of Theorem 5.2.2
follows.
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Using the naturality of the maps in (5-2-1), we find for every i a commutative
diagram of complexes:

Gr;]i K}/S _ Gr;i Ky s

| |

E; 7 (K N) — E; 7 (Ky/50 T)

Since the bottom horizontal arrow is a quasi-isomorphism and the vertical arrows
are quasi-isomorphisms, it follows that the top horizontal arrow is also a quasi-
isomorphism. Since 77 and N’ both vanish for i > 0, it follows by induction that
for every i, the map N'K ¢ — T' K is a quasi-isomorphism. O

Combining the above results with our study of Koszul complexes in Section 2.2,
we can now give our first proof of the monodromy formula in Theorem 4.2.2 after
tensoring with C.

Any y € lp induces a homomorphlsm Mgp — C, which we denote also by y.
By Proposition 5.1.2 the action of )‘y = log(p,) on Olog =S /\/l corresponds
to interior multlphcatlon by V. Thus for every i, A, maps N ' K x/s to N'-K; X/s
and hence N 'K x/s to N'-iK; x5+ We need to compute the induced map

i i i
Ay Gry! Ky g — Gr' Ky .

Using the quasi-isomorphism of statement (1) of Theorem 5.2.2, we can identify
this as the map

vi : Kos; () — Kos;_,(0)

which in degree n is the composition
R _ n®id — . — _
q:® Sl—l’lM%p ® /\"Mip C@M%p ® St—n—lM?) ® /\"Mip
\ l y®id
C ® Si—n—lM%P ® /\”Mgp’

where 7 is the map defined at beginning of Section 2.2. In other words, our map
is the composition of the morphism

cq 1 Kos™1(0) — /\7‘?) ® Kos™4~1(9),
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constructed in Proposition 2.2.5 with y ® id. We thus find a commutative diagram
in the derived category:

W5 ¢ Gr ! Ky slg] — Kos, (0)lg] ———— N Mg

l X l 2 l (y®id)ocy l 84

W g1 «— Gri ¥ K slq] —— Kos,_(0)lq] —— N~ M 011

The horizontal arrows in the leftmost square come from Theorem 5.2.1 and those in
the remaining squares come from statement (1) of Theorem 5.2.2. Statement (3) of
Proposition 2.2.5 shows that g, = (—1)4 _le, and statement (2) of Theorem 4.2.2,
tensored with C, follows.

6. Proof of the integral monodromy formula

We present a proof of the monodromy formula Theorem 4.2.2(2) with integral
coefficients. In contrast with the proof with complex coefficients presented in the
previous section, this one uses more abstract homological algebra; not only does
this method work with Z-coefficients in the complex analytic context, it can be
adapted to the algebraic category, using the Kummer étale topology, as we shall
see in Section 6.3.

6.1. Group cohomology. Our proof of the monodromy formula with integral co-
efficients is hampered by the fact that we have no convenient explicit complex
of sheaves of |p-modules representing Wy /5. Instead we will need some abstract
arguments in homological algebra, which require some preparation. Recall that the
cocone Cone’ (1) of a morphism u is the shift by —1 of the cone Cone(u) of u, so
that there is a distinguished triangle:

Cone’ (1) — A — B — Cone' (w)[1].

In other words, Cone’(u) is the total complex of the double complex [A_—M>B]
where A is put in the O-th column (that is, Fibre(—u) in the notation of [Saito 2003]).
Explicitly, Cone'(u)" = A" @ B"~!, d(a, b) = (da, —u(a) — db), Cone/(u) — A
maps (a, b) to a and B — Cone'(u)[1] maps b to (0, b).

Let X be a topological space and [ a group. We identify the (abelian) category
of sheaves of l-modules on X with the category of sheaves of R-modules on X,
where R is the group ring Z[l]. The functor ['; which takes an object to its sheaf
of [-invariants identifies with the functor Hom(Z, —), where Z = R/J and J is the
augmentation ideal of R.

Now suppose that [ is free of rank one, with a chosen generator y. Then A :=
e” —1 (see Section 3.1) is a generator of the ideal J, and we have an exact sequence
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of sheaves of R-modules,
0— R i> R—7—0,

which defines a quasi-isomorphism C. = Z, where C. is the complex [R A R] in
degrees —1 and 0. The functor Hom(R, —) is exact, and hence the functor ['j can
be identified with the functor Hom(C., —). The R-linear dual of C. is the complex

C:=[R A R],

(see [Berthelot et al. 1982, 0.3.3.2] for the sign change) in degrees 0 and 1, and for
any complex K" of sheaves of [-modules,

C(K) :=Homg(C., KHY=C'Qr K" (6-1-1)
is a representative for R["j(K"). Note that
CUK)=KT® K", d(x,y) = (dx, —ix —dy),

and thus C(K") is the cocone of the morphism A : K* — K.
In particular, C* = C(R"), where, R’ is the complex consisting of R placed in
degree zero, and we have a quasi-isomorphism

€:C" = Z[—1] given by the augmentation R — Z in degree one.

Proposition 6.1.1 (Compare with [Rapoport and Zink 1982, §1]). Let [ be a free
abelian group of rank one, with generator y, let R := Z[l], and let C* be the
complex (6-1-1) above. For an object K" of the derived category Dy(X) of sheaves
of I-modules on a topological space X, let C(K") :=C" Qg K".

(1) There are natural isomorphisms
C(K) = RHom(Z, K") ZRIC1(K")
and a distinguished triangle
C(kYS K5 kS okl (6-1-2)
(2) Let 0 : Z — Z[1] denote the morphism defined by the exact sequence (3-2-4)
0—->Z—>R/JI?>7—0

(the first map sends 1 to the class of ).). Then boa=0®id: C(K") — C(K")[1].

(3) There are natural exact sequences

s RITI(KT) 5 HIK) 5 HI(K') 2> RIFITY(K) = -+
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and
0— R'TI(HI™'(K) = RITY(K") 5 Ly(HI (K")) — 0.
(4) If the action of | on H1(K") is trivial, a and b induce canonical isomorphisms
DIHY(K) = HY(K), and HI(K') = R'Ty(HY(K)).

Proof. We have already explained statement (1) in the preceding paragraphs (the
distinguished triangle expresses the fact that C(K") is the cocone of A : K* — K°).
Since C(K") = C(R) ® K" and the distinguished triangle in (1) for K" is obtained
by tensoring the triangle for R with K, it will suffice to prove (2) when K* = R.
In this case, a : C* — R is given by the identity map in degree 0, and b : R — C'[1]
is given by the identity map in degree 0. Thus boa : C* — C°[1] is the map

—A

0 R R
R—" R 0

Composing with the quasi-isomorphism €[1], we find that €[1] o b o a is given by

R_—A>R

augl

Z

The pushout of the exact sequence 0 - R — R — Z — 0 along R — Z is the
sequence (3-2-4). It follows that the morphism

boa:C — C'[1]

is the same as the morphism 9 : Z — Z[1] defined by that sequence. This proves
statement (2).

Since C(K") = RI1(K"), the first sequence of statement (3) is just the cohomol-
ogy sequence associated with the distinguished triangle in (1); the second sequence
follows from the first and the fact that for any [ module E, I'j)(E) = Ker()) and
RT(E) = Cok(}). Statement (4) follows, since in this case A = 0. [l

6.2. Proof of the monodromy formula. We now turn to the proof of the integral
version of statement (2) of Theorem 4.2.2. Recall that Wy, 5 = RTx.Z (see (4-2-1));
let us also set Wx = Rty,Z and Wy = Rtgs.Z. We begin with the following ob-
servation, which is a consequence of the functoriality of the maps o as defined in
Theorem 4.2.1.
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Lemma 6.2.1. The following diagram with exact rows commutes:

0—— f*MF (1) — MP(=1) — MF (1) — 0

lf*os lax lUX/S (6-2-1)

0 ——— f"¥; Wy Wys ——0

Consequently one has a commutative diagram in the derived category

M (=) — A MP (D[] = PP(=D)[1]

| |

Wyx/s ———— AN O

We will achieve our goal by establishing the commutativity of the following
diagram:

E
NM—1 peo— )1 A M 225 AT M
No (1) l 2) Al

1 -1 -yl
/\q\px/sﬁf*lps[l]@)/\q \.Ij)l(/sm/\q \IJX/S[I]

@

Gy(y)
mult. mult.

(€)

~1
\Il?(/s Ch \I’?(/s (1]
Here we have written M as a shorthand for /\/l%(p/ g(=Dandy:f *\D; — 7 for
the pullback by f of W} = PeP(—1) L 7. The maps E,, F,, and G, (y) are defined
by applying the g-th exterior power construction § +— &, of Section 2.2 to the
extensions E, F, and G(y), respectively. Here the extension G(y) : lIJ)l( /s> Z[1]
is defined by the exact sequence (6-2-4) below. Thus the commutativity of the
larger outer rectangle in this diagram is the desired formula (2) of Theorem 4.2.2.
We prove this commutativity by checking the interior cells (1) through (4).

(1) This square commutes by functoriality of the maps &, defined in Section 2.2
and Lemma 6.2.1.
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(2) It suffices to check the commutativity when ¢ = 1, in which case it follows
from the definition of the map y : W ; — 7.

(3) We let the [ be the subgroup of |p generated by y and work in the category of
[-modules. Applying (1) of Proposition 6.1.1, we find a distinguished triangle:

—1 b
RTY(Wx/s) = Wx/s 7— Wy s = RTI(Wx/s)[1]. (6-2-2)

Since y acts trivially on the \IJ?( /s> the long cohomology exact sequence of the
above triangle yields a short exact sequence

q—1 b al 14
0— W5 5> RITY(Wyys) &> W o — 0. (6-2-3)

When g = 1, the exact sequence (6-2-3) reduces to

wpl N
0— 7 225 RITy(Wy ) “55% wh g — 0, (6-2-4)
where B(1) is the image of the class 6 € R'T(Z) in RIFU(\IIX/S). Applying the

exterior power construction of Section 2.2, one obtains for each ¢ > 1 an exact
sequence

— B q
0> N7} o — AR Ty (Wyys) <> NWY g — 0,
where B9 is deduced from cup product with 6 on the left. We assemble the arrows
a?~! and B¢ to form the top row of the following diagram, and the arrows a?~!

and b9 to form the bottom row:

_ g—1 _ '3"/
N ]RlFu(\l/X/S) LN ]\11;1(/5 —— NIRRT (Wx/s)

mult. J{ mult. l mult. l

_ -1
RI7IT (Wy/s) ‘If;q(/s ” RIT(Wx/s)

gq—1

The maps a and « are the restriction maps on group cohomology from [ to the
zero group, and hence commute with cup product, so that the left square commutes.
By (2) of Proposition 6.1.1, the composition b9 oa?~! is given by cup product on the
left with the morphism 6 : Z — Z[1] defined by the fundamental extension (3-2-4).
By the above discussion, the same is true for 8¢ o «?~!. Since the vertical maps
are also defined by cup product, we see that the outer rectangle commutes. As the
map o?~! is surjective, we deduce that the right square also commutes.
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Putting these squares alongside each other in the opposite order, we get a com-
mutative diagram with exact rows:

_ /3‘1 q
0—— N 1\IJ;(/S—>/\qR1Fu(‘1/X/s)0[—>/\q‘1’)1(/s >0

mult. J{ mult. l mult. J/

1 q
0 i RITy(Wx/s) —— WY g ——0

Taking the maps in the derived category corresponding to these extensions gives a
commutative square

/\q‘y)l(/s — /\q_]‘y)l(/s[l]

multl J]mult.

-1
W s —— Wy sl

Proposition 2.3.2 applied to the triangle (6-2-2) implies that the bottom arrow is
k1 = (—l)q_le[q], while the top arrow is G, (y) by definition. It follows that
cell (3) commutes.

(4) Once again we can reduce to the case ¢ = 1 by functoriality of the construction
of Section 2.2. Consider the action of [ on Wy/s via y. It is enough to establish
the commutativity of the diagram

0 [ v Wy s 0
yl ¢J (6-2-5)
0 Z RIT (Wy/s) Wy /s 0

Here ¢ is the restriction map
W) = R'T, (Wx/s) — R'Ty(Wy/s) alongy:Z— 1.

Indeed, the top extension being F : W )1( /s v é[l], the bottom extension (which
is the pushout of the top extension by y)is y o F : \11)1(/5 — Z[1]. On the other
hand, as we saw in Proposition 2.3.2, the bottom extension corresponds to Li :
Wy — ZI11.

The right square of (6-2-5) commutes by functoriality of restriction maps

RT'1(=) = RI'z(=) = RI'o(—) = (—).
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The left square is isomorphic to

H'(1p, H'(Wx/5)) —— H'(Ip, Wx/s)

| J

HY (1, HO(Wy/s) — H(I, Uy/s)

which commutes by functoriality of the maps H'(G, H°(—)) — H(G, (-)) with
respect to G.

6.3. Etale cohomology. The results of Sections 4.2 and 6 have natural algebraic
analogs, due to Fujiwara, Kato, and Nakayama [Nakayama 1997], obtained by
replacing the space Xjo, with the Kummer-étale topos Xy, and the (logarithmic)
exponential sequence (3-3-3) with the (logarithmic) Kummer sequence(s). We refer
the reader to [Illusie 2002] for a survey of the Kummer étale cohomology.

The algebraic version of our setup is as follows: we fix an algebraically closed
field k and work in the category of fine and saturated log schemes locally of finite
type over k. We fix an integer N > 1 invertible in k and use A = Z/NZ as a
coefficient ring. We define A(1) = uy(k), A(n) = A(1)®" forn >0, A(n) =
A(—n)Y for n <0; for a A-module M, M (n) denotes M @ A(n).

We start by considering a single fs log scheme X. We denote by ¢ : Xyg — Xg
the projection morphism (here Xg; is the étale site of the underlying scheme). The
sheaf of monoids My on X extends naturally to a sheaf /\/l];(é‘ on X4 associat-
ing I'(Yg, My) to a Kummer étale Y — X; we have a natural homomorphism
My — Ml)‘(é‘. The logarithmic Kummer sequence is the exact sequence of
sheaves on X4

0— A(l) > MEher By ppkéeer (6-3-1)
Applying the projection ¢, yields a homomorphism
00 : MY — .8 MF — e*/\/ll;(ét’gp — Rle, A(1).

Theorem 6.3.1 [Kato and Nakayama 1999, Theorem 2.4; Illusie et al. 2005, The-
orem 5.2]. The map oy factors through MY, inducing an isomorphism

o : M ®A(—1) = R'e,A
and, by cup product, isomorphisms
o NMP @ A(—q) = Rie.A.

We now turn to the relative situation. The base S is a fine and saturated split log
point associated to a fine sharp monoid P (that is, S = Spec(P — k)). Consider the
inductive system P of all injective maps ¢ : P — Q into a sharp fs monoid Q such
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that the cokernel of ¢2P is torsion of order invertible in k, and let S= Spec(16 — k).
Let Ip be the automorphism group of S over § (the logarithmic inertia group of S);
we have a natural identification |p = Hom(P#8P, 7 (1)) where 7 (1) =1limy py (k)
[Mlusie 2002, 4.7(a)]. We can identify the topos Sy with the classifying topos
of |p

We consider an fs log scheme X locally of finite type over k and a saturated
morphism f : X — S. We define X = X xg S (fiber product in the category
of systems of fs log schemes). We denote the projections ¢ : Xy — Xg and
£: Xket - Xet = Xg.

Lemma 6.3.2. The sequence of étale sheaves on X
0—>M§p®A—>M§(p®A—>/\7l%p®A—>O
is exact, yielding an identification /\7‘%}p QA= ./\/lg X/s® A.

Proof. Note first that since X — § is saturated, the square

— X

l

S§—— S

L/ <

is cartesian in the category of (systems of) log schemes, and in particular the corre-
sponding diagram of underlying schemes is cartesian, i.e., X = X as schemes. Let
X be a geometric point of X. We have pushout squares

P —— Mx; P — 5 MY
p M; . pe AP
5 X

and therefore also a pushout square
PRPOA — MY QA
PRQA —— MY ®A
But P2 is N-divisible for all N invertible in k, so P& ® A =0, yielding the desired

exactness. O

The complex of nearby cycles is the complex Wy /s := Ré, A of discrete |p-
modules on Xg. Its cohomology is described by an analog of Theorem 4.2.1:
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Theorem 6.3.3. There are canonical isomorphisms
o NMF s ® A(—q) => Wy
for all q. In particular, the logarithmic inertia group |p acts trivially on \Il)q( /s

Proof. This follows from Theorem 6.3.1 for X, using the identifications X¢ = X&
andMip/StX)AE/\_/liP@A. O
As before, we denote by A] : W} s = \IJ)qJS1 [1] the map induced by y — 1 :

Wy/s — Wx/s. The usual Kummer sequence on X yields a map OF — A(D[1],

which composed with thge; map ./\/lip s ™ O%I[1] coming from the extension (4-2-4)

yields a map chy/s : MX/S — A(D)[2].
With these in place, we can state the étale analog of Theorem 4.2.2.
Theorem 6.3.4. Let f: X — S be as above. Then:

(1) For each g = 0, the following diagram commutes:

ch?
NME s ® A(—g) —> N M 3@ Al —g)I2]

q!(’ql lq!aq_l

-1
LI”?(/S qj;}(/s [2]

84

(2) For each q > 0 and each y € |p, the following diagram commutes:

K _
NME @ A—q) —— N MF @A —g)[1]

W v gl

(=D7124
where i}, is as in Proposition 2.3.2.

Proof. The proof of (1) relies on the following analog of the isomorphism (4-2-7).
The exact sequence (6-3-1) provides a quasi-isomorphism on Xyg

~ két,gp két,gp
A(l) = [MX — My ]
and the morphism of complexes
=8P N~y g két.gp N\ két.gp
[S*MX — s*/\/l;(] — [MX - Mf{ ]
induces by adjunction a morphism

("M% LA EME] - Wys(1).
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This morphism induces an isomorphism [E*M%{p ﬁ> E*Miy ] = 1<1W¥x/s, our ana-
log of (4-2-7). Then assertion (1) follows exactly as before. The proof of (2)
follows the lines of our second proof of the analogous assertion in Section 6.2. We
omit the details. U

7. Curves

The goal of the present section is to illustrate Theorems 4.2.2 and 4.1.6 for curves.
We shall attempt to convince our readers that the combinatorics arising from the
log structures are essentially equivalent to the data usually expressed in terms of
the “dual graph” of a degenerate curve, for example in [SGA 71 1972, IX, 12.3.7].
In particular, we show how the classical Picard-Lefschetz formula for curves can
be derived from our monodromy formula. In this section we work over the field C
of complex numbers.

7.1. Log curves and their normalizations. Our exposition is based on F. Kato’s
study [2000] of the moduli of log curves and their relation to the classical theories.
Let us recall his basic notions.

Definition 7.1.1. Let S be a fine saturated and locally noetherian log scheme. A log
curve over S is a smooth, finite type, and saturated morphism f : X — § of fine
saturated log schemes such that every geometric fiber of f : X — S has pure
dimension one. -

Kato requires that X be connected, a condition we have dropped from our def-
inition. If X /C is a smooth curve and Y is a finite set of closed points of X, then
the compactifying log structure associated with the open subset X \ ¥ of X is fine
and saturated, and the resulting log scheme is a log curve over C. In fact, every
log curve over C arises in this way, so that to give a log curve over C is equivalent
to giving a smooth curve with a set (not a sequence) of marked points.

For simplicity, we concentrate on the case of vertical log curves over the standard
log point S := Spec(N — C). Then a morphism of fine saturated log schemes
X — S is automatically integral [Kato 1989, 4.4], and if it is smooth, it is saturated
if and only if its fibers are reduced [Tsuji 2019, 11.4.2; Ogus 2018, IV, 4.3.6].
Since X/S§ is vertical, the sheaf My,s := Mx/f* Mg is in fact a sheaf of groups.
Corollary 4.1.7 says that the set ¥ := {x € X : Mx/s # 0} is closed in X, that
its complement U is open and dense, and that the underlying scheme U of U is
smooth. In fact Kato’s analysis of log curves gives the following detailed local
description of X/S.

Theorem 7.1.2 (F. Kato). Let f : X — S be a vertical log curve over the standard
log point S and let x be a closed point of X.
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(1) The underlying scheme X is smooth at x if and only if there is an isomorphism
M x.x = N. If this is the case, there exist an étale neighborhood V of x and a
commutative diagram

V—)SXAZ

N

(2) The underlying scheme X is singular at x if and only if there exist an integer n

where g is strict and étale.

and an isomorphism My = Q,, where Q,, is the monoid given by generators
q1, q2, q satisfying the relation q, + q» = nq. In this case there exist an étale
neighborhood V of x and a commutative diagram

\% L)AQmJ

N

S

where g is strict and étale, where J is the ideal of Q, generated by q, and
where 0 : N — Q,, is the homomorphism sending 1 to q. ([

Proof. For the convenience of the reader we give an indication of the proofs, using
the point of view developed in Corollary 4.1.7. We saw there that the set U :=
{xe X: ./le,x = N} is open in X. Moreover U is smooth over C, so it can be
covered by open sets V each of which admits an étale map U — G, = Az. Since
the morphism U — U x § is an isomorphism, we find a diagram as in case (1) of
the theorem.

Suppose on the other hand that x € Y := X \ U. Since the sheaf of groups
M(f(p/ g 18 torsion free, one sees from [Ogus 2018, 1V, 3.3.1] that in a neighborhood
V of x, there exists a chart for f which is neat and smooth at x. That is, there
exist a fine saturated monoid Q, an injective homomorphism 6 : N — (, and a
map V — Ap such that induced map V — § xa Ag is smooth and such that the
homomorphism Q& /7Z — Mx/s . is an isomorphism. By [Ogus 2018, III, 2.4.5],
the chart Q — My is also neat at x. Let J be the ideal of Q generated by g :=6(1).
Then S xa, Ag =A(p,s). Since 0 is vertical, J is the interior ideal of Q, and the
set of minimal primes containing it is the set of height one primes of Q. Thus
the dimension of A(g. sy is the dimension of Ar, where F is any facet of Q. This
dimension is the rank of F#P; if it is zero, then Q8P has rank at most one, hence
N — @ is an isomorphism, contradicting our assumption that x € Y. Thus Q#P
has rank at least two. Since V has dimension one and is smooth over Ag ), it
follows that in fact F'#P has rank one, that Q%P has rank two, and that V is étale
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over A, ). Since Q% /7 = Mip/s and Q* maps to zero in Mip/s it follows that
Q is sharp of dimension two, and hence has exactly two faces F; and F,. Each of
these is canonically isomorphic to N; let g; be the unique generator of F;. Since
0 is saturated, every element of QO can be written uniquely in the form ng + m;q;,
where n, m; € N and i € {1, 2} [Ogus 2018, I, 4.8.14]. Writing g, + ¢» in this form,
we see that necessarily m; = 0 (otherwise g would belong to a proper face). Thus
0 is generated by g; and ¢, subject to the relation ng = g + ¢, for some n > 0.
Since Q has dimension two, it is necessarily isomorphic to Q,, and since the chart
QO — My is neat at x, in fact 0, = /\_/lx,x- Finally, we note that X is singular at x,
so U is precisely the smooth locus of X. U

Let us remark that the isomorphism M x.x = Nin (1) is unique, since the monoid
N has no nontrivial automorphisms. In case (2), the integer n is unique, and there
are exactly two isomorphisms M x.x = Q,, since Q, has a unique nontrivial auto-
morphism, which exchanges ¢; and g.

Thanks to Kato’s result, we can give the following more explicit version of
Corollary 4.1.7 in the cases of log curves. Since we are working over the standard
(split) log point S, we have a map N — Mg — My, and we let My, := Mx/N.

Proposition 7.1.3. Let X/S be a vertical log curve over the standard log point,
let € : X' — X be its normalization, and let X'/C (resp. X") be the log curve
obtained by endowing X' with the compactifying log structure associated to the
open embedding U' — U (resp. with the induced log structure from X).

(1) There is a unique morphism of log schemes h : X" — X' which is the identity
on the underlying schemes.

(2) The maps /\71‘;?/ — E_I(MX/S) and ./\/lip/ — €*(Mx/n) induced by h are
isomorphisms, where €*(Mx ) := O%, Xe=1(0%) E*I(MX/N).

(3) Let X" := X' x5 S, and let g : X" — X" be the map induced by f o€ and h.
Then the morphism g identifies X" with a strict log transform of X", i.e., the
closure of U’ in the log blowup of X" along a coherent sheaf of ideals of
My, (made explicit below).

Proof. Statement (3) of Corollary 4.1.7 implies statement (1) of Proposition 7.1.3,
statement (4) implies that s induces an isomorphism 6 : /\7‘;”3 — e My /s), and it
follows that /\/l%(p, — €*(Mx/p) is an isomorphism, since this map is a morphism of
O torsors over 6. This proves statements (1) and (2); we should remark that they
are quite simple to prove directly in the case of curves, because the normalization
X' of X is smooth.

Our proof of (3) will include an explicit description of a sheaf of ideals defining
the blowup. For each point y’ of Y’, let n be the integer such that M X.e(y) =
On, let K,/ be the ideal of My~ ,» generated by M;,yy, and n M, and let K :=
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(MK, :y" €Y'}, a coherent sheaf of ideals in My~». Observe that the ideal of
My» generated by K is invertible. This is clear at points x" of U’. If y’ € Y, the
ideal Ky is generated by the images of ¢, and ng, and in Q, the ideal (g2, ng) is
generated by ¢, since ng = g1 + g». Thus the map X” — X"’ factors through the
log blowup [Niziot 2006, 4.2]. A chart for X" near y’ is given by N & N mapping
(1, 0) to g2 and (0, 1) to ¢, and the log blowup of the ideal (g3, ng) has a standard
affine cover consisting of two open sets. The first is obtained by adjoining ng — g2,
and the corresponding monoid is Q,; and the second by adjoining g, — ng. The
closure of U’ is contained in the first affine piece, so we can ignore the second.
Thus the induced map is indeed an isomorphism as described. U

Proposition 7.1.3 shows that one can recover the log curve X”/S directly from
the log curve X’ together with the function v : Y’ — Z* taking a point y’ to the
number n such that M,y = Q,. In fact there are additional data at our disposal,
as the following proposition shows.

Proposition 7.1.4. Let X /S be a vertical log curve over the standard log point and
let X' /C be the corresponding log curve over C as described in Proposition 7.1.3.
Then X' /C is naturally equipped with the following additional data.

(1) A fixed point free involution t of Y.
(2) A mapping v : Y’ — N such that v(y') = v(i(y")) for every y' € Y'.
(3) A trivialization of the invertible sheaf Ny /x' ® 1*(Ny'/x') on Y'.

Proof. These data arise as follows. Each fiber of the map € : Y/ — Y has cardinality
two, and hence there is a unique involution ¢ of ¥’ which interchanges the points
in each fiber. The function v is defined as above: v(y’) is the integer n such
that M X,e(y) = Qn. To obtain the trivialization in (3), let y’ be a point of Y’
and let y := €(y’). Recall from Remark 3.3.1 that if X is a fine log space and
m € I'(X, My), there is an associated invertible sheaf £ whose local generators
are the sections of My mapping to m. Observe that, since the log point S is
equipped with a splitting Mg — M, there is a canonical generator mg of the
invertible sheaf £ g on S. Let us use the notation of the proof of Proposition 7.1.3.
Endow Y with the log structure from X and choose a point y of Y. The choice
of a chart at y defines sections m and m, of My ,, whose images m and m; in
I'(y, My,y) are independent of the choice of the chart and define one-dimensional
vector spaces Ly;,. The equality m +m, = n f°(1) induces an isomorphism

L, ® L, = L], =C.
As we have seen, the element m, corresponds to a generator of the ideal of the

point yi in )_(’1, so there is a canonical isomorphism €*(Lz,) = NY_/}X’,yi; similarly
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€ (L) = NQ;XCyz' Thus we find isomorphisms
Ny'jx.5; ® (CNyyx)y, = Ny @ Ny oy Z €7 (L) ™ @€ (L) =C. O

In fact the data in Proposition 7.1.4 are enough to reconstruct the original log
curve X/S. (For an analogous result in the context of semistable reduction, see
[Ogus 2018, III, Proposition 1.8.8].) Rather that write out the proof, let us explain
how one can construct the fibration X5, — S! directly from X’ together with these
data.

It will be notationally convenient for us to extend ¢ to a set-theoretic involution
on all of X', acting as the identity on U’. If y’ € Y’ and v is a nonzero element
of Ny, x, let t(v) be the element of N, x- which is dual to v with respect to
the pairing defined by (3) above. Then ((Av) = A2~ 11 (v) for all v. Note that since
M x',y» = N for every y" € Y’ and vanishes otherwise, we have a natural set-theoretic
action of S! on X fog covering the identity of X’. Thus the following sets of data
are equivalent:

(1) a trivialization of Ny, x' @ 1*(Ny;x);

(2) an involution ¢ of Ny, covering the involution ¢ of Y’, such that ((Av) =
A~ (v) forheC*and v Ny /x;

(3) an involution of ¢ of SI(NXr /x') (the circle bundle of Ny, x), covering the
involution ¢ of Y, such that t(*(v)) = A1 (t(v)) for A € S! and v € SY(Ny//x);

(4) an involution ¢ of X/ such that rX/(L(xl’Og)) = t(tx’ (xl/og)) and L(é‘x{og) =

L(xlog) for ¢ € S! and xlog € Xlog

The data in (3) and (4) are equivalent thanks to Remark 3.3.1. We should also point
out that these data are unique up to (nonunique) isomorphism.

Proposition 7.1.5. Let X/S be a log curve and let X' and t be as above. Let
v(xlog) =v(e(ty (xlog))) and define 1 on Xlog x S! by

[(Xfoge £) 1= ("2 11y, 0).
Then X\og is the quotient of Xl’og x S! by the equivalence relation generated by 1.

Proof. Let y be a point of Y and let e ' (y) := {y{, y}}. We can check the formula
with the aid of charts, using again the notation of the proof of Proposition 7.1.3.
Then MX/, = Mg ', GBM%p is free with basis m,, m and MX// L= = M2 Xy, EBM%p
is free w1th bas1s ml, m We have isomorphisms

A (&P
MX// // MX, MX// //

sending m to m and m; to m; = nim — my. Then the formula follows immediately.
O
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0 H)—0_
| |

Figure 1. Gluing log fibers.

This gluing map is compatible with the map Xo; — S'. Figure 1 illustrates the
restriction of this gluing to 7~!(y) — S!, when pulled back to via the exponential
map [0, 277i] — S'. The reader may recognize the gluing map as a Dehn twist. It
appears here as gluing data, not monodromy. It is of course also possible to see
the monodromy from this point of view as well, using a chart for X at a point y
of Y. Since this description is well-known but not functorial, we shall not develop
it here.

7.2. Log combinatorics and the dual graph. Proposition 7.1.3 and the data of
Proposition 7.1.4 will enable us to give a combinatorial description of the sheaf
My,s on X. In fact there are two ways to do this, each playing its own role and
each related to the “dual graph” associated to the underlying nodal curve of X/S.

We begin with the following elementary construction. Let B be a finite set with
an involution ¢ and let € : B — E be its orbit space. There are two natural exact
sequences of Z[t]-modules:

0 Zgp 578575 50, 0525578 8 7550,  (72-1)

The map s in the first sequence sends a basis vector b of Z? to the basis vector
€(b) of ZF, and i is the kernel of s. The map j in the second sequence sends a
basis vector e to Y {b € €~ (e)}, and p is the cokernel of j. These two sequences
are naturally dual to each other, and in particular Zg,3 and Zp /g are naturally
dual. For each b € B, letd, :== b —1(b) € Zg/p and p;, := p(b) € Zp,. Then
+dj (resp. £pp) depends only on €(b). There is a well-defined isomorphism of
Z[t]-modules defined by

IIZB/E%ZE/B, Db = p(b)i—>db =b—1(b). (7-2-2)

The resulting duality Zg,r x Zp/g — Z is positive definite, and the set of classes
of elements {p(b) : b € B} forms an orthonormal basis.

We apply these constructions to the involution ¢ of Y” and regard € : Y/ — Y as
the orbit space of this action. The construction of Zy,y and Zy:,y is compatible
with localization on Y and hence these form sheaves of groups on Y. Since we are
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assuming that X/ is vertical, ¢ is fixed point free. As we shall see, there are natural
identifications of the sheaf M s both with Zy,y, and with Zy/,y. We begin with
the former.

Because oy is the compactifying log structure associated to the set of marked
points Y’, there are natural isomorphisms of sheaves of monoids on X:

My = Ty (Divy,) =Ny (7-2-3)

Combining this identification with the isomorphism e 1My /s) = /\7%? of state-
ment (2) of Proposition 7.1.3, we find an isomorphism € ! (Mx,s) = Zy/, and
hence an injection

Y Myys — €€ (Myys) = ex(Zy).

Proposition 7.2.1. The inclusion v defined above fits into an exact sequence
0= My/s 5 e,Zy > Zy — 0,
and hence induces an isomorphism
Yxs: Mxis = Zyyy.

If £ e I'(X, Mx/s) and Ly is the corresponding invertible sheaf on X coming from
the exact sequence (1-0-4), then €*(Ly) = Ox (=¥ (£)).

Proof. Since the maps ¥ and s are already defined globally, it is enough to check
that the sequence is exact at each point y of Y. We work in a charted neighborhood
of a point y € Y as in the proof of Proposition 7.1.3, using the notation there. Then
Myx/s,y is the free abelian group generated by the image ¢, of ¢;, and £1 = —£5.
The pullback #; of #, to X’ is a local coordinate near y; and defines a generator for
M x',y, mapping to 1,» € Zy.. The analogous formulas hold near 5, and hence
¥ (€2) = 1y — 1y;. This implies that s o Y = 0 and that the sequence is exact.
Furthermore, it follows from Proposition 7.1.3 that €*(£;) = Lz, where m’ €
rx’, ./\_/lipﬁ) corresponds to £ € I'(X, My s) via the isomorphism /Vlip, — /\/l%(p/s
in statement (2) of that proposition. The sheaf Lz is the ideal sheaf of the divisor
D corresponding to i/, i.e., Ox/(— D), and D = r(£). U

The relationship between My,s and Zy:,y is more subtle and involves the inte-
gers v(y). First consider the commutative diagram of exact sequences

0——o ZX —_— E*(Zx/) —)Zx//x ——0

lres lres lres (7-2-4)

O—)Zy —)E*(Zy/) Zy//y 0
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where Zx//x is by definition the cokernel in the top row. As € is an isomorphism
over U, the right vertical map is an isomorphism and we will allow ourselves
to identify its source and target without further comment. Note that since X’/C is
smooth, the natural map Zx' — j.(Zy) is an isomorphism, hence €,(Zx) = j.(Zy),
and the top row of the above diagram can be viewed as an exact sequence:

0—>2Zx — ju(Zy) —> Zx/x — 0. (7-2-5)

Since X /S is vertical, it follows from Theorem 7.1.2 that Y is precisely the support
of My/,s and that the map Z — /Wip is an isomorphism on U. Thus there is a
natural map

¢x i M = Juj*(MF) = ju(Zy) = e.(Zx). (7-2-6)
In fact, the map ¢y is the adjoint of the homomorphism
P M = e (M) — Zy
deduced from the homomorphism
o Mxr— Pxr =Ny
defined in (4) of Corollary 4.1.7.

Proposition 7.2.2. Let X /S be a vertical log curve. The homomorphisms Vrx,s of
Proposition 7.2.1 and ¢x defined above fit into a commutative diagram with exact

rows.
0— fflﬂgp M i My/s 0
/ V
1 A 48P A 48P ) -
0—— fTIMP ——— MT s Ty — (7-2-7)
;l P}X CX/Sl
0 Zx ex(x) —2— Zyjy ——— 0

where cx s is the map sending dy to —v(y') py for every y' € Y.

Proof. We compute the stalk of the map ¢x at a point x of X. If x belongs to U,
the maps
7 — ./\_/lilfx and /\_/l?x — ex(Zy)x

are isomorphisms, and hence so is ¢x. If x belongs to Y, we call it y and work in
a neighborhood as in the proof of Proposition 7.1.3. Then X is the analytic space
associated to Spec(C[xy, x2]/(x1x2)), endowed with the log structure associated
to the homomorphism 8 : Q,, — Clxy, x2]/(x1x2) sending ¢; to x; and ¢ to O.
The point y := x is defined by x| = x, = 0, and has a basis of neighborhoods W
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defined by |x;| < €. On the connected component Wi N U of W N U, the coordinate
x1 vanishes and x, becomes a unit. Let m; (resp. m) be the image of g; (resp.
of g) in My. The stalk of €,(Zy') = j.(U) at x is free with basis (by, by), where
b; is the germ of the characteristic function of W; N U at x. The isomorphism
res : €,(Zx')y => €,(Zy'), takes b; to the basis element y/. The restriction of the
sheaf My to Wy N U is constant and freely generated by My > While my, o, =
v(y)myy, o, and moy, -, = 0. Thus ¢x(m;) = v(y)b; and ¢x(m) = b1+ by. In
particular, p(¢(m;)) = v(y) p(yi’). On the other hand, we saw in the proof of
Proposition 7.2.1 that ¥rx/s(m(m1)) = y5, — y| = —d,; € Zy;y. Thus

cx/s(Wxys(m(mn))) = cx s(—dy) = v(x) py = p(¢x(m1)). O

Since x5 is an isomorphism, the middle row of the diagram (7-2-7) above
contains the same information as the top row, a.k.a. the log Kodaira—Spencer se-
quence. Furthermore, the bottom row identifies with the exact sequence (7-2-5).
The following corollary relates the corresponding derived morphisms of these se-
quences.

Corollary 7.2.3. Let kx/s : ./\/l X/s Z[1] be the morphism associated to the log
Kodaira—Spencer sequence (1-0-1) and let ka5 : Zx1)x — Z[1] be the morphism
associated to the exact sequence (7-2-5). Then kx;s =ka;s 0 Cx/s © ¥x/s-

Proof. The diagram (7-2-7) of exact sequences yields a diagram of distinguished
triangles:

T KXx/S

lMgP M%(P MX/S f—lM%P[l]
/ / vais /
FIIMEP s M s ZY/Y/—>f M)
Tx —— eu(@y) —2— Tyryy —2L 7x11]

The arrows on the right are all identifications, and the formula in the corollary
follows. O

Remark 7.2.4. The sheaf Zx/,x can be naturally identified with ’H}(Z). In fact
there are two such natural identifications differing by sign. The first identification
is the boundary map 6 : Q = H?,(Z X'/x) = H%,(Z) in the long exact sequence
obtained by applying the cohomological §-functor H} (—) to the short exact se-
quence (7-2-5). It is an isomorphism because Hg,(j*ZU) =0fori=0,1. To
define the second, recall that, by the construction of local cohomology, there is a
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canonical exact sequence
0— HY(X,Z) > H'(X,Z) > H'(U,Z) > Hy(X,Z) > H'(X,Z) - --- ,

compatible with restriction to open subsets V C X. In our situation, HQ(V, Z)=0
for all V and H'(V) = 0 for a neighborhood basis of every point of X. Replac-
ing X by V and U by V N U for varying open V and sheafifying yields a map
J«@y) — H},(Z) which factors through an isomorphism §" : Zx// x = ’Hi,(Z). It
follows from [SGA 41, 1977, Cycle 1.1.5, p. 132]) that § = —4§'.

We shall see that there is a very natural connection between the log structures
associated to a log curve over the standard log point and the “dual graph” of the
underlying marked nodal curve. The precise meaning of this graph seems to vary
from author to author; the original and most precise definition we have found is
due to Grothendieck [SGA 71 1972, IX, 12.3.7]. We use the following variant,
corresponding to what some authors call an “unoriented multigraph.”

Definition 7.2.5. A graph I" consists of two mappings between finite sets: € :
B — E and ¢ : B — V, where for each e € E, the cardinality of € ~!(e) is either
one or two. A morphism of graphs I'y — I'; consists of morphisms fp : By — B,
fe: E1 — Ejand fy : Vi — V, compatible with ¢; and ¢; in the evident sense.

The set V is the set of “vertices” of I, the set E is the set of “edges” of T,
and the set B is the set of “endpoints” of the edges of I". For each edge e, the set
e~ !(e) is the set of endpoints of the edge e, and for each b € B, {(b) is the vertex
of I' corresponding to the endpoint b. There is a natural involution b — ¢(b) of B,
defined so that for each b € B, €' (e(b)) = {b, t(b)}. The notion of a graph could
equivalently be defined as a map ¢ : B — V together with an involution of B; the
map € : B — E is then just the projection to the orbit space of the involution.

Definition 7.2.6. Let X be a nodal curve. The dual graph I"'(X) of X consists of
the following data:

(1) V is the set of irreducible components of X, or equivalently, the set of con-
nected components of the normalization X’ of X.

(2) E is the set Y of nodes of X.

(3) B := e (E), the inverse image of E in the normalization X’ of X.

(4) ¢ : B— V is the map taking a point x” in X’ to the connected component of

X' containing it.

The involution of the graph of a nodal curve is fixed point free, since each e "1 (y)
has exactly two elements. A morphism of nodal curves f : X| — X» induces a
morphism of graphs provided that f takes each node of X to a node of X».
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Definition 7.2.7. Let I" be a graph in the sense of Definition 7.2.5. Suppose that ¢
is fixed-point free, so that each € ~!(e) has cardinality two.

(1) C.(I') is the chain complex C(I") — Co(I'):
Zep 7Y,

where d; is the composition Zg /g i> 7B ﬁ> ZV, where i is as shown in (7-2-1),
and where ¢, sends b to £ (b).

(2) C*(I") is the cochain complex co/(rm — cl(n:
AR

where dj is the composition zv §—*> 78 L Zp/E, where p is as shown in
(7-2-1), and where ¢*(v) = > {b: ¢(b) = v}.

(3) (=, =) : Ci(I") x CI(T") — Z is the (perfect) pairing induced by the evident
bases for Z8 and 7",
(—]=):CYT") x CY(I") = Z is the (perfect) pairing defined by (—, —) and
the isomorphism ¢ : cl() — () (7-2-2).

It is clear from the definitions that the complexes C.(I") that a morphism of
graphs f : 'y = ['; induces morphisms of complexes

C.(f):C(I'))—> C(I') and C°(f):C(I'y) > C(I'),

compatible with d; and dv.

The proposition below is of course well-known. We explain it here because our
constructions are somewhat nonstandard. Statement (3) explains the relationship
between the pairings we have defined and intersection multiplicities.

Proposition 7.2.8. Let I' be a finite graph such that €~ (e) has cardinality two for
everye € E. Let C.(I') and C*(I") be the complexes defined in Definition 7.2.7, and
let Hy(I") and H*(T") the corresponding (co)homology groups. For each pair of
elements (v, w) in 'V, let

Ev,w):=e@ ') Ne¢ ' (w) CE
and let e(v, w) be the cardinality of E (v, w).
(1) The homomorphisms dy : C{(T') — Co(") and d° : C°(I') — C'(I) are ad-
Jjoints, with respect to the pairings defined above.

(2) The groups H.(I") and H*(I") are torsion free, and the inner product on
C (') (resp. on Co(I")) defines a perfect pairing (—, —) between HY(T) and
H (") (resp. between Hy(I") and HO(I)). In fact, Hy(I") identifies with the
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free abelian group on V| ~, where ~ is the equivalence relation generated by
the set of pairs (v, V') such that E(v, v'") # @.

(3) Foreachv eV,

d(t@d W)=Y e, ) -1,
v #v
and
—e(v, w) ifv#w,
Zv,#v e(v,v) ifv=w.

(4) Let h' (") denote the rank of H (T") and let x (I") := h®(I") — h'(T"). Then

@ )|d°(w)) = {

x(T) =[V[—|E].

Proof. Statement (1) is clear from the construction, since dj is dual to ! and ¢, is
dual to ¢*.

To prove (2), observe that each equivalence class of E defines a subgraph of T,
that I" is the disjoint union of these subgraphs, and that the complex C.(I") is the
direct sum of the corresponding complexes. Thus we are reduced to proving (2)
when there is only one such equivalence class. There is a natural augmentation
a : 7V — Z sending each basis vector v to 1, and if b € B, a(di(b — 1(b))) =
a(Z(b) — ¢(1(b))) =0, so d; factors through Ker(a). Thus it will suffice to prove
that d; maps surjectively to this kernel. Choose some vy € V; then

{fv—vg:veV,v#uv}

is a basis for Ker(«). Say (v, v') is a pair of distinct elements of V and E (v, v) # @.
Choose e € (7' (v)) Ne(c~ (v") and b € e 1(e) N ¢~ (v). Then necessarily
(b)) =, s0dy(b— (b)) =v—1'. Since any two elements of E are equivalent,
given any v € V, there is a sequence (v, v1, ..., V,) With each v;_; ~ v;, and for
each such pair choose b; with dy(b; —t(b;)) = v; —v;_1. Thendi(b1+---+by) =
Uy, — V.

It follows that Hy(I") is torsion free. Then the duality statement follows from
the fact that d° is dual to d;.

The formulas for d; and d° imply that forb € B and v € V,

di(dy) =£B) —L®), @)= Y pp
bes=1(v)

Hence if vin V,

dl(t(d‘)(v))):d]( > db),= D )= tb)).

bes1(v) bes1(v)
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Butif b € ¢~ (v),
v—¢ (b)) it L) # (b)),

0 otherwise.

C(b)—é“(t(b))Z{

For each v € V \ {v}, the map € induces a bijection from {b € ¢ =1 (v) : £ (1(b)) = V')
to E(v, v’). Thus

D ) —t®) =) e, v)v—e(, v )W

be;‘*l(v) v'ev

and the first formula of (3) follows. Then

(@"|d°w) = (di (1@ @))w) =Y e, v)wlw) = Y e(w,v) V' w),
v'#v v'#v

and the second formula follows. Statement (4) is immediate. O

The geometric meaning of the cochain complex of a nodal curve is straightfor-
ward and well-known.

Proposition 7.2.9. Let X /C be a nodal curve and let T'(X) be its dual graph. Then
there is a commutative diagram

HO(X',Z) —2— HO(X, Zxx)

% E

COUr (X)) TCI(F(?_{))

where the homomorphism A comes from the map also denoted by A in the short
exact sequence

0— ZX — 6*(ZX/) i) ZX’/X — 0. (7-2-8)
Consequently there is an exact sequence
0—-> H\(I'X))—> H'(X,Z) - H (X', Z) — 0. (7-2-9)

Proof. The commutative diagram is an immediate consequence of the definitions.
The cohomology sequence attached to the exact sequence (7-2-8) reads

0 HYX.,7) > H'X',2) & HOX, Zy)x) > H'\(X.7) > H'(X', Z) - 0,

and the sequence (7-2-9) follows immediately. ([

Note that H!(X’, Z) vanishes if and only if each irreducible component of X is
rational, a typical situation.
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7.3. The nearby cycles spectral sequence. We now consider the associated mor-
phism fiog : Xjog —> Siog. Our goal is to use the nearby cycles diagram (4-2-1) and
Theorem 4.2.2 to describe the general fiber X, of fio,, together with its monodromy
action.

Theorem 7.3.1. Let f: X — S be a vertical log curve over the standard log point S.
The morphism

flog : Xlog - Slog =S

is a topological submersion whose fibers are topological manifolds of real dimen-
sion 2. If f is proper and X is connected, then the morphism fg is a locally trivial
fibration, its general fiber X, is compact, connected, and orientable, and its genus
is 14 g(X") +h0(Y) — n°(X").

Proof. The first statement is proved in [Nakayama and Ogus 2010], although it is
much more elementary over a log point as here. Suppose f is proper. Then so is
fiog, and it follows that X, is compact. Its orientability is proved in [Nakayama
and Ogus 2010].

To compute the cohomology of X, observe that since the fibration X log = R(1)
is necessarily trivial, X, and Xlog have the same homotopy type, and in particular
their homology groups are isomorphic. The spectral sequence of nearby cycles for
the sheaf Z(1) on Xlog reads

EPI(1) = HP (X, W% (1)) = H"(Xiog, Z(1)).

Theorem 4.2.1 defines an isomorphism o : M /s = IIl)l(/s(l), and Proposition 7.2.1

an isomorphism ¥x/s : Myx,s = Zy,y'. These sheaves are supported on the

zero dimensional space Y, and \I/;’( /S(l) vanishes for ¢ > 1 Since X has (real)

dimension 2, the only possible nonzero terms and arrows in the spectral sequence
[ ]

are
&

Hence Eééo(l) = E;’O(l) = H'(X, Z(1)), and there is an exact sequence

0,1

d -
0— E%' (1) — H(X, Zy)y)) — H*(X, Z(1)) —» H*(Xiog, Z(1)) = 0. (7-3-1)

Since the normalization map € is proper and an isomorphism outside Y, it in-
duces an isomorphism

H*(X,Z(1)) = H*(X',Z(1)).
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Since X’ is a smooth compact complex analytic manifold of dimension 1, the trace
map induces a canonical isomorphism: H 2(X',7(1)) = H (X', 7). Combining
this isomorphism with the one above, we obtain an isomorphism

' HX(X,Z(1)) = H°(X', 7). (7-3-2)

Lemma 7.3.2. Let X/S be a proper, connected, and vertical log curve over the
standard log point, and let X be its underlying nodal curve. Then the Betti numbers
of I'(X), of X, and of the general fiber X, of the fibration Xog — S!', are given by
the following formulas:
R (X)) = 1=h°(X") +h°(Y),
R'(X) =h' (T X))+ (X)),
h'(Xy) = hi (D (X)) +h' (X).
Proof. The first formula follows from (4) of Proposition 7.2.8 and the definition
of I'(X). The second formula follows from the exact sequence (7-2-9). For the
third formula, observe that H Z(Xlog, Z(1)) has rank one, since Xjo, has the same
homotopy type as X,,, which is a compact two-dimensional orientable manifold.
It then follows from the exact sequence (7-3-1) that the rank %! (1) of E%!(1) is
given by
0,11y _ 1,0 2 _ 10 0, v/

e (D =h"(X,Zyyy) —h" (X, Z())+1=h"(X, Zy;y) —h (X", Z) + 1
=h(X, Zy)y) = (X", 2) +1 = [EC (X = |V (T (X)] +1
=1-x("(X)
= h(I'(X)).

Then h'(X,) = €2 (1) + L) (1) = hi(D(X)) +A' (X). O
Combining the formulas of the lemma, we find
h'(Xp) = hi (D) + 1 (T) +h' (X") =2 = 20°(X") +20°(Y) + 2¢(X),
and hence g(X,) =1—h%(X") +hr°(Y) + g(X). O

The following more precise result shows that the differential in the nearby spec-
tral sequence can be identified with the differential in the chain complex C. attached
to the dual graph of X.

Proposition 7.3.3. Let X/S be a proper and vertical log curve over the standard
log point and let X be its underlying nodal curve. Then the following diagram



MONODROMY AND LOG GEOMETRY 527

commutes:

0,1

0 1 —h
HY (X, Wy (1)) — H*(X, Z(1))

1

o | =\t

HOX, Zy)y) 2 HOX, My)s) —— HOX', 2)

~ ~

Ihs

C1(T (X)) —2— CoT (X))

Consequently there is a canonical isomorphism Egél (1) = H{(I'(X)) and hence an
exact sequence

0—> HY(X,z(1)) — H'(X,Z(1)) > H;(I'(X)) = 0. (7-3-3)

Proof. The commutativity of this diagram follows from Proposition 7.2.1 and state-
ment (1) of Theorem 4.2.2. To write out the proof in detail, we use the notation
of the proof of that result. It suffices to check what happens to each basis element
of the free abelian group H 0(X, My /s). Let y be a point of Y and let m; and m»
be the elements of M , as in the proof of Proposition 7.1.4, with images ¢; and
£ in I'(X, Mx/s). Then £; = —£; is a typical basis element of HO(X, Mxys).
Theorem 4.2.2 says that dg’l(ﬁl) is the Chern class c¢1(L¢,) of L¢,, where Ly, is
the invertible sheaf on X coming from the exact sequence (1-0-4). Then

€*(c1(Le))) = c1(e*(Le))) = c1(Ox (=¥ (£1)),

by Proposition 7.2.1. Butif p is a point of the (smooth) curve X', then tr(c1(Ox(D)))
is the basis element of H%(X’, Z) corresponding the connected component of X’
containing p. The corresponding generator of Cy(I") is precisely ¢(p). This proves
that the diagram commutes. O

7.4. Monodromy and the Picard-Lefschetz formula. We can now compute the
monodromy action on H' (X, Z).

Theorem 7.4.1. Let X/S be a log curve over the standard log point. Choose y €
In = Z(1), let p, be the corresponding automorphism of H' (X, 7), and let N, :
E%! — ELO be the map induced by p, —id (see (1-0-6)). Let

KS(/S ‘=KXx/s©o %?/15 Lyyy — Mxys — Lx[1].
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Then there is a commutative diagram:

e py—id 1,5
H (X,7) — H (X,7)

Y
HY (X, Z(1))
b
Hy(D(X)) ——— E%I (1) ——— B

~

I

H'(X,7) +—— H'(T(X))

i ’
“xrs Ka/S
p

HY(X, Zy,y') =T HY(X,Zyy)

Proof. Applying H' to the commutative diagram defining AJI/

IDX/S —_— \If)l(/s[—]]
pyidl l/\;[—ll
Wy/s ¢ Wy/s

yields a commutative diagram

HY(X,Z) —— H°(X, R'%.2)

N

HY(X,Z) +—— H'(X, R°%,7).
Thanks to the identifications

HO(X, R'%,Z2(1)) = EX' (1) = HO(X, Zy,v),
H'(X,R%.2)=H'(X,7) = EY),
our monodromy formula from Theorem 4.2.2(2) shows that the following diagram
commutes:
H'(X,2) —— H'(X, Z(1)) — H(X, Zy,y")

Py —idJ l"g(/s

HY(X,7) HY\(X,2).
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The rest of the big diagram commutes by the preceding discussion of the dual
graph. U

Remark 7.4.2. The dual of the exact sequence (7-3-3) can be written
0— Hi(I'(X)” — H{(X,Z(—1)) - H{(X,Z(-1)) — 0,

so that the elements of H;(I'(X))Y = H'(I'(X)) can be interpreted as vanishing
cycles on X. The exact sequence (7-2-9) shows that they can also be interpreted
as vanishing cocycles on X.

