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Monodromy and log geometry

Piotr Achinger and Arthur Ogus

A now classical construction due to Kato and Nakayama attaches a topological
space (the “Betti realization”) to a log scheme over C. We show that in the case
of a log smooth degeneration over the standard log disc, this construction allows
one to recover the topology of the germ of the family from the log special fiber
alone. We go on to give combinatorial formulas for the monodromy and the d2

differentials acting on the nearby cycle complex in terms of the log structures.
We also provide variants of these results for the Kummer étale topology. In the
case of curves, these data are essentially equivalent to those encoded by the dual
graph of a semistable degeneration, including the monodromy pairing and the
Picard–Lefschetz formula.
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1. Introduction

Log geometry was introduced with the purpose of studying compactification and
degeneration in a wide context of geometric and arithmetic situations. For example,
moduli problems usually give rise to spaces U which are not compact, and it is
often desirable to construct an understandable compactification X of U . Typically
the points of D := X \U correspond to “degenerate but decorated” versions of the
objects classified by points of U. In classical language, one keeps track of the differ-
ence between X and U by remembering the sheaf of functions on X which vanish
on D, a sheaf of ideals in OX . Log geometry takes the complementary point of view,
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456 PIOTR ACHINGER AND ARTHUR OGUS

encoding instead the sheaf functions on X which become invertible on U , a sheaf
of multiplicative monoids in OX . In general, a log scheme is a scheme X endowed
with a homomorphism of sheaves of commutative monoids αX :MX →OX ; it is
convenient to also require that the induced map α−1

X (O∗X )→O∗X be an isomorphism.
Thus there is a natural “exact sequence”:

0→O∗X →MX →MX → 0,

where the quotient is a sheaf of monoids which is essentially combinatorial in
nature. The resulting formalism allows one to study the properties of U locally
along the complement D, and in a relative situation, provides a very appealing
picture of the theory of nearby cycles. Furthermore, log structures behave well
under base change, and the log structure induced on D can often be related to the
“decoration” needed to define the compactified moduli problem represented by X .

In the complex analytic context, a construction of Kato and Nakayama [1999]
gives a key insight into the working of log geometry. Functorially associated to any
fine log analytic space X is a topological space X log, together with a natural proper
and surjective continuous map τX : X log → X top, where X top is the topological
space underlying X . For each point x of X top, the fiber τ−1

X (x) is naturally a torsor
under Hom(MX,x ,S1). The morphism τX fits into a commutative diagram,

X log

τX

��

X∗top

jlog
==

jtop

// X top

where X∗ is the open set on which the log structure is trivial and j : X∗ → X
is the inclusion. If the log scheme X is (logarithmically) smooth over C, then
the morphism jlog is aspheric [Ogus 2003, 3.1.2], and in particular it induces an
equivalence between the categories of locally constant sheaves on X∗top and on X log.
Thus τX can be viewed as a compactification of the open immersion j ; it has
the advantage of preserving the local homotopy theory of X∗. In particular, the
behavior of a locally constant sheaf F on X log can be studied locally over points
of X \ X∗, a very agreeable way of investigating local monodromy.

We shall apply the above philosophy to study the behavior of a morphism
f : X → Y of fine saturated log analytic spaces. Our goal is to exploit the log
structures of X and Y to describe the topological behavior of f locally in a neigh-
borhood of a point y of Y , especially when y is a point over which f is smooth
in the logarithmic sense but singular in the classical sense. The philosophy of log
geometry suggests that (a large part of) this topology can be computed just from
the log fiber X y → y. For example, we show that if Y is a standard log disc
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and X → Y is smooth, proper, and vertical, then the germs of X top and Ytop are
homeomorphic to the (open) mapping cylinders of the maps τX y : X y,log→ X y,top

and τy : ylog→ ytop respectively, compatibly with the map ftop : X top→ Ytop. (See
Theorem 4.1.1 for a precise statement and Conjecture 4.1.5 for a hoped for gener-
alization.) Furthermore, it is shown in [Illusie et al. 2005, 8.5] that, in the above
context, the classical complex of nearby cycles 9X/Y on X y,top can be computed
directly from the morphism of log spaces X y → y, and in fact can be identified
with (a relative version of) RτX y∗(Z). (See Section 4 for the precise statement.) In
particular, the map X y,log→ ylog serves as an “asymptotic approximation” to the
map X→ Y near y.

With the above motivation in mind, we devote our main attention to the study of a
morphism f : X→ S, where X is a fine saturated log analytic space and S is the fine
saturated split log point associated to a fine sharp monoid P . To emphasize the geo-
metric point of view, we work mainly in the context of complex analytic geometry,
describing the étale analogs of our main results in Section 6.3. We assume that f is
saturated; this implies that the homomorphism f [ : Pgp

=Mgp
S →Mgp

X is injective
and has torsion-free cokernel. The map X log→ Slog is a topological fibration, trivial
over the universal cover S̃log of Slog, and the cohomology of X̃ log := X log×Slog S̃log

is isomorphic to the cohomology of a fiber. The fundamental group IP of Slog is
canonically isomorphic to Hom(Pgp,Z(1)) and acts naturally on this cohomology
and on the “nearby cycle complex” 9X/S := Rτ̃X∗(Z), where τ̃X : X̃ log→ X top is
the natural map. This situation is illustrated by the diagram

X̃ log //

��

τ̃X

%%

X log

��

τX

// X top

��

S̃log // Slog // Stop = pt.

Our first observation is that if X/S is (log) smooth, then X/C becomes (log)
smooth when X is endowed with the idealized log structure induced from the
maximal ideal of P . Theorem 4.1.6 shows that the normalization of a smooth and
reduced idealized log scheme can be endowed with a natural “compactifying” log
structure which makes it smooth (without idealized structure). This construction
gives a canonical way of cutting our X into pieces, each of whose Betti realizations
is a family of manifolds with boundary, canonically trivialized over Slog.

We then turn to our main goal, which is to describe the topology of X̃ log, together
with the monodromy action, directly in terms of log geometry. We use the exact
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sequences
0→Mgp

S →Mgp
X →Mgp

X/S→ 0 (1-0-1)

(“log Kodaira–Spencer”), and

0→ Z(1)→OX
exp
−→Mgp

X/P →Mgp
X/S→ 0, (1-0-2)

(“log Chern class”), where MX/P := MX/P , (the quotient in the category of
sheaves of monoids). The sequence (1-0-2) is obtained by splicing together the
two exact sequences:

0→ Z(1)→OX
exp
−→O∗X → 0 (1-0-3)

and
0→O∗X →Mgp

X/P →Mgp
X/S→ 0. (1-0-4)

If ` is a global section of Mgp
X/S , its inverse image in Mgp

X/P is an O∗X -torsor, which
defines an invertible sheaf L` on X . The Chern class c1(L`) ∈ H 2(X,Z(1)) is the
image of ` under the morphism H 0(X,MX/S)→ H 2(X,Z(1)) defined by (1-0-2).

The spectral sequence of nearby cycles reads:

E p,q
2 = H p(X top, 9

q
X/S)⇒ H p+q(X̃ log,Z),

where 9q
X/S is the q-th cohomology sheaf of the nearby cycle complex 9X/S . By

(a relative version of) a theorem of Kato and Nakayama [Illusie et al. 2005, 1.5],
there are natural isomorphisms:

σ
q
X/S :

∧qMgp
X/S(−q)−→∼ 9

q
X/S. (1-0-5)

It follows that the action of each γ ∈ IP on 9q
X/S is trivial, and hence it is also

trivial on the graded groups E p,q
∞ associated to the filtration F of the abutment

H p+q(X̃ log,Z). Then γ − id maps F p H p+q(X̃ log,Z) to F p+1 H p+q(X̃ log,Z) and
induces a map

Nγ : E p,q
∞
→ E p+1,q−1

∞
. (1-0-6)

We explain in Theorem 4.2.2 that (a derived category version of) this map is
given by “cup product” with the extension class in Ext1(91

X/S,Z)
∼=Ext1(Mgp

X/S,Z(1))
obtained from the pushout of the log Kodaira–Spencer extension (1-0-1) along
γ ∈ Hom(Pgp,Z(1)). We present two proofs: the first, which works only in the
smooth case and with C-coefficients, is an easy argument based on a logarithmic
construction of the Steenbrink complex; the second uses more complicated homo-
logical algebra techniques to prove the result with Z-coefficients.

We also give a logarithmic formula for the d2 differentials of the nearby cycle
spectral sequence. Thanks to formula (1-0-5), these differentials can be interpreted
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as maps

H p(X top,
∧qMgp

X/S(−q)
)
→ H p+2(X top,

∧q−1Mgp
X/S(1− q)

)
.

Theorem 4.2.2 shows that these maps are obtained by cup-product with the derived
morphism Mgp

X/S→ Z(1)[2] obtained from the log Chern class sequence (1-0-2),
up to a factor of q!. We do not have a formula for the higher differentials, but recall
from [Illusie 1994, 2.4.4] that, in the case of a projective semistable reduction with
smooth irreducible components, these higher differentials vanish.

To illustrate these techniques, we study the case in which X/S is a smooth
log curve over the standard log point. In this case it is very easy to interpret our
formulas explicitly in terms of the combinatorial data included in the “dual graph”
which is typically attached to the nodal curve X underlying X . The log structure
provides some extra information when X/S is log smooth but nonsemistable. In
particular, we recover the classical Picard–Lefschetz formula, and we show that the
d2 differential in the nearby-cycle spectral sequence coincides with the differential
in the chain complex computing the homology of the dual graph.

For clarity of exposition, we focus mainly on the complex analytic setting. How-
ever, one of the main strengths of log geometry is the bridge it provides between
analysis and algebra and between Betti, étale, and de Rham cohomologies. For
the sake of arithmetic applications, we therefore also provide a sketch of how to
formulate and prove analogs of our results in the context of the Kummer étale
topology. The case of p-adic cohomology looks more challenging at present.

2. Homological preliminaries

In this section, after reviewing some standard material in Section 2.1, we provide
a few results in homological algebra which will be important in our study of the
nearby cycle complex 9X/S together with its multiplicative structure and the mon-
odromy action of the group IP .

2.1. Notation and conventions. We follow the conventions of [Berthelot et al.
1982] with regard to homological algebra, particularly when it comes to signs. For
simplicity, we shall work in the abelian category A of sheaves of modules on a
ringed topological space (or more generally a ringed topos) (X, AX ). Readers will
gather from our exposition that keeping track of signs presented a considerable
challenge.

Shifts, cones, and distinguished triangles. If A = (An, dn
: An
→ An+1) is a com-

plex in an abelian category A, the shift A[k] of A by an integer k is the complex
(An+k, (−1)kdn+k). We shall use the canonical identification Hn(A[k])=Hn+k(A)
induced by the identity on An+k . If u : A→ B is a morphism of complexes, its
shift f [k] : A[k] → B[k] is given by f n+k

: An+k
→ Bn+k in degree n.
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The mapping cone, written Cone(u) or C(u), is the complex with

C(u)n := Bn
⊕ An+1

with differential d(b, a) = (db + u(a),−da), which comes with a sequence of
maps of complexes,

A
u
−→ B

i
−→ C(u)

−p
−→ A[1], (2-1-1)

where i(b) := (b, 0) and p(b, a) := a. This sign convention is used in [Berthelot
et al. 1982] but differs from the convention used by Kashiwara and Schapira [1990,
Chapter I] and many other authors. A triangle is a sequence of maps in D(A) of
the form A

u
−→ B

v
−→ C

w
−→ A[1] (abbreviated as (u, v, w)). A triangle (u, v, w) is

distinguished if it is isomorphic in the derived category to a triangle of the form (2-
1-1). Then (u, v, w) is distinguished if and only if (v,w,−u[1]) is distinguished.
More generally, if (u, v, w) is distinguished, so is(
(−1)ku[k], (−1)kv[k], (−1)kw[k]

)
∼= (u[k], v[k], (−1)kw[k]) for any k ∈ Z.

Total complex and tensor product. Given a double complex

A =
(

Ap,q , d p,q
h : Ap,q

→ Ap+1,q , d p,q
v : Ap,q

→ Ap,q+1)
in A, its total complex is the complex Tot(A)=

(⊕
p+q=n Ap,q , dn

)
, where dn is

given by d p,q
h + (−1)pd p,q

v on Ap,q , so that the differentials form commutative
squares. The tensor product A ⊗ B of two complexes is by definition the total
complex of the double complex (Ap

⊗ Bq , d p
A ⊗ id, id⊗ dq

B). Note that the shift
functor (−)[k] equals AX [k]⊗ (−), while (−)⊗ AX [k] is the “naive shift,” that is,
shift without sign change. Moreover, the cone C(u) of a map u : A→ B is the total
complex of the double complex [A

u
−→ B] where B is put in the zeroth column.

Truncation functors. We use the truncation functors τ≤q and τ≥q (see [Beı̆linson
et al. 1982, exemple 1.3.2(i)] or [Kashiwara and Schapira 1990, (1.3.12)–(1.3.13),
p. 33] on the category of complexes of sheaves on X :

τ≤q K = [· · · → K q−1
→ Ker(dq)→ 0→ · · · ],

τ≥q K = [· · · → 0→ Cok(dq−1)→ K q+1
→ · · · ].

These functors descend to the derived category D(X), although they do not pre-
serve distinguished triangles. For a pair of integers a≤b, we write τ[a,b]= τ≥aτ≤b=

τ≤bτ≥a and τ[a,b) = τ[a,b−1]. For example, τ[q,q]K = Hq(K )[−q].

Proposition 2.1.1. For each triple of integers (a, b, c) with a < b < c, and each
complex K , there is a functorial distinguished triangle:

τ[a,b)(K )→ τ[a,c)(K )→ τ[b,c)(K )
δ
−→ τ[a,b)[1]. (2-1-2)
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The map δ above is the unique morphism making the triangle distinguished.

Proof. The natural map of complexes τ[a,b)(K )→ τ[a,c)(K ) is injective with cok-
ernel

C :=
[
· · · → 0→ K b−1/ ker db−1

→ K b
→ · · · → ker dc−1

→ 0→ · · ·
]

and the evident map C→ τ[b,c)(K ) is a quasi-isomorphism commuting with the
maps from τ[a,c)(K ). This way we obtain the distinguished triangle (2-1-2). For
the uniqueness, observe that given two such maps δ, δ′, there is a map

ζ : τ[b,c)(K )→ τ[b,c)(K )

completing (id, id) to a morphism of distinguished triangles:

τ[a,b)(K ) // τ[a,c)(K ) // τ[b,c)(K )

ζ

��

δ
// τ[a,b)[1]

τ[a,b)(K ) // τ[a,c)(K ) // τ[b,c)(K )
δ′
// τ[a,b)[1]

Applying the functor τ[b,c) to the middle square of the above diagram, we see that
ζ = id, and hence that δ = δ′. �

First order attachment maps. If K is a complex and q ∈ Z, the distinguished trian-
gle (2-1-2) for (a, b, c)= (q − 1, q, q + 1) is

Hq−1(K )[1− q] → τ[q−1,q+1)(K )→Hq(K )[−q]
δ

q
K [−q]
−−−−→Hq−1(K )[2− q],

which yields a “first order attachment morphism”

δ
q
K :H

q(K )→Hq−1(K )[2], (2-1-3)

embodying the d2 differential of the spectral sequence

E p,q
2 = H p(X,Hq(K ))⇒ H p+q(X, K ).

Note that δq
K [−q] is the unique morphism making the triangle above distinguished.

We shall need the following result, stating that the maps δ form a “derivation in
the derived category.”

Lemma 2.1.2. Let A and B be complexes in the abelian category A, and let i and
j be integers such that Hi (A) and H j (B) are flat AX -modules. Then the following
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diagram commutes:

Hi (A)⊗H j (B)
δi

A⊗1+(−1)i⊗δ j
B
//

��

Hi−1(A)[2]⊗H j (B)⊕Hi (A)⊗H j−1(B)[2]

��

Hi+ j (A⊗ B)
δ

i+ j
A⊗B

// Hi+ j−1(A⊗ B)[2]

Here A⊗ B denotes the derived tensor product.

Proof. Call the diagram in question D(A, B) (i and j are fixed throughout). We
shall first prove that D(A, B) commutes if Hq(A)= 0 for q 6= i . Recall that δ j

B is
the unique map such that the triangle

H j−1(B)[1− j] → τ[ j−1, j]B→H j (B)[− j]
δ

j
B [− j]
−−−−→H j−1(B)[2− j]

is distinguished. Applying AX [−i]⊗ (−)= (−)[−i], we get δi+ j
B[−i] = (−1)iδ j

B[−i]
under the identifications Hq(B)=Hq+i (B[−i]), q = j − 1, j . This implies that
D(AX [−i], B) commutes. Since

A⊗ (−)=Hi (A)[−i]⊗ (−)=Hi (A)⊗ (AX [−i]⊗ (−)),

we see that D(A, B) commutes as well.
Similarly if Hq(B)= 0 for q 6= j : A⊗ AX [−i] is the (−i)-th naive shift of A,

preserving exactness, and we have δi+ j
A⊗AX [−i] = δ

i
A[− j] (note that the effect of

naive and usual shift on maps is “the same”), so D(A, AX [− j]) commutes; again,
so does D(A, B).

To treat the general case, note that D(A, B), even if not commutative, is clearly
a functor of A and B. Let A′ := τ≤i A and observe that the natural map A′→ A
induces isomorphisms on the objects in the top row of the diagrams D(A′, B) and
D(A, B). Thus D(A, B) commutes if D(A′, B) does, and hence we may assume
that Hq(A)= 0 for q > i . Analogously, we can assume that Hq(B)= 0 for q > j .

Under these extra assumptions, the hypertor spectral sequence (see [EGA III2

1963, proposition 6.3.2])

E2
pq =

⊕
i ′+ j ′=q

Tor−p(H−i ′(A),H− j ′(B))⇒H−p−q(A⊗ B)

shows that the vertical maps in D(A, B) are isomorphisms. Let

u A,B = (right)−1
◦ (bottom) ◦ (left) in D(A, B).

Then D(A, B) commutes if and only if u A,B = (top) := δi
A⊗ 1+ (−1)i ⊗ δ j

B . The
target of u A,B is a product of two terms

Hi−1(A)[2]⊗H j (B) and Hi (A)⊗H j−1(B)[2];
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let us denote the two projections by pA and pB .
Let us set A′′ =Hi (A)[−i]; we know that D(A′′, B) commutes. This diagram

reads

Hi (A)⊗H j (B)
(−1)i⊗δ j

B
//

��

Hi (A)⊗H j−1(B)[2]

��

Hi+ j (A⊗ B)
δ

i+ j
A′⊗B

// Hi+ j−1(A′′⊗ B)[2]

and the vertical maps are isomorphisms. The map between the top-right corners of
D(A, B) and D(A′′, B) induced by the canonical map A→ A′′ is the projection pB .
It follows that pB ◦ u A,B = (−1)i ⊗ δ j

B .
Similarly, considering B ′′ =H j (B)[− j] and the canonical map B→ B ′′, and

using the fact that D(A, B ′′) commutes, we see that pA ◦ u A,B = δ
i
A ⊗ 1. We

conclude that u A,B = pA ◦u A,B + pB ◦u A,B = δ
i
A⊗1+ (−1)i ⊗ δ j

B , as desired. �

Maps associated to short exact sequences. Consider a short exact sequence of com-
plexes

0→ A
u
−→ B

π
−→ C→ 0. (2-1-4)

The map π̃ : C(u)→ C sending (b, a) to π(b) is a quasi-isomorphism.

Definition 2.1.3. In the above situation, ξu : C → A[1] is the morphism in the
derived category D(A) defined by

ξu : C
π̃−1

−−→ C(u)
−p
−→ A[1].

We shall also refer to ξu as the map corresponding to the short exact sequence
(2-1-4) (rather than the injection u).

Thus the triangle

A
u
−→ B

π
−→ C

ξu
−→ A[1] (2-1-5)

is distinguished, and the map Hq(ξ) :Hq(C)→Hq(A[1])=Hq+1(A) agrees with
the map defined by the standard diagram chase in the snake lemma. Moreover,
ξ−u =−ξu .

In the special case when A and B are objects of A concentrated in a single
degree q, the map ξu is the unique map making the triangle (2-1-5) distinguished
[Kashiwara and Schapira 1990, 10.1.11].
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2.2. Exterior powers and Koszul complexes. Let us first review some relevant
facts about exterior and symmetric powers. Recall that if E is a flat AX -module
and q ≥ 0, then the exterior power

∧q E , the symmetric power Sq E , and the divided
power 0q(E) modules are again flat. For i + j = q , there are natural multiplication
and comultiplication transformations:

µ :
∧i E ⊗

∧j E→
∧q E and η :

∧q E→
∧i E ⊗

∧j E,

µ : Si E ⊗ S j E→ Sq E and η : Sq E→ Si E ⊗ S j E,

µ : 0i E ⊗0 j E→ 0q E and η : 0q E→ 0i E ⊗0 j E .

We shall only use the maps η with i = 1. In this case they are given by the formulas

η(x1 ∧ · · · ∧ xq)=
∑

i

(−1)i−1xi ⊗ x1 ∧ · · · x̂i · · · ∧ xq ,

η(x1 · · · xq)=
∑

i

xi ⊗ x1 · · · x̂i · · · xq ,

η(x [q1]

1 · · · x [qn]
n )=

∑
i

xi ⊗ x [q1]

1 · · · x [qi−1]
i · · · x [qn]

n .

It follows that each composition∧q E
η
−→ E ⊗

∧q−1 E
µ
−→

∧q E,

Sq E
η
−→ E ⊗ Sq−1 E

µ
−→ Sq E,

0q E
η
−→ E ⊗0q−1 E

µ
−→ 0q E

is multiplication by q. Furthermore, η is a derivation, by which we mean that the
following diagram commutes:∧i E ⊗

∧j E
η⊗id,id⊗η

//

µ

��

(
E ⊗

∧i−1 E ⊗
∧j E

)
⊕
(∧i E ⊗ E ⊗

∧j−1 E
)

id⊕ti⊗id
��∧i+ j E

η

��

(
E ⊗

∧i−1 E ⊗
∧j E

)
⊕
(
E ⊗

∧i E ⊗
∧j−1 E

)
id⊗µ,id⊗µ

ss

E ⊗
∧i+ j−1 E,

where ti :
∧i E ⊗ E → E ⊗

∧i E is (−1)i times the commutativity isomorphism
for tensor products. The diagram for the symmetric and divided power products is
similar (without the sign).

In fact,
{
ηq :

∧q E→ E ⊗
∧q−1 E : q ≥ 1

}
is the unique derivation such that

η1 = id, because the multiplication map µ is an epimorphism. This argument fails
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in the derived category, and we will need another argument which gives a slightly
weaker result. To understand the context, let α : E→ F be a morphism in D(X),
where E is flat and concentrated in degree zero, and for each q, define αq as the
composition

αq :
∧q E

η
−→ E ⊗

∧q−1 E
α⊗id
−−→ F ⊗

∧q−1 E . (2-2-1)

Then the family
{
αq :

∧q E→ F ⊗
∧q−1 E : q ≥ 1

}
is a derivation in D(X), in the

sense that the diagram

∧i E ⊗
∧j E

αi⊗id,id⊗α j
//

µ

��

(
F ⊗

∧i−1 E ⊗
∧j E

)
⊕
(∧i E ⊗ F ⊗

∧j−1 E
)

id⊕ti⊗id
��∧i+ j E

αi+ j
��

(
F ⊗

∧i−1 E ⊗
∧j E

)
⊕
(
F ⊗

∧i E ⊗
∧j−1 E

)
id⊗µ,id⊗µ

ss

F ⊗
∧i+ j−1 E

(2-2-2)

commutes. We shall see that this property almost determines the maps αq .

Proposition 2.2.1. Let E be a flat AX -module, let F be an object of D(X), and let{
α′j :

∧j E→ F ⊗
∧j−1 E : j ≥ 1

}
be a family of morphisms in D(X). Let α = α′1 : E→ F , let αq be as in (2-2-1) for
q ≥ 1, and assume that q ∈ Z+ is such that for 1≤ j < q , the diagrams

E ⊗
∧j E

α⊗id,id⊗α′j
//

µ

��

(
F ⊗

∧j E
)
⊕
(
E ⊗ F ⊗

∧j−1 E
)

id⊕t⊗id
��∧j+1 E

α′j+1
��

(
F ⊗

∧j E
)
⊕
(
F ⊗ E ⊗

∧j−1 E
)

id,id⊗µ
tt

F ⊗
∧j E

commute, where t : E ⊗ F→ F ⊗ E is the negative of the standard isomorphism.
Then q!α′q = q!αq .

Proof. The statement is vacuous for q = 1, and we proceed by induction on q . Let
τF := (id, id⊗µ) ◦ (id⊕ t ⊗ id) in the diagram above. Then, setting j = q− 1, we
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have the following commutative diagram:

∧q E
η
//

q
&&

E ⊗
∧q−1 E

µ

��

α⊗id,id⊗α′q−1
//
(
F ⊗

∧q−1 E
)
⊕
(
E ⊗ F ⊗

∧q−2 E
)

τF

��∧q E
α′q

// F ⊗
∧q−1 E

In other words,
qα′q = τF ◦ (α⊗ id, id⊗α′q−1) ◦ η.

Similarly,
qαq = τF ◦ (α⊗ id, id⊗αq−1) ◦ η.

Then using the induction hypothesis, we can conclude:

q!α′q = τF ◦
(
(q − 1)!α⊗ id, id⊗ (q − 1)!α′q−1

)
◦ η

= τF ◦
(
(q − 1)!α⊗ id, id⊗ (q − 1)!αq−1

)
◦ η

= q!αq . �

Next we discuss connecting homomorphisms, exterior powers, and Koszul com-
plexes. Consider a short exact sequence of flat AX -modules

0→ A
u
−→ B

π
−→ C→ 0,

and the associated morphism ξ = ξu : C→ A[1] (see Definition 2.1.3). The Koszul
filtration is the decreasing filtration of

∧q B defined by

K i∧q B = Im
(∧i A⊗

∧q−i B
∧

i u⊗id
−−−−→

∧i B⊗
∧q−i B

µ
−→

∧q B
)
.

There are canonical isomorphisms∧i A⊗
∧q−i C ∼= Gri

K
(∧q B

)
(2-2-3)

We can use this construction to give a convenient expression for the composed
morphism ξq :

∧qC→ A⊗
∧q−1C[1] defined in Equation (2-2-1) above.

Proposition 2.2.2. Let 0 → A
u
−→ B

π
−→ C → 0 be an exact sequence of flat

AX -modules, with corresponding morphism ξ := ξu : C→ A[1] in D(X). For each
q ∈ N, let K • be the Koszul filtration on

∧q B defined by the inclusion u : A→ B
and consider the exact sequence

0−→ A⊗
∧q−1C

uq
−→

∧q B/K 2∧q B
πq
−→

∧qC→ 0

obtained from the filtration K and the isomorphisms (2-2-3) above. Then

ξuq = ξq := (ξ ⊗ id) ◦ η :
∧qC −→ C ⊗

∧q−1C −→ A⊗
∧q−1C[1].
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Proof. Observe that the composition∧q B
η
−→ B⊗

∧q−1 B
id⊗π
−−−→ B⊗

∧q−1C

annihilates K 2∧q B. Then we find the following commutative diagram, in which
the rows are exact:

0 // A⊗
∧q−1C //

∧q B/K 2∧q B //

ζ
��

∧qC //

η

��

0

0 // A⊗
∧q−1C // B⊗

∧q−1C // C ⊗
∧q−1C // 0

We consequently get a commutative diagram in D(X):

∧qC
ξuq

//

η

��

A⊗
∧q−1C[1]

C ⊗
∧q−1C

ξ⊗id
// A⊗

∧q−1C[1]
�

Let us now recall the definition of the Koszul complex of a homomorphism (see
Illusie 1971, chapitre I, 4.3.1.3; Kato and Saito 2004, 1.2.4.2]).

Definition 2.2.3. Let u : A→ B be homomorphism of AX -modules, and let q ≥ 0.
Then the q-th Koszul complex Kosq(u) of u is the cochain complex whose p-th
term is 0q−p(A)⊗

∧p B and with differential

d p
u,q : 0

q−p(A)⊗
∧p B

η⊗id
// 0q−p−1(A)⊗ A⊗

∧p B

id⊗u⊗id
��

0q−p−1(A)⊗ B⊗
∧p B

id⊗µ
// 0q−p−1(A)⊗

∧p+1 B

Observe that Kosq(u) (treated as a chain complex) is 3q(u : A→ B) in the no-
tation of [Kato and Saito 2004, 1.2.4.2], and is the total degree q part of Kos•(u) in
the notation of [Illusie 1971, chapitre I, 4.3.1.3]. If A and B are flat, Kosq(u)[−q]
coincides with the derived exterior power of the complex [A → B] (placed in
degrees −1 and 0), see [Kato and Saito 2004, Corollary 1.2.7]. Note that Kos1(u)
is the complex [A→ B] in degrees 0 and 1, i.e., Kos1(θ) = Cone(−θ)[−1]. If
u = idA, its Koszul complex identifies with the divided power de Rham complex
of 0•(A). In most of our applications, AX will contain Q, and we can and shall
identify 0q(A) with Sq(A), the q-th symmetric power of A.

We recall the following well-known result (see [Steenbrink 1995, Lemma 1.4]):
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Proposition 2.2.4. Suppose that

0−→ A
u
−→ B −→ C −→ 0

is an exact sequence of flat AX -modules. Then the natural map

eq : Kosq(u)[q] →
∧qC

is a quasi-isomorphism.

Proof. We include a proof for the convenience of the reader. The last nonzero term
of the complex Kosq(u)[q] is

∧q B in degree 0, and the natural map
∧q B→

∧qC
induces the morphism eq . The Koszul filtration K on

∧•
B makes Kosq(u) a filtered

complex, with
K i Kosq(u)n := 0q−n(A)⊗ K i∧n B.

Note that the differential d of Kosq(u) sends K i Kosq(u) to K i+1 Kosq(u). Then
the spectral sequence of the filtered complex (Kosq(u), K ) has

E i, j
1 = H i+ j (Gri

K Kosq(u))= Gri
K Kosq(u)i+ j

= 0q−i− j (A)⊗
∧i A⊗

∧j C,

and the complex (E
•, j
1 , d

•, j
1 ) identifies with the complex Kos(idA)

q− j
⊗
∧j C[− j],

up to the sign of the differential. This complex is acyclic unless j = q, in which
case it reduces to the single term complex

∧qC[−q]. It follows that the map
eq [−q] : Kosq(u)→

∧qC[−q] is a quasi-isomorphism. �

The following technical result compares the various Koszul complexes associ-
ated to u.

Proposition 2.2.5. Let 0 → A
u
−→ B

π
−→ C → 0 be an exact sequence of flat

AX -modules. For each q ≥ 0, let K be the Koszul filtration of
∧q B induced by u,

and let
uq : A⊗

∧q−1C→
∧q B/K 2∧q B

be as in Proposition 2.2.2.

(1) There is a natural commutative diagram of quasi-isomorphisms:

Kosq(u)[q]
aq
//

eq
((

Cone((−1)quq)

bq
��∧qC

(2) There exist morphisms of complexes cq and fq as indicated below. Each of
these is a quasi-isomorphism of complexes, and the resulting diagram is com-
mutative. Hence there is a unique morphism gq in D(X) making the following
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diagram commute:

Kosq(u)[q]
aq

//

cq

��

eq

))
Cone((−1)quq)

fq

&&

bq
//
∧qC

gq

��

A⊗Kosq−1(u)[q]
id⊗eq−1

// A⊗
∧q−1C[1]

(3) In the derived category D(X), gq = (−1)q−1ξuq , where ξuq is the morphism
defined by uq as in Definition 2.1.3. Consequently, gq is (−1)q−1 times cup-
product (on the left) with the morphism ξu defined by u.

Proof. The vertical arrows in the following commutative diagram of complexes are
the obvious projections. The first set of these defines the morphism of complexes
aq and the second defines the morphism bq .

0q(A) // · · ·02(A)⊗
∧q−2 B //

aq

��

A⊗
∧q−1 B

aq
��

//
∧q B

aq

��

0 // A⊗
∧q−1C

(−1)q uq
//
∧q B/K 2∧q B

bq
��∧qC

Here the top row is placed in degrees−q through 0, and its differential is the Koszul
differential multiplied by (−1)q , and thus is the complex Kosq(u)[q]. The middle
row is placed in degrees −1 and 0, and hence is the mapping cone of (−1)quq .
Since the sequence

0→ A⊗
∧q−1C→

∧q B/K 2∧q B→
∧qC→ 0

is exact, the map bq is a quasi-isomorphism. We observed in Proposition 2.2.4 that
eq is a quasi-isomorphism, and it follows that aq is also a quasi-isomorphism. This
proves statement (1) of the proposition.

The morphism fq is defined by the usual projection

Cone((−1)quq)=
[
A⊗

∧q−1C
(−1)q uq
−−−−→

∧q B/K 2∧q B
] p=(id,0)
−−−−→ A⊗

∧q−1C.
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The following diagram commutes, with the sign shown, because of the conventions
in (2-1-1) and Definition 2.1.3:

Cone((−1)quq)

p
��

∼
//
∧qC

−ξ(−1)q uqxx

A⊗
∧q−1C

One checks easily that the square below commutes, so that the vertical map
defines a morphism of complexes Kosq(u)→ A⊗Kosq−1(u) whose shift is cq :

0q−n(A)⊗
∧n B

du
//

η⊗id
��

0q−n−1(A)⊗
∧n+1 B

did⊗id
��

A⊗0q−n−1(A)⊗
∧n B

id⊗du

// A⊗0q−n−2(A)⊗
∧n+1 B

The diagram of statement (2) in degree q − 1 is given by the following obvious set
of maps:

A⊗
∧q−1 B //

id
��

A⊗
∧q−1C //

id

''

0

A⊗
∧q−1 B // A⊗

∧q−1C

and in degree q by ∧q B //

��

∧q B/K 2∧q B //

&&

∧qC

0 // 0

This proves statement (2). It follows that gq = −ξ(−1)q uq = (−1)q−1ξuq and the
rest of statement (3) then follows from Proposition 2.2.2. �

2.3. τ -unipotent maps in the derived category. One frequently encounters unipo-
tent automorphisms of objects, or more precisely, automorphisms γ of filtered
objects (C, F) which induce the identity on the associated graded object Gr•F (C).
Then γ − id induces a map Gr•F (C)→ Gr•−1

F C which serves as an approximation
to γ. For example, if γ is an automorphism of a complex C which acts as the iden-
tity on its cohomology, this construction can be applied to the canonical filtration
τ≤ of C and carries over to the derived category.

Lemma 2.3.1. Let λ : A→ B be a map in D(A), and let q be an integer such
that the maps Hi (λ) :Hi (A)→Hi (B) are zero for i = q − 1, q. Then there exists
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a unique morphism Lq
λ : H

q(A)[−q] → Hq−1(B)[1 − q] making the following
diagram commute:

τ[q−1,q](A)

τ[q−1,q](λ)

��

// Hq(A)[−q]

Lq
λ
��

τ[q−1,q](B) Hq−1(B)[1− q]oo

The same map Lq
λ fits into the commutative diagram

τ≤q A

τ≤q (λ)

��

//

%%

Hq(A)[−q]
Lq
γ

((

τ≤q B τ≤q−1 Boo // Hq−1(B)[1− q]

Proof. Consider the following commutative diagram with exact rows and columns:

Hom(τ[q]A, τ[q]B[−1]) //

��

Hom(τ[q−1,q]A, τ[q]B[−1]) //

��

Hom(τ[q−1]A, τ[q]B[−1])

��

Hom(τ[q]A, τ[q−1]B) //

��

Hom(τ[q−1,q]A, τ[q−1]B) //

��

Hom(τ[q−1]A, τ[q−1]B)

��

Hom(τ[q]A, τ[q−1,q]B) //

��

Hom(τ[q−1,q]A, τ[q−1,q]B) //

��

Hom(τ[q−1]A, τ[q−1,q]B)

��

Hom(τ[q]A, τ[q]B) // Hom(τ[q−1,q]A, τ[q]B) // Hom(τ[q−1]A, τ[q]B)

Note that the groups in the top row and the group in the bottom right corner are zero,
as Hom(X, Y ) = 0 if there exists an n ∈ Z such that τ≥n X = 0 and τ≤n−1Y = 0.
Similarly, the left horizontal maps are injective. The first claim follows then by
diagram chasing.

For the second assertion, we can first assume that A= τ≤q A and B = τ≤q B. We
can then reduce further to the case A= τ[q−1,q](A) and B= τ[q−1,q](B), whereupon
the claim becomes identical to the first assertion. �

Proposition 2.3.2. Let C
i
−→ A

λ
−→ B

ρ
−→ C[1] be a distinguished triangle in the

derived category D(A), and consider the corresponding exact sequence

· · · →Hq−1(A)
λ
−→Hq−1(B)

ρ
−→Hq(C)

i
−→Hq(A)

λ
−→Hq(B)→ · · · .

Assume that Hq(λ)=Hq−1(λ)= 0, so that we have a short exact sequence

0→Hq−1(B)
ρ
−→Hq(C)

i
−→Hq(A)→ 0.
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Let

κq
:Hq(A)→Hq−1(B)[1]

be the corresponding derived map, as in Definition 2.1.3. Then κq
= (−1)q−1Lq

λ[q],
where Lq

λ is the map defined in Lemma 2.3.1.

Proof. First note that if λ′ : A′→ B ′ satisfies Hq−1(λ′)=Hq(λ′)= 0 and there is
a commutative diagram of the form

A′ λ′
//

a
��

B ′

b
��

A
λ
// B

with the property that Hi (a) and Hi (b) are isomorphisms for i = q − 1, q, then
the proposition holds for λ′ if and only if it holds for λ. Indeed, any distinguished
triangle containing λ′ fits into a commutative diagram

C ′

c
��

i ′
// A′ λ′

//

a
��

B ′

b
��

ρ′
// C ′[1]

c[1]
��

C
i
// A

λ
// B

ρ
// C[1]

Applying the functor τ≤q leaves Hi unchanged for i ≤ q, and applying τ≥q−1

leaves Hi unchanged for i ≥ q−1. Thus we may without loss of generality assume
that A = τ[q−1,q](A) and B = τ[q−1,q](B). We have a morphism of distinguished
triangles:

Hq−1(A)[1− q] a
//

λ=0
��

A b
//

λ

��

Hq(A)[−q] //

λ=0
��

Hq−1(A)[2− q]

λ=0
��

Hq−1(B)[1− q] a
// B b

// Hq(B)[−q] // Hq−1(B)[2− q]

The left map being zero by hypothesis, we have λ ◦ a = 0, and hence λ factors
through b : A → Hq(A)[−q]. It thus suffices to prove the assertion with the
morphism Hq(A)[−q] → B in place of λ. Similarly, since Hq(λ) = 0, we may
replace B by τ≤q−1(B). Thus we are reduced to the case in which A=Hq(A)[−q]
and B = Hq−1(B)[1− q]. It follows that C = Hq(C)[−q]. Note that λ = Lq

λ in
this situation. Therefore we have a commutative diagram whose vertical maps are
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isomorphisms:

B[−1]

��

−ρ
// C i

//

��

A

��

λ
// B

��

Hq−1(B)[−q]
−ρ

// Hq(C)[−q]
i
// Hq(A)[−q]

λ
// Hq−1(B)[1− q]

Since the top row is distinguished, it follows that the bottom row is distinguished
as well. Applying [q] shows that

Hq−1(B)
−(−1)qρ
−−−−−→Hq(C)

(−1)q i
−−−→Hq(A)

(−1)qλ[q]
−−−−−→Hq−1(B)[1]

is distinguished. This is isomorphic to

Hq−1(B)
ρ
−→Hq(C)

i
−→Hq(A)

(−1)q+1λ[q]
−−−−−−→Hq−1(B)[1].

As we observed after Definition 2.1.3, the fact that these complexes are concen-
trated in a single degree implies that the last map is the unique one making the
triangle distinguished. Thus κ = (−1)q+1λ[q] = (−1)q+1Lq

λ[q], as desired. �

3. Logarithmic preliminaries

3.1. Notation and conventions. For the basic facts about log schemes, especially
the definitions of log differentials and log smoothness, we refer to Kato’s seminal
paper [1989] and the forthcoming book [Ogus 2018]. Here we recall a few essential
notions and constructions for the convenience of the reader.

Monoids and monoid algebras. If (P,+, 0) is a commutative monoid, we denote
by P∗ the subgroup of units of P , by P+ the complement of P∗, and by P the
quotient of P by P∗. A monoid P is said to be sharp if P∗ = 0. If R is a fixed
base ring, we write R[P] for the monoid algebra on P over R. This is the free
R-module with basis

e : P→ R[P], p 7→ ep

and with multiplication defined so that epeq
= ep+q . The corresponding scheme

AP := Spec(R[P]) has a natural structure of a monoid scheme. There are two
natural augmentations R[P] → R. The first of these, corresponding to the identity
section of AP , is given by the homomorphism P→ R sending every element to the
identity element 1 of R. The second, which we call the vertex of AP , is defined by
the homomorphism sending P∗ to 1 ∈ R and P+ to 0 ∈ R. The two augmentations
coincide if P is a group.

A commutative monoid P is said to be integral if the universal map P→ Pgp

from P to a group is injective. An integral monoid P is said to be saturated if
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for every x ∈ Pgp such that nx ∈ P for some positive integer n, in fact x ∈ P . A
monoid is fine if it is integral and finitely generated and is toric if it is fine and
saturated and Pgp is torsion free. An ideal in a monoid P is a subset of P which
is stable under addition by elements of P . If J is an ideal in P , then R[P, J ]
denotes the quotient of the monoid algebra R[P] by the ideal generated by J . The
complement of J in P is a basis for the underlying R-module of R[P, J ].

Log structures. A prelog structure on a ringed space (X,OX ) is a homomorphism
α from a sheaf of commutative monoids M to the multiplicative monoid underly-
ing OX . A log structure is a prelog structure such that the induced map

α−1(O∗X )→O∗X

is an isomorphism. The trivial log structure is the inclusion O∗X →OX . A ringed
spaceX endowed with a log structure αX is referred to as a log space. An idealized
log space is a log space (X, αX ) together with a sheaf of ideals KX in MX such that
αX (KX )= 0 [Ogus 2003, 1.1; 2018, §III, 1.3]. A prelog structure α : P→OX on
a ringed space factors through a universal associated log structure αa

: Pa
→OX .

A log structure α on X is said to be fine (resp. fine and saturated) if locally on
X there exists a fine (resp. fine and saturated) constant sheaf of monoids P and
a prelog structure P→ OX whose associated log structure is α. There is an evi-
dent way to form a category of log schemes, and the category of fine (resp. fine
saturated) log schemes admits fiber products, although their construction is subtle.
Grothendieck’s deformation theory provides a geometric way to define smoothness
for morphisms of log schemes, and many standard “degenerate” families become
logarithmically smooth when endowed with a suitable log structure. A morphism
of integral log spaces f : X → Y is vertical if the quotient MX/Y of the map
f ∗log(MY )→MX , computed in the category of sheaves of monoids, is in fact a
group. We shall use the notions of exactness, integrality, and saturatedness for
morphisms of log schemes, for which we refer to the above references and also to
[Tsuji 2019; Illusie et al. 2005].

If P is a commutative monoid and β : P → A is a homomorphism into the
multiplicative monoid underlying a commutative ring A, we denote by Spec(β) the
scheme Spec A endowed with the log structure associated to the prelog structure
induced by β. In particular, if R is a fixed base ring and P→ R[P] is the canonical
homomorphism from P to the monoid R-algebra of P , then AP denotes the log
scheme Spec(P → R[P]), and if P is fine and R = C, we write Aan

P for the log
analytic space associated to AP . (If the analytic context is clear, we may just write
AP for this space.) If v : P→ R is the vertex of AP (the homomorphism sending
P+ to zero and P∗ to 1), the log scheme Spec(v) is called the split log point
associated to P; it is called the standard log point when P = N. If J is an ideal
in the monoid P , we let AP,J denote the closed idealized log subscheme of AP
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defined by the ideal J of P . The underlying scheme of AP,J is the spectrum of the
algebra R[P, J ], and the points of Aan

P,J are the homomorphisms P→ C sending
J to zero.

If P is a toric monoid, the log analytic space Aan
P is a partial compactification of

its dense open subset A∗P := Aan
Pgp , and the (logarithmic) geometry of Aan

P expresses
the geometry of this compactified set, a manifold with boundary. The underlying
topological space of A∗P is Hom(P,C∗), and its fundamental group IP (the “log
inertia group”) will play a fundamental role in what follows.

3.2. Some groups and extensions associated to a monoid. Let us gather here the
key facts and notations we shall be using. If P is a toric monoid (i.e., if P is fine
and saturated and Pgp is torsion free) we define

TP := Hom(P,S1), where S1
:= {z ∈ C : |z| = 1},

RP := Hom(P,R≥),

where R≥ :=
{
r ∈ R : r ≥ 0, with its multiplicative monoid law

}
,

IP := Hom(P,Z(1)), where Z(1) := {2π in : n ∈ Z} ⊆ C,

VP := Hom(P,R(1)), where R(1) := {ir : r ∈ R} ⊆ C,

LP := {affine mappings IP → Z(1)},

χ : Pgp
−→∼ Hom(TP ,S1), p 7→ χp, where χp(σ ) := σ(p),

χ̃ : Pgp
−→∼ Hom(IP ,Z(1))⊆ LP , p 7→ χ̃p, where χ̃p(γ ) := γ (p).

An affine mapping f : IP→Z(1) can be written uniquely as a sum f = f (0)+h,
where h is a homomorphism IP → Z(1). Since P is toric, the map χ̃ is an iso-
morphism, so h = χ̃p for a unique p ∈ Pgp. Thus the group LP is a direct sum
Z(1)⊕ Pgp, which we write as an exact sequence

0→ Z(1)→ LP
ξ
−→ Pgp

→ 0, (3-2-1)

for reasons which will become apparent shortly.
The inclusion S1

→ C∗ is a homotopy equivalence, and hence so is the induced
map TP → A∗P , for any P . Thus the fundamental groups of A∗P and TP can be
canonically identified. The exponential mapping θ 7→ eθ defines the universal
covering space R(1)→ S1, and there is an induced covering space VP → TP . The
subgroup IP = Hom(P,Z(1)) of VP acts naturally on VP by translation:

(v, γ ) 7→ v+ γ if v ∈ VP and γ ∈ IP .

The induced action on TP is trivial, and in fact IP can be identified with the covering
group of the covering VP→TP , i.e., the fundamental group of TP . (Since the group
is abelian we do not need to worry about base points.) We view IP as acting on the
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right on the geometric object VP and on the left on the set of functions on VP : if
f is a function on VP , we have

(γ f )(v)= f (v+ γ ).

In particular, if f is constant, then γ f = f , and if p ∈ Pgp,

γ χ̃p = χ̃p + γ (p). (3-2-2)

It follows that the set LP of affine mappings IP → Z(1) is stable under the IP -
action (3-2-2). The homomorphism χ̃ : Pgp

→ LP is a canonical splitting of the
exact sequence (3-2-1), but the splitting is not stable under the action of IP , as the
formula (3-2-2) shows. The formula also shows that the exact sequence (3-2-1) can
be viewed as an extension of trivial IP -modules. Any f ∈ LP extends naturally to
an affine transformation VP → R(1), and in fact LP is the smallest IP -stable subset
of the set of functions VP → R(1) containing χ̃p for all p ∈ Pgp.

The dual of the extension (3-2-1) has an important geometric interpretation.
Consider the group algebra Z[IP ] with basis e : IP → Z[IP ]. It is equipped with
a right action of IP defined by eδγ = eδ+γ . Its augmentation ideal J is generated
by elements of the form eδ − 1 for δ ∈ IP and is stable under the action of IP . The
induced action on J/J 2 is trivial, and there is an isomorphism of abelian groups:

λ : IP → J/J 2, γ 7→ [eγ − e0
]. (3-2-3)

Identifying IP with J/J 2, we have a split exact sequence of IP -modules:

0→ IP → Z[IP ]/J 2
→ Z→ 0, (3-2-4)

where the action of IP on IP and on Z is trivial.

Proposition 3.2.1. There is a natural isomorphism

LP −→
∼ Hom(Z[IP ]/J 2,Z(1)),

compatible with the structures of extensions (3-2-1) and (3-2-4) and the (left) ac-
tions of IP . The boundary map ∂ arising from the extension (3-2-1)

∂ : Pgp
→ H 1(IP ,Z(1))∼= Hom(IP ,Z(1))∼= Pgp

is the identity.

Proof. Since Z[IP ] is the free abelian group with basis IP , the map f → h f from
the set of functions f : IP → Z(1) to the set of homomorphisms Z[IP ] → Z(1) is
an isomorphism, compatible with the natural left actions of IP . If f : IP → Z(1),
then h f annihilates J if and only if f (γ ) = f (0) for every γ , i.e., if and only if
f ∈ Z(1) ⊆ L P . Furthermore, h f annihilates J 2 if and only if for every pair of
elements γ, δ of IP ,

h f ((eδ − 1)(eγ − 1))= 0,
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i.e., if and only if

f (δ+ γ )− f (δ)− f (γ )+ f (0)= 0.

But this holds if and only if f (δ+ γ )− f (0)= f (δ)− f (0)+ f (γ )− f (0), i.e.,
if and only if f − f (0) belongs to χ̃(Pgp), i.e., if and only if f ∈ LP .

To check the claim about the boundary map ∂ , and in particular its sign, we
must clarify our conventions. If 0 is a group and E is a 0-module, then we view
H 1(0, E) as the set of isomorphism classes of E-torsors in the category of 0-sets.
If the action of 0 on E is trivial and L is such a torsor, then for any ` ∈ L and any
γ ∈ 0, the element φL ,γ := γ (`)−` is independent of the choice of `, the mapping
γ → φL ,γ is a homomorphism φL : 0→ E , and the correspondence L 7→ φL is
the isomorphism

φ : H 1(0, E)→ Hom(0, E). (3-2-5)

To verify the claim, let p be an element of Pgp. Then ∂(p) ∈ H 1(IP ,Z(1)) is
the Z(1)-torsor of all f ∈ L P whose image under ξ : LP → Pgp is p. Choose any
such f , and write f = f (0)+ χ̃p. Then if γ ∈ IP , we have γ ( f )= f + γ (p), and
thus

∂(p) 7→ φL(γ )= γ ( f )− f = γ (p)= χ̃p(γ ).

This equality verifies our claim. �

3.3. Betti realizations of log schemes. Since the Betti realization X log of an fs-log
analytic space X plays a crucial role here, we briefly review its construction. As a
set, X log consists of pairs (x, σ ), where x is a point of X and σ is a homomorphism
of monoids making the following diagram commute:

O∗X,x //

f 7→ f (x)
��

MX,x

σ

��

C∗ arg
// S1

The map τX : X log → X sends (x, σ ) to x . A (local) section m of MX gives
rise to a (local) function arg(m) : X log → S1, and the topology on X log is the
weak topology coming from the map τX and these functions. The map τX is
proper, and for x ∈ X , the fiber τ−1

X (x) is naturally a torsor under the group
TX,x :=Hom(Mgp

X,x ,S1). Thus the fiber is connected if and only if Mgp
X,x is torsion

free, and if this is the case, the fundamental group IX,x of the fiber is canonically
isomorphic to Hom(MX,x ,Z(1)). The map τX : X log→ X top is characterized by
the property that for every topological space T , the set of morphisms T → X log

identifies with the set of pairs (p, c), where p : T → X top is a continuous map
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and c : p−1(Mgp
X )→ S1

T is a homomorphism from p−1(Mgp
X ) to the sheaf S1

T of
continuous S1-valued functions on T such that c( f )= arg( f ) for all f ∈ p−1(O∗X ).

When X = AP,J , the construction of Slog can be understood easily as the intro-
duction of “polar coordinates.” The multiplication map R≥×S1

→ C maps polar
coordinates to the standard complex coordinate. Let RP,J := {ρ ∈ RP : ρ(J )= 0}.
Multiplication induces a natural surjection:

τ : RP,J ×TP → Aan
P,J , (ρ, σ ) 7→ ρσ. (3-3-1)

Then A
log
P,J
∼= RP,J ×TP , and τ corresponds to the canonical map τ

A
log
P,J

. The expo-
nential map induces a universal covering

η : Ã
log
P,J := RP,J ×VP → A

log
P,J , (3-3-2)

whose covering group identifies naturally with IP . Thus the group IP is also the
fundamental group of Alog

P,J .

Remark 3.3.1. If X is a smooth curve endowed with the compactifying log struc-
ture induced by the complement of a point x , then τX : X log→ X top is the “real
oriented blow-up”of X at x , and there is a natural bijection between τ−1

X (x) and
the set of “real tangent directions” (Tx X \ {0})/R> at x . Below we provide a more
general and robust identification of this kind.