The monodromy formula expressed by Theorem 7.4.1 can be made more explicit
in terms of vanishing cycles. For each node y € Y, choose a branch y' € e~ (y)
and note that £p,» € I'(X, Zy',y) depends only on y. Write (—, —) for the pairing
Zyyy x Ly jy — Z and let hy : Zy;y — Zy;y be the map (—, p,/)p,. Then h,
depends only on y and not on y’, and, by Proposition 7.2.2, we can write

cxis =y —v(Mhy =Y —v(y)(—, py)py.

y y

(The map cx,s above encodes the “monodromy pairing” of Grothendieck, see
[SGA 71 1972, IX, §9 and 12.3]). Then the composition

~ bo o oi ~
H' (X, 72) 2% 1) 2225 iy S HY(X, 2)
is the map sending an element x to Zy —v(y)(boy(x), py)a(py). The following
formula is then immediate.

Corollary 7.4.3. Ify € lp and x € H (X, 7),

py(X) =x =Y v (boy(x), pya(p,). m
y

When all v(y) = 1, the formula of Corollary 7.4.3 is the standard Picard—
Lefschetz formula [SGA 71 1973, exposé XV]. To verify this, we must check
the compatibility of the pairing (—, —) used above with the standard pairing on
cohomology. As usual the determination of signs is delicate; we give a (somewhat
heuristic) argument below.

Recall that we have a proper fibration X— R(1), and hence for all i, H' ()N( L) =
H i()N(O), where )N(O is the fiber of X — Rs over zero (equivalently, the fiber of
Xiog —> S! over 1). Thus we can replace X by X, in the diagrams above. Since
Xoisa compact manifold, whose orientation sheaf identifies with Z(1) [Nakayama
and Ogus 2010], we have a perfect pairing

(== : H' (X0, Z(1)) x H' (X0, Z) — H*(X0. Z(1)) = Z.
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defined by cup-product and trace map. For each y, let v, :=a(8,) € H (X0, 2).
Then the usual Picard-Lefschetz formula [SGA 711 1973, exposé XV, théoréme 3.4]
reads

py (1) =x = 3 vy ()]vy)vy. (7-4-1)

y

As we shall see from Proposition 7.4.4 below, for x € Hl(f(o, Z(l))and y €Y,
(b(x), 8y) = (x]a(8y)).
Thus Corollary 7.4.3 implies the Picard—Lefschetz formula (7-4-1).
Proposition 7.4.4. The maps
a:Hy(X,Z)— H' (X0,Z) and b:H"(Xo,Z(1)) - H} (X, Z)

of the diagram in Theorem 7.4.1 are mutually dual, where we use the standard
cup-product and trace map pairing,

H'(Xo,Z(1) ® H' (X0, Z) — H*(Xo, Z(1)) < Z,
and the form (—|—) of Definition 7.2.7 on H}(X, Z)=Ccl().

Proof. We start by reducing to the local case. Since we will have to deal with
nonproper X, we need to modify the map a slightly, letting

a:HY(X,7) - H\(X,Z) - H! (X, 2),

where the first map is induced by the natural transformation I'y — I'; (defined be-
cause Y is proper), and the other map is pull-back by 7, : Xo — X (defined because
T is proper). Note that a is well-defined in the situation when X is not proper, and
that it coincides with a defined previously in case X is proper. Moreover, the map b
makes sense for nonproper X, and both maps are functorial with respect to (exact)
open immersions in the following sense: if j : U — X is an open immersion, then
the following squares commute:

Hy(X,7) —— H}(Xo. Z) H'(Xo, 2(1)) —— H}(X, 2)
I i |- |-
Hyry U, 2) —— H} (U, 2) H'(Uo. Z(1)) —— Hyy (U, 2)

The two pairings in question are similarly functorial. Recall that

Hy(X.2) =P H},(X. )
yeYy
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is an orthogonal decomposition. Let ay, by be the compositions

ay: H\ (X, Z) > Hy(X,Z) > H!(Xo, D),
by: H' (X0, Z(1)) > Hy(X,Z) — H}\(X.Z).

To check that a and b are mutually dual, it suffices to check that a, and b, are
mutually dual for all y € Y. Fix y € Y, and let U be a standard neighborhood of y.
The functoriality of a and b discussed above implies that it suffices to prove the
proposition for X = U.

We henceforth assume that X = {(x1, x2) : x1x2 =0}. So Y ={y}, y = (0, 0),
and X = X U X, where X; = {x; = 0}. The choice of ordering of the branches at y
yields generators of the three groups in question as follows. First, the class of X
(treated as a section of j,.Zy, where U = X \ Y) gives a generator u of H} (X, 72).
Second, the loop in the one-point compactification of Xo going from the point at
infinity through X, and then X gives a basis of its fundamental group, and hence
a basis element v of Hc1 (X0, Z). Finally, identifying the circle Yo = T ! (y) =
{(p1,¢2) €S' : p1¢» = 1} with the unit circle in X; via the map (P, ¢2) — @1
yields a generator w of H'(Xo, Z(1)) = H'(Yy, Z(1)).

The assertion of the proposition will now follow from three claims:

(1) au) =v,
(2) b(w) = —u,
3) (v,w)=1.

To check the first claim, note that we have a similarly defined basis element v’
of HC1 (X, Z) which pulls back to v. Let y : RU {oo} — X U {oo} be a loop repre-
senting v’, sending O to y. Pull-back via y reduces the question to Lemma 7.4.5
below.

For the second claim, recall first that ¢’(u) = ¢/([X1]) = [¢g1]. Second, the
isomorphism o : /\/l%(p/s’y — Hl(fo, Z(1)) sends g; to the pullback by ¢; of the
canonical class € H'(S!, Z(1)). On the other hand, since x; is the coordinate
on Xi, v = ¢j0. Since ¢1¢, =1 on Xo, ¢} +¢; = 0, and hence b~ lu) =
o(c'(u) =¢j0 = —¢50 = —w.

For the last claim, we note that the map

(r1, @1, 72, 2) > (11 — 12, 1) : Xo — Rx S!

is an orientation-preserving homeomorphism (where the orientation sheaves of
both source and target are identified with Z(1)). Under this identification, w cor-
responds to the loop 0 x S' (positively oriented), and v correspond to the “loop”
R x {1} oriented in the positive direction. These meet transversely at one point
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(0, 1), and their tangent vectors form a negatively oriented basis at that point, thus
(w, v) =—1. O

Lemma 7.4.5. Let S = RU {oo} be the compactified real line, Y = {0}, Z = {00},
X=R=S\Z,U=X\Y, j: U X. Letec H'(U, Z) equal 1 on U = (0, c0)
and 0 on U_ = (—00, 0). As before, we have a short exact sequence

0—>2Zx — july — ’H;(ZX) —-0

and hence an identification H),(X,Z) = H(X, H},(Zx)) = H(U, 2)/j*H°(X, Z).
The element e thus gives a basis element u of H;l, (X, Z). The orientation of the real
axis gives a basis element of w1(S, 00), and hence a basis element v of

Hom(rr; (S, 00), Z) = H'(S,7) = H!(X, 7).
Then the natural map H} (X,7) — HC1 (X, Z) sends u to v.

Proof. By [SGA 415 1977, Cycle 1.1.5, p. 132], u corresponds to the partially trivi-
alized Z x-torsor (Zx, —e) (see Remark 7.2.4 and [SGA 41, 1977, Cycle 1.1.4-5]).
Let (F, f) be a Zg-torsor with a section f € H(F, S\ Y) such that there exists an
isomorphism ¢ : F|y = Zy identifying f|x\y with —e. Then the class [F] of F in
H'(S,7Z) = H!(X, Z) is the image of u. The image of 0 under the isomorphism ¢
yields a trivializing section g of F|y, and f is a trivializing section of F|s\y. On
the intersection X N (S'\ Y) = U, we have f — g =0 —¢; thus f is identified with
gon U_, and g is identified with f 4+ 1 on U,. So the positively oriented loop has
monodromy +1 on F, i.e., [F] = v as desired. U
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The Markov sequence problem for
the Jacobi polynomials and on the simplex

Dominique Bakry and Lamine Mbarki

The Markov sequence problem aims at the description of possible eigenvalues
of symmetric Markov operators with some given orthonormal basis as eigenvec-
tor decomposition. A fundamental tool for their description is the hypergroup
property. We first present the general Markov sequence problem and provide
the classical examples, most of them associated with the classical families of
orthogonal polynomials. We then concentrate on the hypergroup property, and
provide a general method to obtain it, inspired by a fundamental work of Carlen,
Geronimo and Loss. Using this technique and a few properties of diffusion oper-
ators having polynomial eigenvectors, we then provide a simplified proof of the
hypergroup property for the Jacobi polynomials (Gasper’s theorem) on the unit
interval. We finally investigate various generalizations of this property for the
family of Dirichlet laws on the simplex.

1. Introduction

In this paper, we are interested in the Markov sequence problem and the related
hypergroup property, and concentrate in particular on Beta measures on the interval
and on Dirichlet measures on the simplex.

The general Markov sequence problem may be stated as follows: given a unit or-
thonormal £2(p) basis { fo=1, fi, ..., fn, ...} on some probability space (E, &, 1),
one aims at the description of all sequences (1,), such that the linear operator K
defined through K (f,) = A, f, is a Markov operator, that is satisfies K (1) =1 and
is positivity preserving. Since the first property amounts to g = 1, the problem is
reduced to studying the positivity preserving property.

This problem arises in many areas, particularly in statistics, special function
theory, orthogonal polynomials theory and so on (see, among many others, [Bakry
et al. 2014; Bakry and Zribi 2017; Bochner 1954; Carlen et al. 2011; Connett and
Schwartz 1990; Gasper 1971; 1972; Lasser 1983; Sarmanov and Bratoeva 1967]).
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The aim of this paper is to describe these Markov sequences for the family of
Jacobi polynomials and their extension to some families of polynomials in many
variables on the simplex {xi > 0; 27: 1 Xi =< 1} C R", orthogonal for the Dirichlet
measures

pi1/2—1 2-1 21
Cpropui Xi : ~-x,f"/ (1 —xp— - x)P /27Ny oo dxy,

where p; > 0,i =1,...,n+ 1. (The choice for this parametrization will be
explained below).

These Dirichlet measures again play an important role in many areas (statis-
tics, probability, mathematical biology, etc., see, for example, [Balakrishnan 2003;
Gelman et al. 2004; Letac 2012; Letac and Massam 1998]), and are natural gen-
eralizations of Beta measures on (—1, 1), associated with the Jacobi polynomials.
For the Beta measure, we shall revisit the fundamental result of Gasper through
a method introduced by Carlen, Geronimo and Loss [Carlen et al. 2011], and our
aim is to use this technique to propose some extensions to the Dirichlet measures.

The Markov sequence set shares some basic generic properties, whatever the
space E and the basis F. We refer to [Bakry and Huet 2008] for further details.

As we already mentioned, since fyp =1, A9 = 1. Moreover, it is easily seen that
for any n, |A,| <1.

The set of Markov sequences is a convex set (a convex combination of se-
quences corresponds to the same convex combination of the associated Markov
operators), and is closed under pointwise convergence on the sequences. Therefore,
through Choquet’s representation theorem, the description of all Markov sequences
amounts to the description of the extremal ones.

Moreover, it is also stable under pointwise multiplication (which corresponds to
the composition of the associated Markov operators).

Let us mention a few classical results concerning the Markov sequence problem.

(1) Hermite polynomials. The Hermite polynomials are the orthogonal polynomi-
als for the Gaussian measure on R, that is yu(dx) = (1/@)8_)62/2 dx. Sarmanov
and Bratoeva [1967] proved that, for any Markov sequence, there exists a probabil-
ity measure v on [—1, 1] such that A, = f_ll x" v(dx). In other words, the extremal
Markov sequences are of the form A, = e for some ¢ > 0, or (—1)"e™"™, for some
t > 0. The sequence (e~"") corresponds to a well known family of Markov opera-
tors K;, namely the heat kernel associated with the Ornstein—Uhlenbeck operator.
Indeed, K; = e'l, where L(f)(x) = f” — xf’. This family of Markov kernels is
known as the Ornstein—Uhlenbeck semigroup and there is a large literature devoted
to it (see for example [Bakry et al. 2014; Gross 1975; 2006; Meyer 1982]). More-
over, the sequence A, = (—1)" corresponds to the symmetry K(f)(x) = f(—x),
so that those two operations generate all Markov sequences.
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(2) Ultraspherical polynomials. The ultraspherical polynomials (Py) form the
family of orthogonal polynomials for Cy (1 — x%)% dx, the ultraspherical probability
measure on (—1, 1), where @ > —1 is some real parameter and C, the normalizing
constant. Then, Bochner’s theorem [1954] (see also [Bochner 1956; 1979; Lasser
1983]) asserts that a sequence (1,) is a Markov sequence for this basis if and only
if there exists a probability measure v on (—1, 1) such that

/‘ P%(x)
A = v(dx).
-1 P2(1)

Indeed, at least formally, Sarmanov and Bratoeva’s theorem may be deduced
from Bochner’s one, through a limiting procedure known as the Poincaré ansatz,
that is considering the scaling of ultraspherical probability on (—a, a) and letting
a go to infinity. But the method followed in [Sarmanov and Bratoeva 1967] is
completely different.

(3) Jacobi polynomials. Gasper’s theorem [1970; 1971; 1972] concerns the Beta
measures C, (1 —x)%(1 +x)#dx on (-1, 1), where a, B > —1. As before, the
basis is chosen to be the sequence of orthogonal polynomials for this measure,
which are the Jacobi polynomials P," # Then, provided 8 > « > 2, a sequence
(M) is a Markov sequence for this family if and only if there exists a probability
measure p on (—1, 1) such that, for any n € N,

1 pa.p
M :/ P’; ﬁ(x) v(dx).
-1 P, (1)

This example looks very close to the previous one, but is considerably more diffi-
cult. In Section 3 we shall come back to this result, which is central in our study.

(4) Eigenvectors of Sturm-Liouville operators. Another remarkable result in this
direction is the Achour-Trimeche theorem, which may be stated as follows. Con-
sider the interval [—1, 1], and a probability measure p on it, with a smooth den-
sity p, that we suppose bounded for simplicity (0 <c < p <C <00). Then, consider
the diffusion operator L(f) = f" + & f ', which is symmetric in £2(x). We choose
as £%(1) basis ( fn) the one formed by the eigenvectors of L with Neumann bound-
ary condition, such that fy = 1. Then, provided that log p is concave and symmetric,
for any Markov sequence (A,) associated with this family ( f;,), there exists some
probability measure v on (—1, 1) such that A,, = f_ll fn(x)/ (1) v(dx). Although
not stated as presented here in [Achour and Trimeche 1979] or in the book [Bloom
and Heyer 1995], one may find this result in [Bakry and Huet 2008].

This situation, where the extremal values for the Markov sequence problem
are given by the values f,(x)/ f,(xo) for some point xg, appears in a number of
situations. This property is described in [Bakry and Huet 2008], where it is called
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the hypergroup property at the point xg, and is developed in Section 2. In particular,
it is proven in [Bakry and Huet 2008] that, in the finite set case, the point xo must be
of minimal mass for the measure . The sole exception in the above list is that of
Hermite polynomials, which is in fact a degenerate case where the point xg is 4+-00.

Although Gasper’s result looks like a simple generalization of Bochner’s one,
which itself is a consequence of Achour and Trimeche’s one, and contains as a
limiting case the Hermite polynomial sequence, the proof of it is absolutely not
straightforward. It has been considerably simplified by Carlen, Geronimo and Loss
[Carlen et al. 2011] by a technique which we shall expose below in full generality,
and is also used in [Bakry and Zribi 2017] for the corresponding question for the
family of orthogonal polynomials associated to the A; root system. We provide
here a further simplified proof of the proof of [Carlen et al. 2011]. It relies on the
construction of some symmetric diffusion operator having polynomial eigenvectors
in some 3 dimensional space.

Moreover, we study this Markov sequence problem for the most direct exten-
sions of the Beta measures, which are the above mentioned Dirichlet measures on
the simplex.

The paper is organized as follows. In Section 2, we introduce the hypergroup
property, which is closely related to the Markov sequence problem. This is a prop-
erty of some bases of £ (1) which provides automatically the answer to the Markov
sequence problem. In Section 3, we concentrate on the case of Jacobi polynomials,
for which the hypergroup property holds true, thanks to Gasper’s theorem. In
particular, we present the Carlen—Geronimo—Loss method, which provides in the
geometric case a simplified proof of Gasper’s theorem. With the help of some ba-
sic results on diffusion processes with polynomial eigenvectors, we then provide
a simplified proof of Gasper’s theorem in the nongeometric situation, following
the scheme of Carlen—Geronimo-Loss, and which avoids any tedious computation.
Finally, in Section 4, we introduce the Dirichlet measure on the simplex, and the
natural generalization of the Jacobi polynomials. Although the situation is much
more complicated, and despite the fact that the hypergroup property is much harder
to investigate, we provide some bases having the hypergroup property, and, for the
generalized Jacobi polynomials, we provide a description of Markov sequences, but
only for Markov operators which strongly commute with the operator for which
these generalized Jacobi polynomials are eigenvectors.

2. The hypergroup property: general description

Hypergroups appear in the literature as a natural extension of the notion of lo-
cally compact groups, where the convolution of two Dirac masses is a probability
measure and no longer a Dirac mass. For example, this happens naturally when
one looks at the convolution of class functions in a group.
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The hypergroup property (denoted HGP) as described in [Bakry and Huet 2008]
is just a simplification of this theory, basically valid in the previous situation in
the compact setting, and appears as a key tool in many subjects like probability,
statistics, statistical mechanics, coding theory and algorithms, reversible Markov
chain, etc., see [Bakry and Huet 2008].

The hypergroup property concerns some properties of a unit £2(x) orthonormal
basis on a probability space (E, £, n), which carries the answer to the Markov se-
quence problem, as in the above described examples. Consider indeed a probability
space (E, £, n), where E is a topological space, £ is the Borel o-field, i a probabil-
ity measure. On this space is given an orthonormal basis F = (fo, f1, .-, fu,--.)
for £2(u), where we suppose that fo = 1. For everything to make sense, we shall
require that the functions f;, are continuous.

Then, as mentioned earlier, the Markov sequence problem aims at the descrip-
tion of all sequences (1,), with Ag = 0 such that the (unique) operator such K (f;;) =
An fn 1s @ Markov operator, thatis K(1) =1 and f > 0= K(f) > 0.

We already mentioned that the set of all Markov sequences is a compact set
(under the pointwise convergence), and convex. Therefore, the description of all
Markov sequences is reduced to the description of its extremal points.

Under very generic properties of the probability space, any Markov operator K
may be represented as

K(F)(x) = / FOVK (x, dy),

where K (x, dy) is a Markov transition kernel, that is, for each x, K (x, -) is a proba-
bility measure on E, and, for any A € £, x — K (x, A) is measurable. Moreover, as
soon as Y A2 < 0o, then the operator is Hilbert-Schmidt, and the kernel K (x, dy)
has a density with respect to the measure u, that is K (x, dy) = k(x, y) u(dy),
where

ke, ) =) M fu () fa (),

where it is easily seen that the series converges in £L2(E?, u ® ).

Then, as soonas Ap=1and ), )»,% < 00, the Markov property amounts to check-
ing that the function k(x, y) =), A, fu(x) f,(y) is nonnegative. However, since
every function f, oscillates as soon as n > 1, since it satisfies f g [n(x)u(dx) =0,
it is in general not at all easy to obtain this positivity property from the previous
representation.

In [Bakry and Huet 2008], the semigroup property is introduced as follows:

Definition 2.1. The family F has the hypergroup property at the point xg if for any
x € E, the sequence 1, (x) = f,(x)/ fn(x0) is a Markov sequence.
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The main consequence of [Bakry and Huet 2008], is that, when the hypergroup
property holds at some point xg, then the sequences f,(x)/ f,(xo) form the set of
extremal sequences, and therefore, in this situation, for any Markov operator K,
there exists a probability measure vg on E such that

Sn(X)
E Jfu(x0)

In the examples described in Section 1, this is the case for ultraspherical poly-
nomials, for the Jacobi polynomials, and, for the basis of Neumann eigenvectors
of Sturm-Liouville operators, as soon as the reference measure is log-concave and
symmetric.

The hypergroup property may be restated (in some more or less formal way
however) into the following: for any (x, y,z) € E 3,

k(x,y,z)zZWZO. Q-1

o =

vk (dx).

i

But it may happen that this series is not convergent in L2(E3, n®pn® w), and
that the formal measure k(x, y, z) u(dz) is not even absolutely continuous with
respect to the measure ;. Anyhow, one may describe, at least formally, the con-
volution w; * up of two probability measures p and u, as the measure u3 with
density with respect to u equal to f k(x,y,z)du(x)dus(y), and then the measure
k(x,y, z) du(z) appears as the convolutions of the Dirac masses in x and y. Then,
again formally, one has

1
/ Fu () # 12 (dx) = / Fod / Fodito.
fn(XO)

We can extend this convolution to all pairs of measures by bilinearity and from
measures to functions by identifying f to the measure f du. With this in mind,
the link with the usual theory of hypergroups is easily done.

Another aspect of the 3 variable kernel k(x, y, z) is that it allows some product
formulas. Likewise, if we introduce the probability kernel

K(r,y dzy =37 ”(x)f"(iyo))f "® (d2) =k(x, v, D),

n
one may see that for each n, the function f;, satisfies the product formula
() fu(y)

f n(X0)

In practice, for all this to make sense, it is useful to have at disposal a family
pn(t) of Markov sequences such that, for any ¢ > 0, ) ,o,f(t) < 00, and which

= fE f(DK(x,y,dz).
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converges pointwise to 1 as ¢+ — 0. Then, one applies all the previous formal com-
putations to the Markov sequences p, (¢) f,(x)/ f.(x0), and let ¢ go to 0. In general,
and in particular in the models studied below, this sequence p, (¢) is provided by
some adapted heat kernel.

An interesting aspect of the hypergroup property is its stability under tensoriza-
tion. Namely,

Proposition 2.2. Assume that (E1, £, u1) and (E», &, up) are two probability
spaces on which there exist two unit orthonormal bases (fo =1, fi,..., fa,...)
and (go=1,g1,...,8p, ...), satisfying the hypergroup property at points xo € E;
and yg € E», respectively. Then, on the product space (E1 X E», 1 ® &, 11 @ U2),
the unit orthonormal basis (f,(x)gp(y), n, p > 0) satisfies the hypergroup property
at the point (xg, o).

Proof. This is straightforward. If Kj (x1,dx;) is a Markov kernel on E; with
eigenvectors f;, associated with the eigenvalue f;,(x)/ f,(xo), and Kﬁv (y1,dy2)
is a Markov kernel on E; with eigenvectors g, associated with the eigenvalue
gp(»)/8p (o), then the product kernel K ® K; has eigenvectors f,(x1)gp (1)
with associated eigenvalue (f,,(x)/fn(x0))gp(¥)/&p(y0)- O

Let us finally mention that this HGP property may be seen as the dual of the
GKS property, named after Griffiths and Kelly and Sherman [1968], who described
the so called GKS inequality in statistical mechanics, and assert that the product
of two elements of the £2(u) basis may be expressed as a linear combination of
the elements of the basis with nonnegative coefficients (see [Bakry and Echerbault
1996]). However, we do not dispose at the moment of any efficient scheme similar
to the one of [Carlen et al. 2011] to obtain this last property.

3. Gasper’s theorem

3A. Jacobi Polynomials. As mentioned earlier, Gasper’s theorem is the statement
that the hypergroup property is valid for the family of Jacobi polynomials. One
may find many proofs of it in the literature (see for example [Bakry and Huet 2008;
Carlen et al. 2011; Connett and Schwartz 1990; Gasper 1970; 1971; 1972; Flensted-
Jensen and Koornwinder 1979; Koornwinder 1974; 1977]). It plays an important
role in many areas, even for example in the proof of Bieberbach conjecture, see
[de Branges 1985].

As described in the introduction (and with a small change in the notation that
will be justified later), the Beta measure 8, ,(dx) on (—1, 1) is defined as

Bpq(dx) = Cp (1 —x)2P~ (14227 dx,

where p and g are positive and C, , is the normalizing constant which makes 8, 4
a probability measure. In what follows, we find it convenient to move everything
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on (0, 1) through x — %(1 + x), so that the Beta measure is now, with another
normalizing constant,

Bp.g(dx) =Cp xP?7 11— x)1* 1 dx.

The Jacobi polynomials are then defined as the unique family of orthogonal poly-
nomials associated with 8, , and positive dominant coefficient. We shall denote
by P9 (x) the Jacobi polynomial of degree n.

The Jacobi polynomials are also the eigenvectors of the Jacobi operator on (0, 1)

2
hemst-nge [ (L e
with eigenvalue equal to X, = —n(n + %(p +q) — 1), see [Bakry et al. 2014]
for example. The specificity of these polynomials is that they represent the unique
family of orthogonal polynomials in dimension 1 (together with their limiting cases,
the Laguerre and Hermite polynomials) that are simultaneously the eigenvectors
of diffusion operators, that is elliptic second order differential operators with no
zero order terms (see [Bakry and Mazet 2003]).
Through a simple change of variables, PP (cos?(t)) are the eigenvectors of the
Sturm—Liouville operator

2
% + (g — D cot(r) = (p — l)tan(t))% on [0, 7],
with Neumann boundary condition, which is symmetric with respect of the measure
sin?~L(¢) cos?~ (1) dt.

Under this form, one may check that the density of the measure is log-concave
as soon as p,q > 1, and is symmetric under the change x +— 7 — x whenever
p = q. So that, after a translation of —m /2, the latter case enters in the scope of
Achour—Trimeche theorem. However, this is not the case when p # g.

For this family, we have

Theorem 3.1 (Gasper). Let p, g > 0. Then, the hypergroup property holds for the
Jamily of Jacobi polynomials at the point xo = 1 if and only if g > p > 1.

As already mentioned in the introduction, Gasper’s theorem is indeed an exten-
sion of a previous theorem due to Bochner [1954], which deals with the symmetric
case p = q, that is the case of ultraspherical (or Gegenbauer) polynomials. How-
ever, although the arguments for the symmetric case are quite easy to follow, the
proofs of Gasper’s theorem remained quite complicated, up to the paper [Carlen
et al. 2011], which provided an illuminating argument that we shall briefly recall
below in Section 3B.
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Moreover, in the case p = g, letting p go to oo, scaling x to x/,/p, then the
measure [, , converges to the Gaussian measure, the Jacobi polynomials converge
to Hermite ones, and %J p,p converges to the Hermite operator. With this in mind,
Sarmanov and Bratoeva’s result may be seen again as a limiting case of Bochner’s
theorem.

In the Jacobi polynomials case, it is worth observing that the set of parameters
for which the hypergroup property is valid is closed. Later on, Lemma 3.2 will
allow us to restrict to cases where the auxiliary measures used in the proof have
smooth densities.

Lemma 3.2. If the hypergroup property for the Jacobi polynomials (P holds
true for a sequence (py, qr) converging to (p, q), then it holds for (p, q).

Proof. The family of orthogonal polynomials P/*? is obviously continuous in the
parameters (p, g). The hypergroup property may be stated as the fact that the oper-
ator K (x) with eigenvalues P/?(x)/Pl?(1) is positivity preserving. But this may
be checked on polynomials, since any positive function may be approximated by
positive polynomials, and any positive polynomial is a sum of squared polynomials.
Therefore, it is enough to check that for any polynomial Q with degree K, one has
K(Q* =0.
But this translates into

qu
K(0))(y) = / 0%z )Z qug; PP PP(E) g (d2),

since Q2 is orthogonal to P77 for any r > 2K.
The polynomial Q being fixed, this property is obviously satisfied in the limit
(p, g) as soon as it holds for a sequence (py, gx). ([

An important feature of the Jacobi operator is that, when p and ¢ are integers,
there is a natural interpretation of it through the unit sphere in dimension p +¢ — 1.
Then, the Jacobi operator (3-1) may be seen as an image of the spherical Laplace
operator.

Indeed, if one considers the unit sphere srta—1l c RPH4 there is a diffusion

. . §p+q—l .
operator on it, namely the spherical Laplace operator A , which commutes to
rotations and is unique up to scaling. If one considers the function

RV (0,1), X =(x1....%pq) > ¥y =D X},
i=1
one has, for any smooth function f: (—1,1) - R,

A" (F () = 4T, (). (3-2)
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As such, the Jacobi operator J,, , appears, as announced above, as an image of the
spherical Laplace operator, and this remark is the key tool in the Carlen—Geronimo—
Loss method to obtain the hypergroup property in this geometric case.

3B. The Carlen—Geronimo-Loss method. The Carlen—Geronimo-Loss scheme
appears to be a quite general method to obtain the hypergroup property in various
contexts (see for example [Bakry and Zribi 2017]).

Recall that we consider some probability space (E, £, u) on which we have a
£?(w) orthonormal basis F = (fo=1, fi,..., fu,...). As before, in order for
everything to make sense, we shall assume that E is a topological space, that £ is
the Borel sigma-algebra, and that all the functions f; are continuous.

We assume that we have some dense linear subspace A in £?(11), containing all
the functions ( f,;) of the basis F, and a symmetric operator L : A — A. The basis
F is formed of eigenvectors of L, that is L( f,) = p, f,,, for some real sequence (p;,).
In our example, A will be the space of polynomials.

We assume that there is an auxiliary topological space (Eq, &1, it1), endowed
also with a dense subspace A; C £2(u1), and another symmetric operator L; :
A1 — A;. Moreover, there exists a continuous map 7 : £; — E, and another
continuous map ¢ : E; — E;, with properties described in Theorem 3.3. We
assume that the image of w; under 7 is u. For a function f : E — R, we denote
by n(f) : E; — R the function 7 (f)(y) = f (7 (y)). Similarly, for a function g :
E; — R, we denote ¢ (g)(y) = g(¢(y)). We also assume that f € A= n(f) € A
and similarly g € 4| = ¢(g) € A;.

Theorem 3.3. Assume the following:

(1) For each n, the eigenspace of L associated with the eigenvalue p, is one

dimensional.
2) rtL=L;m.
(3) L1 =L1¢.

(4) For two points xy and x in E, if Y is a random variable with values in E| with
law w1, then the conditional law of m(¢(Y)) given that w(Y) = xq is a Dirac
mass at x.

Then, the sequence f,(x)/ f.(xo) is a Markov sequence for the basis (f,). (f
fn(x0) =0, then the conclusion is that we also have f,(x) =0).

Remark 3.4. Point (4) requires a bit of explanation. Indeed, we assume that
the probability measure w has a regular decomposition p(dy) = vy (dy) n(dx),
where the measure v, (dy) has support the set 7 (y) = x, which means that, for any
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bounded measurable function 2 : £ — R,

/ ()i (dy) = / ( / hx () vx(dy)) ers
E E \J{u(y)=x}

and that the map x — v, is continuous. This allows us to make sense of v, for any
x € E (since in general, those measures v, are just defined p-almost everywhere).
Then the hypothesis (4) asserts that the image measure through w ¢ of the measure
Vy, 15 a Dirac mass 6,.

Proof. Although the proof of this theorem is more or less implicit in [Carlen et al.
2011], and fully developed in [Bakry and Zribi 2017], we provide a sketch of it for
completeness.

We denote (f, g) the scalar product in £2(w) and (f, g); the scalar product in
L2 ().

We consider the correlation operator K defined on bounded Borel functions
f:E—>Ras

K(H)(x)=Eo@(fNI)/m(Y)=x),

where Y is a random variable with law . It is clearly a Markov operator. We

shall see that K (f;,) = w, fn, Where w,, = f,,(x)/ fr (x0).

The main remark is that the hypotheses imply that K commutes with L. Indeed,
the operator K is entirely determined by the following property, which is just a
rephrasing of the definition of a conditional expectation:

forall f,g e A, (K(f),g) =({pn(f), mgh. (3-3)

Indeed, using the measure decomposition introduced in Remark 3.4, one may
introduces the operator 77*, such that

7t () (x) = E(h(Y)/m (V) = x) = f 7y vy (),

{mr(y)=x}
the operator K may be written as K = w*¢m.
Then, for any pair (f, g) € A, we have

(LK(f). 8) = (K(f),Lg) = (pm(f), mL(g))1 = (¢ (f), Lim(g)
= (Lig(f), m(@) = (L1 (f), (&) = (pmL(f), m(g)h
= (KL(f). &)

which proves the commutation property between K and L.

Therefore, if f, is an eigenvector of L, with eigenvalue p,, then K (f,) is again
an eigenvector of L with the same eigenvalue. Since the eigenspaces of L are one
dimensional, K (f;,) = u, f, for some sequence (u,), which is therefore a Markov
sequence.



546 DOMINIQUE BAKRY AND LAMINE MBARKI

Looking at the values at the point xg, we get

Jn(X) = wp fn(x0),

from which the conclusion follows. O

Corollary 3.5. Under the hypothesis of Theorem 3.3, if, for any x € E, there
exists a map ¢, : Ey — E; satisfying point (3) and such that the conditional law of
oy (Y) given m(Y) = x¢ is a Dirac mass at x, then the hypergroup property holds
at xo.

Proof. It is an immediate consequence of Theorem 3.3. Indeed, if such happens,
Jn(x0) # 0, since otherwise one would get f,, = 0 everywhere, which may not be
true for an element of a basis. (]

With this in mind, Gasper’s theorem in the geometric case follows easily. Of
course, in this context, the auxiliary space E; is SPT9~1, L, is the spherical Laplace
operator, and the map 7 is the map x > y = Zle xi2 described in Section 3A.

The maps ¢ are as follows: since p < g, for some pointx =(x1, ..., xp44) ERPTY,
we extract x; = (x1,...,Xp), X2 = (Xp41,...,X2p) and x3 = (X2p41, ..., Xptq)
(the last one may be empty). Then, for 6 € [0, 2], ¢g(x) = (y1, y2, X3), where

y1 =cos(0)x +sin(@)x,, y» = —sin(f)x; + cos(0)xy. (3-4)

Then, x — ¢ (x) is a rotation in R?™9, and as such commutes with the spherical
Laplace operator.

Then, it remains to observe that whenever 7 (x) = 1, then x, = x3 = 0, so that
7(¢e(x)) = cos>(P). Then, the conditional law property is satisfied (with x =
cos?(#) and xo = 1), and therefore we obtain the hypergroup property in this case.

To extend this proof to the general case, we shall require a few concepts from
the general diffusion theory.

3C. Symmetric diffusions and orthogonal polynomials. Most of the material pre-
sented here is borrowed from [Bakry et al. 2014] for the general situation, and
from [Bakry et al. 2013] for the particular case where orthogonal polynomials
come into play.

A diffusion operator in an open set Q C R? is a second order semielliptic dif-
ferential operator with no zero order terms. As such, it may be written in a given
system of coordinates as

LA =Y g0 f+ > b (), f. (3-5)
ij i

where, here and in what follows, the coefficients gij (x) and b’ (x) are assumed to be
smooth (indeed, for our purpose, they always will be polynomials in the variables
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(x;) which are the coordinates of the point x). The matrix g = (g'/) is always
symmetric and, in this paper, positive definite in €2 (that is our operator L is indeed
elliptic).

We are interested in the case where these operators are symmetric with respect
to some measure i (dx), which has a smooth positive density o (x) with respect to
the Lebesgue measure. That is, for any pair (f, g) of smooth functions 2 — R,
compactly supported in 2, we require that

[ Lhwseewas= [ f@L@mo@ (3-6)
For this to happen, a necessary and sufficient condition is that
foralli=1,....d, b'(x)= Z 38" (x) + Z g7 (x)d;log(p)(x),  (3-7)
since, by integration by parts j J
[ unwseew s == [ o fognds+ [ gofh-rlpds, 69

where r; (x) = )~ ; 98" (x) + 3 ; 8"/ (x)9;log(p) (x).

Such a measure is often called a reversible measure. It is unique in general, up
to a multiplicative constant.

We then see that the coefficients b’ are entirely determined by the second order
terms g/ and by the density p(x).

Moreover, let us introduce the carré du champ

T'(f, g = 3(L(fg) — fL(g) — gL(f)).
We have
L(fe) =) g7 foe,
ij

and this bilinear operator characterizes the second order terms (g'/) of the opera-
tor L. We have g/ (x) = I'(x;, x ), and, when the operator L is symmetric, for any
pair of smooth compactly supported functions ( f, g), we have

fQ L(/)go(x) dx = — /Q C(f, 9)p(x) dx. (3-9)

This is the integration by parts formula.

Moreover, the operator I" allows us to describe the so-called “change of variable
formula,” which is a way to describe in a general setting second order differential
operators with no zero order terms. More precisely, when f1, ..., f, are smooth
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functions 2 — R, then, for any smooth function ® : R? — R, one has

L(CD(fl, LRI ] fq))
=Y T(fi. RO (fra - )+ D LGP (fi. ... fp). (3-10)
ij i
It is also worth observing that I' is a bilinear operator which is first order in each
of its variables, which translates into

C(@1(f1s .- f)s P2(f10 -1 f))
=Y T(fi [PEPI(fro s [ frn s f). (B-11)

ij

From this, one sees that in order to describe locally a symmetric diffusion op-
erator, it is enough to describe in some coordinate basis (xy, ..., xz) the quanti-
ties I'(x;, x;) and either p, or the functions L(x;) = b’ (x) provided they satisfy
Equation (3-7) for some p.

It is not necessary to restrict diffusion operators to open sets in R?. One may
as well consider operators defined on smooth manifolds (and quite often compact
manifolds such as spheres), or closed sets with boundaries. Then, the operator
may be described through Equation (3-5) in any local system of coordinates, and
formula (3-10) allows one to change coordinates to obtain a coherent system. How-
ever, when considering such operators on manifolds with boundaries, one has in
general to describe to which functions one may apply the integration by parts
formula (3-9). This is done in general through the prescription of the so called
“boundary conditions” (such as Neumann or Dirichlet). In what follows, we shall
require the possibility to apply this formula to any polynomial (and even any re-
striction to 2 of any smooth function defined in a neighborhood of €2), and this
requires some extra conditions concerning the behavior of the matrix (g'/) at the
boundary. Indeed, the fundamental property for that (assuming that the boundary
is piecewise smooth) is that, for any regular point xy of the boundary, the normal
unit vector belongs to the kernel of the matrix (¢"): in this situation, the extra
term in the integration by parts formula (3-9), coming from the boundary term in
Stokes formula, vanishes (see [Bakry et al. 2013], for example). It is easily seen
that this condition is also sufficient.

This is what is hidden indeed in the boundary equation (3-12) below, which
is the translation of this property when the boundary is described through some
algebraic equation (see [Bakry et al. 2013]).

A key feature is the notion of image of a diffusion operator L; on some set E.
This is the basic tool to construct new diffusion operators L on a set E and maps
7w : E; — E such that L =L, as in Theorem 3.3.
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Let E; be some space on which we have a diffusion operator L; and d applica-
tions x1, ..., xg: E1 — R. Considerthemaprw : Ey — E C R4, T(y)=(x1, ..., X4).
Then, assume that for any i, L;(x;) = B! (), and for any i, j=1,...,d, one has
I'(x;, x;) = G" () for some functions B’ and G'/, E — R. We say in this situation
that we have a closed system. Then, the operator

L=> G709} +> By
ij i

defined on E is such that Ly = wL (this is just the translation of Equation (3-10)).
Moreover, L is a diffusion operator which is symmetric as soon as L; is, with
reversible measure which is the image through 7 of the reversible measure w; of L;.
In this situation, we say that L is the image of L; through 7, or that L; projects
onto L through 7. An example of this is the case of the spherical Laplace operator
AS""" which projects (up to the factor 4) onto the Jacobi operator through the
map y = (X1, ..., Xp4q) > X = > xi2 as described in Equation (3-2), so that the
Beta measure B, 4 is the image measure of the uniform measure on the sphere
through this projection.

As mentioned above, the symmetry identity (3-6) is not enough for our purpose.
We shall require it to be valid for pair of polynomials, when the symmetry property
is only stated for compactly supported functions. In what follows, we shall be
concerned with symmetric diffusion operators which may be diagonalized in a
basis of orthogonal polynomials. That is, for every n > 0, there exists a basis of
the space of polynomials in d variables with degree less than 7, and which are at
the same time eigenvectors for L. When this happens, we say that (2, I, p) is a
polynomial model, and €2 is a polynomial domain.

When the set Q is bounded with a piecewise C! boundary, this requires the
boundary of Q2 to be an algebraic set and also some extra algebraic condition relat-
ing the boundary and the coefficients g/, called the boundary equation, see [Bakry
et al. 2013].

More precisely, the boundary 9€2 is included in an algebraic set {P; - - - P, = 0},
where P; are real polynomials, which are irreducible in the complex field. Here,
we assume that P; - - - Py = 0 is the reduced equation of the boundary, that is:

(1) For each regular point x € 9€2, there exists a neighborhood V(x) which con-
tains x and a unique i such that V(x) N9 = V(x) N {P; = 0}.

(2) Fori =1,...,k, there exist a regular point x € 92 such that P;(x) = 0.

Then, following [Bakry et al. 2013], bounded polynomial models are characterized
by the following:

(1) Foranyi, j=1,...,d, g7 (x) is a polynomial with degree at most 2.
(2) Foranyi =1,...,d, b'(x) is a polynomial with degree at most 1.
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(3) Foranyi=1,...,dandany g =1, ..., k, there exists a polynomial L; ;, with
degree at most 1 such that
> g0;log Py =Lig. (3-12)

J

(We call this last Equation (3-12) the boundary equation).

As a consequence of the previous, each polynomial P, is a factor of the polyno-
mial det(g'/) (of degree at most 2d). Moreover, every polynomial P, has a constant
sign on the open set 2 and we may decide that they are all positive on it. Beyond
this, provided (g'/) satisfies the boundary equation (3-12), for any choice of pa-
rameters aq, ..., a; such that Pla Lo P,f * is integrable on €2, the density measure

p(x)=Capoqp P -+ P, (3-13)

where Cy,...q, 18 the normalizing constant, is such that (2, I', p) is a polynomial
model.

Indeed, for the integration by parts formula to be true for a pair of polynomial
functions, and thanks to the boundary equation (3-12), one may allow the parame-
ters a; in Equation (3-13) to be negative, as soon as a; > —1, which is anyway a
necessary condition for the measure p(x) dx to be finite on €2.

Sometimes one needs to extend those polynomial models using weighted de-
grees, that is deciding that the degree of a monomial xf’ b ~x5 418 ). n; p;, where
ni, ..., ng are some positive integers. All the picture remains valid, except that
¢/ must have degree n; +n; and b’ must have degree n;. We call the sequence
(n1, ..., ng) the weights of the polynomial model.

It is worth observing that whenever (2, I, p) is a polynomial model, and when
we have a closed system (y1, ..., y,) where the functions y; are polynomials, then
the image model is again a polynomial model. But the degree may change. For
example, if one starts from a polynomial model with the usual degree (thatis n; =1
for any i), and if the degree of y; is n;, then we get a polynomial degree with weights
ni, ..., nq. Of course, one may always reduce to the case where the degrees have
no common factor.

3D. A proof of Gasper’s theorem in the general case. In this section, we extend
the proof of Gasper’s theorem provided in Section 3B which was valid only in the
geometric case (that is when p and g are integers) to the general case. For this, we
need to construct a model (Eq, Ly, p1), with the adapted functions 7 : E; — E and
¢y : E;1 — E with the properties required in Theorem 3.3. The key observation
is that, in the geometric picture, one just requires the knowledge of || x| 1% N2
and the scalar product x; - x, to describe the action of the rotations ¢y on ||x; .
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For this, we first observe the action of the spherical Laplace operator on those
variables. Following [Bakry et al. 2014], the spherical Laplace operator in dimen-
sion d may be described through its action on the coordinates, that is considering
the restrictions of the various coordinates xi, ..., x4+ to the spheres as functions
S? — R. Then, we get

IS(xi.xj) =68 —xixj,  AS'(x;) = —dx;. (3-14)

It is worth observing that I'® does not depend on the dimension d. The image
through AS of a polynomial in the variables x; with degree less than n is again a
polynomial in the variables x; with degree less than n. From this, it is easily seen
that whenever we have a closed system made of polynomials, then the image of
AS’ through this system is a polynomial model.

Now fix d large enough and, for p < [d/2], consider the 3 variables s 5 R

defined as
p 2p p
X—E x? Y= E x? U—E XiX;
- IR - i - IA+pe
i=1 i=p+1 i=1

With the help of the change of variables formulas (3-10) and (3-11), we get
rS(X,X)=4X(1-X), TS(Y,Y)=4Y(1-Y),
MU, U)=X+Y —4U?,
I (X,Y)=—-4XY, T°(X,U)=—4XU+2U,

. (3-15)
IS(Y,U) = —4YU +2U,

AS (X)=—2d+1)X+2p, AS'(¥)=—-2d+1)Y+2p,
AS'(U) = —2(d + DU,

which shows that the triple (X, Y, U) forms a closed system for the spherical
Laplace operator. (We omit the parameter d in 'S since it does not depend on
the dimension d.)

It is worth observing that X itself is a closed subsystem of this closed system
(and the image of the spherical Laplace operator is nothing other than the Jacobi
operator, up to some affine transformation on the variable and scaling). Such is
{X, Y}, but neither {U} or {X, U}, for example.

Let us consider the image of the sphere under x — (X, Y, U). It is a polynomial
domain in R with boundary equation {(1 — X — Y)(XY — U?) =0).

The image of S¢ through the map (X, Y, U) is therefore a polynomial model,
with domain E; being the bounded set which is the connected component in R? of
the complement of the set {(1 - X —-Y)(XY —-U 2) =0} which contains for example
the point (le’ %, %) Observe that the boundary Equation (3-12) is automatically
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satisfied for this model. Indeed, since the spherical operator may be diagonalized

in a basis of orthogonal polynomials in the variable (x;) (the eigenvectors are the

restrictions to the sphere of the harmonic homogeneous polynomials in dimen-

sion d + 1), and one sees that the eigenvectors of this operator are nothing other

than those polynomial eigenvectors which depend only on the variables X, Y, U.
The I' operator is given in these coordinates by the matrix

4X(1—X) —4XY  —4XU 42U
G=(G"):= —4XY 4Y(1-Y) —4YU+2U |, (3-16)
—A4XU 42U —4YU 42U X+Y —4U?

and one may check (but, as already mentioned, this is automatic) that the two poly-
nomials 1 —X —Y and XY — U? satisfy the boundary equation (3-12). The reversible
measure has density (up to a normalizing constant) (1—X —Y)*(XY —U 2o where
the coefficients @ and b may be computed through Equation (3-7). Then, we get
d—1 p—3
=T e

Now, this diffusion operator again projects, up to a factor 4, on the Jacobi oper-
ator J,, , through the map (X, Y, U) — X, wheneverd = p+¢g — 1.

We may now consider this polynomial model (£, I') with a new measure with
density p(X,Y,U) =C(1 — X — Y)*(XY — U?)®, where now a and b are real
numbers.

It is easily seen that this measure is integrable on the domain E; as soon as
a>—land b > —1. Settinga = (q — p)/2—1 and b = (p — 3)/2, this requires
q > p > 1, where now p and ¢ are no longer integers but again real numbers.

As described in Section 3C, this provides a diffusion operator according to for-
mula (3-5). The second order terms are provided by the matrix (3-16), and the first
order coefficients may be computed explicitly through formula (3-7), with density
p=(1—=X-Y)*(XY—-U?)’ where, for giveng > p>1,wehavea = (g — p)/2—1
and b= (p —3)/2.

More explicitly, one gets for the first order terms, exactly as in (3-15),

Li(X)==2(p+q¢)X+2p, Li(Y)=-2(p+q)Y +2p,

(3-17)
Li(U)=-2(p+qU.

The symmetry of the operators on a pair of polynomials is then insured by the
fact that the first order coefficients b’ are chosen according to formula (3-7), and the
fact that the boundary equation (3-12) is satisfied for the two factors P (X, Y, U) =
l—X—Yand P,(X,Y,U)=XY -U>
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We get in such a way a model (£, I'y, ;1) which projects through the map 7 :
(X,Y,U)— X ondJ,,, where J,, is the Jacobi operator defined in Equation (3-1)
(it is obvious: the variable X alone forms a closed system).

To complete the picture, it remains to describe the operators @y : E; — E;
which commute with L;. From the geometric picture, when p and ¢ are integers,
one may describe the action of the rotations ®y defined in Equation (3-4). We get
Dy(X)=A(X, Y, U), where A is the linear operator with matrix

cos2(0) sin?(0) 2 sin(0) cos(6)
sin2(9) cos?(0) —2sin(f) cos(9) |. (3-18)
— sin(@) cos(8) cos(8) sin(6) cos(0) — sin2(9)

To check that it commutes with L, and following Section 3C, it is enough
to check its action on the variables X, Y, U for L; and I". For example, writing
Qy(X,Y,U)=(Xg, Yy, Up),and I'(X, Y) =G(X, Y) :=—4XY, one has to check
that I'(Xy, Yy) = —4XyYy (there are 6 such formulas to check), and also, with
Li(X) = -2(p+¢g)X +2p, that L1 (Xy)) = —2(p + q)Xg + 2p (3 formulas to
check).

The property for I comes from the geometric picture (the action of I" on (X, ¥, U)
does not depend on the parameters p and ¢g). As for the action of L1, it may be
checked directly, from Xy = cos2(0) X +sin*(0)Y 42 sin(6) cos(0)U, using (3-17).

As before, the point xg is 1. Whenever 7 (X, Y, U)=1,then (X, Y, U)= (1,0, 0)
and 7 ®g(1, 0, 0) = cos?(0).

This completes the proof of Gasper’s theorem in the case ¢ > p > 1. The general
case g > p > 1 comes from Lemma 3.2.

Remark 3.6. If one considers the kernel Ko (f)(§) = E(f (7 (Ro2))/7(Z) = &),
the previous representation allows one to compute it explicitly through some inte-
gral expression. However, the result is quite complicated, but one may check that

the kernel K4 (£, dy) has support [0, (/£ cos @ 4+ /T — £ sin0)?].

4. Dirichlet laws and diffusion processes on the simplex

4A. Dirichlet laws, and a first basis with the HGP property. The d-dimensional
simplex Dy is the set of points (x1, ..., x4) € R4 such that, foralli =1,...,d,
x; > 0 and such that Zf.l:l x; < 1. In what follows, it will be convenient to set

Xgr1=1— Z?:l Xi, so that x441 > 0 and Zf“ x; = 1.
The Dirichlet laws 114, , depend on a multi-index real parameter p={py, ..., pa+1},
where p; >0, i =1,...,d+1, are probability measures on D; with densities with

respect to the Lebesgue measure dx - - - dxg of the form

ay ax aq . Ad+1
Capxy %3 X4 %50
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where fori =1,...,d+1, a; = % — 1. The normalizing constant

r(C e +d+1)
M T +1)

Cap=

where I' is the Euler function, which ensures that w4 , is a probability. The choice
of the parameters p; instead of a; = % — 1, similar to the choice made for Beta
measures, comes from geometric considerations which will be described below.

Dirichlet measures appear as extensions the Beta measures on the interval. It
turns out that the simplex is a polynomial domain as described in Section 3C, so
that the Dirichlet laws are the natural measures associated to it, the boundary of
the domain having reduced equation x; - - - x4(1 —x; —--- —x4) =0.