If X is any log analytic space and q is a global section of Mgp
X , let L∗q denote the

sheaf of sections of Mgp
X which map to q. This sheaf has a natural structure of an

O∗X -torsor, and we let Lq denote the corresponding invertible sheaf of OX -modules
and L∨q its dual. A local section m of L∗q defines a local generator for the invertible
sheaf Lq . If (x, σ ) is a point of X log and m is a local section of L∗q , let m(x) be
the value of m in the one-dimensional C-vector space Lq(x) and let φm ∈ L∨q (x)
be the unique linear map L(x)→ C taking m(x) to σ(m). If m′ is another local
section of L∗q , there is a unique local section u of O∗X such that m′ = um, and then
φm′ = |u(x)|−1φm . Indeed,

φm′(m(x))= u(x)−1φm′(m′(x))= u(x)−1σ(m′)

= u(x)−1 arg(u(x))σ (m)= |u(x)|−1φm(m(x)).

Thus φ′m and φm have the same image in the quotient of L∨q (x) by the action of R>.
This quotient corresponds to the set of directions in the one-dimensional complex
vector space L∨q (x). If L is any one-dimensional complex vector space, it seems
reasonable to denote the quotient L/R> by S1(L). Thus we see that there is a
natural map: β : τ−1

X (x)→ S1(L∨q (x)). The source of this continuous map is a
torsor under TX,x = Hom(Mgp

X,x .S
1) and its target is naturally a torsor under S1.

One verifies immediately that if ζ ∈Hom(Mgp
X ,S1) and σ ∈ τ−1

X (x), then β(ζσ )=
ζ(q)β(σ ).
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When αX is the log structure coming from a divisor D on X , the divisor D gives
rise to a global section q of MX , the invertible sheaf Lq is the ideal sheaf defining
D, and L∨q (x) is the normal bundle to D at x . In particular, if X is a curve, then
L∨q (x)∼= Tx(X) and S1(L∨q (x)) is the aforementioned space (Tx(X) \ {0})/R> of
real tangent directions at x .

On the space X log one can make sense of logarithms of sections of MX . There
is an exact sequence of abelian sheaves

0→ Z(1)→ LX
π
−→ τ−1

X (Mgp
X )→ 0, (3-3-3)

where LX is defined via the Cartesian diagram

LX //

π

��

R(1)X log

exp
��

τ−1
X (Mgp

X ) arg
// S1

X log

There is also a homomorphism

ε : τ−1
X (OX )→ LX , f 7→ (exp f, Im( f )), (3-3-4)

and the sequence

0→ τ−1
X (OX )→ LX → τ−1

X (Mgp
X )→ 0 (3-3-5)

is exact. When the log structure on X is trivial the map ε is an isomorphism, and
the exact sequence (3-3-3), called the “logarithmic exponential sequence” reduces
to the usual exponential sequence on X .

We can make this construction explicit in a special “charted” case.

Proposition 3.3.2. Let X := Aan
P,J , where J is an ideal in a sharp toric monoid P ,

let η : X̃ log→ X log be the covering (3-3-2), and let τ̃X := τX ◦ η. Then on X̃ , the
pullback

0→ Z(1)→ LP → Pgp
→ 0,

of the extension (3-3-3) along the natural map Pgp
→ τ̃−1

X (Mgp
X ) identifies with

the sheafification of the extension (3-2-1). This identification is compatible with
the actions of IP .

Proof. It is enough to find a commutative diagram

0 // Z(1) // LP //

��

Pgp

��

// 0

0 // Z(1) // η∗S(LS) // τ̃−1
S (Mgp

S )
// 0
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We define a map LP → η∗S(LS) as follows. Every f ∈ LP can be written uniquely
as f = f (0)+ χ̃p, where p ∈ Pgp and f (0) ∈ Z(1). Let (ρ, θ) be a point of S̃log,
with image (ρ, σ ) ∈ Slog. Then the pair ( f (θ), p) ∈ R(1)× Pgp defines an element
of LS,(ρ,σ ), because

σ(p)= exp(θ(p))= exp(χ̃p(θ))= exp( f (θ)− f (0))= exp( f (θ)),

since f (0) ∈ Z(1). �

4. Logarithmic degeneration

4.1. Log germs and log fibers. We begin with an illustration of the philosophy
that the local geometry of a suitable morphism can be computed from its log fibers.
We use the following notation and terminology. If τ : X ′→ X is a continuous map
of topological spaces, then Cyl(τ ) is the (open) mapping cylinder of τ , defined as
the pushout in the diagram

X ′

τ

��

// X ′×[0,∞)

π

��

X // Cyl(τ )

where the top horizontal arrow is the embedding sending x ′ ∈ X ′ to (x ′, 0). In
Cyl(τ ), the point (x ′, 0) becomes identified with the point τ(x). A commutative
diagram

X ′

τX
��

f ′
// Y ′

τY
��

X
f
// Y

induces a mapping Cyl f : Cyl(τX )→ Cyl(τY ).

Theorem 4.1.1. Let f : X→ Y be a morphism of fine saturated log analytic spaces,
where Y is an open neighborhood of the origin v of the standard log disc AN.
Assume that f is proper, smooth, and vertical. Then after Y is replaced by a
possibly smaller neighborhood of v, there is a commutative diagram

Cyl(τXv )
∼
//

Cyl fv
��

X top

ftop

��

Cyl(τv)
∼
// Ytop

in which the horizontal arrows are isomorphisms. (The arrows are neither unique nor
canonical, and depend on a choice of a trivialization of a fibration; see Lemma 4.1.3.)
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Proof. Note that since the stalks of MY are either 0 or N, the morphism f is
automatically exact. We may assume that Y ={z ∈C : |z|<ε} for some ε > 0. Then
Ylog ∼= vlog×[0, ε)∼= S1

×[0,∞). With this identification, the map τY is just the
collapsing map shrinking S1

× 0 to a point, and hence induces a homeomorphism
Cyl(τv)→ Ytop. The following lemma generalizes this construction.

Lemma 4.1.2. Let X be a fine log analytic space and let X+ be the closed sub-
space of X on which the log structure is nontrivial, endowed with the induced log
structure. Then the diagram

X+log
//

τX ′

��

X log

τX

��

X+top
// X top

is cocartesian as well as cartesian.

Proof. The diagram is cartesian because formation of X log is compatible with
strict base change. To see that it is cocartesian, observe that since τX is surjective
and proper, X top has the quotient topology induced from X log. Since τX is an
isomorphism over X top \ X+top, the equivalence relation defining τX is generated by
the equivalence relation defining τX+ . It follows that the square is a pushout, i.e.,
is cocartesian. �

Let Y be an open disc as above and fix an identification Ylog ∼= S1
×[0,∞).

Lemma 4.1.3. Let f : X→ Y be a smooth and proper morphism of fine saturated
log analytic spaces, where Y is an open log disc as above. Then there exist a
homeomorphism Xv,log×[0,∞)→ X log and a commutative diagram

Xv,log×[0,∞)

fv,log×id
��

// X log

flog

��

vlog×[0,∞)
∼
// Ylog

where the restrictions of the horizontal arrows to Xv,log × 0 and vlog × 0 are the
inclusions.

Proof. Since Y is a log disc, the morphism f is automatically exact. Then by
[Nakayama and Ogus 2010, 5.1], the map flog is a topological fiber bundle, and
since Ylog is connected, all fibers are homeomorphic. Let r :Ylog=S1

×[0, ε)→vlog

be the obvious projection and let i : vlog → Ylog be the embedding at 0. Then
fv,log× id identifies with the pullback of flog along ir . The space of isomorphisms
of fibrations fv,log× id→ flog is a principal G-bundle, where G is the group of
automorphisms of the fiber, endowed with the compact open topology. Since ir
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is homotopic to the identity, it follows from [Husemoller 1994, IV, 9.8] that this
principal G-bundle is trivial, proving the lemma. �

The diagram of Lemma 4.1.3 forms the rear square of the following diagram:

Xv,log×[0,∞) //

π

ww

fvlog×id

��

X log
τX

||

flog

��

Cyl(τXv )
//

Cyl fv

��

X top

ftop

��

vlog×[0,∞) //

π

ww

Ylog

τY
||

Cyl(τv) // Ytop

The map π , from the definition of the mapping cylinder, is part of the pushout
diagram which identifies a point (xlog, 0) with τXv (x) ∈ Xv,top ⊆ X top, and the
existence of the dotted arrows follows. Because the morphism f is vertical, the
subset X+ of X where the log structure is nontrivial is just Xv, and Lemma 4.1.2
tells us that the morphism τX is also a pushout making the same identifications.
Thus the horizontal arrows are homeomorphisms, and Theorem 4.1.1 follows. �

Remark 4.1.4. Although we shall not go into details here, let us mention that the
same result, with the same proof, holds if X → Y is only relatively smooth, as
defined in [Nakayama and Ogus 2010].

More generally, suppose that P is a sharp toric monoid and that Y is a neigh-
borhood of the vertex v of AP . Note that v has a neighborhood basis of sets of the
form VP := {y ∈ AP : |y| ∈ V }, where V ranges over the open neighborhoods of
the vertex of RP . If f : X→ VP is a morphism of log spaces, let g : X→ V := | f |,
and note that Xv,log = g−1(0)= (τY ◦ flog)

−1(v). For each x ∈ Xv , the fiber τ−1
X (x)

is a torsor under the action of TX,x := Hom(MX,x ,S1). For ρ ∈ V ⊆ RP , let
F(ρ) := ρ−1(R>), a face of P , and let G(ρ) be the face of MX,x generated by the
image of F(ρ) in MX,x via the homomorphism f [x : P→MX,x . Then we set

TY,ρ := Hom(P/F(ρ),S1)⊆ TP ,

TXx,ρ := Hom(MX,x/G(ρ),S1)⊆ TX,x .

There is a natural map TXx,ρ → TY,ρ induced by f [x .

Conjecture 4.1.5. With the notation of the previous paragraph, let f : X→Y = VP

be a smooth proper and exact morphism of fine saturated log analytic spaces. Then,
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after possibly shrinking V, there is a commutative diagram

Xv,log× V

fv,log×id
��

// X top

ftop

��

vlog× V ∼= Ylog // Ytop

where the bottom arrow is (the restriction of ) the map τY (3-3-1), and the top arrow
is the quotient map which identifies (x1, ρ1) and (x2, ρ2) if and only if :

(1) ρ1 = ρ2,

(2) τX (x1)= τX (x2),

(3) x1 and x2 are in the same orbit under the action of TXτ(xi )
(ρ) on τ−1

X (τ (xi )).

In particular, the log fiber fv : Xv→ v determines f topologically in a neighbor-
hood of v.

This conjecture is suggested by Remark 2.6 of [Nakayama and Ogus 2010],
which implies that such a structure theorem holds locally on X .

Motivated by the above philosophy, we now turn to a more careful study of log
schemes which are smooth over a log point S. We shall see that the normaliza-
tion of such a scheme provides a canonical way of cutting it into pieces, each of
whose Betti realizations is a manifold with boundary and is canonically trivialized
over Slog. In fact this cutting process works more generally, for ideally smooth log
schemes.

Theorem 4.1.6. Let X be a fine, smooth, and saturated idealized log scheme over
a field k such that KX ⊆MX is a sheaf of radical ideals. Let ε : X ′→ X be the
normalization of the underlying scheme X.

(1) The set U of points x such that KX,x̄ =M+

X,x̄ for some (equivalently every)
geometric point x̄ over x is an open and dense subset of X. Its underlying
scheme U is smooth over k, and its complement Y is defined by a coherent
sheaf of ideals J in MX .

(2) The log scheme X ′ obtained by endowing X ′ with the compactifying log struc-
ture associated to the open subset ε−1(U ) is fine, saturated, and smooth
over k.

(3) Let X ′′ be the log scheme obtained by endowing X ′ with the log structure
induced from X. There exists a unique morphism h : X ′′→ X ′ such that h is
the identity. The homomorphism h[ :MX ′→MX ′′ is injective and identifies
MX ′ with a sheaf of faces in MX ′′ , and the quotient MX ′′/X ′ is a locally
constant sheaf of fine sharp monoids.
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Proof. All these statements can be checked étale locally on X . Thus we may
assume that there exists a chart β : (Q, K )→ (MX ,KX ) for X , where (Q, K ) is
a fine saturated idealized monoid, where the order of Qgp is invertible in k, and
where the corresponding morphism b : X→ A(Q,K ) is étale [Ogus 2018, IV, 3.3.5].
Thanks to the existence of the chart, we can work with ordinary points instead
of geometric points. Furthermore we may, after a further localization, assume
that the chart is local at some point x of X , so that the map Q →MX,x is an
isomorphism. Since KX,x is a radical ideal, it follow that the same is true of K .
Statements (1)–(3) are stable under étale localization, so we are reduced to proving
them when X = A(Q,K ).

Since K is a radical ideal of Q, it is the intersection of a finite number of primes
p1, . . . , pr , and we may assume that each pi minimal among those ideals containing
K [Ogus 2018, I, 2.1.13]. Let q1, . . . , qs be the remaining prime ideals of Q which
contain K and let

J := q1 ∩ · · · ∩ qs .

If x ∈ X , let βx : Q→MX,x be the homomorphism induced by β and let qx :=

β−1
x (M+

X,x). Then x ∈ Y if and only if Kqx ( Q+qx
, which is the case if and only

if qx = qi for some i , or equivalently, if and only if J ⊆ qx . Thus Y is the closed
subscheme of X defined by the coherent sheaf of ideals J̃ associated to J .

To see that U is dense, observe that the irreducible components of X are defined
by the prime ideals pi of Q above. Let ζi be the generic point of the irreducible
component corresponding to pi . Then Kpi = Q+pi

, so ζi ∈ U . It follows that U is
dense in X . To see that U is smooth, let x be a point of U and replace β by its
localization at x . Then it follows from the definition of U that K = Q+ and hence
that AQ,K ∼= AQ∗ which is indeed smooth over k.

To prove statement (2) we continue to assume that X =A(Q,K ). For each minimal
pi over K , let Fi be the corresponding face. Then AQ,pi

∼=AFi . Since Q is saturated,
so is each Fi , and hence each scheme X Fi := AFi is normal. Thus the disjoint union⊔
{AF i } is the normalization of AQ,K . A point x ′ of X Fi lies in ε−1(U ) if and only

if its image in AFi lies in AFgp
i

. It follows from [Ogus 2018, III, 1.9.5] that the
compactifying log structure on X Fi is coherent, charted by F , and hence from
[Ogus 2018, IV, 3.1.7] that the resulting log scheme X ′Fi

is smooth over k. Thus
X ′/k is smooth. This completes the proof of statements (1) and (2).

To define the morphism h, it will be convenient to first introduce an auxiliary log
structure. Let O′X ′ ⊆OX ′ =OX ′′ be the sheaf of nonzero divisors in OX ′ and let M′

be its inverse image in MX ′′ via the map αX ′′ :MX ′′→OX ′ . Then M′ is a sheaf of
faces in MX ′′ , and the induced map α′ :M′

→OX ′ is a log structure on X ′. If x̄ ′ is
a geometric point of U ′, then KX ′,x̄ ′ =M+

X ′,x̄ ′ , so the map M+

X ′′,x̄ ′→OX ′x̄ ′
is zero.

Hence M′

x̄ ′ =O∗X ′,x̄ ′ , and thus α′ is trivial on U ′. It follows that there is a natural
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morphism from α′ to the compactifying log structure αU ′/X ′ . We check that this
morphism is an isomorphism at each point x ′ of X ′. Since both log structures are
trivial if x ′ ∈U ′, we may assume that x ′ ∈ Y ′ := X ′ \U ′ and that X admits a chart β
as above, local at ε(x ′). Let F be the face of Q such that x ′ ∈ X F . If q ∈ p := Q \F ,
then αX ′′(β(q)) vanishes in OX F . If on the other hand q ∈ F , then β(q) is a nonzero
divisor on X F Thus β−1(M′

x ′)= F . Since F is a chart for MX ′ and M′

x ′ is a face
of MX ′′,x ′ , it follows that the map M′

x ′→MX ′,x ′ is an isomorphism. The inverse
of this isomorphism followed by the inclusion M′

→MX ′′ defines a morphism of
log structures α′→ αX ′′ and hence a morphism of log schemes h : X ′′→ X ′ with
h = id.

To prove that h is unique, note that since M′
→MX ′ is an isomorphism and αX ′

is injective, the homomorphism α′ :M→OX ′ is also injective. Let h′ : X ′′→ X ′

be any morphism of log schemes with h′ = id and let m be a local section of MX ′ .
Then αX ′′(h′[(m)) = αX ′(m) is a nonzero divisor in OX ′ , so the homomorphism
h′[ :MX ′→MX ′′ necessarily factors through M′. Since α′ ◦ h′[ = αX ′ and α′ is
injective, necessarily h′[ = h[.

We have already observed that the image M′ of h[ is a sheaf of faces of MX ′′ ,
and it follows that the quotient monoid MX ′′/X ′ is sharp. To check that it is locally
constant, we may assume that X admits a chart as above and work on the subscheme
X ′′F of X ′′ defined by a face F as above. Then β ′′ : Q→MX ′′ is a chart for MX ′′ .
Assume that β ′′ is local at a point x ′′ of X ′′ and that ξ ′′ is a generization of x ′′.
Then MX ′′/X ′,x ′′ = Q/F and MX ′′/X ′,ξ ′′ = QG/FG , where G := β−1

ξ ′′ (O
∗

X ′′,ξ ′′).
Since G ⊆ F , the cospecialization map

Q/F→ QG/FG

is an isomorphism. It follows that MX ′′/X ′ is (locally) constant. �

Let us now return to the case of smooth log schemes over a log point.

Corollary 4.1.7. Let f : X→ S be a smooth and saturated morphism from a fine
saturated log scheme to the log point Spec(P→ k), where P is a fine saturated and
sharp monoid. Let ε : X ′→ X be the normalization of the underlying scheme X.

(1) The set U := {x ∈ X :MX/S,x̄ = 0} is a dense open subset of X. Its underlying
scheme U is smooth over C, and ε induces an isomorphism

U ′ := ε−1(U )→U .

(2) The log scheme X ′ obtained by endowing X ′ with the compactifying log struc-
ture associated to the open subset U ′ is fine, saturated and smooth over C.

(3) Let X ′′ be the log scheme obtained by endowing X ′ with the log structure
induced from X. There exist a unique morphism h : X ′′→ X ′ such that h is
the identity.
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(4) The homomorphism f [ induces an isomorphism P →MX ′′/X ′ . Thus there
is a unique homomorphism ρ : MX ′′ → PX ′ such that ρ ◦ f ′′[ = id. The
homomorphism h[ :MX ′→MX ′′ induces isomorphisms MX ′ ∼= ρ

−1(0) and
Mgp

X ′→ ε∗(Mgp
X/S).

Proof. Let KX ⊆MX be the sheaf of ideals generated by f [(M+

S ). Since X/S
is saturated, this is a radical sheaf of ideals of MX [Ogus 2018, I, 4.8.14]. Since
X → S is smooth, so is the base changed map (X,KX )→ (S,MS), and since
(S,M+

S )→ S is smooth, it follows that (X,KX )→ S is smooth. Note that if
x ∈U , then Pgp

→Mgp
X,x̄ is an isomorphism, and since f is exact, it follows that

P =MX,x̄ and hence that KX,x̄ =M+

X,x̄ . Conversely, if KX,x̄ =M+

X,x̄ , then P+

and M+

X,x̄ both have height zero, and since f is saturated it follows from statement
(2) of [Ogus 2018, I, 4.8.14] that P →MX,x̄ is an isomorphism and hence that
MX/S = 0. Thus the open set U defined here is the same as the set U defined in
Theorem 4.1.6. Hence statements (1), (2), and (3) follow from that result.

We check that the map P →MX ′′/X ′ is an isomorphism locally on X , with
the aid of a chart as in the proof of Theorem 4.1.6. Then MX ′′/X ′ = Q/F , where
F is the face corresponding to a minimal prime p of the ideal K of Q generated
by P+. Then Q/F and P have the same dimension, so p ⊆ Q and P+ ⊆ P
have the same height. Then it follows from (2) of [Ogus 2018, 4.18.4] that the
homomorphism P→ Q/F is an isomorphism. It remains only to prove that the
map Mgp

X ′→ ε∗(Mgp
X/S) is an isomorphism. We have a commutative diagram

ε∗(Mgp
X/S)

Mgp
X ′

//

==

Mgp
X ′′

OO

// Mgp
X ′′/X ′

f ′−1(Mgp
S )

OO

∼

;;

(4-1-1)

The rows and columns of this diagram are short exact sequences, and the diagonal
map on the bottom right is an isomorphism. It follows that the diagonal map on
the top left is also an isomorphism. �

Proposition 4.1.8. With the hypotheses of Corollary 4.1.7, let g : X ′′→ X ′ × S
be the morphism induced by f ◦ ε and h. The morphism of underlying schemes
g is an isomorphism, and g[ induces an isomorphism of abelian sheaves: g[gp

:
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Mgp
X ′×S′→Mgp

X ′′ . The horizontal arrows in the commutative diagram

X ′′log

glog
//

τX ′′

��

X ′log× Slog

pr ◦τX ′

��

X ′′top

gtop
// X ′top

are isomorphisms.

Proof. Since h is an isomorphism and S is a point, the morphism g is also an isomor-
phism. Since MX ′×S =MX ′⊕ PX ′ and PX ′ ∼=MX ′′/X ′ , it follows from the horizon-
tal exact sequence in diagram (4-1-1) that the homomorphism Mgp

X ′×S→Mgp
X ′′ is

an isomorphism, and hence the same is true of g[gp. It follows that glog is bijective,
and since it is proper, it is a homeomorphism. �

The corollary below shows that the fibration X log→ Slog ∼= TP can be cut into
pieces (the connected components of X ′log), each of which is a trivial fibration
whose fiber is a manifold with boundary, in a canonical way. We shall make
the gluing data needed to undo the cuts more explicit in the case of curves; see
Section 7.1.

Corollary 4.1.9. With the hypotheses of Corollary 4.1.7, there is a natural commu-
tative diagram

X ′log×TP

pr
$$

p
// X log

flog

��

TP

where X ′log is a topological manifold with boundary and where p is a proper sur-
jective morphism with finite fibers and is an isomorphism over Ulog.

Proof. Let p := εlog ◦ g−1
log , which is proper and surjective and has finite fibers.

Recall from [Nakayama and Ogus 2010, 2.14] that X ′log is a topological manifold
with boundary, and that its boundary is Y ′log. �

4.2. Log nearby cycles. Let f : X → S be a morphism of fine saturated log
schemes, where S is the split log point associated to a sharp monoid P . We assume
that for every x ∈ X , the map Pgp

→Mgp
X,x is injective, and that the quotient group

Mgp
X/S.x is torsion free. These assumptions hold if, for example, f is smooth and
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saturated. We form the following commutative diagram:

X̃ log

f̃

��

τ̃X/S

��

ηX
//

τ̃X

��

X log

τX/S

��

τX

!!

X S̃,log

η
//

f̃ log
S

��

X S,log

τXS
//

f log
S

��

X top

ftop

��

S̃log

τ̃S

66

ηS
// Slog

τS
// Stop

(4-2-1)

where the squares are Cartesian. Thus Slog ∼= TP , S̃log ∼= VP , X S̃,log = X top× S̃log,
and X̃ log = X log×Slog S̃log. We let τ̃X := τX ◦ηX , τ̃X S := τX S ◦η, and τ̃S := τX ◦ηS ,
so that we have the diagram

X̃ log

τ̃X/S
//

τ̃X ##

X top×VP

π

��

∼=
// X S̃,log

τ̃XSzz

X top.

(4-2-2)

The logarithmic inertia group IP acts on S̃log over Stop and hence also on X̃ log

over X top. Our goal is to describe the cohomology of X̃ log, together with its IP -
action, using this diagram and the log structures on X and S. We set

9
q
X/S := Rq τ̃X∗Z, (resp. 9X/S := Rτ̃X∗Z),

viewed as a sheaf (resp. object in the derived category of sheaves) of Z[IP ]-modules
on X top. When S is the standard log point and f is obtained by base change from
a smooth proper morphism over the standard log disk, the complex 9X/S can be
identified with the usual complex of nearby cycles, as was proved in [Illusie et al.
2005, 8.3]. Then H∗(X̃ log,Z)∼= H∗(X top, 9X/S), and there is the (Leray) spectral
sequence

E p,q
2 = H p(X top, 9

q
X/S)H⇒ H p+q(X̃ log,Z).

Our first ingredient is the following computation of the cohomology sheaves 9q
X/S .

Theorem 4.2.1 [Kato and Nakayama 1999, Lemma 1.4]. Let f : X → S be a
saturated morphism of log schemes, where X is fine and saturated and S is the
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split log point over C associated to a fine sharp monoid P. Then on the topological
space X top associated to X , there are canonical isomorphisms

σ q
:
∧qMgp

X/S(−q)−→∼ 9
q
X/S (4-2-3)

for all q. In particular, the logarithmic inertia group IP acts trivially on 9q
X/S .

Proof. The construction of these isomorphisms depends on the logarithmic expo-
nential sequence (3-3-3) on X log. In the absolute case it is shown in [Kato and Naka-
yama 1999] that the boundary map associated to (3-3-3) induces a homomorphism
Mgp

X → R1τX∗(Z(1)), and then one finds by cup-product the homomorphisms σ q

for all q ≥ 0. These can be seen to be isomorphisms by using the proper base
change theorem to reduce to the case in which X is a log point.

The argument in our relative setting is similar. Let MX/P be the quotient of the
sheaf of monoids MX by P . Since Pgp

→Mgp
X is injective, the sequence

0→O∗X →Mgp
X/P →Mgp

X/S→ 0 (4-2-4)

is exact. The homomorphism Pgp
→ f −1(Mgp

S )→Mgp
X does not lift to LX on

X log, but the map χ̃ : Pgp
→ LS (defined at the beginning of Section 3.2) defines

such a lifting on S̃log and hence also on X̃ log. Letting LX/P be the quotient of LX

by χ̃(Pgp), we find an exact sequence:

0→ Z(1)→ LX/P → τ̃−1
X (Mgp

X/P)→ 0 (4-2-5)

The boundary map associated with this sequence produces a map

Mgp
X/P → R1τ̃X∗(Z(1))

which factors through Mgp
X/S because, locally on X , the inclusion O∗X→MX/P fac-

tors through τ̃X∗(LX/P). Then cup product induces maps
∧qMgp

X/S→ Rq τ̃X∗(Z(1))
for all q, which we can check are isomorphisms on the stalks. The map τ̃X/S is
proper, and its fiber over a point (x,v) of X top×VP is a torsor under Hom(MX/S,x,S

1).
It follows that the maps

∧qMgp
X/S,x → (Rq τ̃X/S∗(Z(1))(x,v) are isomorphisms. In

particular, the sheaves Rq τ̃X/S∗(Z(1)) are locally constant along the fibers of π :
X top×VP → VP . Then it follows from [Kashiwara and Schapira 1990, 2.7.8] that
the map π∗Rπ∗(Rτ̃X/S∗(Z(1))→ Rτ̃X/S∗(Z(1)) is an isomorphism. Thus the maps
(Rτ̃X∗(Z(1))x → (Rτ̃X/S∗(Z(1))(x,v) are isomorphisms, and the result follows. �

Our goal is to use the Leray spectral sequence for the morphism τ̃X to describe
the cohomology of X̃ log together with its monodromy action. In fact it is conve-
nient to work on the level of complexes, in the derived category. The “first order
attachment maps” defined in Section 2.1 are maps

δq
:9

q
X/S→9

q−1
X/S [2].
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On the other hand, the “log Chern class” sequence (1-0-2) defines a morphism

chX/S :M
gp
X/S→ Z(1)[2]

and hence for all q ≥ 0, maps

chq
X/S :

∧qMgp
X/S→

∧q−1Mgp
X/S(1)[2],

defined as the composition∧qMgp
X/S

η
−→Mgp

X/S ⊗
∧q−1Mgp

X/S

chX/S ⊗id
−−−−−→ Z(1)[2]⊗

∧q−1Mgp
X/S
∼=
∧q−1Mgp

X/S(1)[2],

where η is the comultiplication map as defined in Section 2.2. We show below that
the maps δq and chq

X/S agree, at least after multiplication by q!.
To describe the monodromy action ρ of IP on 9X/S , observe that, since each

γ ∈ IP acts trivially on 9q
X/S , the endomorphism λγ := ργ − id of 9X/S annihilates

9
q
X/S and hence induces maps (see Section 2.3)

λq
γ :9

q
X/S→9

q−1
X/S [1].

On the other hand, the pushout of the “log Kodaira–Spencer” sequence (1-0-1)
along γ : Pgp

→ Z(1) is a sequence

0→ Z(1)→Mgp
X,γ →Mgp

X/S→ 0.

The stalk of this sequence at each point of X is a splittable sequence of finitely
generated free abelian groups, so the exterior power construction of Section 2.2
provides a sequence

0→
∧q−1Mgp

X/S(1)→
∧qMgp

X /K 2∧qMgp
X →

∧qMgp
X/S→ 0,

which gives rise to a morphism in the derived category

κq
γ :
∧qMgp

X/S→
∧q−1Mgp

X/S(1)[1]. (4-2-6)

Recall from Proposition 2.2.2 that κγ is “cup product with κ ,” that is, that κγ =
(id⊗ κ) ◦ (id⊗ γ ) ◦ η. We show below that this morphism agrees with the mon-
odromy morphism λ

q
γ up to sign. We shall provide a version of this result for the

étale topology in Theorem 6.3.4. A similar formula, in the context of a semistable
reduction and étale cohomology, is at least implicit in statement (4) of a result of
T. Saito [2003, 2.5].

Theorem 4.2.2. Let S be the split log point associated to a fine sharp and saturated
monoid P and let f : X→ S be a saturated morphism of fine saturated log analytic
spaces.
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(1) For each q ≥ 0, the following diagram commutes:

∧qMgp
X/S(−q)

chq
X/S
//

q!σ q

��

∧q−1Mgp
X/S(1− q)[2]

q!σ q−1

��

9
q
X/S δq

// 9
q−1
X/S [2]

(2) For each q ≥ 0 and each γ ∈ IP , the following diagram commutes:∧qMgp
X/S(−q)

κ
q
γ
//

σ q

��

∧q−1Mgp
X/S(1− q)[1]

σ q−1

��

9
q
X/S

(−1)q−1λ
q
γ

// 9
q−1
X/S [1]

Proof. The main ingredient in the proof of statement (1) is the quasi-isomorphism[
OX

exp
−→Mgp

X/P

]
−→∼ τ≤19X/S(1), (4-2-7)

which is obtained as follows. The exact sequence (4-2-5) defines an isomorphism
in D+(X̃ ,Z)

Z(1)−→∼
[
LX/P → τ̃−1

X (Mgp
X/P)

]
,

and there is an evident morphism of complexes,[
τ̃−1

X (OX )→ τ̃−1
X (Mgp

X/P)
]
→
[
LX/P → τ̃−1

X (Mgp
X/P)

]
,

defined by the homomorphism ε : τ−1
X (OX )→ LX (3-3-4). Using these two mor-

phisms and adjunction, we find a morphism[
OX

exp
−→Mgp

X/P

]
→ Rτ̃X (Z(1)) :=9X/S(1).

Since this morphism induces an isomorphism on cohomology sheaves in degrees 0
and 1, it induces a quasi-isomorphism after the application of the truncation func-
tor τ≤1. This is the quasi-isomorphism (4-2-7). Since the map δ1 of the complex(
OX −→

exp Mgp
X/P

)
is precisely the map chX/S , we see that the diagram in statement (1)

commutes when q = 1.
To deduce the general case, we use induction and the multiplicative structure on

cohomology. Let E :=Mgp
X/S(−1) and let F := Z[2]. Using the isomorphisms σ q ,

we can view δq as a morphism
∧q E →

∧q−1 E[2] = F ⊗
∧q−1 E . Lemma 2.1.2

asserts that the family of maps δq form a derivation in the sense that diagram (2-2-2)
commutes. Then by the definition of chq

X/S , it follows from Proposition 2.2.1 that
q! chq

X/S = q!δq for all q.
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We defer the proof of the monodromy formula described in statement (2) to
Section 5 (with complex coefficients) and Section 6 (the general case). �

5. Monodromy and the Steenbrink complex

Our goal in this section is to extend Steenbrink’s formula (4-2-7) for τ≤19X/S to
all of 9X/S . We shall see that there is a very natural logarithmic generalization of
the classical Steenbrink complex [1975/76, §2.6] which computes the logarithmic
nearby cycle complex C⊗9X/S . The advantage of this complex is that it is a
canonical differential graded algebra with an explicit action of IP , from which it
is straightforward to prove the monodromy formula of Theorem 4.2.2 (tensored
with C). Since the construction is based on logarithmic de Rham cohomology, we
require that X/S be (ideally) smooth. Note that once we have tensored with C, there
is no point in keeping track of the Tate twist, since there is a canonical isomorphism
C(1)−→∼ C.

5.1. Logarithmic construction of the Steenbrink complex. Steenbrink’s original
construction, which took place in the context of a semistable family of analytic
varieties over a complex disc with parameter z, was obtained by formally adjoin-
ing the powers of log z to the complex of differential forms with log poles. Our
construction is based on the logarithmic de Rham complex on X log constructed in
[Kato and Nakayama 1999, §3.5].

Let us begin by recalling Kato’s construction of the logarithmic de Rham com-
plex on X [Kato 1989; Illusie et al. 2005]. If f : X → Y is a morphism of log
analytic spaces, the sheaf of logarithmic differentials �1

X/Y is the universal target
of a pair of maps

d :OX →�1
X/Y , dlog :Mgp

X →�1
X/Y ,

where d is a derivation relative to Y , where dlog is a homomorphism of abelian
sheaves annihilating the image of Mgp

Y , and where dαX (m)= αX (m)dlog(m) for
every local section m of MX . The sheaf �1

X/Y is locally free if f is a smooth
morphism of (possibly idealized) log spaces. Then �i

X/S :=
∧i
�1

X/Y , and there
is a natural way to make

⊕
�i

X/Y into a complex satisfying the usual derivation
rules and such that d ◦ dlog= 0. In particular the map dlog :Mgp

X →�1
X/Y factors

through the sheaf of closed one-forms, and one finds maps

σDR : C⊗
∧iMgp

X/Y →Hi (�
•

X/Y ). (5-1-1)

When S = C (with trivial log structure) and X/C is ideally log smooth, these maps
fit into a commutative diagram of isomorphisms (see [Kato and Nakayama 1999,
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Proposition 4.6] and its proof):

C⊗
∧iMgp

X

σDR
//

σ &&

Hi (�
•

X/C)

RiτX∗(C)

OO

As explained in [Kato and Nakayama 1999, §3.2], to obtain the de Rham com-
plex on X log, one begins with the construction of the universal sheaf of τ−1

X (OX )-
algebras Olog

X which fits into a commutative diagram

LX // Olog
X

τ−1
X (OX ).

ε

cc OO

This sheaf of τ−1
X (OX ) modules admits a unique integrable connection

d :Olog
X →Olog

X ⊗τ−1
X (OX )

τ−1
X (�1

X/C)

such that d(`) = dπ(`) (see (3-3-3)) for each section ` of LX and which is com-
patible with the multiplicative structure of Olog

X . The de Rham complex of this
connection is a complex whose terms are sheaves of Olog

X -modules on X log, denoted
by �

•,log
X/C. In particular, �i,log

X/C :=Olog
X ⊗τ−1

X (OX )
τ−1

X (�i
X/C)

When S is the split log point associated to a fine sharp saturated monoid P ,
the sheaf Olog

S on the torus Slog ∼= TP is locally constant, and hence is determined
by 0(S̃log, η

∗(Olog
S )) together with its natural action of IP . These data are easy to

describe explicitly. The structure sheaf OS is C and �1
S/C is C⊗ Pgp. Twisting the

exact sequence (3-2-1) yields the sequence

0→ Z→ LP(−1)→ Pgp(−1)→ 0.

For each n, the map Z→ LP(−1) induces a map Sn−1(LP(−1))→ Sn(LP(−1)),
and we let

Õlog
P := lim

−−→
Sn(LP(−1)).

The action of IP on LP induces an action on Õlog
P , compatible with its ring structure.

Let NnÕP denote the image of the map Sn(LP(−1))→ lim
−−→

Sn(LP(−1)) = Õlog
P .

Then N• defines an IP -invariant filtration on Õlog
P . The action of IP on GrN

n Õlog
P
∼=

Sn(Pgp(−1)) is trivial and thus the action on Õlog
P is unipotent.

The splitting χ̃ defines a splitting Pgp(−1)→ LP(−1) and thus an isomorphism

Õlog
P
∼=
⊕

n GrN
n Õlog

P
∼=
⊕

n Sn(Pgp(−1));
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this isomorphism is “canonical” but not IP -equivariant.
For γ ∈ IP , denote by ργ the corresponding automorphism of Õlog

P , and let

λγ := log(ργ ) :=
∑

i

(−1)i+1(ργ − id)i/ i. (5-1-2)

The above formula defines, a priori, an endomorphism of Q⊗ Õlog
P , but, as we shall

soon see, in fact this endomorphism preserves Õlog
P .

Claim 5.1.1. For γ ∈ IP = Hom(Pgp(−1),Z), the endomorphism λγ of Q⊗ Õlog
P

defined above is given by interior multiplication with γ :

Õlog
P
∼= S•(Pgp(−1))

η
−→ Pgp(−1)⊗ S•(Pgp(−1))

γ⊗id
−−→ S•(Pgp(−1))∼= Õlog

P ,

where η is the map defined in Section 2.2. The subspace NnÕ
log
P of Õlog

P is the
annihilator of the ideal J n+1 of the group algebra Z[IP ].

Proof. Let V := Q⊗ Pgp(−1) and let φ be an element of Hom(V,Q). Interior
multiplication by φ is the unique derivation λ of the algebra S•V such that λ(v)=
φ(v) for all v ∈ V . There is also a unique automorphism ρ of S•V such that
ρ(v) = v + φ(v) for all v ∈ V . We claim that λ = log ρ, or, equivalently, that
ρ = exp λ. (These are well-defined because ρ − id and λ are locally nilpotent.)
Since λ is a derivation of S•V , we have

λk(ab)/k! =
∑

i+ j=k

(λi a/ i !)(λ j b/j !),

hence

exp(λ)(ab)=
∑

k

λk(ab)/k! =
(∑

i

λi (a)/ i !
)(∑

j

λ j (b)/j !
)

= exp(λ(a)) · exp(λ(b)).

Thus exp λ is an automorphism of the algebra S•V . Since it sends v to v+φ(v), it
agrees with ρ, as claimed.

If v1, v2, . . . , vn is a sequence of elements of V , then

ρ(v1v2 · · · vn)= (v1+φ(v1))(v2+φ(v2)) · · · (vn +φ(vn))

= v1v2 · · · vn +
∑

i

φ(vi )v1 · · · v̂i · · · vn + R,

where the symbol v̂i means that the i-th element is omitted and where R ∈ Nn−2SnV .
In particular, ρ − id maps Nn S•V to Nn−1S•V and acts on Grn S•V ∼= SnV as
interior multiplication by φ. Since GrN S•(Pgp(−1)) is torsion free, the analo-
gous results hold for S•(Pgp(−1)). The augmentation ideal J of the group al-
gebra Z[IP ] is generated by elements of the form γ − 1, and it follows that J
takes NnÕ

log
P to Nn−1Õ

log
P and hence that J n+1 annihilates NnÕ

log
P . Moreover,
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the natural map Sn IP → J n/J n+1 is an isomorphism and identifies the pairing
J n/J n+1

×GrN
n Õlog

P → Z with the standard pairing Sn IP ×Sn Pgp(1)→ Z. Since
this pairing is nondegenerate over Q, it follows that NnÕ

log
P is the annihilator

of J n+1. �

The map χ̃ : Pgp
→ LP defines a homomorphism Pgp

→ η∗S(LS) and hence also
a homomorphism Pgp

→ τ̃S∗η
∗

S(O
log
S ). In fact, one checks easily that the induced

map
C⊗ Õlog

P → 0(S̃, η∗S(O
log
S )) (5-1-3)

is an isomorphism, compatible with the action of IP . The map d : Õlog
S → Õlog

S ⊗�
1
S/C

identifies with the map

η :C⊗ S•Pgp
→C⊗ S•Pgp

⊗ Pgp
: p1 · · · pn 7→

∑
i

p1 · · · p̂i · · · pn⊗ pi , (5-1-4)

and the action of γ ∈ IP on Õlog
P is given by the unique ring homomorphism taking

p⊗ 1 to p⊗ 1+ γ (p).
More generally, suppose that x is a point of a fine saturated log analytic space X .

Let Q :=MX,x and choose a splitting of the map MX,x → Q. This splitting
induces an isomorphism τ−1

X (x)∼= TQ , which admits a universal cover VQ→ TQ .
An element q of Qgp defines a function VQ → R(1) which in fact is a global
section of the pullback of LX ⊆ Olog

X to VQ . Since Olog
X is a sheaf of rings, there

is an induced ring homomorphism: S•(Qgp)→ 0(VQ,O
log
X ). These constructions

result in the Proposition 5.1.2 below. For more details, we refer again to [Kato and
Nakayama 1999, 3.3; Ogus 2003, 3.3.4; 2018, V, §3.3].

Proposition 5.1.2. Let x be a point of fine saturated log analytic space X. Then a
choice of a splitting MX,x → Q :=MX,x yields:

(1) an isomorphism: τ−1
X (x)−→∼ TQ := Hom(Q,S1),

(2) a universal cover: VQ := Hom(Q,R(1))→ τ−1
X (x),

(3) for each i , an isomorphism �i
X,x ⊗ S•Qgp

−→∼ 0(VQ, η̃
−1
x (�

i,log
X )), where

η̃x : VQ→ TQ→ τ−1
X (x)→ X log

is the natural map.

If γ ∈ IP := Hom(Pgp,Z(1)) then the action of ργ on 0(VX ,O
log
X ) is given by

exp(λγ ), where λγ is interior multiplication by γ. �

Since C⊗ Õlog
P is a module with connection on the log point S, its pull-back

f ∗(Õlog
P ) to X has an induced connection f ∗(C⊗ Õlog

P )→ Õlog
P ⊗�

1
X/C.

In the following definition and theorem we use the notation of diagrams (4-2-1)
and (4-2-2), and if F is a sheaf on X log (resp. Slog), we write F̃ for its pullback to
X̃ log (resp. S̃log).
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Definition 5.1.3. Let f : X → S be a smooth morphism of fine saturated log
analytic spaces over the split log point S associated to a fine sharp monoid P . The
Steenbrink complex of X/S is the de Rham complex

K •

X/S := Õlog
P ⊗Z�

•

X/C = τ̃X S∗

(
f̃ log∗
S (Õlog

S )⊗ τ̃ ∗X S
(�

•

X/C)
)

of the OX -module with connection f ∗Õlog
S , given by

S•Pgp
⊗OX → S•Pgp

⊗�1
X/C, p 7→ p⊗ dlog p

endowed with its natural IP -action.

Theorem 5.1.4. Let S be the split log point associated to a fine sharp and saturated
monoid P and let f : X → S be a smooth saturated morphism of fine saturated
log analytic spaces. Let �̃

•,log
X/C := η

∗

X (�
•,log
X/C) on X̃ log := X log ×Slog S̃log. Then in

the derived category D+(X top,C[IP ]) of complexes of sheaves of C[IP ]-modules
on X top, there are natural isomorphisms

Rτ̃X∗(C)−→
∼ Rτ̃X∗(�̃

•,log
X/C)←−

∼ K •

X/S.

Proof. It is proved in [Kato and Nakayama 1999, 3.8] that, on the space X log, the
natural map

C→�
•,log
X/C

is a quasi-isomorphism. Its pullback via ηX is a quasi-isomorphism

C→ η∗X (�
•,log
X/C)= �̃

•,log
X/C

on X̃ log, invariant under the action of IP . Applying the derived functor Rτ̃X∗, we
obtain the isomorphism

Rτ̃X∗(C)−→
∼ Rτ̃X∗(�̃

•,log
X/C)

in the theorem.
The natural map f −1

log (O
log
S )→Olog

X induces a map

f̃ ∗(Õlog
S )⊗ τ̃ ∗X (�

•

X/C)→ �̃
•,log
X/C,

and hence by adjunction a map

Õlog
P ⊗�

•

X/C→ Rτ̃X∗(�̃
•,log
X/C).

The lemma below shows that this map is an isomorphism and completes the proof
of the theorem. �

Lemma 5.1.5. The terms of the complex �̃
•,log
X̃

are acyclic for τ̃X∗, and for each q
the natural map

K q
X/S→ τ̃X∗(�̃

q,log
X/C )
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is an isomorphism.

Proof. The morphism τX/S in diagram (4-2-1) is proper and the left upper square
is Cartesian, and hence τ̃X/S is also proper. Let x̃ = (x, θ) be a point in X̃ log

S
∼=

X top×VP . By the proper base change theorem, the natural map

(Ri τ̃X/S∗�̃
q,log
X/C )x̃ → H i (τ̃−1

X/S(x̃), �̃
q,log
X/C )

is an isomorphism. (Here the term on the right means the i-th cohomology of the
sheaf-theoretic restriction of �̃q,log

X/C to the fiber.) The fiber τ̃−1
X/S(x̃) is a torsor under

the group

TX/S,x := Hom(MX/S,x S1)⊆ TX,x := Hom(MX,x ,S1).

Hence the fiber is homeomorphic to this torus, and �̃q,log
X/C is locally constant on the

fiber, as follows from Proposition 5.1.2. Since the fiber is a K (π, 1), its cohomol-
ogy can be calculated as group cohomology. More precisely, view x as a log point
(with its log structure inherited from X ), so that we have a morphism of log points
x→ S and hence a morphism: xlog→ Slog. Then a choice of a point x of τ−1

X (x)
allows us to make identifications

τ−1
X (x)∼= xlog ∼= TX,x and τ̃−1

X/S(x)∼= TX/S,x .

The second torus has a universal cover VX/S,x := Hom(MX/S,x ,R(1)), and every
locally constant sheaf F on TX/S,x is constant when pulled back to this cover, so the
natural map 0(VX/S,x ,F)→ Fx is an isomorphism. These groups have a natural
action of the covering group IX/S,x = Hom(Mgp

X/S,x ,Z(1)). Then

H i (τ̃−1
X/S(x̃),F)∼= H i (IX/S,x ,Fx).

In our case, we have

�̃
q,log
X/C,x =Olog

X,x ⊗�
q
X/C,x

∼= S•(Mgp
X,x)⊗�

q
X/C,x .

Choosing a splitting of Pgp
→Mgp

X,x , we can write

S•Mgp
X,x
∼= S•Pgp

⊗ S•Mgp
X/S,x ,

compatibly with the action of IX/S,x . Let V := C⊗Mgp
X/S.x , and for γ ∈ IX/S,x ⊆

Hom(V,C), let λγ denote interior multiplication by γ on S•V . An analog of
Claim 5.1.1 shows that ργ = exp λθ . Then a standard calculation shows that

H i (IX/S,x ,C⊗ S•Mgp
X/S,x)

∼=

{
C if i = 0,
0 if i > 0.

Here is one way to carry out this calculation. As we have seen, the represen-
tation (S•V, ρ) of IX/S,x is the exponential of the locally nilpotent Higgs field
λ : S•V → S•V ⊗ V given by the exterior derivative. It follows from [Ogus 2003,
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1.44] that one can use Higgs cohomology to calculate the group cohomology of
such locally unipotent representations. In our case the Higgs complex of λ iden-
tifies with the de Rham complex of the symmetric algebra S•V , and the result
follows.

We conclude that H i (τ̃−1
X/S(x̃), �̃

q,log
X/C ) vanishes if i > 0, and that the natural map

Õlog
P ⊗�

q,log
X/C,x → H 0(τ̃−1

X/S(x̃), �̃
q,log
X/C )

is an isomorphism. Then the proper base change theorem implies that Ri τ̃X/S∗�
q,log
X̃/C

vanishes for i > 0 and that the natural map

τ̃ ∗X S
(Õlog

P ⊗�
q
X/C)→ τ̃X/S∗(�

q,log
X̃/C

).

is an isomorphism. But the map τ̃X S is just the projection X top×VP → X , so for
any abelian sheaf F on X top, Ri τ̃X S∗τ̃

∗

X S
F = 0 and F ∼= τ̃X S∗τ̃

∗

X S
F , by [Kashiwara

and Schapira 1990, 2.7.8]. Since τ̃X = τ̃X S ◦ τ̃X/S , we conclude that Ri τ̃X∗(�̃
q,log
X/C )

vanishes if i > 0 and that the natural map Õlog
S ⊗�

q
X/C→ ˜τX∗(�

q,log
X/C ) is an iso-

morphism. The lemma follows. �

Corollary 5.1.6. In the situation of Theorem 5.1.4, the maps σDR (5-1-1) factor
through isomorphisms

C⊗
∧qMgp

X/S −→
∼ Hq(K •

X/S).

Proof. There is an evident inclusion �•X/C → K •

X/S , and hence we find natural
maps

C⊗Mgp
X −→H1(�

•

X/C)−→H1(K •

X/S).

It follows from the formula (5-1-4) that the image of each element of Pgp becomes
exact in K 1

X/S , and hence this composed map factors through C⊗Mgp
X/S . The maps

in the statement of the corollary are then obtained by cup product. We now have a
commutative diagram

C⊗
∧qMgp

X/S
//

σ̃
''

Hq(K •

X/S)

∼=

��

Rq τ̃X∗(C),

where the vertical arrow is the isomorphism coming from Theorem 5.1.4. Since σ̃
is an isomorphism by Theorem 4.2.1, the horizontal arrow is also an isomorphism.

�
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5.2. Monodromy and the canonical filtration. The filtration N• of Õlog
S is stable

under IP and the connection and hence induces a filtration of the complex K •

X/S .
Claim 5.1.1 shows that Nn corresponds to the n-th level of the “kernel” filtration
defined by the monodromy action on the complex K •

X/S . We shall see that this
filtration coincides up to quasi-isomorphism with the canonical filtration τ≤. Since
we prefer to work with decreasing filtrations, we set

N k K q
X/S := (N−kÕ

log
S )⊗�

q
X/C,

and

T k K q
X/S :=

{
K q

X/S if k ≤ 0,
0 otherwise.

In particular, N 0K •

X/S = �
•

X/S and N 1K •

X/S = 0, so N i K •

X/S ⊆ T i K •

X/S for all i ,
that is, the filtration N • is finer than the filtration T •.

Recall from [Deligne 1971, 1.3.3] that if F is a filtration of a complex K •, the
“filtration décalée” F̃ is the filtration of K • defined by

F̃ i K n
:=
{

x ∈ F i+n K n
: dx ∈ F i+n+1K n}.

Then there are natural maps

E i,n−i
0 (K •

, F̃)= Gri
F̃

K n
→Hn(Gri+n

F K •

)= E i+n,−i
1 (K •

, F)

inducing quasi-isomorphisms

(E i,•
0 (K

•

, F̃), d i,•
0 )→ (E

•+i,−i
1 (K •

, F), d
•+i,−i
1 ).

This equation says that the natural maps (induced by the identity map of K •), are
quasi-isomorphisms

(E−q,•
0 (K •

, F̃), d−q,•
0 )→ (E

•,q
1 (K •

, F), d
•,q
1 )[q]′ (5-2-1)

where the symbol [q]′ means the naive shift of the complex (which does not change
the sign of the differential). More generally, there are isomorphisms of spectral
sequences, after a suitable renumbering [Deligne 1971, 1.3.4]:

(E •,•

r (K
•

, F̃), d •,•r )→ (E
•,•

r+1(K
•

, F), d
•,•

r+1).

Let Ñ • denote the filtration décalée of N •, and similarly for T •; note that T̃ i
=τ≤−i ,

the “filtration canonique.” Since the filtration N • is finer than T •, the filtration Ñ
is finer than the filtration T̃ •, and we find a morphism of filtered complexes

(K •

X/S, Ñ •

)→ (K •

X/S, T̃ •

). (5-2-2)
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Theorem 5.2.1. Let f : X→ S be a smooth and saturated morphism of fine satu-
rated log analytic spaces, where S is the split log point associated to a sharp toric
monoid. Then there are natural filtered quasi-isomorphisms

(K •

X/S, Ñ •

)−→∼ (K •

X/S, T̃ •

)←−∼ (9X/S, T̃ •

).

The existence of the second filtered quasi-isomorphism of the theorem follows
from the canonicity of the filtration T̃ and Theorem 5.1.4. The proof that the
first arrow is a filtered quasi-isomorphism is a consequence of the following more
precise result.

Recall from Definition 2.2.3 that associated to the homomorphism

θ : C⊗MSgp → C⊗Mgp
X

we have for each q a complex Kosq,•(θ) and whose n-th term is given by

Kosn,q(θ)= C⊗ Sq−nMSgp ⊗3nMgp
X .

Theorem 5.2.2. Let f : X→ S be as in Theorem 5.1.4, let K •

X/S be the Steenbrink
complex on X top, and let

0−→ C⊗Mgp
S

θ
−→ C⊗Mgp

X
π
−→ C⊗Mgp

X/S −→ 0

be the exact sequence of sheaves of C-vectors spaces on X obtained by tensoring
the log Kodaira–Spencer sequence (1-0-1) with C.

(1) For each q ≥ 0, there are natural morphisms of complexes:

Gr−q
Ñ

K •

X/S −→
∼ E

•,q
1 (K •

X/S, N )[−q]′
∼=
−→ Kos•q(θ)−→∼ C⊗

∧qMgp
X/S[−q],

where the first and last maps are quasi-isomorphisms and the second map is
an isomorphism. (The notation [−q]′ means the naive shift of the complex,
and Kos•q is the complex defined in Definition 2.2.3.)