When the parameters p; are integers, this Dirichlet law is the image measure of
the uniform measure on the unit sphere in R", with n = i’“ pi. Indeed, consider
some partition of {1, ..., n}insets Iy, ..., Iz+] with respective size py, ..., Pa+1-
Then, for (y1, ..., y,) € "' C R", consider the variables x; = }_ jel; yjz.. Then
(x1,...,xq4) € Dy, and the image measure of the uniform measure on the sphere
through the map y + (x1, ..., xq) is tg, p. This will be obvious later on when we
shall identify some diffusion operator on Dy with reversible measure (4, , as the
image of the spherical Laplace operator, as are the Beta measures on [0, 1].

It is worth observing that the change of variables x; — 1 — x4 allows one to
exchange the parameters p; and pg441, so that one may order the parameters p;,
i=1,...,d+ 1, in whichever order desired.

The change of variables x; = y; (1 — x;), fori =2, ..., d transforms the mea-
sure [y, p into a product measure By, ,—p, (dx1) ® pa—1,4(dy>---dys), where n =

f“ pi>and ¢ = {pa, ..., pa+1}. Iterating the procedure, one may transform the
Dirichlet measure into a product of Beta measures on [0, 1]¢:

prl,n*Pl ® ﬁpzynfplfpz K- Q ﬂpd,n*nlf"'*pd'

We may now choose a basis for £2(Dy, g, p) made of products of Jacobi poly-
nomials associated to each of the factors (to be more precise, the image of these
products under the inverse change of variables which maps [0, 1] to D,). Now,
provided that, fori =1,...,d+1, p; > 1, one may apply Gasper’s theorem and
the tensorization procedure of Proposition 2.2, and therefore get the hypergroup
property for this basis.

Observe that this procedure depends on the choice of the ordering in the parame-
ters pi1, ..., Pd+1, so that one may construct in this way many different bases. But
these bases are not the most natural direct extensions of the Jacobi polynomial bases
on the simplex. In particular, in the coordinates (xi, ..., x4), they do not appear as
polynomials, but as rational functions. On the other hand, on the simplex and for



THE MARKOV SEQUENCE PROBLEM FOR THE JACOBI POLYNOMIALS 555

the Dirichlet measures, there are many choices of polynomial bases which are the
natural extensions of the Jacobi polynomials, as we shall see in the next paragraph.

4B. Diffusion operators on the simplex having polynomial eigenvectors. To de-
scribe the diffusion processes which may be diagonalized in a system of orthogonal
polynomials on the simplex, we have just to describe their carré du champ I", since
the measure is given. It is a special feature of the simplex that there are many such
I structures which answer the question, beyond the mere scaling factor, and this
situation is very peculiar (in the dimension 2 classification of [Bakry et al. 2013],
only the simplex, the circle, and a particular case of the double parabola have this
property).

The various I" operators on the simplex such that (Dy, I', uq, ) are a polynomial
model have been described for example in [Li 2019]. They depend on a symmetric
parameter matrix A with entries A, as follows

d+1
g” =T A, X5) = —ApsXpXs + Op5Xr Z Apxg, 1=<r=<s=<d, 4-1)
k=1
where A,y = Ay, 1 <r <s <d+ 1 are nonnegative real parameters. The operator
is elliptic on the simplex as soon as, for every r # s, A,y # 0. One should check
that the value of A;; plays no role in the definition of I" 4, and we shall set A;; = 0.
For this operator, and for the Dirichlet measure 114, ,, one has

d+1

1
Lap(i) =5 ) Aulapi = xipe).
k=1

One may check the validity of the boundary Equation (3-12), that is the fact
that Z?:l g djlog P, is an affine function for every boundary polynomial P, =

X1y ooos Xd+1-
Indeed, fork=1,...,d + 1, one has

d d+1
Z g leog Xy = —AiXxi + Z A,-qxq.
j=1 q=1

It is worth it to write L4 , as
Lap= Z AijLij ps
i<j
where L;; , has a carré du champ I';; with
Fij (xr, X5) = XiXj [8r5(8ri + Srj) - (Sri(ssj + Brj 8s5i)] 4-2)

and
Lij.p(r) = 581 = 8- (xjpi = Xip)). 4-3)
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In the case where all the A, are set to 1 (let us denote this matrix 1), and when
the parameters p; are integers, there is a natural interpretation for this operator
coming from the spherical Laplace operator in dimension n = Z?:ll pi, that is for
the sphere imbedded in R".

Indeed, let n be an integer and, as in the previous Section 4A, consider the
n — 1 dimensional spherical Laplace operator acting on the unit sphere $"~! C

R", defined through the equation )} yl.2 = 1. Let us look at a partition of the

index set {1,...,n} into d + 1 disjoint sets Iy, ..., I;+| with respective sizes
Pl, ..., Pa+1, and as before the variables x; = ) I yl.2. As already observed,
the map y € S"~! + (x1, ..., x4) maps the sphere onto the simplex D,.

Moreover, following Equation (3-14), we see that
n—1
P, ) = 4@xi —xix), A% () =2(pi —nxp). (4-4)

The variables (x1, ..., xz) form a closed system, and we see that those formulas
are the one obtained for 4Ly, . This first shows that the Dirichlet measure g, p is
the image of the uniform measure on the sphere through this map, as mentioned
earlier. One may therefore address the question of the hypergroup property for
the family of orthogonal polynomials which are the eigenvectors of this operator,
following the same path. Unfortunately, it turns out that the eigenspaces for Ly p
are not one dimensional.

Indeed, consider a polynomial eigenvector of degree k, and look at the action
of Ly, on its highest degree term x := xf b -xsd , where k = Zf k;. The highest
degree term of Ly ,(x) is

—k(k + n_z)xk,

2

so that the corresponding eigenvalue is vy = —k(k + %), which depends only on
k= Zf k;. The corresponding eigenspace has then dimension (k+z_1). However,
for this operator, one may follow the scheme of [Carlen et al. 2011] and construct
a new space E| (the sphere in the geometric case), with a symmetric diffusion
operator L; on it, together with maps = : E; — Dy and ¢ : E; — E; with the
properties that tL = L, ¢L; = L¢, together with the conditional law property
at the point (1, 0, ..., 0). But the fundamental property that the eigenspaces of L
are one dimensional is missing, and the analysis of Markov sequences is therefore
much more delicate.

Indeed, following the scheme of the proof of Gasper’s theorem, one may first
concentrate on the geometric case. To understand the difficulty, let us also concen-
trate on the case d = 2. In this situation, one has 3 integer parameters p; < p, < p3,
and, setting n = p; + py + p3, we look at the sphere S"~! C R". Then, one
considers three subsets 11, I, I3 of {1, ..., n}, with respective sizes pi, p2, p3 and
three vectors x1 = (y;,i € I1), 2o = (y;, i € I) and z3 = (y;, i € I3). Moreover, we
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split I, and /3 into disjoint sets I = J, U K>, I3 = J3U K3, with || = |J3| = py.
Then, we consider the vectors xo = (y;, i € J2), y3= (i, i € J3), y2=(y;, i € K»)
and y3 = (yi, i € K3).

We consider now the variables x; = ||lx;||%, i = 1,2, 3, and y; = ||zi||?, i =2, 3.
Moreover, we look at the variables u;; = x;-x;, 1 <i < j < 3. For simplicity, we
stick to the case where p; < py < p3, and, observing that y3 =1—x; —x, —x3 — y2,
we are left to the 7 variables

(x1, X2, X3, y2, U12, U13, U23).

It happens that these 7 variables form a closed system for the spherical Laplace
operator, and we obtain some operator L; on some bounded polynomial domain
Q7 C R’. Moreover, the operator Ly, p 1s the image of L7 under the map

m Q7 — Do, (X1, X2, X3, Y2, U12, U13, U23) H> (X1, X2+ ¥2).

Let us denote by 7, the projection from the sphere onto 7, and 7 : "~ — Dy,
T =717,

One then may consider the full O(3) group acting in a horizontal way on the
triple of vectors (x1, x2, x3). For example the plane rotations R;J 1 <i<j<3:

Réj (xi,x;) = (cosx; +sinOx;, —sinfx; +cosx;). 4-5)

For any of these horizontal rotations R, there exists some point x, in the simplex
such that whenever 7 (Y) = (1, 0), then w R(Y) = x, (thatis x, =7 R(1,0, ..., 0)).
One may see that for any point x € Dy, there exists such horizontal rotation R €
SO(3) such that x, = x.

One may immediately see the action of these rotations on the variables

(X1, X2, X3, Y2, U12, U13, U23),
as we did in dimension 1.

In order to apply the one dimensional scheme, one may expect to find a com-
mon orthonormal base in the eigenspaces of Ly, in which the correlation operators
Kr(f)(x)=E@Rf(Y)/m(Y)=x), where Y is uniformly distributed on the sphere,
are jointly diagonalizable. (Observe that R +— K is not a representation of O(3).)
We shall see that it is impossible. Indeed, if such were the case, they would com-
mute with each other. But this is not the case, as shown next in Proposition 4.1.
For this, we just concentrate on the plane rotations Ré’ (4-5) and their conditional
expectations K/ (f)(x) =E(w Ry f(Y)/m(Y) = x).

Proposition 4.1. The operators K (}2 and K (})3 do not commute with each other.

Proof. The operators Kéj are not easy to describe. We may look at the easier

operators S;; = dp K |i9]=0 But we shall see that those operators vanish identically.
We may therefore compute R;; = 8921( {6]:0.
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To compute these operators §;; and K;; on the simplex, for the pairs (1, 2),
(1,3), (2, 3), we observe that for two bounded polynomial functions f(x, y) and
g(x, y) on Dy, up to a constant 2, we have

(S12(f). &) =2/§ u2@1f =) (y)g(ry)dy.

n—

where 7 (x1, x2, X3, 2, #12, U13, U23) = (x1, X2 + y2). Thus

S1(f) =2s12(x) (@ f —0; f),  where s12(x) =E(ui2(y)/m(y) = (x1, X2+ ),

which is 0 by symmetry, and

(Kinf,g) = / (2062 — xD)OLf — 8 f) + 412, (01 — 02)2 F) (g Gry) dy.

§nfl
Thus
Ki2(f) = 2k12(d1 — 82) f +4112(31 — 82)° f,

where
kia(x, y) = E(x1 —x2/(x1, X2+ y2) = (x, y)),

fna(x, y) = B, (V) /n(Y) = (x1, 224 y2) = (x, ).

For the operators S13 and K3, we may perform a similar computation, and
obtain a similar computation:

Ki3(f) = 2ki3(31 f — d2.f) +4113(31 — 32)* f,

with
kiz(x, y) = E(x1 — x3/(x1, x4 y2) = (x, ),

ti3(x, y) = E(ufy (V) /(x1, X2+ ) = (x, ),

and for K53, we obtain

K23 (f) = 2kn3da f + 412303 f,
with
ko3 (x, y) = E(x2 — x3/(x1, X2 4 y2) = (x, ),
h3(x, y) = E(uds/(x1, x2 + y2) = (x, y)),

It remains to compute these conditional laws.

Following the computations of Section 3D, we may compute the law of the set
of variables (x1, x2, X3, Y2, U2, 113, u23) under the uniform measure on the sphere
through the action of the spherical Laplace operator Ag.—1 on these variables. The
Gamma operator acts on the variables as

U(xp, xg) =4x,0pg —x4),  T(xi, y2) = —4xiy2,  T'(y2, y2) =4y2(1 — y2),
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while
U(y2, uij) = —4ysuij,  U(xi, upg) = —4xiupg + 28;uix + 28ixuir,
U(uij, upy) = —4ujjugg + 8ixujr + Sy ji + 8 jui + 81wk
where, in the last formulas, u;; stands for x;. Moreover, with n = p; + py + p3, we
have
Agn-1(x;) = =2nx; +2p1,  Agi-1(y2) = =2ny; +2(p2 — p1),
Agn—l(ul‘j) = —2)’114,']'.

Then, the image measure of the sphere is the reversible measure for this operator,
that we compute through Equation (3-7). Up to some normalizing constant, we
may compute the density through formula (3-7). In order to compute this density
with respect to the product measure dx; dx, dx3 dy du1y du13 duys, we introduce

F] = X1X2X3 + 2u12u13u23 — X1M%3 — xzu%3 — x3u%2,

F=1-x1—x2—x3—y
Observe that F) is the determinant of the Gram matrix associated with the vectors
X1, X2, X3.

Rewriting the variables (x1, x2, x3, y2, U12, U3, U33) as (X1, X2, X3, X4, X5, X6, X7)
in this order, (to have a more compact presentation of what follows), we get, with
Gij = 1T (xi, X)),

ZjajGij:2—8xi, i=1,2,3,
Zj 8jG4j =1- 8)64,

> 8;Gi; = —8xi, i=5.6,7,
ZjGijajlogFlzl—Sxi, i=1,2,3,
3" Gij9; log Fi = —3x;, i=4,56,7,
3G9 log Fy = —x;, i=1,....7

Zi G,’jaj logxs=—x; 4384, i=1,...,7.

In the end, through formula (3-7), we are able to compute the density of the
measure, which is, up to some normalizing constant

p=FIEY,

with
a:%—Z, ﬂ:n—zpz Pz;lﬁ
Observe that the equation FjF>y, = 0 is indeed the reduced equation of the

set $27.

— 1.

-n—1, y=
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To compute the conditional law, it is worthwhile to change variables in order to
transform the measure p(x) dx into a product measure. For this, we set

ujj = \/Xjxjoij, y2=z—Xx2,x2=uz, x3=v(l—-x—2),
so that the measure becomes a product measure, of the form

wu(dxy, dz)B1(du)Ba(dv)y (doyz, doas, doys),

where u is, as expected, the Dirichlet law in dimension 2, 2 (p,, p»)-
With this in mind, it is easy to check that we have

ki =2(x —ayy), to =bixy,
ki3 =2(x —ax(1—x—y)), t3=byx(1—x—y),

k3 =2(azy —as(1 —x—y)), tz=bzy(l—x—y),

for some constants a;, b; that we are not going to identify directly, but where
we may assert that b; > 0, for example. (Indeed, knowing that those differential
operators K;; must commute with L, , allows one to compute them up to some
constant.)

Now, if one wants to see that these operators do not commute, we may look at
[ﬁ K12, %K 13], for example. This is a third order operator whose leading term is
2(1 —x — y)(x — y)(3; — 9,)3, which clearly does not vanish. O

Remark 4.2. For any horizontal rotation R, the associated kernel

Kr(f)(x) = E(f (w(Rx))/m(x) = x)

leaves invariant all the eigenspaces of Ly ,. But the question of their action on
this space remains completely open. In particular, one may ask if any Markov
operator which commutes with Ly , is a mixture of such conditional expectations
of rotations Kg.

We now concentrate on the operators L4 ,. We shall show that in the generic
case (that is for some dense set for the parameters A;; and p;), their eigenspaces
are one dimensional.

There is still a geometric interpretation for them, in the geometric case p; € N,
as we shall see below. And this geometric interpretation allows us to use the same
space E; with the projection 7 : E; — D4, which may be extended to the general
case p; ¢ N as we did in Section 3D. But the problem now is that the horizontal
rotations do not commute with the lift of L4 , to the geometric model. Therefore,
we may not apply the Carlen—Geronimo-Loss scheme to them.

The geometric interpretation of L4 , that we present now is inspired from [Li
2019], where a similar interpretation is carried out for the matrix simplex. In R”,
consider the infinitesimal rotations in the coordinate plane (i, j), D;; = y;0; — y;0;.
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Consider now as before a partition {/, ..., Iz} of the set {1,...,n}, where
|l;| = p;. Fori # j consider the following second order diffusion operator on
the sphere S"~!:
2
Aij = Z Dpy-
pEI,',qEIj

The action of A;;, and its associated carré du champ I';; on the variables x, =

> pel, ylz, and x; =),/ ylz, is as follows.

Proposition 4.3. F,‘j (X, x5) = 4[5”)6,')6]' (6, + 8rj) — (5”'85]' + 5,j85i)xrxs],
Aij(xy) =208y —8jr)(xjpi —xipj).

Proof. We start by the computation of this action on the variables y,, y, : S SR

Aijp) = —=ypAper; pi + 1per, pj),

(4-6)
Ui j(Vps ¥g) = 8pg A perxj +1per;xi) — ypYg A per 1ger;, + 1perger),

where 1,4 stands for 1,4 (p), the indicator function of the set A. From this, using
the change of variable formula (3-11), we get

Fi,j ()Cp, Xq) = 4)C,')Cj[8pq (5[)1' + 817]') — (8pi8qj + 5pj8qi)]-
In the same way, we obtain the formula for A;;(x,) using formula (3-10). O
As a corollary, and comparing with formulae (4-2) and (4-3), we get:

Corollary 4.4. The operator 4Ly , is the image of the operator ), _ jAijAij
through the map y — (x1, .. ., Xg) which maps S"~! onto Dy, where n = Zfl:]l Di-

Remark 4.5. In view of Equation (4-4), it is worth observing that the spheri-
cal Laplace operator may be written as Zif j Aij. Therefore, comparing with
Corollary 4.4, we see that what is missing is the operator ) ; A;;, where

— 2
Aii = Z Dl
p<q, peli,ql;
But it is easily seen that the action of A;; on the variables x, vanishes: I';; (x,, x;) =
A,‘,‘ (xp) =0.

It is also worth observing that one may split some subset /; into two subsets
I;, and I;,. More precisely, suppose that we have a partition {/j, ..., I;11) of
{1, ..., n} and that we split say /; into two disjoint sets /1, U I1,. Then we may
consider a new operator on Dg41 L4, 4,, for some matrix A; and some vector a;.
Then, provided that for any j > 1, Ay, ; = A1p, ;= Ayj, the image of Ly, 4, on
D4 under the map (x14, X1p, X2, - .., Xg) = (X1q +X1p, X2, ..., Xg) is L4 4, Where
a=(aig+aw, a, ..., dq).

Of course, the same reasoning applies for any parameter i instead of 1.
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For the sake of completeness, we show below that the eigenspaces of L4 , have
dimension 1 in the generic case.

Proposition 4.6. For a dense set for the parameters A;; and p;, the eigenspaces
of the operator L4 , are one dimensional.

Proof. Since the space P, of polynomials with total degree n is preserved by L4 p,
one may concentrate on its action on P,. To understand the eigenvalues of this
restriction, which do not come from the restriction to H,,_1, it is enough to look at
the restriction of L4 , to homogeneous polynomial of degree n, and consider for
such polynomial P, the degree-n homogeneous part of L4 ,(P).

Then, the eigenvalues of L4 , are the eigenvalues of this linear operator, rep-
resented by some matrix M, 4 , in the natural basis of these homogeneous poly-
nomials ey, x, = {xlf‘ ---xsd, > i ki = n}. We shall see that for each n, there
exists a dense subset €2, of parameters (even with a complementary with Lebesgue
measure 0) such that the eigenvalues of M, 4 , are all distinct for this parameters.
Then, on ﬂn 2,, which is dense by Baire’s theorem, all the eigenvalues of L4 ,
are distinct.

To assert that the eigenvalues of M, 4 p are distinct, it is enough to check that the
characteristic polynomial has distinct roots, or in other words that its discriminant
does not vanish. But the discriminant is a polynomial in the coefficients of the
characteristic polynomial, which themselves are polynomials in the entries of the
matrix, which themselves are polynomials in the variables A;; and p;. Therefore,
there exists some polynomial Q in the variables A;;, p;, depending on the degree n,
such that, if Q # 0, all the eigenvalues of M, 4 , are distinct.

It remains to show that Q does not vanish identically, that is that there exists
some choice of the parameters A;; and p; for which the eigenvalues are distinct.

Let us choose the matrix A;; such that A;; = A;41) for j > i. Then, if we
order the elements of the basis {ek1 ,,,,, kys Zf ki = n} according to their inverse
lexicographic order of (ky, ..., kg—1) (so that (n, ..., 0, 0) is the lowest term), then
one may check that all the elements of M,, 4, , which are above the diagonal vanish.
Then, the eigenvalues of M, 4 , are the diagonal elements. On the diagonal, the
coefficient corresponding to ey, . , 1S

d+1

- Zkiijij - Zki (ki =D Aiat1+ 3 Zki (Ai,d—Hpi - Z AikPk)-
itj i i k=1

With the choice that we made, for i # j, A; ; = amin(, j) for some sequence a;,

i=1,...,d. Then, it is not hard to see that there exists a choice for the sequences

ai, i=1,...,dand p;, i =1,...,d+ 1 for which all these terms are different,
for all the sequences of integers (ki, ..., kg) such that Z’f ki =n. O
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4C. Representations of Markov sequences. In what follows, we restrict ourselves
to the case where all the coefficients A;;, i # j are set to 1. Since the eigenspaces
E, are not one dimensional, we also restrict our attention to the study of Markov
operators which have constant eigenvalues on the space E,. That is, instead of
looking at Markov operators which commute with Ly ,, we look at Markov oper-
ators which are functions of Ly ,. We say that such a Markov operator strongly
commutes with Ly,

Observe first that, for any choice of a strict subset I C {1, ..., d + 1}, the pro-
jection ¥ : Dy — [0, 1], m(x) = Zie] x; maps the Dirichlet law 4 , on the
Beta measure S, ,—4, Where ¢ =) ,_; pi and n = 'f“ Di- (We recall that by
convention, x4 = 1 — Z‘f x,-). As usual, for any function f : [0, 1] — R, we
denote 7 f : Dy — R the function 7 f (y) = f(;w (y)). Then, with the Jacobi operator
Jyn—qg =L1,4.n—q» One has

wJgn—q =L1,p7,

as may be checked directly and easily, computing Ly 7 (x) and I'1 p (7 (x), 7w (x)).

Now, the eigenvalues of J, ,_, and Ly , are the same (namely —k(k + "52), act-
ing on polynomials of degree k). In other words, any eigenspace for Ly , contains
an eigenvector of the form P ( (x)).

Now, let K be a Markov operator on Dy which strongly commutes with Ly p,
with eigenvalue iy on Ey. For a Jacobi polynomial Py, K (7 Pr) = prm Py. There-
fore, for any polynomial P defined on [0, 1], one sees that K (7 P) = 7 Q, for some
uniquely defined polynomial Q. This allows one to define a new Markov operator
K1 on [0, 1] through its action on polynomials as K (w P) = w K (P). It is clear
that Ky commutes with J,, ,, .

If i is the eigenvalue of K on the eigenspace Ej of Ly j, then, for any Jacobi
polynomial with degree k, K;(P) = ur P. One may now apply Gasper’s theorem
and we have obtained:

Proposition 4.7. Let K be a Markov operator on Dy which strongly commutes
with Ly, p, and let (uy) be the sequence of its eigenvalues on the eigenspace Ej

ole,p;HC;hooseI c{l,...,d+1}, I #{1,...,d+1}, andletq:ZieI pi,and

n=) " pi. Then, there exists a probability measure v on [0, 1] such that, for
any k € N
1 pd-n—q
Pk (x)
Mk = / — - v(dx),
o P (x0)

where P,f 74 s the Jacobi polynomial with degree k for the measure By.n—q-» and
x0 =0o0rxo=1according to p <n — q or not.

Remarks 4.8. (1) Contrary to the one dimensional case, it is not true in general
that for any probability measure v on [0, 1], the associated sequence p, may
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be the sequence of eigenvalues of a Markov operator. Indeed, if such were the
case, then for some value of ¢ = ), _, p;, one would have that the sequence
qu (x)/ P,f "74(1) is such a strong Markov sequence. Choosing another value
of g, say g, associated to another subset I} of {1, ..., d + 1}, one would therefore
get some measure v(x, dy) on [0, 1] such that

P /1 P ()

— = - v(x, dy).
qu,n Q(l) PkCII,n q1(1)

Repeating the operation with P~ (y)/P""~?'(1) and another measure v(y, dz),
one would get

vz(x, dZ),

P (x) / P ()
Py ) PP

where v, (x, dz) = [v(x, dy) vi(y, dz).

Then, v2(x, dz) is the Dirac mass in x. As a consequence, for v(x, dy) almost
every y, vi(y, dz) is a Dirac mass in some point 4(y), and moreover this point is
constant. This is clearly wrong, since the Jacobi polynomials for different values
of the parameters do not coincide.

(2) In view of Theorem 3.3, in order to obtain the true hypergroup represen-
tation, that is the set of extremal points for Markov which strongly commutes
with Ly p, it would be enough to produce the associated space E; and the corre-
sponding operations 7 and ¢ such that the associated correlation operator K (f) =
E(f (¢mf(Y))/m(Y) = x) strongly commutes with Ly ,. Even in the geometric
case, when the parameters p; are integers, it does not seem to be the case for the
horizontal rotations described in (3-4).
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Araki and Iriye [1982; Iriye 1982] computed much information about the Cs-
equivariant stable homotopy groups using EHP-style techniques in the spirit of
Toda [1962]. Our approach is entirely independent from theirs.

We work only with the two-element group C, because it is the most elementary
nontrivial case. In order to compute C;-equivariant stable homotopy groups of the
C,-equivariant sphere spectrum using the Adams spectral sequence, one needs to
work with the full C,-equivariant Steenrod algebra A2 for the constant Mackey
functor F;. As the Cy-equivariant Eilenberg—Mac Lane spectrum for [, is flat [Hu
and Kriz 2001, Corollary 6.45] the E»-term of the Adams spectral sequence is
given by the cohomology of the equivariant Steenrod algebra. In this article, we
tackle a computationally simpler situation by working over the subalgebra A>(1).
This means that we are computing the C;-equivariant stable homotopy groups not
of the sphere but of the C>-equivariant analogue of connective real K-theory ko.
We will explicitly construct this C-equivariant spectrum koc, in Section 10.

Our calculational program is carried out for .A“*(1) in this article as a warmup
for the full Steenrod algebra A to be studied in future work. Roughly speaking, .A
contains Steenrod squaring operations Sq’ with the expected properties, and A€2(1)
is the subalgebra generated by Sq' and Sq®. A key point is that our program works
just as well in theory for A2 as for AC2(1), except that the details are even more
complicated. It remains to be seen how far this can be carried out in practice.

Our strategy is to build up to the complexity of the C,-equivariant situation by
first studying the C-motivic and R-motivic situations. The relevant stable homotopy
categories are related by functors as in the diagram

Ho(Sp®) —25 Ho(Sp®)
Re Re
Ho(Sp€?) —~— Ho(Sp)

The vertical functors are Betti realization (see [Heller and Ormsby 2016, Sec-
tion 4.4]). The functor ¢* restricts an equivariant spectrum to the trivial subgroup,
yielding the underlying spectrum.

The C-motivic cohomology of a point is equal to F,[t] [Voevodsky 2003a] (see
also [Dugger and Isaksen 2010, Section 2.1]). The C-motivic Steenrod algebra
AC is very similar to the classical Steenrod algebra, but there are some small
complications related to t. In particular, these complications allow the element
hy in the cohomology of A to be nonnilpotent, detecting the nonnilpotence of the
motivic Hopf map n¢ [Morel 2004, Corollary 6.4.5]. In the cohomology of A®(1),
the nonnilpotence of /1 is essentially the only difference to the classical case.
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The R-motivic cohomology of a point is equal to F»[7, p] [Voevodsky 2003a]
(again, see the discussion in [Dugger and Isaksen 2010, Section 2.1]). Now an
additional complication enters because Sq'(r) = p. The computation of the co-
homology of the R-motivic Steenrod algebra AR becomes more difficult because
the cohomology of a point is a nontrivial .A®-module. In addition, the R-motivic
Steenrod algebra AR has additional complications associated with terms involving
higher powers of p [Voevodsky 2003b, Theorem 12.6].

A natural way to avoid this problem is to filter by powers of p. In the associated
graded object, Sq'(r) becomes zero and the associated graded Hopf algebroid
is simply the C-motivic Hopf algebra with an adjoined polynomial generator p.
Therefore, the p-Bockstein spectral sequence starts from the cohomology of A®
and converges to the cohomology of A®.

This p-Bockstein spectral sequence has lots of differentials and hidden exten-
sions. Nevertheless, a complete calculation for A (1) is reasonable. A key point
is to first carry out the p-inverted calculation. This turns out to be much simpler.
With a priori knowledge of the p-inverted calculation in hand, there is just one
possible pattern of p-Bockstein differentials.

Relying on our experience from the R-motivic situation, we are now ready to
tackle the C,-equivariant situation. The C,-equivariant cohomology of a point con-
tains F,[7, p], but there is an additional “negative cone” that is infinitely divisible
by both 7 and p [Hu and Kriz 2001, Proposition 6.2]. Except for the complications
in the cohomology of a point, the C»-equivariant Steenrod algebra A2 is no more
complicated than the R-motivic one [Hu and Kriz 2001, pp. 386-387].

Again, a p-Bockstein spectral sequence allows us to compute the cohomology
of A®2(1). Because of infinite 7-divisibility, the starting point of the spectral se-
quence is more complicated than just the cohomology of .A®(1). Once identified,
this issue presents only a minor difficulty.

The p-inverted calculation determines the part of the cohomology of A (1) that
supports infinitely many o multiplications. Dually, it is also helpful to determine
in advance the part of the cohomology of .A®2(1) that is infinitely p-divisible, i.e.,
the inverse limit of an infinite tower of p-multiplications. We anticipate that this
approach via infinitely p-divisible classes will be essential in the more complicated
calculation over the full Steenrod algebra A2, to be studied in future work.

As for the R-motivic case, the p-Bockstein spectral sequence is manageable,
even though it does have lots of differentials and hidden extensions.

All of these calculations lead to a thorough understanding of the cohomology
of AC2(1). The charts in Section 12 display the calculation graphically.

The next step is to consider the C,-equivariant Adams spectral sequence. For de-
gree reasons, there are no nonzero Adams differentials. The same simple situation
occurs in the classical, C-motivic, and R-motivic cases.
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However, it turns out that there are many hidden extensions to be analyzed. The
presence of so many hidden extensions suggests that the Adams filtration may not
be optimal for equivariant purposes. Unfortunately, we do not have an alternative
to propose.

The final description of the homotopy groups is complicated. Nevertheless,
our computation establishes that the homotopy of koc, is nearly periodic (see
Theorem 11.15). We refer to Section 11 and the charts in Section 12 for details.

1A. Organization. In Section 2, we provide the basic algebraic input to our cal-
culation by thoroughly describing the C,-equivariant cohomology of a point and
the C,-equivariant Steenrod algebra A2, In Section 3, we set up the p-Bockstein
spectral sequence, which is our main tool for computing the cohomology of A2 (1).
In Sections 4 and 5, we carry out the p-inverted and the infinitely p-divisible cal-
culations. In Section 6, we carry out the R-motivic p-Bockstein spectral sequence
as a warmup for the C-equivariant p-Bockstein spectral sequence in Section 7.
Section 8 provides some information about Massey products in the C>-equivariant
cohomology of \A(1), which is used in Section 9 to determine multiplicative struc-
ture that is hidden by the p-Bockstein spectral sequence. Section 10 gives the
construction of the C,-equivariant spectrum whose homotopy groups are computed
by the cohomology of A2(1), and Section 11 analyzes multiplicative structure in
these homotopy groups that is hidden by the Adams spectral sequence. Finally,
Section 12 includes a series of charts that graphically describe our calculation.

1B. Notation. We employ notation as follows:
(1) MY = F,[r] is the motivic cohomology of C with [, coefficients, where 7 has
bidegree (0, 1).

2) MéR = [, [z, p] is the motivic cohomology of R with [, coefficients, where T
and p have bidegrees (0, 1) and (1, 1), respectively.

3) MZC ? is the bigraded equivariant cohomology of a point with coefficients in the
constant Mackey functor [F». See Section 2A for a description of this algebra.

(4) NC is the “negative cone” part of I\/I]ZC 2. See Section 2A for a precise descrip-
tion.

5 HZiz* (X) is the Cy-equivariant cohomology of X, with coefficients in the con-
stant Mackey functor [F,.

(6) A% AT AR and A€ are the classical, C-motivic, R-motivic, and C>-equivariant
mod 2 Steenrod algebras.

(7) A%n), A%(n), ARn), and A€2(n) are the classical, C-motivic, R-motivic,
and C,-equivariant subalgebras generated by Sq', Sq?, S¢*, ..., qun.



THE COHOMOLOGY OF C,-EQUIVARIANT A(1) AND THE HOMOTOPY OF koc, 571
(8) £%2(1) is the subalgebra of A generated by
Qo=Sq" and Q;=Sq'Sq’+Sq¢>Sq".

(9) Ext is the bigraded ring Ext 4a(F2, F2), i.e., the cohomology of Al
(10) Extc is the trigraded ring Ext 4c (Mg, Mg), i.e., the cohomology of AC.
(11) Extg is the trigraded ring Ext 4r (M, M?), i.e., the cohomology of AR,
(12) Extc, is the trigraded ring Ext 4c, (Mgz, Mgz), i.e., the cohomology of A2,
(13) Extnc is the Ext 4z-module Ext 4= (NC, M5).
(14) Exte(n) is the bigraded ring Ext 4a, (F2, F2), i.e., the cohomology of Al(n).
(15) Extc(n) is the trigraded ring Ext 4, (Mlg, Mg), i.e., the cohomology of A (n).
(16) Extr(n) is the trigraded ring Ext 4r ;) (M?, M?), i.e., the cohomology of AR (n).
(17) Extc,(n)is the trigraded ring Ext 4c, (n)(Mg 2 MQC ?),i.e., the cohomology of AC2(n).
(18) Extnc(n) is the Extg(n)-module Ext 4z, (NC, M?).
(19) ET is the p-Bockstein spectral sequence

Extc(1)[p] = Extr(1).

See Section 3.

(20) E~ is the p-Bockstein spectral sequence that converges to Extnc(1). See
Section 3.

21D %{y} is the infinitely x-divisible module colim, F,[x]/x", consisting of
elements of the form xlk for k > 1. See Remark 2.1.

(22) koc, is a Cy-equivariant spectrum such that Ha* (koc,) = A/ A2 (1). See
Section 10.

(23) m, «(X) are the bigraded C-equivariant stable homotopy groups of X, com-
pleted at 2 so that the equivariant Adams spectral sequence converges.

(24) I1,(X) is the Milnor-Witt n-stem @@ 71, p.
P

We use grading conventions that are common in motivic homotopy theory but
less common in equivariant homotopy theory. In equivariant homotopy theory,
RO(Cy) = Z[a]/(a2 — 1) is the real representation ring of C,, where o is the
1-dimensional sign representation. The main points of translation are:

(1) Equivariant degree p 4 go will be expressed, according to the motivic con-
vention, as (p + ¢, q), where p + ¢ is the total degree and ¢ is the weight.
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(2) The element 7 in Mﬂf maps to u [Hill et al. 2016, Definition 3.12] under the
realization map from R-motivic to Cs-equivariant homotopy theory. We use
the symbol 7 in both cases.

(3) Similarly, realization takes the R-motivic homotopy class p : S~H~1 — §%.0
to a in w_1,—1 [Hill et al. 2016, Definition 3.11]. We use the symbol p for
both of these homotopy classes, and also for the corresponding elements of
ME and MS>.

We grade Ext groups in the form (s, f, w), where s is the stem, i.e., the total de-
gree minus the homological degree; f is the Adams filtration, i.e., the homological
degree; and w is the weight. We will also refer to the Milnor—Witt degree, which
equals s — w.

2. Ext groups

2A. The equivariant cohomology of a point. The purpose of this section is to
carefully describe the structure of the equivariant cohomology ring MZC ? of a point
from a perspective that will be useful for our calculations. This section is a reinter-
pretation of results from [Hu and Kriz 2001, Proposition 6.2].

Additively, MS? equals

(1) F; in degree (s, w) if s > 0 and w > s,
(2) F; in degree (s, w) if s <Oand w <s — 2,

(3) 0 otherwise.

This additive structure is represented by the dots in Figure 1. The nonzero element
in degree (0, 1) is called 7, and the nonzero element in degree (1, 1) is called p.
We remind the reader that we are here employing cohomological grading. Thus
the class p has degree (—1, —1) when considered as an element of the homology
ring 7w, HF».

The “positive cone” refers to the part of Mg % in degrees (s, w) with w > 0.
The positive cone is isomorphic to the R-motivic cohomology ring MER of a point.
Multiplicatively, the positive cone is just a polynomial ring on two variables, p
and 7.

The “negative cone” NC refers to the part of MZC * in degrees (s, w) with w < —2.
Multiplicatively, the product of any two elements of NC is zero, so MZC * is a square-
zero extension of MER. Also, multiplications by p and t are nonzero in NC when-
ever they make sense. Thus, the elements of NC are infinitely divisible by both p
and 7.
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Figure 1. MZCZ, with action by Sq', Sq?, and Sq*.

We use the notation —— p ¢ for the nonzero element in degree (—j, —1 — j — k).
This is con51stent with the multlpllcatlve properties descrlbed in the preV1ous para-
graph. So 7 - pj —— equals ot —2 - when k > 2, and p - ] —— equals o L —=~r-% When
j=2.

The symbol y, which does not correspond to an actual element of MZC ?, has
degree (0, —1).

The F;[t]-module structure on MZC 2 is essential for later calculations, since we
will filter by powers of p. Therefore, we explore further the F,[t]-module structure
on NC.

Remark 2.1. Recall that Fy[t]/7*° is the Fy[r]-module colim Fy[t]/ 7%, which
consists entirely of elements that are divisible by . We write M{x} for the
infinitely divisible F;[7]-module consisting of elements of the form - fork > 1.
Note that x itself is not an element of [FZ[’] {x}. The idea is that x represents the
infinitely many relations t* - r— =0 that deﬁne [FZ[T] {x}.

With this notation in place, M22 is equal to

M5 @ NC = MR@@

s>0

Fa[7] {

} -1
o’

as an F,[t]-module.
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2B. The equivariant Steenrod algebra. As a Hopf algebroid, the equivariant dual
Steenrod algebra can be described [Ricka 2015, Proposition 6.10(2)] as

AC = M$? D AL (2-2)
Recall [Voevodsky 2003b] that
AF =M 10, 11y - L E1L & 1/ (T = T + TE1 + pT0E+1),

with ng(p) = p and ng(r) = v + p1o. The formula for the right unit ng on the
negative cone given in [Hu and Kriz 2001, Theorem 6.41] appears in our notation

as
i k
T’R(p])'/fk) = p;/fk [X(; (§IO> ] ’ 2-3)

i>

Note that the sum is finite because /Yrk -p"=0ifn > j.
We have quotient Hopf algebroids
n—i+1
ARy = MR t0, .., Ty £t B/ EDT L TE = T + T+ PTOEL D).
and
EXn) :=M3[w, ..., 1)/(7} = pTit1, 1)

and their equivariant analogues
AS () =M @yr AX(), £ () =M @ur ER(n)  (2-4)

Their duals are the subalgebras A2 (n) € A2 and £%2(n) C A%,
The relationship between the equivariant and R-motivic Steenrod algebras leads
to an analogous relationship between Ext groups.

Proposition 2.2. Suppose that I is a Hopf algebroid over A and that B=A & M
is a I"-comodule which is a square-zero extension of A, meaning that the product of
any two elements in M is zero. Then the A-module splitting of B induces a splitting

Extpg,r(B, B) = Extr(A, A) @ Extr(M, A)

of Extr(A, A)-modules. Furthermore, this is an isomorphism of Extr(A, A)-
algebras, if the right-hand side is taken to be a square-zero extension of Extr(A, A).

Proof. We may express the cobar complex as:
coB*(B, B4 =B (M ZXBR(BRsI)®
=B Qs (D).
As the splitting of B is a splitting as ['-comodules, there results a splitting

coB*(A, ") ®coB* (M, T)
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of the cobar complex. This splitting is square-zero, in the sense that the product of
any two elements in the second factor is equal to zero. This observation follows
from the fact that the product of any two elements of M is zero.

In Extpg,r, this yields

Extpg,r = Extr(A, A) @ Extr (M, A).

The multiplication on Extr (M, A) is zero since this is already true in the cobar
complex coB* (M, I'). O

Employing notation given in Section 1B, Proposition 2.2 applies to give isomor-
phisms

Extc, = Extr @ Extne
and

Extc,m) = Extr(n) @© Extne) -

Thus from the point of view of R-motivic homotopy theory, the cohomology of
the negative cone is the only new feature in Ext 4¢, or Ext 4c, (n)*

3. The p-Bockstein spectral sequence

Our tool for computing R-motivic or Cz-equivariant Ext is the p-Bockstein spec-
tral sequence [Hill 2011; Dugger and Isaksen 2017a]. The p-Bockstein spectral
sequence arises by filtering the cobar complex by powers of p. More precisely, we
can define an AR-module filtration on Mzc ?, where F), (Mg %) is the part of Mg %z con-
centrated in degrees (s, w) with s > p. Dualizing, we get a filtration of comodules
over the dual Steenrod algebra, which induces a filtration on the cobar complex
that computes Extc,.

Recall that the C-motivic cohomology of a point is M$ = [F,[z], and the C-
motivic Steenrod algebra is A® = A®/p [Voevodsky 2003a; 2003b]. For conve-
nience, we write Extc for Ext 4c (M, Mg).

Proposition 3.1. There is a p-Bockstein spectral sequence
C C
E| = Ethrp.ACZ (gr, M2, gr, M;?) = Extc,

such that a Bockstein differential d, takes a class x of degree (s, f, w) to a class
d,(x) of degree (s — 1, f + 1, w). Under the splitting of Proposition 2.2, this
decomposes as
EI’_ = Extc[p] = Extr
and
El_ = Extne,
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where E | belongs to a split short exact sequence

M3 [ v _ M3 [y
@wa{; ®M§CEXT‘C_>E1 —)@TOI'Mg ‘[T.O E ,EXt(]: .
s>0 s>0

Remark 3.2. Beware that the short exact sequence for £, does not split canoni-
cally.

Remark 3.3. The same spectral sequences occur in the same form when A€ AR
and A® are replaced by A2 (n), AR(n), and A®(n).

Proof. See [Hill 2011, Proposition 2.3] (or [Dugger and Isaksen 2017a, Section 3])
for the description of E 1+
For E |, the associated graded of NC is

~ M [y
gprC=€BrTo{;}’
s>0

as described in Section 2A. It follows that the Bockstein spectral sequence begins
with .
M y
~ 2 Cc y4C

The ring Mg = F,[r] is a graded principal ideal domain (in fact, it is a graded
local ring with maximal ideal generated by 7). Therefore, the Kiinneth split exact
sequence gives

M3 [ ¥ - M3 [ ¥
<@ -L-T.O {; ®Mg EXt@ — El — TOI'Mg @ -L-TOO E , EXtC .
s>0 >0

The first and third terms of the short exact sequence may be rewritten as in the
statement of the proposition because the direct sum in each case is a splitting of
Mg—modules. ]

We shall completely analyze the spectral sequence
E] =Extc(1)[p] = Extg(1)

in Section 6. While nontrivial, this part of our calculation is comparatively straight-
forward.
On the other hand, analysis of the spectral sequence

El_ = Extnc(1)

requires significantly more work. The first step is to compute E;" more explicitly.
In particular, we must describe the Tor groups that arise.
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C
Lemma 3.4. (1) Tor?’\‘/[I ( > MC) equals , concentrated in homological degree
zero.

C
2) Tor (EA]OO, My ) equals -+ ,concentrated in homological degree one.

Proof. (1) This is a standard fact about the vanishing of higher Tor groups for free
modules.

(2) This follows from direct computation, using the resolution

C
M 0.
. o ME L
After tensoring with =%, this gives the map
T

MS M¢
o X e——== )

A
(l

that takes to zero if a < k. This map is onto, and
its kernel i 1s 1somorphlc to MC /¥ (|

Remark 3.5. Lemma 3.4 provides a practical method for identifying the E| in
Proposition 3.1. Copies of MI‘[Z: in Extc(1) lead to copies of the negative cone in
E . On the other hand, copies of Mg /7, such as the submodule generated by />,
lead to copies of Mg /T in E| that are infinitely divisible by p. These copies of
Mg /7 occur with a degree shift because they arise from Tor!.

4. p-inverted Extr(1)

As a first step towards computing Extc, (1), we will invert p in the R-motivic setting
and study Extg(1)[p~']. This gives partial information about Extr(1) and also
about Extc, (1). Afterwards, it remains to compute p¥ torsion, including infinitely
p-divisible elements.

We write A for the classical Steenrod algebra. For convenience, we write Ext,
and Extci(n) for Ext 4 (F2, F2) and Ext 4, (F2, F2) respectively.

Proposition 4.1. There is an injection Extq(n — 1)[p*'] < Extr(n)[p~'] such
that:

(1) The map is highly structured, i.e., preserves products, Massey products, and
algebraic squaring operations.
(2) The element h; of Ext.(n — 1) corresponds to hi11 of Extg(n).

(3) The map induces an isomorphism

on+l1

Extr(n)[p~']1 = Exta(n — D[pT 1@ F2[c* 1.

(4) An element in Extq(n — 1) of degree (s, f) corresponds to an element in

Extgr(n) of degree 2s + f, f,s + f).
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Proof. The proof is similar to the proof of [Dugger and Isaksen 2017a, Theo-
rem 4.1]. Since localization is an exact functor, we may compute the cohomology
of the Hopf algebroid (M?[p‘l], AR + 1)*[p_1]) to obtain Extgy(n + 1)[,0_1].
After inverting p, we have

1.2, -1
Tr1=p Tp+0 Tk + T0bk+1,

and it follows that

on+l

ARl 1= M M0, &1, .., 81/ (F L ED . ED).
This splits as

(M51p~ ", Am)Llp~ ") = (M5 o1, A () @5, (F2, A" (n)),
where
A'(n) = ME[p " lz0l/23
and

A'(n) =Falky, ..., &)/ EE, ... ED).

Because it is isomorphic to the classical Hopf algebra (F,, A(n—1)) with altered
degrees, the Hopf algebra (F,, A”(n)) has cohomology Extc(n — 1).
For the Hopf algebroid (M?[p‘l], A (n)), we have an isomorphism

ME[p "1, A () Z Falp* 1 @5, (Falt], Falelix]/x*")
with
n(t) =1, nr(r)=1t+x.

An argument like that of [Dugger and Isaksen 2017a, Lemma 4.2] shows that the
cohomology of this Hopf algebroid is |]:2[‘E2n+] 1. U

Corollary 4.2. Extc,(D[p~ 1= Extg(D[p ' 1= Fa[p*!, o4, Ayl

Proof. The first isomorphism follows from Proposition 2.2, as Extnc is p-torsion.
The second isomorphism follows immediately from Proposition 4.1, given that
Extq(0) = Falhg]. ]

Remark 4.3. Corollary 4.2 implies that the products 74 - hllc are nonzero in Extr(1).
But r4h’1‘ =0 in Extc (1) when k > 3, so the products s h’l‘ are hidden in the p-
Bockstein spectral sequence for k > 3. We will sort this out in detail in Section 6.

S. Infinitely p-divisible elements of Ext 4c, ;,

Having computed the effect of inverting p in Section 4, we now consider the dual
question and study infinitely p-divisible elements. This gives additional partial
information about Extc,(1). Afterwards, it remains only to compute the p* torsion
classes that are not infinitely p-divisible.
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In fact, this section is not strictly necessary to carry out the computation of
Extc,(1). Nevertheless, the infinitely p-divisible calculation works out rather nicely
and provides some useful insight into the main computation. We also anticipate
that this approach via infinitely p-divisible classes will be essential in the much
more complicated calculation of Extc,, to be studied in further work.

For a F[p]-module M, the p-colocalization, or p-cellularization, is the limit
lim, M of the inverse system

N VR 7

While p-localization detects p-torsion-free elements, the p-colocalization detects
infinitely p-divisible elements.
An alternative description is given by the isomorphism

lim M = Homg,,)(F2[p*'1, M)

because F»[p*!]is isomorphic to colim, F>[p]. It follows that lim, M is an Fo[p*!]-

module, and the functor M > lim, M is right adjoint to the restriction
MOd[FZ[p:tl] —> MOd[Fz[p].

Lemma 5.1. (1) Let M be a cyclic F,[p]-module F»[ p] or [Fz[,o]/pk. Thenlim, M
is zero.

(2) Let M be the infinitely divisible F2[pl-module F1[pl/p>°. Then lim, M is
isomorphic to [Fg[,oil].

Proof. If M is cyclic, then no nonzero element is infinitely p-divisible, which
implies the first statement. For the case M = [F,[p]/p°°, a (homogeneous) element
of the limit is either of the form

1 1
E’W’.“
(0 0,1 L1 )
AR ) 7p’p27--- .

For k > 0, the isomorphism I]:z[,oil] — lim, M sends 0¥ to the tuple

(0,...,0,1,1,...)
0

having k — 1 zeroes and sends p—lk to (# #, o) O

or of the form

We will now compute the p-colocalization of Extc,(1).
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Proposition 5.2.

Falz4]
TOO

lim Exte, (1) = @D Falp*. hl]{ }”[F [ h]1® 128

k>1

Recall that y itself is not an element of lim, Extc, (1), as described in Remark 2.1.
The main point of Proposition 5.2 is that the elements T)/Th{ are infinitely p-divisible
classes in Extc, (1), and there are no other infinitely p-divisible families in Extc, (1).

Proof. Since the cobar complex coB*(MZC 2 A% (1)) is finite-dimensional in each
tridegree, the inverse systems

- B coB*(MS?, A% (1)) & coB*(ME2, A% (1))
and
-+ 5 Exte, (1) 5 Exte, (1)

satisfy the Mittag-Leffler condition, so that [Weibel 1994, Theorem 3.5.8]

lim,, Extc, (1) = H*(lim,, coB*(M$?, A®(1))).

Now we compute
lim coB* (M$?, A®(1)) = 1i;n(M§2 ®ye: A (D)
~ n;n(rwgz Dz AF(D®*).
The splitting MS> = M% @ NC yields a splitting
(M5 @z A*(D®*) ® (NC @A™ (™)

of MCZ ME AR(1)®5 as an [, [ p]-module. The first piece of the splitting contributes
nothlng to the p-colocalization by Lemma 5.1(1) because M is free as an Fo[p]-
module.

On the other hand, the [F;[p]-module NC is a direct sum of copies of F»[p]/0>.
By Lemma 5.1(2), we have that lim, (NC ®M§AR(1)®S) is isomorphic to

MEBT o~ !
("2 1) @ug 2.
Now the argument of Proposition 4.1 provides a splitting
MR o1
207]
0 w( {y}. A”%l))
2

F Folz,
_COBU:Z[r]< ig]{y}, 2[;4 X]>[,0il]®[F2 coBg, (F2, [Fz[gl]/flz),

where x = ptg. The cohomology of the second factor is Fa[/].
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It remains to show that the cohomology of

coBY ., (Fz[f] 0. Falz, x])

00 x4

is equal to [Fzr[—o’:]{y}. As in Formula (2-3), the comodule structure on [Fgg] {y}is

given by
Y Y x o ox2 3\
NR (_k> = (1 + - + 5t ) .
T T
Now we filter coBf, [T]([FZ[’] {r}, [FZ[T = ]) by powers of x. We then have

E = Fal7]

< {7} ®F, F2[vo, v1l,

where vy = [x] and v; = [x2]. The differential

Y 14
dl( Dh— 1) = ﬁvo

[Fz[ 2]

gives

E, = {v} ®F, F2[v1].

Y YV
d =2y
2 (.E4k—2) TR

F 4
Ey— B = 27

Finally, the differential

gives

{r} O

-EOO

6. The cohomology of A% (1)

Our next step in working towards the calculation of Extc, (1) is to describe the
simpler R-motivic Extg(1). The reader is encouraged to consult the charts on
pages 616-619 to follow along with the calculations described in this section. This
calculation was originally carried out in [Hill 2011]. We include the details of the
R-motivic p-Bockstein spectral sequence, but we take the approach of [Dugger and
Isaksen 2017a], rather than [Hill 2011], in establishing p-Bockstein differentials.
The point is that there is only one pattern of differentials that is consistent with the
p-inverted calculation of Corollary 4.2. This observation avoids much technical
work with Massey products that would otherwise be required to establish relations
that then imply differentials.
For A®(1), the R-motivic p-Bockstein spectral sequence takes the form

Extc(1)[p] = Extr(1),
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where
Extc(1) = MS[ho, ki, a, b1/ hohy, Thi, hia, a* + hib.

Proposition 6.1. In the R-motivic p-Bockstein spectral sequence, we have differ-

entials

(1) di(t) = pho,
) d>(t?) = p’thy,
3) ds(T°h3) = pa.

All other differentials on multiplicative generators are zero, and E4 equals E .

Proof. By Corollary 4.2, the infinite p-towers that survive the p-Bockstein spectral
sequence occur in the Milnor—Witt 4k-stem. All other infinite p-towers are either
truncated by a differential or support a differential.