(2) The morphism of spectral sequences induced by the map of filtered complexes
(K •

X/S, N •

)→ (K •

X/S, T •

) is an isomorphism at the E2-level and beyond.

(3) The map of filtered complexes (K •

X/S, Ñ •

)→ (K •

X/S, T̃ •

) is a filtered quasi-
isomorphism.

Proof. The first arrow in (1) is the general construction of Deligne as expressed in
Equation (5-2-1). It follows from the definitions that

E−p,q
0 (K •

X/S, N )= Gr−p
N K q−p

X/S
∼= S pMgp

S ⊗�
q−p
X/C .

Since the elements of S pMgp
S are horizontal sections of Gr−p

N Õlog
S , the differen-

tial d p,•
0 of the complex E p,•

0 (K •

X/S, N ) can be identified with the identity map
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of S pMgp
S tensored with the differential of �•X/C. Then the isomorphism (5-1-1)

allows us to write:

E−p,q
1 (K •

X/S, N )=

{
S pMgp

S ⊗Hq−p(�
•

X/C)
∼= C⊗ S pMgp

S ⊗
∧q−pMgp

X if 0≤ p ≤ q,

0 otherwise.

The isomorphism appearing above is the identity of S pMgp
S tensored with the iso-

morphism (5-1-1). The differential d−p,q
1 becomes identified with a map

C⊗ S pMgp
S ⊗

∧q−pMgp
X

//

��

C⊗ S p−1Mgp
S ⊗

∧q−p+1Mgp
X

��

Kosq−p,q(θ) // Kosq−p+1,q(θ)

It follows from formula (5-1-4) that this differential is indeed the Koszul differen-
tial. Thus we have found the isomorphism

E
•,q
1 (K •

X/S, N )[−q]′
∼=
−→ Kos•,q(θ).

The quasi-isomorphism Kos•,q(θ)−→∼
∧qMgp

X/S[−q] comes from Proposition 2.2.4.
This completes the proof of statement (1) of the theorem.

We have natural maps of filtered complexes

(K •

X/S, N •

)→ (K •

X/S, T •

), hence also (K •

X/S, Ñ •

)→ (K •

X/S, T̃ •

).

These maps produce the map of spectral sequences in statement (2). Consider the
spectral sequence associated to the filtered complex (K •

X/S, T •

), in the category of
abelian sheaves. We have

E−p,q
0 (K •

X/S, T )= Gr−p
T K q−p

X/S =

{
K q−p

X/S if p = 0,
0 otherwise,

hence an isomorphism of complexes,

(E0,•
0 , d)∼= K •

X/S,

and of cohomology groups,

E−p,q
1 (K X/S, T )=

{
Hq(K •

X/S) if p = 0,
0 otherwise.

Thus the complex E
•,q
1 (K , T ) is isomorphic to the sheaf Hq(K X/S), viewed as a

complex in degree zero, and the spectral sequence degenerates at E1. Then

E0,q
∞
(K , T )= E0,q

1 (K , T )=Hq(K •

X/S)
∼= Rq τ̃X (C)∼=

∧q
C⊗Mgp

X/S,

by Corollary 5.1.6. Since the maps are all natural, statement (2) of Theorem 5.2.2
follows.
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Using the naturality of the maps in (5-2-1), we find for every i a commutative
diagram of complexes:

Gr−i
Ñ

K •

X/S
//

��

Gr−i
T̃

K •

X/S

��

E
•,−i
1 (K •

X/S, N ) // E
•,−i
1 (K •

X/S, T )

Since the bottom horizontal arrow is a quasi-isomorphism and the vertical arrows
are quasi-isomorphisms, it follows that the top horizontal arrow is also a quasi-
isomorphism. Since T̃ i and Ñ i both vanish for i > 0, it follows by induction that
for every i , the map Ñ i K •

X/S→ T̃ i K •

X/S is a quasi-isomorphism. �

Combining the above results with our study of Koszul complexes in Section 2.2,
we can now give our first proof of the monodromy formula in Theorem 4.2.2 after
tensoring with C.

Any γ ∈ IP induces a homomorphism Mgp
S → C, which we denote also by γ.

By Proposition 5.1.2 the action of λ̃γ := log(ργ ) on Õlog
S
∼= S•Mgp

S corresponds
to interior multiplication by γ. Thus for every i , λγ maps N−i K •

X/S to N 1−i K •

X/S
and hence Ñ−i K •

X/S to Ñ 1−i K •

X/S . We need to compute the induced map

λ̃i
γ : Gr−i

Ñ
K •

X/S→ Gr1−i
Ñ

K •

X/S.

Using the quasi-isomorphism of statement (1) of Theorem 5.2.2, we can identify
this as the map

γi : Kos•i (θ)→ Kos•i−1(θ)

which in degree n is the composition

C⊗ Si−nMgp
S ⊗

∧nMgp
X

η⊗id
//

))

C⊗Mgp
S ⊗ Si−n−1Mgp

S ⊗
∧nMgp

X

γ⊗id

��

C⊗ Si−n−1Mgp
S ⊗

∧nMgp
X ,

where η is the map defined at beginning of Section 2.2. In other words, our map
is the composition of the morphism

cq : Kos•,q(θ)→Mgp
S ⊗Kos•,q−1(θ),
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constructed in Proposition 2.2.5 with γ ⊗ id. We thus find a commutative diagram
in the derived category:

9
q
X/S

λ
q
γ

��

Gr−q
Ñ

K •

X/S[q]
∼

oo
∼
//

λ̃
q
γ

��

Kos•q(θ)[q]

(γ⊗id)◦cq

��

∼
//
∧qMgp

X/S

gq

��

9
q−1
X/S [1] Gr1−q

Ñ
K •

X/S[q]
∼
oo

∼
// Kos•q−1(θ)[q]

∼
//
∧q−1Mgp

X/S[1]

The horizontal arrows in the leftmost square come from Theorem 5.2.1 and those in
the remaining squares come from statement (1) of Theorem 5.2.2. Statement (3) of
Proposition 2.2.5 shows that gq = (−1)q−1κγ , and statement (2) of Theorem 4.2.2,
tensored with C, follows.

6. Proof of the integral monodromy formula

We present a proof of the monodromy formula Theorem 4.2.2(2) with integral
coefficients. In contrast with the proof with complex coefficients presented in the
previous section, this one uses more abstract homological algebra; not only does
this method work with Z-coefficients in the complex analytic context, it can be
adapted to the algebraic category, using the Kummer étale topology, as we shall
see in Section 6.3.

6.1. Group cohomology. Our proof of the monodromy formula with integral co-
efficients is hampered by the fact that we have no convenient explicit complex
of sheaves of IP -modules representing 9X/S . Instead we will need some abstract
arguments in homological algebra, which require some preparation. Recall that the
cocone Cone′(u) of a morphism u is the shift by −1 of the cone Cone(u) of u, so
that there is a distinguished triangle:

Cone′(u)→ A
u
−→ B→ Cone′(u)[1].

In other words, Cone′(u) is the total complex of the double complex [A
−u
−→B]

where A is put in the 0-th column (that is, Fibre(−u) in the notation of [Saito 2003]).
Explicitly, Cone′(u)n = An

⊕ Bn−1, d(a, b)= (da,−u(a)− db), Cone′(u)→ A
maps (a, b) to a and B→ Cone′(u)[1] maps b to (0, b).

Let X be a topological space and I a group. We identify the (abelian) category
of sheaves of I-modules on X with the category of sheaves of R-modules on X ,
where R is the group ring Z[I]. The functor 0I which takes an object to its sheaf
of I-invariants identifies with the functor Hom(Z,−), where Z∼= R/J and J is the
augmentation ideal of R.

Now suppose that I is free of rank one, with a chosen generator γ. Then λ :=
eγ −1 (see Section 3.1) is a generator of the ideal J , and we have an exact sequence
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of sheaves of R-modules,

0→ R
λ
−→ R→ Z→ 0,

which defines a quasi-isomorphism C• −→∼ Z, where C• is the complex [R
λ
−→ R] in

degrees −1 and 0. The functor Hom(R,−) is exact, and hence the functor 0I can
be identified with the functor Hom(C•,−). The R-linear dual of C• is the complex

C •

:=
[
R
−λ
−→ R

]
,

(see [Berthelot et al. 1982, 0.3.3.2] for the sign change) in degrees 0 and 1, and for
any complex K • of sheaves of I-modules,

C(K •

) :=HomR(C•, K •

)∼= C •

⊗R K • (6-1-1)

is a representative for R0I(K
•

). Note that

Cq(K •

)= K q
⊕ K q−1, d(x, y)= (dx,−λx − dy),

and thus C(K •

) is the cocone of the morphism λ : K •

→ K •.
In particular, C •

= C(R•), where, R• is the complex consisting of R placed in
degree zero, and we have a quasi-isomorphism

ε : C •

−→∼ Z[−1] given by the augmentation R→ Z in degree one.

Proposition 6.1.1 (Compare with [Rapoport and Zink 1982, §1]). Let I be a free
abelian group of rank one, with generator γ , let R := Z[I], and let C • be the
complex (6-1-1) above. For an object K • of the derived category DI(X) of sheaves
of I-modules on a topological space X , let C(K •

) := C •

⊗R K •.

(1) There are natural isomorphisms

C(K •

)∼= RHomI(Z, K •

)∼= R0I(K
•

)

and a distinguished triangle

C(K •

)
a
−→ K • λ

−→ K • b
−→ C(K •

)[1]. (6-1-2)

(2) Let ∂ : Z→ Z[1] denote the morphism defined by the exact sequence (3-2-4)

0→ Z→ R/J 2
→ Z→ 0

(the first map sends 1 to the class of λ). Then b◦a= ∂⊗id :C(K •

)→C(K •

)[1].

(3) There are natural exact sequences

· · · → Rq0I(K
•

)
a
−→Hq(K •

)
λ
−→Hq(K •

)
b
−→ Rq+10I(K

•

)→ · · ·



MONODROMY AND LOG GEOMETRY 505

and

0→ R10I(Hq−1(K •

))
b
−→ Rq0I(K

•

)
a
−→ 0I(Hq(K •

))→ 0.

(4) If the action of I on Hq(K •

) is trivial, a and b induce canonical isomorphisms

0I(Hq(K •

))∼=Hq(K •

), and Hq(K •

)∼= R10I(Hq(K •

)).

Proof. We have already explained statement (1) in the preceding paragraphs (the
distinguished triangle expresses the fact that C(K •

) is the cocone of λ : K •

→ K •).
Since C(K •

)∼= C(R)⊗ K • and the distinguished triangle in (1) for K • is obtained
by tensoring the triangle for R with K •, it will suffice to prove (2) when K •

= R.
In this case, a :C •

→ R is given by the identity map in degree 0, and b : R→C •

[1]
is given by the identity map in degree 0. Thus b ◦ a : C •

→ C •

[1] is the map

0 //

��

R
−λ

//

id

��

R

��

R λ
// R // 0

Composing with the quasi-isomorphism ε[1], we find that ε[1] ◦ b ◦ a is given by

R
−λ

//

aug

��

R

Z

The pushout of the exact sequence 0→ R→ R→ Z→ 0 along R→ Z is the
sequence (3-2-4). It follows that the morphism

b ◦ a : C •

→ C •

[1]

is the same as the morphism ∂ : Z→ Z[1] defined by that sequence. This proves
statement (2).

Since C(K •

)= R0I(K
•

), the first sequence of statement (3) is just the cohomol-
ogy sequence associated with the distinguished triangle in (1); the second sequence
follows from the first and the fact that for any I module E , 0I(E) ∼= Ker(λ) and
R10I(E)∼= Cok(λ). Statement (4) follows, since in this case λ= 0. �

6.2. Proof of the monodromy formula. We now turn to the proof of the integral
version of statement (2) of Theorem 4.2.2. Recall that 9X/S = Rτ̃X∗Z (see (4-2-1));
let us also set 9X = RτX∗Z and 9S = RτS∗Z. We begin with the following ob-
servation, which is a consequence of the functoriality of the maps σ as defined in
Theorem 4.2.1.
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Lemma 6.2.1. The following diagram with exact rows commutes:

0 // f ∗Mgp
S (−1) //

f ∗σS

��

Mgp
X (−1) //

σX

��

Mgp
X/S(−1) //

σX/S

��

0

0 // f ∗91
S

// 91
X

// 91
X/S

// 0

(6-2-1)

Consequently one has a commutative diagram in the derived category

Mgp
X/S(−1) E

//

��

f ∗Mgp
S (−1)[1] = Pgp(−1)[1]

��

9X/S F
// f ∗91

S[1] �

We will achieve our goal by establishing the commutativity of the following
diagram:

∧qM
Eq
//

∧
qσ

��

(1)

Pgp(−1)[1]⊗
∧q−1M

γ⊗1
//

��

(2)

∧q−1M[1]

∧
q−1σ

��∧q
91

X/S Fq

//

mult.

��

(3)

(4)

Gq (γ )

88
f ∗9S[1]⊗

∧q−1
91

X/S γ⊗1
//
∧q−1

91
X/S[1]

mult.

��

9
q
X/S

(−1)q−1 Lq
λ

// 9
q−1
X/S [1]

Here we have written M as a shorthand for Mgp
X/S(−1) and γ : f ∗91

S→ Z for
the pullback by f of91

S = Pgp(−1)
γ
−→Z. The maps Eq , Fq , and Gq(γ ) are defined

by applying the q-th exterior power construction ξ 7→ ξq of Section 2.2 to the
extensions E , F , and G(γ ), respectively. Here the extension G(γ ) :91

X/S→ Z[1]
is defined by the exact sequence (6-2-4) below. Thus the commutativity of the
larger outer rectangle in this diagram is the desired formula (2) of Theorem 4.2.2.
We prove this commutativity by checking the interior cells (1) through (4).

(1) This square commutes by functoriality of the maps ξq defined in Section 2.2
and Lemma 6.2.1.
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(2) It suffices to check the commutativity when q = 1, in which case it follows
from the definition of the map γ :91

S→ Z.

(3) We let the I be the subgroup of IP generated by γ and work in the category of
I-modules. Applying (1) of Proposition 6.1.1, we find a distinguished triangle:

R0I(9X/S)
a
−→9X/S

γ−1
−−→9X/S

b
−→ R0I(9X/S)[1]. (6-2-2)

Since γ acts trivially on the 9q
X/S , the long cohomology exact sequence of the

above triangle yields a short exact sequence

0→9
q−1
X/S

bq

−→ Rq0I(9X/S)
aq

−→9
q
X/S→ 0. (6-2-3)

When q = 1, the exact sequence (6-2-3) reduces to

0→ Z
β:=b1

−−−→ R10I(9X/S)
α:=a1

−−−→91
X/S→ 0, (6-2-4)

where β(1) is the image of the class θ ∈ R10I(Z) in R10I(9X/S). Applying the
exterior power construction of Section 2.2, one obtains for each q ≥ 1 an exact
sequence

0→
∧q−1

91
X/S

βq

−→
∧q R10I(9X/S)

αq

−→
∧q
91

X/S→ 0,

where βq is deduced from cup product with θ on the left. We assemble the arrows
αq−1 and βq to form the top row of the following diagram, and the arrows aq−1

and bq to form the bottom row:

∧q−1 R10I(9X/S)
αq−1

//

mult.
��

∧q−1
91

X/S
βq
//

mult.
��

∧q R10I(9X/S)

mult.

��

Rq−10I(9X/S)
aq−1

// 9
q−1
X/S bq

// Rq0I(9X/S)

The maps a and α are the restriction maps on group cohomology from I to the
zero group, and hence commute with cup product, so that the left square commutes.
By (2) of Proposition 6.1.1, the composition bq

◦aq−1 is given by cup product on the
left with the morphism θ : Z→ Z[1] defined by the fundamental extension (3-2-4).
By the above discussion, the same is true for βq

◦ αq−1. Since the vertical maps
are also defined by cup product, we see that the outer rectangle commutes. As the
map αq−1 is surjective, we deduce that the right square also commutes.
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Putting these squares alongside each other in the opposite order, we get a com-
mutative diagram with exact rows:

0 //
∧q−1

91
X/S

βq
//

mult.
��

∧q R10I(9X/S)
αq
//

mult.

��

∧q
91

X/S
//

mult.

��

0

0 // 9
q−1
X/S

bq
// Rq0I(9X/S)

aq
// 9

q
X/S

// 0

Taking the maps in the derived category corresponding to these extensions gives a
commutative square ∧q

91
X/S

//

mult.

��

∧q−1
91

X/S[1]

mult.
��

9
q
X/S

//// 9
q−1
X/S [1]

Proposition 2.3.2 applied to the triangle (6-2-2) implies that the bottom arrow is
κq
= (−1)q−1Lq

λ[q], while the top arrow is Gq(γ ) by definition. It follows that
cell (3) commutes.

(4) Once again we can reduce to the case q = 1 by functoriality of the construction
of Section 2.2. Consider the action of I on 9X/S via γ. It is enough to establish
the commutativity of the diagram

0 // f ∗91
S

γ

��

// 91
X

φ

��

// 91
X/S

// 0

0 // Z // R10I(9X/S) // 91
X/S

// 0

(6-2-5)

Here φ is the restriction map

91
X = R10IP (9X/S)→ R10I(9X/S) along γ : Z→ I .

Indeed, the top extension being F :91
X/S→ f ∗91

S[1], the bottom extension (which
is the pushout of the top extension by γ ) is γ ◦ F : 91

X/S → Z[1]. On the other
hand, as we saw in Proposition 2.3.2, the bottom extension corresponds to L1

λ :

91
X/S→ Z[1].
The right square of (6-2-5) commutes by functoriality of restriction maps

R0I (−)→ R0Z(−)→ R00(−)= (−).
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The left square is isomorphic to

H 1(IP ,H0(9X/S)) //

��

H 1(IP , 9X/S)

��

H 1(I,H0(9X/S)) // H 1(I, 9X/S)

which commutes by functoriality of the maps H 1(G,H0(−))→ H 1(G, (−)) with
respect to G.

6.3. Étale cohomology. The results of Sections 4.2 and 6 have natural algebraic
analogs, due to Fujiwara, Kato, and Nakayama [Nakayama 1997], obtained by
replacing the space X log with the Kummer-étale topos Xkét, and the (logarithmic)
exponential sequence (3-3-3) with the (logarithmic) Kummer sequence(s). We refer
the reader to [Illusie 2002] for a survey of the Kummer étale cohomology.

The algebraic version of our setup is as follows: we fix an algebraically closed
field k and work in the category of fine and saturated log schemes locally of finite
type over k. We fix an integer N > 1 invertible in k and use 3 = Z/NZ as a
coefficient ring. We define 3(1) = µN (k), 3(n) = 3(1)⊗n for n ≥ 0, 3(n) =
3(−n)∨ for n ≤ 0; for a 3-module M , M(n) denotes M ⊗3(n).

We start by considering a single fs log scheme X . We denote by ε : Xkét→ X ét
the projection morphism (here X ét is the étale site of the underlying scheme). The
sheaf of monoids MX on X ét extends naturally to a sheaf Mkét

X on Xkét associat-
ing 0(Yét,MY ) to a Kummer étale Y → X ; we have a natural homomorphism
ε∗MX → Mkét

X . The logarithmic Kummer sequence is the exact sequence of
sheaves on Xkét

0→3(1)→Mkét,gp
X

N
−→Mkét,gp

X → 0. (6-3-1)

Applying the projection ε∗ yields a homomorphism

σ0 :M
gp
X → ε∗ε

∗Mgp
X → ε∗M

két,gp
X → R1ε∗3(1).

Theorem 6.3.1 [Kato and Nakayama 1999, Theorem 2.4; Illusie et al. 2005, The-
orem 5.2]. The map σ0 factors through Mgp

X , inducing an isomorphism

σ :Mgp
X ⊗3(−1)→ R1ε∗3

and, by cup product, isomorphisms

σ q
:
∧qMgp

X ⊗3(−q)−→∼ Rqε∗3.

We now turn to the relative situation. The base S is a fine and saturated split log
point associated to a fine sharp monoid P (that is, S = Spec(P→ k)). Consider the
inductive system P̃ of all injective maps φ : P→ Q into a sharp fs monoid Q such
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that the cokernel of φgp is torsion of order invertible in k, and let S̃ = Spec(P̃→ k).
Let IP be the automorphism group of S̃ over S (the logarithmic inertia group of S);
we have a natural identification IP ∼= Hom(Pgp, Ẑ′(1)) where Ẑ′(1)= lim

←−−N µN (k)
[Illusie 2002, 4.7(a)]. We can identify the topos Skét with the classifying topos
of IP .

We consider an fs log scheme X locally of finite type over k and a saturated
morphism f : X → S. We define X̃ = X ×S S̃ (fiber product in the category
of systems of fs log schemes). We denote the projections ε : Xkét → X ét and
ε̃ : X̃két→ X̃ ét = X ét.

Lemma 6.3.2. The sequence of étale sheaves on X

0→Mgp
S ⊗3→Mgp

X ⊗3→Mgp
X̃
⊗3→ 0

is exact, yielding an identification Mgp
X̃
⊗3∼=Mgp

X/S ⊗3.

Proof. Note first that since X→ S is saturated, the square

X̃ //

��

X

��

S̃ // S

is cartesian in the category of (systems of) log schemes, and in particular the corre-
sponding diagram of underlying schemes is cartesian, i.e., X̃ ∼= X as schemes. Let
x̄ be a geometric point of X . We have pushout squares

P //

��

MX,x̄

��

and

Pgp //

��

Mgp
X,x̄

��

P̃ //MX̃ ,x̄ P̃gp //Mgp
X̃ ,x̄

and therefore also a pushout square

Pgp
⊗3 //

��

Mgp
X,x̄ ⊗3

��

P̃gp
⊗3 //Mgp

X̃ ,x̄
⊗3

But P̃gp is N -divisible for all N invertible in k, so P̃gp
⊗3= 0, yielding the desired

exactness. �

The complex of nearby cycles is the complex 9X/S := Rε̃∗3 of discrete IP -
modules on X ét. Its cohomology is described by an analog of Theorem 4.2.1:
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Theorem 6.3.3. There are canonical isomorphisms

σ q
:
∧qMgp

X/S ⊗3(−q)−→∼ 9
q
X/S

for all q. In particular, the logarithmic inertia group IP acts trivially on 9q
X/S .

Proof. This follows from Theorem 6.3.1 for X̃ , using the identifications X ét = X̃ ét
and Mgp

X/S ⊗3
∼= M̄gp

X̃
⊗3. �

As before, we denote by λq
γ : 9

q
X/S → 9

q−1
X/S [1] the map induced by γ − 1 :

9X/S→9X/S . The usual Kummer sequence on X ét yields a map Ogp
X →3(1)[1],

which composed with the map Mgp
X/S→O∗X [1] coming from the extension (4-2-4)

yields a map chX/S :M
gp
X/S→3(1)[2].

With these in place, we can state the étale analog of Theorem 4.2.2.

Theorem 6.3.4. Let f : X→ S be as above. Then:

(1) For each q ≥ 0, the following diagram commutes:

∧qMgp
X/S ⊗3(−q)

chq
X/S
//

q!σ q

��

∧q−1Mgp
X/S ⊗3(1− q)[2]

q!σ q−1

��

9
q
X/S δq

// 9
q−1
X/S [2]

(2) For each q ≥ 0 and each γ ∈ IP , the following diagram commutes:

∧qMgp
X/S ⊗3(−q)

κ
q
γ
//

σ q

��

∧q−1Mgp
X/S ⊗3(1− q)[1]

σ q−1

��

9
q
X/S

(−1)q−1λ
q
γ

// 9
q−1
X/S [1]

where κq
γ is as in Proposition 2.3.2.

Proof. The proof of (1) relies on the following analog of the isomorphism (4-2-7).
The exact sequence (6-3-1) provides a quasi-isomorphism on X̃két

3(1)−→∼
[
Mkét,gp

X̃
→Mkét,gp

X̃

]
and the morphism of complexes[

ε̃∗Mgp
X̃

N
−→ ε̃∗Mgp

X̃

]
→
[
Mkét,gp

X̃

N
−→Mkét,gp

X̃

]
induces by adjunction a morphism[

ε̃∗Mgp
X̃

N
−→ ε̃∗Mgp

X̃

]
→9X/S(1).
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This morphism induces an isomorphism
[
ε̃∗Mgp

X̃

N
−→ ε̃∗Mgp

X̃

]
∼= τ≤19X/S , our ana-

log of (4-2-7). Then assertion (1) follows exactly as before. The proof of (2)
follows the lines of our second proof of the analogous assertion in Section 6.2. We
omit the details. �

7. Curves

The goal of the present section is to illustrate Theorems 4.2.2 and 4.1.6 for curves.
We shall attempt to convince our readers that the combinatorics arising from the
log structures are essentially equivalent to the data usually expressed in terms of
the “dual graph” of a degenerate curve, for example in [SGA 7I 1972, IX, 12.3.7].
In particular, we show how the classical Picard–Lefschetz formula for curves can
be derived from our monodromy formula. In this section we work over the field C

of complex numbers.

7.1. Log curves and their normalizations. Our exposition is based on F. Kato’s
study [2000] of the moduli of log curves and their relation to the classical theories.
Let us recall his basic notions.

Definition 7.1.1. Let S be a fine saturated and locally noetherian log scheme. A log
curve over S is a smooth, finite type, and saturated morphism f : X → S of fine
saturated log schemes such that every geometric fiber of f : X → S has pure
dimension one.

Kato requires that X be connected, a condition we have dropped from our def-
inition. If X/C is a smooth curve and Y is a finite set of closed points of X , then
the compactifying log structure associated with the open subset X \ Y of X is fine
and saturated, and the resulting log scheme is a log curve over C. In fact, every
log curve over C arises in this way, so that to give a log curve over C is equivalent
to giving a smooth curve with a set (not a sequence) of marked points.

For simplicity, we concentrate on the case of vertical log curves over the standard
log point S := Spec(N→ C). Then a morphism of fine saturated log schemes
X→ S is automatically integral [Kato 1989, 4.4], and if it is smooth, it is saturated
if and only if its fibers are reduced [Tsuji 2019, II.4.2; Ogus 2018, IV, 4.3.6].
Since X/S is vertical, the sheaf MX/S :=MX/ f ∗MS is in fact a sheaf of groups.
Corollary 4.1.7 says that the set Y := {x ∈ X :MX/S 6= 0} is closed in X , that
its complement U is open and dense, and that the underlying scheme U of U is
smooth. In fact Kato’s analysis of log curves gives the following detailed local
description of X/S.

Theorem 7.1.2 (F. Kato). Let f : X→ S be a vertical log curve over the standard
log point S and let x be a closed point of X.
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(1) The underlying scheme X is smooth at x if and only if there is an isomorphism
MX,x ∼= N. If this is the case, there exist an étale neighborhood V of x and a
commutative diagram

V
g
//

##

S×AZ

��

S
where g is strict and étale.

(2) The underlying scheme X is singular at x if and only if there exist an integer n
and an isomorphism MX,x ∼= Qn , where Qn is the monoid given by generators
q1, q2, q satisfying the relation q1+ q2 = nq. In this case there exist an étale
neighborhood V of x and a commutative diagram

V
g
//

""

AQn,J

Aθ
��

S

where g is strict and étale, where J is the ideal of Qn generated by q, and
where θ : N→ Qn is the homomorphism sending 1 to q. �

Proof. For the convenience of the reader we give an indication of the proofs, using
the point of view developed in Corollary 4.1.7. We saw there that the set U :=
{x ∈ X :MX,x = N} is open in X . Moreover U is smooth over C, so it can be
covered by open sets V each of which admits an étale map U → Gm = AZ. Since
the morphism U →U × S is an isomorphism, we find a diagram as in case (1) of
the theorem.

Suppose on the other hand that x ∈ Y := X \U . Since the sheaf of groups
Mgp

X/S is torsion free, one sees from [Ogus 2018, IV, 3.3.1] that in a neighborhood
V of x , there exists a chart for f which is neat and smooth at x . That is, there
exist a fine saturated monoid Q, an injective homomorphism θ : N→ Q, and a
map V → AQ such that induced map V → S×AN

AQ is smooth and such that the
homomorphism Qgp/Z→MX/S,x is an isomorphism. By [Ogus 2018, III, 2.4.5],
the chart Q→MX is also neat at x . Let J be the ideal of Q generated by q := θ(1).
Then S×AN

AQ = A(Q,J ). Since θ is vertical, J is the interior ideal of Q, and the
set of minimal primes containing it is the set of height one primes of Q. Thus
the dimension of A(Q,J ) is the dimension of AF , where F is any facet of Q. This
dimension is the rank of Fgp; if it is zero, then Qgp has rank at most one, hence
N→ Q is an isomorphism, contradicting our assumption that x ∈ Y . Thus Qgp

has rank at least two. Since V has dimension one and is smooth over A(Q,J ), it
follows that in fact Fgp has rank one, that Qgp has rank two, and that V is étale
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over A(Q,J ). Since Qgp/Z∼=Mgp
X/S and Q∗ maps to zero in Mgp

X/S it follows that
Q is sharp of dimension two, and hence has exactly two faces F1 and F2. Each of
these is canonically isomorphic to N; let qi be the unique generator of Fi . Since
θ is saturated, every element of Q can be written uniquely in the form nq +mi qi ,
where n,mi ∈N and i ∈ {1, 2} [Ogus 2018, I, 4.8.14]. Writing q1+q2 in this form,
we see that necessarily mi = 0 (otherwise q would belong to a proper face). Thus
Q is generated by q1 and q2, subject to the relation nq = q1+ q2 for some n > 0.
Since Q has dimension two, it is necessarily isomorphic to Qn , and since the chart
Q→MX is neat at x , in fact Qn ∼=MX,x . Finally, we note that X is singular at x ,
so U is precisely the smooth locus of X . �

Let us remark that the isomorphism MX,x ∼=N in (1) is unique, since the monoid
N has no nontrivial automorphisms. In case (2), the integer n is unique, and there
are exactly two isomorphisms MX,x ∼= Qn , since Qn has a unique nontrivial auto-
morphism, which exchanges q1 and q2.

Thanks to Kato’s result, we can give the following more explicit version of
Corollary 4.1.7 in the cases of log curves. Since we are working over the standard
(split) log point S, we have a map N→MS→MX , and we let MX/N :=MX/N.

Proposition 7.1.3. Let X/S be a vertical log curve over the standard log point,
let ε : X ′ → X be its normalization, and let X ′/C (resp. X ′′) be the log curve
obtained by endowing X ′ with the compactifying log structure associated to the
open embedding U ′→U (resp. with the induced log structure from X ).

(1) There is a unique morphism of log schemes h : X ′′→ X ′ which is the identity
on the underlying schemes.

(2) The maps Mgp
X ′ → ε−1(MX/S) and Mgp

X ′ → ε∗(MX/N) induced by h are
isomorphisms, where ε∗(MX/N) :=O∗X ′ ×ε−1(O∗X ) ε

−1(MX/N).

(3) Let X ′′′ := X ′×S S, and let g : X ′′→ X ′′′ be the map induced by f ◦ ε and h.
Then the morphism g identifies X ′′ with a strict log transform of X ′′′, i.e., the
closure of U ′ in the log blowup of X ′′′ along a coherent sheaf of ideals of
MX ′′′ , (made explicit below).

Proof. Statement (3) of Corollary 4.1.7 implies statement (1) of Proposition 7.1.3,
statement (4) implies that h induces an isomorphism θ :Mgp

X ′→ ε−1(MX/S), and it
follows that Mgp

X ′→ ε∗(MX/P) is an isomorphism, since this map is a morphism of
O∗X ′ torsors over θ . This proves statements (1) and (2); we should remark that they
are quite simple to prove directly in the case of curves, because the normalization
X ′ of X is smooth.

Our proof of (3) will include an explicit description of a sheaf of ideals defining
the blowup. For each point y′ of Y ′, let n be the integer such that MX,ε(y′) ∼=

Qn , let Ky′ be the ideal of MX ′′′,y′ generated by M+

X ′,y′ and nM+

S , and let K :=
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{Ky′ : y′ ∈ Y ′}, a coherent sheaf of ideals in MX ′′′ . Observe that the ideal of

MX ′′ generated by K is invertible. This is clear at points x ′ of U ′. If y′ ∈ Y ′, the
ideal Ky′ is generated by the images of q2 and nq, and in Qn the ideal (q2, nq) is
generated by q2, since nq = q1+ q2. Thus the map X ′′→ X ′′′ factors through the
log blowup [Nizioł 2006, 4.2]. A chart for X ′′′ near y′ is given by N⊕N mapping
(1, 0) to q2 and (0, 1) to q , and the log blowup of the ideal (q2, nq) has a standard
affine cover consisting of two open sets. The first is obtained by adjoining nq − q2,
and the corresponding monoid is Qn; and the second by adjoining q2− nq. The
closure of U ′ is contained in the first affine piece, so we can ignore the second.
Thus the induced map is indeed an isomorphism as described. �

Proposition 7.1.3 shows that one can recover the log curve X ′′/S directly from
the log curve X ′ together with the function ν : Y ′→ Z+ taking a point y′ to the
number n such that Mε(y′) ∼= Qn . In fact there are additional data at our disposal,
as the following proposition shows.

Proposition 7.1.4. Let X/S be a vertical log curve over the standard log point and
let X ′/C be the corresponding log curve over C as described in Proposition 7.1.3.
Then X ′/C is naturally equipped with the following additional data.

(1) A fixed point free involution ι of Y ′.

(2) A mapping ν : Y ′→ N such that ν(y′)= ν(ι(y′)) for every y′ ∈ Y ′.

(3) A trivialization of the invertible sheaf NY ′/X ′ ⊗ ι
∗(NY ′/X ′) on Y ′.

Proof. These data arise as follows. Each fiber of the map ε : Y ′→ Y has cardinality
two, and hence there is a unique involution ι of Y ′ which interchanges the points
in each fiber. The function ν is defined as above: ν(y′) is the integer n such
that MX,ε(y′) ∼= Qn . To obtain the trivialization in (3), let y′ be a point of Y ′

and let y := ε(y′). Recall from Remark 3.3.1 that if X is a fine log space and
m ∈ 0(X,MX ), there is an associated invertible sheaf Lm whose local generators
are the sections of MX mapping to m. Observe that, since the log point S is
equipped with a splitting MS →MS , there is a canonical generator mS of the
invertible sheaf L1,S on S. Let us use the notation of the proof of Proposition 7.1.3.
Endow Y with the log structure from X and choose a point y of Y . The choice
of a chart at y defines sections m1 and m2 of MY,y , whose images m1 and m2 in
0(y,MY,y) are independent of the choice of the chart and define one-dimensional
vector spaces Lmi . The equality m1+m2 = n f [(1) induces an isomorphism

Lm1 ⊗Lm2
∼= Ln

1,s
∼= C.

As we have seen, the element m2 corresponds to a generator of the ideal of the
point y′1 in X ′1, so there is a canonical isomorphism ε∗(Lm2)

∼= N−1
Y ′/X ′,y′1

; similarly
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ε∗(Lm1)
∼= N−1

Y ′/X ′,y2
. Thus we find isomorphisms

NY ′/X ′,y′1⊗(ι
∗NY ′/X ′)y′1

∼= NY ′/X ′,y′1⊗NY ′/X ,y′2
∼= ε
∗(Lm2)

−1
⊗ε∗(Lm1)

−1∼=C. �

In fact the data in Proposition 7.1.4 are enough to reconstruct the original log
curve X/S. (For an analogous result in the context of semistable reduction, see
[Ogus 2018, III, Proposition 1.8.8].) Rather that write out the proof, let us explain
how one can construct the fibration X log→S1 directly from X ′ together with these
data.

It will be notationally convenient for us to extend ι to a set-theoretic involution
on all of X ′, acting as the identity on U ′. If y′ ∈ Y ′ and v is a nonzero element
of Ny′/X ′ , let ι(v) be the element of Nι(y′)/X ′ which is dual to v with respect to
the pairing defined by (3) above. Then ι(λv)= λ−1ι(v) for all v. Note that since
MX ′,y′ =N for every y′ ∈Y ′ and vanishes otherwise, we have a natural set-theoretic
action of S1 on X ′log covering the identity of X ′. Thus the following sets of data
are equivalent:

(1) a trivialization of NY ′/X ′ ⊗ ι
∗(NY ′/X ′);

(2) an involution ι of NY ′/X ′ , covering the involution ι of Y ′, such that ι(λv) =
λ−1ι(v) for λ ∈ C∗ and v ∈ NY ′/X ;

(3) an involution of ι of S1(NY ′/X ′) (the circle bundle of NY ′/X ′), covering the
involution ι of Y ′, such that ι(λ(v))=λ−1(ι(v)) for λ∈S1 and v ∈S1(NY ′/X ′);

(4) an involution ι of X ′log such that τX ′(ι(x ′log)) = ι(τX ′(x ′log)) and ι(ζ x ′log) =

ζ−1ι(x ′log) for ζ ∈ S1 and x ′log ∈ X ′log.

The data in (3) and (4) are equivalent thanks to Remark 3.3.1. We should also point
out that these data are unique up to (nonunique) isomorphism.

Proposition 7.1.5. Let X/S be a log curve and let X ′ and ι be as above. Let
ν(x ′log) := ν(ε(τX ′(x ′log))) and define ι on X ′log×S1 by

ι(x ′log, ζ ) := (ζ
ν(x ′log)ι(x ′log), ζ ).

Then X log is the quotient of X ′log×S1 by the equivalence relation generated by ι.

Proof. Let y be a point of Y and let ε−1(y) := {y′1, y′2}. We can check the formula
with the aid of charts, using again the notation of the proof of Proposition 7.1.3.
Then Mgp

X ′′,y′1
∼=Mgp

X ′,y′1
⊕Mgp

S is free with basis m2,m and MX ′′,y′2
∼=Mgp

X ′,y′2
⊕Mgp

S
is free with basis m1,m. We have isomorphisms

Mgp
X ′′,y′′1

Mgp
X,y

oo //Mgp
X ′′,y′′2

sending m to m and m2 to m1 = nm−m2. Then the formula follows immediately.
�
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Figure 1. Gluing log fibers.

This gluing map is compatible with the map X log→ S1. Figure 1 illustrates the
restriction of this gluing to τ−1(y)→ S1, when pulled back to via the exponential
map [0, 2π i] → S1. The reader may recognize the gluing map as a Dehn twist. It
appears here as gluing data, not monodromy. It is of course also possible to see
the monodromy from this point of view as well, using a chart for X at a point y
of Y . Since this description is well-known but not functorial, we shall not develop
it here.

7.2. Log combinatorics and the dual graph. Proposition 7.1.3 and the data of
Proposition 7.1.4 will enable us to give a combinatorial description of the sheaf
MX/S on X . In fact there are two ways to do this, each playing its own role and
each related to the “dual graph” associated to the underlying nodal curve of X/S.

We begin with the following elementary construction. Let B be a finite set with
an involution ι and let ε : B→ E be its orbit space. There are two natural exact
sequences of Z[ι]-modules:

0−→ ZE/B
i
−→ ZB s

−→ ZE
−→ 0, 0−→ ZE j

−→ ZB p
−→ ZB/E −→ 0. (7-2-1)

The map s in the first sequence sends a basis vector b of ZB to the basis vector
ε(b) of ZE , and i is the kernel of s. The map j in the second sequence sends a
basis vector e to

∑
{b ∈ ε−1(e)}, and p is the cokernel of j . These two sequences

are naturally dual to each other, and in particular ZE/B and ZB/E are naturally
dual. For each b ∈ B, let db := b− ι(b) ∈ ZE/B and pb := p(b) ∈ ZB/E . Then
±db (resp. ±pb) depends only on ε(b). There is a well-defined isomorphism of
Z[ι]-modules defined by

t : ZB/E → ZE/B, pb := p(b) 7→ db := b− ι(b). (7-2-2)

The resulting duality ZB/E ×ZB/E → Z is positive definite, and the set of classes
of elements {p(b) : b ∈ B} forms an orthonormal basis.

We apply these constructions to the involution ι of Y ′ and regard ε : Y ′→ Y as
the orbit space of this action. The construction of ZY/Y ′ and ZY ′/Y is compatible
with localization on Y and hence these form sheaves of groups on Y. Since we are
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assuming that X/S is vertical, ι is fixed point free. As we shall see, there are natural
identifications of the sheaf MX/S both with ZY/Y ′ and with ZY ′/Y . We begin with
the former.

Because αX ′ is the compactifying log structure associated to the set of marked
points Y ′, there are natural isomorphisms of sheaves of monoids on X ′:

MX ′ ∼= 0Y ′(Div+X ′)∼= NY ′ . (7-2-3)

Combining this identification with the isomorphism ε−1(MX/S)∼=Mgp
X ′ of state-

ment (2) of Proposition 7.1.3, we find an isomorphism ε−1(MX/S) ∼= ZY ′ , and
hence an injection

ψ :MX/S→ ε∗ε
−1(MX/S)∼= ε∗(ZY ′).

Proposition 7.2.1. The inclusion ψ defined above fits into an exact sequence

0−→MX/S
ψ
−→ ε∗ZY ′

s
−→ ZY −→ 0,

and hence induces an isomorphism

ψX/S :MX/S −→
∼ ZY/Y ′ .

If ` ∈ 0(X,MX/S) and L` is the corresponding invertible sheaf on X coming from
the exact sequence (1-0-4), then ε∗(L`)∼=OX ′(−ψ(`)).

Proof. Since the maps ψ and s are already defined globally, it is enough to check
that the sequence is exact at each point y of Y . We work in a charted neighborhood
of a point y ∈ Y as in the proof of Proposition 7.1.3, using the notation there. Then
MX/S,y is the free abelian group generated by the image `2 of q2, and `1 =−`2.
The pullback t ′2 of t2 to X ′ is a local coordinate near y′1 and defines a generator for
MX ′,y′1 mapping to 1y′1 ∈ ZY ′ . The analogous formulas hold near y′2, and hence
ψ(`2) = 1y′1 − 1y′2 . This implies that s ◦ ψ = 0 and that the sequence is exact.
Furthermore, it follows from Proposition 7.1.3 that ε∗(L`) = Lm′ , where m′ ∈
0(X ′,Mgp

X ′) corresponds to ` ∈ 0(X,MX/S) via the isomorphism Mgp
X ′→Mgp

X/S
in statement (2) of that proposition. The sheaf Lm′ is the ideal sheaf of the divisor
D corresponding to m′, i.e., OX ′(−D), and D = ψ(`). �

The relationship between MX/S and ZY ′/Y is more subtle and involves the inte-
gers ν(y). First consider the commutative diagram of exact sequences

0 // ZX //

res

��

ε∗(ZX ′)

res

��

// ZX ′/X

res

��

// 0

0 // ZY // ε∗(ZY ′) // ZY ′/Y // 0

(7-2-4)



MONODROMY AND LOG GEOMETRY 519

where ZX ′/X is by definition the cokernel in the top row. As ε is an isomorphism
over U , the right vertical map is an isomorphism and we will allow ourselves
to identify its source and target without further comment. Note that since X ′/C is
smooth, the natural map ZX ′→ j ′

∗
(ZU ) is an isomorphism, hence ε∗(ZX ′)∼= j∗(ZU ),

and the top row of the above diagram can be viewed as an exact sequence:

0→ ZX → j∗(ZU )→ ZX ′/X → 0. (7-2-5)

Since X/S is vertical, it follows from Theorem 7.1.2 that Y is precisely the support
of MX/S and that the map Z→Mgp

X is an isomorphism on U . Thus there is a
natural map

φX :M
gp
X → j∗ j∗(Mgp

X )
∼= j∗(ZU )∼= ε∗(ZX ′). (7-2-6)

In fact, the map φX is the adjoint of the homomorphism

ρgp
:Mgp

X ′′
∼= ε
−1(Mgp

X )→ ZX ′

deduced from the homomorphism

ρ :MX ′′→ PX ′ = NX ′

defined in (4) of Corollary 4.1.7.

Proposition 7.2.2. Let X/S be a vertical log curve. The homomorphisms ψX/S of
Proposition 7.2.1 and φX defined above fit into a commutative diagram with exact
rows:

0 // f −1Mgp
S

//

id

yy

Mgp
X

π
//

id

zz

MX/S //

ψX/S

{{

φX/S

��

0

0 // f −1Mgp
S

//

∼=

��

Mgp
X

//

φX

��

ZY/Y ′ //

cX/S

��

0

0 // ZX // ε∗(ZX ′)
p
// ZY ′/Y // 0

(7-2-7)

where cX/S is the map sending dy′ to −ν(y′)py′ for every y′ ∈ Y ′.

Proof. We compute the stalk of the map φX at a point x of X . If x belongs to U ,
the maps

Z→Mgp
X,x and Mgp

X,x → ε∗(Z
′

X )x

are isomorphisms, and hence so is φX . If x belongs to Y, we call it y and work in
a neighborhood as in the proof of Proposition 7.1.3. Then X is the analytic space
associated to Spec(C[x1, x2]/(x1x2)), endowed with the log structure associated
to the homomorphism β : Qn → C[x1, x2]/(x1x2) sending qi to xi and q to 0.
The point y := x is defined by x1 = x2 = 0, and has a basis of neighborhoods W
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defined by |xi |< ε. On the connected component W1∩U of W ∩U , the coordinate
x1 vanishes and x2 becomes a unit. Let mi (resp. m) be the image of qi (resp.
of q) in MX . The stalk of ε∗(ZX ′)∼= j∗(U ) at x is free with basis (b1, b2), where
bi is the germ of the characteristic function of Wi ∩U at x . The isomorphism
res : ε∗(ZX ′)y −→

∼ ε∗(ZY ′)y takes bi to the basis element y′i . The restriction of the
sheaf MX to W1 ∩U is constant and freely generated by m|W1∩U , while m1|W1∩U =

ν(y)m|W1∩U and m2|W1∩U = 0. Thus φX (mi ) = ν(y)bi and φX (m) = b1 + b2. In
particular, p(φ(mi )) = ν(y)p(y′i ). On the other hand, we saw in the proof of
Proposition 7.2.1 that ψX/S(π(m1))= y′2− y′1 =−dy′1 ∈ ZY/Y ′ . Thus

cX/S(ψX/S(π(m1)))= cX/S(−dy′1)= ν(x)py′1 = p(φX (m1)). �

Since ψX/S is an isomorphism, the middle row of the diagram (7-2-7) above
contains the same information as the top row, a.k.a. the log Kodaira–Spencer se-
quence. Furthermore, the bottom row identifies with the exact sequence (7-2-5).
The following corollary relates the corresponding derived morphisms of these se-
quences.

Corollary 7.2.3. Let κX/S :M
gp
X/S→ Z[1] be the morphism associated to the log

Kodaira–Spencer sequence (1-0-1) and let κA/S : ZX ′/X → Z[1] be the morphism
associated to the exact sequence (7-2-5). Then κX/S = κA/S ◦ cX/S ◦ψX/S .

Proof. The diagram (7-2-7) of exact sequences yields a diagram of distinguished
triangles:

f −1Mgp
S

//

id

yy

Mgp
X

π
//

id

zz

MX/S
κX/S
//

ψX/S

yy

��

f −1Mgp
S [1]

ww

��

f −1Mgp
S

//

∼=

��

Mgp
X

//

��

ZY/Y ′ //

cX/S

��

f −1Mgp
S [1]

��

ZX // ε∗(ZX ′)
p
// ZY ′/Y

κA/S
// ZX [1]

The arrows on the right are all identifications, and the formula in the corollary
follows. �

Remark 7.2.4. The sheaf ZX ′/X can be naturally identified with H1
Y (Z). In fact

there are two such natural identifications differing by sign. The first identification
is the boundary map δ : Q = H0

Y (ZX ′/X )→ H1
Y (Z) in the long exact sequence

obtained by applying the cohomological δ-functor H∗Y (−) to the short exact se-
quence (7-2-5). It is an isomorphism because Hi

Y ( j∗ZU ) = 0 for i = 0, 1. To
define the second, recall that, by the construction of local cohomology, there is a
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canonical exact sequence

0→ H 0
Y (X,Z)→ H 0(X,Z)→ H 0(U,Z)→ H 1

Y (X,Z)→ H 1(X,Z)→ · · · ,

compatible with restriction to open subsets V ⊆ X . In our situation, H 0
Y (V,Z)= 0

for all V and H 1(V ) = 0 for a neighborhood basis of every point of X . Replac-
ing X by V and U by V ∩U for varying open V and sheafifying yields a map
j∗(ZU )→H1

Y (Z) which factors through an isomorphism δ′ : ZX ′/X −→
∼ H1

Y (Z). It
follows from [SGA 41/2 1977, Cycle 1.1.5, p. 132]) that δ =−δ′.

We shall see that there is a very natural connection between the log structures
associated to a log curve over the standard log point and the “dual graph” of the
underlying marked nodal curve. The precise meaning of this graph seems to vary
from author to author; the original and most precise definition we have found is
due to Grothendieck [SGA 7I 1972, IX, 12.3.7]. We use the following variant,
corresponding to what some authors call an “unoriented multigraph.”

Definition 7.2.5. A graph 0 consists of two mappings between finite sets: ε :
B→ E and ζ : B→ V , where for each e ∈ E , the cardinality of ε−1(e) is either
one or two. A morphism of graphs 01→ 02 consists of morphisms fB : B1→ B2,
fE : E1→ E2 and fV : V1→ V2 compatible with εi and ζi in the evident sense.

The set V is the set of “vertices” of 0, the set E is the set of “edges” of 0,
and the set B is the set of “endpoints” of the edges of 0. For each edge e, the set
ε−1(e) is the set of endpoints of the edge e, and for each b ∈ B, ζ(b) is the vertex
of 0 corresponding to the endpoint b. There is a natural involution b 7→ ι(b) of B,
defined so that for each b ∈ B, ε−1(ε(b))= {b, ι(b)}. The notion of a graph could
equivalently be defined as a map ζ : B→ V together with an involution of B; the
map ε : B→ E is then just the projection to the orbit space of the involution.

Definition 7.2.6. Let X be a nodal curve. The dual graph 0(X) of X consists of
the following data:

(1) V is the set of irreducible components of X , or equivalently, the set of con-
nected components of the normalization X ′ of X .

(2) E is the set Y of nodes of X .

(3) B := ε−1(E), the inverse image of E in the normalization X ′ of X .

(4) ζ : B→ V is the map taking a point x ′ in X ′ to the connected component of
X ′ containing it.

The involution of the graph of a nodal curve is fixed point free, since each ε−1(y)
has exactly two elements. A morphism of nodal curves f : X1→ X2 induces a
morphism of graphs provided that f takes each node of X1 to a node of X2.
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Definition 7.2.7. Let 0 be a graph in the sense of Definition 7.2.5. Suppose that ι
is fixed-point free, so that each ε−1(e) has cardinality two.

(1) C•(0) is the chain complex C1(0)→ C0(0):

ZE/B
d1
−→ ZV ,

where d1 is the composition ZE/B
i
−→ZB ζ∗

−→ZV , where i is as shown in (7-2-1),
and where ζ∗ sends b to ζ(b).

(2) C •

(0) is the cochain complex C0(0)→ C1(0):

ZV d0
−→ ZB/E ,

where d0 is the composition ZV ζ ∗

−→ ZB p
−→ ZB/E , where p is as shown in

(7-2-1), and where ζ ∗(v)=
∑
{b : ζ(b)= v}.

(3) 〈−,−〉 : Ci (0)×C i (0)→ Z is the (perfect) pairing induced by the evident
bases for ZB and ZV,

(−|−) : C1(0)×C1(0)→ Z is the (perfect) pairing defined by 〈−,−〉 and
the isomorphism t : C1(0)→ C1(0) (7-2-2).

It is clear from the definitions that the complexes C•(0) that a morphism of
graphs f : 01→ 02 induces morphisms of complexes

C•( f ) : C•(01)→ C•(02) and C •

( f ) : C •

(02)→ C •

(01),

compatible with d1 and d0.
The proposition below is of course well-known. We explain it here because our

constructions are somewhat nonstandard. Statement (3) explains the relationship
between the pairings we have defined and intersection multiplicities.

Proposition 7.2.8. Let 0 be a finite graph such that ε−1(e) has cardinality two for
every e ∈ E. Let C•(0) and C •

(0) be the complexes defined in Definition 7.2.7, and
let H∗(0) and H∗(0) the corresponding (co)homology groups. For each pair of
elements (v,w) in V , let

E(v,w) := ε(ζ−1(v))∩ ε(ζ−1(w))⊆ E

and let e(v,w) be the cardinality of E(v,w).

(1) The homomorphisms d1 : C1(0)→ C0(0) and d0
: C0(0)→ C1(0) are ad-

joints, with respect to the pairings defined above.

(2) The groups H∗(0) and H∗(0) are torsion free, and the inner product on
C1(0) (resp. on C0(0)) defines a perfect pairing 〈−,−〉 between H 1(0) and
H1(0) (resp. between H0(0) and H 0(0)). In fact, H0(0) identifies with the
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free abelian group on V/∼, where ∼ is the equivalence relation generated by
the set of pairs (v, v′) such that E(v, v′) 6=∅.