For example, the permanent cycle /19 must be p-torsion in Extg(1), which forces
the Bockstein differential

di(t) = pho.

Next, the p-tower on th; cannot survive, and the only possibility is that there is a
differential

dr(t%) = p*thy.

Note that these differentials also follow easily from the right unit formula given
in Section 2B. The p-tower on ‘L'Sh% cannot survive, and we conclude that it must
support a differential

d3(t°h3) = pia.
There is no room for further nonzero differentials, so E4 = FEo. |

Proposition 6.1 leads to an explicit description of the R-motivic p-Bockstein
E-page. However, there are hidden multiplications in passing from E, to Extg(1).

Theorem 6.2. Ext4r(y) is the F>-algebra on generators given in Table 1 with rela-
tions given in Table 2.

The horizontal lines in Table 2 group the relations into families. The first family
describes the p*-torsion. The remaining families are associated to the classical
products h2, hoh;, h?, hoa, hia, and a® + h%b respectively.

Proof. The family of p*-torsion relations follows from the p-Bockstein differentials
of Proposition 6.1.

Many relations follow immediately from the p-Bockstein E,-page because
there are no possible additional terms.
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mw (s, f, w)

generator

(—-1,0,-1)
0,1,0)
1,1, 1)
(1,1,0)
©,1,-2)
4,3,2)
4,3,0)
8,4,4)
0,0, —4)

A A DD = O OO

N

0
ho
hy
‘E/’ll
Tzho
a

2q

QS A

4

Table 1. Generators for Extg(1)

mw (s, f,w) relation

2 (—1,1,=3)  p-12h

1 (—1,1,=2)  p*-th

2 (1,3, -1 pa

4 0,2,-4)  (?ho)* +t*h

0 1,2, 1) hoh

1 (1,2,0) ho-thy+ phy-th
2 (1,2, -1 t2ho - hy + p(thy)?
3 (1,2, -2) 2ho - Thy

1 (3,3,2) h3-thy

2 (3,3, 1) hi(thy)?+ pa

3 (3.3,0) (thy)?

4 (3,3, -1 ™ hi+p-t2a

4 (4, 4, O) T2h0~a+h0't2a
2 (5,4,3) hia

3 (5,4,2) thy-a

4 5,4, 1 hy-t%a+ p3b

5 (5,4,0) th;-t2a

4 (8,6,4) a’+hkb

6 (8,6,2) a-t’a+1t?hg-hob
8 (8,6,0) (t2a)?* +t*hib + p*t*h3b

Table 2. Relations for Extr(1).

583
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mw (s, f, w) X € Extyr(yy gxx € Extergy)

0 (=1,0,-1) p P

0 (0,1,0) ho ho

0 ((1,1,D hy 0

1 (1,1,0) Thy PV

2 (0,1,-2) t?hg 2hy

2 (4,3,2) a hov?

4 (4,3,0) 2a t2hov}
4 (8,4,4) b v}

4  (0,0,—4) ¢ 4

Table 3. The homomorphism Ext 4r(;) — Exter ).

Corollary 4.2 implies that t# - h?, is nonzero in Extg(1). It follows that there

must be a hidden relation

4 13 2
T-hi=p-17a.

Similarly, there is a hidden relation
hy-t?a = ,03b

because 74 -h‘ll is nonzero in Extg(1). This last relation then gives rise to the extra
term p2r4h%b in the relation for (t2a)? + r4hgb.

Shuffling relations for Massey products imply the remaining three relations,
namely

ho - thy = ho(h1, ho, p) = (ho, h1, ho)p = phy - Thy,

t2ho - hy = (pthi, p, hoYh1 = pthi{p, ho, h1) = p(thi)?,
and
pa = plho, hy, thy -hy) = (p, ho, hi)thy -hy = hi(Th)>.

See Table 6 in Section 8 for more details on these Massey products, whose inde-
terminacies are all zero. O

Remark 6.3. For comparison purposes, we recall from [Hill 2011, Theorem 3.1]
that
Exter(y = Falp, T, ho, T°ho, v11/(pho, p v, (t7ho)* +*h).

The p-torsion is created by the Bockstein differentials d; (1) = phg and d3(7?) =
p3v;. The class vy is in degree (s, f,w) =(2,1,1).

Proposition 6.4. The ring homomorphism q, : Ext 4z (1) — EXtgr(yy induced by the
quotient q : AR(1),, — ER(1)4 of Hopf algebroids is given as in Table 3.
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Proof. Many of the values g, (x) are already true over C and follow easily from
their descriptions in the May spectral sequence. For instance, b is represented
by h2 |» and vy is represented by 45 1. On the other hand, the value g.(thy) is
most easﬂy seen using the cobar complex. The class T/ in Ext 4r(j) is represented
by t&; + pri. This maps to pt; in the cobar complex for E®(1) and represents the
class pv; there. O

7. Bockstein differentials in the negative cone

We finally come to the key step in our calculation of Extc,(1). We are now ready
to analyze the p-Bockstein differentials associated to the negative cone, i.e., to
the spectral sequence E~ of Proposition 3.1. We already analyzed the spectral
sequence ET in Section 6.

TA. The structure of E]. First, we need some additional information about the
algebraic structure of £ . Since £y =E fr @ E; is defined in terms of Ext groups, it
is aring and has higher structure in the form of Massey products. The subobject E
1s a module over E f“, and it possesses Massey products of the form (xi, ..., x,, y),
where x1, ..., x, belong to E;r and y belongs to E| .

Definition 7.1. Suppose that x is a nonzero element of Extc(1) such that tx is
zero. According to Remark 3.5, for each s > 0, the element x gives rise to a copy
of MC /T in TorMc( =, EXt (1)){ } that is mﬁnltely divisible by p. In particular,
it gives a nonzero element of the Tor group. Let —x be any lift to E| of this
nonzero element.

Remark 7.2. There is indeterminacy in the choice of Qx which arises from the
first term of the short exact sequence for E| in Proposition 3.1.

Lemma 7.3. The element Qx of E| is contained in the Massey product (x, T, %)

Proof. If d(u) = t - x in the cobar complex for Extc(1), then %u is a cycle, since
r% = (0. This cycle %u represents both the Massey product as well as Qx. O
Remark 7.4. The most important example is the element Q43, which is defined
because rh3 equals zero in Extc(1). Another possible name for Qh3 is Zv%, since

v1 is the element of the May spectral sequence that creates the relation rh3

Remark 7.5. Beware that the Massey product description for Qx holds in £, not
in Extc,(1). In fact, we have already seen in Section 6 that = is not a permanent
cycle in the p-Bockstein spectral sequence.

Nevertheless, minor variations on these Massey products may exist in Extc, (1).
For example, (h%, thy, %) equals Qh? in Extc, (1).

We can now deduce a specific computational property of E| that we will need
later.
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muw (s, f, w) element

0 (_1’ 07 _1) 1Y

0 0,1,0) ho

0 (1,1, 1) hy

1 0,0, —1) T

2 4,3,2) a

4 (8,4,4) b

0 4,2, 4) Oh3

—k—1 (0,0,k+1) %

Table 4. Generators for the Bockstein E-page.

Lemma 7.6. In E |, there is a relation hy - Qh% = %a.

Proof. Use Lemma 7.3 and the Massey product shuffle

yzza. O

ho @} =holhi, 7. L) = tho, i3, 1) &
T T T

Table 4 gives multiplicative generators for the Bockstein E1-page. The elements
above the horizontal line are multiplicative generators for E fL The elements below
the horizontal generate E| in the following sense. Every element of E|” can be
formed by starting with one of the these listed elements, multiplying by elements
of E ;r, and then dividing by p. The elements in Table 7 are not multiplicative
generators for Extc, (1) in the usual sense, because we allow for division by p.
The point of this notational approach is that the elements of E| and of Extnc are

most easily understood as families of p-divisible elements.

7B. p-Bockstein differentials in E~. Our next goal is to analyze the p-Bockstein
differentials in E~. We will rely heavily on the p-Bockstein differentials for E™*
established in Section 6, using that E~ is an E™-module.

Asan E f—module, E is generated by the elements p}’rk and %h?. This arises
from the observation that the t torsion in Extc(1) is generated as an Extc(1)-
module by h? .

Proposition 7.7 gives the values of the p-Bockstein d; differential on these gen-
erators of E| . All other d differentials can then be deduced from the Leibniz rule
and the £ ;r—module structure.

All of the differentials in £~ are infinitely divisible by p, in the following sense.
When we claim that d, (x) = y, we also have differentials d,(%) = % forall j > 0.
For example, in Proposition 7.7, the formula dl( ) = Y hy implies that

Yy—Xx
pT T

14 Y .
dl(,(ﬂ'”‘[) = ,ofrzho for all j > 0.
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Proposition 7.7. Forall k > 0,
14 14
(1) d1<pfzk+1> - .[2k+2h0’
) d, (glﬁ> =X,
J) 2

These differentials are infinitely divisible by p.

Proof. We give three proofs for the first formula. First, it follows from

S 1 y _ y
q pr2kHl ) T ke

using the relationship between d; and the left and right units of the Hopf algebroid.
Second, we have

_ 2%+1 7Y k41 14 14 2%k
0=d <T pt2k+1> =T d1<pt2k+1) + pT2k+1pT ho

_2k+1 4 4
=T dl(pT2k+l) +?h0.

Third, we can use Proposition 5.2 to conclude that the infinitely p-divisible ele-
ments Tzlk’ﬁ cannot survive the p-Bockstein spectral sequence. The only possibility
is that they support a d; differential.

For the second formula, use the first formula to determine that d; (Z—Ta) = T”—zhoa.
Then use the relation of Lemma 7.6. Alternatively, this differential is also forced
by Proposition 5.2. ([

It is now straightforward to compute E, , since the p-Bockstein d; differential
is completely known. The charts in Section 12 depict E, graphically.

Next, Proposition 7.8 gives a p-Bockstein d; differential in E, . This is the
essential calculation, in the sense that the d, differential is zero on all other E; -
module generators of E, .

Proposition 7.8. dg(#) = —tazh for all k > 0. This differential is infinitely
divisible by p.

Proof. As for Proposition 7.7, we give three proofs. First, qu(#) = .
Second, we have

_ k2 Y _ _4k+2 Y 2 _dk+1 YV
O—dz(t p2.1:4k+2> =T d2(m) Tt p2r4k+2h1

__4k+2 14 Y
=1 d2<p2r4k+2>+1.h1'
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Third, use Proposition 5.2 to conclude that the infinitely p-divisible elements
T&ﬁ cannot survive the p-Bockstein spectral sequence. The only possibility is
that they support a d; differential. (]

At this point, the behavior of E~ becomes qualitatively different from E*. For
E™, there are nonzero d; differentials, and then the Ej-page equals the £ -page.

For E~, it turns out that the d, differential is nonzero for infinitely many values
of r. This does not present a convergence problem, because there are only finitely
many nonzero differentials in any given degree. One consequence is that the orders
of the p-torsion in Extc, (1) are unbounded. In other words, for every s, there exists
an element x of such that p*x is nonzero but p**x is zero for some ¢ > 0. This is
fundamentally different from Extg(1), where p3x is zero if x is not p-torsion free.

Proposition 7.9 makes explicit these higher differentials.

Proposition 7.9. Forall k > 1,

Q 4 k.
Q 14
2) it < P h4k+3> k2 ab’.

These differentials are infinitely divisible by p.

Proof. We know that % —x and b are permanent cycles. On the other hand, in Extc, (1)
the relation r4h4 = ,o4b gives

k 14
ﬁb ,0 4,4k

b =14

Thus T”ka is hy-divisible, which implies that it must be zero in Extc, (1), as there
is no surviving class in the appropriate degree to support the /-multiplication. The
only Bockstein differential that could hit ﬁbk is the claimed one.

For the second formula, the classes %a and b are permanent cycles, yet

4 k 4 Y pk— 4 Y

4rk—1
S abk=pt— L apk =L anth
T4k+2 oA t2 ott 24

in Extc, (1). But h1a =0, so %abk must be zero in Extc, (1), forcing the claimed
differential.
Alternatively, one can use Proposition 5.2 to obtain both differentials. U

Table 5 summarizes the Bockstein differentials that we computed in Sections 6
and 7B. The differentials above the horizontal line occur in E*, while the differ-
entials below the horizontal line occur in £~ and are infinitely divisible by p.

The p-Bockstein differentials of Sections 6 and 7 allow us to completely com-
pute the E-page of the p-Bockstein spectral sequence for Extc, (1).
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mw (s, f, w) element r d, proof
1 0,0, —1) T 1 pho Prop. 6.1
2 0,0, =2) 72 2 p’th;  Prop. 6.1
3 2,2, —-1) 3h? 3 pa Prop. 6.1
—2k—2 (1,0,2k+3) e 1 —f=ho  Prop. 7.7
0 (5,2,5) %h? 1 La Prop. 7.7
—4k—3 (2,0, 4k+5) i 2 —¥=hi Prop. 7.8

0 Bk+1,4k—1,8k+1D Hatt 4k Zpb Prop.79
0 (8k + 5, 4k 42, 8k + 5) ng h{ 4k+1 fsabk Prop. 7.9

Table 5. Bockstein differentials.

7C. p-Bockstein differentials in E~ for £2(1). For comparison, we also carry
out the analogous but easier computation over £2(1) rather than A2 (1). Besides
d; (#) = ¥ ho, the only other Bockstein differential is given in the following
result.

Proposition 7.10. d3(#) = —zzv1 for all k > 0. This differential is infinitely
divisible by p.

Proof. The differential d3(t%) = p>v| of Remark 6.3 gives
_ 42 Y __4k+2 4 34k Y
0=d; (T p3r4k+2> =1 s <p3r4k+2> +oT 32 U1

__4k+2 4 4
=T d3<m) +§v1. O

8. Some Massey products

The final step in the computation of Extc, (1) is to determine multiplicative exten-
sions that are hidden in the p-Bockstein E..-page. In order to do this, we will need
some Massey products in Extc,(1). Table 6 summarizes the information that we
will need.

Theorem 8.1. Some Massey products in Extc, (1) are given in Table 6. All have
zero indeterminacy.

Proof. For some Massey products in Table 6, a p-Bockstein differential is displayed
in the last column. In these cases, May’s convergence theorem [May 1969; Isaksen
2014, Chapter 2.2] applies, and the Massey product can be computed with the given
differential. Roughly speaking, May’s convergence theorem says that Massey prod-
ucts in Extc, (1) can be computed with any p-Bockstein differential. Beware that
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mw (s, f, w) bracket contains  proof
1 (1,1,0) (p, ho, h1) Th di(v) = pho
1 2,2,1) (ho, h1, ho) th% classical
2 (4,3,2) (thy-hy, hy, ho) a classical
2 (0,1,-2) (pthi, p.ho)  T?ho dy(t?) = p*th)
4 (8,5,4) (a hl,rhz) hob classical
—4 (0,0,4) (*ho, p. %) 5 di(73) = pt?hy
—4 (0,0,4) (ho. 0. &) % di(v) = pho
-3 (1,0,4) (0. &, thy) e dr(Fz) = L
-3 (0,0,3) (othi.p. &) & do(t%) = pth)
—2 (4,2,6) (5. hi.Thy - hy) p’z’—rh% dg(#):%hl
-2 (0,0,2) (tho. 0. &) L di (t?) = pt?hg
-2 (0,0,2) (ho. p. ) L di(t) = pho
-2 (2,1,4) (h1. ho, L) Zh di(£) = Lho
0 (4,2,4)+ (8k,4k,8k) (p, =, ab¥) /%h‘l”‘” daer1 ( 4k+1h4"+3)
= mabk
0 (8.3,8)+ (8k,4k,8k) (o, ==, D) pwh T dygea( 4k+4h4k+4)
— bk+1

= 4k+4

Table 6. Some Massey products in Extc, (1).

May’s Convergence Theorem requires technical hypotheses involving “crossing
differentials” that are not always satisfied. Failure to check these conditions can
lead to mistaken calculations.

The proofs for other Massey products in Table 6 are described as “classical”. In
these cases, the Massey product already occurs in Ext,. ([

Remark 8.2. The eight Massey products in the middle Section of Table 6 are
only the first examples of infinite families that are t*-periodic. For example,
(rzho, 0, %) equals rﬁfﬁ for all k > 0, and (,o, Jﬁ, ‘E/’l1> equals Tz&’ﬁ for all
k=>0.

9. Hidden extensions

We now determine multiplicative extensions that are hidden in the p-Bockstein E -
page. We have already determined some of these hidden extensions in Section 6. In
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this section, we establish additional hidden relations on elements associated with
the negative cone. We have not attempted a completely exhaustive analysis of the
ring structure of Extc, (1).

Recall that Extc, (1) is a square-zero extension of Extg(1). This eliminates many
possible hidden extensions. For example, (Qh7)? is zero in Extc, (1).

Proposition 9.1. Forall k > 0,
Q

(1) ho - p_h4k+3 T4)l</+1abk’
) a %hzltkﬁ 4k+1 L pobt,
Proof. (1) hg (,0, % abk> = (ho, 0, ﬁﬂzbk.
(2) Using part (1), we have that
hoa ﬁ —a. %abk _ r‘”‘“hz ket

which is nonzero. Therefore, a - Wh4k+3 must also be nonzero, and tﬁ,f“ hobk+!
is the only nonzero class in the appropriate tridegree. U

Proposition 9.2. Forall k > 1,

2 0 4k+3 _ Y k1 Q s+
(1) T it = pphob !+ i,
s Q ws . Q@ m
2 T 'Whl = e —waln b
3) 2hg - Qh4k+3 sa—
T

Proof. (1) Using Proposition 9.1(1), we have that

2 Q w3 oV ki
ho-t°a _,04kh1 =T“a —T4k+1ab =

which is nonzero. Hence t2a - p—%h‘l‘k” is either —i hob**!

0 h4k+2b

4k—3

On the other hand,

%h?k—F?) — ,0317 Q h4k+3 Q h4k+3b

h1 . ‘L'2a .
p4k 3

2 h4k+3

Therefore, t°a - o h4k+2b

must equal —¥—hob ! + 4k .

(2) Using Proposition 9.1(1), we have that

4 Q s34 k 4 k
ho-t p4kh1 =T 4k+1ab t4k—3ab
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which is nonzero. This shows that 74 - %h?kﬂ

one possible value.
2 4 K\ _[.2 Y k
3) T ho<,0, —ir3-ab >_(1: ho. p. T4k+2>ab . O

Proposition 9.3. Forall k > 0,

is also nonzero, and there is just

(D ho - p4g+3 héllkJr4 4k+3 e

2 hi- Io%!_”h?wﬂ ka-i—l
€) ho - p4g+3 = 4k+1 et
4) a- p4g+3 héllk+4 _ # h2 Pkt
5) 24 p4g+3 P = % B3,

Proof. (1) ho(p, . b)) = (ho. p. =) X
) pthi(p, F V) = (pthi, p, )b
() Tho(p, k. b = (T2ho, o, ) B4

(4) Using part (1), we have that

O spra Pl Yk

hoa - P T 4k+3 TH+3

h4k+4

which is nonzero. Therefore, a - p4k 3 must also be nonzero, and there is just

one possibility.

(5) Using part (1), we have that

2 Q k4 2 V k1 _ Y k+1

ho-t%a- p4k+3h =T a4 353 = T4k+1ab g
which is nonzero. This shows that t2a - p4k 3 h4k+4 is also nonzero, and there is
just one possible value. U

Proposition 9.4. Forall k > 0,
14 2 4

D ho - p2.[4k+1h1 = Jud
14 2 Y

2 a- D2t hy = 7443 hob,

3) 2a-—Y 2= Y _pop.

P2kt 1 THk+1
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Proof. (1) (. ki, thy - hi) ho = = (k. Thy - by, ho).
(2) Using part (1), we have that

14 2 14

hoa - ———hi=a-——a
o2kt 1 T4k+37

which equals Tj,ﬁh%b modulo a possible error term involving higher powers of p.
Using that #1a = 0, we conclude that the error term is zero.

(3) Using part (1), we have that

14 2 2 14 YV .2
ho-t?a-———h?>=1%a- ——a=——h2b
p2r k1 1 T4k43 T4k+17707
which is nonzero. This shows that t2a - #h% is also nonzero, and there is just

one possible value. ([

Proposition 9.5. For all k > 0,

(1) ho- —2

P .L-4k+1

14 14
@) ho- o2 = [Hk+2

2
hy,

hy =

hi.

Proof. All of these extensions follow from Massey product shuffles:

(1) ho (1, ho, =) = (ho, hi, ho) =

(2) ho(p,rz&’ﬁ,tm):(ho,p,m)rhl. O
Proposition 9.6. For all k > 0,

14 2 Y
(1) hl‘wfh = Jarre
y

2 hy - b.

a =
376" T Takt8

Proof. (1) thy - hi(h1, ho, =) = (Thi-hi, hi, ho) . Alternatively, this /)
extension is forced by Lemma 5.1.

(2) We have
14 _ Y 2 14 3, Y
h- P p3r4k+8h1 A= sl b= 0%
where the second equality follows from Table 2. U

Over £¢2(1), the only hidden multiplication is

Proposition 9.7. In Extgc,(yy, we have hg - pzt’;kﬂ v} = b vt forall k,n > 0.

14 14 14 14
Proof. hO'W=hO<,OaF,U1>=<hO,P,F)M =§Ul- g
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mw (s, f, w) element

0 (—1,0,—1) P
0 (0, 1, 0) ho
0 (1,1, 1) hy
1 (1, 1,0) Thy
2 0,1, =2) 2hy
2 4,3,2) a
4 0,0, —4) 4
4 4,3,0) T2a
4 (8,4, 4) b

—k—1 (0,0,k+1) L
0 4,2,4) Oh3

Table 7. Generators for Extc, (1).

9A. Extc,(1). The charts in Section 12 depict Extc, (1) graphically. Table 7 gives
generators for Extc,(1). The elements above the horizontal line are multiplicative
generators for Extg(1). The elements below the horizontal generate Extyc in the
following sense. Every element of Extnc can be formed by starting with one of
these listed elements, multiplying by elements of Extr(1), and then dividing by p.

The elements in Table 7 are not multiplicative generators for Extc, (1) in the
usual sense, because we allow for division by p. For example, p’z’—rh% is indecom-
posable in the usual sense, yet it does not appear in Table 7 because p>- %h% = %h%
is decomposable.

The point of this notational approach is that the elements of Extyc are most
easily understood as families of p-divisible elements.

9B. The ring homomorphism q, : Ext 4c, ;) — Extgc, q). Itis worthwhile to con-
sider the comparison to Extgc, ;). We already described the map on the summand
arising from the positive cone in Proposition 6.4. The map on the summand for
the negative cone is given as follows.

Proposition 9.8. The homomorphism g, : Ext 4z 1) (NC, M%) — Extgr;,(NC, M%)
induced by the quotient q : AR(1), — ER(1) of Hopf algebroids is given as in
Table 8.

Proof. For the classes of the form p};k, this is true on the cobar complex. For the

classes of the form %hr{, this follows from the A ¢-extension given in Proposition 9.1
and the value g, (a) = hovf. Similarly, the value on ﬁh% is obtained by combining
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mw (s, f,w) x € Extr(yNC  gyx € Exter() NC
(4,2,4)+k(8,4,4) p% e L bkt
(8,3,8)+k@®,4,4)  Lzh{H ikt

-2 (0,0,2) % %

-2 2,1,4) %hl %Ul

-2 (4,2,6) e 12

-3 (1,0,4) 2, 7,

-5 (0,0,5) b2 ¥

Table 8. The homomorphism Ext 4&(;)(NC) — Extgr ;) (NC).

Proposition 9.4 with the value of ¢g.(a). Lastly, the value on p%hl follows from
g«(thy) = pvy. O

Remark 9.9. Note that, on the other hand, the hidden hy-extensions on classes
in Ext AC2 (1) such as Qh3, can also be deduced from the homomorphism g, if its
values are determined by other means.

10. The spectrum koc,

Let Sp denoted the category of spectra, and let Sp? denote the category of “gen-
uine” Cy-spectra [May 1996, Chapter XII], obtained from the category of based
C»-spaces by inverting suspension with respect to the one-point compactification
§21 of the regular representation (C, z — Z). There are restriction and fixed-point
functors

* : Ho(Sp®?) — Ho(Sp), (=) : Ho(Sp©?) — Ho(Sp)

which detect the homotopy theory of C»-spectra, meaning that a map f in Ho(Sp©?)
is an equivalence if and only if (*(f) and f €2 are equivalences in Ho(Sp). More-
over, a sequence X — Y — Z is a cofiber sequence in Ho(Sp?) if and only
if applying both functors (* and (—)? yield cofiber sequences. Both statements
follow from the fact [Schwede and Shipley 2003, Example 3.4(i)] that the pair of
Cy-spectra (X s9, 28, Cy 4} give a compact generating set for Ho(Sp©?). Beware
that we are discussing categorical fixed-point spectra here, not geometric fixed-
point spectra.

Recall (see [Lewis 1995, Proposition 3.3]) that for a Cp-spectrum X, the equi-
variant connective cover X (0) 2L Xisa C,-spectrum such that:

(1) t(g) is the connective cover of the underlying spectrum X, and

2) qC2 is the connective cover of X¢2.
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Recall that KOc, is the C»-spectrum representing the K-theory of C,-equivariant
real vector bundles [May 1996, Chapter XIV].

Definition 10.1. Let koc, be the equivariant connective cover KO¢, (0) of KOc,.

We also have a description from the point of view of equivariant infinite loop
space theory.

Theorem 10.2 [Merling 2017, Theorem 7.1]. koc, >~ K¢, (R), where R is consid-
ered as a topological ring with trivial C-action.

The underlying spectrum of koc, is ko.
Lemma 10.3. The fixed-point spectrum of koc, is (koc,)¢? >~ ko V ko.

Proof. This is a specialization of the statement that, if X is any space equipped
with a trivial G-action, then KOg (X) is isomorphic to RO(G) @ KO(X) [May 1996,
Section XIV.2]. Alternatively, from the point of view of algebraic KK-theory, we
have [KCZ([R{)C2 ~ K(R[C3]) [Merling 2017, Theorem 1.2], and R[C;] =R x R. It
follows that

(koc,)? ~ K¢, (R)? ~ K(R) x K(R) ~ ko V ko. O

We are working towards a description of the C»-equivariant cohomology of koc,
as the quotient A2 // A2(1). This will allow us to express the E,-page of the
Adams spectral sequence for koc, in terms of the cohomology of .A“2(1). The main
step will be to establish the cofiber sequence of Proposition 10.13. In preparation,
we first prove some auxiliary results.

Definition 10.4. Let p be the element of 7_; _; determined by the inclusion $%0 <
S11 of fixed points.

Note that the element p € 7_; _; induces multiplication by p in cohomology
under the Hurewicz homomorphism.

Recall that the real C,-representation ring RO(C») is a rank two free abelian
group. Generators are given by the trivial one-dimensional representation 1 and
the sign representation o. Let A(C;) denote the Burnside ring of C,, defined as
the Grothendieck group associated to the monoid of finite C,-sets. This is also a
rank two free abelian group, with generators the trivial one-point C,-set 1 and the
free Cp-set Cy. As aring, A(C») is isomorphic to Z[Cz]/(C% —2C»).

The linearization map A(C,) — RO(C,) sending a C,-set to the induced per-
mutation representation is an isomorphism, sending the free orbit C; to the regular
representation 1 @ o. Recall that the Euler characteristic moreover gives an iso-
morphism from A(C3) to 70(5%0) [Segal 1971, Corollary to Proposition 1].

Lemma 10.5. The C,-fixed point spectrum of X'"'koc, is equivalent to ko.
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Proof. Recall the cofiber sequence C; L §0.0 L gLl of C>-spaces. This yields
a cofiber sequence

7 p
Cs 4 Akoc, = koe, = Z!1koc,

of equivariant spectra. Passing to fixed point spectra gives the cofiber sequence

C C
ko 25 ko v ko 2 (2! koe,) €.

In the analogous sequence for the sphere S*°, the map 72 is induced by the split
inclusion Z — A(C») sending 1 to the free orbit C,. It follows that the map 7 is
induced by the split inclusion Z — RO(C>) that takes 1 to the regular representation
pc,» and this induces a splitting of the cofiber sequence. Therefore, (X' 'koc,)©?
is equivalent to ko. U

Recall that kR denotes the equivariant connective cover KR(0) of Atiyah’s K-
theory “with reality” spectrum KR [Atiyah 1966]. The latter theory classifies com-
plex vector bundles equipped with a conjugate-linear action of C,. The underlying
spectrum of kR is ku, and its fixed-point spectrum is ko.

Theorem 10.6 [Merling 2017, Theorem 7.2]. kR >~ K¢, (C), where C is considered
as a topological ring with Cy-action given by complex conjugation.
Definition 10.7. The C,-equivariant Hopf map 7 is
C*— {0} > CP": (x,y) > [x : y],
where both source and target are given the complex conjugation action.

As C = R[C,], the punctured representation C> — {0} is homotopy equivalent
to $*2, and CP! is homeomorphic to S>!. It follows that 7 gives rise to a stable
homotopy class in 7y ;.

Remark 10.8. The element 1 only defines a specific element of 1 ; after choosing
isomorphisms C? — {0} = §%2 and CP' = 52! in the homotopy category. We follow
the choices of [Dugger and Isaksen 2013, Example 2.12]. By Proposition C.5 of
[Dugger and Isaksen 2013], with these choices, the induced map n<2 : §' — S! on
fixed points is a map of degree —2.

Lemma 10.9. The element pn in g0 corresponds to the element Cy —2 of A(C»).

Proof. In g 9, we have (r],o)2 = —2np [Morel 2004, Lemma 6.1.2]. The nonzero
solutions to x2 = —2x in A(C,) are x = —2, x = C> — 2, and x = —C5. The only
such solution which restricts to zero at the trivial subgroup is x = C, — 2. (]

Lemma 10.10. The induced map ncz : (Zl’lkocz)c2 — (kocz)c2 is equivalent to

ko =L ko v ko.
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Proof. To determine the fixed map 12, we use that a map X LY of C,-spectra
induces a commutative diagram

¢
X6 L y©

|

X¢——7Y°
(pe
in which the vertical maps are the inclusions of fixed points. In the case of  on
koc,, this gives the diagram

C:
ko ~ (" koe,)? s ko v ko =~ (koe,):

0| v

> ko ko

*

tn

where V is the fold map, as both the sign representation o and the trivial repre-
sentation 1 of C; restrict to the 1-dimensional trivial representation of the trivial
group. This shows that 72 factors through the fiber of V, so that 2 must be of
the form (k, —k) for some integer k. On the other hand, we have the commutative
diagram

ko ® RO(C>) ko ko ® RO(C»)

T

(koc,)? —2— (2 11koe, )2 ——— (kog,)©2

P

(SO,O)CZ 4 (Sl,l)Cz n (SO,O)CZ

According to Lemma 10.9, on the sphere np induces multiplication by (C, — 2)
under the isomorphism g o = A(C3). The outer vertical compositions induce the
linearization isomorphism A(C;) = RO(C3) on my. It follows that the top row
induces multiplication by (o — 1) on homotopy. We conclude that n2 is (—1, 1).

O

Definition 10.11. The complexification map KO¢, > KR assigns to an equivariant
real bundle E — X the associated bundle C ® g E — X, where C; acts on C via
complex conjugation. We denote by koc, <> kR the associated map on connective
covers.

Remark 10.12. Alternatively, from the point of view algebraic [K-theory, the com-
plexification map can be described as K¢, (1), where R - C is the inclusion of
C»-equivariant topological rings.
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Proposition 10.13. The Hopf map n induces a cofiber sequence
= koe, - kog, — kR. (10-1)
Proof. On underlying spectra, this is the classical cofiber sequence

Yko - ko — ku.

On fixed points, according to Lemma 10.5 the sequence (10-1) induces a sequence

nC2 )
ko — ko v ko — ko.

By Lemma 10.10, the map 12 is of the form (—1, 1). For any real C,-representation
V, the construction C ®g V only depends on the dimension of V, which implies
that €2 is the fold map. So the fixed points sequence is also a cofiber sequence. [

Remark 10.14. From the point of view of spectral Mackey functors [Guillou and
May 2011; Barwick 2017], the cofiber sequence (10-1) is the cofiber sequence of

Mackey functors

(1,-1) v
ko ——— kov ko —— ko

o P ol )e <L)

5! ko —— ko —— ku
) @) )
sign triv conj

where ku > ko considers a rank n complex bundle as a rank 2z real bundle.

Theorem 10.15. The C,-equivariant cohomology of koc,, as a module over A,
is

HEF (kog,: Fa) = AT/ A (1),

Proof. According to [Ricka 2015, Corollary 6.19], we have H," (kR) = A//£€(1).
Since 1 induces the trivial map on equivariant cohomology, the sequence (10-1)
induces a short exact sequence

0— HE 2 (koey) = A//EC (1) B HE (koe,) — 0 (10-2)

of A®2-modules.
The cofiber C is a 2-cell complex that supports a Sq” in cohomology. It follows
that the composition

kR ~ koc, A C(n) = T%'koc, — =%koe, A C(n)
induces the map

ACeC2 (1) B AC/EC (1) 1 > S,
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In particular, the composition A — AC2//£C2(1) EN H_" (koc,) factors through
ACZ// A€2(1). Given the right £ €2(1)-module decomposition

A =M e x>'e@),

it follows that the sequence (10-2) sits in a diagram

0 —— HE P (kog,) —— A%//EC(1) —— HE(koc,) — 0

J | T

0 —— S2A A1) —— ACY (1) —— AY/AC(1) —— 0
The outer two maps agree up to suspension, so they are both isomorphisms. [

Corollary 10.16. The E,-page of the Adams spectral sequence for koc, is
E» = Ext 4o, (HE, (koc,), MS?) = Extc, (1).

Proof. This is a standard change of rings isomorphism [Ravenel 1986, Theo-
rem A1.3.12], using that Héz* (koc,) is isomorphic to A2/ A°2(1). Note that the
change of rings theorem applies by [Ricka 2015, Corollary 6.15]. U

Remark 10.17. Working in the 2-complete category, it is also possible to build
koc, using the “Tate diagram” approach. See, for example, [Greenlees 2018] for
a nice description of this approach. According to this approach, one specifies a
C»-spectrum X by giving three pieces of data:

(1) an underlying spectrum X°¢ with C,-action,
(2) a geometric fixed points spectrum X¢2, and

(3) amap X2 — (X¢)'“2 from the geometric fixed points to the Tate construc-
tion.

In our case, the underlying spectrum is ko with trivial C-action. The rest of the
Tate diagram information is given by the following result.

Proposition 10.18. The geometric fixed points of koc, is \/kZO s%H7,, and the
map (koc,)8 C2 5 ko2 is the connective cover.

Proof. The Tate construction ko’? was computed by Davis and Mahowald [1984,

Theorem 1.4] to be \/,, ez S H Zz. For the interpretation of the Davis—Mahowald

calculation in terms of the Tate construction, see [May 1996, Section XXI.3].
The geometric fixed points sit in a cofiber sequence

ko ARPY >~ koyc, — (koc,)©> — (koc,)*<,
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which we can write as
ko V (ko A RP®) — ko v ko — (koc,)*“2.

The left map is a map of ko-modules, and we consider the simpler cofiber sequence

ko A RP® X% ko — (koc, )52,
where 7 : RP® — S0 is the Kahn-Priddy transfer. As in [Ravenel 1986, Section 1.5],
we write R for the cofiber of ¢, so that (koc, )8 €2 ~ koA R. As Adams explained in
[Adams 1974], the cohomology of R has a filtration as A (1)-modules in which
the associated graded object is D, S A1) //.A(0). Tt follows that ko A R ~
Va0 S*HZ,. -
S_imilarly, the associated graded for colim, H*(XRP%)) is

@ E4kAC1(1)//AC1(O).

keZ

The map R — holim, XRP%, is surjective on cohomology, and the same is true
for the induced map R A ko — holim, (RP%, A ko). We conclude that the map

\/ =% HZ, ~ (koc,)*? — ko' ~ holim(RP%, A Tko)
k>0

is a split inclusion in homotopy and therefore a connective cover. (]

Remark 10.19. Note that the description of geometric fixed points given here is
confirmed by Corollary 4.2. That is, the geometric fixed points of a C,-spectrum
X are given by the categorical fixed points of §°°°° A X, where

) o
§°9%® = colim(§™" & s+l

Thus the geometric fixed points are computed by the p-inverted Adams spectral
sequence. As we recall in the next section, the homotopy element 2 is detected by
the element iy + ph; in Ext. Thus the element pkh’ft‘” of Corollary 4.2 detects
2% in the 4 j-stem of the geometric fixed points.

11. The homotopy ring

In this section, we will describe the bigraded homotopy ring 7. .(koc,) of koc,.
We are implicitly completing the homotopy groups at 2 so that the Adams spectral
sequence converges [Hu and Kriz 2001, Corollary 6.47].

It turns out that the Adams spectral sequence collapses, so that Extc, (1) is an
associated graded object of 7, «(koc,). Nevertheless, the Adams spectral sequence
hides much of the multiplicative structure.
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Recall that the Milnor—Witt stem of X is defined (see [Dugger and Isaksen
2017a]) as the direct sum

M, (X) = @ 7n i (X).

Proposition 11.1. There are no nonzero differentials in the Adams spectral se-
quence for koc,.

Proof. This follows by inspection of the E;-page, shown in the charts in Section 12.

Adams d, differentials decrease the stem by 1, increase the filtration by r, and
preserve the weight. It follows that Adams differentials decrease the Milnor—Witt
stem by 1. Every class in Milnor—Witt stem congruent to 3 modulo 4 is infinitely
p-divisible. As there are no infinitely p-divisible classes in Milnor—Witt stem con-
gruent to 2 modulo 4, it follows that there are no nonzero differentials supported
in the Milnor-Witt (4k+3)-stem.

Every class in Milnor-Witt stem 4k supports an infinite tower of either /¢-
multiples or &;-multiples, while there are no such towers in Milnor-Witt stem
4k + 1. It follows that there cannot be any nonzero differentials emanating from
the (4k+1)-Milnor—Witt-stem. Finally, direct inspection shows there cannot be
any nonzero differentials starting in the Milnor—Witt (4k + 2) or 4k-stems. [l

The structure of the Milnor—Witt n-stem IT,, (koc,) of course depends on n. The
description of these Milnor—Witt stems naturally breaks into cases, depending on
the value of n (mod 4).

The notation that we will use for specific elements of 7, «(koc,) is summarized
in Table 9. The definition of each element is discussed in detail in the following
sections.

11A. The Milnor-Witt 0-stem. Our first task is to describe the Milnor—Witt 0-
stem ITg(koc,). The other Milnor—Witt stems are modules over I1g(koc,), and we
will use this module structure heavily in order to understand them.

Proposition 11.2. Let X be a Cy-equivariant spectrum, and let o belong to mw, i (X).
The element « is divisible by p if and only if its underlying class t*(«) in 7, (1* X)
is zero.

Proof. The C,-equivariant cofiber sequence
Cr . — SO0 L gil
induces a long exact sequence
P * P
o= T k1 (X) = 0 1 (X) = 70 (X)) = g k11(X) = -0 U

Corollary 11.3. There is a hidden p extension from Qh? to h? in the Adams spec-
tral sequence.
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muw (s, w) element detected by defining relation

0 -L,=D »p P

0 1, 1) n hy

0 “4,4) o Qh? pa =1’

0 0,0) ) ho w=np+2

4 0, —4) T r

0 88 B 2 4B = o

2 0, —=2) ’w t2hg (*w)? =2w-t*
-2 0,2) 2w z ™ 2w =1%w
—4 (0, 4) e & =0
—5—4k (0,54+4k) =% == ™ L = ey

1 (1,0) ™ Tthy

2 4,2) 0 a 2t%a =10

Table 9. Notation for 7, .(koc,).

Proof. Recall that 1> is zero in 13 (ko). Proposition 11.2 implies that 7 in m3.3(koc,)
is divisible by p. The only possibility is that there is a hidden extension from Qh?
to hf. U

Proposition 11.4. The element n in 7y 1(koc,) is detected by h.

Proof. The restriction ¢*(n) of n is the classical n, which is detected by the classical
element /. As all other elements of Ext 4c, ;) in the 1-stem and weight 1 all live
in higher filtration, the result follows. U

Definition 11.5. Let o be an element in 74 4(koc,) detected by Qh? such that
pa =n’.

Corollary 11.3 guarantees that such an element « exists.

There are many elements of w4 4 detected by th because of the presence of
elements in higher Adams filtration. The condition pa = n* narrows the possibil-
ities, but still does not determine a unique element because of the elements %h’éa
in higher Adams filtration. For our purposes, this remaining choice makes no
difference.

Definition 11.6. Let w be the element no + 2 of Jr(f okoc,).

As for p and 7, the element w comes from the homotopy groups of the equivari-
ant sphere spectrum. Strictly speaking, there is no need for the notation w since it
can be written in terms of other elements. Nevertheless, it is convenient because w
plays a central role. According to Lemma 10.9, w corresponds to the element C»
of the Burnside ring A(C»).
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Note that w is detected by hg, while 2 is detected by kg + ph;. For this reason,
w, rather than 2, plays the role of the zeroth Hopf map in the equivariant (and
R-motivic) context. Also note that w equals 1 — €, where € is the twist

Sl,]/\Sl,l —)Sl’l/\Sl’l

Proposition 11.7. The homotopy class 0> is divisible by 2.

Proof. The relation wn = 0 was established by Morel [2004] in the R-motivic stable
stems, and the equivariant stems agree with the R-motivic ones in the relevant
degrees [Dugger and Isaksen 2017b, Theorem 4.1]. (See also [Dugger and Isaksen
2013] for a geometric argument for this relation given in the motivic context. This
geometric argument works just as well equivariantly.)

Using the defining relation for «, it follows that

—2na = pnla =1n°. U

Proposition 11.7 was already known to be true in the homotopy of the C;-
equivariant sphere spectrum [Bredon 1968]. The divisibility of the elements n*
is very much related to work of Landweber [1969].

Definition 11.8. Let t* be an element of mo,—4(koc,) that is detected by 4

The element t# is not uniquely determined because of elements in higher Adams
filtration. For our purposes, we may choose an arbitrary such element.
Proposition 11.9. (1) There is a hidden t* extension from Qh? to t2a.

(2) There is a hidden t* extension from p—%h‘f to b.

Proof. (1) The product pa - T equals t* - n°, which is detected by t* - h%. This
last expression equals p - 72a in Ext.
(2) Part (1) implies that there is a hidden t* extension from Qh‘l1 to p>b, since

hy - t%a equals p3b in Ext. This means that there is a hidden t* extension from
p—%h‘f to b, since p° - p—%h‘f equals Qh‘lt in Ext. [l

Lemma 11.10. The class o in ng.s(koc,) is divisible by 4.

Proof. By Proposition 11.9, the multiplication map
t*: mg g(koc,) = mga(koc,)

is an isomorphism. By considering the effect of multiplication by t* in Ext, we
see that

4. =
7" : g 4(koc,) — mg o(koc,)

is also an isomorphism. Thus it suffices to show that (tH)2a? is 4-divisible in
mg.0(koc,). But (%)% - @? is detected by (z2a)? by Proposition 11.9 (1), which

equals (ho + ph1)?t*b in Ext. Finally, observe that /g 4 ph| detects 2. O
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Definition 11 11. Let B be the element of g g(koc,) detected by 149 h4 and satis-
fying 48 = o?

Note that 8 is uniquely determined by «, even though there are elements of
higher Adams filtration, because there is no 2-torsion in g g(koc, ).

Proposition 11.12. p3p = na.
Proof. The defining relation for A implies that 4p38 equals p>«a?, which equals

23 by the defining relation for . Using the relation (170 4 2)n = 0, this element
equals 4noa. Finally, there is no 2-torsion in 75 5(koc,). O

Proposition 11.13. The (2-completed) Milnor—Witt O-stem of koc, is

My(koc,) = Za[n, p, a, B1/(p(np +2), n(np +2), po — 1, p° B — net, a* — 4p),

where the generators have degrees (1, 1), (—1, —1), (4, 4) and (8, 8) respectively.
These homotopy classes are detected by hy, p, Qh3, and in the Adams spectral
sequence.

Proof. The relations p(np +2) and n(np + 2) are already true in the sphere [Morel
2004; Dugger and Isaksen 2013]. The third and fifth relations are part of the
definitions of « and S, while the fourth relation is Proposition 11.12.

It remains to show that ¥ is detected by 3 lh‘”‘ and that of¥ is detected by
h4k+4

4k—1
We assume for induction on k that g is detected by p4k 1h‘”‘ We have the

relation ho = lh‘”‘ = - Y . b* in Ext, so wpk is detected by 3= lbk in Ext. Now b
detects *- B by Proposmon 11.9 (2), so wpkt! is detected by i Y M1 Finally,
— -b*F1 equals 4 s b1 in Ext, which equals 74 - hg - p4k g h4k+4

We have now shown that 7 - i - 4%3 h?k+4 detects 74 - wﬁk+1. It follows that
p4k R detects R

A similar argument handles the case of . (]

p

11B. t*-periodicity. Before analyzing the other Milnor-Witt stems of koc,, we
will explore a piece of the global structure involving the element 74 of 1o, -4(koc,).

Proposition 11.14. There are hidden t* extensions
(1) from to tzho,

(2) from —h2 to a,

3) from to hy,

4 from 5 to Thy.

Proof. (1) Recall that % -a equals hg - Qh? in Ext, so the hidden t* extension on

Qh? from Proposition 11.9(1) implies that there is a hidden 7# extension from % -a

to 2hoa. It follows that there is a hidden t* extension from % to 72hy.
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(2) Using that h% -1%hg equals p’a in Ext, part (1) implies that there is a hidden
t# extension from %h% to p2a.

(3) Recall that % -b equals hyg - p—%h‘l‘ in Ext, so the hidden t# extension on p—%h‘f
from Proposition 11.9(2) implies that there is a hidden t* extension from % -bto
hob. Tt follows that there is a hidden 7# extension from % to hyg.
(4) Using that pa equals /1(thy)? in Ext, part (2) implies that there is a hidden t*
extension from p”—rh% to hy(th;)?. Now ;—rh% equals #hl -Thy, so there is also a
hidden t* extension on #. O
The homotopy of ko, is nearly t*-periodic, in the following sense.
Theorem 11.15. Multiplication by t* gives a homomorphism on Milnor—Witt stems
I, (koc,) = I,4a(koc,)

which is

(1) injective if n = —4,

(2) surjective (and zero) if n = —35,

(3) bijective in all other cases.

Proof. (1) This is already true in Ext, except in the O-stem. But the O-stem is
handled by Proposition 11.14(3).

(2) There is nothing to prove here, given that I1_; (koc,) = 0.
(3) We give arguments depending on the residue of n modulo 4.

e n=0 (mod 4): If n < —4, this is already true in Ext. For n > 0, this follows
from the relation pa = 1> and the hidden t# extensions on « and 8 given in
Proposition 11.9.

e n =1 (mod4): For n < —3, this is already true in Ext. For n > —3, this
follows from Proposition 11.14(4).

e n =2 (mod4): For n < —2, this is already true in Ext. For n > —2, this
follows from Proposition 11.14(1) and (2).

e n =3 (mod 4): This is already true in Ext. ([l

Remark 11.16. Another way to view the t*-periodicity is via the Tate diagram
(Proposition 10.18). We have a cofiber sequence

ECy, ANko — koc, = §°%° Akog,.

The homotopy orbit spectrum therefore captures the p-torsion. If x € m, .koc, is
p-torsion, then so is 7#-x. But multiplication by * is an equivalence on underlying
spectra and therefore gives an equivalence on homotopy orbits. This implies the
t*-periodicity in the p-torsion.
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11C. The Milnor-Witt n-stem with n =0 (mod 4). Theorem 11.15 indicates that
t* multiplications are useful in describing the structure of the homotopy groups of
koc,. Therefore, our next task is to build on our understanding of ITy(koc,) and to
describe the subring EBkeZ 4 (koc,) of m, .koc,.

The Ext charts indicate that the behavior of these groups differs for £ > 0 and
for k < 0.

Proposition 11.17. EBkzO 4 (koc,) is isomorphic to Ho(kocz)[t4].
Proof. This follows immediately from Theorem 11.15. (]

Definition 11.18. Define 72w to be an element in 7o _2(koc,) that is detected by
72hy such that (12w)? = 2w - 74

An equivalent way to specify a choice of 72w is to require that the underlying
map ¢*(t%w) equals 2 in (ko).

Definition 11.19. For k > 1, let z be an element of g 4 detected by - such
that

26(),

(1 -
) -

3) -

w,

";h ”‘mh = Iﬁ

=%whenk25.

According to Theorem 11.15, the elements 1; are uniquely determmed by the
stated conditions. Proposition 11.14 (1) and (3) allow us to choose L= ~ and ; with
the desired properties. As suggested by the defining relations for these elements,

—2—4k r —4—4k r
o for 7 and © o for .

we will often write T

Proposition 11.20. As a g (kocz)[f“]—madule, EBkeZ [4x (koc,) is isomorphic to
the mo(koc,)[t*]-module generated by 1 and the elements t=**w for k > 0, sub-
Jject to the relations

(1) gy = g,
) o 4%y =0,
3) n- e =0,
4 e =ow.

Proof. This follows by inspection of the Ext charts, together with the defining
relations for T ~4* . (]

11D. The Milnor-Witt n-stem with n = 1 (mod 4).

Definition 11.21. Denote by 77 an element of 71 o(koc,) that is detected by th;.
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Note that t7 is not uniquely determined because of elements in higher Adams
filtration, but the choice makes no practical difference. One way to specify a choice
of 71 is to use the composition

sho _, 0.0 koc,,

where the first map is the image of the classical Hopf map 1 : S' — S, and the
second map is the unit.

Proposition 11.22. Asa Ho(kocz)[t4]-m0dule, there is an isomorphism

D M1 ak (koe,) = (Mo(koe,)[(xH /2, p*. 0. o)) {Tn}.

keZ
Proof. This follows from inspection of the Ext charts, together with Theorem 11.15.

O

11E. The Milnor-Witt n-stem with n =2 (mod 4). Recall from Definition 11.18
that 72w is an element of 1o, —2(koc,) that is detected by 72hy.
Lemma 11.23. The product o - 2w in 14,2(koc,) is detected by hoa.
Proof. The product t# - « - 72w is detected by 7*hga by Proposition 11.9(1). [

Definition 11.24. Define 72« to be an element of m4,2(koc,) that is detected by a

such that 2 - %« equals « - T2w.

Proposition 11.25. As a Ho(kocz)[r4]—m0dule, Dz Moyar(koc,) is isomorphic
to the free Ho(kocz)[(r4)il]-module generated by 2w, (tn)?, and T, subject to
the relations

(D 0-T2w=0,
) o -TPw=2 7,
3) p(tn)’ =n-T’o,
(4) 2(tn)* =0,
(5) n(tn)’=p- e,
(6) oz(rn)2 =0,
(7 n-t2a =0,
(8) o-Tla=2B 1w

Proof. Except for the last relation, this follows from inspection of the Ext charts,
together with Theorem 11.15.

For the last relation, use that 2« - 7%« equals 72w - @? by the definition of 72,
and that 72w - «® equals 48 - 72w by the defining relation for B. As there is no
2-torsion in this degree, relation (8) follows. O
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11F. The Milnor-Witt n-stem with n = 3 (mod 4). The structure of

D Marss(koc,)
keZ
is qualitatively different than the other cases because it contains elements that are
infinitely divisible by p. The Ext charts show that B, _, IT4x+3(koc,) is concen-
trated in the range k < —2.
The elements 1 are infinitely divisible by both p and t*. We write —— for
T . plt
an element such that p/ - —— equals 1.
plt T
By inspection of the Ext charts, we see that &P, <0 Mak—s (koc,) is generated as
an abelian group by the elements ﬁ. The Ho(kocz)[r4]—module structure on
D, <0 Mak—s (koc,) is then governed by the orders of these elements, together with

the relations

o r =-8 r
T4k bk

and ; r ~ r
T4k oS4

The first relation follows from the calculation
r r 3 ; b T r
o =ee = o =00 e = m = S

The second relation follows from a similar argument, using that 03B = na.

Proposition 11.26. The order of T4£ < IS 20D+ ywhere @(j) is the number of
positive integers 0 < i < j such thati =0, 1,2 or 4 (mod 8).

Proof. Since ho+ ph; detects the element 2, the result is represented by the chart on
page 625, in stems zero to sixteen. As the top edge of the region is (8, 4)-periodic,
this gives the result in higher stems as well. ([

Remark 11.27. Proposition 11.26 is an independent verification of a well-known
calculation. We follow the argument given in [Dugger 2005, Appendix B].
Let R?9 be the antipodal C;-representation on R?. Consider the cofiber se-
quence
S(g.q) — D(q.q) — S,

where S(q,q) C D(q,q) C R?9 are the unit sphere and unit disk respectively.
Since D(q, q) is equivariantly contractible, this gives the exact sequence

Tm0(koc,) < Tmtq.q(koc,) < koo 0(S(q. ¢)) < mms1.0(koc,).