(3) For each v ∈ V ,

d1(t (d0(v)))=
∑
v′ 6=v

e(v, v′)(v− v′),

and

(d0(v)|d0(w))=

{
−e(v,w) if v 6= w,∑

v′ 6=v e(v, v′) if v = w.

(4) Let hi (0) denote the rank of H i (0) and let χ(0) := h0(0)− h1(0). Then

χ(0)= |V | − |E |.

Proof. Statement (1) is clear from the construction, since d0 is dual to d1 and ζ∗ is
dual to ζ ∗.

To prove (2), observe that each equivalence class of E defines a subgraph of 0,
that 0 is the disjoint union of these subgraphs, and that the complex C•(0) is the
direct sum of the corresponding complexes. Thus we are reduced to proving (2)
when there is only one such equivalence class. There is a natural augmentation
α : ZV

→ Z sending each basis vector v to 1, and if b ∈ B, α
(
d1(b− ι(b))

)
=

α(ζ(b)− ζ(ι(b)))= 0, so d1 factors through Ker(α). Thus it will suffice to prove
that d1 maps surjectively to this kernel. Choose some v0 ∈ V ; then

{v− v0 : v ∈ V, v 6= v0}

is a basis for Ker(α). Say (v, v′) is a pair of distinct elements of V and E(v, v′) 6=∅.
Choose e ∈ ε(ζ−1(v)) ∩ ε(ζ−1(v′)) and b ∈ ε−1(e) ∩ ζ−1(v). Then necessarily
ζ(ι(b))= v′, so d1(b− ι(b))= v− v′. Since any two elements of E are equivalent,
given any v ∈ V , there is a sequence (v0, v1, . . . , vn) with each vi−1 ∼ vi , and for
each such pair choose bi with d1(bi − ι(bi ))= vi − vi−1. Then d1(b1+· · ·+bn)=

vn − v0.
It follows that H0(0) is torsion free. Then the duality statement follows from

the fact that d0 is dual to d1.
The formulas for d1 and d0 imply that for b ∈ B and v ∈ V ,

d1(db)= ζ(b)− ζ(ι(b)), d0(v)=
∑

b∈ζ−1(v)

pb.

Hence if v in V ,

d1(t (d0(v)))= d1

( ∑
b∈ζ−1(v)

db

)
,=

∑
b∈ζ−1(v)

ζ(b)− ζ(ι(b)).
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But if b ∈ ζ−1(v),

ζ(b)− ζ(ι(b))=
{
v− ζ(ι(b)) if ζ(b) 6= ζ(ι(b)),
0 otherwise.

For each v′ ∈ V \{v}, the map ε induces a bijection from {b ∈ ζ−1(v) : ζ(ι(b))= v′}
to E(v, v′). Thus∑

b∈ζ−1(v)

ζ(b)− ζ(ι(b))=
∑
v′∈V

e(v, v′)v− e(v, v′)v′

and the first formula of (3) follows. Then

(d0v|d0w)= (d1(t (d0(v)))|w)=
∑
v′ 6=v

e(v, v′)(v|w)−
∑
v′ 6=v

e(v, v′)(v′|w),

and the second formula follows. Statement (4) is immediate. �

The geometric meaning of the cochain complex of a nodal curve is straightfor-
ward and well-known.

Proposition 7.2.9. Let X/C be a nodal curve and let 0(X) be its dual graph. Then
there is a commutative diagram

H 0(X ′,Z)
A
//

∼=

��

H 0(X ,ZX ′/X )

∼=

��

C0(0(X))
d0

// C1(0(X))

where the homomorphism A comes from the map also denoted by A in the short
exact sequence

0→ ZX → ε∗(ZX ′)
A
−→ ZX ′/X → 0. (7-2-8)

Consequently there is an exact sequence

0→ H 1(0(X))→ H 1(X ,Z)→ H 1(X ′,Z)→ 0. (7-2-9)

Proof. The commutative diagram is an immediate consequence of the definitions.
The cohomology sequence attached to the exact sequence (7-2-8) reads

0→ H 0(X ,Z)→ H 0(X ′,Z)
A
−→ H 0(X ,ZX ′/X )→ H 1(X ,Z)→ H 1(X ′,Z)→ 0,

and the sequence (7-2-9) follows immediately. �

Note that H 1(X ′,Z) vanishes if and only if each irreducible component of X is
rational, a typical situation.
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7.3. The nearby cycles spectral sequence. We now consider the associated mor-
phism flog : X log→ Slog. Our goal is to use the nearby cycles diagram (4-2-1) and
Theorem 4.2.2 to describe the general fiber Xη of flog, together with its monodromy
action.

Theorem 7.3.1. Let f : X→ S be a vertical log curve over the standard log point S.
The morphism

flog : X log→ Slog = S1

is a topological submersion whose fibers are topological manifolds of real dimen-
sion 2. If f is proper and X is connected, then the morphism flog is a locally trivial
fibration, its general fiber Xη is compact, connected, and orientable, and its genus
is 1+ g(X ′)+ h0(Y )− h0(X ′).

Proof. The first statement is proved in [Nakayama and Ogus 2010], although it is
much more elementary over a log point as here. Suppose f is proper. Then so is
flog, and it follows that Xη is compact. Its orientability is proved in [Nakayama
and Ogus 2010].

To compute the cohomology of Xη, observe that since the fibration X̃ log→R(1)
is necessarily trivial, Xη and X̃ log have the same homotopy type, and in particular
their homology groups are isomorphic. The spectral sequence of nearby cycles for
the sheaf Z(1) on X̃ log reads

E p,q
2 (1)= H p(X, 9q

X/S(1))H⇒ H p+q(X̃ log,Z(1)).

Theorem 4.2.1 defines an isomorphism σ :MX/S−→
∼ 91

X/S(1), and Proposition 7.2.1
an isomorphism ψX/S :MX/S −→

∼ ZY/Y ′ . These sheaves are supported on the
zero dimensional space Y , and 9q

X/S(1) vanishes for q > 1 Since X has (real)
dimension 2, the only possible nonzero terms and arrows in the spectral sequence
are

•
d0,1

2

''
• • •

Hence E1,0
∞
(1)= E1,0

2 (1)= H 1(X ,Z(1)), and there is an exact sequence

0→ E0,1
∞
(1)→ H 0(X ,ZY/Y ′)

d0,1
2
−−→ H 2(X ,Z(1))→ H 2(X̃ log,Z(1))→ 0. (7-3-1)

Since the normalization map ε is proper and an isomorphism outside Y ′, it in-
duces an isomorphism

H 2(X ,Z(1))−→∼ H 2(X ′,Z(1)).
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Since X ′ is a smooth compact complex analytic manifold of dimension 1, the trace
map induces a canonical isomorphism: H 2(X ′,Z(1)) ∼= H 0(X ′,Z). Combining
this isomorphism with the one above, we obtain an isomorphism

tr′ : H 2(X ,Z(1))−→∼ H 0(X ′,Z). (7-3-2)

Lemma 7.3.2. Let X/S be a proper, connected, and vertical log curve over the
standard log point, and let X be its underlying nodal curve. Then the Betti numbers
of 0(X), of X , and of the general fiber Xη of the fibration X log→ S1, are given by
the following formulas:

h1(0(X))= 1− h0(X ′)+ h0(Y ),

h1(X)= h1(0(X))+ h1(X ′),

h1(Xη)= h1(0(X))+ h1(X).

Proof. The first formula follows from (4) of Proposition 7.2.8 and the definition
of 0(X). The second formula follows from the exact sequence (7-2-9). For the
third formula, observe that H 2(X̃ log,Z(1)) has rank one, since X̃ log has the same
homotopy type as Xη, which is a compact two-dimensional orientable manifold.
It then follows from the exact sequence (7-3-1) that the rank e0,1

∞
(1) of E0,1

∞
(1) is

given by

e0,1
∞
(1)= h0(X ,ZY/Y ′)− h2(X ,Z(1))+ 1= h0(X ,ZY/Y ′)− h0(X ′,Z)+ 1

= h0(X ,ZY/Y ′)− h0(X ′,Z)+ 1= |E(0(X)| − |V (0(X)| + 1

= 1−χ(0(X))

= h1(0(X)).

Then h1(Xη)= e0,1
∞
(1)+ e1,0

∞
(1)= h1(0(X))+ h1(X). �

Combining the formulas of the lemma, we find

h1(Xη)= h1(0)+ h1(0)+ h1(X ′)= 2− 2h0(X ′)+ 2h0(Y )+ 2g(X ′),

and hence g(Xη)= 1− h0(X ′)+ h0(Y )+ g(X ′). �

The following more precise result shows that the differential in the nearby spec-
tral sequence can be identified with the differential in the chain complex C• attached
to the dual graph of X .

Proposition 7.3.3. Let X/S be a proper and vertical log curve over the standard
log point and let X be its underlying nodal curve. Then the following diagram
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commutes:

H 0(X, 91
X/S(1))

−d0,1
2
// H 2(X ,Z(1))

tr′∼=

��

H 0(X,ZY/Y ′)

∼=

88

∼=

&&

H 0(X ,MX/S)
ψX/S

∼=

oo

∼=

��

σ ∼=

OO

// H 0(X ′,Z)

∼=

��

C1(0(X))
d1

// C0(0(X))

Consequently there is a canonical isomorphism E0,1
∞
(1)∼= H1(0(X)) and hence an

exact sequence

0→ H 1(X ,Z(1))→ H 1(X̃ ,Z(1))→ H1(0(X))→ 0. (7-3-3)

Proof. The commutativity of this diagram follows from Proposition 7.2.1 and state-
ment (1) of Theorem 4.2.2. To write out the proof in detail, we use the notation
of the proof of that result. It suffices to check what happens to each basis element
of the free abelian group H 0(X,MX/S). Let y be a point of Y and let m1 and m2

be the elements of MX,y as in the proof of Proposition 7.1.4, with images `1 and
`2 in 0(X,MX/S). Then `1 = −`2 is a typical basis element of H 0(X,MX/S).
Theorem 4.2.2 says that d0,1

2 (`1) is the Chern class c1(L`1) of L`1 , where L`1 is
the invertible sheaf on X coming from the exact sequence (1-0-4). Then

ε∗(c1(L`1))= c1(ε
∗(L`1))= c1(OX ′(−ψ(`1)),

by Proposition 7.2.1. But if p is a point of the (smooth) curve X ′, then tr
(
c1(OX ′(D))

)
is the basis element of H 0(X ′,Z) corresponding the connected component of X ′

containing p. The corresponding generator of C0(0) is precisely ζ(p). This proves
that the diagram commutes. �

7.4. Monodromy and the Picard–Lefschetz formula. We can now compute the
monodromy action on H 1(X̃ ,Z).

Theorem 7.4.1. Let X/S be a log curve over the standard log point. Choose γ ∈
IN = Z(1), let ργ be the corresponding automorphism of H 1(X̃ ,Z), and let Nγ :
E0,1
∞
→ E1,0

∞
be the map induced by ργ − id (see (1-0-6)). Let

κ ′X/S := κX/S ◦ψ
−1
X/S : ZY/Y ′→MX/S→ ZX [1].
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Then there is a commutative diagram:

H 1(X̃ ,Z)

��

γ

��

ργ−id
// H 1(X̃ ,Z)

H 1(X̃ ,Z(1))

��

b

ww

H1(0(X))

i

��

E0,1
∞
(1)

∼=
oo

∼=

��

Nγ
// E1,0
∞

OO

H 1(X ,Z)

c

WW

∼=

OO

H 1(0(X))oo

a

ZZ

H 0(X,ZY/Y ′) cX/S
//

κ ′X/S
77

H 0(X,ZY ′/Y )

κA/S

OO

p

77

Proof. Applying H 1 to the commutative diagram defining λ1
γ

9X/S

ργ−id

��

// 91
X/S[−1]

λ1
γ [−1]
��

9X/S 90
X/S

oo

yields a commutative diagram

H 1(X̃ ,Z)

ργ−id
��

// H 0(X , R1τ̃∗Z)

��

H 1(X̃ ,Z) H 1(X , R0τ̃∗Z).oo

Thanks to the identifications

H 0(X, R1τ̃∗Z(1))∼= E0,1
2 (1)∼= H 0(X,ZY/Y ′),

H 1(X, R0τ̃∗Z)= H 1(X ,Z)= E1,0
∞
,

our monodromy formula from Theorem 4.2.2(2) shows that the following diagram
commutes:

H 1(X̃ ,Z)

ργ−id
��

γ
// H 1(X̃ ,Z(1)) // H 0(X ,ZY/Y ′)

κ ′X/S
��

H 1(X̃ ,Z) H 1(X ,Z).c
oo
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The rest of the big diagram commutes by the preceding discussion of the dual
graph. �

Remark 7.4.2. The dual of the exact sequence (7-3-3) can be written

0→ H1(0(X))∨→ H1(X̃ ,Z(−1))→ H1(X ,Z(−1))→ 0,

so that the elements of H1(0(X))∨ ∼= H 1(0(X)) can be interpreted as vanishing
cycles on X̃ . The exact sequence (7-2-9) shows that they can also be interpreted
as vanishing cocycles on X .

The monodromy formula expressed by Theorem 7.4.1 can be made more explicit
in terms of vanishing cycles. For each node y ∈ Y , choose a branch y′ ∈ ε−1(y)
and note that ±py′ ∈ 0(X,ZY ′/Y ) depends only on y. Write 〈−,−〉 for the pairing
ZY/Y ′ ×ZY ′/Y → Z and let h y : ZY/Y ′ → ZY ′/Y be the map 〈−, py′〉py′ . Then h y

depends only on y and not on y′, and, by Proposition 7.2.2, we can write

cX/S =
∑

y

−ν(y)h y =
∑

y

−ν(y)〈−, py′〉py′ .

(The map cX/S above encodes the “monodromy pairing” of Grothendieck, see
[SGA 7I 1972, IX, §9 and 12.3]). Then the composition

H 1(X̃ ,Z)
b◦γ
−−→ H1(0)

p◦cX/S◦i
−−−−−→ H 1(0)

a
−→ H 1(X̃ ,Z)

is the map sending an element x to
∑

y −ν(y)〈b ◦ γ (x), py〉a(py). The following
formula is then immediate.

Corollary 7.4.3. If γ ∈ IP and x ∈ H 1(X̃ ,Z),

ργ (x)= x −
∑

y

ν(y)〈b ◦ γ (x), py〉a(py). �

When all ν(y) = 1, the formula of Corollary 7.4.3 is the standard Picard–
Lefschetz formula [SGA 7II 1973, exposé XV]. To verify this, we must check
the compatibility of the pairing 〈−,−〉 used above with the standard pairing on
cohomology. As usual the determination of signs is delicate; we give a (somewhat
heuristic) argument below.

Recall that we have a proper fibration X̃→R(1), and hence for all i , H i (X̃ ,Z)∼=

H i (X̃0), where X̃0 is the fiber of X̃ → R≥ over zero (equivalently, the fiber of
X log→ S1 over 1). Thus we can replace X̃ by X̃0 in the diagrams above. Since
X̃0 is a compact manifold, whose orientation sheaf identifies with Z(1) [Nakayama
and Ogus 2010], we have a perfect pairing

(−|−) : H 1(X̃0,Z(1))× H 1(X̃0,Z)→ H 2(X̃0,Z(1))
tr
−→ Z,
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defined by cup-product and trace map. For each y, let vy := a(δy) ∈ H 1(X̃0,Z).
Then the usual Picard–Lefschetz formula [SGA 7II 1973, exposé XV, théorème 3.4]
reads

ργ (x)= x −
∑

y

ν(y)(γ (x)|vy)vy . (7-4-1)

As we shall see from Proposition 7.4.4 below, for x ∈ H 1(X̃0,Z(1)) and y ∈ Y ,

〈b(x), δy〉 = (x |a(δy)).

Thus Corollary 7.4.3 implies the Picard–Lefschetz formula (7-4-1).

Proposition 7.4.4. The maps

a : H 1
Y (X,Z)→ H 1(X̃0,Z) and b : H 1(X̃0,Z(1))→ H 1

Y (X,Z)

of the diagram in Theorem 7.4.1 are mutually dual, where we use the standard
cup-product and trace map pairing,

H 1(X̃0,Z(1))⊗ H 1(X̃0,Z)→ H 2(X̃0,Z(1))
tr
−→ Z,

and the form (−|−) of Definition 7.2.7 on H 1
Y (X,Z)∼= C1(0).

Proof. We start by reducing to the local case. Since we will have to deal with
nonproper X , we need to modify the map a slightly, letting

a : H 1
Y (X,Z)→ H 1

c (X,Z)→ H 1
c (X̃0,Z),

where the first map is induced by the natural transformation 0Y → 0c (defined be-
cause Y is proper), and the other map is pull-back by τ̃0 : X̃0→ X (defined because
τ̃0 is proper). Note that a is well-defined in the situation when X is not proper, and
that it coincides with a defined previously in case X is proper. Moreover, the map b
makes sense for nonproper X , and both maps are functorial with respect to (exact)
open immersions in the following sense: if j :U → X is an open immersion, then
the following squares commute:

H 1
Y (X,Z)

a
// H 1

c (X̃0,Z) H 1(X̃0,Z(1)) b
//

j∗

��

H 1
Y (X,Z)

j∗

��

H 1
Y∩U (U,Z) a

//

j∗

OO

H 1
c (Ũ0,Z)

j∗

OO

H 1(Ũ0,Z(1))
b
// H 1

Y∩U (U,Z)

The two pairings in question are similarly functorial. Recall that

H 1
Y (X,Z)=

⊕
y∈Y

H 1
{y}(X,Z)
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is an orthogonal decomposition. Let ay , by be the compositions

ay : H 1
{y}(X,Z)→ H 1

Y (X,Z)
a
−→ H 1

c (X̃0,Z),

by : H 1(X̃0,Z(1))→ H 1
Y (X,Z)→ H 1

{y}(X,Z).

To check that a and b are mutually dual, it suffices to check that ay and by are
mutually dual for all y ∈ Y . Fix y ∈ Y , and let U be a standard neighborhood of y.
The functoriality of a and b discussed above implies that it suffices to prove the
proposition for X =U .

We henceforth assume that X = {(x1, x2) : x1x2 = 0}. So Y = {y}, y = (0, 0),
and X = X1∪ X2 where X i = {xi = 0}. The choice of ordering of the branches at y
yields generators of the three groups in question as follows. First, the class of X1

(treated as a section of j∗ZU , where U = X \ Y ) gives a generator u of H 1
Y (X,Z).

Second, the loop in the one-point compactification of X̃0 going from the point at
infinity through X2 and then X1 gives a basis of its fundamental group, and hence
a basis element v of H 1

c (X̃0,Z). Finally, identifying the circle Ỹ0 = τ̃
−1
0 (y) =

{(φ1, φ2) ∈ S1
: φ1φ2 = 1} with the unit circle in X1 via the map (φ1, φ2) 7→ φ1

yields a generator w of H 1(X̃0,Z(1))∼= H 1(Ỹ0,Z(1)).
The assertion of the proposition will now follow from three claims:

(1) a(u)= v,

(2) b(w)=−u,

(3) 〈v,w〉 = 1.

To check the first claim, note that we have a similarly defined basis element v′

of H 1
c (X,Z) which pulls back to v. Let γ : R∪ {∞}→ X ∪ {∞} be a loop repre-

senting v′, sending 0 to y. Pull-back via γ reduces the question to Lemma 7.4.5
below.

For the second claim, recall first that c′(u) = c′([X1]) = [q1]. Second, the
isomorphism σ :Mgp

X/S,y → H 1(Ỹ0,Z(1)) sends qi to the pullback by φi of the
canonical class θ ∈ H 1(S1,Z(1)). On the other hand, since x2 is the coordinate
on X1, v = φ∗2θ . Since φ1φ2 = 1 on X̃0, φ∗1 + φ

∗

2 = 0, and hence b−1(u) =
σ(c′(u))= φ∗1θ =−φ

∗

2θ =−w.
For the last claim, we note that the map

(r1, φ1, r2, φ2) 7→ (r1− r2, φ1) : X̃0→ R×S1

is an orientation-preserving homeomorphism (where the orientation sheaves of
both source and target are identified with Z(1)). Under this identification, w cor-
responds to the loop 0×S1 (positively oriented), and v correspond to the “loop”
R× {1} oriented in the positive direction. These meet transversely at one point
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(0, 1), and their tangent vectors form a negatively oriented basis at that point, thus
〈w, v〉 = −1. �

Lemma 7.4.5. Let S = R∪ {∞} be the compactified real line, Y = {0}, Z = {∞},
X =R= S \ Z , U = X \Y, j :U ↪→ X. Let e ∈ H 0(U,Z) equal 1 on U+ = (0,∞)
and 0 on U− = (−∞, 0). As before, we have a short exact sequence

0→ ZX → j∗ZU →H1
Y (ZX )→ 0

and hence an identification H 1
Y (X,Z)∼= H 0(X,H1

Y (ZX ))∼= H 0(U,Z)/j∗H 0(X,Z).
The element e thus gives a basis element u of H 1

Y (X,Z). The orientation of the real
axis gives a basis element of π1(S,∞), and hence a basis element v of

Hom(π1(S,∞),Z)∼= H 1(S,Z)∼= H 1
c (X,Z).

Then the natural map H 1
Y (X,Z)→ H 1

c (X,Z) sends u to v.

Proof. By [SGA 41/2 1977, Cycle 1.1.5, p. 132], u corresponds to the partially trivi-
alized ZX -torsor (ZX ,−e) (see Remark 7.2.4 and [SGA 41/2 1977, Cycle 1.1.4–5]).
Let (F, f ) be a ZS-torsor with a section f ∈ H 0(F, S \Y ) such that there exists an
isomorphism ι : F |X ∼= ZX identifying f |X\Y with −e. Then the class [F] of F in
H 1(S,Z)= H 1

c (X,Z) is the image of u. The image of 0 under the isomorphism ι

yields a trivializing section g of F |X , and f is a trivializing section of F |S\Y . On
the intersection X ∩ (S \ Y )=U , we have f − g = 0− e; thus f is identified with
g on U−, and g is identified with f + 1 on U+. So the positively oriented loop has
monodromy +1 on F , i.e., [F] = v as desired. �
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The Markov sequence problem for
the Jacobi polynomials and on the simplex

Dominique Bakry and Lamine Mbarki

The Markov sequence problem aims at the description of possible eigenvalues
of symmetric Markov operators with some given orthonormal basis as eigenvec-
tor decomposition. A fundamental tool for their description is the hypergroup
property. We first present the general Markov sequence problem and provide
the classical examples, most of them associated with the classical families of
orthogonal polynomials. We then concentrate on the hypergroup property, and
provide a general method to obtain it, inspired by a fundamental work of Carlen,
Geronimo and Loss. Using this technique and a few properties of diffusion oper-
ators having polynomial eigenvectors, we then provide a simplified proof of the
hypergroup property for the Jacobi polynomials (Gasper’s theorem) on the unit
interval. We finally investigate various generalizations of this property for the
family of Dirichlet laws on the simplex.

1. Introduction

In this paper, we are interested in the Markov sequence problem and the related
hypergroup property, and concentrate in particular on Beta measures on the interval
and on Dirichlet measures on the simplex.

The general Markov sequence problem may be stated as follows: given a unit or-
thonormal L2(µ) basis { f0=1, f1, . . . , fn, . . .} on some probability space (E,E,µ),
one aims at the description of all sequences (λn), such that the linear operator K
defined through K ( fn)= λn fn is a Markov operator, that is satisfies K (1)= 1 and
is positivity preserving. Since the first property amounts to λ0 = 1, the problem is
reduced to studying the positivity preserving property.

This problem arises in many areas, particularly in statistics, special function
theory, orthogonal polynomials theory and so on (see, among many others, [Bakry
et al. 2014; Bakry and Zribi 2017; Bochner 1954; Carlen et al. 2011; Connett and
Schwartz 1990; Gasper 1971; 1972; Lasser 1983; Sarmanov and Bratoeva 1967]).
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The aim of this paper is to describe these Markov sequences for the family of
Jacobi polynomials and their extension to some families of polynomials in many
variables on the simplex

{
xi ≥ 0;

∑n
i=1 xi ≤ 1

}
⊂ Rn , orthogonal for the Dirichlet

measures

C p1···pn+1 x p1/2−1
1 · · · x pn/2−1

n (1− x1− · · · xn)
pn+1/2−1 dx1 · · · dxn,

where pi > 0, i = 1, . . . , n + 1. (The choice for this parametrization will be
explained below).

These Dirichlet measures again play an important rôle in many areas (statis-
tics, probability, mathematical biology, etc., see, for example, [Balakrishnan 2003;
Gelman et al. 2004; Letac 2012; Letac and Massam 1998]), and are natural gen-
eralizations of Beta measures on (−1, 1), associated with the Jacobi polynomials.
For the Beta measure, we shall revisit the fundamental result of Gasper through
a method introduced by Carlen, Geronimo and Loss [Carlen et al. 2011], and our
aim is to use this technique to propose some extensions to the Dirichlet measures.

The Markov sequence set shares some basic generic properties, whatever the
space E and the basis F . We refer to [Bakry and Huet 2008] for further details.

As we already mentioned, since f0 = 1, λ0 = 1. Moreover, it is easily seen that
for any n, |λn| ≤ 1.

The set of Markov sequences is a convex set (a convex combination of se-
quences corresponds to the same convex combination of the associated Markov
operators), and is closed under pointwise convergence on the sequences. Therefore,
through Choquet’s representation theorem, the description of all Markov sequences
amounts to the description of the extremal ones.

Moreover, it is also stable under pointwise multiplication (which corresponds to
the composition of the associated Markov operators).

Let us mention a few classical results concerning the Markov sequence problem.

(1) Hermite polynomials. The Hermite polynomials are the orthogonal polynomi-
als for the Gaussian measure on R, that is µ(dx)= (1/

√
2π)e−x2/2 dx . Sarmanov

and Bratoeva [1967] proved that, for any Markov sequence, there exists a probabil-
ity measure ν on [−1, 1] such that λn =

∫ 1
−1 xn ν(dx). In other words, the extremal

Markov sequences are of the form λn = e−nt for some t ≥ 0, or (−1)ne−nt , for some
t ≥ 0. The sequence (e−nt) corresponds to a well known family of Markov opera-
tors Kt , namely the heat kernel associated with the Ornstein–Uhlenbeck operator.
Indeed, Kt = et L , where L( f )(x) = f ′′− x f ′. This family of Markov kernels is
known as the Ornstein–Uhlenbeck semigroup and there is a large literature devoted
to it (see for example [Bakry et al. 2014; Gross 1975; 2006; Meyer 1982]). More-
over, the sequence λn = (−1)n corresponds to the symmetry K ( f )(x) = f (−x),
so that those two operations generate all Markov sequences.
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(2) Ultraspherical polynomials. The ultraspherical polynomials (Pαn ) form the
family of orthogonal polynomials for Cα(1− x2)α dx , the ultraspherical probability
measure on (−1, 1), where α >−1 is some real parameter and Cα the normalizing
constant. Then, Bochner’s theorem [1954] (see also [Bochner 1956; 1979; Lasser
1983]) asserts that a sequence (λn) is a Markov sequence for this basis if and only
if there exists a probability measure ν on (−1, 1) such that

λn =

∫ 1

−1

Pαn (x)
Pαn (1)

ν(dx).

Indeed, at least formally, Sarmanov and Bratoeva’s theorem may be deduced
from Bochner’s one, through a limiting procedure known as the Poincaré ansatz,
that is considering the scaling of ultraspherical probability on (−a, a) and letting
a go to infinity. But the method followed in [Sarmanov and Bratoeva 1967] is
completely different.

(3) Jacobi polynomials. Gasper’s theorem [1970; 1971; 1972] concerns the Beta
measures Ca,b(1− x)α(1+ x)β dx on (−1, 1), where α, β > −1. As before, the
basis is chosen to be the sequence of orthogonal polynomials for this measure,
which are the Jacobi polynomials Pα,βn . Then, provided β ≥ α ≥ 1

2 , a sequence
(λn) is a Markov sequence for this family if and only if there exists a probability
measure µ on (−1, 1) such that, for any n ∈ N,

λn =

∫ 1

−1

Pα,βn (x)

Pα,βn (1)
ν(dx).

This example looks very close to the previous one, but is considerably more diffi-
cult. In Section 3 we shall come back to this result, which is central in our study.

(4) Eigenvectors of Sturm–Liouville operators. Another remarkable result in this
direction is the Achour–Trimèche theorem, which may be stated as follows. Con-
sider the interval [−1, 1], and a probability measure µ on it, with a smooth den-
sity ρ, that we suppose bounded for simplicity (0< c≤ρ≤C <∞). Then, consider
the diffusion operator L( f )= f ′′+ ρ′

ρ
f ′, which is symmetric in L2(µ). We choose

as L2(µ) basis ( fn) the one formed by the eigenvectors of L with Neumann bound-
ary condition, such that f0= 1. Then, provided that log ρ is concave and symmetric,
for any Markov sequence (λn) associated with this family ( fn), there exists some
probability measure ν on (−1, 1) such that λn =

∫ 1
−1 fn(x)/ fn(1) ν(dx). Although

not stated as presented here in [Achour and Trimèche 1979] or in the book [Bloom
and Heyer 1995], one may find this result in [Bakry and Huet 2008].

This situation, where the extremal values for the Markov sequence problem
are given by the values fn(x)/ fn(x0) for some point x0, appears in a number of
situations. This property is described in [Bakry and Huet 2008], where it is called
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the hypergroup property at the point x0, and is developed in Section 2. In particular,
it is proven in [Bakry and Huet 2008] that, in the finite set case, the point x0 must be
of minimal mass for the measure µ. The sole exception in the above list is that of
Hermite polynomials, which is in fact a degenerate case where the point x0 is +∞.

Although Gasper’s result looks like a simple generalization of Bochner’s one,
which itself is a consequence of Achour and Trimèche’s one, and contains as a
limiting case the Hermite polynomial sequence, the proof of it is absolutely not
straightforward. It has been considerably simplified by Carlen, Geronimo and Loss
[Carlen et al. 2011] by a technique which we shall expose below in full generality,
and is also used in [Bakry and Zribi 2017] for the corresponding question for the
family of orthogonal polynomials associated to the A2 root system. We provide
here a further simplified proof of the proof of [Carlen et al. 2011]. It relies on the
construction of some symmetric diffusion operator having polynomial eigenvectors
in some 3 dimensional space.

Moreover, we study this Markov sequence problem for the most direct exten-
sions of the Beta measures, which are the above mentioned Dirichlet measures on
the simplex.

The paper is organized as follows. In Section 2, we introduce the hypergroup
property, which is closely related to the Markov sequence problem. This is a prop-
erty of some bases of L2(µ) which provides automatically the answer to the Markov
sequence problem. In Section 3, we concentrate on the case of Jacobi polynomials,
for which the hypergroup property holds true, thanks to Gasper’s theorem. In
particular, we present the Carlen–Geronimo–Loss method, which provides in the
geometric case a simplified proof of Gasper’s theorem. With the help of some ba-
sic results on diffusion processes with polynomial eigenvectors, we then provide
a simplified proof of Gasper’s theorem in the nongeometric situation, following
the scheme of Carlen–Geronimo–Loss, and which avoids any tedious computation.
Finally, in Section 4, we introduce the Dirichlet measure on the simplex, and the
natural generalization of the Jacobi polynomials. Although the situation is much
more complicated, and despite the fact that the hypergroup property is much harder
to investigate, we provide some bases having the hypergroup property, and, for the
generalized Jacobi polynomials, we provide a description of Markov sequences, but
only for Markov operators which strongly commute with the operator for which
these generalized Jacobi polynomials are eigenvectors.

2. The hypergroup property: general description

Hypergroups appear in the literature as a natural extension of the notion of lo-
cally compact groups, where the convolution of two Dirac masses is a probability
measure and no longer a Dirac mass. For example, this happens naturally when
one looks at the convolution of class functions in a group.
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The hypergroup property (denoted HGP) as described in [Bakry and Huet 2008]
is just a simplification of this theory, basically valid in the previous situation in
the compact setting, and appears as a key tool in many subjects like probability,
statistics, statistical mechanics, coding theory and algorithms, reversible Markov
chain, etc., see [Bakry and Huet 2008].

The hypergroup property concerns some properties of a unit L2(µ) orthonormal
basis on a probability space (E, E, µ), which carries the answer to the Markov se-
quence problem, as in the above described examples. Consider indeed a probability
space (E, E, µ), where E is a topological space, E is the Borel σ -field, µ a probabil-
ity measure. On this space is given an orthonormal basis F = ( f0, f1, . . . , fn, . . .)

for L2(µ), where we suppose that f0 = 1. For everything to make sense, we shall
require that the functions fn are continuous.

Then, as mentioned earlier, the Markov sequence problem aims at the descrip-
tion of all sequences (λn), with λ0= 0 such that the (unique) operator such K ( fn)=

λn fn is a Markov operator, that is K (1)= 1 and f ≥ 0=⇒ K ( f )≥ 0.
We already mentioned that the set of all Markov sequences is a compact set

(under the pointwise convergence), and convex. Therefore, the description of all
Markov sequences is reduced to the description of its extremal points.

Under very generic properties of the probability space, any Markov operator K
may be represented as

K ( f )(x)=
∫

f (y)K (x, dy),

where K (x, dy) is a Markov transition kernel, that is, for each x , K (x, ·) is a proba-
bility measure on E , and, for any A ∈ E , x 7→ K (x, A) is measurable. Moreover, as
soon as

∑
n λ

2
n <∞, then the operator is Hilbert–Schmidt, and the kernel K (x, dy)

has a density with respect to the measure µ, that is K (x, dy) = k(x, y) µ(dy),
where

k(x, y)=
∑

n

λn fn(x) fn(y),

where it is easily seen that the series converges in L2(E2, µ⊗µ).
Then, as soon as λ0= 1 and

∑
n λ

2
n <∞, the Markov property amounts to check-

ing that the function k(x, y)=
∑

n λn fn(x) fn(y) is nonnegative. However, since
every function fn oscillates as soon as n ≥ 1, since it satisfies

∫
E fn(x)µ(dx)= 0,

it is in general not at all easy to obtain this positivity property from the previous
representation.

In [Bakry and Huet 2008], the semigroup property is introduced as follows:

Definition 2.1. The family F has the hypergroup property at the point x0 if for any
x ∈ E , the sequence λn(x)= fn(x)/ fn(x0) is a Markov sequence.
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The main consequence of [Bakry and Huet 2008], is that, when the hypergroup
property holds at some point x0, then the sequences fn(x)/ fn(x0) form the set of
extremal sequences, and therefore, in this situation, for any Markov operator K ,
there exists a probability measure νK on E such that

λn =

∫
E

fn(x)
fn(x0)

νK (dx).

In the examples described in Section 1, this is the case for ultraspherical poly-
nomials, for the Jacobi polynomials, and, for the basis of Neumann eigenvectors
of Sturm–Liouville operators, as soon as the reference measure is log-concave and
symmetric.

The hypergroup property may be restated (in some more or less formal way
however) into the following: for any (x, y, z) ∈ E3,

k(x, y, z)=
∑

i

fi (x) fi (y) fi (z)
fi (x0)

≥ 0. (2-1)

But it may happen that this series is not convergent in L2(E3, µ⊗µ⊗µ), and
that the formal measure k(x, y, z) µ(dz) is not even absolutely continuous with
respect to the measure µ. Anyhow, one may describe, at least formally, the con-
volution µ1 ∗µ2 of two probability measures µ1 and µ2 as the measure µ3 with
density with respect to µ equal to

∫
k(x, y, z) dµ1(x) dµ2(y), and then the measure

k(x, y, z) dµ(z) appears as the convolutions of the Dirac masses in x and y. Then,
again formally, one has∫

fn(x)(µ1 ∗µ2)(dx)=
1

fn(x0)

∫
fn dµ1

∫
fn dµ2.

We can extend this convolution to all pairs of measures by bilinearity and from
measures to functions by identifying f to the measure f dµ. With this in mind,
the link with the usual theory of hypergroups is easily done.

Another aspect of the 3 variable kernel k(x, y, z) is that it allows some product
formulas. Likewise, if we introduce the probability kernel

K (x, y, dz)=
∑

n

fn(x) fn(y) fn(z)
fn(x0)

µ(dz)= k(x, y, z)µ(dz),

one may see that for each n, the function fn satisfies the product formula

fn(x) fn(y)
fn(x0)

=

∫
E

fn(z)K (x, y, dz).

In practice, for all this to make sense, it is useful to have at disposal a family
ρn(t) of Markov sequences such that, for any t > 0,

∑
n ρ

2
n(t) <∞, and which
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converges pointwise to 1 as t→ 0. Then, one applies all the previous formal com-
putations to the Markov sequences ρn(t) fn(x)/ fn(x0), and let t go to 0. In general,
and in particular in the models studied below, this sequence ρn(t) is provided by
some adapted heat kernel.

An interesting aspect of the hypergroup property is its stability under tensoriza-
tion. Namely,

Proposition 2.2. Assume that (E1, E1, µ1) and (E2, E2, µ2) are two probability
spaces on which there exist two unit orthonormal bases ( f0 = 1, f1, . . . , fn, . . .)

and (g0 = 1, g1, . . . , gp, . . .), satisfying the hypergroup property at points x0 ∈ E1

and y0 ∈ E2, respectively. Then, on the product space (E1× E2, E1⊗ E2, µ1⊗µ2),
the unit orthonormal basis ( fn(x)gp(y), n, p≥ 0) satisfies the hypergroup property
at the point (x0, y0).

Proof. This is straightforward. If K x
1 (x1, dx2) is a Markov kernel on E1 with

eigenvectors fn associated with the eigenvalue fn(x)/ fn(x0), and K y
2 (y1, dy2)

is a Markov kernel on E2 with eigenvectors gp associated with the eigenvalue
gp(y)/gp(y0), then the product kernel K x

1 ⊗ K y
2 has eigenvectors fn(x1)gp(y1)

with associated eigenvalue ( fn(x)/ fn(x0))gp(y)/gp(y0). �

Let us finally mention that this HGP property may be seen as the dual of the
GKS property, named after Griffiths and Kelly and Sherman [1968], who described
the so called GKS inequality in statistical mechanics, and assert that the product
of two elements of the L2(µ) basis may be expressed as a linear combination of
the elements of the basis with nonnegative coefficients (see [Bakry and Echerbault
1996]). However, we do not dispose at the moment of any efficient scheme similar
to the one of [Carlen et al. 2011] to obtain this last property.

3. Gasper’s theorem

3A. Jacobi Polynomials. As mentioned earlier, Gasper’s theorem is the statement
that the hypergroup property is valid for the family of Jacobi polynomials. One
may find many proofs of it in the literature (see for example [Bakry and Huet 2008;
Carlen et al. 2011; Connett and Schwartz 1990; Gasper 1970; 1971; 1972; Flensted-
Jensen and Koornwinder 1979; Koornwinder 1974; 1977]). It plays an important
role in many areas, even for example in the proof of Bieberbach conjecture, see
[de Branges 1985].

As described in the introduction (and with a small change in the notation that
will be justified later), the Beta measure βp,q(dx) on (−1, 1) is defined as

βp,q(dx)= C p,q(1− x)
1
2 p−1(1+ x)

1
2 q−1 dx,

where p and q are positive and C p,q is the normalizing constant which makes βp,q

a probability measure. In what follows, we find it convenient to move everything
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on (0, 1) through x 7→ 1
2(1+ x), so that the Beta measure is now, with another

normalizing constant,

βp,q(dx)= C p,q x p/2−1(1− x)q/2−1 dx .

The Jacobi polynomials are then defined as the unique family of orthogonal poly-
nomials associated with βp,q and positive dominant coefficient. We shall denote
by P p,q

n (x) the Jacobi polynomial of degree n.
The Jacobi polynomials are also the eigenvectors of the Jacobi operator on (0, 1)

Jp,q = x(1− x)
d2

dx2 +

[q
2
−

(q+ p
2

)
x
] d

dx
(3-1)

with eigenvalue equal to λn = −n
(
n + 1

2(p + q) − 1
)
, see [Bakry et al. 2014]

for example. The specificity of these polynomials is that they represent the unique
family of orthogonal polynomials in dimension 1 (together with their limiting cases,
the Laguerre and Hermite polynomials) that are simultaneously the eigenvectors
of diffusion operators, that is elliptic second order differential operators with no
zero order terms (see [Bakry and Mazet 2003]).

Through a simple change of variables, P p,q
n (cos2(t)) are the eigenvectors of the

Sturm–Liouville operator

d2

dt2 + ((q − 1) cot(t)− (p− 1) tan(t))
d
dt

on [0, π],

with Neumann boundary condition, which is symmetric with respect of the measure
sinq−1(t) cosp−1(t) dt .

Under this form, one may check that the density of the measure is log-concave
as soon as p, q > 1, and is symmetric under the change x 7→ π − x whenever
p = q. So that, after a translation of −π/2, the latter case enters in the scope of
Achour–Trimèche theorem. However, this is not the case when p 6= q .

For this family, we have

Theorem 3.1 (Gasper). Let p, q > 0. Then, the hypergroup property holds for the
family of Jacobi polynomials at the point x0 = 1 if and only if q ≥ p ≥ 1.

As already mentioned in the introduction, Gasper’s theorem is indeed an exten-
sion of a previous theorem due to Bochner [1954], which deals with the symmetric
case p = q, that is the case of ultraspherical (or Gegenbauer) polynomials. How-
ever, although the arguments for the symmetric case are quite easy to follow, the
proofs of Gasper’s theorem remained quite complicated, up to the paper [Carlen
et al. 2011], which provided an illuminating argument that we shall briefly recall
below in Section 3B.
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Moreover, in the case p = q, letting p go to ∞, scaling x to x/
√

p, then the
measure µp,p converges to the Gaussian measure, the Jacobi polynomials converge
to Hermite ones, and 2

p Jp,p converges to the Hermite operator. With this in mind,
Sarmanov and Bratoeva’s result may be seen again as a limiting case of Bochner’s
theorem.

In the Jacobi polynomials case, it is worth observing that the set of parameters
for which the hypergroup property is valid is closed. Later on, Lemma 3.2 will
allow us to restrict to cases where the auxiliary measures used in the proof have
smooth densities.

Lemma 3.2. If the hypergroup property for the Jacobi polynomials (P pk ,qk
n ) holds

true for a sequence (pk, qk) converging to (p, q), then it holds for (p, q).

Proof. The family of orthogonal polynomials P p,q
n is obviously continuous in the

parameters (p, q). The hypergroup property may be stated as the fact that the oper-
ator K (x) with eigenvalues P p,q

n (x)/P p,q
n (1) is positivity preserving. But this may

be checked on polynomials, since any positive function may be approximated by
positive polynomials, and any positive polynomial is a sum of squared polynomials.
Therefore, it is enough to check that for any polynomial Q with degree K , one has
K (Q2)≥ 0.

But this translates into

K (Q2)(y)=
∫

Q2(z)
2k∑

r=1

P p,q
r (x)

P p,q
r (1)

P p,q
r (y)P p,q

r (z) µp,q(dz),

since Q2 is orthogonal to P p,q
r for any r > 2K .

The polynomial Q being fixed, this property is obviously satisfied in the limit
(p, q) as soon as it holds for a sequence (pk, qk). �

An important feature of the Jacobi operator is that, when p and q are integers,
there is a natural interpretation of it through the unit sphere in dimension p+q−1.
Then, the Jacobi operator (3-1) may be seen as an image of the spherical Laplace
operator.

Indeed, if one considers the unit sphere Sp+q−1
⊂ Rp+q , there is a diffusion

operator on it, namely the spherical Laplace operator 1Sp+q−1
, which commutes to

rotations and is unique up to scaling. If one considers the function

Rp+q
→ (0, 1), x = (x1, . . . x p+q) 7→ y =

p∑
i=1

x2
i ,

one has, for any smooth function f : (−1, 1)→ R,

1Sp+q−1
( f (y))= 4Jp,q( f )(y). (3-2)
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As such, the Jacobi operator Jp,q appears, as announced above, as an image of the
spherical Laplace operator, and this remark is the key tool in the Carlen–Geronimo–
Loss method to obtain the hypergroup property in this geometric case.

3B. The Carlen–Geronimo–Loss method. The Carlen–Geronimo–Loss scheme
appears to be a quite general method to obtain the hypergroup property in various
contexts (see for example [Bakry and Zribi 2017]).

Recall that we consider some probability space (E, E, µ) on which we have a
L2(µ) orthonormal basis F = ( f0 = 1, f1, . . . , fn, . . .). As before, in order for
everything to make sense, we shall assume that E is a topological space, that E is
the Borel sigma-algebra, and that all the functions fi are continuous.

We assume that we have some dense linear subspace A in L2(µ), containing all
the functions ( fn) of the basis F , and a symmetric operator L :A→A. The basis
F is formed of eigenvectors of L, that is L( fn)= ρn fn , for some real sequence (ρn).
In our example, A will be the space of polynomials.

We assume that there is an auxiliary topological space (E1, E1, µ1), endowed
also with a dense subspace A1 ⊂ L2(µ1), and another symmetric operator L1 :

A1 → A1. Moreover, there exists a continuous map π : E1 → E , and another
continuous map φ : E1 → E1, with properties described in Theorem 3.3. We
assume that the image of µ1 under π is µ. For a function f : E→ R, we denote
by π( f ) : E1→ R the function π( f )(y)= f (π(y)). Similarly, for a function g :
E1→R, we denote φ(g)(y)= g(φ(y)). We also assume that f ∈A=⇒ π( f )∈A1

and similarly g ∈A1 =⇒ φ(g) ∈A1.

Theorem 3.3. Assume the following:

(1) For each n, the eigenspace of L associated with the eigenvalue ρn is one
dimensional.

(2) πL= L1π .

(3) φL1 = L1φ.

(4) For two points x0 and x in E , if Y is a random variable with values in E1 with
law µ1, then the conditional law of π(φ(Y )) given that π(Y )= x0 is a Dirac
mass at x.

Then, the sequence fn(x)/ fn(x0) is a Markov sequence for the basis ( fn). (If
fn(x0)= 0, then the conclusion is that we also have fn(x)= 0).

Remark 3.4. Point (4) requires a bit of explanation. Indeed, we assume that
the probability measure µ1 has a regular decomposition µ1(dy)= νx(dy) µ(dx),
where the measure νx(dy) has support the set π(y)= x , which means that, for any
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bounded measurable function h : E1→ R,∫
E1

h(y)µ1(dy)=
∫

E

(∫
{µ(y)=x}

h(π(y)) νx(dy)
)
µ(dx),

and that the map x 7→ νx is continuous. This allows us to make sense of νx for any
x ∈ E (since in general, those measures νx are just defined µ-almost everywhere).
Then the hypothesis (4) asserts that the image measure through πφ of the measure
νx0 is a Dirac mass δx .

Proof. Although the proof of this theorem is more or less implicit in [Carlen et al.
2011], and fully developed in [Bakry and Zribi 2017], we provide a sketch of it for
completeness.

We denote 〈 f, g〉 the scalar product in L2(µ) and 〈 f, g〉1 the scalar product in
L2(µ1).

We consider the correlation operator K defined on bounded Borel functions
f : E→ R as

K ( f )(x)= E(φ(π( f ))(Y )/π(Y )= x),

where Y is a random variable with law µ1. It is clearly a Markov operator. We
shall see that K ( fn)= µn fn , where µn = fn(x)/ fn(x0).

The main remark is that the hypotheses imply that K commutes with L. Indeed,
the operator K is entirely determined by the following property, which is just a
rephrasing of the definition of a conditional expectation:

for all f, g ∈A, 〈K ( f ), g〉 = 〈φπ( f ), πg〉1. (3-3)

Indeed, using the measure decomposition introduced in Remark 3.4, one may
introduces the operator π∗, such that

π∗(h)(x)= E
(
h(Y )/π(Y )= x

)
=

∫
{π(y)=x}

h(y) νx(dy),

the operator K may be written as K = π∗φπ .
Then, for any pair ( f, g) ∈A, we have

〈LK ( f ), g〉 = 〈K ( f ),Lg〉 = 〈φπ( f ), πL(g)〉1 = 〈φπ( f ),L1π(g)〉1

= 〈L1φπ( f ), π(g)〉1 = 〈φL1π( f ), π(g)〉1 = 〈φπL( f ), π(g)〉1

= 〈K L( f ), g〉,

which proves the commutation property between K and L .
Therefore, if fn is an eigenvector of L, with eigenvalue ρn , then K ( fn) is again

an eigenvector of L with the same eigenvalue. Since the eigenspaces of L are one
dimensional, K ( fn)= µn fn for some sequence (µn), which is therefore a Markov
sequence.
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Looking at the values at the point x0, we get

fn(x)= µn fn(x0),

from which the conclusion follows. �

Corollary 3.5. Under the hypothesis of Theorem 3.3, if , for any x ∈ E , there
exists a map φx : E1→ E1 satisfying point (3) and such that the conditional law of
πφx(Y ) given π(Y )= x0 is a Dirac mass at x , then the hypergroup property holds
at x0.

Proof. It is an immediate consequence of Theorem 3.3. Indeed, if such happens,
fn(x0) 6= 0, since otherwise one would get fn = 0 everywhere, which may not be
true for an element of a basis. �

With this in mind, Gasper’s theorem in the geometric case follows easily. Of
course, in this context, the auxiliary space E1 is Sp+q−1, L1 is the spherical Laplace
operator, and the map π is the map x 7→ y =

∑p
i=1 x2

i described in Section 3A.
The maps φ are as follows: since p≤q , for some point x=(x1, . . . , x p+q)∈Rp+q ,

we extract x1 = (x1, . . . , x p), x2 = (x p+1, . . . , x2p) and x3 = (x2p+1, . . . , x p+q)

(the last one may be empty). Then, for θ ∈ [0, 2π ], φθ (x)= ( y1, y2, x3), where

y1 = cos(θ)x1+ sin(θ)x2, y2 =− sin(θ)x1+ cos(θ)x2. (3-4)

Then, x 7→ φθ (x) is a rotation in Rp+q , and as such commutes with the spherical
Laplace operator.

Then, it remains to observe that whenever π(x)= 1, then x2 = x3 = 0, so that
π(φθ (x)) = cos2(θ). Then, the conditional law property is satisfied (with x =
cos2(θ) and x0 = 1), and therefore we obtain the hypergroup property in this case.

To extend this proof to the general case, we shall require a few concepts from
the general diffusion theory.

3C. Symmetric diffusions and orthogonal polynomials. Most of the material pre-
sented here is borrowed from [Bakry et al. 2014] for the general situation, and
from [Bakry et al. 2013] for the particular case where orthogonal polynomials
come into play.

A diffusion operator in an open set � ⊂ Rd is a second order semielliptic dif-
ferential operator with no zero order terms. As such, it may be written in a given
system of coordinates as

L( f )(x)=
∑

i j

gi j (x)∂2
i j f +

∑
i

bi (x)∂i f, (3-5)

where, here and in what follows, the coefficients gi j (x) and bi (x) are assumed to be
smooth (indeed, for our purpose, they always will be polynomials in the variables
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(xi ) which are the coordinates of the point x). The matrix g = (gi j ) is always
symmetric and, in this paper, positive definite in � (that is our operator L is indeed
elliptic).

We are interested in the case where these operators are symmetric with respect
to some measure µ(dx), which has a smooth positive density ρ(x) with respect to
the Lebesgue measure. That is, for any pair ( f, g) of smooth functions �→ R,
compactly supported in �, we require that∫

�

L( f )(x)g(x)ρ(x) dx =
∫
�

f (x)L(g)(x)ρ(x) dx . (3-6)

For this to happen, a necessary and sufficient condition is that

for all i = 1, . . . , d, bi (x)=
∑

j

∂j gi j (x)+
∑

j

gi j (x)∂j log(ρ)(x), (3-7)

since, by integration by parts∫
�

L( f )(x)g(x)ρ(x) dx =−
∫
�

gi j∂i f ∂j gρ dx +
∫
�

g∂i f [bi − ri ]ρ dx, (3-8)

where ri (x)=
∑

j ∂j gi j (x)+
∑

j gi j (x)∂j log(ρ)(x).
Such a measure is often called a reversible measure. It is unique in general, up

to a multiplicative constant.
We then see that the coefficients bi are entirely determined by the second order

terms gi j and by the density ρ(x).
Moreover, let us introduce the carré du champ

0( f, g)= 1
2(L( f g)− f L(g)− gL( f )).

We have

0( f, g)=
∑

i j

gi j (x)∂i f ∂j g,

and this bilinear operator characterizes the second order terms (gi j ) of the opera-
tor L. We have gi j (x)= 0(xi , x j ), and, when the operator L is symmetric, for any
pair of smooth compactly supported functions ( f, g), we have∫

�

L( f )gρ(x) dx =−
∫
�

0( f, g)ρ(x) dx . (3-9)

This is the integration by parts formula.
Moreover, the operator 0 allows us to describe the so-called “change of variable

formula,” which is a way to describe in a general setting second order differential
operators with no zero order terms. More precisely, when f1, . . . , fq are smooth
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functions �→ R, then, for any smooth function 8 : Rq
→ R, one has

L(8( f1, . . . , fq))

=

∑
i j

0( fi , f j )∂
2
i j8( f1, . . . , fq)+

∑
i

L( fi )∂i8( f1, . . . , fq). (3-10)

It is also worth observing that 0 is a bilinear operator which is first order in each
of its variables, which translates into

0
(
81( f1, . . . , fq),82( f1, . . . , fq)

)
=

∑
i j

0( fi , f j )∂i81( f1, . . . , fq)∂j82( f1, . . . , fq). (3-11)

From this, one sees that in order to describe locally a symmetric diffusion op-
erator, it is enough to describe in some coordinate basis (x1, . . . , xd) the quanti-
ties 0(xi , x j ) and either ρ, or the functions L(xi ) = bi (x) provided they satisfy
Equation (3-7) for some ρ.

It is not necessary to restrict diffusion operators to open sets in Rd . One may
as well consider operators defined on smooth manifolds (and quite often compact
manifolds such as spheres), or closed sets with boundaries. Then, the operator
may be described through Equation (3-5) in any local system of coordinates, and
formula (3-10) allows one to change coordinates to obtain a coherent system. How-
ever, when considering such operators on manifolds with boundaries, one has in
general to describe to which functions one may apply the integration by parts
formula (3-9). This is done in general through the prescription of the so called
“boundary conditions” (such as Neumann or Dirichlet). In what follows, we shall
require the possibility to apply this formula to any polynomial (and even any re-
striction to � of any smooth function defined in a neighborhood of �), and this
requires some extra conditions concerning the behavior of the matrix (gi j ) at the
boundary. Indeed, the fundamental property for that (assuming that the boundary
is piecewise smooth) is that, for any regular point x0 of the boundary, the normal
unit vector belongs to the kernel of the matrix (gi j ): in this situation, the extra
term in the integration by parts formula (3-9), coming from the boundary term in
Stokes formula, vanishes (see [Bakry et al. 2013], for example). It is easily seen
that this condition is also sufficient.

This is what is hidden indeed in the boundary equation (3-12) below, which
is the translation of this property when the boundary is described through some
algebraic equation (see [Bakry et al. 2013]).

A key feature is the notion of image of a diffusion operator L1 on some set E1.
This is the basic tool to construct new diffusion operators L on a set E and maps
π : E1→ E such that πL= L1π , as in Theorem 3.3.
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Let E1 be some space on which we have a diffusion operator L1 and d applica-
tions x1, . . . , xd : E1→R. Consider the map π : E1→ E⊂Rd , π(y)= (x1, . . . , xd).
Then, assume that for any i , L1(xi )= Bi (π), and for any i, j = 1, . . . , d , one has
0(xi , x j )=Gi j (π) for some functions Bi and Gi j , E→R. We say in this situation
that we have a closed system. Then, the operator

L=
∑

i j

Gi j∂2
i j +

∑
i

Bi∂i

defined on E is such that L1π = πL (this is just the translation of Equation (3-10)).
Moreover, L is a diffusion operator which is symmetric as soon as L1 is, with
reversible measure which is the image through π of the reversible measure µ1 of L1.
In this situation, we say that L is the image of L1 through π , or that L1 projects
onto L through π . An example of this is the case of the spherical Laplace operator
1Sp+q−1

which projects (up to the factor 4) onto the Jacobi operator through the
map y = (x1, . . . , x p+q) 7→ x =

∑
i x2

i as described in Equation (3-2), so that the
Beta measure βp,q is the image measure of the uniform measure on the sphere
through this projection.

As mentioned above, the symmetry identity (3-6) is not enough for our purpose.
We shall require it to be valid for pair of polynomials, when the symmetry property
is only stated for compactly supported functions. In what follows, we shall be
concerned with symmetric diffusion operators which may be diagonalized in a
basis of orthogonal polynomials. That is, for every n ≥ 0, there exists a basis of
the space of polynomials in d variables with degree less than n, and which are at
the same time eigenvectors for L. When this happens, we say that (�, 0, ρ) is a
polynomial model, and � is a polynomial domain.

When the set � is bounded with a piecewise C1 boundary, this requires the
boundary of � to be an algebraic set and also some extra algebraic condition relat-
ing the boundary and the coefficients gi j , called the boundary equation, see [Bakry
et al. 2013].

More precisely, the boundary ∂� is included in an algebraic set {P1 · · · Pk = 0},
where Pi are real polynomials, which are irreducible in the complex field. Here,
we assume that P1 · · · Pk = 0 is the reduced equation of the boundary, that is:

(1) For each regular point x ∈ ∂�, there exists a neighborhood V(x) which con-
tains x and a unique i such that V(x)∩ ∂�= V(x)∩ {Pi = 0}.

(2) For i = 1, . . . , k, there exist a regular point x ∈ ∂� such that Pi (x)= 0.

Then, following [Bakry et al. 2013], bounded polynomial models are characterized
by the following:

(1) For any i, j = 1, . . . , d, gi j (x) is a polynomial with degree at most 2.

(2) For any i = 1, . . . , d, bi (x) is a polynomial with degree at most 1.



550 DOMINIQUE BAKRY AND LAMINE MBARKI

(3) For any i = 1, . . . , d and any q = 1, . . . , k, there exists a polynomial L i,q with
degree at most 1 such that∑

j

gi j∂j log Pq = L i,q . (3-12)

(We call this last Equation (3-12) the boundary equation).

As a consequence of the previous, each polynomial Pq is a factor of the polyno-
mial det(gi j ) (of degree at most 2d). Moreover, every polynomial Pq has a constant
sign on the open set � and we may decide that they are all positive on it. Beyond
this, provided (gi j ) satisfies the boundary equation (3-12), for any choice of pa-
rameters a1, . . . , ak such that Pa1

1 · · · P
ak
k is integrable on �, the density measure

ρ(x)= Ca1···ak Pa1
1 · · · P

ak
k , (3-13)

where Ca1···ak is the normalizing constant, is such that (�, 0, ρ) is a polynomial
model.

Indeed, for the integration by parts formula to be true for a pair of polynomial
functions, and thanks to the boundary equation (3-12), one may allow the parame-
ters ai in Equation (3-13) to be negative, as soon as ai >−1, which is anyway a
necessary condition for the measure ρ(x) dx to be finite on �.

Sometimes one needs to extend those polynomial models using weighted de-
grees, that is deciding that the degree of a monomial x p1

1 · · · x
pd
d is

∑
i ni pi , where

n1, . . . , nd are some positive integers. All the picture remains valid, except that
gi j must have degree ni + n j and bi must have degree ni . We call the sequence
(n1, . . . , nd) the weights of the polynomial model.

It is worth observing that whenever (�, 0, ρ) is a polynomial model, and when
we have a closed system (y1, . . . , yq) where the functions yi are polynomials, then
the image model is again a polynomial model. But the degree may change. For
example, if one starts from a polynomial model with the usual degree (that is ni = 1
for any i), and if the degree of yi is ni , then we get a polynomial degree with weights
n1, . . . , nd . Of course, one may always reduce to the case where the degrees have
no common factor.

3D. A proof of Gasper’s theorem in the general case. In this section, we extend
the proof of Gasper’s theorem provided in Section 3B which was valid only in the
geometric case (that is when p and q are integers) to the general case. For this, we
need to construct a model (E1,L1, µ1), with the adapted functions π : E1→ E and
φθ : E1→ E1 with the properties required in Theorem 3.3. The key observation
is that, in the geometric picture, one just requires the knowledge of ‖x1‖

2, ‖x2‖
2

and the scalar product x1 · x2 to describe the action of the rotations φθ on ‖x1‖
2.
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For this, we first observe the action of the spherical Laplace operator on those
variables. Following [Bakry et al. 2014], the spherical Laplace operator in dimen-
sion d may be described through its action on the coordinates, that is considering
the restrictions of the various coordinates x1, . . . , xd+1 to the spheres as functions
Sd
→ R. Then, we get

0S(xi , x j )= δi j − xi x j , 1Sd
(xi )=−dxi . (3-14)

It is worth observing that 0S does not depend on the dimension d. The image
through 1Sd

of a polynomial in the variables xi with degree less than n is again a
polynomial in the variables xi with degree less than n. From this, it is easily seen
that whenever we have a closed system made of polynomials, then the image of
1Sd

through this system is a polynomial model.
Now fix d large enough and, for p ≤ [d/2], consider the 3 variables Sd

→ R

defined as

X =
p∑

i=1

x2
i , Y =

2p∑
i=p+1

x2
i , U =

p∑
i=1

xi xi+p.

With the help of the change of variables formulas (3-10) and (3-11), we get

0S(X, X)= 4X (1− X), 0S(Y, Y )= 4Y (1− Y ),

0S(U,U )= X + Y − 4U 2,

0S(X, Y )=−4XY, 0S(X,U )=−4XU + 2U,

0S(Y,U )=−4YU + 2U,

1Sd
(X)=−2(d + 1)X + 2p, 1Sd

(Y )=−2(d + 1)Y + 2p,

1Sd
(U )=−2(d + 1)U,

(3-15)

which shows that the triple (X, Y,U ) forms a closed system for the spherical
Laplace operator. (We omit the parameter d in 0S since it does not depend on
the dimension d .)

It is worth observing that X itself is a closed subsystem of this closed system
(and the image of the spherical Laplace operator is nothing other than the Jacobi
operator, up to some affine transformation on the variable and scaling). Such is
{X, Y }, but neither {U } or {X,U }, for example.

Let us consider the image of the sphere under x 7→ (X, Y,U ). It is a polynomial
domain in R3 with boundary equation {(1− X − Y )(XY −U 2)= 0}.

The image of Sd through the map (X, Y,U ) is therefore a polynomial model,
with domain E1 being the bounded set which is the connected component in R3 of
the complement of the set {(1−X−Y )(XY −U 2)= 0} which contains for example
the point

( 1
4 ,

1
4 ,

1
8

)
. Observe that the boundary Equation (3-12) is automatically
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satisfied for this model. Indeed, since the spherical operator may be diagonalized
in a basis of orthogonal polynomials in the variable (xi ) (the eigenvectors are the
restrictions to the sphere of the harmonic homogeneous polynomials in dimen-
sion d + 1), and one sees that the eigenvectors of this operator are nothing other
than those polynomial eigenvectors which depend only on the variables X, Y,U .

The 0 operator is given in these coordinates by the matrix

G = (Gi j ) :=

 4X (1− X) −4XY −4XU + 2U
−4XY 4Y (1− Y ) −4YU + 2U

−4XU + 2U −4YU + 2U X + Y − 4U 2

, (3-16)

and one may check (but, as already mentioned, this is automatic) that the two poly-
nomials 1−X−Y and XY−U 2 satisfy the boundary equation (3-12). The reversible
measure has density (up to a normalizing constant) (1−X−Y )a(XY−U 2)b, where
the coefficients a and b may be computed through Equation (3-7). Then, we get

a =
d − 1

2
− p, b =

p− 3
2

,

Now, this diffusion operator again projects, up to a factor 4, on the Jacobi oper-
ator Jp,q through the map (X, Y,U ) 7→ X , whenever d = p+ q − 1.

We may now consider this polynomial model (E1, 0) with a new measure with
density ρ(X, Y,U ) = C(1− X − Y )a(XY −U 2)b, where now a and b are real
numbers.

It is easily seen that this measure is integrable on the domain E1 as soon as
a >−1 and b >−1. Setting a = (q − p)/2− 1 and b = (p− 3)/2, this requires
q > p > 1, where now p and q are no longer integers but again real numbers.

As described in Section 3C, this provides a diffusion operator according to for-
mula (3-5). The second order terms are provided by the matrix (3-16), and the first
order coefficients may be computed explicitly through formula (3-7), with density
ρ= (1−X−Y )a(XY−U 2)b where, for given q> p> 1, we have a= (q− p)/2−1
and b = (p− 3)/2.

More explicitly, one gets for the first order terms, exactly as in (3-15),

L1(X)=−2(p+ q)X + 2p, L1(Y )=−2(p+ q)Y + 2p,

L1(U )=−2(p+ q)U.
(3-17)

The symmetry of the operators on a pair of polynomials is then insured by the
fact that the first order coefficients bi are chosen according to formula (3-7), and the
fact that the boundary equation (3-12) is satisfied for the two factors P1(X, Y,U )=
1− X − Y and P2(X, Y,U )= XY −U 2.
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We get in such a way a model (E1, 01, µ1) which projects through the map π :
(X, Y,U ) 7→ X on 4Jpq , where Jpq is the Jacobi operator defined in Equation (3-1)
(it is obvious: the variable X alone forms a closed system).

To complete the picture, it remains to describe the operators 8θ : E1 → E1

which commute with L1. From the geometric picture, when p and q are integers,
one may describe the action of the rotations 8θ defined in Equation (3-4). We get
8θ (X)= A(X, Y,U ), where A is the linear operator with matrix cos2(θ) sin2(θ) 2 sin(θ) cos(θ)

sin2(θ) cos2(θ) −2 sin(θ) cos(θ)
− sin(θ) cos(θ) cos(θ) sin(θ) cos2(θ)− sin2(θ)

. (3-18)

To check that it commutes with L1, and following Section 3C, it is enough
to check its action on the variables X, Y,U for L1 and 0. For example, writing
8θ (X, Y,U )= (Xθ , Yθ ,Uθ ), and 0(X, Y )= G(X, Y ) := −4XY , one has to check
that 0(Xθ , Yθ ) = −4XθYθ (there are 6 such formulas to check), and also, with
L1(X) = −2(p + q)X + 2p, that L1(Xθ )) = −2(p + q)Xθ + 2p (3 formulas to
check).

The property for0 comes from the geometric picture (the action of0 on (X, Y,U )
does not depend on the parameters p and q). As for the action of L1, it may be
checked directly, from Xθ = cos2(θ)X+sin2(θ)Y +2 sin(θ) cos(θ)U , using (3-17).

As before, the point x0 is 1. Whenever π(X, Y,U )=1, then (X, Y,U )= (1, 0, 0)
and π8θ (1, 0, 0)= cos2(θ).

This completes the proof of Gasper’s theorem in the case q > p> 1. The general
case q ≥ p ≥ 1 comes from Lemma 3.2.

Remark 3.6. If one considers the kernel Kθ ( f )(ξ) = E
(

f (π(Rθ Z))/π(Z) = ξ
)
,

the previous representation allows one to compute it explicitly through some inte-
gral expression. However, the result is quite complicated, but one may check that
the kernel Kθ (ξ, dy) has support [0, (

√
ξ cos θ +

√
1− ξ sin θ)2].

4. Dirichlet laws and diffusion processes on the simplex

4A. Dirichlet laws, and a first basis with the HGP property. The d-dimensional
simplex Dd is the set of points (x1, . . . , xd) ∈ Rd such that, for all i = 1, . . . , d,
xi ≥ 0 and such that

∑d
i=1 xi ≤ 1. In what follows, it will be convenient to set

xd+1 = 1−
∑d

i=1 xi , so that xd+1 ≥ 0 and
∑d+1

1 xi = 1.
The Dirichlet lawsµd, p depend on a multi-index real parameter p={p1, . . . , pd+1},

where pi > 0, i = 1, . . . , d+1, are probability measures on Dd with densities with
respect to the Lebesgue measure dx1 · · · dxd of the form

Cd, pxa1
1 xa2

2 · · · x
ad
d xad+1

d+1 ,
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where for i = 1, . . . , d + 1, ai =
pi
2 − 1. The normalizing constant

Cd, p =
0
(∑d+1

i=1 ai + d + 1
)∏d+1

i=1 0(ai + 1)
,

where 0 is the Euler function, which ensures that µd, p is a probability. The choice
of the parameters pi instead of ai =

pi
2 − 1, similar to the choice made for Beta

measures, comes from geometric considerations which will be described below.
Dirichlet measures appear as extensions the Beta measures on the interval. It

turns out that the simplex is a polynomial domain as described in Section 3C, so
that the Dirichlet laws are the natural measures associated to it, the boundary of
the domain having reduced equation x1 · · · xd(1− x1− · · ·− xd)= 0.

When the parameters pi are integers, this Dirichlet law is the image measure of
the uniform measure on the unit sphere in Rn , with n =

∑d+1
1 pi . Indeed, consider

some partition of {1, . . . , n} in sets I1, . . . , Id+1 with respective size p1, . . . , pd+1.
Then, for (y1, . . . , yn) ∈ Sn−1

⊂ Rn , consider the variables xi =
∑

j∈Ii
y2

j . Then
(x1, . . . , xd) ∈ Dd , and the image measure of the uniform measure on the sphere
through the map y 7→ (x1, . . . , xd) is µd, p. This will be obvious later on when we
shall identify some diffusion operator on Dd with reversible measure µd, p as the
image of the spherical Laplace operator, as are the Beta measures on [0, 1].

It is worth observing that the change of variables xi 7→ 1− xd+1 allows one to
exchange the parameters pi and pd+1, so that one may order the parameters pi ,
i = 1, . . . , d + 1, in whichever order desired.

The change of variables xi = yi (1− x1), for i = 2, . . . , d transforms the mea-
sure µd, p into a product measure βp1,n−p1(dx1)⊗µd−1,q(dy2 · · · dyd), where n =∑d+1

1 pi , and q = {p2, . . . , pd+1}. Iterating the procedure, one may transform the
Dirichlet measure into a product of Beta measures on [0, 1]d :

βp1,n−p1 ⊗βp2,n−p1−p2 ⊗ · · ·⊗βpd ,n−n1−···−pd .

We may now choose a basis for L2(Dd , µd, p) made of products of Jacobi poly-
nomials associated to each of the factors (to be more precise, the image of these
products under the inverse change of variables which maps [0, 1]d to Dd). Now,
provided that, for i = 1, . . . , d + 1, pi ≥ 1, one may apply Gasper’s theorem and
the tensorization procedure of Proposition 2.2, and therefore get the hypergroup
property for this basis.

Observe that this procedure depends on the choice of the ordering in the parame-
ters p1, . . . , pd+1, so that one may construct in this way many different bases. But
these bases are not the most natural direct extensions of the Jacobi polynomial bases
on the simplex. In particular, in the coordinates (x1, . . . , xd), they do not appear as
polynomials, but as rational functions. On the other hand, on the simplex and for
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the Dirichlet measures, there are many choices of polynomial bases which are the
natural extensions of the Jacobi polynomials, as we shall see in the next paragraph.

4B. Diffusion operators on the simplex having polynomial eigenvectors. To de-
scribe the diffusion processes which may be diagonalized in a system of orthogonal
polynomials on the simplex, we have just to describe their carré du champ 0, since
the measure is given. It is a special feature of the simplex that there are many such
0 structures which answer the question, beyond the mere scaling factor, and this
situation is very peculiar (in the dimension 2 classification of [Bakry et al. 2013],
only the simplex, the circle, and a particular case of the double parabola have this
property).

The various 0 operators on the simplex such that (Dd , 0, µd, p) are a polynomial
model have been described for example in [Li 2019]. They depend on a symmetric
parameter matrix A with entries Ars as follows

grs
:= 0A(xr , xs)=−Ars xr xs + δrs xr

d+1∑
k=1

Ark xk, 1≤ r ≤ s ≤ d, (4-1)

where Ars = Asr , 1≤ r ≤ s ≤ d+ 1 are nonnegative real parameters. The operator
is elliptic on the simplex as soon as, for every r 6= s, Ars 6= 0. One should check
that the value of Ai i plays no role in the definition of 0A, and we shall set Ai i = 0.

For this operator, and for the Dirichlet measure µd, p, one has

LA, p(xi )=
1
2

d+1∑
k=1

Aik(xk pi − xi pk).

One may check the validity of the boundary Equation (3-12), that is the fact
that

∑d
i=1 gi j∂j log Pp is an affine function for every boundary polynomial Pp =

x1, . . . , xd+1.
Indeed, for k = 1, . . . , d + 1, one has

d∑
j=1

gi j∂j log xk =−Aik xi +

d+1∑
q=1

Aiq xq .

It is worth it to write LA, p as

LA, p =
∑
i< j

Ai j Li j, p,

where Li j, p has a carré du champ 0i j with

0i j (xr , xs)= xi x j [δrs(δri + δr j )− (δriδs j + δr jδsi )] (4-2)
and

Li j, p(xr )=
1
2(δri − δr j )(x j pi − xi p j ). (4-3)
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In the case where all the Apq are set to 1 (let us denote this matrix 1), and when
the parameters pi are integers, there is a natural interpretation for this operator
coming from the spherical Laplace operator in dimension n =

∑d+1
i=1 pi , that is for

the sphere imbedded in Rn .
Indeed, let n be an integer and, as in the previous Section 4A, consider the

n − 1 dimensional spherical Laplace operator acting on the unit sphere Sn−1
⊂

Rn , defined through the equation
∑n

1 y2
i = 1. Let us look at a partition of the

index set {1, . . . , n} into d + 1 disjoint sets I1, . . . , Id+1 with respective sizes
p1, . . . , pd+1, and as before the variables x j =

∑
i∈I j

y2
i . As already observed,

the map y ∈ Sn−1
7→ (x1, . . . , xd) maps the sphere onto the simplex Dd .

Moreover, following Equation (3-14), we see that

0S(xi , x j )= 4(δi j xi − xi x j ), 1Sn−1
(xi )= 2(pi − nxi ). (4-4)

The variables (x1, . . . , xd) form a closed system, and we see that those formulas
are the one obtained for 4L1, p. This first shows that the Dirichlet measure µd, p is
the image of the uniform measure on the sphere through this map, as mentioned
earlier. One may therefore address the question of the hypergroup property for
the family of orthogonal polynomials which are the eigenvectors of this operator,
following the same path. Unfortunately, it turns out that the eigenspaces for L1, p
are not one dimensional.

Indeed, consider a polynomial eigenvector of degree k, and look at the action
of L1, p on its highest degree term xk := xk1

1 · · · x
kd
d , where k =

∑d
1 ki . The highest

degree term of L1, p(xk) is

−k
(

k+ n−2
2

)
xk,

so that the corresponding eigenvalue is νk =−k
(
k+ n−2

2

)
, which depends only on

k =
∑d

1 ki . The corresponding eigenspace has then dimension
(k+d−1

k

)
. However,

for this operator, one may follow the scheme of [Carlen et al. 2011] and construct
a new space E1 (the sphere in the geometric case), with a symmetric diffusion
operator L1 on it, together with maps π : E1 → Dd and φ : E1 → E1 with the
properties that πL= L1π , φL1 = L1φ, together with the conditional law property
at the point (1, 0, . . . , 0). But the fundamental property that the eigenspaces of L
are one dimensional is missing, and the analysis of Markov sequences is therefore
much more delicate.

Indeed, following the scheme of the proof of Gasper’s theorem, one may first
concentrate on the geometric case. To understand the difficulty, let us also concen-
trate on the case d = 2. In this situation, one has 3 integer parameters p1 ≤ p2 ≤ p3,
and, setting n = p1 + p2 + p3, we look at the sphere Sn−1

⊂ Rn . Then, one
considers three subsets I1, I2, I3 of {1, . . . , n}, with respective sizes p1, p2, p3 and
three vectors x1 = (yi , i ∈ I1), z2 = (yi , i ∈ I2) and z3 = (yi , i ∈ I3). Moreover, we
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split I2 and I3 into disjoint sets I2 = J2 ∪ K2, I3 = J3 ∪ K3, with |J2| = |J3| = p1.
Then, we consider the vectors x2= (yi , i ∈ J2), y3= (yi , i ∈ J3), y2= (yi , i ∈ K2)

and y3 = (yi , i ∈ K3).
We consider now the variables xi = ‖xi‖

2, i = 1, 2, 3, and yi = ‖zi‖
2, i = 2, 3.

Moreover, we look at the variables ui j = xi · x j , 1≤ i < j ≤ 3. For simplicity, we
stick to the case where p1 < p2≤ p3, and, observing that y3= 1−x1−x2−x3− y2,
we are left to the 7 variables

(x1, x2, x3, y2, u12, u13, u23).

It happens that these 7 variables form a closed system for the spherical Laplace
operator, and we obtain some operator L7 on some bounded polynomial domain
�7 ⊂ R7. Moreover, the operator L1, p is the image of L7 under the map

π1 :�7→ D2, (x1, x2, x3, y2, u12, u13, u23) 7→ (x1, x2+ y2).

Let us denote by π2 the projection from the sphere onto �7, and π : Sn−1
→ D2,

π = π1π2.
One then may consider the full O(3) group acting in a horizontal way on the

triple of vectors (x1, x2, x3). For example the plane rotations Ri j
θ , 1≤ i < j ≤ 3:

Ri j
θ (xi , x j )= (cos θxi + sin θx j ,− sin θxi + cos θx j ). (4-5)

For any of these horizontal rotations R, there exists some point xR in the simplex
such that whenever π(Y )= (1, 0), then πR(Y )= xR (that is xR = πR(1, 0, . . . , 0)).
One may see that for any point x ∈ Dd , there exists such horizontal rotation R ∈
SO(3) such that xR = x .

One may immediately see the action of these rotations on the variables

(x1, x2, x3, y2, u12, u13, u23),

as we did in dimension 1.
In order to apply the one dimensional scheme, one may expect to find a com-

mon orthonormal base in the eigenspaces of L1, p in which the correlation operators
KR( f )(x)= E(πR f (Y )/π(Y )= x), where Y is uniformly distributed on the sphere,
are jointly diagonalizable. (Observe that R 7→ KR is not a representation of O(3).)
We shall see that it is impossible. Indeed, if such were the case, they would com-
mute with each other. But this is not the case, as shown next in Proposition 4.1.
For this, we just concentrate on the plane rotations Ri j

θ (4-5) and their conditional
expectations K i j

θ ( f )(x)= E(πRi j
θ f (Y )/π(Y )= x).

Proposition 4.1. The operators K 12
θ and K 13

φ do not commute with each other.

Proof. The operators K i j
θ are not easy to describe. We may look at the easier

operators Si j = ∂θK i j
|θ=0 But we shall see that those operators vanish identically.

We may therefore compute Ri j = ∂
2
θ K i j
|θ=0.
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To compute these operators Si j and Ki j on the simplex, for the pairs (1, 2),
(1, 3), (2, 3), we observe that for two bounded polynomial functions f (x, y) and
g(x, y) on D2, up to a constant 2, we have

〈S12( f ), g〉 = 2
∫

Sn−1
u12(∂1 f − ∂2 f )(π( y))g(π y) dy,

where π(x1, x2, x3, y2, u12, u13, u23)= (x1, x2+ y2). Thus

S12( f )= 2s12(x)(∂i f − ∂j f ), where s12(x)= E
(
u12( y)/π( y)= (x1, x2+ y2)

)
,

which is 0 by symmetry, and

〈K12 f, g〉 =
∫

Sn−1

(
2(x2− x1)(∂1 f − ∂2 f )+ 4u2

12(∂1− ∂2)
2 f
)
π( y)g(π y) dy.

Thus

K12( f )= 2k12(∂1− ∂2) f + 4t12(∂1− ∂2)
2 f,

where
k12(x, y)= E

(
x1− x2/(x1, x2+ y2)= (x, y)

)
,

t12(x, y)= E
(
u2

12(Y )/π(Y )= (x1, x2+ y2)= (x, y)
)
.

For the operators S13 and K13, we may perform a similar computation, and
obtain a similar computation:

K13( f )= 2k13(∂1 f − ∂2 f )+ 4t13(∂1− ∂2)
2 f,

with
k13(x, y)= E

(
x1− x3/(x1, x2+ y2)= (x, y)

)
,

t13(x, y)= E
(
u2

13(Y )/(x1, x2+ y2)= (x, y)
)
,

and for K23, we obtain

K23( f )= 2k23∂2 f + 4t23∂
2
2 f,

with
k23(x, y)= E

(
x2− x3/(x1, x2+ y2)= (x, y)

)
,

t23(x, y)= E
(
u2

23/(x1, x2+ y2)= (x, y)
)
,

It remains to compute these conditional laws.
Following the computations of Section 3D, we may compute the law of the set

of variables (x1, x2, x3, y2, u12, u13, u23) under the uniform measure on the sphere
through the action of the spherical Laplace operator 1Sn−1 on these variables. The
Gamma operator acts on the variables as

0(x p, xq)= 4x p(δpq − xq), 0(xi , y2)=−4xi y2, 0(y2, y2)= 4y2(1− y2),
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while

0(y2, ui j )=−4y2ui j , 0(xi , ulk)=−4xi ukl + 2δiluik + 2δikuil,

0(ui j , ukl)=−4ui j ukl + δiku jl + δilu jk + δ jkuil + δ jluik .

where, in the last formulas, ui i stands for xi . Moreover, with n = p1+ p2+ p3, we
have

1Sn−1(xi )=−2nxi + 2p1, 1Sn−1(y2)=−2nyi + 2(p2− p1),

1Sn−1(ui j )=−2nui j .

Then, the image measure of the sphere is the reversible measure for this operator,
that we compute through Equation (3-7). Up to some normalizing constant, we
may compute the density through formula (3-7). In order to compute this density
with respect to the product measure dx1 dx2 dx3 dy1 du12 du13 du23, we introduce

F1 = x1x2x3+ 2u12u13u23− x1u2
23− x2u2

13− x3u2
12,

F2 = 1− x1− x2− x3− y2

Observe that F1 is the determinant of the Gram matrix associated with the vectors
x1, x2, x3.

Rewriting the variables (x1, x2, x3, y2, u12, u13, u23) as (x1, x2, x3, x4, x5, x6, x7)

in this order, (to have a more compact presentation of what follows), we get, with
Gi j =

1
40(xi , x j ), ∑

j ∂j Gi j = 2− 8xi , i = 1, 2, 3,∑
j ∂j G4 j = 1− 8x4,∑
j ∂j Gi j =−8xi , i = 5, 6, 7,∑

j Gi j∂j log F1 = 1− 3xi , i = 1, 2, 3,∑
j Gi j∂j log F1 =−3xi , i = 4, 5, 6, 7,∑
i Gi j∂j log F2 =−xi , i = 1, . . . , 7,∑
i Gi j∂j log x4 =−xi + δi4, i = 1, . . . , 7.

In the end, through formula (3-7), we are able to compute the density of the
measure, which is, up to some normalizing constant

ρ = Fα1 Fβ2 yγ2 ,

with
α =

p1

2
− 2, β =

n− p2

2
− p1− 1, γ =

p2− p1

2
− 1.

Observe that the equation F1 F2 y2 = 0 is indeed the reduced equation of the
set �7.
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To compute the conditional law, it is worthwhile to change variables in order to
transform the measure ρ(x) dx into a product measure. For this, we set

ui j =
√

xi x jσi j , y2 = z− x2, x2 = uz, x3 = v(1− x1− z),

so that the measure becomes a product measure, of the form

µ(dx1, dz)β1(du)β2(dv)γ (dσ12, dσ23, dσ13),

where µ is, as expected, the Dirichlet law in dimension 2, µ2,(p1,p2).
With this in mind, it is easy to check that we have

k12 = 2(x − a1 y), t12 = b1xy,

k13 = 2(x − a2(1− x − y)), t13 = b2x(1− x − y),

k23 = 2(a3 y− a4(1− x − y)), t23 = b3 y(1− x − y),

for some constants ai , b j that we are not going to identify directly, but where
we may assert that bi > 0, for example. (Indeed, knowing that those differential
operators Ki j must commute with L2, p allows one to compute them up to some
constant.)

Now, if one wants to see that these operators do not commute, we may look at[ 1
b1

K12,
1
b3

K13
]
, for example. This is a third order operator whose leading term is

2(1− x − y)(x − y)(∂1− ∂2)
3, which clearly does not vanish. �

Remark 4.2. For any horizontal rotation R, the associated kernel

KR( f )(x)= E
(

f (π(Rx))/π(x)= x
)

leaves invariant all the eigenspaces of L1, p. But the question of their action on
this space remains completely open. In particular, one may ask if any Markov
operator which commutes with L1, p is a mixture of such conditional expectations
of rotations KR .

We now concentrate on the operators LA, p. We shall show that in the generic
case (that is for some dense set for the parameters Ai j and pi ), their eigenspaces
are one dimensional.

There is still a geometric interpretation for them, in the geometric case pi ∈ N,
as we shall see below. And this geometric interpretation allows us to use the same
space E1 with the projection π : E1→ Dd , which may be extended to the general
case pi /∈ N as we did in Section 3D. But the problem now is that the horizontal
rotations do not commute with the lift of LA, p to the geometric model. Therefore,
we may not apply the Carlen–Geronimo–Loss scheme to them.

The geometric interpretation of LA, p that we present now is inspired from [Li
2019], where a similar interpretation is carried out for the matrix simplex. In Rn,
consider the infinitesimal rotations in the coordinate plane (i, j), Di j = yi∂j − y j∂i .
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Consider now as before a partition {I1, . . . , Id+1} of the set {1, . . . , n}, where
|Ii | = pi . For i 6= j consider the following second order diffusion operator on
the sphere Sn−1:

1i j =
∑

p∈Ii , q∈I j

D2
pq .

The action of 1i j , and its associated carré du champ 0i j on the variables xr =∑
p∈Ir

y2
p and xs =

∑
p∈Is

y2
p is as follows.

Proposition 4.3. 0i j (xr , xs)= 4[δrs xi x j (δri + δr j )− (δriδs j + δr jδsi )xr xs],

1i j (xr )= 2(δir − δ jr )(x j pi − xi p j ).

Proof. We start by the computation of this action on the variables yp, yq :S
n−1
→R.

1i, j (yp)=−yp(1p∈I j pi + 1p∈Ii p j ),

0i, j (yp, yq)= δpq(1p∈Ii x j + 1p∈I j xi )− yp yq(1p∈Ii 1q∈I j + 1p∈I j 1q∈Ii ),
(4-6)

where 1p∈A stands for 1A(p), the indicator function of the set A. From this, using
the change of variable formula (3-11), we get

0i, j (x p, xq)= 4xi x j [δpq(δpi + δpj )− (δpiδq j + δpjδqi )].

In the same way, we obtain the formula for 1i j (xr ) using formula (3-10). �

As a corollary, and comparing with formulae (4-2) and (4-3), we get:

Corollary 4.4. The operator 4LA, p is the image of the operator
∑

i< j Ai j1i j

through the map y 7→ (x1, . . . , xd) which maps Sn−1 onto Dd , where n =
∑d+1

i=1 pi .

Remark 4.5. In view of Equation (4-4), it is worth observing that the spheri-
cal Laplace operator may be written as

∑
i≤ j 1i j . Therefore, comparing with

Corollary 4.4, we see that what is missing is the operator
∑

i 1i i , where

1i i =
∑

p<q, p∈Ii , q∈Ii

D2
pq .

But it is easily seen that the action of1i i on the variables x p vanishes: 0i i (x p, xq)=

1i i (x p)= 0.
It is also worth observing that one may split some subset Ii into two subsets

Ii1 and Ii2 . More precisely, suppose that we have a partition {I1, . . . , Id+1) of
{1, . . . , n} and that we split say I1 into two disjoint sets I1a ∪ I1b. Then we may
consider a new operator on Dd+1 LA1,a1 , for some matrix A1 and some vector a1.
Then, provided that for any j > 1, A1a, j = A1b, j = A1 j , the image of LA1,a1 on
Dd under the map (x1a, x1b, x2, . . . , xd) 7→ (x1a + x1b, x2, . . . , xd) is LA,a, where
a = (a1a + a1b, a2, . . . , ad).

Of course, the same reasoning applies for any parameter i instead of 1.
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For the sake of completeness, we show below that the eigenspaces of LA, p have
dimension 1 in the generic case.

Proposition 4.6. For a dense set for the parameters Ai j and pi , the eigenspaces
of the operator LA, p are one dimensional.

Proof. Since the space Pn of polynomials with total degree n is preserved by LA, p,
one may concentrate on its action on Pn . To understand the eigenvalues of this
restriction, which do not come from the restriction to Hn−1, it is enough to look at
the restriction of LA, p to homogeneous polynomial of degree n, and consider for
such polynomial P , the degree-n homogeneous part of LA, p(P).

Then, the eigenvalues of LA, p are the eigenvalues of this linear operator, rep-
resented by some matrix Mn,A, p in the natural basis of these homogeneous poly-
nomials ek1,...,kd =

{
xk1

1 · · · x
kd
d ,
∑

i ki = n
}
. We shall see that for each n, there

exists a dense subset �n of parameters (even with a complementary with Lebesgue
measure 0) such that the eigenvalues of Mn A, p are all distinct for this parameters.
Then, on

⋂
n �n , which is dense by Baire’s theorem, all the eigenvalues of LA, p

are distinct.
To assert that the eigenvalues of Mn,A, p are distinct, it is enough to check that the

characteristic polynomial has distinct roots, or in other words that its discriminant
does not vanish. But the discriminant is a polynomial in the coefficients of the
characteristic polynomial, which themselves are polynomials in the entries of the
matrix, which themselves are polynomials in the variables Ai j and pi . Therefore,
there exists some polynomial Q in the variables Ai j , pi , depending on the degree n,
such that, if Q 6= 0, all the eigenvalues of Mn,A, p are distinct.

It remains to show that Q does not vanish identically, that is that there exists
some choice of the parameters Ai j and pi for which the eigenvalues are distinct.

Let us choose the matrix Ai j such that Ai j = Ai(d+1) for j > i . Then, if we
order the elements of the basis

{
ek1,...,kd ,

∑d
1 ki = n

}
according to their inverse

lexicographic order of (k1, . . . , kd−1) (so that (n, . . . , 0, 0) is the lowest term), then
one may check that all the elements of Mn,A, p which are above the diagonal vanish.
Then, the eigenvalues of Mn,A, p are the diagonal elements. On the diagonal, the
coefficient corresponding to ek1,...,kd is

−

∑
i 6= j

ki k j Ai j −
∑

i

ki (ki − 1)Ai,d+1+
1
2

∑
i

ki

(
Ai,d+1 pi −

d+1∑
k=1

Aik pk

)
.

With the choice that we made, for i 6= j , Ai, j = amin(i, j) for some sequence ai ,
i = 1, . . . , d . Then, it is not hard to see that there exists a choice for the sequences
ai , i = 1, . . . , d and pi , i = 1, . . . , d + 1 for which all these terms are different,
for all the sequences of integers (k1, . . . , kd) such that

∑d
1 ki = n. �
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4C. Representations of Markov sequences. In what follows, we restrict ourselves
to the case where all the coefficients Ai j , i 6= j are set to 1. Since the eigenspaces
En are not one dimensional, we also restrict our attention to the study of Markov
operators which have constant eigenvalues on the space En . That is, instead of
looking at Markov operators which commute with L1, p, we look at Markov oper-
ators which are functions of L1, p. We say that such a Markov operator strongly
commutes with L1, p

Observe first that, for any choice of a strict subset I ⊂ {1, . . . , d + 1}, the pro-
jection π : Dd → [0, 1], π(x) =

∑
i∈I xi maps the Dirichlet law µd, p on the

Beta measure βq,n−q , where q =
∑

i∈I pi and n =
∑d+1

1 pi .
(
We recall that by

convention, xd+1 = 1−
∑d

1 xi
)
. As usual, for any function f : [0, 1] → R, we

denote π f :Dd→R the function π f (y)= f (π(y)). Then, with the Jacobi operator
Jq,n−q = L1,q,n−q , one has

π Jq,n−q = L1, pπ,

as may be checked directly and easily, computing L1, pπ(x) and 01, p(π(x), π(x)).
Now, the eigenvalues of Jp,n−q and L1, p are the same

(
namely −k

(
k+ n−2

2

)
, act-

ing on polynomials of degree k
)
. In other words, any eigenspace for L1, p contains

an eigenvector of the form P(π(x)).
Now, let K be a Markov operator on Dd which strongly commutes with L1, p,

with eigenvalue µk on Ek . For a Jacobi polynomial Pk , K (π Pk)= µkπ Pk . There-
fore, for any polynomial P defined on [0, 1], one sees that K (π P)= πQ, for some
uniquely defined polynomial Q. This allows one to define a new Markov operator
K1 on [0, 1] through its action on polynomials as K (π P) = πK1(P). It is clear
that K1 commutes with Jq,n−q .

If µk is the eigenvalue of K on the eigenspace Ek of L1, p, then, for any Jacobi
polynomial with degree k, K1(P)= µk P . One may now apply Gasper’s theorem
and we have obtained:

Proposition 4.7. Let K be a Markov operator on Dd which strongly commutes
with L1, p, and let (µk) be the sequence of its eigenvalues on the eigenspace Ek

of L1, p. Choose I ⊂ {1, . . . , d + 1}, I 6= {1, . . . , d + 1}, and let q =
∑

i∈I pi , and
n =

∑d+1
1 pi . Then, there exists a probability measure ν on [0, 1] such that, for

any k ∈ N

µk =

∫ 1

0

Pq,n−q
k (x)

Pq,n−q
n (x0)

ν(dx),

where P p,n−q
k is the Jacobi polynomial with degree k for the measure βq,n−q , and

x0 = 0 or x0 = 1 according to p ≤ n− q or not.

Remarks 4.8. (1) Contrary to the one dimensional case, it is not true in general
that for any probability measure ν on [0, 1], the associated sequence µn may
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be the sequence of eigenvalues of a Markov operator. Indeed, if such were the
case, then for some value of q =

∑
i∈I pi , one would have that the sequence

Pq,n−q
k (x)/Pq,n−q

k (1) is such a strong Markov sequence. Choosing another value
of q , say q1, associated to another subset I1 of {1, . . . , d + 1}, one would therefore
get some measure ν(x, dy) on [0, 1] such that

Pq,n−q
k (x)

Pq,n−q
k (1)

=

∫ 1

0

Pq1,n−q1
k (y)

Pq1,n−q1
k (1)

ν(x, dy).

Repeating the operation with Pq1,n−q1
k (y)/Pq1,n−q1

k (1) and another measure ν1(y,dz),
one would get

Pq,n−q
k (x)

Pq,n−q
k (1)

=

∫
Pq,n−q

k (z)

Pq,n−q
k (1)

ν2(x, dz),

where ν2(x, dz)=
∫
ν(x, dy) ν1(y, dz).

Then, ν2(x, dz) is the Dirac mass in x . As a consequence, for ν(x, dy) almost
every y, ν1(y, dz) is a Dirac mass in some point h(y), and moreover this point is
constant. This is clearly wrong, since the Jacobi polynomials for different values
of the parameters do not coincide.

(2) In view of Theorem 3.3, in order to obtain the true hypergroup represen-
tation, that is the set of extremal points for Markov which strongly commutes
with L1, p, it would be enough to produce the associated space E1 and the corre-
sponding operations π and φ such that the associated correlation operator K ( f )=
E
(

f (φπ f (Y ))/π(Y ) = x
)

strongly commutes with L1, p. Even in the geometric
case, when the parameters pi are integers, it does not seem to be the case for the
horizontal rotations described in (3-4).
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Araki and Iriye [1982; Iriye 1982] computed much information about the C2-
equivariant stable homotopy groups using EHP-style techniques in the spirit of
Toda [1962]. Our approach is entirely independent from theirs.

We work only with the two-element group C2 because it is the most elementary
nontrivial case. In order to compute C2-equivariant stable homotopy groups of the
C2-equivariant sphere spectrum using the Adams spectral sequence, one needs to
work with the full C2-equivariant Steenrod algebra AC2 for the constant Mackey
functor F2. As the C2-equivariant Eilenberg–Mac Lane spectrum for F2 is flat [Hu
and Kriz 2001, Corollary 6.45] the E2-term of the Adams spectral sequence is
given by the cohomology of the equivariant Steenrod algebra. In this article, we
tackle a computationally simpler situation by working over the subalgebra AC2(1).
This means that we are computing the C2-equivariant stable homotopy groups not
of the sphere but of the C2-equivariant analogue of connective real K -theory ko.
We will explicitly construct this C2-equivariant spectrum koC2 in Section 10.

Our calculational program is carried out for AC2(1) in this article as a warmup
for the full Steenrod algebra A to be studied in future work. Roughly speaking, A
contains Steenrod squaring operations Sqi with the expected properties, and AC2(1)
is the subalgebra generated by Sq1 and Sq2. A key point is that our program works
just as well in theory for AC2 as for AC2(1), except that the details are even more
complicated. It remains to be seen how far this can be carried out in practice.

Our strategy is to build up to the complexity of the C2-equivariant situation by
first studying the C-motivic and R-motivic situations. The relevant stable homotopy
categories are related by functors as in the diagram

Ho(SpR)
−⊗RC

//

Re

��

Ho(SpC)

Re

��

Ho(SpC2)
ι∗
// Ho(Sp)

The vertical functors are Betti realization (see [Heller and Ormsby 2016, Sec-
tion 4.4]). The functor ι∗ restricts an equivariant spectrum to the trivial subgroup,
yielding the underlying spectrum.

The C-motivic cohomology of a point is equal to F2[τ ] [Voevodsky 2003a] (see
also [Dugger and Isaksen 2010, Section 2.1]). The C-motivic Steenrod algebra
AC is very similar to the classical Steenrod algebra, but there are some small
complications related to τ . In particular, these complications allow the element
h1 in the cohomology of AC to be nonnilpotent, detecting the nonnilpotence of the
motivic Hopf map ηC [Morel 2004, Corollary 6.4.5]. In the cohomology of AC(1),
the nonnilpotence of h1 is essentially the only difference to the classical case.
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The R-motivic cohomology of a point is equal to F2[τ, ρ] [Voevodsky 2003a]
(again, see the discussion in [Dugger and Isaksen 2010, Section 2.1]). Now an
additional complication enters because Sq1(τ ) = ρ. The computation of the co-
homology of the R-motivic Steenrod algebra AR becomes more difficult because
the cohomology of a point is a nontrivial AR-module. In addition, the R-motivic
Steenrod algebra AR has additional complications associated with terms involving
higher powers of ρ [Voevodsky 2003b, Theorem 12.6].

A natural way to avoid this problem is to filter by powers of ρ. In the associated
graded object, Sq1(τ ) becomes zero and the associated graded Hopf algebroid
is simply the C-motivic Hopf algebra with an adjoined polynomial generator ρ.
Therefore, the ρ-Bockstein spectral sequence starts from the cohomology of AC

and converges to the cohomology of AR.
This ρ-Bockstein spectral sequence has lots of differentials and hidden exten-

sions. Nevertheless, a complete calculation for AR(1) is reasonable. A key point
is to first carry out the ρ-inverted calculation. This turns out to be much simpler.
With a priori knowledge of the ρ-inverted calculation in hand, there is just one
possible pattern of ρ-Bockstein differentials.

Relying on our experience from the R-motivic situation, we are now ready to
tackle the C2-equivariant situation. The C2-equivariant cohomology of a point con-
tains F2[τ, ρ], but there is an additional “negative cone” that is infinitely divisible
by both τ and ρ [Hu and Kriz 2001, Proposition 6.2]. Except for the complications
in the cohomology of a point, the C2-equivariant Steenrod algebra AC2 is no more
complicated than the R-motivic one [Hu and Kriz 2001, pp. 386–387].

Again, a ρ-Bockstein spectral sequence allows us to compute the cohomology
of AC2(1). Because of infinite τ -divisibility, the starting point of the spectral se-
quence is more complicated than just the cohomology of AC(1). Once identified,
this issue presents only a minor difficulty.

The ρ-inverted calculation determines the part of the cohomology of AC2(1) that
supports infinitely many ρ multiplications. Dually, it is also helpful to determine
in advance the part of the cohomology of AC2(1) that is infinitely ρ-divisible, i.e.,
the inverse limit of an infinite tower of ρ-multiplications. We anticipate that this
approach via infinitely ρ-divisible classes will be essential in the more complicated
calculation over the full Steenrod algebra AC2 , to be studied in future work.

As for the R-motivic case, the ρ-Bockstein spectral sequence is manageable,
even though it does have lots of differentials and hidden extensions.

All of these calculations lead to a thorough understanding of the cohomology
of AC2(1). The charts in Section 12 display the calculation graphically.

The next step is to consider the C2-equivariant Adams spectral sequence. For de-
gree reasons, there are no nonzero Adams differentials. The same simple situation
occurs in the classical, C-motivic, and R-motivic cases.
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However, it turns out that there are many hidden extensions to be analyzed. The
presence of so many hidden extensions suggests that the Adams filtration may not
be optimal for equivariant purposes. Unfortunately, we do not have an alternative
to propose.

The final description of the homotopy groups is complicated. Nevertheless,
our computation establishes that the homotopy of koC2 is nearly periodic (see
Theorem 11.15). We refer to Section 11 and the charts in Section 12 for details.

1A. Organization. In Section 2, we provide the basic algebraic input to our cal-
culation by thoroughly describing the C2-equivariant cohomology of a point and
the C2-equivariant Steenrod algebra AC2 . In Section 3, we set up the ρ-Bockstein
spectral sequence, which is our main tool for computing the cohomology of AC2(1).
In Sections 4 and 5, we carry out the ρ-inverted and the infinitely ρ-divisible cal-
culations. In Section 6, we carry out the R-motivic ρ-Bockstein spectral sequence
as a warmup for the C2-equivariant ρ-Bockstein spectral sequence in Section 7.
Section 8 provides some information about Massey products in the C2-equivariant
cohomology of A(1), which is used in Section 9 to determine multiplicative struc-
ture that is hidden by the ρ-Bockstein spectral sequence. Section 10 gives the
construction of the C2-equivariant spectrum whose homotopy groups are computed
by the cohomology of AC2(1), and Section 11 analyzes multiplicative structure in
these homotopy groups that is hidden by the Adams spectral sequence. Finally,
Section 12 includes a series of charts that graphically describe our calculation.

1B. Notation. We employ notation as follows:

(1) MC
2 = F2[τ ] is the motivic cohomology of C with F2 coefficients, where τ has

bidegree (0, 1).

(2) MR
2 = F2[τ, ρ] is the motivic cohomology of R with F2 coefficients, where τ

and ρ have bidegrees (0, 1) and (1, 1), respectively.

(3) M
C2
2 is the bigraded equivariant cohomology of a point with coefficients in the

constant Mackey functor F2. See Section 2A for a description of this algebra.

(4) NC is the “negative cone” part of M
C2
2 . See Section 2A for a precise descrip-

tion.

(5) H∗,∗C2
(X) is the C2-equivariant cohomology of X , with coefficients in the con-

stant Mackey functor F2.

(6) Acl, AC, AR, and AC2 are the classical, C-motivic, R-motivic, andC2-equivariant
mod 2 Steenrod algebras.

(7) Acl(n), AC(n), AR(n), and AC2(n) are the classical, C-motivic, R-motivic,
and C2-equivariant subalgebras generated by Sq1,Sq2,Sq4, . . . ,Sq2n

.
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(8) EC2(1) is the subalgebra of AC2 generated by

Q0 = Sq1 and Q1 = Sq1Sq2
+Sq2Sq1.

(9) Extcl is the bigraded ring ExtAcl(F2, F2), i.e., the cohomology of Acl.

(10) ExtC is the trigraded ring ExtAC(MC
2 ,MC

2 ), i.e., the cohomology of AC.

(11) ExtR is the trigraded ring ExtAR(MR
2 ,MR

2 ), i.e., the cohomology of AR.

(12) ExtC2 is the trigraded ring ExtAC2 (M
C2
2 ,M

C2
2 ), i.e., the cohomology of AC2 .

(13) ExtNC is the ExtAR-module ExtAR(NC,MR
2 ).

(14) Extcl(n) is the bigraded ring ExtAcl(n)(F2, F2), i.e., the cohomology of Acl(n).

(15) ExtC(n) is the trigraded ring ExtAC(n)(M
C
2 ,MC

2 ), i.e., the cohomology of AC(n).

(16) ExtR(n) is the trigraded ring ExtAR(n)(M
R
2 ,MR

2 ), i.e., the cohomology of AR(n).

(17) ExtC2(n)is the trigraded ring ExtAC2 (n)(M
C2
2 ,M

C2
2 ), i.e., the cohomology ofAC2(n).

(18) ExtNC(n) is the ExtR(n)-module ExtAR(n)(NC,MR
2 ).

(19) E+ is the ρ-Bockstein spectral sequence

ExtC(1)[ρ] ⇒ ExtR(1).

See Section 3.

(20) E− is the ρ-Bockstein spectral sequence that converges to ExtNC(1). See
Section 3.

(21) F2[x]
x∞ {y} is the infinitely x-divisible module colimn F2[x]/xn , consisting of

elements of the form y
xk for k ≥ 1. See Remark 2.1.

(22) koC2 is a C2-equivariant spectrum such that H∗,∗C2
(koC2)

∼=AC2//AC2(1). See
Section 10.

(23) π∗,∗(X) are the bigraded C2-equivariant stable homotopy groups of X , com-
pleted at 2 so that the equivariant Adams spectral sequence converges.

(24) 5n(X) is the Milnor–Witt n-stem
⊕

p
πp+n,p.

We use grading conventions that are common in motivic homotopy theory but
less common in equivariant homotopy theory. In equivariant homotopy theory,
RO(C2) ∼= Z[σ ]/(σ 2

− 1) is the real representation ring of C2, where σ is the
1-dimensional sign representation. The main points of translation are:

(1) Equivariant degree p+ qσ will be expressed, according to the motivic con-
vention, as (p+ q, q), where p+ q is the total degree and q is the weight.
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(2) The element τ in MR
2 maps to u [Hill et al. 2016, Definition 3.12] under the

realization map from R-motivic to C2-equivariant homotopy theory. We use
the symbol τ in both cases.

(3) Similarly, realization takes the R-motivic homotopy class ρ : S−1,−1
→ S0,0

to a in π−1,−1 [Hill et al. 2016, Definition 3.11]. We use the symbol ρ for
both of these homotopy classes, and also for the corresponding elements of
MR

2 and M
C2
2 .