If m < —2, the outer groups vanish. Moreover, C, acts freely on S(g, ¢), and the
orbit space is S(g, g)/C> = RP4~!. It follows [May 1996, Section XIV.1] that

ko~ '(S(g. ¢)) =ko ™" (RPI)
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when m < —2 and ¢ > 1. In particular,

7 j+s(koc,) = ko (RP/HH),
and the latter groups are known (see [Davis and Mahowald 1979, Section 2]) to be
cyclic of order ¢(j).

Having described all of the Milnor—Witt stems as Ho(kocz)[t4]—modules, it re-
mains only to understand products of the various Ho(kocz)[r4]—m0dule generators.

Proposition 11.28. In the homotopy groups of koc,, we have the relations

(D (rza))2 =2w- 14,
() 0w tPa =1 wa,
(3) (T20)? =21* - wB.

Proof. The first relation is part of the definition of 72w.
For the second relation, use the definitions of 72« and of 72w to see that

2

27w tPa = (rza))za =27* wa.

The group m4 ¢(koc,) has no 2-torsion, so it follows that ?w - T« equals 74 - wa.
The proof of the third relation is similar. Use the definitions of 72« and 8 and
part (2) to see that

2(1205)2 =0 -tPa-a=1* wa® =47*. wp.
The group mg 4(koc,) has no 2-torsion. O

11G. The homotopy ring of kR. We may similarly describe the homotopy of kR.
Since this has already appeared in the literature (see [Greenlees and Meier 2017,
Section 11]), we do not give complete details.

We use the forgetful exact sequence of Proposition 11.2 to define the homotopy
classes listed in Table 10. In each case, the forgetful map is injective, and we
stipulate that 74 restricts to 1, that v; and t—%v; restrict to the Bott element, and
that 72w, 2w, and T~*w all restrict to 2.

Proposition 11.29. There are t*-extensions

™o w=170, ™ 1tw=2 1t 4v1 =vj.
Proof. These all follow from the definition of these classes using the forgetful exact
sequence of Proposition 11.2. Since the forgetful map is a ring homomorphism,
we get that
Kt ot lw) =@ T w) =12 =2,

Since the forgetful map is injective in this degree, we conclude that T#- 772w = r°w.

The same argument handles the other relations just as well. (]
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In order to describe the Milnor—Witt O-stem of kR, it is convenient to write

2,2 _ 4 3
a=t “wvjand B =1 v V7.

Proposition 11.30. The (2-completed) Milnor-Witt O-stem of kR is
Mo(kR) = Zs[p, @, B1/2p, pat, p*B, o — 4B),
where the generators have degrees (—1, —1), (4,4), and (8, 8) respectively. These

Y
0212

homotopy classes are detected by p, %v%, and vf in the Adams spectral se-

quence.

The other Milnor—Witt stems, aside from those in degree —5 — 4k, can all be
described cleanly as ideals in IT1o(kR). The r4-periodicities asserted in the follow-
ing results all hold already on the level of Ext, except for the t#-multiplications
from Extnc to Extg(1y. Those are handled by Proposition 11.29. We recommend
the reader to consult the diagram on page 630 in order to visualize the following
results.

4

Proposition 11.31. The map T1_4(kR) SN [Ty (kR) is a monomorphism and identi-
fies T1_4(kR) with the ideal generated by 2, ., and B. If k #= —1, then multiplication
by isan isomorphism Ty, (kR) = I4g+1) (kR).

Thus the Milnor—Witt stems of degree 4k break up into two families, which are
displayed as the first two rows of the diagram on page 630.

Proposition 11.32. The map T1_; (kR) N [Ty(kR) is a monomorphism and iden-
tifies T1_ (kR) with the ideal generated by o and B. Multiplication by t is a split
epimorphism

Falp]

P>

4
— TM_s5(kR) = T1_;(kR).

If k # —1, then multiplication by T is an isomorphism T1_j 4 (kR) = T34 (kR).

Proposition 11.33. The map T1_,(kR) 2 1(kR) is an isomorphism. Multipli-
cation by ™ isan isomorphism Tla;_2(kR) = Tyg 42 (kR) for all k € Z.
3

Proposition 11.34. The map T1_3(kR) 4, [Ty (kR) is a monomorphism and identi-
fies T1_3(kR) with the ideal generated by B. Multiplication by t* is an isomorphism
Myg—3(kR) = Typ41 kR) forall k € 7.

Combining the information from Table 3 and Table 8 yields the induced homo-
morphism on homotopy groups as described in Table 11. Note that all values c,(x)
are to be interpreted as correct modulo higher powers of 2.

Remark 11.35. Note that the results of this section provide another means of
demonstrating the 7#-periodicity in ko, established in Section 11B. More specif-
ically, the T*-extensions given in Proposition 11.29, together with the homomor-
phism c, as described in Table 11, imply the t*-extensions given in Proposition 11.14.
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mw (s, w) element detected by definition

0 (-1,=-D p P

1 2,1 V1 V1 (V1) =1y

4 (0,-4) * r FrhH =1

2 (0,-2) 70  T?hg H(t2w) =2
-2 (0,2) T L Kt w) =2
—4 (0,4 e & F(r ) =2
=3 25 Tt 5 F(rh) =
-5 (0,5 & 5

T

~

Table 10. Notation for 7, . (kR).

mw (s, w) x € My x(koc,) cux € my 4 (kR)

0 (=1,-1) p o

0 (1,1 n 0

0 4,4 o 12w v?

0 (0,0) w 2

4 (0,-4) <* 4

0 (8,8) ™% vl3

2 (0,-2) 7w ’w

-2 (0,2) 2w 2w

-4 (0,4) % ™%w

=5 (J.J+5) 5 e

1 (1,0) ™ oV
“4,2) Ta 20}

Table 11. The homomorphism 7, «(koc,) & 74« (kR), modulo
higher powers of 2.

12. Charts

12A. Bockstein E* and Ext 4rq charts. The charts on pages 616-619 depict
the Bockstein E* spectral sequence that converges to Ext 4r(j). The details of this
calculation are described in Section 6.

The E;’ -page is too complicated to present conveniently in one chart, so this
page is separated into two parts by Milnor—Witt stem modulo 2. Similarly, the E;r -
page is separated into four parts by Milnor—Witt stem modulo 4. The Ej-page in
Milnor—Witt stems O or 1 modulo 4 is not shown, since it is identical to the E;r -
page in those Milnor—Witt stems. The Ej—page in Milnor—Witt stems 3 modulo 4
is not shown because it is zero.
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Here is a key for reading the Bockstein charts:
(1) Gray dots and green dots indicate groups as displayed on the charts.
(2) Horizontal lines indicate multiplications by p.
(3) Vertical lines indicate multiplications by hq.
(4) Diagonal lines indicate multiplications by /.
(5) Horizontal arrows indicate infinite sequences of multiplications by p.
(6) Vertical arrows indicate infinite sequences of multiplications by hy.
(7) Diagonal arrows indicate infinite sequences of multiplications by /.
Here is a key for the charts of Ext 4z jy:
(1) Gray dots indicate copies of F»[t*] that arise from a copy of Fo[t*] in the
EJ -page.
(2) Green dots indicate copies of F2[t*] that arise from a copy of [, and a copy
of F»[7#] in the EZ -page, connected by a t# extension that is hidden in the

Bockstein spectral sequence. For example, the green dot at (3, 3) arises from
a hidden 7# extension from h? to p - T2a.

(3) Blue dots indicate copies of F,[t*] that arise from two copies of [, and one
copy of F»[t*] in the EJ -page, connected by t* extensions that are hidden
in the Bockstein spectral sequence. For example, the blue dot at (7, 7) arises
from hidden t* extensions from hZ to p4h?b, and from ,04h‘;b to p° - t2a - b.

(4) Horizontal lines indicate multiplications by p.
(5) Vertical lines indicate multiplications by hg.
(6) Diagonal lines indicate multiplications by /.

(7) Dashed lines indicate extensions that are hidden in the Bockstein spectral
sequence.

(8) Orange horizontal lines indicate p multiplications that equal t* times a gen-
erator. For example, p - 72a equals t# - h?.

(9) Horizontal arrows indicate infinite sequences of multiplications by p.
(10) Vertical arrows indicate infinite sequences of multiplications by Aq.
(11) Diagonal arrows indicate infinite sequences of multiplications by 4.
12B. Bockstein E~ and Extxc charts for A¢2(1). The charts on pages 620-624
depict the Bockstein £~ spectral sequence that converges to Extyc. The details of
this calculation are described in Section 7.
The E, -page is too complicated to present conveniently in one chart, so this

page is separated into two parts by Milnor-Witt stem modulo 2. Similarly, the E; -
page is separated into four parts by Milnor-Witt stem modulo 4. The E, -page
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in Milnor—Witt stems O or 3 modulo 4 is not shown, since it is identical to the
E3 -page in those Milnor-Witt stems. The Ey -page and E -page in Milnor—Witt
stems 1 or 2 modulo 4 is not shown, since it is identical to the E, -page in those
Milnor-Witt stems.

Here is a key for reading the Bockstein charts:

(1) Gray dots and green dots indicate groups as displayed on the charts.
(2) Horizontal lines indicate multiplications by p.

(3) Vertical lines indicate multiplications by Aq.

(4) Diagonal lines indicate multiplications by /.

(5) Horizontal rightward arrows indicate infinite sequences of divisions by p, i.e.,
infinitely p-divisible elements.

(6) Vertical arrows indicate infinite sequences of multiplications by hy.
(7) Diagonal arrows indicate infinite sequences of multiplications by /.

The structure of Extyc is too complicated to present conveniently in one chart,
so it is separated into parts by Milnor—Witt stem modulo 4. Unfortunately, the part
in positive Milnor—Witt stems 0 modulo 4 alone is still too complicated to present
conveniently in one chart. Instead, we display Extc,, including both Ext 4=}y and
Extyxc, for the Milnor—Witt 0-stem and the Milnor—Witt 4-stem.

Here is a key for the charts of Extyc:

(1) Gray dots indicate copies of Fo[t*] /T,

(2) Horizontal lines indicate multiplications by p.
(3) Vertical lines indicate multiplications by hqg.
(4) Diagonal lines indicate multiplications by /.

(5) Dashed lines indicate extensions that are hidden in the Bockstein spectral
sequence.

(6) Dashed lines of slope —1 indicate p extensions that are hidden in the Adams
spectral sequence.

(7) Horizontal rightward arrows indicate infinite sequences of divisions by p, i.e.,
infinitely p-divisible elements.

(8) Vertical arrows indicate infinite sequences of multiplications by hy.

(9) Diagonal arrows indicate infinite sequences of multiplications by /.

12C. Bockstein and Ext charts for £¢>(1). The Bockstein E* and E~ spectral se-
quences that converge to Extgr(j) and Extgr ;) (NC, M"}), respectively, are shown in
the charts on page 627. The details of this calculation are described in Remark 6.3
and Section 7C. For legibility, we have split each of the EX, E, , and Extxc pages
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into a pair of charts, organized by families of v;-multiples rather than by Milnor—
Witt stems.
Here is a key for reading the Bockstein and Extyc charts:

(1) Gray dots indicate groups as displayed on the charts.
(2) Horizontal lines indicate multiplications by p.

(3) Vertical lines indicate multiplications by /. Dashed vertical lines denote /¢-
multiplications that are hidden in the Bockstein spectral sequence

(4) Horizontal rightward arrows indicate infinite sequences of divisions by p, i.e.,
infinitely p-divisible elements.

(5) Vertical arrows indicate infinite sequences of multiplications by hy.

12D. Milnor-Witt stems. The diagrams on pages 629 and 630 depict the Milnor—
Witt stems for koc, and kR in families as described in Section 11.

The top figure on page 629 represents the Milnor—Witt 4k-stem, where k > 0.
The middle three figures represent the t*-periodic classes, as in Theorem 11.15.
The bottom figure represents the Milnor—Witt stem I1,,, where n = 3 (mod 4) and
n<-5.

Here is a key for reading the Milnor—Witt charts:

(1) Black dots indicate copies of [F;.

(2) Hollow circles indicate copies of Z%.

(3) Circled numbers indicate cyclic groups of given order. For instance, the 1-
stem of I[1_s is Z /4.

(4) Blue lines indicate multiplications by 7.

(5) Red lines indicate multiplications by p.

(6) Curved green lines denote multiplications by .

(7) Lines labeled with numbers indicate that a multiplication equals a multiple of
an additive generator. For example, « - n* equals 41708 in .

For clarity, some o multiplications are not shown in the first and last diagrams of
page 629. For example, the o multiplication on 7 is not shown in the first diagram.
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Bockstein charts for A®(1)

3 BOCKSTEIN E; -PAGE
b
ofF;[7] (_Ib
O[Fz q
6
4

2
0
0 2 4 6 8 10 12 14 16
BOCKSTEIN EX -PAGE, mw = 0 (mod 2)

8 2 2

oF,[1?]

O[Fz 4
6
4
2
0

0 2 4 6 8 10 12 14 16

8 BOCKSTEIN EJ -PAGE, mw = 1 (mod 2)

oF,[1?]
6

thlb
4
2 ‘—7
thy

0
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Bockstein charts for A®(1)

BOCKSTEIN Ef = EX,-PAGE, mw =0 (mod 4)

8 <—§
b
oF,[c4]
o[FZ 2ab
6
4
T7a
2
0
0 2 4 6 8 10 12 14 16
8 BOCKSTEIN Ef = EX,-PAGE, mw = 1 (mod 4)
oF, (4]
6
thlb
4
2 ,4;7
thy
0
0 2 4 6 8 10 12 14 16
8 BOCKSTEIN EJ -PAGE, mw =2 (mod 4)
4
oF (7] prA
6 ——eo
2h2b
2hob
4
2 *—9
I rzh%
Tzho
0
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Bockstein charts for A®(1)

BOCKSTEIN EJ -PAGE, mw =3 (mod 4)

oF, (4]
-9
3h2b
e
rSh%
0 2 4 6 8 10 12 14
BOCKSTEIN E = EX,-PAGE, mw =2 (mod 4)
4
oF (7] prA
*r—0
2h2b
2hob
*r—
2p2
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Ext charts for A®(1)

Ext

8 AR(I),meO(mod4)

oy [r4]
O[FQ[r4], hidden t# extension
0[F2[1:4], two hidden 74 extensions

0 2 4 6 8 10 12 14 16

Ext_AR(l), mw =1 (mod 4)

oy [z4]

6
Thlb
4
2 7
Thy
0
0 2 4 6 8 10 12 14 16
EXt_AR(l)’ mw =2 (mod 4)
oy [z4]
I,, : l’, 4
6 —4
I S Thdb
4
rzhob
4
4 1 4
4 4
2 Al
I R4 ‘Ezh%
4
Tzho

0
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S A

O A

B
(S

Bockstein E~ charts for A€ (1)

BOCKSTEIN El’—PAGE

Y
oFy 7]/t 7ab
.[F2
onb
Zb
T
Lq
on}
2 4 6 8 10 12 14

BOCKSTEIN E, -PAGE, mw =0 (mod 2)

Y
oF)[72]/7™® zab
O[Fz
onib
Zb
T
Lq
3
Ohy
2 4 6 8 10 12 14
BOCKSTEIN E, -PAGE, mw = 1 (mod 2)
o, [72]/7® *~—>
PIkad Vi RS
T
r—zb
.[711
2 4 6 8 10 12 14

AR
S
S

16

R
S
S}

{
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Bockstein E~ charts for A€ (1)

BOCKSTEIN E3’ = E;-PAGE, mw =0 (mod 4)

8 7
Y
of[rh)/r wah !
ol
6
onib
s s
3
fa :
2
on3
0 b
3
0 2 4 6 8 10 12 14 16
3 BOCKSTEIN E; -PAGE, mw = 1 (mod 4) °
5
oF,[c*]/7™® e i
—4ab
6 T
. ,}47
2
1*411
2
2
0 2 4 6 8 10 12 14 16
3 BOCKSTEIN E; -PAGE, mw =2 (mod 4)
v Ly
“_ab T
oF, ¢ /7™ 3¢ I
6
4 b
A T
54
2
0
T
0 2 4 6 8 10 12 14 16
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Bockstein E~ charts for A€ (1)

8 BOCKSTEIN E; = E4’ -PAGE, mw =3 (mod 4)
gare
4 T
oF;[c*]/7%° Phors
6
T
6
4 b
4
-[76”
2
0
4
0 2 4 6 8 10 12 14 16
3 BOCKSTEIN E4’ = Eoo-PAGE, mw =1 (mod 4) °
o
T
oF[r#]/c>
6
4 ﬁ
2
2
2
0 2 4 6 8 10 12 14 16
3 BOCKSTEIN E; = Eoo-PAGE, mw =2 (mod 4) o,
LabI ?b
44,00 3
oF [T/t T
6
4 b
A T
se
2
0

(=3
i8]
IN
[=)}
0
S
=
=
>



THE COHOMOLOGY OF C;-EQUIVARIANT A(1) AND THE HOMOTOPY OF koc,

-3;‘

BOCKSTEIN ES_

of,[4]/T>®
ol

BOCKSTEIN ES_

oF,[r*)/r>®

Bockstein E~ charts for A€ (1)

-PAGE, mw =0 (mod 4)

%ab
on3b
Y4
3
Ohy
4 6 8 10 12 14
-PAGE, mw = 3 (mod 4)
o—
pa
6 ab
T—gb
54
4 6 8 10 12 14

HW‘Y
+|
[N

16

623
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Bockstein E~ charts for A€ (1)

BOCKSTEIN E -PAGE, mw =0 (mod 4)

8
of,[4]/T>®
ol
6
4
Yq
2
3
on’
0 4
3
0 2 4 6 8 10 12 14 16

BOCKSTEIN E¢ -PAGE, mw =3 (mod 4)

8 o—
ki
oF,[4]/T>® oS
7
6
4 b
i
za
2
0

-3;‘
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Extnc charts for A€2(1)

3 Extyc, mw =1 (mod 4) °
5
T
oF;[r#1/7°
6
. ,47
2
2
2
0 2 4 6 8 10 12 14 16
Extyc, mw =2 (mod 4)
8
Y_ab %bz
oF,[4]/7%® 31 I
1
1
6
4 b
s T
5l
1
1
2
0
T
0 2 4 6 8 10 12 14 16
Y 32
8 Extyc, mw =3 (mod 4) st ”
7’
Y .
—=ab ’
oF,[r4]/7® 10 ————
4 7 4 7
6 4 4 4 4
pa
4 57
7’ 4 7’ 4 7’
Y . . . . .
f6[l ’ ’ ’ ’ ’
T ’r—n—9—98—98—% # >
4 4 4 4 4 4 4 4
7 4 7 7 4 7 4 7
4 4 4 4 4 4 4 4
2
0
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Ext charts for A2(1) in mw = 0 and mw = 4

Ex tCZ mw =0 le3
Ay 2
.[Fi g:%(l) . N ”’l '
N

Extc,, mw = 4

of 2 inExt op (1)
.ﬂ:z nExtyc

2 4 6 8 10 12 14 16 18 20 22 24
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Bockstein charts for £2(1)

BOCKSTEIN E| -PAGE

ol [7]

4 j
4
j vl
3
kit
2
p)
kit
1
0
0 2

4 6 8
BOCKSTEIN E;' = EX -PAGE, PART A

6
oF,[rH o
4
Ui
vl
2
i
1
0
0 2 4 6 8
6 BOCKSTEIN E -PAGE
ofF[r]/t>
4
v 4
Tl
y.3
Tl
2
ja)
TV
Fu
0
T
0 2 4 6 8
6 BOCKSTEIN E -PAGE, PART A
oF,[t4)/T>®
4
v 4
TV
v.3
]
2
vo2
Tl
Lo
v
07 >
e

BOCKSTEIN EY -PAGE

oF)[c?]
(—t %
it
1
0
0 2 4 6

BOCKSTEIN E;' = EX -PAGE, PART B

S

4
K

6
oF,[t4] I
2 rzhov?
4
rzhov?
I rzhov%
2
I rzhovl
T2h0
0
0 2 4 6 8
6 BOCKSTEIN E, -PAGE
oF;[c?]/7%°
v .4
4 T lV
““FU
r,
2,2 2
2 7V %—
Y2
Y 271
7 V1% >
pa
Y 2 vl
07
72
0 2 4 6 8
6 BOCKSTEIN E -PAGE, PART B
oF;[c4)/r™ }
Y 4
4§U
4 371 5Lv4
Yoy 21
31 .———Q—OL 3
¥y o2 220
2 23 V1% —o—o
Y2
Yo Iz
A 3 ey
3 B
0 ’_——0—0
2
0 2 4 6 8
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Extnc charts for £€2(1)

Extyc, PART A

or,[14]/T>®
Lot
s
72
L
’—)
2 4 6 8

Extyc, PART B

oF, [t/
Y 4
“=U
3 1‘.Lv4
y .3 1271
Y v T
3 1‘.7—?—6
X2 1.2
,3“1|.-—-0—6y 1
1729
773vl| Y '
A |.,7”1
2
0 2 4 6 8
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Milnor-Witt modules for koc,
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Milnor—Witt modules for kR
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Degeneracy loci, virtual cycles
and nested Hilbert schemes, I

Amin Gholampour and Richard P. Thomas

Given a map of vector bundles on a smooth variety, consider the deepest de-
generacy locus where its rank is smallest. We show it carries a natural perfect
obstruction theory whose virtual cycle can be calculated by the Thom—Porteous
formula.

We show nested Hilbert schemes of points on surfaces can be expressed as
degeneracy loci. We show how to modify the resulting obstruction theories to
recover the virtual cycles of Vafa—Witten and reduced local DT theories. The
result computes some Vafa—Witten invariants in terms of Carlsson—Okounkov
operators. This proves and extends a conjecture of Gholampour, Sheshmani,
and Yau and generalises a vanishing result of Carlsson and Okounkov.
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1. Introduction

The prototype of a scheme Z with perfect obstruction theory [Behrend and Fantechi
1997] is the zero locus of a section of a vector bundle £ on a smooth ambient
variety A. We recall the construction in the next Section.

All perfect obstruction theories are locally of this form. In the rare situations
where this is also true globally, the natural virtual cycle [ibid.] pushes forward to
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what we might expect, namely the Euler class of the bundle:
2] = e (E) € Ava(A). (1.1

Here ¢ : Z — A is the inclusion, r =rank E, vd =dim A —r is the virtual dimension
of the problem, and [Z V" lies in Ayq(Z) or Hava(Z).

Equation (1.1) can help in computing integrals over the virtual cycle. Examples
include the computation of the number 27 of lines on a cubic surface, numbers
of lines and conics on quintic threefolds, and the quantum hyperplane principle.
A more relevant example to us is the reduced stable pair computations in [Kool
and Thomas 2014], carried out by writing the moduli space of stable pairs (and its
reduced perfect obstruction theory) as the zero locus of a section of a tautological
bundle over a certain Hilbert scheme.

In this paper we study a generalisation of zero loci, namely degeneracy loci. We
show these give another prototype of a perfect obstruction theory.! Again, when
this can be done globally, it allows us to express integrals over the virtual cycle in
terms of integrals over the ambient space, via the Thom—Porteous formula.

So fix a two term complex of vector bundles E, = {Ey % E1} on a smooth
ambient space A. Set n = dim A, r; = rank(E;), and denote the r-th degeneracy
locus by

Z, = {x € A :rank(o|y) < r}.

We work with the smallest » for which Z := Z,. is nonempty. Our first result is the
following, made more precise in Theorem 3.6.

Theorem. Assume Z,_1 = . Then both
h(E.|z) =ker(o|z) and h'(E.|z) = coker(c|z)
are locally free on Z .= Z,, which inherits a perfect obstruction theory
(W' (E|2)* ® h°(E.|2) = Qulz} — Lz.

The push-forward of the resulting virtual cycle [Z]'" € A,_i(Z) to A is given by
the Thom—Porteous formula,
AT (c(E1 — E)) € Ay (A),

r—r

where k = (ro —r)(r1 —r) and Aj(c) :=det(cpyj—i)1<i,j<a-

ITn fact we prove this by reducing to the model (2.1) in a bigger ambient space.
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Nested Hilbert schemes. Our main application is to the punctual Hilbert schemes
of nested subschemes of a fixed projective surface S. Full details and notation will
be described later; for now for simplicity we restrict attention to the simplest case
of the 2-step nested punctual Hilbert scheme

sttoml.= {1 € I, € Oy : length(Os/1;) = n; }.

Now St"1:72] Jies in the ambient space Sl x S!"2) as the locus of points (I, I>)
for which there is a nonzero map Homg(/;, Ir) # 0. Thus it can be seen as the
degeneracy locus of the complex of vector bundles

RAom,(T,,T,) over S x gl (1.2)

which, when restricted to the point (/1, I2), computes Ext§(/1, I>). When H 02(8)=0
this complex is 2-term, so we can apply the above theory. The resulting perfect
obstruction theory on SU"1"2] agrees with that of [Gholampour et al. 2017b]. In
turn this arises in local DT theory [Gholampour et al. 2017a], so we can express
DT integrals in terms of Chern classes of tautological sheaves over Sl x S,

When H%1(S) # 0 the result is zero; when H%2(S) # 0 the theory does not apply.
So for a general projective surface S we modify the complex Ext(/;, I) with
H'(Os) and H?>(Os) terms. The modification is canonical over SU"1"2], recovering
the reduced version of the local DT deformation theory that arises in the SU(r)
Vafa—Witten theory of S [Tanaka and Thomas 2017].

Splitting trick. We would like to extend this modification over the rest of SI"11x Sl721,
so we can apply the Thom—Porteous formula. Such modifications exist locally but
not globally, so in Section 6A we use a trick reminiscent of the splitting principle
in topology, pulling back to a certain bundle over SI"!1 x S"21 where there is a
canonical modification. This allows us to prove the following (whose notation will
be explained more fully in Sections 5-7, in particular (6.31)).

Theorem. Let S be any smooth projective surface. The k-step nested Hilbert
scheme SV can be seen as an intersection of degeneracy loci after pulling
back to an affine bundle over S x - .. x S The resulting perfect obstruction
theory F* — Lgn,...n;1 has virtual tangent bundle

(F*)Y Z|{Tgu) @ -+ @ Tgngy — Exty (L1, Tn)g -+ ® Exty (Ti—1. Ti)g )
the same as the one in Vafa—Witten theory [Tanaka and Thomas 2017] or “reduced
local DT theory” [Gholampour et al. 2017b; 2017a]. The virtual cycle

[S[m ..... nk]]vir €A, n (S[nly---,"k])
1 k
pushes forward to

Cnymy (RO (Ty, D)) U+ - - Uy 4y (RHOM7 (Ti—1, TO[1])  (1.3)
in Ap,pn, (SU o x SIndy,
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The formula (1.3) for the push-forward of the virtual class was conjectured in
[Gholampour et al. 2017b] for k = 2 and proved for toric surfaces. It was also
shown to be true for more general surfaces when integrated against some natural
classes. The classes ¢y, | +x, (R,%”omﬂ (Z;_1, I,-)[l]), considered as maps

H*(S[nifl]) _ H*+2ni*2ni71(S[ni])’

are called Carlsson—Okounkov operators. Carlsson and Okounkov [2012] calcu-
late them in terms of Grojnowski—Nakajima operators, and prove vanishing of the
higher Chern classes:

Cnytnati (RAHomy (T, TH)[1]) =0, i >0, (1.4)

by showing the left side is a universal expression in Chern numbers of §, and that
this universal expression vanishes for toric surfaces by a localisation computation.
This gives enough relations to prove the universal expression is in fact zero. In
Section 8 we reprove the vanishing (1.4) rather easily and geometrically using the
Thom—Porteous formula, as well as the following generalisation.

Theorem. Let S be any smooth projective surface. For any curve class B €
H>(S, Z), any Poincaré line bundle L — S x Picg(S), and any i > 0,

Cnynati (R7s £ — RAOmy (11, Ty ® £)) =0 on S"1 x S1 x Picg ().

The other degeneracy loci. In the companion paper [Gholampour and Thomas
2019] we work with all the degeneracy loci Z;. These do not generally admit
perfect obstruction theories when k > r. However there are natural spaces Zi — Zi
dominating them which are actually resolutions of their singularities in the trans-
verse case (when all the Z; have the correct codimension). For this reason we call
the Z “virtual resolutions”. Though they are singular in general, we show they
admit natural perfect obstruction theories and virtual cycles whose push-forwards
we can again describe by Chern class formulae.”
In this paper the natural application was to nested punctual Hilbert schemes of
a smooth surface S. In [Gholampour and Thomas 2019] the natural application
is to nested Hilbert schemes of both points and curves in S. Fundamentally the
difference is the following. Letting I, I C Oy be ideal sheaves of 0-dimensional
subschemes of §, then
Hom(/y, I7) (1.5)

either vanishes, or—for I{ C I in the nested Hilbert scheme — is at most C. Hence
Strin2l i the degeneracy locus of the complex (1.2). Conversely, when I; or I, have
divisorial components, (1.5) can become arbitrarily big, and different elements

2Since Z, = Z, the constructions in [Gholampour and Thomas 2019] and this paper coincide
whenk =r.
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correspond to different subschemes of S. (In the case I} = Og(—D) and I, = Oy,
elements correspond — up to scale — to divisors in the same linear system as the
divisor D C S.) Therefore the corresponding nested Hilbert scheme dominates the
degeneracy locus of the complex (1.2) but need not equal it. In [Gholampour and
Thomas 2019] we show it is naturally a virtual resolution of the type Z.

Notation. Given a map f : X — Y, we often use the same letter f to denote its
basechange by any map Z — Y, i.e., f : X xy Z — Z. We also sometimes suppress
pullback maps f* on sheaves.

2. Zero loci

We start by recalling the standard construction of a perfect obstruction theory, on
the zero scheme Z of a section o of a vector bundle E over a smooth ambient

space A:
E
D - @2.1)
Z=0"10) Cc A

On Z the derivative of this diagram gives

E¥|z o, Qalz
al H 22)
/12—,

where I C Oy is the ideal sheaf of Z generated by o. The bottom row is a represen-

tative of the truncated cotangent complex Lz of Z; denoting the two-term locally
free complex on the top row by F* we get a morphism?

F*— 1y 2.3)

in D(Coh Z) which induces an isomorphism on Oth cohomology sheaves 4° and
a surjection on A~!. This data is called a perfect obstruction theory [Behrend and
Fantechi 1997] on Z, and induces a virtual cycle

[Z]Y" € Ava(Z) — Hav(Z)

satisfying natural properties. Here H denotes Borel-Moore homology, and vd :=
dim A —rank E is the virtual dimension of the perfect obstruction theory.

3Diagram (2.1) also induces a natural map from F* to the full cotangent complex of Z [Behrend
and Fantechi 1997, Section 6], but we shall not need this.
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3. Degeneracy loci
We work on a smooth complex quasiprojective variety A with a map
Ey > E,
between vector bundles of ranks ry and r;. We denote by
Zr C A 3.

the degeneracy locus where rank(o) drops to < k. This has a scheme structure
defined by the vanishing of the (k + 1) x (k 4 1) minors of o, i.e., of

/\k+10_ . /\k+1EO N /\k+1E1. (32)

The Z; can be characterised by the rank of the cokernel of o over them [Eisenbud
1995, Section 20.2]. In Section 6 we will need a characterisation in terms of the
kernel. Though this does not basechange well, it works for the smallest Zj.

That is, let r denote the minimal rank of o, so that Z,_; = &, and set Z := Z,.
This is the largest subscheme of A on which ker o |z is locally free of rank rg — r:

Lemma 3.3. For a map of schemes f : T — A, the following are equivalent:

(1) f factors through Z = Z, C A.
(2) ker(f*o : f*Eqg — f*E)) is a rank ro — r subbundle of f*E).
3) ker(f*o : f*Eqg — f*E)) has a locally free subsheaf of rank ro —r.

Proof. If f factors through Z then N ™' f*o = f*N o], =0. Since Z,_; = @
it follows from [Eisenbud 1995, Proposition 20.8] that coker f*o is locally free
of rank r; — r. Thus ker f*o is a rank ro — r subbundle of f*FE,. This proves
H=2)=0).

For (3)= (1), we suppose the kernel K of f*Ey — f*E| contains a locally
free subsheaf of rank ro — r. Therefore the rank of f*o on the generic point of
T is <r, and thus in fact equal to r since we are assuming it drops no lower. In
particular, coker( f*o) is a rank r| — r sheaf.

By lower semicontinuity of rank, f*o|, is of rank < r for any closed point
t € T, so, by our assumption on r again, it is equal to r. Combined with the exact
sequence

F*Eol, Zis F7Eq), — (coker f*o)|, — 0, (3.4)

i.e., the fact that coker( f*o|;) = (coker f*o)|;, this shows that (coker f*o)|; has
dimension r; — r for every closed point ¢. Therefore coker f*o is locally free of
rank r; — r by the Nakayama lemma. This implies that ker f*o is a rank ro —r
subbundle (rather than just a locally free subsheaf) of f*Ej.
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In particular f*Ey/K is locally free of rank r, so /\r+1(f*E0/K) =0. But
f*/\r+lo_=/\r+]f>ko_:/\r+1f*E0_)/\r+1f*El
factors through /\VJrl (f*Eo/K), so it is also zero. That is, f factors through the
zero scheme Z(/\r+10') =7 of No. O
So oz has rank precisely r, and its kernel h° :=h%(E.|,) and cokernel h' :=
h'(E.|z) are vector bundles on Z of rank ro —r and r| —r respectively,

0— 1" = Eoly 2% E\|; — h' — 0. (3.5)

For instance if » = ry — 1 then o is generically injective (and globally injective as a
map of coherent sheaves) and Z is the locus where it fails to be injective as a map
of bundles. Its kernel is a line bundle over Z. If Ey = O4 then Z is the zero locus
of o and we are back in the setting of Section 2.

Theorem 3.6. The degeneracy locus Z = Z, inherits a 2-term perfect obstruction
theory
[ ®h° — Qalz} — Lz

The push-forward of the resulting virtual cycle [Z]'" € A,_i(Z) to A is given by
the Thom—Porteous formula

AP (c(E1 — Ep)) € Ay—i(A).

ri—r
Heren =dim A, k = (ro —r)(r; —r) and Ay (c) :=det(cptj—i)1<i,j<a-

Proof. We work on the relative Grassmannian of (ro—r)-dimensional subspaces
of Eo,

Gr:=Gr(ro—r, Eg) > A
with universal subbundle U — ¢*Ey. Composing with g*o gives a section
cel(U"®q*Ey). (3.7)

Claim. The zero locus Z(6) C Gr is isomorphic to Z C A under the restriction
q : Z(c) — A of the projection q : Gr — A.

At the level of closed points this is obvious: for x € A

x € Z<<=rank(o|y)=r
<= rank(ker(oy)) =rog—r

< (Ey)|, has a unique (ro—r)-dimensional subspace
U, = ker(o,) on which o |, vanishes

<= U, is the unique point of Z(5) N q_l {x}.
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So g maps Z(¢) bijectively to Z C A. To see it maps scheme theoretically, note
that, by construction, the composition

U—> q"Ey 49, q E;

is zero over Z(0), so ker(g*o) contains a locally free sheaf U|z) of rank ro —r.
Thus g factors through Z C A by Lemma 3.3.

By Lemma 3.3 again, ker(o|z) is a rank rg — r subbundle of Ey. Its classifying
map Z — Gr(ro —r, Ep) has image in Z (o) and clearly defines a right inverse to
q:Z(6)— Z. So to prove that g is an isomorphism to Z we need only show that
the inverse image ¢ ~!{x} of any closed point x € Z is a closed point of Z(5).

Given a rank r linear map X : V — W between vector space of dimensions
ro, 1, an elementary calculation show that the composition

Us VR0 WeOo

on the Grassmannian Gr(rg — r, V) cuts out the reduced point [kerX C V] €
Gr(rg —r, V). Applying this to ¥ = o |, proves the claim.

Perfect obstruction theory. Since Z=Z(c)iscutoutof Grbyo e '(U*®q*E}),
it inherits the standard perfect obstruction theory (2.2), i.e.,

% sk do|z)
U®q ET|z6) — Qarlz6) (3.8)

mapping to Lz) = Lz. Now (3.8) fits into a diagram

Ulz ® (h')* ————— ¢*Qualz)

| |

N dclz@s)
URET|lz —— Qarlze) (3.9)
idy ®l{7* l
Ulz® (E0|Z/kera)* = Qar/alzi)

with left-hand column the short exact sequence U|z® (3.5)*, and right-hand col-
umn the natural short exact sequence of the fibration Gr — A. The bottom equality
is dual to the standard identification TG, /4 = Sfom(U, Eo/U).

Assuming (3.9) is commutative for now, we can consider it as providing a quasi-
isomorphism between the top row and the middle row (which is (3.8)). Hence the
perfect obstruction theory (3.8) is

@ nhhY* — Qalz,
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as claimed. Just as in (1.1), the push-forward of the resulting virtual cycle to Gr
is the Euler class ¢,y (U* ® g*E1). Pushing this down to A gives the push-
forward of [Z]""" to A, by the commutativity of the diagram

Z(6) ——Gr

|

Z— LA

But pushing forward c(;,—r, (U*®¢*E}) to A gives A~} (c(E1 — Ez)) by [Fulton
1984, Theorem 14.4]. So we are left to prove:

Claim. The diagram (3.9) is commutative.

We need only show that the lower square of (3.9) commutes; the upper one is
then induced from it. Let Gr, := Gr x, Z and observe Z(c) C Gr,, with ideal
sheaf I, say. We let

27 — GI'Z

be its scheme-theoretic doubling with ideal sheaf 7. Let p := g|»7 be the induced
projection 2Z — Z and consider the maps

~ \
Uly, < (@*Eo)y = p*(Eolz) — p*(Eo/Ulz) —> p*(Eilz).  (3.10)

The final arrow is constructed from o |z : Ey|z — E1|z by recalling that U|z =
ker(o|z).
The composition of the first two arrows of (3.10) is a section of

U'l,z ® p*(Eo/Ulz) on 2Z
which vanishes on Z. Since the ideal of Z C 2Z is Qg /7 it is a section of
Ulz)* ® (Eo/Ulz) ® L,z
This is precisely the (adjoint of) the standard description of the isomorphism
Ul;®(Eo/U)|7 = Q6,2

1.e., the bottom row of (3.9).
Since p*(E1|z) = (¢*E1)|2z, the composition of all the arrows in (3.10) is
just & |z. It vanishes on Z, defining the section [d & |z] of

(Ul2)*® Eitlz ® I/1* = Hom(U ® Ef |, Qi yaly)

which defines the central arrow of (3.9). Thus (3.9) commutes. ([l
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3A. Higher Thom—Porteous formula. When ro —r = 1, so the sheaf 1° is a line
bundle on the degeneracy locus Z, the following “higher” Thom—Porteous formula
will be useful later. Let ¢ : Z < A denote the inclusion.

Proposition 3.11. If ro —r = 1 then the Thom—Porteous formula becomes
Ll Z]% = ery 41 (E1 — Eo)

in Apyr—r, (A), and for any i > 0 we have the following extension to higher Chern
classes:

te(e1 ((B)) N IZI™) = ey —i14 (E1 — Eo). (3.12)

Proof. The first part follows from the simplification

Aj(c()) =cu(+)
whena=rop—r =1.
For the second part, recall from (3.7) that Z is cut out of P(Ey) 4 A by the
vanishing of the composition

OpEy (—1) =— q"Ey a9, q E.

Moreover, over this copy of Z, we see that the kernel K0 of Eg — E; is OpEy (—1).
Therefore, denoting Segre classes by s;, we have

L (1 (R N [Z]™) = g (c1(Opay (D) Uer, (g Ei(1)))

= qx <c1<0p<50><1>>" U cij(@*Enu cl(omo)(l))”—f)
j=0

= Z 4+ (c1(Op(E) (1) T Ug*c;(EY))
=0

r
= Zsi+r1—j—r0+1(Eo) Nc;(Ey)
j=0
= Cr —ro+i+1(E1 — Ep). O

Working throughout this Section with 0* : Ef — Ej instead of o : Eg — E|
gives the same results, up to some reindexing of notation.

4. Jumping loci of direct image sheaves

Suppose f : X — Y is a morphism of projective schemes, with ¥ smooth. Fix
either a coherent sheaf 7 on X which is flat over Y, or a perfect complex F on X
and assume that X is flat over Y.
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We assume that the cohomologies of F on any closed fibre X,, y € Y, are
concentrated in only two adjacent degrees i, i + 1. Let a denote the maximal
dimension of A (Xy, Fy) as y varies throughout Y. That is, we assume there exists
i € Z such that

h!(Xy, Fy) =0 forall j ¢{i,i+1}, ye?v,
h"(Xy, Fy)<a forallyeV.

It follows that 4i+! (Xy, Fy) has maximal dimension b :=a — (—l)ix(]-'y).
Now Rf, F is a perfect complex on Y which, by basechange and the Nakayama
lemma, can be trimmed to be a 2-term complex of locally free sheaves

Rfs F~{E; > E;1}
in degrees i and i + 1. On restriction to the maximal degeneracy locus
Zo={yeY :h(X,, Fy)=a}CY

it has kernel of rank a. (Note this labelling convention differs slightly from (3.1).)
Let Xz := X xy Z and f := f|x,. By (3.2) and Theorem 3.6 we deduce the
following.

Proposition 4.1. The maximal jumping locus Z = Z, has a natural scheme struc-
ture and perfect obstruction theory

{(RTLF) QR f.F — Qylz} - Lz,
with the R’ f, F locally free. The resulting virtual cycle
[Z]'" € Ay(Z), d:=dimY —ab,
when pushed forward to Y, is given by
AG(c(RfFLi +11)) € Aa(Y).

The result can also be applied to jump loci of relative Ext sheaves (the cohomol-
ogy sheaves of R7#oms (A, B) := Rfy R7tom(A, B)) by setting F :=R#om(A, B).
We shall use this on punctual Hilbert schemes next.

5. Nested Hilbert schemes on surfaces with b; =0 = p,

Given positive integers n; > np > --- > nyg, the k-step nested punctual Hilbert
scheme of § is, as a set,

={li S L < - C I COs : length(Os/1;) = n;}.
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As a scheme it represents the functor which takes any base scheme B to the set of
ideals Z; €7, C - - - €7y C Ogxp, flat over B, such that the restriction of Z; to any
closed fibre S x {b} has colength n;.

For simplicity we restrict to k = 2 for now; we will return to general k in
Section 7.

Let S be a smooth complex projective surface with (for now) h%1(8) =0=hr%2(S),
and fix integers n; > n,. Over

sl s gl o ¢ Ty glml o glnal

we have the two universal subschemes Z|, Z, and their ideal sheaves Z;, 7. We
will apply Proposition 4.1 to the perfect complex

Ritom, (1,,1,) := Rm. Rtom(L,, 1)

on Sl x S721 Over the closed point (I1, Ir) € Sl sinal we have

Ext (I}, L) =0, i#0,]1, 5.1
by Serre duality. Moreover
0, 2227,
Hom(/y, ) = 52
om(/y, I2) {C, 2,3 2. (5.2)

is generically zero and jumps by 1 (but never more) over the nested Hilbert scheme

stmml.= {7, € 7, C S, length(Z;) = n;}, (5.3)

at least set-theoretically. Despite our usual notational conventions (to denote
basechanged by SUt721 s glml 5 glm2l 3150 by ) we reserve

p: S[nl,nz] xS — S[nl»nz]

for the obvious projection. Since 7, Z, are flat over SU"t! x SI"2! they restrict to
ideal sheaves over S"2l: we denote them by the same letters.

Proposition 5.4. If hO1(S) = 0 = h%2(S) then the 2-step nested Hilbert scheme
Strnl carries a perfect obstruction theory

((éaxt})(zl, Iz))* —> QS["l]XS[nz] |S[n1,n2]) —> [LS[”I*"Z] (55)

and virtual cycle
[S[nl,nz]]VH c Anl+n2 (S[nla”lz])_

Its push-forward to S"1 x "1 s given by

Cny iy (RAOM (T1, T)[11) € Ay gy (ST 5 ST21), (5.6)
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Proof. By (5.2) we may apply Proposition 4.1 to the degeneracy locus Z of
Rstom, (1,, I,) by setting F = Rstom(Z, ). By (5.1) and the Nakayama lemma
F is quasi-isomorphic to a 2-term complex of vector bundles.

As sets Z = St"1m21 by (5.2). Over the degeneracy locus Z we have the exact
sequence (3.5) with 4° a rank one locally free sheaf, i.e., a line bundle L. Thus
over Z X S we obtain a map

7 ®p*L—>Zz

which is nonzero on any fibre of p. Taking determinants or double duals shows
that L is trivial, A% = Ogu, ny1, and we get a map Z; — Z, whose classifying map
gives a morphism Z — S22,

Conversely, since p, sfom(Z;, ;) = O over Slninal | the latter lies in the degen-
eracy locus of R#om, (I, T>), i.e., Sl C Z. It is clear these two maps are
inverses.

The rest follows from Proposition 4.1, simplified as in Proposition 3.11, and the
fact that h0 = Oglnyngl. O

Remarks. In Theorem 7.1 we will identify our virtual cycle with that of [Gho-
lampour et al. 2017b]. The formula (5.6) for the push-forward of this cycle was
conjectured in [Gholampour et al. 2017b], proved there for toric surfaces, and
shown to be true for more general surfaces when integrated against some natural
classes.

From (3.9) one can work out that the dual of the first arrow in (5.5) is

Exth (1, T) @ éxtl (T, Tn) = ot (21, T,

where ¢ : 7y — I is the natural inclusion. This complex is therefore the virtual
tangent bundle of our perfect obstruction theory on S"1-721,

6. Removing H'!(Os) and H?(Os) on arbitrary surfaces

When 41%1(S) > 0 the virtual cycle constructed in the last section becomes zero
due to a trivial H'(Oy) piece in its obstruction sheaf. And when h%2(8) > 0
the perfect complex Rs#om, (Z;, 1) over S [m1] 5 §lm] pecomes 3-term, as it has
nonzero h% = é"xt,zr (T, D).

So we want to modify Rs¢om, (Z, 1) with H'(Os) and H?(Os) terms. The
correct geometric way to do this is to take the product of our ambient space
Sl s sl with Jac(S) — we do this in Section 9 when £%2(S) = 0.4 In this
Section we use a more ad hoc fix which is less geometric but appears to give
stronger results.

4When ho’z(S ) > 0 one should do the same with the derived scheme Jac(S) with nonzero obstruc-
tion bundle H%(Og) ® O. We don’t go this far.
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To describe it, consider the natural composition

H?(05) ®¢ Oginyiysin = R, 0 = R’ I, = éxt2(0, 1))

\ I (6.1)

Ext2(T1, In)

induced by ¢, : Z1 — Oginj1,gimlyg. Since 5xt73, (O/1,1;) = 0 (because 7 has
relative dimension 2) the composition (6.1) is surjective. Therefore, if there were
a lifting

H?(05) ® O[-2]

T 6.2)

Rtomy (I), Tr) — &Ext2(Ty, Tr)[ 2],

then the cone on the dotted arrow in (6.2) would have no 42 and so would be
quasi-isomorphic to a 2-term complex of vector bundles. So we could replace
R om, (I, I,) by this cone: they have the same 4A° jumping locus S"1"2! (this
is proved in Lemma 6.17; it is not true for the #=! jumping loci, however) and the
same Chern classes. Assuming we could find a similar lift for H!(Og) ® O[—1]
as well, applying Theorem 3.6 to the cone would give the following.

Theorem 6.3. Let S be any smooth projective surface. The 2-step nested Hilbert
scheme SU"'"2) carries a natural® perfect obstruction theory and virtual cycle

[S[nl ,nz]]vir c An| s (S[nl le])

whose push-forward to S x §n1 jg Cn+ny (ijom,, (7, Iz)[l]).

Unfortunately the lifting (6.2) does not exist in general, so to prove the Theorem
we will use a trick borrowed from the splitting principle in topology: we pull back
to a bigger space A — SV"1! x SI"2l where there is such a splitting, then show the
passage does not destroy any information.

For the rest of this section we carry this out, dealing similarly with H'(Os) at
the same time.

We denote by R=!7, O the truncation =! R, ©. Choosing once and for all a
splitting of RI"(Oy) into its cohomologies induces a splitting
R='7n, 0= H'[-1] ® H*[-2], (6.4)
where

H' := H' (O5) ® Ogin1y gina)

5 Naturality will follow from the fact that the lift (6.2) is canonical on restriction to S [n1.n2]
stl x slml: see (6.10).
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is the trivial vector bundle of rank 4% (S) over SI"1] x S, As described above,
we wish to map this to R7#om, (I, Z,) in an appropriate way, which we will do
by factoring through the map

i : R, Iy — RA#omy (11, I,) (6.5)

induced by ¢, : 7; — O. We relate R, 7, and RZ'7, 0 by the commutative diagram
of exact triangles

O=O

| |

Rn,Tp —— Rn, O —— 7, (0O/I,)

| I |

R, — R='m, O —— 010

Here O"2) := 71,(0/T;) is the tautological vector bundle, and the top two rows
induce the bottom one. This gives the exact triangle

oml/0[-11 —— Rr,T) 7 R='n, 0 (6.6)
which we want to split (to then compose with (6.5)). To write this more explicitly,
we split R='7, O by (6.4) and fix a 2-term locally free resolution F; — F, of
Rm, T, with F; in degree i. Then (6.6) gives

O[nz]/(g

|

1
0——R'7. T, "> F R, Tr —— 0 (6.7)

o
il N

Hl

where ¢, : 7 — O and the left hand column is a short exact sequence. Choices of
splittings ¢, ¢» would induce a splitting of (6.6).

Since the H' are free, splittings (¢, ¢) of (6.7) exist locally. But unfortunately
we can show they do not exist globally in general. So we use a trick, pulling back
to a bigger space A — S"11 x SI"2] where there is a tautological such splitting.

6A. A splitting trick. Inside the total space of the bundle

&= (HY'QR'n.Th ® (H)*QF,
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over "1 x §Wn2] there is a natural affine bundle® A C & of pointwise splittings
(¢1, ¢2) of (6.7). That is, the surjective map of locally free sheaves

(1®t, 1®@h% : & — End H' ® End H?

induces a map on the total spaces of the associated vector bundles. Taking the
inverse image of the section (idg1, idg2) defines the affine bundle

0 A— glnl o glnal

Pulling (6.7) back to A, it now has a canonical tautological splitting ® = (¢1, ¢2),
giving
®:p*H'[-11® p*H*[-2] — p*Rr.Ds (6.8)
as sought in (6.6). That is, composing ® with (the pullback by p* of)

1:Rm, T, — R='7, 0
gives the identity: (, o ® =id.
So finally we may compose (6.8) with (the pullback by p* of) (] (6.5) to give a
map
Fod: p*RZm, O — p*Rtom, (T),Tr). (6.9)

By construction, on taking 42 it induces (the pullback by p* of) the surjection (6.1).
Therefore the cone C (1] o ®) on (6.9) has no h? and is quasi-isomorphic to a 2-term
complex of locally free sheaves.

We next give a more explicit description of C(¢;o®). Itis nicest over p~1 (SI1:12]),
since on S"1:"21 the natural inclusion ¢ : Z; — 7, induces a canonical lift given by
the composition

RZ'7,0 - R1,0 % RA#om, (T),T)) > RAom, (T, T»). (6.10)

Lemma 6.11. The cone C (1] o @) can be represented by a 3-term complex of vector
bundles’

IO*EOL)IO*El L)IO*EZ

6.12)
e e
,O*Hl ,O*HZ

where Ey — E| — E; represents Rtomy (L1, I;).

5Modelled on the vector bundle (H!)* @ (0Ol"2] /O)® (H 2y* @ ker(h?). Bhargav Bhatt pointed
out that we could have used the Jouanolou trick here to find an affine bundle whose total space is an
affine variety on which therefore there exist (noncanonical) splittings.

TThis can be truncated to a 2-term complex of vector bundles by removing the third term and
replacing the second term by the kernel of the surjection (p*o7, ¥7).
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Moreover the maps may be chosen so that, on restriction to p~ ' (SU"v"21) they
are the pullbacks by p* of maps on S and C (1] o @) is the pullback p* C of
the cone C on the composition (6.10).