We grade Ext groups in the form (s, f, w), where s is the stem, i.e., the total de-
gree minus the homological degree; f is the Adams filtration, i.e., the homological
degree; and w is the weight. We will also refer to the Milnor–Witt degree, which
equals s−w.

2. Ext groups

2A. The equivariant cohomology of a point. The purpose of this section is to
carefully describe the structure of the equivariant cohomology ring M

C2
2 of a point

from a perspective that will be useful for our calculations. This section is a reinter-
pretation of results from [Hu and Kriz 2001, Proposition 6.2].

Additively, M
C2
2 equals

(1) F2 in degree (s, w) if s ≥ 0 and w ≥ s,

(2) F2 in degree (s, w) if s ≤ 0 and w ≤ s− 2,

(3) 0 otherwise.

This additive structure is represented by the dots in Figure 1. The nonzero element
in degree (0, 1) is called τ , and the nonzero element in degree (1, 1) is called ρ.
We remind the reader that we are here employing cohomological grading. Thus
the class ρ has degree (−1,−1) when considered as an element of the homology
ring π∗,∗HF2.

The “positive cone” refers to the part of M
C2
2 in degrees (s, w) with w ≥ 0.

The positive cone is isomorphic to the R-motivic cohomology ring MR
2 of a point.

Multiplicatively, the positive cone is just a polynomial ring on two variables, ρ
and τ .

The “negative cone” NC refers to the part of M
C2
2 in degrees (s, w) with w≤−2.

Multiplicatively, the product of any two elements of NC is zero, so M
C2
2 is a square-

zero extension of MR
2 . Also, multiplications by ρ and τ are nonzero in NC when-

ever they make sense. Thus, the elements of NC are infinitely divisible by both ρ
and τ .
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Figure 1. M
C2
2 , with action by Sq1, Sq2, and Sq4.

We use the notation γ

ρ j τ k for the nonzero element in degree (− j,−1− j − k).
This is consistent with the multiplicative properties described in the previous para-
graph. So τ · γ

ρ j τ k equals γ

ρ j τ k−1 when k ≥ 2, and ρ · γ

ρ j τ k equals γ

ρ j−1τ k when
j ≥ 2.

The symbol γ , which does not correspond to an actual element of M
C2
2 , has

degree (0,−1).
The F2[τ ]-module structure on M

C2
2 is essential for later calculations, since we

will filter by powers of ρ. Therefore, we explore further the F2[τ ]-module structure
on NC.

Remark 2.1. Recall that F2[τ ]/τ
∞ is the F2[τ ]-module colim F2[τ ]/τ

k , which
consists entirely of elements that are divisible by τ . We write F2[τ ]

τ∞
{x} for the

infinitely divisible F2[τ ]-module consisting of elements of the form x
τ k for k ≥ 1.

Note that x itself is not an element of F2[τ ]
τ∞
{x}. The idea is that x represents the

infinitely many relations τ k
·

x
τ k = 0 that define F2[τ ]

τ∞
{x}.

With this notation in place, M
C2
2 is equal to

MR
2 ⊕NC=MR

2 ⊕
⊕
s≥0

F2[τ ]

τ∞

{
γ

ρs

}
(2-1)

as an F2[τ ]-module.
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2B. The equivariant Steenrod algebra. As a Hopf algebroid, the equivariant dual
Steenrod algebra can be described [Ricka 2015, Proposition 6.10(2)] as

AC2
∗
∼=M

C2
2 ⊗MR

2
AR
∗
. (2-2)

Recall [Voevodsky 2003b] that

AR
∗
∼=MR

2 [τ0, τ1, . . . , ξ1, ξ2, . . . ]/(τ
2
i = ρτi+1+ τξi+1+ ρτ0ξi+1),

with ηR(ρ) = ρ and ηR(τ ) = τ + ρτ0. The formula for the right unit ηR on the
negative cone given in [Hu and Kriz 2001, Theorem 6.41] appears in our notation
as

ηR

(
γ

ρ jτ k

)
=

γ

ρ jτ k

[∑
i≥0

(ρ
τ
τ0

)i
]k

. (2-3)

Note that the sum is finite because γ

ρ j τ k · ρ
n
= 0 if n > j .

We have quotient Hopf algebroids

AR
∗
(n) :=MR

2 [τ0, . . . , τn, ξ1, . . . , ξn]/(ξ
2n−i+1

i , τ 2
i = ρτi+1+ τξi+1+ ρτ0ξi+1).

and
ER
∗
(n) :=MR

2 [τ0, . . . , τn]/(τ
2
i = ρτi+1, τ

2
n )

and their equivariant analogues

AC2
∗
(n) :=MC2 ⊗MR AR

∗
(n), EC2

∗
(n) :=MC2 ⊗MR ER

∗
(n) (2-4)

Their duals are the subalgebras AC2(n)⊆AC2 and EC2(n)⊆AC2 .
The relationship between the equivariant and R-motivic Steenrod algebras leads

to an analogous relationship between Ext groups.

Proposition 2.2. Suppose that 0 is a Hopf algebroid over A and that B ∼= A⊕M
is a 0-comodule which is a square-zero extension of A, meaning that the product of
any two elements in M is zero. Then the A-module splitting of B induces a splitting

ExtB⊗A0(B, B)∼= Ext0(A, A)⊕Ext0(M, A)

of Ext0(A, A)-modules. Furthermore, this is an isomorphism of Ext0(A, A)-
algebras, if the right-hand side is taken to be a square-zero extension of Ext0(A, A).

Proof. We may express the cobar complex as:

coBs(B, B⊗A 0)= B⊗B (0)
⊗s ∼= B⊗B (B⊗A 0)

⊗s

∼= B⊗A (0)
⊗s .

As the splitting of B is a splitting as 0-comodules, there results a splitting

coBs(A, 0)⊕ coBs(M, 0)
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of the cobar complex. This splitting is square-zero, in the sense that the product of
any two elements in the second factor is equal to zero. This observation follows
from the fact that the product of any two elements of M is zero.

In ExtB⊗A0, this yields

ExtB⊗A0
∼= Ext0(A, A)⊕Ext0(M, A).

The multiplication on Ext0(M, A) is zero since this is already true in the cobar
complex coBs(M, 0). �

Employing notation given in Section 1B, Proposition 2.2 applies to give isomor-
phisms

ExtC2
∼= ExtR⊕ExtNC

and
ExtC2(n)

∼= ExtR(n)⊕ExtNC(n) .

Thus from the point of view of R-motivic homotopy theory, the cohomology of
the negative cone is the only new feature in ExtAC2 or ExtAC2 (n).

3. The ρ-Bockstein spectral sequence

Our tool for computing R-motivic or C2-equivariant Ext is the ρ-Bockstein spec-
tral sequence [Hill 2011; Dugger and Isaksen 2017a]. The ρ-Bockstein spectral
sequence arises by filtering the cobar complex by powers of ρ. More precisely, we
can define an AR-module filtration on M

C2
2 , where Fp(M

C2
2 ) is the part of M

C2
2 con-

centrated in degrees (s, w) with s ≥ p. Dualizing, we get a filtration of comodules
over the dual Steenrod algebra, which induces a filtration on the cobar complex
that computes ExtC2 .

Recall that the C-motivic cohomology of a point is MC
2 = F2[τ ], and the C-

motivic Steenrod algebra is AC
= AR/ρ [Voevodsky 2003a; 2003b]. For conve-

nience, we write ExtC for ExtAC(MC
2 ,MC

2 ).

Proposition 3.1. There is a ρ-Bockstein spectral sequence

E1 = ExtgrρAC2 (grρ M
C2
2 , grρ M

C2
2 )⇒ ExtC2

such that a Bockstein differential dr takes a class x of degree (s, f, w) to a class
dr (x) of degree (s − 1, f + 1, w). Under the splitting of Proposition 2.2, this
decomposes as

E+1 = ExtC[ρ] ⇒ ExtR

and
E−1 ⇒ ExtNC,
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where E−1 belongs to a split short exact sequence⊕
s≥0

MC
2

τ∞

{
γ

ρs

}
⊗MC

2
ExtC→ E−1 →

⊕
s≥0

TorMC
2

(
MC

2

τ∞

{
γ

ρs

}
,ExtC

)
.

Remark 3.2. Beware that the short exact sequence for E−1 does not split canoni-
cally.

Remark 3.3. The same spectral sequences occur in the same form when AC2 , AR,
and AC are replaced by AC2(n), AR(n), and AC(n).

Proof. See [Hill 2011, Proposition 2.3] (or [Dugger and Isaksen 2017a, Section 3])
for the description of E+1 .

For E−1 , the associated graded of NC is

grρ NC∼=
⊕
s≥0

MC
2

τ∞

{
γ

ρs

}
,

as described in Section 2A. It follows that the Bockstein spectral sequence begins
with

E0 ∼=
⊕
s≥0

MC
2

τ∞

{
γ

ρs

}
⊗MC

2
coB(MC

2 ,A
C
∗
).

The ring MC
2
∼= F2[τ ] is a graded principal ideal domain (in fact, it is a graded

local ring with maximal ideal generated by τ ). Therefore, the Künneth split exact
sequence gives(⊕

s≥0

MC
2

τ∞

{
γ

ρs

})
⊗MC

2
ExtC→ E−1 → TorMC

2

(⊕
s≥0

MC
2

τ∞

{
γ

ρs

}
,ExtC

)
.

The first and third terms of the short exact sequence may be rewritten as in the
statement of the proposition because the direct sum in each case is a splitting of
MC

2 -modules. �

We shall completely analyze the spectral sequence

E+1 = ExtC(1)[ρ] ⇒ ExtR(1)

in Section 6. While nontrivial, this part of our calculation is comparatively straight-
forward.

On the other hand, analysis of the spectral sequence

E−1 ⇒ ExtNC(1)

requires significantly more work. The first step is to compute E−1 more explicitly.
In particular, we must describe the Tor groups that arise.
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Lemma 3.4. (1) Tor∗
MC

2

(MC
2

τ∞
,MC

2

)
equals MC

2
τ∞

, concentrated in homological degree
zero.

(2) Tor∗
MC

2

(MC
2

τ∞
,

MC
2
τ k

)
equals MC

2
τ k , concentrated in homological degree one.

Proof. (1) This is a standard fact about the vanishing of higher Tor groups for free
modules.

(2) This follows from direct computation, using the resolution

MC
2
τ k MC

2
oo MC

2
τ k
oo 0.oo

After tensoring with MC
2

τ∞
, this gives the map

MC
2

τ∞
{x} MC

2
τ∞
{y}oo

that takes y
τ a to x

τ a−k if a > k, and takes y
τ a to zero if a ≤ k. This map is onto, and

its kernel is isomorphic to MC
2 /τ

k . �

Remark 3.5. Lemma 3.4 provides a practical method for identifying the E−1 in
Proposition 3.1. Copies of MC

2 in ExtC(1) lead to copies of the negative cone in
E−1 . On the other hand, copies of MC

2 /τ , such as the submodule generated by h3
1,

lead to copies of MC
2 /τ in E−1 that are infinitely divisible by ρ. These copies of

MC
2 /τ occur with a degree shift because they arise from Tor1.

4. ρ-inverted ExtR(1)

As a first step towards computing ExtC2(1), we will invert ρ in the R-motivic setting
and study ExtR(1)[ρ−1

]. This gives partial information about ExtR(1) and also
about ExtC2(1). Afterwards, it remains to compute ρk torsion, including infinitely
ρ-divisible elements.

We write Acl for the classical Steenrod algebra. For convenience, we write Extcl

and Extcl(n) for ExtAcl(F2, F2) and ExtAcl(n)(F2, F2) respectively.

Proposition 4.1. There is an injection Extcl(n − 1)[ρ±1
] ↪→ ExtR(n)[ρ−1

] such
that:

(1) The map is highly structured, i.e., preserves products, Massey products, and
algebraic squaring operations.

(2) The element hi of Extcl(n− 1) corresponds to hi+1 of ExtR(n).

(3) The map induces an isomorphism

ExtR(n)[ρ−1
] ∼= Extcl(n− 1)[ρ±1

]⊗ F2[τ
2n+1
].

(4) An element in Extcl(n − 1) of degree (s, f ) corresponds to an element in
ExtR(n) of degree (2s+ f, f, s+ f ).
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Proof. The proof is similar to the proof of [Dugger and Isaksen 2017a, Theo-
rem 4.1]. Since localization is an exact functor, we may compute the cohomology
of the Hopf algebroid (MR

2 [ρ
−1
],AR(n + 1)∗[ρ−1

]) to obtain ExtR(n + 1)[ρ−1
].

After inverting ρ, we have

τk+1 = ρ
−1τ 2

k + ρ
−1τξk+1+ τ0ξk+1,

and it follows that

AR(n)∗[ρ−1
] ∼=MR

2 [ρ
−1
][τ0, ξ1, . . . , ξn]/(τ

2n+1

0 , ξ 2n

1 , . . . , ξ
2
n ).

This splits as(
MR

2 [ρ
−1
],A(n)∗[ρ−1

]
)
∼=
(
MR

2 [ρ
−1
],A′(n)

)
⊗F2 (F2,A′′(n)),

where
A′(n)=MR

2 [ρ
−1
][τ0]/τ

2n+1

0

and
A′′(n)= F2[ξ1, . . . , ξn]/(ξ

2n

1 , . . . , ξ
2
n ).

Because it is isomorphic to the classical Hopf algebra (F2,A(n−1)) with altered
degrees, the Hopf algebra (F2,A′′(n)) has cohomology Extcl(n− 1).

For the Hopf algebroid
(
MR

2 [ρ
−1
],A′(n)

)
, we have an isomorphism

(MR
2 [ρ
−1
],A′(n))∼= F2[ρ

±1
]⊗F2 (F2[τ ], F2[τ ][x]/x2n+1

)

with
ηL(τ )= τ, ηR(τ )= τ + x .

An argument like that of [Dugger and Isaksen 2017a, Lemma 4.2] shows that the
cohomology of this Hopf algebroid is F2[τ

2n+1
]. �

Corollary 4.2. ExtC2(1)[ρ
−1
] ∼= ExtR(1)[ρ−1

] ∼= F2[ρ
±1, τ 4, h1].

Proof. The first isomorphism follows from Proposition 2.2, as ExtNC is ρ-torsion.
The second isomorphism follows immediately from Proposition 4.1, given that
Extcl(0)∼= F2[h0]. �

Remark 4.3. Corollary 4.2 implies that the products τ 4
·hk

1 are nonzero in ExtR(1).
But τ 4hk

1 = 0 in ExtC(1) when k ≥ 3, so the products τ 4
· hk

1 are hidden in the ρ-
Bockstein spectral sequence for k ≥ 3. We will sort this out in detail in Section 6.

5. Infinitely ρ-divisible elements of ExtAC2 (1)

Having computed the effect of inverting ρ in Section 4, we now consider the dual
question and study infinitely ρ-divisible elements. This gives additional partial
information about ExtC2(1). Afterwards, it remains only to compute the ρk torsion
classes that are not infinitely ρ-divisible.
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In fact, this section is not strictly necessary to carry out the computation of
ExtC2(1). Nevertheless, the infinitely ρ-divisible calculation works out rather nicely
and provides some useful insight into the main computation. We also anticipate
that this approach via infinitely ρ-divisible classes will be essential in the much
more complicated calculation of ExtC2 , to be studied in further work.

For a F2[ρ]-module M , the ρ-colocalization, or ρ-cellularization, is the limit
limρ M of the inverse system

· · ·
ρ
−→ M

ρ
−→ M.

While ρ-localization detects ρ-torsion-free elements, the ρ-colocalization detects
infinitely ρ-divisible elements.

An alternative description is given by the isomorphism

lim
ρ

M ∼= HomF2[ρ](F2[ρ
±1
],M)

because F2[ρ
±1
] is isomorphic to colimρ F2[ρ]. It follows that limρ M is an F2[ρ

±1
]-

module, and the functor M 7→ limρ M is right adjoint to the restriction

ModF2[ρ±1]→ModF2[ρ].

Lemma 5.1. (1) Let M be a cyclic F2[ρ]-module F2[ρ] or F2[ρ]/ρ
k . Then limρ M

is zero.

(2) Let M be the infinitely divisible F2[ρ]-module F2[ρ]/ρ
∞. Then limρ M is

isomorphic to F2[ρ
±1
].

Proof. If M is cyclic, then no nonzero element is infinitely ρ-divisible, which
implies the first statement. For the case M = F2[ρ]/ρ

∞, a (homogeneous) element
of the limit is either of the form(

1
ρk ,

1
ρk+1 , . . .

)
or of the form (

0, . . . , 0, 1,
1
ρ
,

1
ρ2 , . . .

)
.

For k ≥ 0, the isomorphism F2[ρ
±1
] → limρ M sends ρk to the tuple(

0, . . . , 0, 1, 1
ρ
, . . .

)
having k− 1 zeroes and sends 1

ρk to
( 1
ρk ,

1
ρk+1 , . . .

)
. �

We will now compute the ρ-colocalization of ExtC2(1).
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Proposition 5.2.

lim
ρ

ExtC2(1)∼=
⊕
k≥1

F2[ρ
±1, h1]

{ γ
τ 4k

}
∼= F2[ρ

±1, h1]⊗
F2[τ

4
]

τ∞
{γ } .

Recall that γ itself is not an element of limρ ExtC2(1), as described in Remark 2.1.
The main point of Proposition 5.2 is that the elements γ

τ 4k h j
1 are infinitely ρ-divisible

classes in ExtC2(1), and there are no other infinitely ρ-divisible families in ExtC2(1).

Proof. Since the cobar complex coB∗(MC2
2 , AC2(1)) is finite-dimensional in each

tridegree, the inverse systems

· · ·
ρ
−→ coB∗(MC2

2 , AC2(1))
ρ
−→ coB∗(MC2

2 , AC2(1))

and
· · ·

ρ
−→ ExtC2(1)

ρ
−→ ExtC2(1)

satisfy the Mittag-Leffler condition, so that [Weibel 1994, Theorem 3.5.8]

limρ ExtC2(1)∼= H∗
(
limρ coB∗(MC2

2 , AC2(1))
)
.

Now we compute

lim
ρ

coBs(M
C2
2 , AC2(1))= lim

ρ

(
M

C2
2 ⊗M

C2
2

AC2(1)⊗s)
∼= lim

ρ

(
M

C2
2 ⊗MR

2
AR(1)⊗s).

The splitting M
C2
2 =MR

2 ⊕NC yields a splitting(
MR

2 ⊗MR
2
AR(1)⊗s)

⊕
(
NC⊗MR

2
AR(1)⊗s)

of M
C2
2 ⊗MR

2
AR(1)⊗s as an F2[ρ]-module. The first piece of the splitting contributes

nothing to the ρ-colocalization by Lemma 5.1(1) because MR
2 is free as an F2[ρ]-

module.
On the other hand, the F2[ρ]-module NC is a direct sum of copies of F2[ρ]/ρ

∞.
By Lemma 5.1(2), we have that limρ

(
NC⊗MR

2
AR(1)⊗s

)
is isomorphic to(

MR
2 [ρ
−1
]

τ∞
{γ }

)
⊗MR

2
AR(1)⊗s .

Now the argument of Proposition 4.1 provides a splitting

coB∗
MR

2

(
MR

2 [ρ
−1
]

τ∞
{γ }, AR(1)

)
' coB∗F2[τ ]

(
F2[τ ]

τ∞
{γ },

F2[τ, x]
x4

)
[ρ±1
]⊗F2 coB∗F2

(F2, F2[ξ1]/ξ
2
1 ),

where x = ρτ0. The cohomology of the second factor is F2[h1].
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It remains to show that the cohomology of

coB∗F2[τ ]

(
F2[τ ]

τ∞
{γ },

F2[τ, x]
x4

)
is equal to F2[τ

4
]

τ∞
{γ }. As in Formula (2-3), the comodule structure on F2[τ ]

τ∞
{γ } is

given by

ηR

( γ
τ k

)
=
γ

τ k

(
1+

x
τ
+

x2

τ 2 +
x3

τ 3

)k

.

Now we filter coB∗F2[τ ]

(
F2[τ ]
τ∞
{γ }, F2[τ,x]

x4

)
by powers of x . We then have

E1 ∼=
F2[τ ]

τ∞
{γ }⊗F2 F2[v0, v1],

where v0 = [x] and v1 = [x2
]. The differential

d1

(
γ

τ 2k−1

)
=

γ

τ 2k v0

gives

E2 ∼=
F2[τ

2
]

τ∞
{γ }⊗F2 F2[v1].

Finally, the differential

d2

(
γ

τ 4k−2

)
=

γ

τ 4k v1

gives

E3 = E∞ ∼=
F2[τ

4
]

τ∞
{γ }. �

6. The cohomology of AR(1)

Our next step in working towards the calculation of ExtC2(1) is to describe the
simpler R-motivic ExtR(1). The reader is encouraged to consult the charts on
pages 616–619 to follow along with the calculations described in this section. This
calculation was originally carried out in [Hill 2011]. We include the details of the
R-motivic ρ-Bockstein spectral sequence, but we take the approach of [Dugger and
Isaksen 2017a], rather than [Hill 2011], in establishing ρ-Bockstein differentials.
The point is that there is only one pattern of differentials that is consistent with the
ρ-inverted calculation of Corollary 4.2. This observation avoids much technical
work with Massey products that would otherwise be required to establish relations
that then imply differentials.

For AR(1), the R-motivic ρ-Bockstein spectral sequence takes the form

ExtC(1)[ρ] ⇒ ExtR(1),
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where
ExtC(1)∼=MC

2 [h0, h1, a, b]/h0h1, τh3
1, h1a, a2

+ h2
0b.

Proposition 6.1. In the R-motivic ρ-Bockstein spectral sequence, we have differ-
entials

(1) d1(τ )= ρh0,

(2) d2(τ
2)= ρ2τh1,

(3) d3(τ
3h2

1)= ρ
3a.

All other differentials on multiplicative generators are zero, and E4 equals E∞.

Proof. By Corollary 4.2, the infinite ρ-towers that survive the ρ-Bockstein spectral
sequence occur in the Milnor–Witt 4k-stem. All other infinite ρ-towers are either
truncated by a differential or support a differential.

For example, the permanent cycle h0 must be ρ-torsion in ExtR(1), which forces
the Bockstein differential

d1(τ )= ρh0.

Next, the ρ-tower on τh1 cannot survive, and the only possibility is that there is a
differential

d2(τ
2)= ρ2τh1.

Note that these differentials also follow easily from the right unit formula given
in Section 2B. The ρ-tower on τ 3h2

1 cannot survive, and we conclude that it must
support a differential

d3(τ
3h2

1)= ρ
3a.

There is no room for further nonzero differentials, so E4 = E∞. �

Proposition 6.1 leads to an explicit description of the R-motivic ρ-Bockstein
E∞-page. However, there are hidden multiplications in passing from E∞ to ExtR(1).

Theorem 6.2. ExtAR(1) is the F2-algebra on generators given in Table 1 with rela-
tions given in Table 2.

The horizontal lines in Table 2 group the relations into families. The first family
describes the ρk-torsion. The remaining families are associated to the classical
products h2

0, h0h1, h3
1, h0a, h1a, and a2

+ h2
0b respectively.

Proof. The family of ρk-torsion relations follows from the ρ-Bockstein differentials
of Proposition 6.1.

Many relations follow immediately from the ρ-Bockstein E∞-page because
there are no possible additional terms.
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mw (s, f, w) generator

0 (−1, 0,−1) ρ
0 (0, 1, 0) h0

0 (1, 1, 1) h1

1 (1, 1, 0) τh1

2 (0, 1,−2) τ 2h0

2 (4, 3, 2) a
4 (4, 3, 0) τ 2a
4 (8, 4, 4) b
4 (0, 0,−4) τ 4

Table 1. Generators for ExtR(1)

mw (s, f, w) relation

0 (−1, 1,−1) ρh0

2 (−1, 1,−3) ρ · τ 2h0

1 (−1, 1,−2) ρ2
· τh1

2 (1, 3,−1) ρ3a

4 (0, 2,−4) (τ 2h0)
2
+ τ 4h2

0

0 (1, 2, 1) h0h1

1 (1, 2, 0) h0 · τh1+ ρh1 · τh1

2 (1, 2,−1) τ 2h0 · h1+ ρ(τh1)
2

3 (1, 2,−2) τ 2h0 · τh1

1 (3, 3, 2) h2
1 · τh1

2 (3, 3, 1) h1(τh1)
2
+ ρa

3 (3, 3, 0) (τh1)
3

4 (3, 3,−1) τ 4
· h3

1+ ρ · τ
2a

4 (4, 4, 0) τ 2h0 · a+ h0 · τ
2a

6 (4, 4,−2) τ 2h0 · τ
2a+ τ 4h0a

2 (5, 4, 3) h1a
3 (5, 4, 2) τh1 · a
4 (5, 4, 1) h1 · τ

2a+ ρ3b
5 (5, 4, 0) τh1 · τ

2a

4 (8, 6, 4) a2
+ h2

0b
6 (8, 6, 2) a · τ 2a+ τ 2h0 · h0b
8 (8, 6, 0) (τ 2a)2+ τ 4h2

0b+ ρ2τ 4h2
1b

Table 2. Relations for ExtR(1).
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mw (s, f, w) x ∈ ExtAR(1) q∗x ∈ ExtER(1)

0 (−1, 0,−1) ρ ρ

0 (0, 1, 0) h0 h0

0 (1, 1, 1) h1 0
1 (1, 1, 0) τh1 ρv1

2 (0, 1,−2) τ 2h0 τ 2h0

2 (4, 3, 2) a h0v
2
1

4 (4, 3, 0) τ 2a τ 2h0v
2
1

4 (8, 4, 4) b v4
1

4 (0, 0,−4) τ 4 τ 4

Table 3. The homomorphism ExtAR(1)→ ExtER(1).

Corollary 4.2 implies that τ 4
· h3

1, is nonzero in ExtR(1). It follows that there
must be a hidden relation

τ 4
· h3

1 = ρ · τ
2a.

Similarly, there is a hidden relation

h1 · τ
2a = ρ3b

because τ 4
· h4

1 is nonzero in ExtR(1). This last relation then gives rise to the extra
term ρ2τ 4h2

1b in the relation for (τ 2a)2+ τ 4h2
0b.

Shuffling relations for Massey products imply the remaining three relations,
namely

h0 · τh1 = h0〈h1, h0, ρ〉 = 〈h0, h1, h0〉ρ = ρh1 · τh1,

τ 2h0 · h1 = 〈ρτh1, ρ, h0〉h1 = ρτh1〈ρ, h0, h1〉 = ρ(τh1)
2,

and
ρa = ρ〈h0, h1, τh1 · h1〉 = 〈ρ, h0, h1〉τh1 · h1 = h1(τh1)

2.

See Table 6 in Section 8 for more details on these Massey products, whose inde-
terminacies are all zero. �

Remark 6.3. For comparison purposes, we recall from [Hill 2011, Theorem 3.1]
that

ExtER(1)
∼= F2[ρ, τ

4, h0, τ
2h0, v1]/(ρh0, ρ

3v1, (τ
2h0)

2
+ τ 4h2

0).

The ρ-torsion is created by the Bockstein differentials d1(τ )= ρh0 and d3(τ
2)=

ρ3v1. The class v1 is in degree (s, f, w)= (2, 1, 1).

Proposition 6.4. The ring homomorphism q∗ : ExtAR(1)→ ExtER(1) induced by the
quotient q :AR(1)∗→ ER(1)∗ of Hopf algebroids is given as in Table 3.
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Proof. Many of the values q∗(x) are already true over C and follow easily from
their descriptions in the May spectral sequence. For instance, b is represented
by h4

2,1, and v1 is represented by h2,1. On the other hand, the value q∗(τh1) is
most easily seen using the cobar complex. The class τh1 in ExtAR(1) is represented
by τξ1+ ρτ1. This maps to ρτ1 in the cobar complex for ER(1) and represents the
class ρv1 there. �

7. Bockstein differentials in the negative cone

We finally come to the key step in our calculation of ExtC2(1). We are now ready
to analyze the ρ-Bockstein differentials associated to the negative cone, i.e., to
the spectral sequence E− of Proposition 3.1. We already analyzed the spectral
sequence E+ in Section 6.

7A. The structure of E−1 . First, we need some additional information about the
algebraic structure of E−1 . Since E1= E+1 ⊕E−1 is defined in terms of Ext groups, it
is a ring and has higher structure in the form of Massey products. The subobject E−1
is a module over E+1 , and it possesses Massey products of the form 〈x1, . . . , xn, y〉,
where x1, . . . , xn belong to E+1 and y belongs to E−1 .

Definition 7.1. Suppose that x is a nonzero element of ExtC(1) such that τ x is
zero. According to Remark 3.5, for each s ≥ 0, the element x gives rise to a copy
of MC

2 /τ in TorMC
2

(MC
2

τ∞
,ExtC(1)

){
γ

ρs

}
that is infinitely divisible by ρ. In particular,

it gives a nonzero element of the Tor group. Let Q
ρs x be any lift to E−1 of this

nonzero element.

Remark 7.2. There is indeterminacy in the choice of Qx which arises from the
first term of the short exact sequence for E−1 in Proposition 3.1.

Lemma 7.3. The element Qx of E−1 is contained in the Massey product
〈
x, τ, γ

τ

〉
.

Proof. If d(u)= τ · x in the cobar complex for ExtC(1), then γ

τ
u is a cycle, since

τ
γ

τ
= 0. This cycle γ

τ
u represents both the Massey product as well as Qx . �

Remark 7.4. The most important example is the element Qh3
1, which is defined

because τh3
1 equals zero in ExtC(1). Another possible name for Qh3

1 is γ

τ
v2

1 , since
v2

1 is the element of the May spectral sequence that creates the relation τh3
1.

Remark 7.5. Beware that the Massey product description for Qx holds in E−1 , not
in ExtC2(1). In fact, we have already seen in Section 6 that τ is not a permanent
cycle in the ρ-Bockstein spectral sequence.

Nevertheless, minor variations on these Massey products may exist in ExtC2(1).
For example, 〈h2

1, τh1,
γ

τ
〉 equals Qh3

1 in ExtC2(1).

We can now deduce a specific computational property of E−1 that we will need
later.
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mw (s, f, w) element

0 (−1, 0,−1) ρ

0 (0, 1, 0) h0

0 (1, 1, 1) h1

1 (0, 0,−1) τ

2 (4, 3, 2) a
4 (8, 4, 4) b

0 (4, 2, 4) Qh3
1

−k− 1 (0, 0, k+ 1) γ

τ k

Table 4. Generators for the Bockstein E1-page.

Lemma 7.6. In E−1 , there is a relation h0 · Qh3
1 =

γ

τ
a.

Proof. Use Lemma 7.3 and the Massey product shuffle

h0 · Qh3
1 = h0

〈
h3

1, τ,
γ

τ

〉
= 〈h0, h3

1, τ 〉
γ

τ
=
γ

τ
a. �

Table 4 gives multiplicative generators for the Bockstein E1-page. The elements
above the horizontal line are multiplicative generators for E+1 . The elements below
the horizontal generate E−1 in the following sense. Every element of E−1 can be
formed by starting with one of the these listed elements, multiplying by elements
of E+1 , and then dividing by ρ. The elements in Table 7 are not multiplicative
generators for ExtC2(1) in the usual sense, because we allow for division by ρ.
The point of this notational approach is that the elements of E−1 and of ExtNC are
most easily understood as families of ρ-divisible elements.

7B. ρ-Bockstein differentials in E−. Our next goal is to analyze the ρ-Bockstein
differentials in E−. We will rely heavily on the ρ-Bockstein differentials for E+

established in Section 6, using that E− is an E+-module.
As an E+1 -module, E−1 is generated by the elements γ

ρ j τ k and Q
ρ j h3

1. This arises
from the observation that the τ torsion in ExtC(1) is generated as an ExtC(1)-
module by h3

1.
Proposition 7.7 gives the values of the ρ-Bockstein d1 differential on these gen-

erators of E−1 . All other d1 differentials can then be deduced from the Leibniz rule
and the E+1 -module structure.

All of the differentials in E− are infinitely divisible by ρ, in the following sense.
When we claim that dr (x)= y, we also have differentials dr

( x
ρ j

)
=

y
ρ j for all j ≥ 0.

For example, in Proposition 7.7, the formula d1
(
γ

ρτ

)
=

γ

τ 2 h0 implies that

d1

(
γ

ρ j+1τ

)
=

γ

ρ jτ 2 h0 for all j ≥ 0.
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Proposition 7.7. For all k ≥ 0,

(1) d1

(
γ

ρτ 2k+1

)
=

γ

τ 2k+2 h0,

(2) d1

(
Q
ρ

h3
1

)
=
γ

τ 2 a.

These differentials are infinitely divisible by ρ.

Proof. We give three proofs for the first formula. First, it follows from

Sq1
(

γ

ρτ 2k+1

)
=

γ

τ 2k+2 ,

using the relationship between d1 and the left and right units of the Hopf algebroid.
Second, we have

0= d1

(
τ 2k+1 γ

ρτ 2k+1

)
= τ 2k+1d1

(
γ

ρτ 2k+1

)
+

γ

ρτ 2k+1ρτ
2kh0

= τ 2k+1d1

(
γ

ρτ 2k+1

)
+
γ

τ
h0.

Third, we can use Proposition 5.2 to conclude that the infinitely ρ-divisible ele-
ments γ

τ 2k+1 cannot survive the ρ-Bockstein spectral sequence. The only possibility
is that they support a d1 differential.

For the second formula, use the first formula to determine that d1
(
γ

ρτ
a
)
=

γ

τ 2 h0a.
Then use the relation of Lemma 7.6. Alternatively, this differential is also forced
by Proposition 5.2. �

It is now straightforward to compute E−2 , since the ρ-Bockstein d1 differential
is completely known. The charts in Section 12 depict E−2 graphically.

Next, Proposition 7.8 gives a ρ-Bockstein d2 differential in E−2 . This is the
essential calculation, in the sense that the d2 differential is zero on all other E+2 -
module generators of E−2 .

Proposition 7.8. d2
(

γ

ρ2τ 4k+2

)
=

γ

τ 4k+3 h1 for all k ≥ 0. This differential is infinitely
divisible by ρ.

Proof. As for Proposition 7.7, we give three proofs. First, Sq2( γ

ρ2τ 4k+2

)
=

γ

τ 4k+3 .
Second, we have

0= d2

(
τ 4k+2 γ

ρ2τ 4k+2

)
= τ 4k+2d2

(
γ

ρ2τ 4k+2

)
+ ρ2τ 4k+1 γ

ρ2τ 4k+2 h1

= τ 4k+2d2

(
γ

ρ2τ 4k+2

)
+
γ

τ
h1.
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Third, use Proposition 5.2 to conclude that the infinitely ρ-divisible elements
γ

τ 4k+1 cannot survive the ρ-Bockstein spectral sequence. The only possibility is
that they support a d2 differential. �

At this point, the behavior of E− becomes qualitatively different from E+. For
E+, there are nonzero d3 differentials, and then the E+4 -page equals the E+

∞
-page.

For E−, it turns out that the dr differential is nonzero for infinitely many values
of r . This does not present a convergence problem, because there are only finitely
many nonzero differentials in any given degree. One consequence is that the orders
of the ρ-torsion in ExtC2(1) are unbounded. In other words, for every s, there exists
an element x of such that ρs x is nonzero but ρs+t x is zero for some t > 0. This is
fundamentally different from ExtR(1), where ρ3x is zero if x is not ρ-torsion free.

Proposition 7.9 makes explicit these higher differentials.

Proposition 7.9. For all k ≥ 1,

(1) d4k

(
Q
ρ4k h4k

1

)
=

γ

τ 4k bk ,

(2) d4k+1

(
Q

ρ4k+1 h4k+3
1

)
=

γ

τ 4k+2 abk .

These differentials are infinitely divisible by ρ.

Proof. We know that γ

τ 4k and b are permanent cycles. On the other hand, in ExtC2(1)
the relation τ 4h4

1 = ρ
4b gives
γ

τ 4k bk
= ρ4 γ

ρ4τ 4k bk
= τ 4 γ

ρ4τ 4k h4
1bk−1.

Thus γ

τ 4k bk is h1-divisible, which implies that it must be zero in ExtC2(1), as there
is no surviving class in the appropriate degree to support the h1-multiplication. The
only Bockstein differential that could hit γ

τ 4k bk is the claimed one.
For the second formula, the classes γ

τ 4k+2 a and b are permanent cycles, yet

γ

τ 4k+2 abk
= ρ4 γ

ρ4τ 4k+2 abk
= τ 4 γ

ρ4τ 4k+2 ah4
1bk−1

in ExtC2(1). But h1a= 0, so γ

τ 4k+2 abk must be zero in ExtC2(1), forcing the claimed
differential.

Alternatively, one can use Proposition 5.2 to obtain both differentials. �

Table 5 summarizes the Bockstein differentials that we computed in Sections 6
and 7B. The differentials above the horizontal line occur in E+, while the differ-
entials below the horizontal line occur in E− and are infinitely divisible by ρ.

The ρ-Bockstein differentials of Sections 6 and 7 allow us to completely com-
pute the E∞-page of the ρ-Bockstein spectral sequence for ExtC2(1).
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mw (s, f, w) element r dr proof

1 (0, 0,−1) τ 1 ρh0 Prop. 6.1

2 (0, 0,−2) τ 2 2 ρ2τh1 Prop. 6.1

3 (2, 2,−1) τ 3h2
1 3 ρ3a Prop. 6.1

−2k− 2 (1, 0, 2k+ 3) γ

ρτ 2k+1 1 γ

τ 2k+2 h0 Prop. 7.7

0 (5, 2, 5) Q
ρ

h3
1 1 γ

τ 2 a Prop. 7.7

−4k− 3 (2, 0, 4k+ 5) γ

ρ2τ 4k+2 2 γ

τ 4k+3 h1 Prop. 7.8

0 (8k+ 1, 4k− 1, 8k+ 1) Q
ρ4k h4k

1 4k γ

τ 4k bk Prop. 7.9

0 (8k+ 5, 4k+ 2, 8k+ 5) Q
ρ4k+1 h4k+3

1 4k+ 1 γ

τ 4k+2 abk Prop. 7.9

Table 5. Bockstein differentials.

7C. ρ-Bockstein differentials in E− for EC2(1). For comparison, we also carry
out the analogous but easier computation over EC2(1) rather than AC2(1). Besides
d1
(

γ

ρτ 2k+1

)
=

γ

τ 2k+2 h0, the only other Bockstein differential is given in the following
result.

Proposition 7.10. d3
(

γ

ρ3τ 4k+2

)
=

γ

τ 4k+4 v1 for all k ≥ 0. This differential is infinitely
divisible by ρ.

Proof. The differential d3(τ
2)= ρ3v1 of Remark 6.3 gives

0= d3

(
τ 4k+2 γ

ρ3τ 4k+2

)
= τ 4k+2d3

(
γ

ρ3τ 4k+2

)
+ ρ3τ 4k γ

ρ3τ 4k+2 v1

= τ 4k+2d3

(
γ

ρ3τ 4k+2

)
+
γ

τ 2 v1. �

8. Some Massey products

The final step in the computation of ExtC2(1) is to determine multiplicative exten-
sions that are hidden in the ρ-Bockstein E∞-page. In order to do this, we will need
some Massey products in ExtC2(1). Table 6 summarizes the information that we
will need.

Theorem 8.1. Some Massey products in ExtC2(1) are given in Table 6. All have
zero indeterminacy.

Proof. For some Massey products in Table 6, a ρ-Bockstein differential is displayed
in the last column. In these cases, May’s convergence theorem [May 1969; Isaksen
2014, Chapter 2.2] applies, and the Massey product can be computed with the given
differential. Roughly speaking, May’s convergence theorem says that Massey prod-
ucts in ExtC2(1) can be computed with any ρ-Bockstein differential. Beware that
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mw (s, f, w) bracket contains proof

1 (1, 1, 0) 〈ρ, h0, h1〉 τh1 d1(τ )= ρh0

1 (2, 2, 1) 〈h0, h1, h0〉 τh2
1 classical

2 (4, 3, 2) 〈τh1 · h1, h1, h0〉 a classical

2 (0, 1,−2) 〈ρτh1, ρ, h0〉 τ 2h0 d2(τ
2)= ρ2τh1

4 (8, 5, 4)
〈
a, h1, τh2

1

〉
h0b classical

−4 (0, 0, 4)
〈
τ 2h0, ρ,

γ

τ 6

〉
γ

τ 3 d1(τ
3)= ρτ 2h0

−4 (0, 0, 4)
〈
h0, ρ,

γ

τ 4

〉
γ

τ 3 d1(τ )= ρh0

−3 (1, 0, 4)
〈
ρ,

γ

τ 4 , τh1
〉

γ

ρτ 2 d2
(
γ

ρ2τ 2

)
=

γ

τ 3 h1

−3 (0, 0, 3)
〈
ρτh1, ρ,

γ

τ 4

〉
γ

τ 2 d2(τ
2)= ρ2τh1

−2 (4, 2, 6)
〈
γ

τ 3 , h1, τh1 · h1
〉

γ

ρ2τ
h2

1 d2
(
γ

ρ2τ 2

)
=

γ

τ 3 h1

−2 (0, 0, 2)
〈
τ 2h0, ρ,

γ

τ 4

〉
γ

τ
d1(τ

3)= ρτ 2h0

−2 (0, 0, 2)
〈
h0, ρ,

γ

τ 2

〉
γ

τ
d1(τ )= ρh0

−2 (2, 1, 4)
〈
h1, h0,

γ

τ 2

〉
γ

ρτ
h1 d1

(
γ

ρτ

)
=

γ

τ 2 h0

0 (4,2,4)+ (8k,4k,8k)
〈
ρ,

γ

τ 4k+2 , abk
〉 Q

ρ4k h4k+3
1 d4k+1

( Q
ρ4k+1 h4k+3

1

)
=

γ

τ 4k+2 abk

0 (8,3,8)+ (8k,4k,8k)
〈
ρ,

γ

τ 4k+4 , bk+1
〉 Q

ρ4k+3 h4k+4
1 d4k+4

( Q
ρ4k+4 h4k+4

1

)
=

γ

τ 4k+4 bk+1

Table 6. Some Massey products in ExtC2(1).

May’s Convergence Theorem requires technical hypotheses involving “crossing
differentials” that are not always satisfied. Failure to check these conditions can
lead to mistaken calculations.

The proofs for other Massey products in Table 6 are described as “classical”. In
these cases, the Massey product already occurs in Extcl. �

Remark 8.2. The eight Massey products in the middle Section of Table 6 are
only the first examples of infinite families that are τ 4-periodic. For example,〈
τ 2h0, ρ,

γ

τ 4k+6

〉
equals γ

τ 4k+3 for all k ≥ 0, and
〈
ρ,

γ

τ 4k+4 , τh1
〉

equals γ

τ 4k+3 for all
k ≥ 0.

9. Hidden extensions

We now determine multiplicative extensions that are hidden in the ρ-Bockstein E∞-
page. We have already determined some of these hidden extensions in Section 6. In
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this section, we establish additional hidden relations on elements associated with
the negative cone. We have not attempted a completely exhaustive analysis of the
ring structure of ExtC2(1).

Recall that ExtC2(1) is a square-zero extension of ExtR(1). This eliminates many
possible hidden extensions. For example, (Qh3

1)
2 is zero in ExtC2(1).

Proposition 9.1. For all k ≥ 0,

(1) h0 ·
Q
ρ4k h4k+3

1 =
γ

τ 4k+1 abk ,

(2) a ·
Q
ρ4k h4k+3

1 =
γ

τ 4k+1 h0bk+1.

Proof. (1) h0
〈
ρ,

γ

τ 4k+2 , abk
〉
=
〈
h0, ρ,

γ

τ 4k+2

〉
abk .

(2) Using part (1), we have that

h0a ·
Q

ρ4kh4k+3
1

= a ·
γ

τ 4k+1 abk
=

γ

τ 4k+1 h2
0bk+1,

which is nonzero. Therefore, a · Q
ρ4k h4k+3

1 must also be nonzero, and γ

τ 4k+1 h0bk+1

is the only nonzero class in the appropriate tridegree. �

Proposition 9.2. For all k ≥ 1,

(1) τ 2a ·
Q
ρ4k h4k+3

1 =
γ

τ 4k−1 h0bk+1
+

Q
ρ4k−3 h4k+2

1 b,

(2) τ 4
·

Q
ρ4k h4k+3

1 =
Q

ρ4k−4 h4k−1
1 b,

(3) τ 2h0 ·
Q
ρ4k h4k+3

1 =
γ

τ 4k−1 abk .

Proof. (1) Using Proposition 9.1(1), we have that

h0 · τ
2a ·

Q
ρ4k h4k+3

1 = τ 2a ·
γ

τ 4k+1 abk
=

γ

τ 4k−1 h2
0bk+1,

which is nonzero. Hence τ 2a · Q
ρ4k h4k+3

1 is either γ

τ 4k−1 h0bk+1 or γ

τ 4k−1 h0bk+1
+

Q
ρ4k−3 h4k+2

1 b.
On the other hand,

h1 · τ
2a ·

Q
ρ4k h4k+3

1 = ρ3b ·
Q
ρ4k h4k+3

1 =
Q

ρ4k−3 h4k+3
1 b.

Therefore, τ 2a · Q
ρ4k h4k+3

1 must equal γ

τ 4k−1 h0bk+1
+

Q
ρ4k−3 h4k+2

1 b.

(2) Using Proposition 9.1(1), we have that

h0 · τ
4
·

Q
ρ4k h4k+3

1 = τ 4 γ

τ 4k+1 abk
=

γ

τ 4k−3 abk,
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which is nonzero. This shows that τ 4
·

Q
ρ4k h4k+3

1 is also nonzero, and there is just
one possible value.

(3) τ 2h0

〈
ρ,

γ

τ 4k+2 , abk
〉
=

〈
τ 2h0, ρ,

γ

τ 4k+2

〉
abk . �

Proposition 9.3. For all k ≥ 0,

(1) h0 ·
Q

ρ4k+3 h4k+4
1 =

γ

τ 4k+3 bk+1,

(2) τh1 ·
Q

ρ4k+3 h4k+4
1 =

γ

ρτ 4k+2 bk+1,

(3) τ 2h0 ·
Q

ρ4k+3 h4k+4
1 =

γ

τ 4k+1 bk+1,

(4) a ·
Q

ρ4k+3 h4k+4
1 =

γ

ρ2τ 4k+1 h2
1bk+1,

(5) τ 2a ·
Q

ρ4k+3 h4k+4
1 =

Q
ρ4k h4k+3

1 b.

Proof. (1) h0
〈
ρ,

γ

τ 4k+4 , bk+1
〉
=
〈
h0, ρ,

γ

τ 4k+4

〉
bk+1.

(2) ρτh1
〈
ρ,

γ

τ 4k+4 , bk+1
〉
=
〈
ρτh1, ρ,

γ

τ 4k+4

〉
bk+1.

(3) τ 2h0
〈
ρ,

γ

τ 4k+4 , bk+1
〉
=
〈
τ 2h0, ρ,

γ

τ 4k+4

〉
bk+1.

(4) Using part (1), we have that

h0a ·
Q

ρ4k+3 h4k+4
1 = a ·

γ

τ 4k+3 bk+1
=

γ

τ 4k+3 abk+1,

which is nonzero. Therefore, a · Q
ρ4k+3 h4k+4

1 must also be nonzero, and there is just
one possibility.

(5) Using part (1), we have that

h0 · τ
2a ·

Q
ρ4k+3 h4k+4

1 = τ 2a ·
γ

τ 4k+3 bk+1
=

γ

τ 4k+1 abk+1,

which is nonzero. This shows that τ 2a · Q
ρ4k+3 h4k+4

1 is also nonzero, and there is
just one possible value. �

Proposition 9.4. For all k ≥ 0,

(1) h0 ·
γ

ρ2τ 4k+1 h2
1 =

γ

τ 4k+3 a,

(2) a ·
γ

ρ2τ 4k+1 h2
1 =

γ

τ 4k+3 h0b,

(3) τ 2a ·
γ

ρ2τ 4k+1 h2
1 =

γ

τ 4k+1 h0b.
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Proof. (1)
〈
γ

τ 4k+3 , h1, τh1 · h1
〉
h0 =

γ

τ 4k+3 〈h1, τh1 · h1, h0〉.

(2) Using part (1), we have that

h0a ·
γ

ρ2τ 4k+1 h2
1 = a ·

γ

τ 4k+3 a,

which equals γ

τ 4k+3 h2
0b modulo a possible error term involving higher powers of ρ.

Using that h1a = 0, we conclude that the error term is zero.

(3) Using part (1), we have that

h0 · τ
2a ·

γ

ρ2τ 4k+1 h2
1 = τ

2a ·
γ

τ 4k+3 a =
γ

τ 4k+1 h2
0b,

which is nonzero. This shows that τ 2a · γ

ρ2τ 4k+1 h2
1 is also nonzero, and there is just

one possible value. �

Proposition 9.5. For all k ≥ 0,

(1) h0 ·
γ

ρτ 4k+1 h1 =
γ

τ 4k+1 h2
1,

(2) h0 ·
γ

ρτ 4k+2 =
γ

τ 4k+2 h1.

Proof. All of these extensions follow from Massey product shuffles:

(1) h0
〈
h1, h0,

γ

τ 4k+2

〉
= 〈h0, h1, h0〉

γ

τ 4k+2 .

(2) h0
〈
ρ,

γ

τ 4k+4 , τh1
〉
=
〈
h0, ρ,

γ

τ 4k+4

〉
τh1. �

Proposition 9.6. For all k ≥ 0,

(1) h1 ·
γ

ρτ 4k+4 h2
1 =

γ

τ 4k+6 a,

(2) h1 ·
γ

ρ3τ 4k+6 a =
γ

τ 4k+8 b.

Proof. (1) τh1 · h1
〈
h1, h0,

γ

τ 4k+6

〉
= 〈τh1 · h1, h1, h0〉

γ

τ 4k+6 . Alternatively, this h1

extension is forced by Lemma 5.1.

(2) We have

h1 ·
γ

ρ3τ 4k+6 a =
γ

ρ3τ 4k+8 h1 · τ
2a =

γ

ρ3τ 4k+8ρ
3b =

γ

τ 4k+8 ,

where the second equality follows from Table 2. �

Over EC2(1), the only hidden multiplication is

Proposition 9.7. In ExtEC2 (1), we have h0 ·
γ

ρ2τ 4k+2 v
n
1 =

γ

τ 4k+3 v
n+1
1 . for all k, n ≥ 0.

Proof. h0 ·
γ

ρ2τ 2 = h0

〈
ρ,
γ

τ 4 , v1

〉
=

〈
h0, ρ,

γ

τ 4

〉
v1 =

γ

τ 3 v1. �
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mw (s, f, w) element

0 (−1, 0,−1) ρ

0 (0, 1, 0) h0

0 (1, 1, 1) h1

1 (1, 1, 0) τh1

2 (0, 1,−2) τ 2h0

2 (4, 3, 2) a
4 (0, 0,−4) τ 4

4 (4, 3, 0) τ 2a
4 (8, 4, 4) b

−k− 1 (0, 0, k+ 1) γ

τ k

0 (4, 2, 4) Qh3
1

Table 7. Generators for ExtC2(1).

9A. ExtC2(1). The charts in Section 12 depict ExtC2(1) graphically. Table 7 gives
generators for ExtC2(1). The elements above the horizontal line are multiplicative
generators for ExtR(1). The elements below the horizontal generate ExtNC in the
following sense. Every element of ExtNC can be formed by starting with one of
these listed elements, multiplying by elements of ExtR(1), and then dividing by ρ.

The elements in Table 7 are not multiplicative generators for ExtC2(1) in the
usual sense, because we allow for division by ρ. For example, γ

ρ2τ
h2

1 is indecom-
posable in the usual sense, yet it does not appear in Table 7 because ρ2

·
γ

ρ2τ
h2

1=
γ

τ
h2

1
is decomposable.

The point of this notational approach is that the elements of ExtNC are most
easily understood as families of ρ-divisible elements.

9B. The ring homomorphism q∗ :ExtAC2 (1)→ExtEC2 (1). It is worthwhile to con-
sider the comparison to ExtEC2 (1). We already described the map on the summand
arising from the positive cone in Proposition 6.4. The map on the summand for
the negative cone is given as follows.

Proposition 9.8. The homomorphism q∗ :ExtAR(1)(NC,MR
2 )→ExtER(1)(NC,MR

2 )

induced by the quotient q : AR(1)∗ → ER(1) of Hopf algebroids is given as in
Table 8.

Proof. For the classes of the form γ

ρ j τ k , this is true on the cobar complex. For the
classes of the form Q

ρ j hn
1 , this follows from the h0-extension given in Proposition 9.1

and the value q∗(a)= h0v
2
1 . Similarly, the value on γ

ρ2τ
h2

1 is obtained by combining
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mw (s, f, w) x ∈ ExtAR(1) NC q∗x ∈ ExtER(1) NC

0 (4, 2, 4)+ k(8, 4, 4) Q
ρ4k h4k+3

1
γ

τ
v4k+2

1

0 (8, 3, 8)+ k(8, 4, 4) Q
ρ4k+4 h4k+3

1
γ

ρ2τ 2 v
4k+3
1

−2 (0, 0, 2) γ

τ

γ

τ

−2 (2, 1, 4) γ

ρτ
h1

γ

τ 2 v1

−2 (4, 2, 6) γ

ρ2τ
h2

1
γ

τ 3 v
2
1

−3 (1, 0, 4) γ

ρτ 2
γ

ρτ 2

−5 (0, 0, 5) γ

τ 4
γ

τ 4

Table 8. The homomorphism ExtAR(1)(NC)→ ExtER(1)(NC).