Remark. Recall that by our notation convention, we are using the same notation
p for the restriction of p to p~!(SH-m2ly,

The lemma tells us that on p~! (SI*1-721) the explicit resolution (6.12) can be
taken to be constant on the fibres of p —i.e., independent on the choice of lifts
(¢1, ¢2) of (6.7) — since, after composition with ¢7, all lifts become quasi-isomorphic
to the canonical one (6.10) on p~!(S"1-721),

Proof. First we show that C (1] o ®) restricted to p L (Slmn2ly §s quasi-isomorphic
to p* C. Consider the diagram

P RZ170,0 —— p* R, 0 —<s p* Ro#tom, (Ty, T)) —— p* RA#om, (T1, Tp)

) A

p* Ry Ty

on p~!(§"-m2]) where we have the canonical map ¢ : p*Z; < p*Z,. Here the
curved arrow is from (6.6) and makes the first triangle commute. Since by con-
struction @ is a right inverse to this map, the first triangle also commutes if we start
at the top left corner. Since the second triangle also commutes, everything does,
which means that (7 ® equals the composition of the arrows along the top row.

Next we resolve R%omy (Z1, ;)Y by a complex of very negative vector bun-
dles G°. This means that they behave like projectives in the abelian category of
coherent sheaves. In particular, by making them sufficiently negative, we can ar-
range that the map (1] ®)" can be represented by a genuine map of complexes

0*G* — p*(HY*[11® p* (HH)*[2], (6.13)

and, on S"1-"21 the dual of the composition (6.10) is represented by a genuine map
of complexes

G — (HY*[11® (H>*[2]. (6.14)

On restriction to p~!(S"121) A, we have shown that the first map (6.13) is quasi-
isomorphic to the pullback by p* of the second (6.14). Again we may assume we
took the G' sufficiently negative that— by the usual proof that quasi-isomorphic
maps of complexes of projectives are homotopic — there is a homotopy between
(6.13) and p*(6.14). This homotopy is a pair of maps

p*G® = p*(HY*, p*G™! = p*(H?*,
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over p~!(S"1m21y By the sufficient negativity of the G’ they can be extended® to
maps on all of A. Modifying (6.13) by this homotopy, dualising and then truncating
(G*)Y to a 3-term complex now gives (6.12). U

So C (1] o ®) is quasi-isomorphic to the 2-term complex of vector bundles
o (Eg®H"Y > F, (6.15)
where F is defined to be the kernel
0— F— p*(E;® H>) — p*E; — 0. (6.16)
And over p~!(S"172]) the complex (6.15) can be seen as a pull back by p*.

Lemma 6.17. The h° jumping locus of C(jod)is p L (S2ly the same as
that of p*Rtom (1), Tp).

Proof. Given any map T ER A — Sl sl we denote the basechange of 7 by
T xS§S—T.

We denote the pull backs of Z;, 7, to T x § by the same notation. Pulling C (¢} o @)
back to 7, the long exact sequence associated to the cone becomes

1o
0 — Aom (T1, Tn) — h°(f*C((; 0 ®)) — R'77, 0~ &xil. (71, ).
It remains to prove that the last arrow is an injection, since that implies
Homy (T1, Tp) Zh(f*C(f o ®))

on any 7, to which we can apply Lemma 3.3 to conclude.
The last arrow is the composition ¢} o ® in the diagram

éxtl, (T1, 0) +—— éxtl, (11, Ty)

To prove it is an injection it is sufficient to do so after composing with ¢, along the
bottom. Since the diagram commutes and @ is a right inverse of the ¢, along the
top, this is equivalent to the left hand (] being injective. But this follows from the
vanishing of éoxt}rT((’)/Il, 0). O

8For N > 0 the restriction HomA(G(—N), F)— Homp,l(s[nl,nz])(G(—N), F) is onto for lo-
cally free F and G.
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For brevity we set Z := SI"1"2], By Lemmas 6.17 and 6.11 we can see p~'(Z)
as the degeneracy locus of any of the four maps

p¥o1: p*Ey — p*Eq, (6.18)
(p*o1, Y1) 1 p*(Eo® H') — p*Ey, (6.19)
(" N %‘) M (Eo® H'") — p*(E) @ H), (6.20)

o:p*(Eg®H") > K, (6.21)

where

K = ker(p*(E1 ® H?) — ,o*Ez).
These give rise to four different perfect obstruction theories for p~!(Z). The one
we are interested in is the fourth (6.21), but we will use the third (6.20) and the

second (6.19) to relate this to the first (6.18) which has the desirable property that
it is p-invariant: it is pulled back from a perfect obstruction theory on Z.

By Lemma 6.11 we can write each of (6.18)—(6.21) as the degeneracy locus of
a map

s:p"A — B,

which on restriction to p~!(Z) becomes a pullback from Z —i.e., there exists a
bundle B’ on Z and s : A|z — B’ such that

B|p_1(Z) ;,O*B/ and Slp—l(z) g,O*S/. (622)
Now apply Section 3 with ro —r =1 to this. We see p~1(Z) as being cut out of
p*P(A) = P(p*A) > A

by the induced section § (3.7) of ¢*B(1), inducing the perfect obstruction theory
(3.8)

ds
q"B*(=Dlp1z) —— Qppulo2)

| d

/0*(1/12) — Qp*p(A)|p—1(Z)

(6.23)

Here I is the ideal of Z C P(A), so the bottom row is the truncated cotangent
complex L ,-1(z).
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The bottom arrow factors through p*Qp(a)|,-1(z), s0 using (6.22) the diagram
factors through

.
q*p*(B)* (=)l =12y — 0* (| p-1(2)
l H (6.24)

d
PHUID) ——— PRl 2

All of the sheaves here are pullbacks by p*. Although on p~'(Z) the map s is
also a pullback (6.22), that does not immediately mean that the maps in the above
diagram are pulled back — they use the restriction of s not just to p~'(Z) but to
its scheme theoretic doubling defined by the ideal p*I%

However, in the first set-up (6.18) the maps clearly are pulled back. Using the
second (6.19) and third (6.20) we will prove the same is true for the fourth (6.21),
so that it descends to give a perfect obstruction theory for Z independent of the
(¢1, ¢2) choices built into A.

Proposition 6.25. Using the description (6.21) of p~'(Z), the resulting diagram
(6.24) is p-invariant: it is the pullback by p* of a perfect obstruction theory
F*— Ly forZ= Slrina]

Proof. Applying (6.24) to the first set-up (6.18) gives

p*d(51)
P EY(=Dlp-1zy ——— 0" Lpgylp-12)

P*&ll ‘

d
P ———— P* Q|12

where I is the ideal of Z C P(Ey).
Applied instead to the second (6.19), we get the diagram

d(p*o1.91)
PG EY(=Dlp1zy ———— 0" Lppianno 1@
(e | | (6.26)
d

2
I/ P Ly g amm o @)

where J is the ideal of p~1(Z) C P(p*Eo® H"). (Throughout this proof we denote
g*H', p*H' and ¢*p*H' simply by H'.) This inclusion factors

o~ NZ) CP(p*Ep) CP(p*Eo® H").

The first has conormal sheaf p*I/1 2 while the second has conormal bundle (H 1)*(—1).
The splitting of p* Eq @ H' induces a splitting

QppEaunlp-1(z) = QpeEn | p-1(2) ® H(=Dlp-1(z)
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and so

J/J?=p*I/1?) & (H)*(~1),
When substituted into (6.26) it becomes

B (p*doy, v Ink
P q El(—1)|p71(2) — P Qp(Eo)brl(z)@(H ) (=1)
(0*51, wr)l H (6.27)

(d,id)
P*U/ 1Y) @ (H') (=) ——" p* Q|1 2) ® (H)*(—1)

The key point of this proof is that the above diagram is pulled back by p* from a
similar diagram on Z. This is clear of all the bundles involved, and also clear of
the first summand of the upper and left hand arrows. But these are the only parts
of the arrows which depend on the thickening of p~1(Z). The other summands
Y| depend only on their restriction to 0~ 1(Z), where they are also pull backs by
Lemma 6.11.

So the second degeneracy locus description of p~!(Z) (6.19) gives rise to a
diagram which descends to (a perfect obstruction theory on) Z. For the third de-
scription (6.20) we add an extra (H 2)*(—1) summand to the diagram (6.27) with
all maps from it zero:

P*q*(E1 @ HY (=)l —t D e | i @ (HYS(=1)
o~ (Z) ® (0,0) p P(Eg)'p (2)

(0*61, wl*)lee (0,0) H (6.28)

(d,id)
pH(I/1%) @ (H')*(—1) 0"y ® (H*(=1)

This is therefore also a pullback by p*. Finally, since (6.12) is a complex, the map
(6.20) takes values in K C p*(E; @ H?). Thus the equation cutting out o1 (2)
takes values in ¢*K (1) C g*p*(E\1® H 2)(1). Therefore the upper horizontal and
left-hand vertical arrows of (6.28) factor through ¢*K*(—1), giving

¢ K*(=Dlp-1(zy ——— P*pgylp-12) @ (HH*(=1)

l | (6.29)

(d.id)
PH(I/ 1Y) @ (HY) (=) ——" p* Q|12 ® (HD* (= 1)

which is the diagram (6.24) applied to the fourth degeneracy locus (6.21).
By Lemma 6.11, both K and its inclusion into p*E; & H 2 are p-invariant. Thus
the quotient diagram (6.29) of the diagram (6.28) is also a pull back by p*. ]
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Proof of Theorem 6.3. Applying (6.23) (with A= Eg@® H' and B = K) to the fourth
description (6.21) induces a perfect obstruction theory on p~ L (Strmaly - And dia-
gram (6.24) applied to (6.21) gives (6.29), which descends — by Proposition 6.25 —
to give a compatible perfect obstruction theory on SV1"21 This compatibility
means they satisfy

p*[S[m,nz]]vir — [,0_1 (S[ﬂl,nz])]Vir € Agima—i(A).

By Theorem 3.6 the second term is A~} (c(K — (p*Eo @ H'))). But the Chern

ry—r
classes of K — (p*Eo @ H') are the same as those of p*(—Eo+ E| — E») and so
those of p*Rs#om, (1, Ip)[1]. Thus

P*[ST I = p* AT (c(RAOM (T, T2)[1])) € Adim Ak (A).
Here ryp — r = 1 is the rank of ker(p*Eo — p™E) over the degeneracy locus, and
ri —ro =rank K —rank Eg — hl((’)g)
= rank E| + h*(Os) — rank E; —rank Eg — h' (Oy)
=—x, )+ x(Os) — 1
=ny+ny—1,

sori—r=nj+nyand k = (ro—r)(r1 —r) = ny +n,. Therefore the above becomes
p ISt = pre, L (RAOML (T1, T2)[1]) € Adim A—n,—ny (A).
But since p is an affine bundle,
P* Ay (SU xSV — A Ay —ny (A) (6.30)
is an isomorphism [Kresch 1999, Corollary 2.5.7], so the result follows. ]

Over the degeneracy locus p~!(SI"112]), our complex C(:;®) has
h’ =0,
trivialised by the inclusion ¢ : Z; < Z,. And h'[—1] is the cone on
hA(CWE D) Z Ot gy LN C(f )] 1 glngna-
By Lemma 6.11 and the description (6.10), this is
RAom,(T1, Tn), := Cone(Rp. O -5 R#om, (11, 1)), (6.31)
where we recall that p is the basechange of 7 to SU"1"21 < §lm1 5 §lm2] Thys

h' = &xt (T, T),. (6.32)
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Theorem 3.6 shows the perfect obstruction theory of a degeneracy locus has virtual
tangent bundle

Taly1z) — (W) ®@h'.

As in the proof of Theorem 6.3 this descends to give our perfect obstruction theory
on Z = Sl"-m1 yielding the following.

Corollary 6.33. The perfect obstruction theory on S"-"2! of Theorem 6.3 can be
written, in the notation of (6.31), as

{TS[”IJ x §ln2l |Sll11.n2J — 5)6[; (Il s IZ)O}V — l]-S["lv”ZJ . (634)

7. k-step nested Hilbert schemes

For n; > ny > --- > ny, the k-step Hilbert scheme
stromoml .= {1, € ) € -+ € Iy € Os, length(Os/1;) = n;}

can be seen inside S x - .. x S as the intersection of the (k—1)-degeneracy
loci

{Hom(f;, 1) =C}, i=1,2,....k—1,

where the maps in the complexes R.Zom; (Z;, Z; 1) drop rank.

So when H=!(Og) =0 we can employ the exact same method as in Proposition 5.4,
using k — 1 sections of tautological bundles on a (k—1)-fold fibre product of relative
Grassmannians, to describe a perfect obstruction theory, virtual cycle, and product
of Thom—Porteous terms to compute its push-forward.

For general S, possibly with H=!(Og) # 0, we can replace the complexes
Rtomy (Z;, Z; 1) with their modifications C (¢} o ®;) of (6.9) after pulling back to
an affine bundle of splittings. Then we use the same method as in Theorem 6.3 to
produce the following result. We use the projections

n:S[nl] X_“XS[nk] xS — S[nl] X.__XS[nk]’

p: S[nls---»nk] xS — S[nl’---vnk]’
and, when I C J, the same Ext(/, J), notation as in (6.31) and (6.32).

Theorem 7.1. Fix a smooth complex projective surface S. Via degeneracy loci
the k-step nested Hilbert scheme SU" inherits a perfect obstruction theory
F* — Lgin,...nqs with virtual tangent bundle

(F*)Y Z|{Tgin) @+ @ Tginy — Ext (L1, Tn) @ -+ @ Exty (Ti—1. Tk )}
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where the arrow is the obvious direct sum of the maps (6.34). This is isomorphic
to the virtual tangent bundle

k k—1
Cone{ (@R%omp(li, L)) — @R%omp(l},li+1)}
i=1 0 iz
of the perfect obstruction theory of [Gholampour et al. 2017b] or Vafa—Witten
theory [Tanaka and Thomas 2017] when the latter are defined. The push-forward
of the resulting virtual cycle

[S[VH ..... nk]]vir c Anl+nk(S[l’l1,...,l’lk])
to S x ... x Sl s given by the product
Cny-ny (RAOM (L1, T)]) U - - - U ey (R OM (T -1, Ti)[1]).

Remark. Note that we are not claiming the two perfect obstruction theories are the
same, although they undoubtedly are. Proving this would involve identifying the
map F* — L produced by our degeneracy locus construction with the one induced
by Atiyah classes in [Gholampour et al. 2017a; Tanaka and Thomas 2017]. We
do not need this because the virtual cycles depend only on the scheme structure of
St and the K-theory class of F*.

Proof. All that is left to do is relate the two virtual tangent bundles. The virtual
tangent bundle of [Gholampour et al. 2017b] is the cone on the bottom row of the
diagram

Rp, O
leBLl id
DL, Rtom,(T;, T.) —— @2} RAom,(T;, T;11) (7.2)

| H

(i, RAOom,(T;, T)), — D—| RHom, (T, Tit1)

Here the left hand column is an exact triangle which defines the term in the lower
left corner. The central horizontal arrow acts on the j-th summand (1 < j < k) of
the left-hand side by taking it to (O, ..., 0, —i}“_l, ij,0,...,0) on the right-hand
side, where i; appears in the j-th position and is the canonical map Z; — Z; ;.
(For j = 1 we ignore the —i;?_l term to get (i1, 0,...,0); for j = k we ignore
the i; term to get (0, ..., 0, —i;_,).) This has zero composition with @le id, so
induces the lower horizontal arrow.

The identity map from (Rp, O)®* = Rp, © ® C* to the central left-hand term

of (7.2) induces a map from Rp, O ® (C* /C) to the bottom left-hand term, where
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Csits in CF via (1,1, ..., 1). Projecting the elements
(1,0,...,0),(1,1,0,...,0),...,(1,1,...,1,0)

of CF defines a basis in C*/C and so identifies Rp, O ® (C*/C) = (Rp, ©)®*—D,
Using our description of the central arrow, this identifies the induced map
k—1
Rp.0® (C"/C) — (D RAom,(T:, Ti1)
i=1
with

y diag(iy.iz, - vik-1)
— s

k—1
(Rp, ©)®*-1 P rAom, (T, Ti1).

i=1
Taking the cone on these two maps from (Rp, ©)®*~D to the two entries on the
bottom row of (7.2) shows the bottom row is quasi-isomorphic to
k k—1
P rAOm, (T, Ty — D RAOM (T;, Ti41),
i=1 i=1
in the notation of (6.31). Each of these complexes has cohomology only in degree 1,
so the virtual tangent bundle of [Gholampour et al. 2017b] is the cone on
k k—1
P ext), (@ Ty — D éxt),(Ti. Tivr)g
i=1 i=1

in the notation of (6.32). On the j-th summand on the left the arrow is
,...,0, —i;‘_l,ij,O,...,O).

But this is (F*)Y, as required.

In [Gholampour et al. 2017a] it is shown that the perfect obstruction theory of
[Gholampour et al. 2017b] is a summand of the obstruction theory one gets from
localised local DT theory. The piece one has to remove is explained in terms of
a more global perfect obstruction theory arising in Vafa—Witten theory in [Tanaka
and Thomas 2017]. O

8. Generalised Carlsson—-Okounkov vanishing

Theorem 6.3 expresses [S["1"21]VI' ag a degeneracy class. This allows us to give a
topological proof of the following result of Carlsson and Okounkov [2012], which
we will then generalise below.

Corollary 8.1. Let S be any smooth projective surface. Over S x S"21 ywe have

the vanishing
ey i (RAOM (T, T)[1]) =0, i > 0, (82)
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Proof. We apply the higher Thom—Porteous formula (3.12) to our modified com-
plex C(if o ®) (6.9) on A. It has degeneracy locus p~ 1 (Stmnaly over which h°
is just O, trivialised by the tautological inclusion Z; < 7, over the nested Hilbert
scheme. Hence (3.12) gives

Cri—ro+i+1 (C'(f]’< o CD)[l]) =0

fori >0, where riy —ro=n;+npy—1.
Since C (i} o ®)[1] only differs from p* R #0om; (I, I>)[1] by some trivial bun-
dles H!, H?, this gives

p*cn|+n2+i (ijom” (Z1, Iz)[l]) =0.

But p*: An1+,12_,~(S[”‘] x Sy Adim A—n,—n,—i (A) is an isomorphism [Kresch
1999, Corollary 2.5.7], which gives the result. ([

The rest of this section is devoted to proving the following generalisation.

Theorem 8.3. Let S be any smooth projective surface. For any curve class B €
H>(S, Z), any Poincaré line bundle L — S x Picg(S), and any i > 0,

Cny+noti (R4 L — RAom (), Ty @ L)) =0 (8.4)
on Sl x Sl 5 Picg(S).

To prove this we will work with more general nested Hilbert schemes of sub-
schemes S D Z; D Z,, by allowing Z; to have dimension < 1 instead of just 0. Sep-
arating out its divisorial and O-dimensional parts, we are then led, for 8 € H»(S, Z),
to the nested Hilbert scheme Sg”’"ﬂ. As a set it is

S/[S""”ﬂ
:={I1(=D) C I, C Os : length(Os/I;) = n;, D Cartier with [D] = B}. (8.5)

As a scheme it represents the functor taking schemes B to families of nested ideals
I71(—=D) — I, «— Og«p, flat over B. Here D is a Cartier divisor, the Og/Z; are
finite over B of length n;, and — on restriction to any closed fibre S, — D}, has
class B and the maps are still injections.

Setting 8 = 0 and n; > n, recovers the punctual nested Hilbert scheme (5.3).
Instead setting n1 = 0 = n, gives the Hilbert scheme of curves Sg, which fibres
over Picg(S) > L with fibres P(H°(L)).

In the sequel [Gholampour and Thomas 2019] we will construct a natural perfect
obstruction theory and virtual cycle on S};”’"ZJ for any 8. Here we only sketch a
less general construction for classes 8 >> 0 since we do not actually need the virtual
class, only the degeneracy locus expression, in order to prove Theorem 8.3.
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8A. Another degeneracy locus construction. So fix § >> 0 sufficiently positive
that H='(L) =0 forall L € Picg(S). The Abel-Jacobi map AJ : Sg — Picg(S) is
then a projective bundle. Let D be the universal curve in Sg x S (or any basechange
thereof) and as usual let & denote any projection down S. Then

Romy (I;(—D), 0) over ST x 1 x 5,
has 72 = 0. Also h° = 7,,O(D) and
Wl = 5)61‘71_[(11(—1)), 0) = éoxtjz_[ (021 (=D),0)= [(KS(_D))[M]]*’

with the last isomorphism® given by Serre duality down the fibres of 7.
Thus Rs#om, (Z;(—D), O) can be trimmed to a 2-term complex of vector bun-
dles Eg — Ej sitting in an exact sequence

0> m.00D)—> Ey— E| — [(KS(_’D))[HI]]* -0,

all of whose terms are locally free.
So just as in Section 6A we may work on an affine bundle p : A — SU11x 721 % Sp
over which this splits canonically, giving an isomorphism

p* RAomy (I;(~D), 0) = p*1,.O(D) ® p*[(Ks(=D)" ] [~1]

which induces the identity on cohomology sheaves. From now on we shall omit
p* from our notation and work as if this splitting holds on SI"1! x S"21 x Sy since
we know that p* induces an isomorphism on Chow groups (6.30).

In particular we get an induced composition

Rstom; (1,(—=D), 1) —— Rom, (Z,(—D), O) —— 7w, O(D)

\ l (8.6)
7, O(D)

SD'O

where sp : O — w, O(D) is induced by adjunction from the section sp : 7*O — O(D)
cutting out D. At a closed point (I, I, D) of S x SI"21 x S4. the horizontal
composition along the top of (8.6) acts on 4° as follows. It takes a nonzero element
of Hom(/,(—D), I,) —1i.e., a point of the nested Hilbert scheme up to scale —to
its divisorial part in H°(O(D)); this is injective. The vertical map then compares

9Given any line bundle L on S, there is a tautological rank n vector bundle
LM =7, (O W L) ® Oz,]

over SI"11 whose fibre over Z 1€S (mlis (L 7,)- Here we are using the obvious family generalisa-
tion applied to the line bundle K g(—D) over § x Sg.
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this to the divisor D. Thus A°(W¥) has one dimensional kernel © (canonically
trivialised by sp) at precisely the points of the nested Hilbert scheme

Sgll,ﬂzl <ty glml o glmal o Sg, 8.7)

and the kernel is never any bigger. Said differently, the 2-term complex of vector
bundles
Cone(V¥)[—1]

drops rank by 1 on the subset (8.7), and no further. By working very similar to
that in Proposition 5.4 one can easily show that (8.7) also describes the degeneracy
locus scheme-theoretically, inducing a perfect obstruction theory on S}[g"“"zj. By
the Thom—Porteous formula of Proposition 3.11 the resulting virtual cycle therefore
satisfies

LS = ¢ (Cone(W)),
where b = x (Cone(¥)) + 1 = n; + n,. More generally, by (3.12),
e (1 (R0 NISET ") = ey ny 4 (Cone(W)).

Since we have already observed that h%(Cone(W)[—1]) = O is trivialised by the
restriction of sp to (8.7), this gives

Cnytnati (R O(D) — RA#omy (11 (—=D), Ir)) =0 on "1 x sl x S5 (8.8)
for >0 and all i > 0. Notice how close this is to the result claimed in Theorem 8.3.

Proof of Theorem 8.3.. We want to descend (8.8) from Sg to Picg(S) and then
extend from B > 0 to all 8 € Hy(S, Z). We will use the formula of [Manivel 2016,
Proposition 1],
n+i
esi(Fo M) = (

Jj=0

rank F—j\ nti—j
i Jei ey,

for any perfect complex F and line bundle M, using the usual conventions for nega-
tive binomial coefficients. Applying this to F = Rr, O(D) — Rstom,(Z,(—D), D)
of rank n := n| +ny gives

ny+ny+i

i (FoM =Y (

Jj=ni+na+1

ni+ny—j

. ny+ny+i—j
w3 e Bye (T (89)

because for smaller j the inequalities ny +no +i — j > n; +ny — j > 0 force the
binomial coefficient to vanish. By the vanishing (8.8) this gives

Cnr-tmri (F @ M) =0 (8.10)
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for i > 0 and any line bundle M on SI"11 x §"21x § 5. For any Poincar€ line bundle £
pulled back from § x Picg(S), the line bundle £(—D) is trivial on each S fibre and
is the pullback 7 *M of a line bundle M on Shml s glmal Sg. (In fact M = O(—1)
is the tautological bundle if we consider Sg — Picg(S) to be the projectivisation
of the vector bundle 7, £.) Substituting into (8.10) gives

Cny4noti (R L — RA oMy (I, T Q L)) =0

on SMl x Sn2l x S5 Since this is pulled back from S x SI%2) x Picg(S) the
Leray—Hirsch theorem shows we have the same vanishing there.

So we have proved the vanishing (8.4) for § >> 0, and we need to generalise it to
all B € Hy(S, Z). We write the left-hand side of (8.4) on S} x S["2] x Picg(S) in
terms of characteristic classes using the Grothendieck—Riemann—Roch theorem ap-
plied to 7. The result is an H2("1F72F0 (§lnl x gln2l x Picg (S))-valued polynomial
expression in the variables

(B,id, y) € H*(S)® H'(S)® H'(S)* ® H*(Picg(S))

c1(£) € H?(Picg(S) x S).

We have shown that this polynomial vanishes on an open cone of classes 8 > 0
(for any y). It therefore vanishes for all g. ([

Corollary 8.11. For any curve class B, let D C S x Sg be the universal divisor.
Then fori >0

Cnytnati (R O(D) — RAom (T1(—D), o)) =0 on S x §1"1 x S

Proof. By [Diirr et al. 2007, Lemma 2.15] we can identify the Hilbert scheme Sg
with the projective cone P*(R?m,.L*(Ks)) of quotient line bundles of R*7,.L*(K),
in such a way that its natural projection to Picg(S) is given by the Abel-Jacobi
morphism, and O(D) = AJ* L Q Op+«(1) over S x Sg. Now substitute

F:=Rn,L—RAHom, (11, L, Q®L), M:=0p:(1)

over S x Slnl Sg into (8.9). Each of the terms on the right-hand side vanishes
for any 8 by Theorem 8.3. ]

Remark. This result suggests that Rw, O(D) — Rs#om, (L, Z,(D)) has the same
K-theory class as an honest vector bundle of rank nj +n, on SV x SI21 x S5, We
show in [Gholampour and Thomas 2019, Equation 4.27] that this is actually true
after we pull back an affine bundle over SI"! x S1"2] x Sg. Therefore its higher
Chern classes are zero after pulling back to this affine bundle. Since this pullback is
an isomorphism on Chow groups [Kresch 1999, Corollary 2.5.7], this gives another
explanation for the vanishing of Corollary 8.11.
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Aravind Asok kindly pointed out that it is possible that any bundle on the affine
bundle is pulled back from the base; this would prove

R O(D) — R7#omy (I, 12(D))

is represented by a bundle on S"11 x Sl x Sg.

9. Alternative approach to the virtual cycle using Jac(S)

Instead of removing H!(Oy) by hand, as we did in Section 6, we can do it geo-
metrically by replacing the moduli space Sl of ideal sheaves by the moduli space
Sl Jac(S) of rank-1 torsion free sheaves.

Let £ be a Poincaré line bundle over S x Jac(S), and let

Ly, Lo — [SI"] x Jac(8)] x [S"2) x Jac(8)] x S

be 7J5 £ and 75 L respectively, where 7;; is projection to the product of the i-th
and j-th factors.
Then the degeneracy locus of the 2-term complex'”

Rotom, (11 @ L1,Tr ® L7) 9.1)
18
sl s Jac(S) < [SP x Jac(S)] x [ x Jac(9)],

where the map is the product of the usual inclusion SU1-721 < ST §ln21 with the
diagonal map Jac(S) C Jac(S) x Jac(S).

Therefore, just as in Sections 3 and 5, S"1"2] x Jac(S) inherits a perfect ob-
struction theory

1 *
(&xt, (L1, 12))™ = Q2501 Jac(S) x 172 xJac(S) |S[”1’"2]><Jac(S)

(note the £; cancel over the diagonal Jac(S)). And the resulting virtual cycle,
pushed forward to Sl x Jac(S) x S"2) x Jac(S), is

Cor g (RHOM: (L ® L1, T ® L2)), g :=h""(S).

Everything so far has been invariant under the obvious diagonal action of Jac(S).
Taking a slice by pulling back to {Og} x Jac(S) C Jac(S) x Jac(S) gives the fol-
lowing.

Proposition 9.2. There is a perfect obstruction theory

(&xt)(Z1, T2))" = Qi) st xrac(s) 9.3)

Shrmly (Og)

107 §5 only 2-term if pg(S) = 0. If pg(S) > 0 then we can pull back to an affine bundle where
HQ(OS) splits off, as in Section 6A.
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on S The push-forward of the resulting virtual cycle

[S[”lsn2]]Vir c An1+nz (S[nl,nz])
to St x Sl x Jac(S) is

Cny+my+g (R OM (T1, Tr ® L)[1]). 9:4)
Remark. The canonical section
O — som(1,,1r) — Rtom(T,, 1)
over SI"-m2l xS gives
R'p.O — &xt (T, To). 9.5)
Dualising gives
(@@xt;,(Il, Iz))* — HI(OS)* ® Oginymy) = QJac(s)-

One can show that this map is the projection of (9.3) to Qjac(s)-
So letting @@xt}, (71, I»)o denote the cokernel of the injection (9.5), we can sim-
plify the perfect obstruction theory (9.3) to

(éaxt}j (Il . 12)0)* — QS["I] ><S[”2] |S[n1.nz] 5
recovering the one of Section 6 by Corollary 6.33.

Remark. The degeneracy locus S of Proposition 9.2 lies in

Sl s gl s (og) <L giml o sin2l o Jac(s), 9.6)

and (9.4) gives an expression for the push-forward of the virtual cycle to the
right-hand side of (9.6). It would be nice to deduce a similar expression for the
push-forward of the virtual cycle to the left-hand side of (9.6) (as we managed in
Theorem 6.3 using the ad hoc method of Section 6A to remove H'(Os)). The more
geometric method of this section does not seem to give such an expression directly.
But we can deduce it from (9.4) if we use the generalised Carlsson—Okounkov
vanishing result of Theorem 8.3. This allows us to write

Cny4natg (RHOMA (T1, T @ L)[1])
= cg(RTx LI1]) - ¢y, (R4 £ — R OMA (T1, T, ® L)) (9.7)

on Sl x S"21 x Jac(S), because the higher Chern classes of
Rn,. L —Rstom; (11,T, ® L)

vanish. (The lower Chern classes do not feature because they are multiplied by
¢ g(Rm (L)) which are pulled back from Jac(S) of dimension g and so are zero.)



664 AMIN GHOLAMPOUR AND RICHARD P. THOMAS

Setting n1 = 0 = ny in (9.4) shows ¢, (Rm, L[1]) is Poincaré dual to the origin
Oy € Jac(S) (all multiplied by SI"1! x §1"21)_ Since £ and R, £ become trivial on
this locus, the right hand side of (9.7) becomes

JiCorns (RAOM (T1, (1),

using the push-forward map (9.6). Combined again with (9.4) this recovers the
result of Theorem 6.3, that the virtual cycle’s push-forward to S"1! x S%! s
Cny4ny (Rj"fomﬂ (Zy, Iz)[l]). This argument would only not be circular, however,
if we could prove the generalised Carlsson—Okounkov vanishing of Theorem 8.3
without using Theorem 6.3.
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their perfect obstruction theory. Just before posting this paper we became aware of
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Almost C, Galois representations and vector bundles

Jean-Marc Fontaine

Let K be a finite extension of Q, and Gk the absolute Galois group. Then Gg
acts on the fundamental curve X of p-adic Hodge theory and we may consider
the abelian category M (Gg) of coherent Ox-modules equipped with a continu-
ous and semilinear action of Gg.

An almost C,-representation of Gy is a p-adic Banach space V equipped
with a linear and continuous action of Gx such that there exists d € N, two
Gk -stable finite dimensional sub-Q ,-vector spaces U, of V, U_ of Cj’), and a
Gk -equivariant isomorphism

V/Uy—Cl/U_.

These representations form an abelian category C(Gg). The main purpose of
this paper is to prove that C(Gg) can be recovered from M(Gg) by a simple
construction (and vice-versa) inducing, in particular, an equivalence of triangu-
lated categories

D"(M(Gx)) — D"(C(Gx)).

1. Introduction

1A. We fix a prime number p, an algebraic closure Q p of Q,, and a finite extension
K of Q, contained in Q p- We set Gg = Gal(Q »/K) and C, the p-adic completion
of @ » on which Gg acts by continuity.

The fundamental curve X ,.C, of p-adic Hodge theory, denoted by X below,
was introduced in [Fargues and Fontaine 2018]. It is a separated noetherian regular
scheme of dimension 1 defined over Q,; i.e., H 0(X,0x) =0 p- The structural
sheaf is naturally equipped with a topology (Section 3D): if U is any open subset
of X, then Ox(U) is a locally convex Q,-algebra. There is a natural action of

Jean-Marc Fontaine passed away on 29 January 2019. I saw him last in late November 2018, when
he mentioned to me that he wanted to submit this paper to Tunisian Journal of Mathematics after
making some small changes, and asked me if I could take care of the paper in case he could not do it
himself; to which I, of course, agreed. Contributing to Fontaine’s program has been one of the joys
of my mathematical career and this paper puts the final touch to the geometrization of this program
via the Fargues—Fontaine curve. — Pierre Colmez, 4 August 2019.
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Gk on X which is continuous. We may consider the abelian category M(Gg) of
Gk -equivariant coherent Ox-modules, that is of coherent Ox-modules equipped
with a semilinear and continuous action of Gg.

Any nonzero F € Ob(M(Gg)) has a degree deg(F) € Z and a rank rk(F) € N,
hence also a slope s(F) = deg(F)/rk(F) € QU {+o00} (with the convention that
s(F) =400 if F is a torsion Ox-module). As in the classical case, one says that
a coherent Ox[Gk]-module F is semistable if F # 0 and if s(F') < s(F) for any
nonzero subobject ' of F.

We may consider the full subcategory M%(Gg) of M(Gg) whose objects are
semistable of slope 0. One of the main results of [Fargues and Fontaine 2018] is
that, if F is any object of MO(Gk), then F(X) = H(X, F) is a finite-dimensional
Q,-vector space, hence is an object of the abelian category Repg, (Gk) of p-adic
representations of Gg (that is of finite-dimensional @ ,-vector spaces equipped
with a linear and continuous action of Gk ) and that the functor

M°(Gk) = Repq, (Gk), F > F(X)

is an equivalence of categories (with V = Ox ®q, V as a quasi-inverse).

The main purpose of this paper is to discuss the following question: Is there an
extension of this result enabling us to give an analogous Galois description of all
objects of M(Gg)?

1B. In [Fontaine 2003], I introduced the category of almost C ,-representations of
Gk: A Banach representation of Gk is a p-adic Banach space (i.e., a topological
Q-vector space whose topology can be defined by a norm and which is complete)
equipped with a linear and continuous action of Gg. With an obvious definition
of morphisms, Banach representations of Gx form an additive category B(Gk)
containing the category Rep@p(GK) as a full subcategory. By continuity, Gk acts

on the p-adic completion C,, of Q » and C, has a natural structure of a Banach
representation. The category C(Gg ) of almost C,-representations of Gk 1is the full
subcategory of B(Gg) whose objects are those V’s for which one can find d € N,
two Gg-stable finite-dimensional sub-Q ,-vector spaces U, of V and U_ of C‘é
and an isomorphism V /U, — (Df,/U_ in B(Gg). This category turns out to be
abelian (loc. cit.).

The curve X has only one closed point oo which is Gk -stable and the orbit under
G of any other closed point is infinite. This implies that a torsion object of M (Gg)
is supported at co. As the completion of Oy  is the ring B;R of p-adic periods,
the category M (Gg) of torsion objects of M(Gg) (<= semistable objects of
slope 00) can be identified with the category Rep;;’fr (Gk) of B;R—modules of finite
length equipped with a semilinear and continuougRaction of Gk. The topology of
any BJR -module of finite length is the topology of a p-adic Banach space and we
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may consider the forgetful functor

Rep’ (Gx) — B(Gk).
dR

We proved in loc. cit. that this functor is fully faithful and that the essential image

C*(Gk) is contained in C(Gg ). Hence, setting C%Gg) = Rep@p(GK), we see that

for s € {0, oo}, the functor F — F(X) induces an equivalence of categories

MS(GK) —> CS(GK)-

Similarly as for a smooth projective curve over a field, we defined in [Fargues
and Fontaine 2018] the Harder—Narasimhan filtration of any F € M(Gkg): this is
the unique filtration

0=Fcrlc..cFlcF=r

such that all the .7‘-"'/.7‘-"'_1 are semistable and that s(]—"i/]-"i_l) > s(]—'i+1/.7-'i) for
0 <i <r. We call the s(F' /Fi=1), for 1 <i <r, the HN-slopes of F.

Let M=%(G) the full subcategory of M (Gg) whose objects are effective, i.e.,
such that all their HN-slopes are > 0.

Similarly let C=%(G) the full subcategory of C(Gx) whose objects are effective,
i.e., those V’s which are isomorphic to a subobject (in C(Gk)) of an object of
C>(Gk).

If 7 is any coherent Ox[Gg]-module, then F(X) is a topological Q,-vector
space equipped with a linear and continuous action of Ggx. Our main result is this:

Theorem 5.9. If F is any coherent Ox|Gg |-module, F(X) is an effective almost
C-representation of Gg. By restriction to M=%(Gg) the functor F — F(X)
induces an equivalence of categories

M=(Gx) — ¢=(G).

This equivalence doesn’t extend to an equivalence between M (Gg) and C(Gk).
Nevertheless each of these two categories can be reconstructed from the other: The
above functor induces an equivalence of triangulated categories

D (M(Gg)) — D" (C(Gk))

and each of them can be reconstructed as the heart of a ¢-structure. More precisely:
« Denote by M<%(G) the full subcategory of M(Gg) whose objects are those for
which all HN-slopes are < 0. Then t = (M=°(Gg), M<°(Gk)) is what is called a
torsion pair on M (Gg). From this torsion pair, we can construct an other abelian
category f(M(Gk))" which is the full subcategory of D?(M(Gg)) whose objects
are those F* such that 7/ =0 for i ¢ {0, 1}, while

HO(]-"') is an object of M<O(GK) and Hl(]-"‘) is an object of MZO(GK).
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There is a natural equivalence (M(Gk))" — C(Gkg).

« Similarly, denote by C<°(G) the full subcategory of C(Gx) whose objects are
those V’s for which Hom(V, W) = 0 for all W in C*°(Gg). Then

' = (C=%(Gx), C=°(Gk))

is a torsion pair on C(Gg) which can be used to define the abelian subcategory
(& (GK))’/ which is the full subcategory of D?(C(Gk) whose objects are those V*
such that Vi =0 for i ¢ {0, 1}, while

HO(V‘) is an object of CEO(GK) and Hl(V‘) is an object of C<O(GK).

There is a natural equivalence (C (GK))’/ — M(Gg).

A description a la Beauville-Lazlo of vector bundles on X gives an equiva-
lence of categories between G -equivariant vector bundles on X and Berger’s B-
pairs [Berger 2008]. Specializing the above results to the subcategory Bundy (Gg)
of M(Gkg) of vector bundles recovers (via this equivalence of categories) some
results of Berger [2009].

1C. Contents. In Section 2, we recall and slightly extend the results of [Fontaine
2003] on almost C,-representations. We first recall (Section 2A) some basic facts
about locally convex spaces over a nonarchimedean field. We introduce (Section 2B)
the category of (p-adic) ind-Fréchet representations (of Gg). Then (Section 2C),
we recall some basic facts about the ring of periods B;R and By that we equip
with a locally convex topology. In Section 2D, we discuss some properties of
BjR-representations and Bgg-representations (of Gg).

We describe (Section 2E) the main properties of the category C(Gg) of al-
most C,-representations and of its full subcategories C%(Gg) of finite-dimensional
p-adic representations and C*°(Gg) of BJR—representations of finite length. In
Section 2E, we also introduce the category C(Gg) of representations of Gx which
are suitable limits (in the category of locally convex p-adic representations of Gg)
of almost C,-representations. In Section 2F, we recall the notion of almost split
exact sequence of B(G ) and the fact that an extension in B(Gg) of two almost C,,-
representations is an almost C,-representation if and only if the associated short
exact sequence almost splits.

In Section 3, we study the category Rep Be(GK) of B.-representations of Gk
(several of the results we obtain are already in [Berger 2008; 2009]). We also
recall and make more precise some of the results of [Fargues and Fontaine 2018] on
coherent Ox[Gg |-modules. We first recall (Section 3A) some basic facts about the
sub-Q,-algebras B:;is and B, of B;g which are stable under the action of Gx and
equipped with a natural topology of locally convex algebras. Then we introduce
(Section 3B) Repy (Gk) and show that this is a Q -linear abelian category.
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We recall (Section 3C) the definition of the fundamental curve X = X Q,.C,
of p-adic Hodge theory introduced in [Fargues and Fontaine 2018] on which Gg
acts and give a description of the category Coh(Oyx) of coherent Ox-modules. We
discuss (Section 3D) the topology on the structural sheaf Ox and give a description
of the category M (Gg) of coherent Ox[Gg ]-modules (Section 3E). We describe
(Section 3F) the Harder—Narasimhan filtration on any F € M(Gg).

We consider two full subcategories of M(Gk):

— the category M%(Gy) of the semistable objects of slope 0,

— the category M*(Gg) of objects whose underlying Ox-module is torsion.

We show (Section 3G) that the global sections functor induces equivalence of
categories

M%(Gg) = C*(Gkx) and M™>®(Gk) — C>®(Gk).

In Section 3H, we introduce two kinds of twists of the objects of M(Gg), the
Tate twists and the Harder—Narasimhan twists.

Say that a B,-representation A is trivialisable if there exists U € C°(Gk) and
an isomorphism B, ®qg, U — A. In Section 31, we show that Repg (Gg) is the
smallest subcategory of itself containing trivialisable B,-representations and stable
under taking extensions and direct summands.

In Section 3A0, we show that, if A is a B.-representation of Gk, then the un-
derlying topological Q,-vector space equipped with its action of Gk is an object
of 6(GK) and that the forgetful functor

Repy, (Gx) — C(Gk)

is exact and fully faithful. (This was already known to Berger [2009, théoréme B].)

We conclude this section by discussing the cohomology of coherent Oy -modules
(Section 3A1) and of coherent Ox[Gg]-modules (Section 3A2). We show that,
taking the global sections, we get a functor

M(Gg) = C(Gk), Fr> F(X)=H%X, Oy)

whose essential image is contained in C 20(Gg).

The aim of Section 4 is to construct a left adjoint
C(Gg) > M(Gk), V= Fy

of the functor F — F(X).

We show (Section 4C) that any almost C,-representation V has a B.-hull, i.e.,
there is a pair V, = (V,, LZ) with V, a B.-representation (of Gg) and LZ V-V,
a morphism in 8(GK) such that, for all A € Rep 8,(Gk), the map

HomRepBE(GK)(Ve, A) — Homg(GK)(V, A)



672 JEAN-MARC FONTAINE

induced by ¢! is bijective.

Similarly with obvious definitions, we show that V has a B;R -hull Vd} and a
BdR—hull VdR-

Using the existence of these hulls and the relations between them and knowing
the description of M(Gg) given in Section 3E, the construction of the functor
V = Fy is quite simple.

The proof of the existence of these hulls relies heavily on the description of all
extensions in C(Gg) of an object of C*°(Gg) by an object of C%(Gg), which is
given in Section 4B.

The aim of Section 5 is to prove our main result (Theorem 5.9).

We show in Section SA (resp. 5B) that M=%(Gy) (resp. C=%(Gk)) is the smallest
full subcategory of M (Gx) (resp. C(Gg)) containing M®(Gg) and M*®(Gg) (resp.
C%(Gg) and C*®(Gk)) and stable under extensions and direct summands.

In Section 5C we prove by dévissage that the functor

MZ(Gk) — €*°(Gy), Fr> F(X)

is an equivalence of exact categories (see Section 1E), the functor V +— Fy being
a quasi-inverse.

The purpose of Section 6 is to extend the main result to the categories M (Gg)
and C(Gg).

After some general nonsense on derived categories of exact subcategories of
abelian categories (Section 6A), we first extend the main result to an equivalence
of of triangulated categories (Section 6B),

D" (M(Gg)) — D" (C(Gk)).

To go further, we need to introduce the full subcategories M=Y(Gk) of M(Gk)
and C<°(Gg) of C(Gk) of coeffective objects. The main theorem said that, if
F € MZ%(Gg), then H°(X, F) has a natural structure of an object of C=%(Gg)
and this structure determines F. We prove in Section 6C that, if F € M=%(Gy),
then H'!(X, F) has a natural structure of an object of C <9(Gg) and this structure
determines F.

Using this result, we can build C(Gg) from M(Gg) and conversely. We give
two different recipes (with independent proofs) for that. In Section 6D we describe
explicitly the heart of the ¢-structure on D?(M(Gk)) corresponding to C(Gg) and
of the ¢-structure on D?(C(Gk)) corresponding to M(Gg)). In Section 6E, we
explain that (M=°(Gk), M<°(G)) is a torsion pair on M(Gk). One can use it to
construct a new abelian category equipped with a torsion pair. Up to equivalence,
it is C(Gg) equipped with the torsion pair (C<°(Gk), C=°(Gk)).
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1D. A remark on possible generalisations. The results of this paper are obviously
a special case of a much more general result where K is replaced by any reasonable
rigid analytic, Berkovich or adic space. Let’s sketch a description of the case where
K is now any field complete with respect to a nonarchimedean nontrivial absolute
value with perfect residue field of characteristic p.

» We can define the abelian category Coh(Ox, ) of coherent modules on the curve
X k. When K is a perfectoid field, Xk is the curve X@p, x> constructed in [Fargues
and Fontaine 2018]. If K is not perfectoid, then Xk doesn’t exist but one can
define the category of coherent modules over this virtual curve. When K is a finite
extension of @, there is a natural equivalence of categories

Coh(Oyx,) — M(Gg).

» We still have the Harder—Narasimhan filtration on Coh(Oyx, ) and may consider
its exact subcategories Cohzo((’)x «) and C0h<0((’)x «) which form a torsion pair ¢
on Coh(Ox, ).

 The construction of the curve Xk is functorial in K. If C is the completion of a
separable closure K* of K, for any coherent Oy, -module F, we may consider the
pull-back f*F of F via f: X¢c — Xk.

If Gk = Gal(K¥/K), we may consider the exact category B(Gg) of p-adic
Banach representations of Gx and we have exact and faithful functors

Coh=%(0x,) — B(Gx), Fr> H'(Xc, f*F),
Coh=%(0x,) — B(Gx), Fw H'(Xc, f*F).

But, in general, these functors are not fully faithful. Working with B(Gk)
amounts to work over the small pro-étale site of K and we need to work with
a bigger site. A possibility is to use the big pro-€tale site Kps 0f K as defined
in [Scholze 2017, §8]! and to replace B(Gk) with the category Vectg ,(K) of Q-
sheaves over Kpos, and C(Gg) with the category of pseudo-geometric Q) ,-sheaves,
an abelian full subcategory of Vectg,(K) defined by imitating the definition of
C(Gg) as a full subcategory of B(Gg).

The correspondence K — Xk can be extended to a functor

Ur—>XU

More precisely, we fix an uncountable cardinal « satisfying the properties of [Scholze 2017,
Lemma 4.1]. The underlying category is the category of perfectoid spaces over K which are x-small
[loc. cit., Definition 4.3] and coverings are as defined in [loc. cit., Definition 8.1] (the only difference
with the big pro-étale site of Scholze is that we restrict ourself to perfectoid spaces lying over the
given nonarchimedean field K).
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from the category of perfectoid spaces to the category of Q,-schemes. We also
have exact and faithful functors

Coh™(Ox,) — Vectq,(K), Fr> (U H Xy, fiF)).
Coh=(Ox,) — Vectq,(K), F (U H'(Xy, f57F)).

where fy : Xy — Xk is the structural morphism.

It seems likely (and not so hard to prove) that these functors are fully faithful
and that one can describe their essential images Vectai’zo(l( ) and Vectgi’<0(K ).
These two functors seem to induce an equivalence of categories

(Coh(0x,))" — Vectggp (K)

the induced torsion pair on Vectgi (K) being t' = (Vecta(p) (K), Vectag (K)).

In the case where K is the p-adic completion of an algebraic closure of Q,,
this result has been proved by Le Bras [2018]. We hope to come back soon to this
generalisation.

1E. Conventions and notations. 1f C is a category, we often write C € C for C €
Ob(0).

An exact subcategory of an abelian category A is a strictly full subcategory of
A containing 0 and stable under extensions.

If B is an exact subcategory of A, we say that a sequence of morphisms of A
is exact if it is exact as a sequence of morphisms in 4. In particular, we have the
obvious notion of a short exact sequence. It is easy to see that, equipped with this
class of short exact sequences, B is an exact category in the sense of Quillen (cf.
[Quillen 1973], see also [Laumon 1983]). Actually, any exact category B in the
sense of Quillen can be viewed as an exact subcategory of an abelian category (cf.
[Quillen 1973, §2]).

As usual Z,(1) is the Tate module of the multiplicative group, and, for alln € N,

Zy(n) =Sym} Z,(1),  Zy(—n) = L2,(Zy(n). Z,).
If M is any Z,-module equipped with a linear action of G, for all n € Z,

M@n) =M ®z,Z,(n).

2. Representations of Gg

In this paper, each time we say “representation”, we mean “representation of Gg".
In this section, we introduce a few categories of such representations and de-
scribe some of their properties. Most of them are already known (see in particular
[Fontaine 2003]) or easy consequences of known properties.
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2A. Banach, Fréchet, ind-Banach and ind-Fréchet. We refer to [Emerton 2017]
and [Schneider 2002] for basic facts about p-adic functional analysis. All results
of this paragraph are either contained or easy consequences of results contained in
at least one of these two memoirs.

We fix a nonarchimedean field E, i.e., a field complete with respect to a non-
trivial nonarchimedean absolute value, and denote by Og its valuation ring. In the
applications in this paper, E will be Q,,.

o A locally convex E-vector space is a topological E vector space V such that the
open sub-Og-modules of V form a fundamental system of neighbourhood of 0.

o A Fréchet E-vector space or an E-Fréchet is a locally convex E-vector space
which is metrisable and complete.

e A Banach E-vector space or an E-Banach is a Fréchet vector space whose
topology can be defined by a norm.

o An ind-Fréchet (resp. ind-Banach) E-vector space or an ind-E-Fréchet (resp.
ind-E-Banach) is a locally convex E-vector space V, such that one can find an
increasing sequence (V,),en of closed sub-E-vector spaces such that
(l) V= UneN Vn’

(ii) each V,,, with the induced topology, is an E-Fréchet (resp. an E-Banach),
(iii) the topology of V is the coarsest locally convex topology with these prop-
erties.

Condition (iii) is equivalent to the fact that a sub-Og-module L of V is open if
and only if LNV, isopenin V, for all n € N.

If V is a topological E-vector space, V is an E-Fréchet if and only if V is com-
plete and its topology can be defined by a countable family (g, ),cn Of seminorms.

In this situation, replacing each g, by g, = sup,;, g;» we may assume that
gn < gns1 for all n. Then, if V, is the Hausdorff completion of V, with respect
to ¢,, this is an E-Banach and we have an homeomorphism

Vi Liﬂlnef\l Va

(with the inverse limit topology on the RHS). Conversely, any inverse limit, indexed
by N, of E-Banach is an E-Fréchet.

Let V be a topological E-vector space. We say that a decreasing filtration
(F"V),ez by closed sub-E-vector spaces of V is admissible if

(l) Ul’lGZ F'V =V and mnel F'V :0,

(i) if m € Z and r € N, then F"V /F"* "V, equipped with the induced topology,
is an E-Banach,
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(iii) if m € Z, the natural map
F"V —lim,  F"V/F""V
is an homeomorphism (with the inverse limit topology on the RHS),

(iv) a sub-Og-module L of V is open if and only if L N F"*V is open in F"V for
all n.

The following result is obvious:
Proposition 2.1. Let V be a topological E-vector space.

(1) V is an ind-E-Fréchet if and only if it has an admissible filtration.

(i1) V is an E-Banach (resp. an E-Fréchet, resp. an ind- E-Banach) if and only if
has an admissible filtration (F"V ), cz such that FOV=Vand F'V =0 (resp.
FOV =V, resp. F'V =0).

Proposition 2.2. Let V| and V, two ind-E-Fréchet, (F"V\),cz an admissible fil-
tration of Vi and (F"V),cz an admissible filtration of V,. Let u : Vi — V5 an
E-linear map. The following are equivalent:

(1) The map u is continuous. For all m € Z, there exists n € Z such that u(F™ V) C
F"V, and the induced map

F"Vi — F"'V,
is continuous.

Proof. (i))=>(i): It is enough to show that, if L is an open lattice in V;, then
L) is open in V| which means that if m € Z, then Y L)NF"V; is open
in F™V| which is indeed true as, if n is such that f(F™V;) C F"V,, this is the
inverse image of the continuous map F”V; — F"V, which is induced by f.
(1)=(ii): All the F"V, are E-Fréchet. For each fixed m, so is FV; and the
existence of such an »n is explained in [Schneider 2002, Corollary 8.9]. O

Corollary 2.3. Let V be an ind-E-Fréchet and (F"V ), cz an admissible filtration.
Then V is an E- Banach (resp. an E-Fréchet, resp. an ind- E-Banach) if and only if
there exists m <n such that F"V =V and F"V =0 (resp. m such that F"V =V,
resp. n such that F'V = 0).

Corollary 2.4. Let V be an ind-E-Fréchet and (F{'V),ez and (F}'V),ez two ad-
missible filtrations. For all m € Z, there exists n € Z such that F{"V C F}'V.

An ind Fréchet E-algebra is a topological E-algebra B which has a multiplica-
tive admissible filtration, i.e., an admissible filtration (F" B),cz of the underlying
topological E-vector space such that, if m,n € Z, and, if b € F™B, b’ € F"B, then
bb' € F"" B,
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A Banach (resp. Fréchet, resp. ind-Banach) E-algebra is an ind Fréchet E-
algebra B which has a multiplicative admissible filtration (F"B),cz such that
F°B=RBand F'B =0 (resp. F°'B = B, resp. F!B =0).

2B. Ind-Fréchet representations. From now on E will be Q,. We will say Ba-
nach, Fréchet, ind-Banach, ind-Fréchet instead of Q,-Banach, Q,-Fréchet, ind-
Qp-Banach, ind-Q ,-Fréchet. We will say Banach algebra, Fréchet algebra, and
so on, instead of @ ,-Banach algebra, Q ,-Fréchet algebra.

The category ZF (Gk) of ind-Fréchet representations (of Gi) is the category
whose objects are ind-Fréchet equipped with a @ ,-linear and continuous action
of Gk, and whose morphisms are Gg-equivariant continuous @Q ,-linear map.

The category ZF (G ) is an additive Q ,-linear category and any morphism

f2V1—>V2

has a kernel and a cokernel: the kernel is the G -stable closed sub-Q ,-vector space

which is the kernel of the underlying @ ,-linear map. The cokernel is the quotient

of V, by the Gk -stable closed sub-Q,-vector space which is the closure of f (V).
We say that a morphism f is strict if the map

Coim(f) — Im(f)

is an homeomorphism.

Similarly one can define in an obvious way the categories B(Gg), ZI3(Gg) and
F(Gg) of Banach, ind-Banach, Fréchet representations (of G ). This is consistent
with the definition of B(Gg) already given in the introduction.

2C. The rings B;'R and B,p and their topologies. We denote by B;r the usual
field of p-adic periods. Recall (from [Fontaine 1994, §1.5], for instance) that this
is the fraction field of a discrete valuation ring Bij that Gk acts naturally on these
two Q,-algebras and that Z, (1) is naturally a Gg-stable sub-Z,-module of B}.
We choose a generator ¢ of Z,(1). This is also a generator of the maximal ideal
of B;R. Therefore, for all d € Z, the d-th power of this ideal is

Fil! Byg = Bj.t* = B} (d)
and is stable under Gk . For each d > 0, we set
By = B}, /Fil’ Byg.

Recall [Fontaine 1994, §1.5.3] that B; has a natural structure of a Banach algebra
on which the action of Gg is continuous, that, in particular, By = C,, and that,
for each d € N, the projection B;4| — By is also continuous. Equipped with the
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topology of the inverse limit, BjR becomes a Fréchet algebra on which Gk acts
continuously.

For all n € Z, multiplication by #* defines a bijection B;R — Fil" Byg and we
equip Fil" B;g with the induced topology (for which the action of Gk is continu-
ous); note that multiplication by " does not commute with the action of Gg.

If n € Z, then Fil"*! B, is closed in Fil” Byg and we equip B;g with its natural
locally convex topology. (A sub-Z,-module L of By is open if and only if, for
all n € Z, the Z,-module L NFil" B, is open in Fil" Byg.)

We see that By is an ind-Fréchet K -algebra, with (Fil” Byg),cz as a Gx-equiva-
riant multiplicative admissible filtration. In particular Byg has a natural structure
of an ind-Fréchet K -representation of Gg.

2D. B;R and Bgg-representations. Any BJR—module of finite type has a natural
structure of a K-Fréchet and any finite-dimensional B, g-vector space has a natural
structure of an ind-Fréchet K -vector space.

A B;R—représentation (resp. a Byr-representation) (of Gk ) is a B;R-module of
finite type (resp. a finite -dimensional B,g-vector space) equipped with a semilin-
ear and continuous action of Gg. With the Gg-equivariant B;R—linear maps as
morphisms, these representations form a category that we denote by Rep B}, (Gk)
(resp. Repg,, (G ).

The category Rep

tor
B+
defined in the introdud(ftion (Section 1B) is the full subcategory of Rep B, (Gg)

(Gk) = C*®(Gk) of torsion B;R—representations (of Gk)

whose objects are such that the underlying BjR-module is torsion (<= of finite
length).

Recall (from [Stacks, 02MN], for instance) that a Serre subcategory C of an
abelian category A is a strictly full subcategory of A containing O which is stable
under subobjects, quotients and extensions. In particular, this is an abelian category.
Given A and C, one can define the quotient category .A/C which is an abelian
category, solution of the obvious universal problem.

Proposition 2.5. The category C*°(Gg) is a Serre subcategory of Rep B;R(GK)-
The functor

RepB;R(GK) — Repg,,(Gk), W Bur ®pt, w
is essentially surjective and induces an equivalence
Repys (Gk)/C™(Gk) = Repg, (Gk).

Proof. The essential surjectivity comes from the fact that, for any B, g-representation
W, there is a G -stable lattice B;R—lattice WT. This result itself comes from the
fact that if W(;r isa BJR—lattice of W, then W) is an ind-Fréchet K-vector space
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with (¢" WJ )nez forming an admissible filtration. For each w € W, the g(w)’s
for g € Gk form a compact subset of W, hence it is bounded which implies (by
[Schneider 2002, Proposition 5.6]) that it is contained in " W(;r for n > 0. Hence,
ifey, ez, ..., eqisabasis of W over Byg, there exists n € N such that g(e;) et ™" W(;r
for 1 <i <d and g € Gg. Therefore the sub—B;R—module W of W generated
by all these g(e;)’s is also contained in " WJ and is a Gg-stable BJR-lattice
of W. The continuity of the action of Gk on W implies the continuity of the action
on W which is an object of Rep B, (Gk). We have an obvious identification of
Bir ® B, W to W and the functor is essentially surjective.

The rest of the proof is straightforward. (]

If W is any object of C*°(Gg), there is an integer d such that the underlying
BJR-module is a By-module of finite type. As By is a Banach Q-algebra, the
underlying topological Q,-vector space is a Banach and W has a natural structure
of a p-adic Banach representation.

Proposition 2.6 [Fontaine 2003, théoreme 3.1]. The forgetful functor
C*(Gk) — B(Gg)
is fully faithful.

In other words, given a p-adic Banach representation W of Gk, there is at most
one structure of BJR—module of finite length on W extending the action of @, such
that W becomes a torsion BjR—representation.

We use this result to identify C*°(Gg) to a full subcategory of B(Gg).

We denote by
C*(Gx)

the full subcategory of ZF(Gg) whose objects are those W’s which admit a Gg-
equivariant admissible filtration (F"W),cz such that F"W/F"W € C*°(Gg) for
all m <n in Z. By passing to the limit, the previous proposition implies that, on
such a W, there is a unique structure of B;R—module such that the action of G is
semilinear and each F" W is a sub-BjR-module (and this structure is independent
of the choice of (F"W),cz). We also see that 500(GK) is an abelian category and
that any morphism of C™ (G) is Bj-linear.

Moreover Rep B, (Gk) can be identified with a full subcategory of 5W(GK).
Proposition 2.5 implies that this is also true for Repg,  (Gk).

Proposition 2.7. Letd € N.
(1) Let Wy be an object of C*°(Gx) such that length B, Wi > d. There exists a

nite extension K' of K contained in Q, and a G g-stable sub-B,-module
P dR
W1 of Wi of length d.
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(ii) Let W, be an object of Rep B}, (Gg) vlith length B}, Wy > d. There exists a
finite extension K' of K contained in Q) and a G g -stable sub-B;R-module
W, of W such that length B, W2 /W =d.

Proof. (1) Via an obvious induction, we see that it is enough to check it for d = 1.

Replacing W by the kernel of the multiplication by ¢ in W}, we may assume that

Wy is a C,-representation.

Recall some basic facts of Sen’s theory [1980/81]:

Let x : Gk — Z}, be the cyclotomic character, Hg the kernel of x and L =
(C,,)HK which is also the completion of Ko, = @[I,{K We set 'y = Gg/Hg =
Gal(K~/K). The character x factors through a character I'x — Zj‘, that we still
denote by . .

For any C,-representation W (of Gg), denote by W1]<£ the union of the finite-
dimensional sub-K -vector spaces of W#¥ stable under the action of Gx (acting
through I'k). This is a finite dimensional K .-vector space equipped with a semi-
linear action of I'x. With obvious notations, we have:

 The functor
Repe, (Gk) — Repy (Tk), W > W}
is exact and fully faithful.
e Forany W ¢ Rep@p (Gk), the obvious map

C,®k., W, > W
is an isomorphism.

e Forall W € RepCP(GK), there exists a unique endomorphism aw g of the Koo-

vector space WI]; such that

forall w e Wg, there is an open subgroup I', of I'x such that, if y € I'y,, then
y (w) = exp(og(x (¥)).aw,x) (w).

(The series exp(Aaw, ) converges to an endomorphism of WIJ; for all small
enough A € Z,.)

It is easy to see that, if K; is a finite extension of K contained in Q »» then Wlél
can be identified with (K{)eo ®x_, W/; and that aw g, is the (K)oo-endomorphism
of W,é1 deduced from aw, x by scalar extension.

Choose such a K containing an eigenvalue A of aw, g, hence also of aw g, and
choose a nonzero eigenvector wg € W,él for a{v’ k,- There is a finite extension K’

of K, contained in Q p such that, for all y € I'k/, we have

y (wo) = exp(log(x (¥)).A).w.
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We can view wy as a nonzero element of W{, and we see that for all b € K’ and
all y € 'g/, we have

y (bwg) = y (b). exp(log(x (v)).A).w,

hence the K’-line of W}, generated by wy is stable under the action of I'g. There-
fore the C,-line W/ of W generated by wy is stable under the action of Gg.

(i1) Replacing W, by W,/t" W, with r big enough, we may assume that W, is
an object of C*°(Gg). The result follows by duality from the assertion (i) applied
to the Pontryagin dual W = L B;R(Wz, Bir/ BIR) of Wj. ([

2E. Almost Cp-representations. 1f Vi and V; are two objects of ZF(Gg), an al-
most isomorphism

f: Vi~ V,, also denoted by f: Vi/U — V,/Us,

is a triple f = (Uy, Uy, f) where Uy is a finite-dimensional Gk -stable sub-Q -
vector space of Vi, U, is a finite dimensional G -stable sub-Q,-vector space of
V5 and

fivijUy— Va/Us

is an isomorphism of ind-Fréchet representations.
We say that two objects V| and V, of ZF(Gk) are almost isomorphic if there
exists an almost isomorphism

f2V1->V2.

Proposition 2.8 [Fontaine 2003, théoreme 5.3]. Let V be an object of B(Gk). The
following are equivalent:

(1) V is almost isomorphic to a torsion B;R-representation.
(ii) V is almost isomorphic to a C,-representation.

(iii) There is d € N such that V is almost isomorphic to Ci (equipped with the
natural action of Gg).

We denote by C(Gy) the category of almost C,-representations (of Gx ), that is
the full subcategory of B(Gg) whose objects satisfy the equivalent conditions of the
previous proposition. This is coherent with the definition given in the introduction
(Section 1B).

The category C(Gg ) contains C*°(Gg) = Reptl‘;s;+ (Gk) and C°(Gg) = Rep@p (Gg)
as full subcategories. §

A weak Serre subcategory B of an abelian category A is a strictly full subcate-
gory which is abelian, such that the inclusion functor is exact and which is closed
under taking extensions.
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The following results are essentially contained in [Fontaine 2003]:

Theorem 2.9. The category C(Gy) is abelian and any morphism of C(Gx) is strict
as a morphism of B(Gk). A sequence of morphisms of C(Gx) is exact if and only
if the underlying sequence of Q ,-vector spaces is exact. The category C%Gg) isa
Serre subcategory of C(Gg)and C*°(Gy) is a weak Serre subcategory of C(Gg).
Furthermore:
() IfU € C°(Gk) and W € C*®(Gg), then Hom¢ g, (W, U) = 0.

(i1) There exists additive functions
d:0ObC(Gk) >N and h:0bC(Gk)— Z,

uniquely determined respectively by d(U) =0if U € C%(Gg) and d(C,) =1
(resp. h(U) = dimg, (U) if U € C%(Gg) and h(C,) = 0); moreover, if W €
C®(Gk), then d(W) = lengthB;R(W) and h(W) =0.

Proof. This is [Fontaine 2003, théoréme 5.1] with some extras:

« The fact that C°(G) is a Serre subcategory of C(Gg), which is a triviality.

o The fact that C*°(Gg) is a weak Serre subcategory of C(Gg). The only thing

which is not obvious is the stability under extensions of C*°(Gg) inside of C(Gk),
which is contained in [loc. cit., proposition 6.3].

« The fact that if U € C°(Gg) and W € C*®(Gk), then Home g, ) (W, U) =0, which
is the corollary [loc. cit., théoreme 5.1]. O

For instance, we see that, if U is a Gg-stable finite dimensional sub-Q ,-vector
space of C,, then d(C,/U) =1 and h(C,/U) = —dimg, U.
If V e C(Gg), W eC®(Gk) and f:V/Uy — W/U_ is an almost isomorphism,
from the diagram
0—U;s —V—V/U—0

1=

0—U-—W-—W/U_—0
whose lines are exact, we deduce that
d(V)y=dW), h(V)=hUys)—hU-)=dimg,(U+)—dimg,(U-).
Corollary 2.10. (i) For any V € C(Gk), we have V € C°(Gk) <= d(V) =0 (in
which case h(V) =dimg, V > 0).

(i) If g : V. — W is a monomorphism of C(Gg) with W € C*°(Gg) such that
d(V)=d(W), then g is an isomorphism.

Proof. Looking at an almost isomorphism as above, the first assertion is immediate.
For the second, let U be the cokernel of g. We have d(U) =0, hence U € Cc%(Gg),
hence U =0, as there is no nontrivial morphism from W to an object of c%(Gg). O
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Remark 2.11. As C°(Gy) is a Serre subcategory of C(Gx), we may consider the
quotient
C(Gx) =C(Gx)/C"(Gk)

It is known [Fontaine 2003, proposition 7.1] that this abelian category is semisim-
ple with exactly one isomorphism class of simple objects which is the class of C,
viewed as an object of this category. Hence C(Gk) is completely determined, up
to equivalence, by the somewhat mysterious huge skew field Dg of the endomor-
phisms of C,, in this category [loc. cit., proposition 7.2].

We denote by
C(Gk)

the full subcategory of ZF (Gk) whose objects are those V’s which admit a Gg-
equivariant admissible filtration (F"V),cz such that F"V /F"V e C(Gk) for all
m<nin2.

By passing to the limit, we see that the previous theorem implies:
Proposition 2.12. Any morphism of a(GK) is strict (as a morphism of ZF(Gg))
and this category is abelian. A sequence of morphisms of 8(GK) is exact if and
only if the underlying sequence of Q ,-vector spaces is exact. The category C(Gx)
is a Serre subcategory of 6(GK) of which 5OO(GK) is a weak Serre subcategory.
Remark 2.13. AsRep BJR(GK) and Repy (G ) are Serre subcategories of 5OO(GK),
these two categories are also weak Serre subcategories of C(Gk).

2F. Almost split exact sequences. We say that a sequence of morphisms of ZF (Gg)
is exact if the underlying sequence of Q ,-vector spaces is exact.
An almost splitting of a short exact sequence

0>V V>V >0

in ZF (Gg) is a Gk -stable closed sub-Q ,-vector space S of V such that
(i) the compositum S C V — V" is onto,
(ii) the Q-vector space SN V' is finite-dimensional.

We say that such an exact sequence almost splits if there exists such an al-
most splitting. This is equivalent to saying that there exists a Gg-stable finite-
dimensional sub-Q ,-vector space U of V' such that the sequence

0=V /U->V/U-V'—=0
splits.
We observe that any almost splitting S of a short exact sequence

0>V V>V >0
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defines, in an obvious way, almost isomorphisms
Vs VeV «-SeV

Proposition 2.14 [Fontaine 2003, théoreme 5.2]. Let
0->W->W->W' -0

be a short exact sequence in TF(Gg) with W and W in C*°(Gg). Then W is in
C*(Gk) if and only if the sequence almost splits.

Proposition 2.15 [Fontaine 2003, proposition 5.2]. Let
0>V ->V->V"'>0

be a short exact sequence in TF(Gg) with V' and V" in C(Gk). Then V is in
C(Gk) if and only if the sequence almost splits.

Corollary 2.16. Among the strictly full subcategories of B(Gg) which are abelian,
containing C, and C%(Gxk) and stable under almost split extensions, there is a
smallest one. This is C(Gg).

Proof. Clear! O

3. B.-representations and coherent Ox[Gg ]-modules
3A. Thetopological Q) ,-algebras Bc";is and B,. Recall (from, e.g., [Fontaine 1994,
§2.3 and §4.1]) that Bc’:is is a Banach algebra equipped with a continuous endo-
morphism ¢ and a continuous action of Gy commuting with ¢. There is a natural

Gk -equivariant continuous injective homomorphism of topological Q ,-algebras

that we use to identify B;is

For each d € N, we set

to a subring of B, containing .

P! =1{be Bl |p(b)=pib).

cris

This is a Gk -stable closed sub-Q ,-vector space of B;is as well as of B;R (e.g. [Kisin

2003, Lemma 3.3]). Moreover B:;is and B;R induce the same topology on P¢
which can be viewed as a Banach representation of Gx. We have a canonical short

exact sequence (see [Colmez and Fontaine 2000, proposition 1.3], for instance)

0—>@p(d)—>Pd—>Bd—>O

where Q,(d) = Q,t? and P? — By is the compositum P¢ C B}, C B}, = B,.

In particular we see that P¢ is an almost C p-representation with d (P?) =d and
h(P%) =1.
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As usual, we set B_.. = B;is[l /t], which we can view as a Gg-stable subring
of Bd R

We have ¢(¢) = pt and ¢ extends uniquely to Bcs. Moreover the natural map
Beis — Bygr = B;R[l /t] is still injective and we use it to identify B to a Gg-
stable sub-Q,-algebra of Byg.

Recall that

cris

B, = {b € Bris I QD(b) = b}

is also a Gk -stable sub-Q,-algebra of B;z. We endow it with the topology induced
by the (locally convex) topology of B;g.
Then, we have
B, =lim,_ Fil "B, = |J Fil B,
deN

where, for all d e N,
Fil "B, = B,N Bt = P'.t7" = PY(—d)

is an almost C,-representation (with d(P%(—d)) =d and h(P?(—d)) = 1) home-
omorphic to P? as a Banach. Setting P? = pP4(—d) =0 ford > 0, we see that B,
is an ind-Banach algebra with (P ~"(n)),cz a Gg-stable multiplicative admissible
filtration.

3B. B,-representations. The topology of B, induces on each B.-module of finite
type a natural topology for which it is an ind-Fréchet (actually an ind-Banach).
A B,-representation (of Gk ) is a B.-module of finite type equipped with a semi-
linear and continuous action of Gg. With the Gg-equivariant B,-linear maps as
morphisms, B,-representations form a category that we denote by Repp (Gk).

Proposition 3.1. The B.-module underlying any B,-representation is free of finite
rank. The category Repg (Gk) is a Qp-linear abelian category.

Proof. Recall that B, is a principal ideal domain [Fargues and Fontaine 2018,
théoréme 6.5.2]. In particular it is a noetherian ring and the fact that Repp (Gg)
is a Q,-linear abelian category is obvious.

Moreover [loc. cit., proposition 10.1.1], for any maximal ideal p of B,, the orbit
of p under the action of G is infinite. This implies that there is no nontrivial
Gk-equivariant ideal of B,. If A is any nonzero B,.-representation of Gk, the
annihilator of its torsion sub-module is a proper Gg-equivariant ideal and must
be 0. Therefore the B.-module underlying A is torsion free, hence free of finite
rank. ([

Remark 3.2. Let C, be the fraction field of B,. This is the union of the fractional
ideals of B,. For each such ideal a, the choice of a generator a defines a bijection

B, —a, bt ba,
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and we put on a the topology defined by transport de structure, which is indepen-
dent of the choice of the generator. Hence each a is naturally an ind-Banach (Q,,-
vector space). If a C b are two fractional ideals, this inclusion is continuous and a
is a closed sub-Q,-vector space of b. Hence we may endow C, with the coarsest
locally convex topology such that, for all fractional ideal a, the map a — C, is
continuous (a lattice £ in C, is open if and only if £Na is open in a for all a).

The action of Gk on C, is continuous for this topology (but C, doesn’t seem
to be an object of ZF (G )) and we may consider the category Rep (Gk) of C,-
representations (of Gk ), that is of finite-dimensional C,-vector spaces equipped
with a semilinear and continuous action of Gg. This is obviously a Q,-linear
abelian category.

We have an obvious exact @ ,-linear functor

Repg, (Gk) = Repe, (Gk), A C.®p, A.

This functor is fully faithful: if M € Rep, (Gk) is a C.-representation of dimension
d, there is at most one Gg-equivariant sub-B,-module of rank d because if A and
A, are two of them, so are A|+ A, and (A + Az)/A; is torsion, hence O.

Remark 3.3. If A is any B,-representation of G, the underlying Q,-vector space
is locally convex and A inherits a natural structure of an object of ZF (Gg). We
will see later that the forgetful functor

Repy (Gk) — IZF(Gk)

is fully faithful (Proposition 3.11) and that its essential image is contained in C(Gx)
(Proposition 3.12).

Proposition 3.4. Let W € C*°(Gg) and A € Repp (Gk). Then
HOInI]:(GK)(W, A) =0.

Proof. Let f : W — A such a morphism. We see that Byr ®p, A is a Byg-
representation of Gg and that

8:AN—> B r®p, A, A—>1QA

is amorphism of ZF (Gg).But gf : W — B r®p, A must be BIR-linear (Section 2D).
As the BJR—module W is torsion, and B;gr ® A is torsion free, we have gf = 0,
hence also f =0 as g is injective. ([l

3C. Coherent Ox-modules. We know that B, is a PID and we may consider the
“open curve"

X, = Spec B,,
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a noetherian regular affine scheme of dimension 1 whose function field is the frac-
tion field C, of B, that we can see as a subfield of Byg. For each closed point x
of X, the local ring Oy, is a DVR and we denote by v, the corresponding valuation
on C, normalised by v, (C}) = Z.

Recall (cf. [Fargues and Fontaine 2018, §6.5.1]) that the curve X = X Q,.C,
can be defined as the compactification at co of X,. More precisely, as Byg is
the fraction field of the discrete valuation ring B;R, it is naturally equipped with
a valuation vgg: if b € Byg is # 0, then v r(b) is the largest n € Z such that
b € Fil" B;r. We denote by v the restriction of vgg to C,.. The topological space
underlying X is obtained from the topological space underlying X, by adding the
closed point oo defined by v.,. Hence, the function field of X is C, and, if U is
any nonempty open subspace of X, we have

Ox(U)={beC,|v(b) =0, Vx e U}.

We have X \ {oo} = X, the ring BJR is the completion of Ox ~, and By is the
completion of C, for the topology defined by vu.
Consider the following category Coh(Oy):

o An object of Coh(QOy) is a triple (F, ij, t7) with ¥, a B.-module of finite
type, F,jz @ BJp-module of finite type and

.+
tr:Fyr = Bir ®p, Fe
a B;R-linear map inducing an isomorphism of B;g-vector spaces
+
Bair ®B;—R ]:dR — Bar ®Be Fe.

o A morphism (F,, Fjg. t7) = (Ge, Gig- tg) is a pair (fe, fiz) with fo : Fo = Ge
a B,-linear map and fdJ;e : ]-";R — QJR a B;R—linear map such that the obvious
diagram commutes.

To any coherent Ox-module F, we can associate an object (F, FJR, tr) of this
category:
o Fo=F(Xe),
o Fjp = B} ®0y .. Foo, the completion of the fiber of F at oo,
« the completion at oo of the general fiber is Byjr ® B}, ]-"jR as well as Byg ®p, Fe
and 7 : ]-"jR — Byr ®p, F. is the natural map.
This correspondence is obviously functorial and it is immediate to see that it
gives an equivalence of categories. We use it to identify the category of coherent

Ox-modules to Coh(Oy). In this equivalence we see that the category Bund(X) of
vector bundles over X, i.e., of torsion free coherent Ox-modules, can be identified
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with the full subcategory of Coh(Oyx) whose objects are triples (F, ]-'IR, tF) such
that the B.-module F, and the B;R—module FJR are torsion free (<= free).

3D. The topology on Ox. The curve X can be also described ([FF], §6.5.1) as

X = Proj ) P*
deN

and there is (loc. cit., théoréme 6.5.2) a one to one correspondence between the
closed points of X and the Q,-lines in P! (the map associating to such a line the
prime ideal of P = @,y P¢ that it generates is a bijection between the set of
these lines and the set of nonzero homogeneous prime ideals of P different from
Do P?). In this correspondence oo corresponds to the line generated by ¢.

Moreover, if xi, x2, ..., x, are closed points of X and if, for 1 <i <r, we
choose a generator #; of the Q,-line associated to x;, we see that the (,-algebra
Ox (X \ {x1, x2, ..., x;}) has a natural topology: If we set u = #,, .. .¢,, we have

Ox(X\{x1,x2, ..., )= UJP"u™"
neN

and we see that it is an ind-Banach algebra with (P""u™"),cn a multiplicative
admissible Banach filtration. Thus we may consider Oy as a sheaf of ind-Banach
algebras (the restriction maps are obviously continuous).

3E. The category M(Gg). The group G acts continuously on X and it makes
sense to speak of the category M(Gg) of coherent Oy [Gg ]-modules, that is of
coherent Ox-modules equipped with a semilinear and continuous action of Gg.

We see that:

— the open subset X, = Spec B, is stable under Gx and Gk acts continuously
on the ind-Banach algebra B,,

— the point oo is fixed by Gk and the action of Gk on the Fréchet algebra B;R
(resp. on the ind-Fréchet algebra B;r), completion at co of Oy  (resp. of the
function field C, of X) is continuous.

From the description of coherent Ox-modules of the previous paragraph, we see
that we can identify M (Gk) to the following category:

» An object is a triple F = (F, FJR, tr), where F, is a B,-representation, ]-"jR is
a B;R -representation and

tr: Fjp = Bir ®p, Fe

is a Gg-equivariant homorphism of BJR—modules such that the induced B g-
linear map
Bir ®p+. f;R — Byr QB, Fe

is bijective.
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e A morphism
f 1 (Fes Fipot7) = (Ge G t9)

is a pair (fe, f;}) with f, : F, — G, (resp. f;}e : ]-"jR — QJR) a morphism
of B.-representations (resp. B;R—representations) such that the obvious diagram
commutes.

When there is no ambiguity about the map ¢, we write abusively
F = (Fes Fifg)
We also denote by
Far = Bar ®p, Fe = Bar Qc, (C. @5, Fe)

the completion at oo of the generic fiber 7, = C, ® g, F, of F.

The category Bundx (Gg) of Gg-equivariant vector bundles over X is the full
subcategory of M(Gg) whose objects are those for which the underlying Ox-
module is torsion free. From the fact that any B,-representation is torsion free, we
see that, if F is any coherent Ox[Gx ]-module, there is no torsion away from oc.
Therefore Bundx (Gg) is the full subcategory of M(Gg) whose objects are those F
such that the BIR-module F j r 18 free (<= torsion free), i.e., the B-pairs of [Berger
2008].

3F. The Harder-Narasimhan filtration. The abelian category Coh(Oy) is equipped
with two additive functions, the rank and the degree [Fargues and Fontaine 2018,
chapitre 5]:

rk: Coh(Ox) — N, deg:Coh(Ox) — Z
The rank of F = (F,, F ; z» LF) is the rank of the B,-module F,. It is O if and only

if F is torsion. It is more difficult to compute the degree. But this additive function
is characterised by the following facts:

o if D is a divisor, then

deg(L(D)) =deg(D)= ) ny if D= nilxl,
closed
points of X

o if F is a vector bundle of rank r, then
deg(F) = deg(A' F),
o if F is a torsion Ox-module, then

deg(F) = Z lengthy,  Fi.

closed
points of X
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The slope of a nonzero coherent Oy-module F is
slope(F) = deg(F)/rank(F) € QU {+o0}

(with the convention that the slope of a nonzero torsion coherent Ox-module is
+00).
The following statements are similar to the classical case:

o A coherent Ox-module F is semistable if it is nonzero and if slope(F') <
slope(F) for any nonzero coherent sub-Ox-module of F.

o The Harder—Narasimhan filtration of a coherent Ox-module F is the unique
increasing filtration

0=FoCFIC- - CFu1 CFu=7F
by coherent sub-Ox-modules such that each F; /F;_; is semistable with
slope(F1/Fp) > slope(Fa/Fi) > - -+ > slope(Fp—1/Fm—2) > slope(Fn/Fm—1)-
The Harder—Narasimhan filtration splits continuously but not canonically. The

slopes of the F; /F;_1 for 1 <i <m are called the HN-slopes of F.

If F is an object of M(Gkg), the unicity of the Harder—Narasimhan filtration
implies that this filtration is by subobjects in M(Gg). In general, there is no Gg-
equivariant splitting of this filtration.

3G. The equivalences M°(Gg) — C°(Gg) and M>®(Gg) — C®(Gg). For all
s € QU {400}, we denote by M*(Gg) the full subcategory of M(Gg) whose
objects are semistable of slope s. We also write M>®(Gg) = M1T>®(Gk).

We have HO(X, Ox) = Q p- A central result of [Fargues and Fontaine 2018]
(théoreme 8.2.10) is that a coherent Ox-module F is semistable of slope O if and
only if it is isomorphic to O’y for some positive integer r. From that we deduce:

Proposition 3.5. If F € M°(Gx), then F(X) € C°(Gx) and rank(F) = dimg, F (X).
The functor
M%(Gy) — C%(Gk), Fr> F(X)

is an equivalence of categories. The functor
C*(Gx) > M*(Gg), U Ox®@U = (B, ®a, U, Bjy ®a, U)
is a quasi-inverse.

If F € M(Gk), as there is no torsion away from oo, we have F € M*(Gy) if
and only if 7, = 0. From that, we deduce:
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Proposition 3.6. If 7 €¢ M*(Gg), then F(X) = ]—'jR and belongs to C*(Gg).
Moreover
deg(F) = lengthB;R.F(X).

The functor
M (Gg) = C*®(Gk), Fr> F(X)

is an equivalence of categories. The functor
C®(Gk) —> M*(Gx), W W=(0,W)
is a quasi-inverse.

For any s € Q, we denote by M=%(Gg) (resp. M~*(Gk)) the full subcategory
of M(Gg) whose objects are those which have all their HN-slopes > s (resp. < s).
For any F € M (Gg), we denote by F=0 the largest term of the Harder—Narasimhan
filtration which belongs to MZ>%(Gg) and F<0 = F/F=° We have a short exact
sequence
0->F s F5 7050

with 720 € M=%(Gx) and 7= € M=2(Gk).

The category M (Gg) is equipped with a tensor product. From the classification
of vector bundles over X [Fargues and Fontaine 2018, théoréeme 8.2.10], we get
the fact that if s, r € QU {+o00}, if F € M*(Gk) and if G € M'(Gg), then FQG €
M3 (Gg) (with the convention that s + ¢ = +o0 if s or  is 4+00).

The additive category Bundy (Gk) has an internal hom

(F,G) = Homo, (F, G)

We see that (Homp, (F, G)). = Lp,(Fe, Ge) is the B,-module of the B,-linear
maps F, — G, and (Homo, (F,G)ip = L B, (Fj»» Gip) is the Bf,-module of
the B}},-linear maps F,,, — G1p.

In Bundx (Gk), there is also a duality: The dual of F is 7Y = Homp, (F, Ox).
If 7, G € Bundx (Gk), then Homp, (F, G) = FY ®G. If F is semistable of slope s,
then FV is semistable of slope —s.

3H. Tate and Harder—Narasimhan twists. Recall that, for any p-adic vector space
V equipped with a linear action of Gx and n € Z, the n-th Tate’s twist of V is

V(n) =V ®a, @p(n)

where Q,(n) = Q" C Byg. This construction is functorial.
For any n € Z, we denote by

Ox(n)7 = Ox @ Q,(n) = (Be(n), Bjp(n)) = (B,.t", Bjg.t")
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(where B,.t" (resp. B;R.t") is the sub-B,-module (resp. BJR—module) of Bjr gen-
erated by ") the Gg-equivariant line bundle of slope 0 associated to @, (n).
For F € M(Gg) and n € Z, the n-th Tate twist of F is

Fn)r =F @ Ox ()1 = (Fe(n), Fir(n), tx(n)).

It has the same degree, the same rank and the same slope as F.
For any n € Z, we consider the Gg-equivariant line bundle

Ox(n)un = (Be, Bjp(—n)) = (B,, Bjp.t™").
There is an obvious short exact sequence
0— Ox > Ox(n)gny — (0, B,(—n)) = 0 ifn >0,
0—- Ox(m)gy > Ox —>(0,B_,)—>0 ifn<0,
In particular, Ox (n) gy is a modification of Ox and is of degree n. It is semistable

of slope n.
For 7 € M(Gg) and n € Z, we define the n-th Harder—Narasimhan twist of F as

F)un =F @ Ox(n) gy = (Fe, Fip(—n), tr(—n)) = (Fo, t " F g, tr(—n)).

It has the same rank as F. If F is semistable of slope s, then F(n) gy is semistable
of slope s + n.

These two constructions are obviously functorial and commute with Harder—
Narasimhan filtration. In particular:

o If F is semistable of slope s, then F(n)7 is semistable of slope s, and F(n) gy
is semistable of slope s + 7.

o The HN-slopes of F(n)r are the same as the HN-slopes of 7, and the HN-slopes
of F(n)yy are the s + n for s running through the HN-slopes of F.

These constructions commute: for m, n € Z, we have

Fm)r(m)uy =F@)un(m)r.

Remark 3.7. In [Fargues and Fontaine 2018, définition 8.2.1] the Gg-equivariant
line bundle Ox (n) gy (n)r is denoted Ox (n). We have to avoid confusion between
the three G -equivariant line bundles Ox (n)7, Ox(n)gy and

Ox(n) = (B.(n), B;R) = (B,.t", B;R)-

31. Potentially trivialisable B,-representations. Let A be a B,-representation of
Gk and K’ a finite extension of K contained in @p. We say that A is Gg/-
trivialisable if there is U € C°(Gg/) and a G k’-equivariant isomorphism of B,-
modules

B, ®q, U~ A.
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We say that A is trivialisable if it is Gg-trivialisable and potentially trivialis-
able if there is a finite extension K’ of K contained in Q p such that A is G-
trivialisable.

Proposition 3.8. Any absolutely irreducible B,-representation of Gy is potentially
trivialisable.

Proof. Let A be such a B.-representation. Then Ayp = Byr ®p, A is a Byg-
representation. Let £ be the set of Gg-stable B;R—lattices of Agzr. We know
(Proposition 2.5) that £ is not empty. For each L € £, we may consider the Gg-
equivariant vector bundle over X

FrL= (A, L).

Such an F; is semistable (otherwise the Harder—Narasimhan filtration would be
nontrivial and would induce a nontrivial filtration of the B,-representation (Fr), =
A which is not possible as A is irreducible).

Chose such an F;. Replacing F; with Fr (n)gy with n € N big enough, we
may assume that the degree d of F is > 0. By Proposition 2.7, we can find a finite
extension K’ of K contained in @ p and a G g/-stable sub—B;R—lattice Lo C L such
that lengthB;R (L/Lg) =d. Then Fr, = (A, Lo) is a Ggs-equivariant vector bundle
over X of degree d —d = 0. As the B,-representation A is absolutely irreducible,
it is irreducible as a B,-representation of Gg. Hence, Fr, is semistable of slope 0.
By Proposition 3.5, there is a Q ,-representation U of G g+ such that

Fr,=0x®U.
Therefore A, as a B,-representation of G-, is isomorphic to B, ®a, U. O

Corollary 3.9. The category Repp (Gk) is the smallest full subcategory of itself
containing potentially trivialisable B,-representations and stable under taking ex-
tensions. This is also the smallest full subcategory of itself containing trivialisable
B.-representations and stable under taking extensions and direct summands.

Proof. For any B.-representation A of Gk, one can find a finite extension K of
K contained in Q p such that A, viewed as a B,-representation of Gg,, can be
viewed as a successive extension of absolutely irreducible B,-representations of
Gk, and the first assumption results from the previous proposition. Hence we may
find a finite extension K’ of K contained in @ p such that A, as a B,-representation
of G, is a successive extension of G g/-trivialisable B,-representations. Therefore
the induced B,-representation of Gg

A" = B,[Gk]®B,[G,1 A = Q[Gk] ®aic,1 A

is a successive extension of trivialisable B,-representations of G . But the obvious
Gk -equivariant projection A’ — A splits (as, if AY denotes the B,-dual of A and
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if H=Gal(K'/K), we have a short exact sequence

0 — Homgep, (G¢) (A, A') — Homgep, () (A, A) - H'(H, AY ®p, A)
and, as B, is of characteristic 0, we have H'(H, AV ® B, A") =0). Therefore, A is
a direct summand of a successive extension of trivialisable B,.-representations. [J

Remark 3.10. The results of this paragraph can also be deduced from the work of
Berger ([Berger 2008] and [Berger 2009]) relating (¢, I')-modules on the Robba
ring and B.-pairs.

3J. The forgetful functor Repp (Gg) — C (Gg).

Proposition 3.11. The forgetful functor

Repp, (Gk) — ZF(Gk)
is fully faithful.
Proof. Let A and A’ two B,-representations. We want to prove that any G-
equivariant continuous map
AS N
is B.-linear.
Let K’ be a finite Galois extension of K contained in @, such that A and

A’ are successive extensions of trivialisable B.-representations of Gg:. If H =
Gal(K'/K), we have

Homgep, (G4) (A, A') = (Homgep, (6, (A, AN,
Homzr Gy (A, A') = (HomzzG (A, AN

Therefore, replacing K by K’ we may assume again that there is » € N and a
filtration of A by sub-B,-representations

0=A0CAIC---CA1CA=A

such that each A;/A;_; is trivialisable.

We proceed by induction on r, the case r = 0 being trivial. Assume r > 1
and that A, /A,_1 = B, ®a, U for some U € C°(Gk). Chose a B,-linear section
s:B,®U — A of the projection A — B, ® U. We have a decomposition of A as
a B,-module into a direct sum

A= Ar—l @S(Be ® U) = Ar—l ® (Be ®S(U))

By induction, the restriction of & to A,_; is B.-linear. Hence there is a unique
B.-linear map
ag: A — A
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such that og(A) =a(A) if A € A, and ag(s(u#)) = a(s(u)) forallu € U. It is easy
to check that « is continuous and Gg-equivariant. The maps

a,o0: A— A

coincide on A,_; @ s(U) and the map o — & induces, by going to the quotient, a
morphism in ZF(Gg)

B:A/(A—1@sU)) —> A

Recall (cf. eg [Colmez and Fontaine 2000], proposition 1.3) that B;g = B, + B;R,
and B, N B;R = Q. Hence, if we set Bygr = Byr/ BJR, we can identify B./Q, to
Byg.

Therefore we have

A/(Ar—1 @ s(U) = (Ar/A,—)/U =B.®@U/U = Bar ®a, U.

and 8 € HomI]’-:gGK)(EdR QU, N).
We see that By is the direct limit of the B;(—d), for d € N, hence

Bir ® U =lim,_y, Bs(—d) ®q, U.
Each B;(—d) ® U is an object of C*°(Gk ). Hence, Proposition 3.4, implies that
Homzr(G)(Bi(—d) @ U, A') = 0.
Therefore § =0 and @ = «g is B.-linear. U
We use this result to identify Repg (Gk) to a full subcategory of ZF (G).
Proposition 3.12. We have
Repy, (Gx) C C(G).

More precisely, for any B,.-representation A of Gk, there is a Gk -equivariant ad-
missible filtration (F" A),ez with F'A =0 and F" A € C(Gx) for all n. Moreover,
we may choose this filtration so that, if b € Fil™*B, and » € F"A (withd € N,
neZ), then bx € F'A.

Proof. Assume first that A is a successive extension of trivialisable B.-representations,
i.e., that there is » € N and a filtration by sub-B,-representations

0=A0CAIC---CA_1CA=A

such that each A;/A;_; is trivialisable. We proceed by induction on r, the case
r = 0 being trivial. Assume r > 1. Setting A,_; = A’ and choosing U € C%(Gg)
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suchthat A, /A,—1 >~ B, ®a, U, we may assume that we have a short exact sequence
of B,-representations

0> A —-A—-B,QU—->0

and, using induction hypothesis, that we have an admissible filtration (F"A’),cz
of A’ satisfying the required properties. Let s : B, ® U — A a B,-linear section of
the projection A — B, ® U, so that we have a decomposition of the B.-module A
into a direct sum

A=N®s(B.QU)=AN @ (B, ®s(U)).

The map
p:Gx xU— A, (g u)—> gls@)—s(g)

is continuous. Therefore, if T is a Gg-stable lattice of U, then p(Gx x T) is
compact, hence bounded which implies (by [Schneider 2002, proposition 5.6]) that
there exists m € Z such that p(Gg x T), hence also p(Gg x U) is contained in
F™A’.
If, for n € Z, we set
A — F'AN&®(F" "B, QU) %fn <m,
0 ifn>m,

we see that (F" A),en is an admissible filtration satisfying the required properties.

— In the general case, we choose a finite extension K’ of K such that A is a
successive extension of trivialisable B,-representation of G k. Therefore we can
find a G g/-equivariant decreasing admissible filtration

(Fg/MNnez

such that, if n € Z, then Fg, A € C(Gk) and that, if b € Fil_dBe, for some d e N
and A € Fg, A, then bA € FI'éTdA.

For each n € Z, denote by F" A the smallest sub-Q ,-vector space of A contain-
ing F3, A and stable under Gg. This is also the image of the obvious map

Q,[Gk1®aq, 1641 Frr A — A.

If hy, hy, ..., hy is a system of representatives of Gx/Gg in Gk, this is also
Z:"zl hi(F"Ag/) C A which is still bounded and it is clear that the (F"A),cz
satisfy the required properties. (]

Remark 3.13. We see immediately that Repp (Gk) is a weak Serre subcategory
of C(Gk).
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3K. Cohomology of coherent Ox-modules. We denote by Byg the B,-module
Bir/Be. It is not of finite type but, as the cokernel of the inclusion B, — Byg
which is a morphism of C(Gy), it can be viewed as an object of this category. The
equalities Bygr = B, + B;R and Q, = B, N B;R imply that Bg, as an object of
C(Gk), can also be identified with Bl./Qp.

If F = (F,, F . t7) € Coh(Ox). The map

Fe—> Far =Bar®p, Fe, x—>1Qx

is injective, we use it to identify F, to a sub-B,-module of F;x and we denote by
Far the quotient Fyg/Fe.

Proposition 3.14 [Fargues and Fontaine 2018, proposition 8.2.3]. For any F €
Coh(Oy), we have H' (X, F) =0 fori ¢ {0, 1} and

FX)=HX,F)#£0 << Fz0£0,
H' (X, F) #0 — F<U£0.

Moreover, there is a canonical exact sequence of Q ,-vector spaces

(1) 0 H'X, F) > F.@ Fle & Fap— H' (X, F) > 0
(where dr(x, y) = 1r(y) — x) which is functorial in F.

We have a commutative diagram of Q ,-vector spaces

0 0
Fo=——="7,
0— HYX, F) — F.®F y — FarH' (X, F) — 0

f —
]:dR—>]:dR

0 0

whose columns and the two first lines are exact. Hence we have also an exact
sequence

) 0— HX, F) > Fly B Far > H' (X, F) > 0

where Ef(y) is the image of t£(y) in Far.
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3L. Cohomology of coherent Ox|Ggl-modules. We say that an almost C ,-repre-
sentation is effective if this object of C(Gg ) is isomorphic to a sub-object of C*°(Gk ).
We denote by C=%(Gg) the full subcategory of C(Gg) whose objects are those
which are effective.

Proposition 3.15. Let f : W — V a morphism of C(Gg) with W € C*°(Gg) and
V € CZ%(Gk). Then the kernel of f belongs to C*°(Gk).

Proof. By assumption, there exists a monomorphism g : V. — W' in C(Gg) with
W' € C*®°(Gk). The kernel of f is the same as the kernel of gf : W — W'. As W
and W’ are in C*°(Gg), so is this kernel. O

Proposition 3.16. Let F € M(Gx). Then H*(X, F) € CZ%(Gg).
Proof. We see that F,, J-"jR and Fyg can be viewed as objects of the abelian
category C(Gg). The inclusion F, < F;r is a morphism of this category, hence
Far can also viewed as an object of C(Gk). The map d 7 of the exact sequence
(2) is obviously a morphism of this category, hence
HO(X, F)=kerdr and HI(X, F) = coker d

are objects of 5(GK).

For m € N, big enough, F(—m) gy has all its HN-slopes strictly negative and
HO(X, F(—=m)gy) = 0. But this is the kernel of the map

Fipm) —> Far, b@t" > t"b (mod F,).

Hence we have a commutative diagram

0 0 Fip(m) — Far
0— HX, F) Fix Far

(the first nonzero vertical arrow sends b ® ™ to t™b) whose lines are exact. There-

fore, the compositum H'(X, F) — ]-';R — FJR/thJR is injective and HO(X, F),

subobject in C(Gk) of Fjp/t".Fr € C*(Gg) is in C=°(Gk). O
4. Hulls and construction of the functor V — Fy

4A. Generalities. In what follows, B» is either B,, BJR or Byg.
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We know (Remarks 3.13 and 2.13) that Repg, (Gx ) can be identified with a weak
Serre subcategory of C(Gk). We have “inclusions” of weak Serre subcategories

RCPB;R (Gk)

Rep; . (Gx) — C(Gk)

7

Repy, (Gk)
Let V be an almost C ,-representation. We say that V has a Bo-hull if the functor
Repg, (Gg) — Qp-vector spaces, W — Homgg,,(V, W)

is representable, i.e., if there is a (necessarily unique up to unique isomorphism)
pair (Vo, l;/ ), with V, a By-representation and LX : V. — Vs a Gg-equivariant con-
tinuous Q,-linear map, such that, for all By-representation W, the map

Homgep,, (G¢) (V2, W) — Homg g, (V, W),

induced by L¥ , is bijective.
When it is the case, we call (V5, L;/ ), or abusively Vo, the By-hull of V.
Our purpose is to show that such an hull always exists and to use these hulls to
construct a functor
C(G[() —> M(GK), Vi fv.

Remark 4.1. Let V be an almost C,-representation and let I the class of mor-
phisms
t:V->Ww,

of C(Gk) whose source is V and target a By-representation. With suitable con-
ventions and abuses, to say that V has a B,-hull means that the directed inverse
limit

Vo =1lim W,

: <——tely L

exists and that the By-module underlying this “pro- Bo-representation of Gk " is of
finite type.

Restricted to the full subcategory of C(Gg) of almost C,-representations admit-
ting a By-hull, the correspondence V +— V5 is obviously functorial.

Let V € C(Gg) such that, with obvious notations, (VdJ;e, LZEF) exists, let M €
Repg . (Gk) and f : V — M a morphism in /C\(GK). We see that the sub B;R—
module W of M generated by f(V) is an object of C°*°(Gg), hence there is a
unique morphism (in a(GK) or, in this case, equivalently in C*°(Gg))

g:Vi->wcMm
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such that f =go LXI’;_ and we have
N + _ +
Homc(GK) (BdR ®Bd+R VdR’ M) - HomRedeR(Gl() (BdR ®Bd+R VdR’ M)
Therefore V;x exists and can be identified with B;g ® B}, VdJ;e.
The same argument applies to the case where (V,, t}') exists. Hence we have:

Proposition 4.2. Let V € C(Gg).

G If Vd'} exists, Vi exists and is, canonically and functorially, Bjg ® B, VJ}Q.
(1) If V, exists, Vqr exists and is, canonically and functorially, Bar ®p, Ve.

Proposition 4.3. Let B, as above and let V be an almost C,-representation of Gk
which has a By-hull (Vs L;/).

(1) The image of t;/ generates Vo as a By-module.
(ii) If moreover
0>V -V->V'=0
is a short exact sequence in C(Gy), then V" has a Bo-hull which is the quotient
of Vy by the sub-By-module of Vo generated by the image of V'.

(iii) In this situation, if V' has a By-hull, then the sequence
Vo> Vo>V =0
is exact.

Proof. (i) Let Wy be the sub-B>,-module of V, generated by the image of V. As B»
is noetherian, this is a By-module of finite type. By the universal property of Vo,
there is a unique morphism v : Vo — W, such that the map V — Wy isvo t¥ and

we see that Vo = Wy @ ker v. The fact that idy, is the unique endomorphism of V»

such that v o Ly = Lf_‘,/ forces ker v to be 0.

(i1) If W is any Bs-representation, we have
Homgg,,(V", W) = { f € Homgg,,(V, W) | f(V') =0}
= {f € Homgep,, (G)(V2, W) | f(1y (V1)) =0}
= Homrep,, (G (V2/Boty (V"), W),

(iii) Let N be the kernel of the projection Vo — V,’. The image of V; in V; is
clearly contained in N. As N is the sub-B;-module generated by the image of V/,
the map V; — N is surjective and

Vi—> Vo> V) =0

is exact. O
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4B. Construction of trivialisable almost C y-representations. A trivialisation of
an almost C,-representation V is a short exact sequence

O-U—->V->W-=0

in C(Gx) with U € C°(Gk) and W € C*(Gk).

An almost C,-representation is frivialisable if it admits a trivialisation.

If V eC(Gk), if f:V/Uy — W/U_ is an almost isomorphism with W € C(Gx)
and if V= W x wyu_ V, we have, in C(Gk), a commutative diagram

£

+—<+—S+«o

I
=
l
=
l
<
g
L

—
O —

and V is a quotient of V which is trivialisable as it is an extension of W by U; €
C*(Gg).

Given U € C°(Gk) and W € C®(Gk), it is easy to construct all almost C,,-
representations which are extensions of W by U:

Recall that

Bjg=B.+Bj, and B.NB},=Q,

and that we set
Bigr = BdR/B;_R = Be/@p-

Let U be an object of C%(Gg) and W an object of C*°(Gg). Tensoring the exact
sequence

O—>@p—>Be—>§dR—>O
by U we get a short exact sequence in C(Gk)
0—->U— B, ®q, U — EdR®@pU—>O
inducing a map

Su,w : Homg (W, Bag ®qa, U) — ExtéA( o W: U)

I Il
Homg> (W, Bir ®a, U) Exte gy (W. U)
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Proposition 4.4 [Fontaine 2003, proposition 3.7]. Let U € C%Gg) and W €
C*®(Gg). The map
Su.w : Homg= ;. (W, Byg ®a, U) = Extlg,, (W, U)
is an isomorphism.
Hence if V is a trivialisable almost C,-representation and if
(T) 0->U—->V—->Wy—>0
is a trivialisation of V, there is a unique
pr € Homg= ¢ (W, Bur ®q, U)

such that the square
V—/"--—>W

| L

B, ®a, U — Bair ®a, U
1s cartesian.

4C. Construction of the hulls.