Proposition 9.4 with the value of q∗(a). Lastly, the value on γ

ρτ
h1 follows from

q∗(τh1)= ρv1. �

Remark 9.9. Note that, on the other hand, the hidden h0-extensions on classes
in ExtAC2 (1), such as Qh3

1, can also be deduced from the homomorphism q∗ if its
values are determined by other means.

10. The spectrum koC2

Let Sp denoted the category of spectra, and let SpC2 denote the category of “gen-
uine” C2-spectra [May 1996, Chapter XII], obtained from the category of based
C2-spaces by inverting suspension with respect to the one-point compactification
S2,1 of the regular representation (C, z 7→ z̄). There are restriction and fixed-point
functors

ι∗ : Ho(SpC2)→ Ho(Sp), (−)C2 : Ho(SpC2)→ Ho(Sp)

which detect the homotopy theory of C2-spectra, meaning that a map f in Ho(SpC2)

is an equivalence if and only if ι∗( f ) and f C2 are equivalences in Ho(Sp). More-
over, a sequence X → Y → Z is a cofiber sequence in Ho(SpC2) if and only
if applying both functors ι∗ and (−)C2 yield cofiber sequences. Both statements
follow from the fact [Schwede and Shipley 2003, Example 3.4(i)] that the pair of
C2-spectra {6∞C2

S0, 6∞C2
C2 +} give a compact generating set for Ho(SpC2). Beware

that we are discussing categorical fixed-point spectra here, not geometric fixed-
point spectra.

Recall (see [Lewis 1995, Proposition 3.3]) that for a C2-spectrum X , the equi-
variant connective cover X〈0〉

q
−→ X is a C2-spectrum such that:

(1) ι(q) is the connective cover of the underlying spectrum X , and

(2) qC2 is the connective cover of XC2 .
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Recall that KOC2 is the C2-spectrum representing the K-theory of C2-equivariant
real vector bundles [May 1996, Chapter XIV].

Definition 10.1. Let koC2 be the equivariant connective cover KOC2〈0〉 of KOC2 .

We also have a description from the point of view of equivariant infinite loop
space theory.

Theorem 10.2 [Merling 2017, Theorem 7.1]. koC2 ' KC2(R), where R is consid-
ered as a topological ring with trivial C2-action.

The underlying spectrum of koC2 is ko.

Lemma 10.3. The fixed-point spectrum of koC2 is (koC2)
C2 ' ko∨ ko.

Proof. This is a specialization of the statement that, if X is any space equipped
with a trivial G-action, then KOG(X) is isomorphic to RO(G)⊗KO(X) [May 1996,
Section XIV.2]. Alternatively, from the point of view of algebraic K-theory, we
have KC2(R)

C2 ' K(R[C2]) [Merling 2017, Theorem 1.2], and R[C2] ∼= R×R. It
follows that

(koC2)
C2 ' KC2(R)

C2 ' K(R)×K(R)' ko∨ ko. �

We are working towards a description of the C2-equivariant cohomology of koC2

as the quotient AC2//AC2(1). This will allow us to express the E2-page of the
Adams spectral sequence for koC2 in terms of the cohomology of AC2(1). The main
step will be to establish the cofiber sequence of Proposition 10.13. In preparation,
we first prove some auxiliary results.

Definition 10.4. Let ρ be the element of π−1,−1 determined by the inclusion S0,0 ↪→

S1,1 of fixed points.

Note that the element ρ ∈ π−1,−1 induces multiplication by ρ in cohomology
under the Hurewicz homomorphism.

Recall that the real C2-representation ring RO(C2) is a rank two free abelian
group. Generators are given by the trivial one-dimensional representation 1 and
the sign representation σ . Let A(C2) denote the Burnside ring of C2, defined as
the Grothendieck group associated to the monoid of finite C2-sets. This is also a
rank two free abelian group, with generators the trivial one-point C2-set 1 and the
free C2-set C2. As a ring, A(C2) is isomorphic to Z[C2]/(C2

2 − 2C2).
The linearization map A(C2)→ RO(C2) sending a C2-set to the induced per-

mutation representation is an isomorphism, sending the free orbit C2 to the regular
representation 1⊕ σ . Recall that the Euler characteristic moreover gives an iso-
morphism from A(C2) to π0(S0,0) [Segal 1971, Corollary to Proposition 1].

Lemma 10.5. The C2-fixed point spectrum of 61,1koC2 is equivalent to ko.



THE COHOMOLOGY OF C2-EQUIVARIANT A(1) AND THE HOMOTOPY OF koC2 597

Proof. Recall the cofiber sequence C2 +
π
−→ S0,0 ρ

−→ S1,1 of C2-spaces. This yields
a cofiber sequence

C2 + ∧ koC2

π
−→ koC2

ρ
−→61,1koC2

of equivariant spectra. Passing to fixed point spectra gives the cofiber sequence

ko
πC2
−−→ ko∨ ko

ρC2
−−→ (61,1koC2)

C2 .

In the analogous sequence for the sphere S0,0, the map πC2 is induced by the split
inclusion Z→ A(C2) sending 1 to the free orbit C2. It follows that the map πC2 is
induced by the split inclusion Z→RO(C2) that takes 1 to the regular representation
ρC2 , and this induces a splitting of the cofiber sequence. Therefore, (61,1koC2)

C2

is equivalent to ko. �

Recall that kR denotes the equivariant connective cover K R〈0〉 of Atiyah’s K -
theory “with reality” spectrum K R [Atiyah 1966]. The latter theory classifies com-
plex vector bundles equipped with a conjugate-linear action of C2. The underlying
spectrum of kR is ku, and its fixed-point spectrum is ko.

Theorem 10.6 [Merling 2017, Theorem 7.2]. kR'KC2(C), where C is considered
as a topological ring with C2-action given by complex conjugation.

Definition 10.7. The C2-equivariant Hopf map η is

C2
−{0} → CP1

: (x, y) 7→ [x : y],

where both source and target are given the complex conjugation action.

As C ∼= R[C2], the punctured representation C2
− {0} is homotopy equivalent

to S3,2, and CP1 is homeomorphic to S2,1. It follows that η gives rise to a stable
homotopy class in π1,1.

Remark 10.8. The element η only defines a specific element of π1,1 after choosing
isomorphisms C2

−{0}∼= S3,2 and CP1∼= S2,1 in the homotopy category. We follow
the choices of [Dugger and Isaksen 2013, Example 2.12]. By Proposition C.5 of
[Dugger and Isaksen 2013], with these choices, the induced map ηC2 : S1

→ S1 on
fixed points is a map of degree −2.

Lemma 10.9. The element ρη in π0,0 corresponds to the element C2− 2 of A(C2).

Proof. In π0,0, we have (ηρ)2 =−2ηρ [Morel 2004, Lemma 6.1.2]. The nonzero
solutions to x2

=−2x in A(C2) are x =−2, x = C2− 2, and x =−C2. The only
such solution which restricts to zero at the trivial subgroup is x = C2− 2. �

Lemma 10.10. The induced map ηC2
: (61,1koC2)

C2 → (koC2)
C2 is equivalent to

ko (−1,1)
−−−→ ko∨ ko.
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Proof. To determine the fixed map ηC2 , we use that a map X
ϕ
−→ Y of C2-spectra

induces a commutative diagram

XC2
ϕC2
//

��

Y C2

��

X e
ϕe
// Y e

in which the vertical maps are the inclusions of fixed points. In the case of η on
koC2 , this gives the diagram

ko' (61,1koC2)
C2

ηC2
//

0
��

ko∨ ko' (koC2)
C2

∇
��

61ko
ι∗η

// ko

where ∇ is the fold map, as both the sign representation σ and the trivial repre-
sentation 1 of C2 restrict to the 1-dimensional trivial representation of the trivial
group. This shows that ηC2 factors through the fiber of ∇, so that ηC2 must be of
the form (k,−k) for some integer k. On the other hand, we have the commutative
diagram

ko⊗RO(C2) // ko // ko⊗RO(C2)

(koC2)
C2

ρC2
//

∼=

OO

(61,1koC2)
C2

ηC2
//

∼=

OO

(koC2)
C2

∼=

OO

(S0,0)C2
ρC2

//

OO

(S1,1)C2
ηC2

//

OO

(S0,0)C2

OO

According to Lemma 10.9, on the sphere ηρ induces multiplication by (C2− 2)
under the isomorphism π0,0 ∼= A(C2). The outer vertical compositions induce the
linearization isomorphism A(C2) ∼= RO(C2) on π0. It follows that the top row
induces multiplication by (σ − 1) on homotopy. We conclude that ηC2 is (−1, 1).

�

Definition 10.11. The complexification map KOC2
c
→K R assigns to an equivariant

real bundle E→ X the associated bundle C⊗R E→ X , where C2 acts on C via
complex conjugation. We denote by koC2

c
→ kR the associated map on connective

covers.

Remark 10.12. Alternatively, from the point of view algebraic K-theory, the com-
plexification map can be described as KC2(ι), where R ι

→ C is the inclusion of
C2-equivariant topological rings.
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Proposition 10.13. The Hopf map η induces a cofiber sequence

61,1koC2

η
−→ koC2

c
−→ kR. (10-1)

Proof. On underlying spectra, this is the classical cofiber sequence

6ko
η
−→ ko→ ku.

On fixed points, according to Lemma 10.5 the sequence (10-1) induces a sequence

ko
ηC2
−−→ ko∨ ko

cC2
−→ ko.

By Lemma 10.10, the map ηC2 is of the form (−1, 1). For any real C2-representation
V , the construction C⊗R V only depends on the dimension of V , which implies
that cC2 is the fold map. So the fixed points sequence is also a cofiber sequence. �

Remark 10.14. From the point of view of spectral Mackey functors [Guillou and
May 2011; Barwick 2017], the cofiber sequence (10-1) is the cofiber sequence of
Mackey functors

ko

0
��

(1,−1)
// ko∨ ko

∇

��

∇
// ko

c
��

61,1ko

η

ZZ

η
//

sign

YY
ko c

//

1

ZZ

triv

YY
ku

r

ZZ

conj

YY

where ku r
→ ko considers a rank n complex bundle as a rank 2n real bundle.

Theorem 10.15. The C2-equivariant cohomology of koC2 , as a module over AC2 ,
is

H∗,∗C2
(koC2; F2)∼=AC2//AC2(1).

Proof. According to [Ricka 2015, Corollary 6.19], we have H∗,∗C2
(kR)∼=AC2//EC2(1).

Since η induces the trivial map on equivariant cohomology, the sequence (10-1)
induces a short exact sequence

0→ H∗−2,∗−1
C2

(koC2)
i
−→AC2//EC2(1)

j
−→ H∗,∗C2

(koC2)→ 0 (10-2)

of AC2-modules.
The cofiber Cη is a 2-cell complex that supports a Sq2 in cohomology. It follows

that the composition

kR' koC2 ∧C(η)→62,1koC2 ↪→62,1koC2 ∧C(η)

induces the map

AC2//EC2(1)
i j
−→AC2//EC2(1) : 1 7→ Sq2.
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In particular, the composition AC2 →AC2//EC2(1)
j
−→ H∗,∗C2

(koC2) factors through
AC2//AC2(1). Given the right EC2(1)-module decomposition

AC2(1)∼= EC2(1)⊕62,1EC2(1),

it follows that the sequence (10-2) sits in a diagram

0 // H∗−2,∗−1
C2

(koC2)
// AC2//EC2(1) // H∗,∗C2

(koC2)
// 0

0 // 62,1AC2//AC2(1) //

?�

OO

AC2//EC2(1) // AC2//AC2(1)

OOOO

// 0

The outer two maps agree up to suspension, so they are both isomorphisms. �

Corollary 10.16. The E2-page of the Adams spectral sequence for koC2 is

E2 ∼= ExtAC2 (H
∗,∗
C2
(koC2),M

C2
2 )
∼= ExtC2(1).

Proof. This is a standard change of rings isomorphism [Ravenel 1986, Theo-
rem A1.3.12], using that H∗,∗C2

(koC2) is isomorphic to AC2//AC2(1). Note that the
change of rings theorem applies by [Ricka 2015, Corollary 6.15]. �

Remark 10.17. Working in the 2-complete category, it is also possible to build
koC2 using the “Tate diagram” approach. See, for example, [Greenlees 2018] for
a nice description of this approach. According to this approach, one specifies a
C2-spectrum X by giving three pieces of data:

(1) an underlying spectrum X e with C2-action,

(2) a geometric fixed points spectrum X gC2 , and

(3) a map X gC2 → (X e)tC2 from the geometric fixed points to the Tate construc-
tion.

In our case, the underlying spectrum is ko with trivial C2-action. The rest of the
Tate diagram information is given by the following result.

Proposition 10.18. The geometric fixed points of koC2 is
∨

k≥06
4k H Ẑ2, and the

map (koC2)
gC2 → kotC2 is the connective cover.

Proof. The Tate construction kotC2 was computed by Davis and Mahowald [1984,
Theorem 1.4] to be

∨
n∈Z6

4n H Ẑ2. For the interpretation of the Davis–Mahowald
calculation in terms of the Tate construction, see [May 1996, Section XXI.3].

The geometric fixed points sit in a cofiber sequence

ko∧RP∞
+
' kohC2 → (koC2)

C2 → (koC2)
gC2,
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which we can write as

ko∨ (ko∧RP∞)→ ko∨ ko→ (koC2)
gC2 .

The left map is a map of ko-modules, and we consider the simpler cofiber sequence

ko∧RP∞
ko∧t
−−→ ko→ (koC2)

gC2,

where t :RP∞→ S0 is the Kahn–Priddy transfer. As in [Ravenel 1986, Section 1.5],
we write R for the cofiber of t , so that (koC2)

gC2 ' ko∧ R. As Adams explained in
[Adams 1974], the cohomology of R has a filtration as Acl(1)-modules in which
the associated graded object is

⊕
k≥06

4kAcl(1)//Acl(0). It follows that ko∧ R '∨
k≥06

4k H Ẑ2.
Similarly, the associated graded for colimn H∗(6RP∞

−n) is⊕
k∈Z

64kAcl(1)//Acl(0).

The map R→ holimn 6RP∞
−n is surjective on cohomology, and the same is true

for the induced map R ∧ ko→ holimn(RP∞
−n ∧6ko). We conclude that the map∨

k≥0

64k H Ẑ2 ' (koC2)
gC2 → kotC2 ' holim

n
(RP∞

−n ∧6ko)

is a split inclusion in homotopy and therefore a connective cover. �

Remark 10.19. Note that the description of geometric fixed points given here is
confirmed by Corollary 4.2. That is, the geometric fixed points of a C2-spectrum
X are given by the categorical fixed points of S∞,∞ ∧ X , where

S∞,∞ = colim(Sn,n ρ
−→ Sn+1,n+1).

Thus the geometric fixed points are computed by the ρ-inverted Adams spectral
sequence. As we recall in the next section, the homotopy element 2 is detected by
the element h0+ ρh1 in Ext. Thus the element ρkhk

1τ
4 j of Corollary 4.2 detects

2k in the 4 j-stem of the geometric fixed points.

11. The homotopy ring

In this section, we will describe the bigraded homotopy ring π∗,∗(koC2) of koC2 .
We are implicitly completing the homotopy groups at 2 so that the Adams spectral
sequence converges [Hu and Kriz 2001, Corollary 6.47].

It turns out that the Adams spectral sequence collapses, so that ExtC2(1) is an
associated graded object of π∗,∗(koC2). Nevertheless, the Adams spectral sequence
hides much of the multiplicative structure.
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Recall that the Milnor–Witt stem of X is defined (see [Dugger and Isaksen
2017a]) as the direct sum

5n(X)∼=
⊕

i

πn+i,i (X).

Proposition 11.1. There are no nonzero differentials in the Adams spectral se-
quence for koC2 .

Proof. This follows by inspection of the E2-page, shown in the charts in Section 12.
Adams dr differentials decrease the stem by 1, increase the filtration by r , and

preserve the weight. It follows that Adams differentials decrease the Milnor–Witt
stem by 1. Every class in Milnor–Witt stem congruent to 3 modulo 4 is infinitely
ρ-divisible. As there are no infinitely ρ-divisible classes in Milnor–Witt stem con-
gruent to 2 modulo 4, it follows that there are no nonzero differentials supported
in the Milnor–Witt (4k+3)-stem.

Every class in Milnor–Witt stem 4k supports an infinite tower of either h0-
multiples or h1-multiples, while there are no such towers in Milnor–Witt stem
4k + 1. It follows that there cannot be any nonzero differentials emanating from
the (4k+1)-Milnor–Witt-stem. Finally, direct inspection shows there cannot be
any nonzero differentials starting in the Milnor–Witt (4k+ 2) or 4k-stems. �

The structure of the Milnor–Witt n-stem 5n(koC2) of course depends on n. The
description of these Milnor–Witt stems naturally breaks into cases, depending on
the value of n (mod 4).

The notation that we will use for specific elements of π∗,∗(koC2) is summarized
in Table 9. The definition of each element is discussed in detail in the following
sections.

11A. The Milnor–Witt 0-stem. Our first task is to describe the Milnor–Witt 0-
stem 50(koC2). The other Milnor–Witt stems are modules over 50(koC2), and we
will use this module structure heavily in order to understand them.

Proposition 11.2. Let X be a C2-equivariant spectrum, and let α belong to πn,k(X).
The element α is divisible by ρ if and only if its underlying class ι∗(α) in πn(ι

∗X)
is zero.

Proof. The C2-equivariant cofiber sequence

C2 +→ S0,0 ρ
−→ S1,1

induces a long exact sequence

· · · → πn+1,k+1(X)
ρ
−→ πn,k(X)

ι∗

−→ πn(ι
∗X)→ πn+2,k+1(X)

ρ
−→ · · · . �

Corollary 11.3. There is a hidden ρ extension from Qh3
1 to h3

1 in the Adams spec-
tral sequence.
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mw (s, w) element detected by defining relation

0 (−1,−1) ρ ρ

0 (1, 1) η h1

0 (4, 4) α Qh3
1 ρα = η3

0 (0, 0) ω h0 ω = ηρ+ 2
4 (0,−4) τ 4 τ 4

0 (8, 8) β
Qh4

1
ρ3 4β = α2

2 (0,−2) τ 2ω τ 2h0 (τ 2ω)2 = 2ω · τ 4

−2 (0, 2) τ−2ω
γ

τ
τ 4
· τ−2ω = τ 2ω

−4 (0, 4) τ−4ω
γ

τ 3 τ 4
· τ−4ω = ω

−5− 4k (0, 5+ 4k) 0
τ 4+4k

γ

τ 4+4k τ 4
·

0
τ 4+4k =

0
τ 4+4(k−1)

1 (1, 0) τη τh1

2 (4, 2) τ 2α a 2τ 2α = α · τ 2ω

Table 9. Notation for π∗,∗(koC2).

Proof. Recall that η3 is zero in π3(ko). Proposition 11.2 implies that η3 in π3,3(koC2)

is divisible by ρ. The only possibility is that there is a hidden extension from Qh3
1

to h3
1. �

Proposition 11.4. The element η in π1,1(koC2) is detected by h1.

Proof. The restriction ι∗(η) of η is the classical η, which is detected by the classical
element h1. As all other elements of ExtAC2 (1) in the 1-stem and weight 1 all live
in higher filtration, the result follows. �

Definition 11.5. Let α be an element in π4,4(koC2) detected by Qh3
1 such that

ρα = η3.

Corollary 11.3 guarantees that such an element α exists.
There are many elements of π4,4 detected by Qh3

1 because of the presence of
elements in higher Adams filtration. The condition ρα = η3 narrows the possibil-
ities, but still does not determine a unique element because of the elements γ

τ
hk

0a
in higher Adams filtration. For our purposes, this remaining choice makes no
difference.

Definition 11.6. Let ω be the element ηρ+ 2 of πC2
0,0(koC2).

As for ρ and η, the element ω comes from the homotopy groups of the equivari-
ant sphere spectrum. Strictly speaking, there is no need for the notation ω since it
can be written in terms of other elements. Nevertheless, it is convenient because ω
plays a central role. According to Lemma 10.9, ω corresponds to the element C2

of the Burnside ring A(C2).
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Note that ω is detected by h0, while 2 is detected by h0+ ρh1. For this reason,
ω, rather than 2, plays the role of the zeroth Hopf map in the equivariant (and
R-motivic) context. Also note that ω equals 1− ε, where ε is the twist

S1,1
∧ S1,1

→ S1,1
∧ S1,1.

Proposition 11.7. The homotopy class η5 is divisible by 2.

Proof. The relation ωη= 0 was established by Morel [2004] in the R-motivic stable
stems, and the equivariant stems agree with the R-motivic ones in the relevant
degrees [Dugger and Isaksen 2017b, Theorem 4.1]. (See also [Dugger and Isaksen
2013] for a geometric argument for this relation given in the motivic context. This
geometric argument works just as well equivariantly.)

Using the defining relation for α, it follows that

−2ηα = ρη2α = η5. �

Proposition 11.7 was already known to be true in the homotopy of the C2-
equivariant sphere spectrum [Bredon 1968]. The divisibility of the elements ηk

is very much related to work of Landweber [1969].

Definition 11.8. Let τ 4 be an element of π0,−4(koC2) that is detected by τ 4.

The element τ 4 is not uniquely determined because of elements in higher Adams
filtration. For our purposes, we may choose an arbitrary such element.

Proposition 11.9. (1) There is a hidden τ 4 extension from Qh3
1 to τ 2a.

(2) There is a hidden τ 4 extension from Q
ρ3 h4

1 to b.

Proof. (1) The product ρα · τ 4 equals τ 4
· η3, which is detected by τ 4

· h3
1. This

last expression equals ρ · τ 2a in Ext.

(2) Part (1) implies that there is a hidden τ 4 extension from Qh4
1 to ρ3b, since

h1 · τ
2a equals ρ3b in Ext. This means that there is a hidden τ 4 extension from

Q
ρ3 h4

1 to b, since ρ3
·

Q
ρ3 h4

1 equals Qh4
1 in Ext. �

Lemma 11.10. The class α2 in π8,8(koC2) is divisible by 4.

Proof. By Proposition 11.9, the multiplication map

τ 4
: π8,8(koC2)

∼=
−→ π8,4(koC2)

is an isomorphism. By considering the effect of multiplication by τ 4 in Ext, we
see that

τ 4
: π8,4(koC2)

∼=
−→ π8,0(koC2)

is also an isomorphism. Thus it suffices to show that (τ 4)2α2 is 4-divisible in
π8,0(koC2). But (τ 4)2 · α2 is detected by (τ 2a)2 by Proposition 11.9 (1), which
equals (h0+ ρh1)

2τ 4b in Ext. Finally, observe that h0+ ρh1 detects 2. �
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Definition 11.11. Let β be the element of π8,8(koC2) detected by Q
ρ3 h4

1 and satis-
fying 4β = α2.

Note that β is uniquely determined by α, even though there are elements of
higher Adams filtration, because there is no 2-torsion in π8,8(koC2).

Proposition 11.12. ρ3β = ηα.

Proof. The defining relation for β implies that 4ρ3β equals ρ3α2, which equals
ρ2η3α by the defining relation for α. Using the relation (ηρ+2)η= 0, this element
equals 4ηα. Finally, there is no 2-torsion in π5,5(koC2). �

Proposition 11.13. The (2-completed) Milnor–Witt 0-stem of koC2 is

50(koC2)
∼= Z2[η, ρ, α, β]/(ρ(ηρ+ 2), η(ηρ+ 2), ρα− η3, ρ3β − ηα, α2

− 4β),

where the generators have degrees (1, 1), (−1,−1), (4, 4), and (8, 8) respectively.
These homotopy classes are detected by h1, ρ, Qh3

1, and Qh4
1

ρ3 in the Adams spectral
sequence.

Proof. The relations ρ(ηρ+ 2) and η(ηρ+ 2) are already true in the sphere [Morel
2004; Dugger and Isaksen 2013]. The third and fifth relations are part of the
definitions of α and β, while the fourth relation is Proposition 11.12.

It remains to show that βk is detected by Q
ρ4k−1 h4k

1 and that αβk is detected by
Q

ρ4k−1 h4k+4
1 .

We assume for induction on k that βk is detected by Q
ρ4k−1 h4k

1 . We have the
relation h0 ·

Q
ρ4k−1 h4k

1 =
γ

τ 4k−1 bk in Ext, so ωβk is detected by γ

τ 4k−1 bk in Ext. Now b
detects τ 4

·β by Proposition 11.9 (2), so ωβk+1 is detected by γ

τ 4k−1 bk+1. Finally,
γ

τ 4k−1 bk+1 equals τ 4
·

γ

τ 4k+3 bk+1 in Ext, which equals τ 4
· h0 ·

Q
ρ4k+3 h4k+4

1 .
We have now shown that τ 4

· h0 ·
Q

ρ4k+3 h4k+4
1 detects τ 4

·ωβk+1. It follows that
Q

ρ4k+3 h4k+4
1 detects βk+1.

A similar argument handles the case of αβk . �

11B. τ 4-periodicity. Before analyzing the other Milnor–Witt stems of koC2 , we
will explore a piece of the global structure involving the element τ 4 of π0,−4(koC2).

Proposition 11.14. There are hidden τ 4 extensions

(1) from γ

τ
to τ 2h0,

(2) from γ

ρ2τ
h2

1 to a,

(3) from γ

τ 3 to h0,

(4) from γ

ρτ 2 to τh1.

Proof. (1) Recall that γ
τ
· a equals h0 · Qh3

1 in Ext, so the hidden τ 4 extension on
Qh3

1 from Proposition 11.9(1) implies that there is a hidden τ 4 extension from γ

τ
·a

to τ 2h0a. It follows that there is a hidden τ 4 extension from γ

τ
to τ 2h0.
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(2) Using that h2
1 · τ

2h0 equals ρ2a in Ext, part (1) implies that there is a hidden
τ 4 extension from γ

τ
h2

1 to ρ2a.

(3) Recall that γ

τ 3 · b equals h0 ·
Q
ρ3 h4

1 in Ext, so the hidden τ 4 extension on Q
ρ3 h4

1
from Proposition 11.9(2) implies that there is a hidden τ 4 extension from γ

τ 3 · b to
h0b. It follows that there is a hidden τ 4 extension from γ

τ 3 to h0.

(4) Using that ρa equals h1(τh1)
2 in Ext, part (2) implies that there is a hidden τ 4

extension from γ

ρτ
h2

1 to h1(τh1)
2. Now γ

ρτ
h2

1 equals γ

ρτ 2 h1 · τh1, so there is also a
hidden τ 4 extension on γ

ρτ 2 . �

The homotopy of koC2 is nearly τ 4-periodic, in the following sense.

Theorem 11.15. Multiplication by τ 4 gives a homomorphism on Milnor–Witt stems

5n(koC2)→5n+4(koC2)

which is

(1) injective if n =−4,

(2) surjective (and zero) if n =−5,

(3) bijective in all other cases.

Proof. (1) This is already true in Ext, except in the 0-stem. But the 0-stem is
handled by Proposition 11.14(3).

(2) There is nothing to prove here, given that 5−1(koC2)= 0.

(3) We give arguments depending on the residue of n modulo 4.

• n ≡ 0 (mod 4): If n <−4, this is already true in Ext. For n ≥ 0, this follows
from the relation ρα = η3 and the hidden τ 4 extensions on α and β given in
Proposition 11.9.

• n ≡ 1 (mod 4): For n < −3, this is already true in Ext. For n ≥ −3, this
follows from Proposition 11.14(4).

• n ≡ 2 (mod 4): For n < −2, this is already true in Ext. For n ≥ −2, this
follows from Proposition 11.14(1) and (2).

• n ≡ 3 (mod 4): This is already true in Ext. �

Remark 11.16. Another way to view the τ 4-periodicity is via the Tate diagram
(Proposition 10.18). We have a cofiber sequence

EC2+ ∧ ko→ koC2 → S∞,∞ ∧ koC2 .

The homotopy orbit spectrum therefore captures the ρ-torsion. If x ∈ π∗,∗koC2 is
ρ-torsion, then so is τ 4

·x . But multiplication by τ 4 is an equivalence on underlying
spectra and therefore gives an equivalence on homotopy orbits. This implies the
τ 4-periodicity in the ρ-torsion.



THE COHOMOLOGY OF C2-EQUIVARIANT A(1) AND THE HOMOTOPY OF koC2 607

11C. The Milnor–Witt n-stem with n≡ 0 (mod 4). Theorem 11.15 indicates that
τ 4 multiplications are useful in describing the structure of the homotopy groups of
koC2 . Therefore, our next task is to build on our understanding of 50(koC2) and to
describe the subring

⊕
k∈Z54k(koC2) of π∗,∗koC2 .

The Ext charts indicate that the behavior of these groups differs for k ≥ 0 and
for k < 0.

Proposition 11.17.
⊕

k≥054k(koC2) is isomorphic to 50(koC2)[τ
4
].

Proof. This follows immediately from Theorem 11.15. �

Definition 11.18. Define τ 2ω to be an element in π0,−2(koC2) that is detected by
τ 2h0 such that (τ 2ω)2 = 2ω · τ 4.

An equivalent way to specify a choice of τ 2ω is to require that the underlying
map ι∗(τ 2ω) equals 2 in π0(ko).

Definition 11.19. For k ≥ 1, let 0
τ k be an element of π0,k+1 detected by γ

τ k such
that

(1) τ 4
·
0
τ
= τ 2ω,

(2) τ 4
·
0
τ 3 = ω,

(3) τ 4
·
0
τ k =

0
τ k−4 when k ≥ 5.

According to Theorem 11.15, the elements 0
τ k are uniquely determined by the

stated conditions. Proposition 11.14 (1) and (3) allow us to choose 0
τ

and 0
τ 3 with

the desired properties. As suggested by the defining relations for these elements,
we will often write τ−2−4kω for 0

τ 1+4k and τ−4−4kω for 0
τ 3+4k .

Proposition 11.20. As a π0(koC2)[τ
4
]-module,

⊕
k∈Z54k(koC2) is isomorphic to

the π0(koC2)[τ
4
]-module generated by 1 and the elements τ−4−4kω for k ≥ 0, sub-

ject to the relations

(1) τ 4
· τ−4−4kω = τ−4kω,

(2) ρ · τ−4−4kω = 0,

(3) η · τ−4−4kω = 0,

(4) τ 4
· τ−4ω = ω.

Proof. This follows by inspection of the Ext charts, together with the defining
relations for τ−4−4kω. �

11D. The Milnor–Witt n-stem with n≡ 1 (mod 4).

Definition 11.21. Denote by τη an element of π1,0(koC2) that is detected by τh1.
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Note that τη is not uniquely determined because of elements in higher Adams
filtration, but the choice makes no practical difference. One way to specify a choice
of τη is to use the composition

S1,0
→ S0,0

→ koC2,

where the first map is the image of the classical Hopf map η : S1
→ S0, and the

second map is the unit.

Proposition 11.22. As a 50(koC2)[τ
4
]-module, there is an isomorphism⊕

k∈Z

51+4k(koC2)
∼=
(
50(koC2)[(τ

4)±1
]/(2, ρ2, η2, α)

)
{τη}.

Proof. This follows from inspection of the Ext charts, together with Theorem 11.15.
�

11E. The Milnor–Witt n-stem with n≡ 2 (mod 4). Recall from Definition 11.18
that τ 2ω is an element of π0,−2(koC2) that is detected by τ 2h0.

Lemma 11.23. The product α · τ 2ω in π4,2(koC2) is detected by h0a.

Proof. The product τ 4
·α · τ 2ω is detected by τ 4h0a by Proposition 11.9(1). �

Definition 11.24. Define τ 2α to be an element of π4,2(koC2) that is detected by a
such that 2 · τ 2α equals α · τ 2ω.

Proposition 11.25. As a 50(koC2)[τ
4
]-module,

⊕
k∈Z52+4k(koC2) is isomorphic

to the free 50(koC2)[(τ
4)±1
]-module generated by τ 2ω, (τη)2, and τ 2α, subject to

the relations

(1) ρ · τ 2ω = 0,

(2) α · τ 2ω = 2 · τ 2α,

(3) ρ(τη)2 = η · τ 2ω,

(4) 2(τη)2 = 0,

(5) η(τη)2 = ρ · τ 2α,

(6) α(τη)2 = 0,

(7) η · τ 2α = 0,

(8) α · τ 2α = 2β · τ 2ω.

Proof. Except for the last relation, this follows from inspection of the Ext charts,
together with Theorem 11.15.

For the last relation, use that 2α · τ 2α equals τ 2ω ·α2 by the definition of τ 2α,
and that τ 2ω · α2 equals 4β · τ 2ω by the defining relation for β. As there is no
2-torsion in this degree, relation (8) follows. �
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11F. The Milnor–Witt n-stem with n≡ 3 (mod 4). The structure of⊕
k∈Z

54k+3(koC2)

is qualitatively different than the other cases because it contains elements that are
infinitely divisible by ρ. The Ext charts show that

⊕
k∈Z54k+3(koC2) is concen-

trated in the range k ≤−2.
The elements 0

τ 4k are infinitely divisible by both ρ and τ 4. We write 0
ρ j τ 4k for

an element such that ρ j
·

0
ρ j τ 4k equals 0

τ 4k .
By inspection of the Ext charts, we see that

⊕
k≤054k−5(koC2) is generated as

an abelian group by the elements 0
ρ j τ 4k . The 50(koC2)[τ

4
]-module structure on⊕

k≤054k−5(koC2) is then governed by the orders of these elements, together with
the relations

α ·
0

τ 4k =−8
0

ρ4τ 4k

and
β ·

0

τ 4k = 16
0

ρ8τ 4k .

The first relation follows from the calculation

α ·
0

τ 4k = ρα ·
0

ρτ 4k = η
3
·
0

ρτ 4k = (ηρ)
3
·
0

ρ4τ 4k = (−2)3 ·
0

ρ4τ 4k =−8
0

ρ4τ 4k .

The second relation follows from a similar argument, using that ρ3β = ηα.

Proposition 11.26. The order of 0
τ 4kρ j is 2ϕ( j)+1, where ϕ( j) is the number of

positive integers 0< i ≤ j such that i ≡ 0, 1, 2 or 4 (mod 8).

Proof. Since h0+ρh1 detects the element 2, the result is represented by the chart on
page 625, in stems zero to sixteen. As the top edge of the region is (8, 4)-periodic,
this gives the result in higher stems as well. �

Remark 11.27. Proposition 11.26 is an independent verification of a well-known
calculation. We follow the argument given in [Dugger 2005, Appendix B].

Let Rq,q be the antipodal C2-representation on Rq . Consider the cofiber se-
quence

S(q, q)→ D(q, q)→ Sq,q ,

where S(q, q) ⊂ D(q, q) ⊂ Rq,q are the unit sphere and unit disk respectively.
Since D(q, q) is equivariantly contractible, this gives the exact sequence

πm,0(koC2)← πm+q,q(koC2)← ko−m−1,0
C2

(S(q, q))← πm+1,0(koC2).

If m ≤−2, the outer groups vanish. Moreover, C2 acts freely on S(q, q), and the
orbit space is S(q, q)/C2 ∼= RPq−1. It follows [May 1996, Section XIV.1] that

ko−m−1
C2

(S(q, q))∼= ko−m−1(RPq−1)
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when m ≤−2 and q ≥ 1. In particular,

π j, j+5(koC2)
∼= ko4(RP j+4),

and the latter groups are known (see [Davis and Mahowald 1979, Section 2]) to be
cyclic of order ϕ( j).

Having described all of the Milnor–Witt stems as 50(koC2)[τ
4
]-modules, it re-

mains only to understand products of the various 50(koC2)[τ
4
]-module generators.

Proposition 11.28. In the homotopy groups of koC2 , we have the relations

(1) (τ 2ω)2 = 2ω · τ 4,

(2) τ 2ω · τ 2α = τ 4
·ωα,

(3) (τ 2α)2 = 2τ 4
·ωβ.

Proof. The first relation is part of the definition of τ 2ω.
For the second relation, use the definitions of τ 2α and of τ 2ω to see that

2 · τ 2ω · τ 2α = (τ 2ω)2α = 2τ 4
·ωα.

The group π4,0(koC2) has no 2-torsion, so it follows that τ 2ω · τ 2α equals τ 4
·ωα.

The proof of the third relation is similar. Use the definitions of τ 2α and β and
part (2) to see that

2(τ 2α)2 = τ 2ω · τ 2α ·α = τ 4
·ωα2

= 4τ 4
·ωβ.

The group π8,4(koC2) has no 2-torsion. �

11G. The homotopy ring of kR. We may similarly describe the homotopy of kR.
Since this has already appeared in the literature (see [Greenlees and Meier 2017,
Section 11]), we do not give complete details.

We use the forgetful exact sequence of Proposition 11.2 to define the homotopy
classes listed in Table 10. In each case, the forgetful map is injective, and we
stipulate that τ 4 restricts to 1, that v1 and τ−4v1 restrict to the Bott element, and
that τ 2ω, τ−2ω, and τ−4ω all restrict to 2.

Proposition 11.29. There are τ 4-extensions

τ 4
· τ−2ω = τ 2ω, τ 4

· τ−4ω = 2, τ 4
· τ−4v1 = v1.

Proof. These all follow from the definition of these classes using the forgetful exact
sequence of Proposition 11.2. Since the forgetful map is a ring homomorphism,
we get that

ι∗(τ 4
· τ−2ω)= ι∗(τ 4) · ι∗(τ−2ω)= 1 · 2= 2.

Since the forgetful map is injective in this degree, we conclude that τ 4
·τ−2ω= τ 2ω.

The same argument handles the other relations just as well. �
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In order to describe the Milnor–Witt 0-stem of kR, it is convenient to write
α = τ−2ω v2

1 and β = τ−4v1 · v
3
1 .

Proposition 11.30. The (2-completed) Milnor–Witt 0-stem of kR is

50(kR)∼= Z2[ρ, α, β]/(2ρ, ρα, ρ3β, α2
− 4β),

where the generators have degrees (−1,−1), (4, 4), and (8, 8) respectively. These
homotopy classes are detected by ρ, γ

τ
v2

1 , and γ

ρ2τ 2 v
3
1 in the Adams spectral se-

quence.

The other Milnor–Witt stems, aside from those in degree −5− 4k, can all be
described cleanly as ideals in 50(kR). The τ 4-periodicities asserted in the follow-
ing results all hold already on the level of Ext, except for the τ 4-multiplications
from ExtNC to ExtE(1). Those are handled by Proposition 11.29. We recommend
the reader to consult the diagram on page 630 in order to visualize the following
results.

Proposition 11.31. The map 5−4(kR)
τ 4

−→50(kR) is a monomorphism and identi-
fies5−4(kR) with the ideal generated by 2, α, and β. If k 6= −1, then multiplication
by τ 4 is an isomorphism 54k(kR)∼=54(k+1)(kR).

Thus the Milnor–Witt stems of degree 4k break up into two families, which are
displayed as the first two rows of the diagram on page 630.

Proposition 11.32. The map 5−1(kR)
v1
−→50(kR) is a monomorphism and iden-

tifies 5−1(kR) with the ideal generated by α and β. Multiplication by τ 4 is a split
epimorphism

F2[ρ]

ρ∞
→5−5(kR)

τ 4

−→5−1(kR).

If k 6= −1, then multiplication by τ 4 is an isomorphism 5−1+4k(kR)∼=53+4k(kR).

Proposition 11.33. The map 5−2(kR)
v1
−→5−1(kR) is an isomorphism. Multipli-

cation by τ 4 is an isomorphism 54k−2(kR)∼=54k+2(kR) for all k ∈ Z.

Proposition 11.34. The map 5−3(kR)
v3

1
−→50(kR) is a monomorphism and identi-

fies5−3(kR) with the ideal generated by β. Multiplication by τ 4 is an isomorphism
54k−3(kR)∼=54k+1(kR) for all k ∈ Z.

Combining the information from Table 3 and Table 8 yields the induced homo-
morphism on homotopy groups as described in Table 11. Note that all values c∗(x)
are to be interpreted as correct modulo higher powers of 2.

Remark 11.35. Note that the results of this section provide another means of
demonstrating the τ 4-periodicity in koC2 established in Section 11B. More specif-
ically, the τ 4-extensions given in Proposition 11.29, together with the homomor-
phism c∗ as described in Table 11, imply the τ 4-extensions given in Proposition 11.14.
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mw (s, w) element detected by definition

0 (−1,−1) ρ ρ

1 (2, 1) v1 v1 ι∗(v1)= v1

4 (0,−4) τ 4 τ 4 ι∗(τ 4)= 1
2 (0,−2) τ 2ω τ 2h0 ι∗(τ 2ω)= 2
−2 (0, 2) τ−2ω

γ

τ
ι∗(τ−2ω)= 2

−4 (0, 4) τ−4ω
γ

τ 3 ι∗(τ−4ω)= 2
−3 (2, 5) τ−4v1

γ

ρ2τ 2 ι∗(τ−4v1)= v1

−5 (0, 5) 0
τ 4

γ

τ 4

Table 10. Notation for π∗,∗(kR).

mw (s, w) x ∈ π∗,∗(koC2) c∗x ∈ π∗,∗(kR)

0 (−1,−1) ρ ρ

0 (1, 1) η 0
0 (4, 4) α τ−2ω · v2

1
0 (0, 0) ω 2
4 (0,−4) τ 4 τ 4

0 (8, 8) β τ−4v1 · v
3
1

2 (0,−2) τ 2ω τ 2ω

−2 (0, 2) τ−2ω τ−2ω

−4 (0, 4) τ−4ω τ−4ω

−5 ( j, j + 5) 0
ρ j τ 4

0
ρ j τ 4

1 (1, 0) τη ρv1

2 (4, 2) τ 2α 2v2
1

Table 11. The homomorphism π∗,∗(koC2)
c∗
−→ π∗,∗(kR), modulo

higher powers of 2.

12. Charts

12A. Bockstein E+ and ExtAR(1) charts. The charts on pages 616–619 depict
the Bockstein E+ spectral sequence that converges to ExtAR(1). The details of this
calculation are described in Section 6.

The E+2 -page is too complicated to present conveniently in one chart, so this
page is separated into two parts by Milnor–Witt stem modulo 2. Similarly, the E+3 -
page is separated into four parts by Milnor–Witt stem modulo 4. The E+4 -page in
Milnor–Witt stems 0 or 1 modulo 4 is not shown, since it is identical to the E+3 -
page in those Milnor–Witt stems. The E+4 -page in Milnor–Witt stems 3 modulo 4
is not shown because it is zero.
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Here is a key for reading the Bockstein charts:

(1) Gray dots and green dots indicate groups as displayed on the charts.

(2) Horizontal lines indicate multiplications by ρ.

(3) Vertical lines indicate multiplications by h0.

(4) Diagonal lines indicate multiplications by h1.

(5) Horizontal arrows indicate infinite sequences of multiplications by ρ.

(6) Vertical arrows indicate infinite sequences of multiplications by h0.

(7) Diagonal arrows indicate infinite sequences of multiplications by h1.

Here is a key for the charts of ExtAR(1):

(1) Gray dots indicate copies of F2[τ
4
] that arise from a copy of F2[τ

4
] in the

E+
∞

-page.

(2) Green dots indicate copies of F2[τ
4
] that arise from a copy of F2 and a copy

of F2[τ
4
] in the E+

∞
-page, connected by a τ 4 extension that is hidden in the

Bockstein spectral sequence. For example, the green dot at (3, 3) arises from
a hidden τ 4 extension from h3

1 to ρ · τ 2a.

(3) Blue dots indicate copies of F2[τ
4
] that arise from two copies of F2 and one

copy of F2[τ
4
] in the E+

∞
-page, connected by τ 4 extensions that are hidden

in the Bockstein spectral sequence. For example, the blue dot at (7, 7) arises
from hidden τ 4 extensions from h7

1 to ρ4h3
1b, and from ρ4h3

1b to ρ5
· τ 2a · b.

(4) Horizontal lines indicate multiplications by ρ.

(5) Vertical lines indicate multiplications by h0.

(6) Diagonal lines indicate multiplications by h1.

(7) Dashed lines indicate extensions that are hidden in the Bockstein spectral
sequence.

(8) Orange horizontal lines indicate ρ multiplications that equal τ 4 times a gen-
erator. For example, ρ · τ 2a equals τ 4

· h3
1.

(9) Horizontal arrows indicate infinite sequences of multiplications by ρ.

(10) Vertical arrows indicate infinite sequences of multiplications by h0.

(11) Diagonal arrows indicate infinite sequences of multiplications by h1.

12B. Bockstein E− and ExtNC charts for AC2(1). The charts on pages 620–624
depict the Bockstein E− spectral sequence that converges to ExtNC. The details of
this calculation are described in Section 7.

The E−2 -page is too complicated to present conveniently in one chart, so this
page is separated into two parts by Milnor–Witt stem modulo 2. Similarly, the E−3 -
page is separated into four parts by Milnor–Witt stem modulo 4. The E−4 -page
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in Milnor–Witt stems 0 or 3 modulo 4 is not shown, since it is identical to the
E−3 -page in those Milnor–Witt stems. The E−5 -page and E−6 -page in Milnor–Witt
stems 1 or 2 modulo 4 is not shown, since it is identical to the E−4 -page in those
Milnor–Witt stems.

Here is a key for reading the Bockstein charts:

(1) Gray dots and green dots indicate groups as displayed on the charts.

(2) Horizontal lines indicate multiplications by ρ.

(3) Vertical lines indicate multiplications by h0.

(4) Diagonal lines indicate multiplications by h1.

(5) Horizontal rightward arrows indicate infinite sequences of divisions by ρ, i.e.,
infinitely ρ-divisible elements.

(6) Vertical arrows indicate infinite sequences of multiplications by h0.

(7) Diagonal arrows indicate infinite sequences of multiplications by h1.

The structure of ExtNC is too complicated to present conveniently in one chart,
so it is separated into parts by Milnor–Witt stem modulo 4. Unfortunately, the part
in positive Milnor–Witt stems 0 modulo 4 alone is still too complicated to present
conveniently in one chart. Instead, we display ExtC2 , including both ExtAR(1) and
ExtNC, for the Milnor–Witt 0-stem and the Milnor–Witt 4-stem.

Here is a key for the charts of ExtNC:

(1) Gray dots indicate copies of F2[τ
4
]/τ∞.

(2) Horizontal lines indicate multiplications by ρ.

(3) Vertical lines indicate multiplications by h0.

(4) Diagonal lines indicate multiplications by h1.

(5) Dashed lines indicate extensions that are hidden in the Bockstein spectral
sequence.

(6) Dashed lines of slope −1 indicate ρ extensions that are hidden in the Adams
spectral sequence.

(7) Horizontal rightward arrows indicate infinite sequences of divisions by ρ, i.e.,
infinitely ρ-divisible elements.

(8) Vertical arrows indicate infinite sequences of multiplications by h0.

(9) Diagonal arrows indicate infinite sequences of multiplications by h1.

12C. Bockstein and Ext charts for EC2(1). The Bockstein E+ and E− spectral se-
quences that converge to ExtER(1) and ExtER(1)(NC,MR

2 ), respectively, are shown in
the charts on page 627. The details of this calculation are described in Remark 6.3
and Section 7C. For legibility, we have split each of the E+

∞
, E−4 , and ExtNC pages
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into a pair of charts, organized by families of v1-multiples rather than by Milnor–
Witt stems.

Here is a key for reading the Bockstein and ExtNC charts:

(1) Gray dots indicate groups as displayed on the charts.

(2) Horizontal lines indicate multiplications by ρ.

(3) Vertical lines indicate multiplications by h0. Dashed vertical lines denote h0-
multiplications that are hidden in the Bockstein spectral sequence

(4) Horizontal rightward arrows indicate infinite sequences of divisions by ρ, i.e.,
infinitely ρ-divisible elements.

(5) Vertical arrows indicate infinite sequences of multiplications by h0.

12D. Milnor–Witt stems. The diagrams on pages 629 and 630 depict the Milnor–
Witt stems for koC2 and kR in families as described in Section 11.

The top figure on page 629 represents the Milnor–Witt 4k-stem, where k ≥ 0.
The middle three figures represent the τ 4-periodic classes, as in Theorem 11.15.
The bottom figure represents the Milnor–Witt stem 5n , where n ≡ 3 (mod 4) and
n ≤−5.

Here is a key for reading the Milnor–Witt charts:

(1) Black dots indicate copies of F2.

(2) Hollow circles indicate copies of Z2
2.

(3) Circled numbers indicate cyclic groups of given order. For instance, the 1-
stem of 5−5 is Z/4.

(4) Blue lines indicate multiplications by η.

(5) Red lines indicate multiplications by ρ.

(6) Curved green lines denote multiplications by α.

(7) Lines labeled with numbers indicate that a multiplication equals a multiple of
an additive generator. For example, α · η4 equals 4ηρβ in 50.

For clarity, some α multiplications are not shown in the first and last diagrams of
page 629. For example, the α multiplication on η is not shown in the first diagram.
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Bockstein charts for AR(1)
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8
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8
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F2[τ2]
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Bockstein charts for AR(1)
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Bockstein charts for AR(1)
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Ext charts for AR(1)
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Bockstein E− charts for AC2(1)
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Bockstein E− charts for AC2(1)
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Bockstein E− charts for AC2(1)
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Bockstein E− charts for AC2(1)
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Bockstein E− charts for AC2(1)
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ExtNC charts for AC2(1)
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Ext charts for AC2(1) in mw = 0 and mw = 4
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Bockstein charts for EC2(1)
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ExtNC charts for EC2(1)
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Milnor–Witt modules for koC2
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Milnor–Witt modules for kR
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Degeneracy loci, virtual cycles
and nested Hilbert schemes, I

Amin Gholampour and Richard P. Thomas

Given a map of vector bundles on a smooth variety, consider the deepest de-
generacy locus where its rank is smallest. We show it carries a natural perfect
obstruction theory whose virtual cycle can be calculated by the Thom–Porteous
formula.

We show nested Hilbert schemes of points on surfaces can be expressed as
degeneracy loci. We show how to modify the resulting obstruction theories to
recover the virtual cycles of Vafa–Witten and reduced local DT theories. The
result computes some Vafa–Witten invariants in terms of Carlsson–Okounkov
operators. This proves and extends a conjecture of Gholampour, Sheshmani,
and Yau and generalises a vanishing result of Carlsson and Okounkov.
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1. Introduction

The prototype of a scheme Z with perfect obstruction theory [Behrend and Fantechi
1997] is the zero locus of a section of a vector bundle E on a smooth ambient
variety A. We recall the construction in the next Section.

All perfect obstruction theories are locally of this form. In the rare situations
where this is also true globally, the natural virtual cycle [ibid.] pushes forward to
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what we might expect, namely the Euler class of the bundle:

ι∗[Z ]vir
= cr (E) ∈ Avd(A). (1.1)

Here ι : Z ↪→ A is the inclusion, r = rank E , vd= dim A−r is the virtual dimension
of the problem, and [Z ]vir lies in Avd(Z) or H2vd(Z).

Equation (1.1) can help in computing integrals over the virtual cycle. Examples
include the computation of the number 27 of lines on a cubic surface, numbers
of lines and conics on quintic threefolds, and the quantum hyperplane principle.
A more relevant example to us is the reduced stable pair computations in [Kool
and Thomas 2014], carried out by writing the moduli space of stable pairs (and its
reduced perfect obstruction theory) as the zero locus of a section of a tautological
bundle over a certain Hilbert scheme.

In this paper we study a generalisation of zero loci, namely degeneracy loci. We
show these give another prototype of a perfect obstruction theory.1 Again, when
this can be done globally, it allows us to express integrals over the virtual cycle in
terms of integrals over the ambient space, via the Thom–Porteous formula.

So fix a two term complex of vector bundles E• = {E0
σ
→ E1} on a smooth

ambient space A. Set n = dim A, ri = rank(Ei ), and denote the r-th degeneracy
locus by

Zr :=
{

x ∈ A : rank(σ |x)≤ r
}
.

We work with the smallest r for which Z := Zr is nonempty. Our first result is the
following, made more precise in Theorem 3.6.

Theorem. Assume Zr−1 =∅. Then both

h0(E•|Z )= ker(σ |Z ) and h1(E•|Z )= coker(σ |Z )

are locally free on Z := Zr , which inherits a perfect obstruction theory{
h1(E•|Z )∗⊗ h0(E•|Z )→�A|Z

}
→ LZ .

The push-forward of the resulting virtual cycle [Z ]vir
∈ An−k(Z) to A is given by

the Thom–Porteous formula,

1
r0−r
r1−r

(
c(E1− E0)

)
∈ An−k(A),

where k = (r0− r)(r1− r) and 1a
b(c) := det(cb+ j−i )1≤i, j≤a .