Proposition 4.5. Any almost C,-representation V has a B,-hull V,, a B;R—hull
VdJ;? and a Byg-hull Vg, We have

Vir = Bar ®B, Ve = Bir ®p+ Vi
rankBIRV:{R =rankp, Ve = dimp, V4r > h(V)
and equality holds when V is trivialisable.
Moreover:
(i) IfU € C%(Gk), then U, = B, ®qa, U and U, = B}, ®q, U,

(i) If W € C*°(Gk), then W, =0 and Wi, =W,
(iii) If

(T) 0->U—->V—->Wy—>0

is a trivialisation of an almost C,-representation V , then

(a) the map U, = B, ®q, U — V, is an isomorphism, and
(b) we have a short exact sequence

0—>B;R®@],U—>V;;e—>WO—>O

More precisely, Vj;e is the fiber product (B4r ®a,U) X 5,0 0, U Wo (where
Wy — EdR ®a, U is the map pr).
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Proof. From Proposition 4.2, we see that the existence of V, and VdJ;a implies the
existence of Vg and the equalities:

Var = Bir ®B, Ve = Bar ®p+, Ve
rankBgRVIR =rankp, Ve = dimp;; V4r.
(i) Let U € C°(Gk). By adjunction, for any B,-representation A, we have
Homg(GK)(U, A) = HomRepBe(GK)(Be ®@p U, A)
hence U, exists and is B, ®aq, U. Similarly, for any object Wy € C*°(Gg ), we have
Home Gy (U, Wo) = Homg= ¢, (B ®a, U, Wo)

hence U;R exists and is B;R ®a, U. In particular, dimp,, Usr = h(U).

(i1) Let W € C*°(Gk). For all B,-representation A, we have Homg (W, A) =
0 (Proposition 3.4). Therefore W, exists and is = 0. For any W € C*°(Gg), we
have Home (g, (W, Wy) = Homee g,y (W, Wo) (Proposition 2.6) hence W; R EXists
and is W. In particular dimp,, Wygr =0 = h(W).

(iii) Let V a trivialisable almost C,-representation and
(T) 0O—-U—->V->W;—-0

a trivialisation.

(a) Let A be a B.-representation. The inclusion U — V induces a map
a : Homg g, (V, A) — Homgg,, (U, A)

—> Homgep,, (G (Be ®a, U, A) = Homgg, ) (B, ®a, U, A)
(Propositions 3.11 and 3.12). We have a cartesian square (Section 4B)

V—W

(S) lp lpr

B, ®q, U — Bur ®a, U
and we may use p to get a map
ﬂ . Hom’c\(GK)(Be ®®1) U, A) — Hom’c\(GK)(V, A)

Let f eHomg(GK)(Be ®a, U,A)and f'=a(B(f)). If > biQu,; € B, ®aq, U, we
have

(b @ui) =Y bi(BU) ) =Y bifu) = f (3 bi @ ui)

as f is B,-linear, hence f' = f.
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Letg e Homg(GK)(V, A)and ¢ =a(B(g)). If u e U, as p(u) = u, we have
g'(u) = Bla(@) ) =a(g)(u) = gu)
Hence g’ — g factors through a morphism in C(Gk)
Wo— A

which is necessarily 0 (Theorem 2.9), hence g’ = g. Therefore we see that « is an
isomorphism. It is implies that V, exists and is equal to U, = B, ®q, U.

(b) We want to show that VjR exists and is equal to
Wi = (Bur ®a, U) X5, 0q,v Wo-

Using the cartesian square (S) and the inclusion B, ®q, U C Bar ®q, U, we get
a morphism of a(GK)
V —> W1

and we have a commutative diagram in 8(GK)

0 U Vv Wo 0

(+) ! | [

0 Ujr W, Wo 0

whose lines are exact.
If W is any BJR—representation, we have a commutative diagram

0 — Hom(Wy, W) —— Hom(V, W) —— Hom(U, W) —— Ext! (W, W)

I | l= I

0 — Hom(Wy, W) — Hom(W,;, W) — Hom(U}, W) — Ext!(Wy, W)

(where all the Hom and Ext! are computed in 5(GK)) which implies that
Hom¢ Gy )(V, W) — Home(gy) (Wi, W) = Homes G,y (W1, W)

is an isomorphism. Hence VL;e exists and is equal to Wj.

Finally, let V be any object of C(Gg). We can find an exact sequence
0>U—>Vo>V—>0

with V trivialisable. The existence of V, and V;}e implies (Proposition 4.3) the
existence of V, and V;}Q. The exactness of the sequence

UdR — VdR —> VdR — 0
implies that

dimp,, Vg > dimp,, Vyg —dimp,, Ugg = h(V) — h(U) = h(V). 0
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4D. The functor V — Fy. For any almost C,-representation V, denote
tv : Vjp = Var = Bar ®3, Ve
the natural map. It induces an isomorphism Byr ® B, VdJ;e — V;g. Therefore
FV = (Vd_~_R’ Vev LV)

is a coherent Ox[Gg ]-module. This construction is clearly functorial and we get
an additive functor
C(Gkg) - M(Gk), V= Fy.

From the universal properties of the functor V +— VdJ;e and V — V,, we deduce
the fact that V — Fy is left adjoint to F — F(X).

5. The equivalence M=%(Gg) — C=°(Gg)

5A. A characterisation of effective coherent Ox[Gg]-modules.

Theorem 5.1. The category M=°(Gy) is the smallest strictly full subcategory of
M(Gg) containing MO (Gk) and M>®(Gx) and stable under taking extensions
and direct summands.

Lemma 5.2. Let s be a positive rational number. There exists Gy € M*(Gg) which
is an extension of an object of M>(Gy) by an object of M°(Gy).
Proof of the theorem given the lemma. As a subcategory of M(Gg), the cate-
gory M=%(Gk) is obviously stable under taking extensions and direct summands.
Hence, it suffices to show that any F € MZ%(Gk) can be written as a direct sum-
mand of successive extensions of direct summands of objects which are extensions
of an object of M>®(Gg) by an object of M%(Gg). Using the Harder—Narasimhan
filtration, it is enough to show that, if F is semistable of slope s > 0, then F is
such a direct summand.

If s =0, then F € M°(Gy) and, if s = 400, then F € M™®(Gg) and we may
assume that s is a positive rational number.

Let G as in the lemma, so that we have a short exact sequence

06> G —-G*—0

with g? e M°(Gg) ans G € M>(Gk). As G; is a vector bundle (it has no torsion),
its dual G, is well defined and semistable of slope —s. Therefore

Fo=F®G/
is semistable of slope 0. We have a short exact sequence

0> Fo®G - Fo®G, > Fo®GX — 0
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and Fo ® G; is an extension of 70 ® G € M*>(Gk) by F* ® G° € M°(Gk).
But, with obvious notations,

If End®(G,) is the subsheaf of elements of trace 0 in End(G,), we have

End(G,) = Ox ®End’(G,)

hence
Fo® Gy = F® (Ox @End’(G,)) = F ® (F ® End’(Gy))

and F is a direct summand of Fy ® . O

Proof of the lemma. We may assume K = Q. Recall the following facts ([Fargues
and Fontaine 2018, proposition 10.5.3]; see also [Colmez and Fontaine 2000, §5]):

o A filtered ¢-module over Q, is a pair (D, Fil) consisting of

(a) a g-module over Q,,, i.e., a finite-dimensional Q ,-vector space D equipped
with an automorphism ¢ : D — D,

(b) an exhausted and separated decreasing filtration (Fil" D),cz7.

(i) There is a fully faithful additive functor

(D, Fil) = Fp Fil

from the category of filtered ¢-modules over Q, to the category of Gg,-
equivariant vector bundles over X (the essential image consists of those
equivariant vector bundles which are crystalline, i.e., those F’s such that
the natural map

G
Besis ®@p (Bcris ®B, ]'-e) - Besis B, Fe

is bijective): we have Fp Fii = (Fp Files ]-';5 FiLar) Where
— FDFile 1S the B,-module (Bgis ®g ) D),—1 which implies that

Fp FiLdR = Bar ®B, Fp.e = Bir ®a, D,
— Fp pirar = Fil’(Bar ®a, D) = Y, o, Fil " Byg ® Fil" D.

Set s = d/h with d, h positive integers, prime together.
Consider the ¢-module D over Q, whose underlying Q,-vector space is of
dimension &, with (e,),cz/1z as a basis and

WIS C I TR
e.) =
V)= pdey ifr4+1=0.
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We equip D with two distinct filtrations Fil and Fily:

D if n < —d,
oD ifn<0, ., e
Fil"D = 0 ifne0 Fily D = @r;ﬁo@per if —d<n<0,
’ 0 ifn>d.

Set G; = Fp Fi and g? = Fp,ril,- Both are coherent Ox[Gg ]-module of rank
h. As the polynomial X" — p~ is irreducible over Q,, the Q,[¢]-module D is
irreducible which implies that G; and Q? are stable, hence semistable. An easy
computation shows that deg(Gy) = d and deg(gg) =0, hence G, is semistable of
slope d/h = s and G" is semistable of slope 0, hence belongs to M°(Gk). We see
that Qg, . = s, and that (g?)jR C (Gs)ar. Therefore g? is a subobject of G; and
the cokernel G;° is torsion, and so belongs to M (G). O

5B. Some properties of effective almost C ,-representations. Recall (Section 1E)
that an exact subcategory of an abelian category is a strictly full subcategory con-
taining O and stable under extensions. For instance the previous theorem shows
that MZ9(Gk) is an exact subcategory of M(Gg).

Theorem 5.3. Let V € C(Gk). The following conditions are equivalent:
() V is effective (i.e., V € CZ%(Gk)).

(ii) There is a finite extension K’ of K contained in Ep such that V, as an object
of C(G ) is a successive extension of objects belonging either to C°(G k') or
to C*®(Gg).

(iii) V belongs to the smallest strictly full subcategory of C(Gk) containing C°(Gg)
and C*°(Gk) and stable under taking extensions and direct summands.

Moreover CZ°(Gy) is an exact subcategory of C(Gg).

Before proving this theorem, let’s state an other result. Recall (Section 4D) that,
to any V € C(Gg), we associated the coherent Ox[Gg ]-module

Fv = (Vjgs Ve tv).

We have
Fr=Viee F)e=Ve, 17, =1y.

Therefore, if we set V5 = Fvar = Var/ Ve, we have (cf. Section 3L) an exact
sequence

(©€) 0— HYX, Fy) = Vi 25 Vg — H' (X, Fy) > 0

(where Ty =17, is the compositum of ¢y with the projection Vg — Vzr/ V) and,
as V C V, is injective, the image of V in VJ;e is contained in Fy (X) = HO(X, Fy).
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Proposition 5.4. Let V € CZ(Gy).

(i) We have h(V) > 0 and dimp,, Var = h(V).

(il) We have V € C*®°(Gg) <= h(V) =0,
(iii) The sequence

0— V%VdJ;eﬂ)VdR—>0
is exact.

(iv) the map V. — H°(X, Fy) is bijective and Fy € M=%(G).

Moreover, the restriction to C=°(Gx) of the four functors C(Gg) — 8(GK)

Vis Vi, ViV, Vi Vi Vi Vg

and of the functor
C(Gk) > M(Gk), V= Fy

are exact.

Proof of the theorem and beginning of the proof of the proposition. For any V €
CZ%(Gg), we denote by dy the infimum of the d(W)’s for all W € C*°(Gk) such
that V is isomorphic to a subobject of W (note that (V) < dy).

Denote by K the set of finite extensions L of K contained in Q p. For any
L e K, letC’(Gy) the full subcategory of C(G ) whose objects can be written as
a successive extension of objects belonging either to C%Gyp) orto C®(Gyp).

We now show assertion (i) of the proposition and the implication (i)=>(ii) of
the theorem, i.e., that, if V € CZ°(Gk), then

dimg,, Vag =h(V) (so h(V) > 0) and there exists K’ € K such that V EC?(GK/).

We proceed by induction on dy, the case dy = 0 being trivial.

Let V C W an embedding of V into an object W € C*°(Gk) satisfying d(W) =
dy > 0. We can find (cf. Proposition 2.7) K; € K and a G, -stable sub—BjR-
module W’ of W of length 1. Setting W’ = W/ W', V' =V N W’ and denoting V"
the image of V in W”, we get a commutative diagram in C(Gg,)

0—V —V—V"—0

Ll

0O—W —W-—W'—0

whose rows are exact and vertical arrows are injective which implies that V" and
V" belong to C=°(Gx,). We have d(V’) < d(W’) = 1. From Corollary 2.10, we
get that either d(V') = 1 in which case V' = W' or d(V’) = 0 which implies that
V' e C%Gk,).

~If V/= W/, we have h(V') =0 and (V)7 = W’ hence V;, = 0.

—1f V' € C%(Gk,), we have h(V’) =dimg, V' and V), = By ®a, V'
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In both cases, we have dimp,, V;, =h(V’). By induction, we have dimp,, V), =
h(V"). The exactness of the sequence

Vig = Var > V] —> 0

implies that
dimp,, Var < dimp,, V g +dimg,, V) =h(V')+h(V") = h(V),

hence, as dimp,, Var > h(V) (Proposition 4.5), we get dimp,, Var = h(V), i.e the
assertion (i) of the proposition.

Also by induction, as V” belongs to C=°(G,), there is K’ € K containing K
such that V” € C’(Gg'). Then V, as a representation of G, is an extension of
V" by either an object of C*(Gg) (if d(V’) = 1) or by an object of C®(G ) (if
d(V’) = 0). In both cases, V belongs to C'(Gg).

Therefore, given V € CZ(Gy), there is K’ € K and a filtration of V by subobjects
inCt(Gg)

dR

oO=VycVic---CcV,_,CV,=V

such that,if i =1, 2, ..., r, then V;/V;_; belongs either to C%(Gg) orto C®(Gg).
This proves the implication (i)=>(ii) of the theorem.

In particular, we have h(V) = Z;zl h(V;/Vi_1) which is > 0 unless A(V;/V;_1)
vanishes for all i, which means that V;/V;_; belongs to C*(Gg). As C*(Gg) is
stable under taking extensions, we get the equivalence

h(V)=0<«<=V € C*(Gk)

which is the assertion (ii) of the proposition.

The implication (ii)=>(iii) of the theorem is obvious: If V satisfies (ii), the
induced representation Q,[Gx] ®q,[G,.] V belongs to C’(Gk) and V is a direct
summand of this representation.

As a full subcategory of C(G), the category C=°(Gk) is obviously stable un-
der taking direct summands. Hence, we see that the implication (iii)=>(i) of the
theorem and the fact that CZ°(Gg) is an exact subcategory of C(Gg) result from
the following:

Lemma 5.5. Assume we have a short exact sequence in C(Gg)
(D) 0O->Vy—>Vi—>V,—>0

with Vo € CZ%(Gx) and Vy belonging either to C°(Gk) or to C*°(Gk). Then V; €
C=%(Gk) and the sequence

+ + +
0— VO,dR_) Vl’dR—> VZ,dR_)O

is exact.
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Proof of the lemma. Assume first that V belongs to C%(Gg): we have a commuta-
tive diagram

0 Vo Vi Va 0

L

+ + +
Vo.ar = Viar = Vaar — 0

whose rows are exact, the maps Vy — V0+d gand Vo — V2+d z being injective. I will
show that the map V!, . — Vi', is injective. As V|, = B ®a, Vo is a torsion
free B;’R—module, it is enough to check that Vy s — Vi 4r is injective. If it were
not true, we would have

dimp,, Vi 4r <dimp,, Vo ar +dimp,, V2 4r = h(Vo) +h(V2) = h(V}).
As we have (Proposition 4.5) dimp,, Vi 4r > h(V}), this can’t happen. This forces
Vi— fod g to be also injective, hence Vi € C=%(Gg).

Now assume instead that Vi belongs to C*°(Gg). As the sequence (1) almost
splits (Proposition 2.15), we can find an extension S in C%(Gk) of V, by some
U € C°(Gg) such that V| = V, &y S. By what we just saw, S € CZ%(Gk) and we
have a commutative diagram

0 U S Va 0

LD

+ + +
0— Uygr — Sgr — Vour — 0

whose line are exacts and vertical arrows are injective.
We also have a commutative diagram

0O—U—WopS——V,—0

| l |

Ulfe — WS, — VITdR—>0

(the map U — W & S send u to (4, —u)) whose rows are exact and the two first
vertical arrows are injective.

The injectivity of U;R — S;R implies the injectivity of U j R W S;R. To
finish the proof we only need to show that the map V; — V1+d r 18 injective or, with
obvious identifications, that inside of W @ S}, we have

Uir "W S)=U.

Assume (w, s) € W & S belongs to UJR. This implies that s € SN UJR which is U
as the map V, — V{d r 18 injective. We then need w = —s and (w, s) is the image
of —s e U. (]
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Proof of the exactness of the functors V +— Vg, V= V,and V +— Vg If
0>V ->V->V'-0
is a short exact sequence in C =0(Gk), we know that the sequences
V>V, V>0, Vijg—Vag—> Vjp—0
are exact. As
dimp,, Vag =h(V) =h(V')+ h(V") = dimg,, Vi =dimg,, V/x

the map Vé r — Var must be injective and the functor V — V,z is exact.
As the B,-modules V/, V, and V" are torsion free and as

rankBe (Ve/) = dideR VéR’
rankp, (V,) =dimp,, Vir.,
Vie.

rankg, (V,") = dimg,,,

the same argument shows the exactness of V +— V.
We then have a commutative diagram

0 0 0
A
0—s V! v, V/—0

Ll

0—Vp— Vi —Vjp—0

L

0— Vg —Vig— V) —0

|

0 0 0

whose three columns and the two first rows are exact. This implies the exactness
of the last row.

Lemma 5.6. Let
0>V >V->V' 50

a short exact sequence in C=°(Gg). Assume the sequences
0>V > (V)i —> Vg =0

and
0>V > (V”):{R — V;R -0



712 JEAN-MARC FONTAINE

are exact. Then the sequences
0>V —>V5H—>Vig—0
and
0— (V)i > V> (V)i —0
are exact.

Proof of the lemma: We have a commutative diagram:

0 0 0
l | l
0 1’4 Vv V" 0

L

0— (V) e — Vi — (VI —0
0 Ve Var Ve 0

l l l

0 0 0

whose first and third rows are exact. By assumption, the first and the third columns
are also exact. We also know that, except may be in (V’):jR, the second line is exact
and, as V e C=°(Gg), that the map V — VCZ3 is injective. By diagram chasing, we
get the fact that the second line and the second column are also exact. O

We resume the proof of the proposition.
We first prove (iii), i.e., forall V € C 20(Gk), the exactness of the sequence

0—>V—>VdJ%E>VdR—>O.
(@ If V eC*®(Gg), as VdJ;e =V and Vg = Vg = 0, exactness is obvious.
(b) If V € C°(Gk), this sequence can be rewritten
0>V —> B;R®QPV—>§(1R®QPV—)O
and exactness is deduced by tensoring with V from the exactness of
0— @p—>B;R—>§dR—>O
(recall that Byg = B, + B, that Byg = Byg/B. and that B, N B, = Q,,).

(c) In general, we proceed by induction on the smallest integer ry such that there is
K’ € K with the property that V is a successive extension of ry objects belonging
either to C°(G g/) or to C*°(G k). Replacing K by K’ if necessary, we may assume
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K’ = K. We just proved it is OK if ry = 1. Assume ry > 2, so that we can find a
short exact sequence in C =0(Gg)

0>V ->V->V'>0
with rys and ry» < ry. Then, by induction, the sequences
0=V - (V)i — Vg —0
0= V' = (V)= (Vg — 0
are exact and the result follows from the two assertions of the previous lemma.

From the exact sequence (C), we see that V = H°(X, Fy) and that H' (X, Fy) =
0 hence that F € M=%(Gg), which proves (iv).

We are left to prove the exactness of the functors V Vd} and V — Fy,ie.,
that, if
0>V V>V >0

is a short exact sequence in C=°(Gy), then the sequences
0> (Ve = V> (V)ig—0

and
0— Fy—> Fy—> Fyr—>0

are exact. As we now know the assertion (iii) of the proposition, the exactness of
the first sequence is a consequence of the previous lemma. Finally, we see that
exactness of the second is equivalent to the exactness of

0— (V’);R — VdJ;e — (V”);;R -0
and of
0>V, >V, »>V'—>0
and we are done. ([
Proposition 5.7. Let V € C(Gk). Any decreasing sequence of subobjects of V
Viowv,o---DVyDVyy1 Do
is stationary.
Proof. Chose Ve C=%(Gg) such that V is a quotient of V. Foralln e N, set
f/\n =V Xy V.

The V,, form a decreasing sequence of subobject of V and, for all n € N, we have
a canonical isomorphism V / Vn+1 Vu/ Vig1. In particular

~

Vn+1 =V f/\n-i-l =Vu.
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Replacing V by V and the V,’s by the Vs if necessary we ay assume that V,
therefore also the V,’s are in C=°.

As d(Vy41) <d(V,) and d(V,) > 0, there is an integer m such that d(V,) =
d(Vy41) forn > m.

For n > m, we have d(V,,/ V,+1) =0, hence V,,/ V41 € C%(Gg) and, if we set
hn = dim@p(vn/ Vn—H) (E N)’ we have h(vn+1) = h(vn) _hn~ As Vn+1 € CZO(GK)s
we have h(V,y1) > 0. Therefore, there is an integer m’ > m such that i, = 0 if
n > m’'. This implies that V.1 = V,,. O

Remark 5.8. On the other hand, there are objects of C(Gg) which admit non-
stationary increasing sequences of subobjects. For instance, it is easy to see that
C, contains infinitely many subobjects belonging to C°(Gk). From that, one can
constructs nonstationary increasing sequences

VooCcViCc---CV,CVypqC---
of subobjects of C, belonging to C(Gg).
5C. The main result. We may consider the functors
M=(Gg) —» cZ(Gk), Fr> F(X)
and
c=%(Gx) - M™(Gk), Vi Fy.
Theorem 5.9. The functor
M=(Gk) — ¢Z%(Gk), Fr> F(X)
is an equivalence of exact categories and
c=%(Gx) - M (Gx), V> Fy
is a quasi-inverse.

Proof. As the functor V +— Fy is left adjoint to F +— F(X) (Section 4D), we are
reduced to checking the following claims:

() If V € ¢Z°(Gg), the map V — Fy(X) coming from adjunction is an isomor-
phism,

(i) If F € MZ%(Gg), the map Fr,(x) — F coming from adjunction is an isomor-
phism.
(i) If
0>V -V->V"50
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is a short exact sequence of C=%(Gy), the sequence
0— Fyr—> Fy — Fyr =0
is exact.
(iv) If
0>F >F—->F"=0
is a short exact sequence of M=°(Gy), the sequence
0—-F(X)—» FX)— F'(X)—>0
is exact.

(1) and (3) have already been proved (Proposition 5.4) and (4) results from the
fact that, if 7' € M=%(Gg), then H'(X, ') = 0 (Proposition 3.14).

Let’s prove (2): Let M the full subcategory of M=%(Gg) whose objects are
those F’s for which Fr,(x) — F is an isomorphism. It is obviously stable under
taking direct summands. By exactness of the functors 7 — F(X) and V — Fy, it
is stable under extensions. It contains M%(Gg) and M>(Gg). Then Theorem 5.1
implies that M = M=°(G). O

6. From M (Gg) to C(Gg) and conversely

6A. Some general nonsense. Let A be an abelian category and B be an exact
subcategory of A. Recall (cf., e.g., [Laumon 1983, §1.1]) that one can define
the derived category of bounded complexes of B that we denote DZ(B): in the
triangulated category K?(B) of bounded complexes of B up to homotopies, the full
subcategory A of bounded acyclic complexes (in ) form a null system and we set

Dh(B) = KX (B)/N.
Let A be an abelian category, B an exact subcategory of A and D a strictly full
subcategory of B which is a Serre subcategory of A (hence D is abelian).
o We say that the exact embedding B — A is left big with respect to D if,
(i) any quotient in A of an object of B belongs to B,
(ii) for any object A of A, one can find a short exact sequence

0—-A—-B—->D—0

of A with B an object of B and D an object of D.

o We say that the exact embedding B — A is right big with respect to D if
BP — AP is left big with respect to D°P which amounts to requiring that

(i) any subobject in A of an object of B belongs to 5,
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(ii) for any object A of A, one can find a short exact sequence
0->D—->B—>A—0

of A with B an object of B and D an object of D.

We say that an exact embedding B — A is left big (resp. right big) if one can
find a Serre subcategory D of A contained in B such that B < A is left big (resp.
right big) with respect to D.

Proposition 6.1. Let B — A an exact embedding which is either left big or right
big. Then the natural functor

DY(B) — DP(A)
is an equivalence of triangulated categories.

It is a formal consequence of the more precise following statement:

Proposition 6.2. Let B — A be an exact embedding and D a Serre subcategory
of A contained in B such that B — A is left big (resp. right big) with respect to D
and let A* a bounded complex of A.

(1) There exists a short exact sequence of bounded complexes of A
0—>A"—>B"—>D"—>0 (resp. 0> D*— B*"— A*—0)
with B* a bounded complex of B and D* an acyclic complex of D.
(i) If
0—A"— B*— D"—0(@esp. 0> D*"— B*— A*—=0)

isan other short exact sequence of the same kind, there exists a a third short
exact sequence of the same kind

0—A*"—- B"”— D" —0(@esp. 0> D" — B"” - A*—=0)
together with morphisms of complexes
B* — B" and B" — B"* (resp. B"* — B* and B"* — B"*)
such that the diagram

A- B/. — B//o pa— B.

/ l\ (resp. \i/ )

B/. B//- Bo
is commutative.

Proof. It is enough to treat the case were the strict embedding is right big. Assume
this is the case. To prove (i), by induction, we are reduced to proving this:
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Lemma 6.3. Letr € Z and let
0— D, —B — A" =0

a short exact sequence of bounded complexes of A. Assume that D; is an acyclic
complex of D, that D! =0 for n > r and that B! is an object of B for all n < r.
Then, there exists a short exact sequence of bounded complexes of A

0—D; — B  —A—=0

where D; | is an acyclic complex of D with D', | =0 forn >r + 1 and B’ | an
object of Bforalln <r+1.

Proof of the lemma. We can identify B to A" for n > r. Granted to right bigness
of B — A, we can find a short exact sequence

0—-D—-B—A"—=0

with B an object of B and D an object of D. Set

B forn <r—1,
-1
)BT xa B forn=r—1,
r+l B forn =r,

B! =A" forn>r.

We have a commutative diagram

+—+—o
—Qg++—oo

r—2 r—1 r r+1
o= By — B — B — B —

| L] ||

o — B2 —B ' — B — Bt — ...

Ll

0 0

whose rows are complexes and columns are exact. Hence we have a quasi-iso-
morphism B}, — B;. Moreover B | is an object of B for all n < r + 1 (for
n =r — 1, this is due to the fact that Bf;ll is a subobject of Bf‘l @ B which
belongs to B).

The compositum

B, — B —> A°
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is a surjective morphism of complexes which is a quasi-isomorphism. Then the
kernel D;_ | is acyclic. As it is the complex

---—>Df_3—>Df_2—>D:jrll—>D—>0—>---—>0—>---

we see that D;’H =0 for n > r + 1 and that all the DfH belong to D (forn=r —1,
this is due to the fact that we have a short exact sequence

0—>D"—>D{—>D—0

with D" = coker (D’ ™3 — D’~2) € D, hence, as D:;ll is an extension in A of
D € Dby D" € D, it belongs to D). O

To prove part (ii) of the proposition we take, for each n € Z, the fiber product
B'" = B'" X An B"
For each n, we have an exact sequence
0—D"— B"—- A">0

with D"" = D'" @ D" and all the required properties are obviously fulfilled. [

6B. The equivalence of triangulated categories.

Theorem 6.4. The equivalence of categories of Theorem 5.9 extends uniquely to
an equivalence of triangulated categories

D (M(Gg)) — D" (C(Gk)).

Proof. Uniqueness is obvious.
Recall (Section 5C) that MZ%(Gk) is an exact subcategory of M(Gg) and
C=%(Gg) is an exact subcategory of C(Gg).

« The category M>(Gy) is a Serre subcategory of M (G ) contained in M=°(G)
and any quotient F” in M(Gg) of an object F of M=%(G) is in M=%(Gg)

(as Fe M2 (Gx) <= H' (X, F)=0= H' (X, F') = 0 = F" € M=(Gg)).

If F € M(Gkg), forall n € N, as, for all n € N, the HN-slopes of F(n) gy are the
s +n for s describing the HN-slopes of F (cf. Section 3H), for n > 0, we have
F)un € M=2(Gg).

Tensoring with F the short exact sequence (Section 3H)

0— Ox —> Ox(n)gy — (O, B,(—n)) — 0
we get a short exact sequence

0— F— Fun — (0, Fiz ®p;, Ba(—n) — 0.
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As F(n)gn belongs to M=%(Gg) and (0, ]-'jR ®BJR B, (—n)) belongs to M*(Gg),
it shows that the exact embedding MZ0(Gg) - M(Gk) is left big with respect to
M (Gg). Therefore (Proposition 6.1) the natural functor

D}y (6 (MZ*(Gk)) — D" (M(Gx))

is an equivalence of triangulated categories.

« Similarly, the category C°(Gy) is a Serre subcategory of C(Gg) contained in
C=°(Gg) and any subobject in C(Gx) of an object of C=%(Gg) belongs to C=%(Gg).

Let V € C(Gg) and choose an almost isomorphism V /U, >~ W /U_ with W €
C*®(Gk) (cf. Section 2E). Set

‘>=VXW/U7W

(where the map V — W/U_ is the compositum of the projection V — V /U, with
the isomorphism V/Uy — W/U_).
We have a diagram

0—U_.—V—V—0

ST+ S+o

whose line and column are exacts. The column shows that V € ¢=%(Gg) and,
therefore, the line shows that V is a quotient of an object of C=°(Gx) by an object
of C°(Gk). In other words, the exact embedding Cz%(Gk) — C(Gg) is right big
with respect to C%(Gk). Hence (Proposition 6.1) the natural functor

DY, (Gx)) — D"(C(Gy))

is an equivalence of triangulated categories.

As the equivalence M=%(Gg) = 029(Gg) is an equivalence of exact categories,
it extends uniquely to an equivalence of triangulated categories

D/b\/t(GK)(MzO(GK)) — Dg(GK)(CZO(GK)).
« It is now clear that there is a unique equivalence of triangulated categories

D" (M(Gg)) — D" (C(Gk))
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such that the square

Dy 6oy M (Gk)) — D, ,(€7°(Gk))

l |

D"(M(Gg)) ——— D" (C(G))
is commutative and that this equivalence extends that of Theorem 5.9. (]

6C. The equivalence M=Y(Gg) —» C<"(Gg). We say that a coherent Ox[Gk]-
module is co-effective if all its HN slopes are < 0. We saw (Proposition 3.14) that
F € M(Gg) is co-effective if and only if H%(X, F) = 0. The full subcategory
of M(Gk) whose objects are co-effective is M <°(Gk) and is stable under taking
subobjects and extensions.

Any F € M(Gg) as a biggest quotient F<° belonging to M<°(Gg)and the
sequence

0->FsF> 7050

is exact.

We say that an almost C,-representation V' is co-effective if, for all W € C*°(Gg),
we have Home ) (V, W) = 0. We denote C<%(Gg) the full subcategory of C(Gg)
whose objects are co-effective. It is obviously stable undertaking quotients and
extensions.

Proposition 6.5. Let V be an almost C,-representation. The following conditions
are equivalent:

(1) V is co-effective.
(i) V%, =0.
(iii)) Fy =0.
These conditions also imply
Ve =Vir =Var =0.
Proof. The equivalence (i)<=>(ii) results from the universal property of VdJ;e and
(i1)<=(1ii) is trivial. If VdJ;e =0, we have V;r = Bjp ® B, VCZ;e = 0, hence also
V. =0 as the map V, — Vyp is injective and therefore V g = Vyr/V, = 0. O

Proposition 6.6. Let V € C(Gk). The set of subobjects of V in C(Gk) belonging
to C<°(Gx) has a biggest element V<0 and the set of quotients of V in C(Gg)
belonging to C=°(Gk) as a biggest element V=°. Moreover V<" (resp. V=0) is the
kernel (resp. the image) of the natural map V — de. The sequence

0-V2svyv vz 9

is exact.
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Proof. If V' and V" are subobjects of V belonging to C<%(G), we see that V' + V"
also. Hence to show the existence of V <" it is enough to show that any increasing
sequence

VoCcViC---CV,CVyp1C---

of subobjects of V belonging to C<°(Gy) is stationary. As the sequence of the
integers d(V,,) is increasing and bounded by d(V), there exists m € N such that
d(V,) =d(Vy) for all n > m. For such an n, we have d(V,+1/V,) = 0, hence
Vis1/ Vu € CO(GK). This implies V11 =V, as, otherwise, the compositum of the
projection of V,,4; onto V,, with the injective map

Vis1/ Va _)B ®@p Vat1/ Vi), v—>1®v

would be a nonzero morphism from V,, 1| to an object of C*°(Gg).

If V' and V" are quotients of V belonging to C=(Gy), then the image of V —
V'@ V" also (as it is a subobject of V' & V" € C=%(Gg)). Hence to show the
existence of V=" it suffices to show that any sequence

c=>Vipn—=>Vy—>--=>ViCVy

of quotients of V (belonging to C<°(GK)) is stationary. If V is the kernel of the
projection V — V,, the sequence (Vi)nen is a decreasing sequence of ob]ects of
C(Gk), hence is stationary (Proposition 5.7), therefore the sequence of the Vs
also.

Set Vo =ker(V — VdJ;e). We obviously have V<" C V; and to show the equality
it is enough to show that V € C<%(Gg). Otherwise, we could find a nonzero
morphism f : VO W with W € C®(Gk). Let V; = ker f and consider the short
exact sequence

0— Vo/V1—>V/V1—>V/V()—>O.

As Vp/ V1 injects into W, it belongs to C=°(Gk). As V/V, injects into V;}, it also
belongs to CZ%(Gk). Therefore, as CZ%(Gk) is stable under extensions, V/Vi e
C=%(Gg). Hence the sequence

0— (Vo/Vir = (V/ VDI = (V/Vo)je — 0

is exact. As obviously (V/ Vl)jR =(V/ VO);_R = VdJ;e, it contradicts the fact that,
as Vp/ V1 is a nonzero object of C=9%(Gk), we have Vo/ Vl):{R #0.

Let Vo, = im(V — VJ}). As the map V, — VdJ;e is injective, V, belongs to
C=%(Gx) and is, therefore a quotient of V=, The kernel V3 of the projection
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Vz0 — V, belongs also to C=°(Gx) (as this category is stable under taking subob-
jects) and we have an exact sequence in C =0(Gg)

0>V3—>VI05v,50
Therefore the sequence
0— V;;;R — delg)& — V;’rdR -0

is also exact.

As V=0 is a quotient of V, we see that deRO " is a quotient of V. But clearly
Votix = V. Therefore V't = Vi and Vi', = 0. As V3 € C=0(Gx), this
implies V3 =0, hence V=0 = V;.

The exactness of
0-V'svyv vz 9

is now clear. O

Remarks 6.7. (i) To any V € C(Gg), we just associated the canonical short exact
sequence

0->VI'5v-v=0s0
It is worth comparing with the canonical short exact sequence
0->FPsFsF950

associated to any F € M(Gg).

(i1)) We know that, for any F € M(Gg), the natural map F2X) > F(X) is
an isomorphism.The two previous propositions together imply that, for any V €
C(Gk), the natural map Fy — Fy=o is an isomorphism. In particular, Fy always
belongs to M=%(Gk).

It is clear that M<(Gk) is an exact subcategory of M(Gg), and C<%(Gg) is
an exact subcategory of C(Gg).

Proposition 6.8. If F € M(Gy), then H' (X, F) € C<°(Gx) and the map
H'\(X,F)— H' (X, F<%

is an isomorphism.
Moreover, the functor

M=2Gg) = c<%Gk), Fr H (X, F)

is an equivalence of exact categories.
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Proof. If F € M(Gg), we may find a short exact sequence in M(Gg)
0>F—>F >FrFlso

with 70 e MZ0(Gk). As H' (X, F°) = 0, we see that H!(X, F) is the cokernel
of HO(X, F%) — HY(X, F1), hence belongs to C(Gx).

We know that H'(X, F) is a quotient of F,p therefore also of Fyz. If f :
H'(X,F) — W were a nonzero morphism of C(Gx) with W e C*®(G), the
compositum Fyr — H (X, F) - W would be a nonzero morphism in ?O(GK)
and, therefore, would be B;R—linear. As multiplication by ¢ is invertible in F4g
and nilpotent in W, the map must be 0 which implies that H'(X, F) € C<°(Gg).

If A is an object of an abelian category and d € Z, we denote A[d] the bounded
complex in A which is A in degree —d and 0 elsewhere.
Denote by

' : D?(M(Gg)) - D?(C(Gk)) (resp. A : D*(C(Gk)) — D"(M(Gk)))
the functor extending F +— F(X) (resp. V — Fy). If F € M=%(Gg) and if
0->F—->F >rlso

is as above (observe that ¥ € MZ0(Gx) = F! € MZ%(Gk)), we see that (with
obvious conventions)

rFo)=rF - rH=H"x, 7% > H (X, 7)) = H' (X, F)[-1]
(as F € M<°(Gg) and F° € M=°(Gk), the sequence

0— H'X, 7 — H'X, F') > H'(X, F) - 0
1s exact).

Let V € C<°(Gg). We can find a short exact sequence in C(G)
0>V vVvisvso

with V! € ¢=%(Gg) which implies V° € C=(Gy). With obvious conventions, we
have

A(V[-1) = A(V? = V) = (Fyo — Fy1) = FIO]

with F the kernel of Fyo — Fy1 (as V € C<%(Gk), we have V, = V, = 0 which
implies that

Fyo= WV, VO 1p0) = Fyi = (VI V) )

is an epimorphism).
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We have a commutative diagram

0 0 0
1 1 1
0— H'X,F) —V)l— V!

! Lo

0 Fir Vgl—; - le;
! 1 1
0 Fe VO — v/

whose rows and columns are exact. The injectivity of V? — V! implies that
HO(X, F) =0, ie., that F € M<%(Gg).

Finally, we see that, if we view

o M=%(Gg) as the full subcategory of D?(M(Gk)) whose objects are of the form
F[0] with F € M<%(Gy),

e C<9(Gk) as the full subcategory of D?(C(Gk)) whose objects are of the form
V[—1] with V € C<°(G),

then I" induces the required equivalence of categories. ([

6D. t-Structures and hearts. The functors
I': D’(M(Gk)) — D”(C(Gk)) and A :D’(C(Gk)) — D°(M(Gk))

are as in the proof of the previous proposition.

Let (Df/?, Dj-v?) be the canonical z-structure on D?(M(Gx)): we see that D/SV?
(resp. Dj-v?) is the full subcategory of D?(M(Gg)) whose objects are those F*
such that H'(F*) =0 for i > 0 (resp. i < 0). Therefore if we denote by F(Df/? )
(resp. F(Dj—v?)) the essential image under I' of fol) (resp. Df/?), we see that
(F(Df\/?), F(Dj—v(l))) is a ¢-structure on D?(C(Gk)) whose heart F(Df\/?) N F(Dj—v?)
is an abelian category equivalent via A to M(Gg).

Similarly, let (Dgo, Dczo) the canonical ¢-structure on D?(C(Gk)): hence DCSO
(resp . DCZO) is the full subcategory of D?(CGx) whose objects are those V* such
that H'(V*) = 0 for i > 0 (resp. i < 0). Therefore if we denote by A(DCSO)
(resp. A(DEO)) the essential image under A of DCSO (resp. DEO), we see that
(A(DZ®), A(DF%)) is a t-structure on D?(M(Gx)) whose heart A(D5")NA(DZ)
is an abelian category equivalent via I" to C(Gg).

Proposition 6.9. (i) T' (D) (resp. T(D3y)) is the full subcategory of D?(C(G))

whose objects are those V*’s such that H" (V*) =0 forr <0 and HO(V*) e
C=%(Gk) (resp. H"(V*) =0 forr > 1 and H'(V*) € C<%(Gk)).
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(i1) A(Dgo) (resp. A(DCSO)) is the full subcategory of D”(M(Gk)) whose objects
are those F*’s such that H" (F*) =0 forr < —1 and H™'(F*) € M=2(Gg)
(resp. H' (F*) =0 for r > 0 and H°(F*) € M=°(Gg)).

Proof. Let’s prove that the description of F(Df/?) is correct (the proof of the three
other statements are similar):
Any object F of D/ZV? can be represented by a bounded complex F* such that

F' =0 for i < 0. From the fact that, for any 7 € M(Gg), one can find a short
exact sequence

O F—>Fy—F1—>0

with o, Fi € M=%(Gg) and the fact that any quotient, in M(Gg), of an object
of M=%(Gg) still belongs to M=?(Gk), one easily deduces that the complex F*
is quasi-isomorphic to a bounded complex Fj with 3 = 0 for r < 0 and F; €
MZ%(Gy) for all r € N. Therefore I'(F) is represented by the bounded complex

..._>()_>..._>()_>}'8(X)_>}‘6(X)_>..._>}‘6(X)_>}'6+1(X)_>...

all of whose terms belong to Cz%(Gk). In particular, as CZ9%(Gk) is stable under
taking subobjects in C(Gg ), we see that I' (F) belongs to the full subcategory DC?OM
of D?(C(Gk)) whose objects are those V’s such that H" (V) = 0 for r < 0 and
HO(V) € C=%(G).

Conversely, any object V of Dé%(GK) can be represented by a complex V;
such that Vj = 0 for r < 0 and that the kernel of Vo vl belongs to C=%(Gyg).
Using the fact that, for any V € C(Gg) one can find a short exact sequence in
C(Gk)

0O—-Vi—=-Vy—>V-—->0

with Vi, Vy € CZ%(Gk), one easily deduces that the complex V5 is quasi-isomorphic
to a bounded complex V* with V' =0forr <Oand V" € C=%(Gg) forr > 0.

We have a short exact sequence (with d : V° — V! the differential in the complex
V*)

0— (V‘?:()) -Vl avl-o0

The inclusion dV° ¢ V! implies that dVv° e cZ°(Gg). As V‘?:O = HO(V*), we
have (V%),—g € CZ°(Gx). We know that C=%(Gy), as a full subcategory of C(Gk),
is stable under extension. Therefore VO € CZ0(G).

As all the V"’s belong to C=°(Gk), we see that A(V) is represented by the
bounded complex

...-)O-)...-)O-)fvo_)fvl_)..._)fvr_)fvr+l_)...

hence belong to D/>_v(1)- (]
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6E. Torsion pairs in M(Gg) and in C(Gg). The langage of torsion pairs (see
[Happel et al. 1996, Chapter 1]) is very convenient to give an explicite descrip-
tion of the way to go from M(Gg) to C(Gg) and conversely. The results of this
subsection and of the next one are independent of those of the previous one and
give an other proof of the description of the heart of the #-structures we considered
(Proposition 6.9).

Recall (loc. cit.) that a torsion pair in an abelian category A is a pair t =
(AT, A7) of full subcategories of A containing 0 such that:

(i) If B is an object of AT and C is an object of A~, then Hom4(B, C) =0,
(ii) for any object A of A, there is a short exact sequence in A
0>AT A A" =0
with AT € Ob(A™") and A~ € Ob(A").

Condition (1) implies that the exact sequence of (2) is unique up to a unique
isomorphism and that the correspondences A — A™* and A — A~ are functorial.

We define the heart A’ of ¢ as the full subcateogry of the derived category D?(A)
whose objects are those A® such that

H '(A) e Ob(A47), H°A")eO0b), H"(A)=0ifn¢{—1,0}.

Proposition 6.10. Let t = (A", A7) be a torsion pair in an abelian category A.
Consider the full subcategories D=0 = DtSO (A) and D=0 = tho (A) of D= D"(A)
defined by

(i) Ob(D=%) ={A* € Ob(D"(A)) | H'(A*) € Ob(A") and H"(A*) =0, Vn > 1},
(i) Ob(D=%) = {A* € Ob(D*(A)) | H(A*) € Ob(A™) and H"(A*) =0, Vn < 0}.

Then (D=, DZ%) is a t-structure on D whose heart is A'.

Proof. To show that (D=°, D=0) is a r-structure, we have to check (cf. [Kashiwara
and Schapira 1990, Definition 10.1.1]) that (with standard notations)

(i) D='c D=0 and D=' c D>V,
(i) Homp (X, Y) =0 for X € Ob(D=%) and Y € Ob(D="),
(iii) For any X € Ob(D), there exists a distinguished triangle X9 - X — X 1—1
in D with Xo € Ob(D=%) and X, € Ob(D="). *

(1) is obvious. (2) is clear as, if f: X — Y with X € Ob(D=") and Y € Ob(D=!),
we have H"(f) =0 forn <0 (as H"(Y) =0), forn > 1 (as H*(X) = 0) and
forn=1 (as H'(X) € Ob(A™) and H'(Y) € Ob(A™)). Let’s check (3): we have
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H'(X)=X}_,/dX". Let U = (H'(X))" where H'(X) is the inverse image of
H'(X)in X 611:0. We have a short exact sequence of complexes

0> Xog—>X—->X1—0

where
X" ifn<l1, 0 ifn <1,
Xp=3U ifn=1, X={XY/U ifn=1,
0 ifn>1, X" ifn>1,

which gives the desired distinguished triangle.
We have A" = D=9 D=0 and the last assertion is obvious. O

In particular, A’ is an abelian category [Kashiwara and Schapira 1990, proposi-
tion 10.1.11].

Denote by .Aj the full subcategory of A" whose objects are those A* such that
A" =0 for n ¢ {0, 1}. To give an object A* of .Aj, amounts to give a morphism

da=d5. : A" — A

of A such that ker(d4) is an object of A~ and coker(d4) an object of A™.
The inclusion functor Afj — A’ is obviously an equivalence of categories: there
is even a canonical quasi-inverse

At — AL

which sends A*to A™'/d A2 — (A%)4—o.
We have an obvious functor

oAt > Al A (0 A).

It is easy to check that this functor is fully faithful and we denote Ag’_ its essential
image.

Similarly, it is easy to check that the functor

AT > Ay A (A—0)

is fully faithful and we denote by A6’+ its essential image.

It is also easy to check that 7 = (A6’+, Ag’_) is a torsion pair in Aj,.
Proposition 6.11. (i) t = (MZ°(Gk), M=°(Gk)) is a torsion pair in M(Gg).
(i) ¢ = (C="(Gk), CZ%(Gy)) is a torsion pair in C(Gg).

Proof. (i) We already know (Section 6C) that, for any object F of M(Gg), we
have a canonical exact sequence

0->FP5F>F950
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with 20 € M=%(Gk) and F<0 € M~9(G).

If f:F — G is a morphism of M(Gg), it sends F=° to G=°. Therefore if
F e MZ%(Gk) (<= F20 = F) and if ¢ € M~O(Gk) (<= GZ° = 0), we have
f=0.

(i) We already know (Proposition 6.6) that, for any object V of C(Gg), we have a
canonical exact sequence

0-V'"5v-sv0_90

with V<0 € ¢<°(Gg) and V=° € ¢=°(Gk). Let f : V; — V, be a morphism of
C(Gg) with Vi € C<%(Gx) and V5 € C=°(Gk). We can find a monomorphism
Vo — W with W € C*°(Gg). As any morphism from V; to W is 0, the compositum
Vi — V, - Wis 0, hence f =0. ([

Denote by Ar’(M(Gg)) the full subcategory of the categories of arrows of
MZ=%(Gg) whose objects are those dr : FO — F! such that kerdr € M<°(Gg).
Denote (M (Gk))jy, the full subcategory of (M(Gk));, whose objects are of the
form

d]:ﬁf{)—>.7:1

with 70 and F! objects of M=%(Gg).

As MZ0(Gg) is stable by taking quotients, (/\/l(GK))f)0 and Ar' (M(Gg)) have
the same objects. With obvious conventions, (M(Gk))j, is the category deduced
from Ar’ (M (Gk)) by working up to homotopies and inverting quasi-isomorphisms.

Proposition 6.12. The inclusion functor
(M(Gx))go — (M(Gk))g
is an equivalence of categories.

Proof. It means that any object dr : F* — F! of (M(Gk))y is quasi-isomorphic
to an object of (M(GK))f)O. Indeed, we may find a monomorphism FO— g0 of
M(Gg) with G° € M=2(Gx). Set

G'=¢"@p F'.
We have a short exact sequence

0—>§0—>g1 — cokerdr — 0
where ?0 is a quotient of G°. Then coker dr € MZ°(Gk) by assumption and

?0 also because M=%(G) is stable under taking quotients. As it is also stable
under extensions, G! also belongs to MZO(GK). Hence, G° — Gl is an object of
(M(GK))f)O which is quasi-isomorphic to FO— Fl. ([l
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Similarly, denote by Ar* (C(Gy)) the full subcategory of the categories of arrows
of CZ%(Gk) whose objects are those dy : V% — v such that cokerdy € C<°(Gk).
Denote (C (GK))S0 the full subcategory of (C (GK))S whose objects are of the form

dy: V0 — V!

with V? and V! objects of C=°(Gk).

As CZ%(Gy) is stable by taking subobjects, (C (GK))B/O and Ar’ /(C (Gk)) have the
same objects. With obvious conventions, (C (GK))S0 is the category deduced from
A" (C(Gk)) by working up to homotopies and inverting quasi-isomorphisms.

Proposition 6.13. The inclusion functor
(C(Gx))iy = (C(GK)Yy
is an equivalence of categories.

Proof. The proof is entirely similar to the proof of the previous proposition: It
means that any object dy : VO — V! of C (GK)S is quasi-isomorphic to an object
of (C(GK))SO. Indeed, we may find an epimorphism Wl — v of ¢(GX) with
Ve c=%(Gk). Set

WO =Vyxy1 W!

We have a short exact sequence
0— kerdy > W > W' =0

where W' is a subobject of G°. Then kerdy € C=°(Gx) by assumption and W’ also
because C=°(Gy) is stable under taking subobjects. As it is also stable under ex-
tensions, W also belongs to C=%(Gg). Hence, V? — V! is an object of (C(G,-())S0
which is quasi-isomorphic to V0 — V1. ]

Theorem 6.14. (i) The functor
T : Ar' (M(Gk)) = C(Gk), (dF:F°— F') > coker(F*(X) — F' (X))
factors uniquely through a functor
1 M(Gg)pp — C(Gk)

and I" is an equivalence of categories.

(ii) The functor
A A (C(Gk)) — M(Gk), (dy:V®— V> ker(Fyo — Fy1)
factors uniquely through a functor

A : C(Gg)hy — M(Gx)
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and A is an equivalence of categories.

Proof. Let’s prove (i). Set M= Ar' (M(Gg)) and M = M(Gk). If dF = FO—
F!is an object of one of these categories we denote it also d or F* — F!.

We see that M has an obvious structure of an exact category and that the natural
functor M — M is exact.

o Let M* (resp. M) the full subcategory of M (resp. M) whose objects are
those dr’s such that cokerdr = 0. For such an object, as kerdr € M=%(Gg), and
FO and F! belong to M=%(G), the long exact sequence of coherent cohomology
associated to the exact sequence of M(Gk)

O—>kerd;—>]-'0—>]-'l—>0
is reduced to
0— FOX) - F'(X) - H' (X, kerdr) — 0.

Granted Proposition 6.8, this shows that the restriction of T to M factors through
a functor

r*:mt— c<%Gy)
which is an equivalence of categories.

o Let M~ (resp. M ™) the full subcategory of M (resp. M) whose objects are
those dr such that F° = 0. The natural functor M~ — M is an equivalence of
categories and, granted Theorem 5.9, the restriction of T to M factors through
an equivalence of categories

™ : M~ — C=%(Gy).
e Forany dr € M, we have a canonical short exact sequence
0—dr, >dr—dr —0

withdr, = (F' > imdr) € M and dr =(0— FhHe M~ and this construction
is functorial. Moreover, we see that the sequence

0 T(dr,) —» T(dr) - T(dr ) =0

1s exact.

From these facts, we see that T factors through a functor I' : M — C(Gg) and
that this functor is faithful. It is also straightforward to check that it is exact.

We are left to check the essential surjectivity: Let V € C(Gg). We can find a
short exact sequence in C(Gg)

0>U—=>V->V-0
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with U € C%(Gx) and V € CZ%(Gk). Let F~ be the kernel of the morphism
Fu — Fy of M(Gg). As the functor global section is left exact, we have an exact
sequence

00— F (X)— Fu(X) — Fp(X).

But 7y (X) =U, Fp(X) = V and the map U — V is the given map which is
injective. Therefore F~(X) = 0 which means that 7~ € M<°(Gk) and

d]: = (./—"U — ]:‘7)

is an object of M. Clearly I'(dr) =V, i.e., I is essentially surjective.
The proof of (ii) is entirely similar and we leave it to the reader. U

Remark 6.15. The category M(GK)f)O is a full subcategory of D?(M(Gg)) and
C(Gg) is a full subcategory of DP(C(Gk)). The functor I of the previous theo-
rem is the restriction to M(GK)f)O of the functor I' : D?(M(Gg)) — D”(C(Gk))
considered in Section 6D. Similarly, the functor A of the previous theorem is the
restriction to C (GK)S0 of the functor A : D?(C(Gg)) — D?(M(Gk)) considered
in Section 6D.
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