1In fact we prove this by reducing to the model (2.1) in a bigger ambient space.
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Nested Hilbert schemes. Our main application is to the punctual Hilbert schemes
of nested subschemes of a fixed projective surface S. Full details and notation will
be described later; for now for simplicity we restrict attention to the simplest case
of the 2-step nested punctual Hilbert scheme

S[n1,n2] :=
{

I1 ⊆ I2 ⊆OS : length(OS/Ii )= ni
}
.

Now S[n1,n2] lies in the ambient space S[n1]× S[n2] as the locus of points (I1, I2)

for which there is a nonzero map HomS(I1, I2) 6= 0. Thus it can be seen as the
degeneracy locus of the complex of vector bundles

RHomπ (I1, I2) over S[n1]× S[n2] (1.2)

which, when restricted to the point (I1, I2), computes Ext∗S(I1, I2). When H 0,2(S)=0
this complex is 2-term, so we can apply the above theory. The resulting perfect
obstruction theory on S[n1,n2] agrees with that of [Gholampour et al. 2017b]. In
turn this arises in local DT theory [Gholampour et al. 2017a], so we can express
DT integrals in terms of Chern classes of tautological sheaves over S[n1]× S[n2].

When H 0,1(S) 6= 0 the result is zero; when H 0,2(S) 6= 0 the theory does not apply.
So for a general projective surface S we modify the complex Ext∗S(I1, I2) with
H 1(OS) and H 2(OS) terms. The modification is canonical over S[n1,n2], recovering
the reduced version of the local DT deformation theory that arises in the SU(r)
Vafa–Witten theory of S [Tanaka and Thomas 2017].

Splitting trick. We would like to extend this modification over the rest of S[n1]×S[n2],
so we can apply the Thom–Porteous formula. Such modifications exist locally but
not globally, so in Section 6A we use a trick reminiscent of the splitting principle
in topology, pulling back to a certain bundle over S[n1] × S[n2] where there is a
canonical modification. This allows us to prove the following (whose notation will
be explained more fully in Sections 5–7, in particular (6.31)).

Theorem. Let S be any smooth projective surface. The k-step nested Hilbert
scheme S[n1,...,nk ] can be seen as an intersection of degeneracy loci after pulling
back to an affine bundle over S[n1]× · · ·× S[nk ]. The resulting perfect obstruction
theory F •→ LS[n1,...,nk ] has virtual tangent bundle

(F •)∨ ∼=
{
TS[n1] ⊕ · · ·⊕ TS[nk ]→ Ext1

p(I1, I2)0⊕ · · ·⊕ Ext1
p(Ik−1, Ik)0

}
,

the same as the one in Vafa–Witten theory [Tanaka and Thomas 2017] or “reduced
local DT theory” [Gholampour et al. 2017b; 2017a]. The virtual cycle

[S[n1,...,nk ]]
vir
∈ An1+nk (S

[n1,...,nk ])
pushes forward to

cn1+n2

(
RHomπ (I1, I2)[1]

)
∪ · · · ∪ cnk−1+nk

(
RHomπ (Ik−1, Ik)[1]

)
(1.3)

in An1+nk (S
[n1]× · · ·× S[nk ]).
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The formula (1.3) for the push-forward of the virtual class was conjectured in
[Gholampour et al. 2017b] for k = 2 and proved for toric surfaces. It was also
shown to be true for more general surfaces when integrated against some natural
classes. The classes cni−1+ni

(
RHomπ (Ii−1, Ii )[1]

)
, considered as maps

H∗
(
S[ni−1]

)
→ H∗+2ni−2ni−1

(
S[ni ]

)
,

are called Carlsson–Okounkov operators. Carlsson and Okounkov [2012] calcu-
late them in terms of Grojnowski–Nakajima operators, and prove vanishing of the
higher Chern classes:

cn1+n2+i
(
RHomπ (I1, I2)[1]

)
= 0, i > 0, (1.4)

by showing the left side is a universal expression in Chern numbers of S, and that
this universal expression vanishes for toric surfaces by a localisation computation.
This gives enough relations to prove the universal expression is in fact zero. In
Section 8 we reprove the vanishing (1.4) rather easily and geometrically using the
Thom–Porteous formula, as well as the following generalisation.

Theorem. Let S be any smooth projective surface. For any curve class β ∈
H2(S,Z), any Poincaré line bundle L→ S×Picβ(S), and any i > 0,

cn1+n2+i
(
Rπ∗L−RHomπ (I1, I2⊗L)

)
= 0 on S[n1]× S[n2]×Picβ(S).

The other degeneracy loci. In the companion paper [Gholampour and Thomas
2019] we work with all the degeneracy loci Zk . These do not generally admit
perfect obstruction theories when k > r . However there are natural spaces Z̃k→ Zk

dominating them which are actually resolutions of their singularities in the trans-
verse case (when all the Zk have the correct codimension). For this reason we call
the Z̃k “virtual resolutions”. Though they are singular in general, we show they
admit natural perfect obstruction theories and virtual cycles whose push-forwards
we can again describe by Chern class formulae.2

In this paper the natural application was to nested punctual Hilbert schemes of
a smooth surface S. In [Gholampour and Thomas 2019] the natural application
is to nested Hilbert schemes of both points and curves in S. Fundamentally the
difference is the following. Letting I1, I2 ⊂OS be ideal sheaves of 0-dimensional
subschemes of S, then

Hom(I1, I2) (1.5)

either vanishes, or — for I1⊂ I2 in the nested Hilbert scheme — is at most C. Hence
S[n1,n2] is the degeneracy locus of the complex (1.2). Conversely, when I1 or I2 have
divisorial components, (1.5) can become arbitrarily big, and different elements

2Since Z̃r ∼= Zr the constructions in [Gholampour and Thomas 2019] and this paper coincide
when k = r .
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correspond to different subschemes of S. (In the case I1 =OS(−D) and I2 =OS ,
elements correspond — up to scale — to divisors in the same linear system as the
divisor D ⊂ S.) Therefore the corresponding nested Hilbert scheme dominates the
degeneracy locus of the complex (1.2) but need not equal it. In [Gholampour and
Thomas 2019] we show it is naturally a virtual resolution of the type Z̃k .

Notation. Given a map f : X → Y , we often use the same letter f to denote its
basechange by any map Z→ Y , i.e., f : X×Y Z→ Z . We also sometimes suppress
pullback maps f ∗ on sheaves.

2. Zero loci

We start by recalling the standard construction of a perfect obstruction theory, on
the zero scheme Z of a section σ of a vector bundle E over a smooth ambient
space A:

E

��

Z = σ−1(0) ⊂ A

σ

[[

(2.1)

On Z the derivative of this diagram gives

E∗|Z
σ
��

dσ |Z
// �A|Z

I/I 2 d
// �A|Z

(2.2)

where I ⊂OA is the ideal sheaf of Z generated by σ . The bottom row is a represen-
tative of the truncated cotangent complex LZ of Z ; denoting the two-term locally
free complex on the top row by F • we get a morphism3

F •→ LZ (2.3)

in D(Coh Z) which induces an isomorphism on 0th cohomology sheaves h0 and
a surjection on h−1. This data is called a perfect obstruction theory [Behrend and
Fantechi 1997] on Z , and induces a virtual cycle

[Z ]vir
∈ Avd(Z)→ H2vd(Z)

satisfying natural properties. Here H denotes Borel–Moore homology, and vd :=
dim A− rank E is the virtual dimension of the perfect obstruction theory.

3Diagram (2.1) also induces a natural map from F• to the full cotangent complex of Z [Behrend
and Fantechi 1997, Section 6], but we shall not need this.
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3. Degeneracy loci

We work on a smooth complex quasiprojective variety A with a map

E0
σ
−→ E1

between vector bundles of ranks r0 and r1. We denote by

Zk ⊂ A (3.1)

the degeneracy locus where rank(σ ) drops to ≤ k. This has a scheme structure
defined by the vanishing of the (k+ 1)× (k+ 1) minors of σ , i.e., of∧k+1

σ :
∧k+1 E0→

∧k+1 E1. (3.2)

The Zk can be characterised by the rank of the cokernel of σ over them [Eisenbud
1995, Section 20.2]. In Section 6 we will need a characterisation in terms of the
kernel. Though this does not basechange well, it works for the smallest Zk .

That is, let r denote the minimal rank of σ , so that Zr−1 =∅, and set Z := Zr .
This is the largest subscheme of A on which ker σ |Z is locally free of rank r0− r :

Lemma 3.3. For a map of schemes f : T → A, the following are equivalent:

(1) f factors through Z = Zr ⊂ A.

(2) ker( f ∗σ : f ∗E0→ f ∗E1) is a rank r0− r subbundle of f ∗E0.

(3) ker( f ∗σ : f ∗E0→ f ∗E1) has a locally free subsheaf of rank r0− r .

Proof. If f factors through Z then
∧r+1 f ∗σ ∼= f ∗

∧r+1
σ |Z ≡ 0. Since Zr−1 =∅

it follows from [Eisenbud 1995, Proposition 20.8] that coker f ∗σ is locally free
of rank r1 − r . Thus ker f ∗σ is a rank r0 − r subbundle of f ∗E0. This proves
(1)⇒(2)⇒(3).

For (3)⇒(1), we suppose the kernel K of f ∗E0 → f ∗E1 contains a locally
free subsheaf of rank r0 − r . Therefore the rank of f ∗σ on the generic point of
T is ≤ r , and thus in fact equal to r since we are assuming it drops no lower. In
particular, coker( f ∗σ) is a rank r1− r sheaf.

By lower semicontinuity of rank, f ∗σ |t is of rank ≤ r for any closed point
t ∈ T , so, by our assumption on r again, it is equal to r . Combined with the exact
sequence

f ∗E0|t
σ |t
−−→ f ∗E1|t → (coker f ∗σ)|t → 0, (3.4)

i.e., the fact that coker( f ∗σ |t)= (coker f ∗σ)|t , this shows that (coker f ∗σ)|t has
dimension r1− r for every closed point t . Therefore coker f ∗σ is locally free of
rank r1 − r by the Nakayama lemma. This implies that ker f ∗σ is a rank r0 − r
subbundle (rather than just a locally free subsheaf) of f ∗E0.
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In particular f ∗E0/K is locally free of rank r , so
∧r+1

( f ∗E0/K )= 0. But

f ∗
∧r+1

σ =
∧r+1 f ∗σ :

∧r+1 f ∗E0→
∧r+1 f ∗E1

factors through
∧r+1

( f ∗E0/K ), so it is also zero. That is, f factors through the
zero scheme Z

(∧r+1
σ
)
= Zr of

∧r+1
σ . �

So σ |Z has rank precisely r , and its kernel h0
:= h0(E•|Z ) and cokernel h1

:=

h1(E•|Z ) are vector bundles on Z of rank r0− r and r1− r respectively,

0→ h0
→ E0|Z

σ |Z
−−→ E1|Z → h1

→ 0. (3.5)

For instance if r = r0− 1 then σ is generically injective (and globally injective as a
map of coherent sheaves) and Z is the locus where it fails to be injective as a map
of bundles. Its kernel is a line bundle over Z . If E0 =OA then Z is the zero locus
of σ and we are back in the setting of Section 2.

Theorem 3.6. The degeneracy locus Z = Zr inherits a 2-term perfect obstruction
theory {

(h1)∗⊗ h0
→�A|Z

}
→ LZ .

The push-forward of the resulting virtual cycle [Z ]vir
∈ An−k(Z) to A is given by

the Thom–Porteous formula

1
r0−r
r1−r

(
c(E1− E0)

)
∈ An−k(A).

Here n = dim A, k = (r0− r)(r1− r) and 1a
b(c) := det(cb+ j−i )1≤i, j≤a .

Proof. We work on the relative Grassmannian of (r0−r)-dimensional subspaces
of E0,

Gr := Gr(r0− r, E0)
q
−→ A

with universal subbundle U ↪→ q∗E0. Composing with q∗σ gives a section

σ̃ ∈ 0(U∗⊗ q∗E1). (3.7)

Claim. The zero locus Z(σ̃ ) ⊂ Gr is isomorphic to Z ⊂ A under the restriction
q̄ : Z(σ̃ )→ A of the projection q : Gr→ A.

At the level of closed points this is obvious: for x ∈ A

x ∈ Z ⇐⇒ rank(σ |x)= r

⇐⇒ rank(ker(σx))= r0− r

⇐⇒ (E0)|x has a unique (r0−r)-dimensional subspace
Ux = ker(σx) on which σ |x vanishes

⇐⇒Ux is the unique point of Z(σ̃ )∩ q−1
{x}.
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So q̄ maps Z(σ̃ ) bijectively to Z ⊂ A. To see it maps scheme theoretically, note
that, by construction, the composition

U ↪−→ q∗E0
q∗σ
−−→ q∗E1

is zero over Z(σ̃ ), so ker(q̄∗σ) contains a locally free sheaf U |Z(σ̃ ) of rank r0− r .
Thus q̄ factors through Z ⊂ A by Lemma 3.3.

By Lemma 3.3 again, ker(σ |Z ) is a rank r0− r subbundle of E0. Its classifying
map Z→ Gr(r0− r, E0) has image in Z(σ̃ ) and clearly defines a right inverse to
q̄ : Z(σ̃ )→ Z . So to prove that q̄ is an isomorphism to Z we need only show that
the inverse image q̄ −1

{x} of any closed point x ∈ Z is a closed point of Z(σ̃ ).
Given a rank r linear map 6 : V → W between vector space of dimensions

r0, r1, an elementary calculation show that the composition

U ↪→ V ⊗O 6
−→W ⊗O

on the Grassmannian Gr(r0 − r, V ) cuts out the reduced point [ker6 ⊂ V ] ∈
Gr(r0− r, V ). Applying this to 6 = σ |x proves the claim.

Perfect obstruction theory. Since Z ∼= Z(σ̃ ) is cut out of Gr by σ̃ ∈0(U∗⊗q∗E1),
it inherits the standard perfect obstruction theory (2.2), i.e.,

U ⊗ q∗E∗1 |Z(σ̃ )
d σ̃ |Z(σ̃ )
−−−−→�Gr|Z(σ̃ ) (3.8)

mapping to LZ(σ̃ ) = LZ . Now (3.8) fits into a diagram

U |Z ⊗ (h1)∗

��

// q∗�A|Z(σ̃ )

��

U ⊗ E∗1 |Z

idU ⊗ σ ∗
��

d σ̃ |Z(σ̃ )
// �Gr|Z(σ̃ )

��

U |Z ⊗
(
E0|Z

/
ker σ

)∗
�Gr /A|Z(σ̃ )

(3.9)

with left-hand column the short exact sequence U |Z⊗ (3.5)∗, and right-hand col-
umn the natural short exact sequence of the fibration Gr→ A. The bottom equality
is dual to the standard identification TGr /A ∼=Hom(U, E0/U ).

Assuming (3.9) is commutative for now, we can consider it as providing a quasi-
isomorphism between the top row and the middle row (which is (3.8)). Hence the
perfect obstruction theory (3.8) is

h0
⊗ (h1)∗→�A|Z ,
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as claimed. Just as in (1.1), the push-forward of the resulting virtual cycle to Gr
is the Euler class c(r0−r)r1(U

∗
⊗ q∗E1). Pushing this down to A gives the push-

forward of [Z ]vir to A, by the commutativity of the diagram

Z(σ̃ ) �
�

// Gr
q
��

Z �
�

// A

But pushing forward c(r0−r)r1(U
∗
⊗q∗E1) to A gives1r0−r

r1−r
(
c(E1−E2)

)
by [Fulton

1984, Theorem 14.4]. So we are left to prove:

Claim. The diagram (3.9) is commutative.

We need only show that the lower square of (3.9) commutes; the upper one is
then induced from it. Let GrZ := Gr×A Z and observe Z(σ̃ ) ⊂ GrZ , with ideal
sheaf I , say. We let

2Z ↪→ GrZ

be its scheme-theoretic doubling with ideal sheaf I 2. Let p := q|2Z be the induced
projection 2Z→ Z and consider the maps

U |2Z ↪→ (q∗E0)|2Z
∼= p∗(E0|Z )→ p∗(E0/U |Z )

σ |Z
−−→ p∗(E1|Z ). (3.10)

The final arrow is constructed from σ |Z : E0|Z → E1|Z by recalling that U |Z ∼=
ker(σ |Z ).

The composition of the first two arrows of (3.10) is a section of

U∗|2Z ⊗ p∗(E0/U |Z ) on 2Z

which vanishes on Z . Since the ideal of Z ⊂ 2Z is �GrZ /Z it is a section of

(U |Z )∗⊗ (E0/U |Z )⊗�GrZ /Z .

This is precisely the (adjoint of) the standard description of the isomorphism

U |Z ⊗ (E0/U )|∗Z ∼=�GrZ /Z ,

i.e., the bottom row of (3.9).
Since p∗(E1|Z ) = (q∗E1)|2Z , the composition of all the arrows in (3.10) is

just σ̃ |2Z . It vanishes on Z , defining the section [d σ̃ |Z ] of

(U |Z )∗⊗ E1|Z ⊗ I/I 2 ∼=Hom
(
U ⊗ E∗1 |Z , �Gr /A|Z

)
which defines the central arrow of (3.9). Thus (3.9) commutes. �
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3A. Higher Thom–Porteous formula. When r0− r = 1, so the sheaf h0 is a line
bundle on the degeneracy locus Z , the following “higher” Thom–Porteous formula
will be useful later. Let ι : Z ↪→ A denote the inclusion.

Proposition 3.11. If r0− r = 1 then the Thom–Porteous formula becomes

ι∗[Z ]vir
= cr1−r0+1(E1− E0)

in An+r−r1(A), and for any i ≥ 0 we have the following extension to higher Chern
classes:

ι∗
(
c1
(
(h0)∗

)i
∩ [Z ]vir)

= cr1−r0+1+i (E1− E0). (3.12)

Proof. The first part follows from the simplification

1a
b(c( · ))= cb( · )

when a = r0− r = 1.
For the second part, recall from (3.7) that Z is cut out of P(E0)

q
→ A by the

vanishing of the composition

OP(E0)(−1) ↪−→ q∗E0
q∗σ
−−→ q∗E1.

Moreover, over this copy of Z , we see that the kernel h0 of E0→ E1 is OP(E0)(−1).
Therefore, denoting Segre classes by si , we have

ι∗
(
c1((h0)∗)i ∩

[
Z
]vir)
= q∗

(
c1(OP(E0)(1))

i
∪ cr1

(q∗E1(1))
)

= q∗

(
c1(OP(E0)(1))

i
∪

r1∑
j=0

c j (q∗E1)∪ c1(OP(E0)(1))
r1− j

)

=

r1∑
j=0

q∗
(
c1(OP(E0)(1))

i+r1− j
∪ q∗c j (E1)

)
=

r1∑
j=0

si+r1− j−r0+1(E0)∩ c j (E1)

= cr1−r0+i+1(E1− E0). �

Working throughout this Section with σ ∗ : E∗1 → E∗0 instead of σ : E0→ E1

gives the same results, up to some reindexing of notation.

4. Jumping loci of direct image sheaves

Suppose f : X → Y is a morphism of projective schemes, with Y smooth. Fix
either a coherent sheaf F on X which is flat over Y , or a perfect complex F on X
and assume that X is flat over Y .
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We assume that the cohomologies of F on any closed fibre Xy , y ∈ Y , are
concentrated in only two adjacent degrees i, i + 1. Let a denote the maximal
dimension of hi (Xy,Fy) as y varies throughout Y . That is, we assume there exists
i ∈ Z such that

h j (Xy,Fy)= 0 for all j 6∈ {i, i + 1}, y ∈ Y,

hi (Xy,Fy)≤ a for all y ∈ Y.

It follows that hi+1(Xy,Fy) has maximal dimension b := a− (−1)iχ(Fy).
Now R f∗F is a perfect complex on Y which, by basechange and the Nakayama

lemma, can be trimmed to be a 2-term complex of locally free sheaves

R f∗F ' {Ei → Ei+1}

in degrees i and i + 1. On restriction to the maximal degeneracy locus

Za :=
{

y ∈ Y : hi (Xy,Fy)= a
}
⊂ Y

it has kernel of rank a. (Note this labelling convention differs slightly from (3.1).)
Let X Z := X ×Y Z and f̄ := f |X Z . By (3.2) and Theorem 3.6 we deduce the
following.

Proposition 4.1. The maximal jumping locus Z = Za has a natural scheme struc-
ture and perfect obstruction theory{

(Ri+1 f̄∗F)∗⊗ Ri f̄∗F→�Y |Z
}
→ LZ ,

with the R j f̄∗F locally free. The resulting virtual cycle

[Z ]vir
∈ Ad(Z), d := dim Y − ab,

when pushed forward to Y , is given by

1a
b
(
c(R f∗F[i + 1])

)
∈ Ad(Y ).

The result can also be applied to jump loci of relative Ext sheaves (the cohomol-
ogy sheaves of RHom f (A, B) := R f∗ RHom(A, B)) by setting F :=RHom(A, B).
We shall use this on punctual Hilbert schemes next.

5. Nested Hilbert schemes on surfaces with b1 = 0 = pg

Given positive integers n1 ≥ n2 ≥ · · · ≥ nk , the k-step nested punctual Hilbert
scheme of S is, as a set,

S[n1,n2,...,nk ] :=
{

S ⊇ Z1 ⊇ Z2 ⊇ · · · ⊇ Zk : length(Zi )= ni
}

=
{

I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊂OS : length(OS/Ii )= ni
}
.
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As a scheme it represents the functor which takes any base scheme B to the set of
ideals I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊂OS×B , flat over B, such that the restriction of Ii to any
closed fibre S×{b} has colength ni .

For simplicity we restrict to k = 2 for now; we will return to general k in
Section 7.

Let S be a smooth complex projective surface with (for now) h0,1(S)=0=h0,2(S),
and fix integers n1 ≥ n2. Over

S[n1]× S[n2]× S
π
−→ S[n1]× S[n2]

we have the two universal subschemes Z1,Z2 and their ideal sheaves I1, I2. We
will apply Proposition 4.1 to the perfect complex

RHomπ (I1, I2) := Rπ∗ RHom(I1, I2)

on S[n1]× S[n2]. Over the closed point (I1, I2) ∈ S[n1]× S[n2] we have

Exti (I1, I2)= 0, i 6= 0, 1, (5.1)

by Serre duality. Moreover

Hom(I1, I2)=

{
0, Z1 6⊇ Z2,

C, Z1 ⊇ Z2,
(5.2)

is generically zero and jumps by 1 (but never more) over the nested Hilbert scheme

S[n1,n2] :=
{

Z2 ⊆ Z1 ⊂ S, length(Zi )= ni
}
, (5.3)

at least set-theoretically. Despite our usual notational conventions (to denote π
basechanged by S[n1,n2] ↪→ S[n1]× S[n2] also by π ) we reserve

p : S[n1,n2]× S→ S[n1,n2]

for the obvious projection. Since I1, I2 are flat over S[n1]× S[n2] they restrict to
ideal sheaves over S[n1,n2]; we denote them by the same letters.

Proposition 5.4. If h0,1(S) = 0 = h0,2(S) then the 2-step nested Hilbert scheme
S[n1,n2] carries a perfect obstruction theory(

(Ext1
p(I1, I2))

∗
→�S[n1]×S[n2] |S[n1,n2]

)
→ LS[n1,n2] (5.5)

and virtual cycle
[S[n1,n2]]

vir
∈ An1+n2(S

[n1,n2]).

Its push-forward to S[n1]× S[n2] is given by

cn1+n2

(
RHomπ (I1, I2)[1]

)
∈ An1+n2(S

[n1]× S[n2]). (5.6)
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Proof. By (5.2) we may apply Proposition 4.1 to the degeneracy locus Z of
RHomπ (I1, I2) by setting F =RHom(I1, I2). By (5.1) and the Nakayama lemma
F is quasi-isomorphic to a 2-term complex of vector bundles.

As sets Z ∼= S[n1,n2] by (5.2). Over the degeneracy locus Z we have the exact
sequence (3.5) with h0 a rank one locally free sheaf, i.e., a line bundle L . Thus
over Z × S we obtain a map

I1⊗ p∗L→ I2

which is nonzero on any fibre of p. Taking determinants or double duals shows
that L is trivial, h0 ∼=OS[n1,n2] , and we get a map I1→ I2 whose classifying map
gives a morphism Z→ S[n1,n2].

Conversely, since p∗ Hom(I1, I2)=O over S[n1,n2], the latter lies in the degen-
eracy locus of RHomπ (I1, I2), i.e., S[n1,n2] ⊂ Z . It is clear these two maps are
inverses.

The rest follows from Proposition 4.1, simplified as in Proposition 3.11, and the
fact that h0 ∼=OS[n1,n2] . �

Remarks. In Theorem 7.1 we will identify our virtual cycle with that of [Gho-
lampour et al. 2017b]. The formula (5.6) for the push-forward of this cycle was
conjectured in [Gholampour et al. 2017b], proved there for toric surfaces, and
shown to be true for more general surfaces when integrated against some natural
classes.

From (3.9) one can work out that the dual of the first arrow in (5.5) is

Ext1
p(I1, I1)⊕ Ext1

p(I2, I2)
(ι,−ι∗)
−−−−→ Ext1

p(I1, I2),

where ι : I1→ I2 is the natural inclusion. This complex is therefore the virtual
tangent bundle of our perfect obstruction theory on S[n1,n2].

6. Removing H 1(OS) and H 2(OS) on arbitrary surfaces

When h0,1(S) > 0 the virtual cycle constructed in the last section becomes zero
due to a trivial H 1(OS) piece in its obstruction sheaf. And when h0,2(S) > 0
the perfect complex RHomπ (I1, I2) over S[n1]× S[n2] becomes 3-term, as it has
nonzero h2

= Ext2
π (I1, I2).

So we want to modify RHomπ (I1, I2) with H 1(OS) and H 2(OS) terms. The
correct geometric way to do this is to take the product of our ambient space
S[n1] × S[n2] with Jac(S)— we do this in Section 9 when h0,2(S) = 0.4 In this
Section we use a more ad hoc fix which is less geometric but appears to give
stronger results.

4When h0,2(S) > 0 one should do the same with the derived scheme Jac(S) with nonzero obstruc-
tion bundle H2(OS)⊗O. We don’t go this far.
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To describe it, consider the natural composition

H 2(OS)⊗C
OS[n1]×S[n2]

,,

∼= R2π∗O ∼= R2π∗I2 = Ext2
π (O, I2)

ι∗1
��

Ext2
π (I1, I2)

(6.1)

induced by ι1 : I1 → OS[n1]×S[n2]×S . Since Ext3
π (O/I1, I2) = 0 (because π has

relative dimension 2) the composition (6.1) is surjective. Therefore, if there were
a lifting

H 2(OS)⊗O[−2]

** **��

RHomπ (I1, I2) // Ext2
π (I1, I2)[−2],

(6.2)

then the cone on the dotted arrow in (6.2) would have no h2 and so would be
quasi-isomorphic to a 2-term complex of vector bundles. So we could replace
RHomπ (I1, I2) by this cone: they have the same h0 jumping locus S[n1,n2] (this
is proved in Lemma 6.17; it is not true for the h≥1 jumping loci, however) and the
same Chern classes. Assuming we could find a similar lift for H 1(OS)⊗O[−1]
as well, applying Theorem 3.6 to the cone would give the following.

Theorem 6.3. Let S be any smooth projective surface. The 2-step nested Hilbert
scheme S[n1,n2] carries a natural 5 perfect obstruction theory and virtual cycle

[S[n1,n2]]
vir
∈ An1+n2(S

[n1,n2])

whose push-forward to S[n1]× S[n2] is cn1+n2

(
RHomπ (I1, I2)[1]

)
.

Unfortunately the lifting (6.2) does not exist in general, so to prove the Theorem
we will use a trick borrowed from the splitting principle in topology: we pull back
to a bigger space A→ S[n1]× S[n2] where there is such a splitting, then show the
passage does not destroy any information.

For the rest of this section we carry this out, dealing similarly with H 1(OS) at
the same time.

We denote by R≥1π∗O the truncation τ≥1 Rπ∗O. Choosing once and for all a
splitting of R0(OS) into its cohomologies induces a splitting

R≥1π∗O ∼= H 1
[−1] ⊕ H 2

[−2], (6.4)

where
H i
:= H i (OS)⊗OS[n1]×S[n2]

5Naturality will follow from the fact that the lift (6.2) is canonical on restriction to S[n1,n2] ⊂

S[n1]× S[n2]; see (6.10).
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is the trivial vector bundle of rank h0,i (S) over S[n1]× S[n2]. As described above,
we wish to map this to RHomπ (I1, I2) in an appropriate way, which we will do
by factoring through the map

ι∗1 : Rπ∗I2→ RHomπ (I1, I2) (6.5)

induced by ι1 :I1→O. We relate Rπ∗I2 and R≥1π∗O by the commutative diagram
of exact triangles

O
h0
��

O

��

Rπ∗I2 // Rπ∗O

��

// π∗(O/I2)

��

Rπ∗I2 // R≥1π∗O // O[n2]/O

Here O[n2] := π∗(O/I2) is the tautological vector bundle, and the top two rows
induce the bottom one. This gives the exact triangle

O[n2]/O [−1] // Rπ∗I2
// R≥1π∗Ooo (6.6)

which we want to split (to then compose with (6.5)). To write this more explicitly,
we split R≥1π∗O by (6.4) and fix a 2-term locally free resolution F1 → F2 of
Rπ∗I2, with Fi in degree i . Then (6.6) gives

O[n2]/O

0 // R1π∗I2
h1
//

ι2
����

��

_�

F1 // F2
h2
// R2π∗I2 // 0

H 1

φ1

XX

H 2
φ2

cc
(6.7)

where ι2 : I2→O and the left hand column is a short exact sequence. Choices of
splittings φ1, φ2 would induce a splitting of (6.6).

Since the H i are free, splittings (φ1, φ2) of (6.7) exist locally. But unfortunately
we can show they do not exist globally in general. So we use a trick, pulling back
to a bigger space A→ S[n1]× S[n2] where there is a tautological such splitting.

6A. A splitting trick. Inside the total space of the bundle

E := (H 1)∗⊗ R1π∗I2 ⊕ (H 2)∗⊗ F2
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over S[n1] × S[n2] there is a natural affine bundle6 A ⊂ E of pointwise splittings
(φ1, φ2) of (6.7). That is, the surjective map of locally free sheaves

(1⊗ ι2, 1⊗ h2) : E→ End H 1
⊕End H 2

induces a map on the total spaces of the associated vector bundles. Taking the
inverse image of the section (idH1, idH2) defines the affine bundle

ρ :A→ S[n1]× S[n2].

Pulling (6.7) back to A, it now has a canonical tautological splitting8= (φ1, φ2),
giving

8 : ρ∗H 1
[−1]⊕ ρ∗H 2

[−2] → ρ∗Rπ∗I2 (6.8)

as sought in (6.6). That is, composing 8 with (the pullback by ρ∗ of)

ι2 : Rπ∗I2→ R≥1π∗O
gives the identity: ι2 ◦8= id.

So finally we may compose (6.8) with (the pullback by ρ∗ of) ι∗1 (6.5) to give a
map

ι∗1 ◦8 : ρ
∗R≥1π∗O→ ρ∗RHomπ (I1, I2). (6.9)

By construction, on taking h2 it induces (the pullback by ρ∗ of) the surjection (6.1).
Therefore the cone C(ι∗1 ◦8) on (6.9) has no h2 and is quasi-isomorphic to a 2-term
complex of locally free sheaves.

We next give a more explicit description of C(ι∗1◦8). It is nicest over ρ−1(S[n1,n2]),
since on S[n1,n2] the natural inclusion ι : I1→ I2 induces a canonical lift given by
the composition

R≥1π∗O→ Rπ∗O
id
−→ RHomπ (I1, I1)

ι
−→ RHomπ (I1, I2). (6.10)

Lemma 6.11. The cone C(ι∗1 ◦8) can be represented by a 3-term complex of vector
bundles7

ρ∗E0
ρ∗σ1

// ρ∗E1
ρ∗σ2

// ρ∗E2

⊕ ⊕

ρ∗H 1
ψ1

77

ρ∗H 2
ψ2

77
(6.12)

where E0→ E1→ E2 represents RHomπ (I1, I2).

6Modelled on the vector bundle (H1)∗⊗ (O[n2]/O)⊕ (H2)∗⊗ ker(h2). Bhargav Bhatt pointed
out that we could have used the Jouanolou trick here to find an affine bundle whose total space is an
affine variety on which therefore there exist (noncanonical) splittings.

7This can be truncated to a 2-term complex of vector bundles by removing the third term and
replacing the second term by the kernel of the surjection (ρ∗σ2, ψ2).
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Moreover the maps may be chosen so that, on restriction to ρ−1(S[n1,n2]), they
are the pullbacks by ρ∗ of maps on S[n1,n2], and C(ι∗1 ◦8) is the pullback ρ∗C of
the cone C on the composition (6.10).

Remark. Recall that by our notation convention, we are using the same notation
ρ for the restriction of ρ to ρ−1(S[n1,n2]).

The lemma tells us that on ρ−1(S[n1,n2]), the explicit resolution (6.12) can be
taken to be constant on the fibres of ρ— i.e., independent on the choice of lifts
(φ1,φ2) of (6.7) — since, after composition with ι∗1, all lifts become quasi-isomorphic
to the canonical one (6.10) on ρ−1(S[n1,n2]).

Proof. First we show that C(ι∗1 ◦8) restricted to ρ−1(S[n1,n2]) is quasi-isomorphic
to ρ∗C . Consider the diagram

ρ∗R≥1π∗O //

8

��

ρ∗Rπ∗O
id
// ρ∗ RHomπ (I1, I1)

ι
// ρ∗ RHomπ (I1, I2)

ρ∗Rπ∗I2

ι2

88

ι∗1

11XX

on ρ−1(S[n1,n2]), where we have the canonical map ι : ρ∗I1 ↪→ ρ∗I2. Here the
curved arrow is from (6.6) and makes the first triangle commute. Since by con-
struction 8 is a right inverse to this map, the first triangle also commutes if we start
at the top left corner. Since the second triangle also commutes, everything does,
which means that ι∗18 equals the composition of the arrows along the top row.

Next we resolve RHomπ (I1, I2)
∨ by a complex of very negative vector bun-

dles G•. This means that they behave like projectives in the abelian category of
coherent sheaves. In particular, by making them sufficiently negative, we can ar-
range that the map (ι∗18)

∨ can be represented by a genuine map of complexes

ρ∗G•→ ρ∗(H 1)∗[1]⊕ ρ∗(H 2)∗[2], (6.13)

and, on S[n1,n2], the dual of the composition (6.10) is represented by a genuine map
of complexes

G•→ (H 1)∗[1]⊕ (H 2)∗[2]. (6.14)

On restriction to ρ−1(S[n1,n2])⊂A, we have shown that the first map (6.13) is quasi-
isomorphic to the pullback by ρ∗ of the second (6.14). Again we may assume we
took the Gi sufficiently negative that — by the usual proof that quasi-isomorphic
maps of complexes of projectives are homotopic — there is a homotopy between
(6.13) and ρ∗ (6.14). This homotopy is a pair of maps

ρ∗G0
→ ρ∗(H 1)∗, ρ∗G−1

→ ρ∗(H 2)∗,
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over ρ−1(S[n1,n2]). By the sufficient negativity of the Gi they can be extended8 to
maps on all of A. Modifying (6.13) by this homotopy, dualising and then truncating
(G•)∨ to a 3-term complex now gives (6.12). �

So C(ι∗1 ◦8) is quasi-isomorphic to the 2-term complex of vector bundles

ρ∗(E0⊕ H 1)
σ
−→ F, (6.15)

where F is defined to be the kernel

0→ F→ ρ∗(E1⊕ H 2)→ ρ∗E2→ 0. (6.16)

And over ρ−1(S[n1,n2]), the complex (6.15) can be seen as a pull back by ρ∗.

Lemma 6.17. The h0 jumping locus of C(ι∗1 ◦8) is ρ−1(S[n1,n2])— the same as
that of ρ∗RHomπ (I1, I2).

Proof. Given any map T
f
−→A→ S[n1]× S[n2], we denote the basechange of π by

πT : T × S→ T .

We denote the pull backs of I1, I2 to T × S by the same notation. Pulling C(ι∗1 ◦8)
back to T , the long exact sequence associated to the cone becomes

0→HomπT
(I1, I2)→ h0( f ∗C(ι∗1 ◦8)

)
→ R1πT∗O

ι∗18
−−→ Ext1

πT
(I1, I2).

It remains to prove that the last arrow is an injection, since that implies

HomπT
(I1, I2)∼= h0( f ∗C(ι∗1 ◦8)

)
on any T , to which we can apply Lemma 3.3 to conclude.

The last arrow is the composition ι∗1 ◦8 in the diagram

R1πT∗O
8

,,

R1πT∗I2ι2

oo

ι∗1
��

Ext1
πT
(I1,O)
��

ι∗1

_�

Ext1
πT
(I1, I2)

ι2
oo

To prove it is an injection it is sufficient to do so after composing with ι2 along the
bottom. Since the diagram commutes and 8 is a right inverse of the ι2 along the
top, this is equivalent to the left hand ι∗1 being injective. But this follows from the
vanishing of Ext1

πT
(O/I1,O). �

8For N � 0 the restriction HomA(G(−N ), F)→ Hom
ρ−1(S[n1,n2])(G(−N ), F) is onto for lo-

cally free F and G.
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For brevity we set Z := S[n1,n2]. By Lemmas 6.17 and 6.11 we can see ρ−1(Z)
as the degeneracy locus of any of the four maps

ρ∗σ1 : ρ
∗E0→ ρ∗E1, (6.18)

(ρ∗σ1, ψ1) : ρ
∗(E0⊕ H 1)→ ρ∗E1, (6.19)(

ρ∗σ1 ψ1

0 0

)
: ρ∗(E0⊕ H 1)→ ρ∗(E1⊕ H 2), (6.20)

σ : ρ∗(E0⊕ H 1)→ K , (6.21)

where

K := ker
(
ρ∗(E1⊕ H 2)→ ρ∗E2

)
.

These give rise to four different perfect obstruction theories for ρ−1(Z). The one
we are interested in is the fourth (6.21), but we will use the third (6.20) and the
second (6.19) to relate this to the first (6.18) which has the desirable property that
it is ρ-invariant: it is pulled back from a perfect obstruction theory on Z .

By Lemma 6.11 we can write each of (6.18)–(6.21) as the degeneracy locus of
a map

s : ρ∗A→ B,

which on restriction to ρ−1(Z) becomes a pullback from Z — i.e., there exists a
bundle B ′ on Z and s ′ : A|Z → B ′ such that

B|ρ−1(Z)
∼= ρ

∗B ′ and s|ρ−1(Z)
∼= ρ

∗s ′. (6.22)

Now apply Section 3 with r0− r = 1 to this. We see ρ−1(Z) as being cut out of

ρ∗P(A)∼= P(ρ∗A)
q
−→A

by the induced section s̃ (3.7) of q∗B(1), inducing the perfect obstruction theory
(3.8)

q∗B∗(−1)|ρ−1(Z)

s̃
��

d s̃
// �ρ∗P(A)|ρ−1(Z)

ρ∗(I/I 2)
d

// �ρ∗P(A)|ρ−1(Z)

(6.23)

Here I is the ideal of Z ⊂ P(A), so the bottom row is the truncated cotangent
complex Lρ−1(Z) .
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The bottom arrow factors through ρ∗�P(A)|ρ−1(Z), so using (6.22) the diagram
factors through

q∗ρ∗(B ′)∗(−1)|ρ−1(Z)

s̃
��

d s̃
// ρ∗�P(A)|ρ−1(Z)

ρ∗(I/I 2)
d

// ρ∗�P(A)|ρ−1(Z)

(6.24)

All of the sheaves here are pullbacks by ρ∗. Although on ρ−1(Z) the map s is
also a pullback (6.22), that does not immediately mean that the maps in the above
diagram are pulled back — they use the restriction of s not just to ρ−1(Z) but to
its scheme theoretic doubling defined by the ideal ρ∗ I 2.

However, in the first set-up (6.18) the maps clearly are pulled back. Using the
second (6.19) and third (6.20) we will prove the same is true for the fourth (6.21),
so that it descends to give a perfect obstruction theory for Z independent of the
(φ1, φ2) choices built into A.

Proposition 6.25. Using the description (6.21) of ρ−1(Z), the resulting diagram
(6.24) is ρ-invariant: it is the pullback by ρ∗ of a perfect obstruction theory
F •→ LZ for Z = S[n1,n2].

Proof. Applying (6.24) to the first set-up (6.18) gives

ρ∗q∗E∗1(−1)|ρ−1(Z)

ρ∗σ̃1
��

ρ∗d(σ̃1)
// ρ∗�P(E0)

|ρ−1(Z)

ρ∗(I/I 2)
d

// ρ∗�P(E0)
|ρ−1(Z)

where I is the ideal of Z ⊂ P(E0).
Applied instead to the second (6.19), we get the diagram

ρ∗q∗E∗1(−1)|ρ−1(Z)

˜(ρ∗σ1,ψ1)
��

d ˜(ρ∗σ1,ψ1)
// ρ∗�

P(E0⊕H1)
|ρ−1(Z)

J/J 2 d
// ρ∗�

P(E0⊕H1)
|ρ−1(Z)

(6.26)

where J is the ideal of ρ−1(Z)⊂P(ρ∗E0⊕H 1). (Throughout this proof we denote
q∗H i, ρ∗H i and q∗ρ∗H i simply by H i .) This inclusion factors

ρ−1(Z)⊂ P(ρ∗E0)⊂ P(ρ∗E0⊕ H 1).

The first has conormal sheafρ∗I/I 2, while the second has conormal bundle(H 1)∗(−1).
The splitting of ρ∗E0⊕ H 1 induces a splitting

�P(ρ∗E0⊕H1)|ρ−1(Z)
∼=�P(ρ∗E0)|ρ−1(Z)⊕ H(−1)|ρ−1(Z)
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and so

J/J 2
= ρ∗(I/I 2)⊕ (H 1)∗(−1).

When substituted into (6.26) it becomes

ρ∗q∗E∗1(−1)|ρ−1(Z)

(ρ∗σ̃1, ψ
∗

1 )
��

(ρ∗d σ̃1, ψ
∗

1 )
// ρ∗�P(E0)

|ρ−1(Z)⊕ (H 1)∗(−1)

ρ∗(I/I 2)⊕ (H 1)∗(−1)
(d,id)

// ρ∗�P(E0)
|ρ−1(Z)⊕ (H 1)∗(−1)

(6.27)

The key point of this proof is that the above diagram is pulled back by ρ∗ from a
similar diagram on Z . This is clear of all the bundles involved, and also clear of
the first summand of the upper and left hand arrows. But these are the only parts
of the arrows which depend on the thickening of ρ−1(Z). The other summands
ψ∗1 depend only on their restriction to ρ−1(Z), where they are also pull backs by
Lemma 6.11.

So the second degeneracy locus description of ρ−1(Z) (6.19) gives rise to a
diagram which descends to (a perfect obstruction theory on) Z . For the third de-
scription (6.20) we add an extra (H 2)∗(−1) summand to the diagram (6.27) with
all maps from it zero:

ρ∗q∗(E1⊕ H 2)∗(−1)|ρ−1(Z)

(ρ∗σ̃1, ψ
∗

1 ) ⊕ (0,0)
��

(ρ∗d σ̃1, ψ
∗

1 )

⊕ (0,0)
// ρ∗�P(E0)

|ρ−1(Z)⊕ (H 1)∗(−1)

ρ∗(I/I 2)⊕ (H 1)∗(−1)
(d,id)

// ρ∗�P(E0)
|ρ−1(Z)⊕ (H 1)∗(−1)

(6.28)

This is therefore also a pullback by ρ∗. Finally, since (6.12) is a complex, the map
(6.20) takes values in K ⊂ ρ∗(E1⊕ H 2). Thus the equation cutting out ρ−1(Z)
takes values in q∗K (1)⊂ q∗ρ∗(E1⊕ H 2)(1). Therefore the upper horizontal and
left-hand vertical arrows of (6.28) factor through q∗K ∗(−1), giving

q∗K ∗(−1)|ρ−1(Z)

��

// ρ∗�P(E0)
|ρ−1(Z)⊕ (H 1)∗(−1)

ρ∗(I/I 2)⊕ (H 1)∗(−1)
(d,id)

// ρ∗�P(E0)
|ρ−1(Z)⊕ (H 1)∗(−1)

(6.29)

which is the diagram (6.24) applied to the fourth degeneracy locus (6.21).
By Lemma 6.11, both K and its inclusion into ρ∗E1⊕ H 2 are ρ-invariant. Thus

the quotient diagram (6.29) of the diagram (6.28) is also a pull back by ρ∗. �
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Proof of Theorem 6.3. Applying (6.23) (with A= E0⊕H 1 and B= K ) to the fourth
description (6.21) induces a perfect obstruction theory on ρ−1(S[n1,n2]). And dia-
gram (6.24) applied to (6.21) gives (6.29), which descends — by Proposition 6.25 —
to give a compatible perfect obstruction theory on S[n1,n2]. This compatibility
means they satisfy

ρ∗[S[n1,n2]]
vir
= [ρ−1(S[n1,n2])]vir

∈ AdimA−k(A).

By Theorem 3.6 the second term is 1r0−r
r1−r

(
c(K − (ρ∗E0⊕ H 1))

)
. But the Chern

classes of K − (ρ∗E0⊕ H 1) are the same as those of ρ∗(−E0+ E1− E2) and so
those of ρ∗RHomπ (I1, I2)[1]. Thus

ρ∗[S[n1,n2]]
vir
= ρ∗1

r0−r
r1−r

(
c(RHomπ (I1, I2)[1])

)
∈ AdimA−k(A).

Here r0− r = 1 is the rank of ker(ρ∗E0→ ρ∗E1) over the degeneracy locus, and

r1− r0 = rank K − rank E0− h1(OS)

= rank E1+ h2(OS)− rank E2− rank E0− h1(OS)

=−χ(I1, I2)+χ(OS)− 1

= n1+ n2− 1,

so r1−r = n1+n2 and k= (r0−r)(r1−r)= n1+n2. Therefore the above becomes

ρ∗[S[n1,n2]]
vir
= ρ∗cn1+n2

(
RHomπ (I1, I2)[1]

)
∈ AdimA−n1−n2(A).

But since ρ is an affine bundle,

ρ∗ : An1+n2(S
[n1]× S[n2])→ AdimA−n1−n2(A) (6.30)

is an isomorphism [Kresch 1999, Corollary 2.5.7], so the result follows. �

Over the degeneracy locus ρ−1(S[n1,n2]), our complex C(ι∗18) has

h0
=O,

trivialised by the inclusion ι : I1 ↪→ I2. And h1
[−1] is the cone on

h0(C(ι∗18))∼=Oρ−1 S[n1,n2]
h0

−→ C(ι∗18)|ρ−1 S[n1,n2] .

By Lemma 6.11 and the description (6.10), this is

RHomp(I1, I2)0 := Cone
(
Rp∗O

ι·id
−−→ RHomp(I1, I2)

)
, (6.31)

where we recall that p is the basechange of π to S[n1,n2] ⊂ S[n1]× S[n2]. Thus

h1
= Ext1

p(I1, I2)0. (6.32)
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Theorem 3.6 shows the perfect obstruction theory of a degeneracy locus has virtual
tangent bundle

TA|ρ−1(Z)→ (h0)∗⊗ h1.

As in the proof of Theorem 6.3 this descends to give our perfect obstruction theory
on Z = S[n1,n2], yielding the following.

Corollary 6.33. The perfect obstruction theory on S[n1,n2] of Theorem 6.3 can be
written, in the notation of (6.31), as{

TS[n1]×S[n2] |S[n1,n2]→ Ext1
p(I1, I2)0

}∨
→ LS[n1,n2] . (6.34)

7. k-step nested Hilbert schemes

For n1 ≥ n2 ≥ · · · ≥ nk , the k-step Hilbert scheme

S[n1,n2,...,nk ] :=
{

I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆OS, length(OS/Ii )= ni
}

can be seen inside S[n1]× · · ·× S[nk ] as the intersection of the (k−1)-degeneracy
loci {

Hom(Ii , Ii+1)= C
}
, i = 1, 2, . . . , k− 1,

where the maps in the complexes RHomπ (Ii , Ii+1) drop rank.
So when H≥1(OS)=0 we can employ the exact same method as in Proposition 5.4,

using k−1 sections of tautological bundles on a (k−1)-fold fibre product of relative
Grassmannians, to describe a perfect obstruction theory, virtual cycle, and product
of Thom–Porteous terms to compute its push-forward.

For general S, possibly with H≥1(OS) 6= 0, we can replace the complexes
RHomπ (Ii , Ii+1) with their modifications C(ι∗i ◦8i ) of (6.9) after pulling back to
an affine bundle of splittings. Then we use the same method as in Theorem 6.3 to
produce the following result. We use the projections

π : S[n1]× · · ·× S[nk ]× S→ S[n1]× · · ·× S[nk ],

p : S[n1,...,nk ]× S→ S[n1,...,nk ],

and, when I ⊂ J , the same Ext(I, J )0 notation as in (6.31) and (6.32).

Theorem 7.1. Fix a smooth complex projective surface S. Via degeneracy loci
the k-step nested Hilbert scheme S[n1,...,nk ] inherits a perfect obstruction theory
F •→ LS[n1,...,nk ] with virtual tangent bundle

(F •)∨ ∼=
{
TS[n1] ⊕ · · ·⊕ TS[nk ]→ Ext1

p(I1, I2)0⊕ · · ·⊕ Ext1
p(Ik−1, Ik)0

}
,
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where the arrow is the obvious direct sum of the maps (6.34). This is isomorphic
to the virtual tangent bundle

Cone
{( k⊕

i=1

RHomp(Ii , Ii )

)
0
→

k−1⊕
i=1

RHomp(Ii , Ii+1)

}
of the perfect obstruction theory of [Gholampour et al. 2017b] or Vafa–Witten
theory [Tanaka and Thomas 2017] when the latter are defined. The push-forward
of the resulting virtual cycle

[S[n1,...,nk ]]
vir
∈ An1+nk (S

[n1,...,nk ])

to S[n1]× · · ·× S[nk ] is given by the product

cn1+n2

(
RHomπ (I1, I2)[1]

)
∪ · · · ∪ cnk−1+nk

(
RHomπ (Ik−1, Ik)[1]

)
.

Remark. Note that we are not claiming the two perfect obstruction theories are the
same, although they undoubtedly are. Proving this would involve identifying the
map F •→ L produced by our degeneracy locus construction with the one induced
by Atiyah classes in [Gholampour et al. 2017a; Tanaka and Thomas 2017]. We
do not need this because the virtual cycles depend only on the scheme structure of
S[n1,...,nk ] and the K-theory class of F •.

Proof. All that is left to do is relate the two virtual tangent bundles. The virtual
tangent bundle of [Gholampour et al. 2017b] is the cone on the bottom row of the
diagram

Rp∗O⊕k
i=1 id

��⊕k
i=1 RHomp(Ii , Ii ) //

��

⊕k−1
i=1 RHomp(Ii , Ii+1)

(⊕k
i=1 RHomp(Ii , Ii )

)
0

//
⊕k−1

i=1 RHomp(Ii , Ii+1)

(7.2)

Here the left hand column is an exact triangle which defines the term in the lower
left corner. The central horizontal arrow acts on the j-th summand (1≤ j ≤ k) of
the left-hand side by taking it to (0, . . . , 0,−i∗j−1, i j , 0, . . . , 0) on the right-hand
side, where i j appears in the j-th position and is the canonical map I j ↪→ I j+1.
(For j = 1 we ignore the −i∗j−1 term to get (i1, 0, . . . , 0); for j = k we ignore
the i j term to get (0, . . . , 0,−i∗k−1).) This has zero composition with

⊕k
i=1 id, so

induces the lower horizontal arrow.
The identity map from (Rp∗O)⊕k

= Rp∗O⊗Ck to the central left-hand term
of (7.2) induces a map from Rp∗O⊗ (Ck/C) to the bottom left-hand term, where
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C sits in Ck via (1, 1, . . . , 1). Projecting the elements

(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1, 0)

of Ck defines a basis in Ck/C and so identifies Rp∗O⊗ (Ck/C)∼= (Rp∗O)⊕(k−1).
Using our description of the central arrow, this identifies the induced map

Rp∗O⊗ (Ck/C)→

k−1⊕
i=1

RHomp(Ii , Ii+1)

with

(Rp∗O)⊕(k−1) diag(i1,i2,··· ,ik−1)
−−−−−−−−−−→

k−1⊕
i=1

RHomp(Ii , Ii+1).

Taking the cone on these two maps from (Rp∗O)⊕(k−1) to the two entries on the
bottom row of (7.2) shows the bottom row is quasi-isomorphic to

k⊕
i=1

RHomp(Ii , Ii )0→

k−1⊕
i=1

RHomp(Ii , Ii+1)0

in the notation of (6.31). Each of these complexes has cohomology only in degree 1,
so the virtual tangent bundle of [Gholampour et al. 2017b] is the cone on

k⊕
i=1

Ext1
p(Ii , Ii )0→

k−1⊕
i=1

Ext1
p(Ii , Ii+1)0

in the notation of (6.32). On the j-th summand on the left the arrow is

(0, . . . , 0,−i∗j−1, i j , 0, . . . , 0).

But this is (F •)∨, as required.
In [Gholampour et al. 2017a] it is shown that the perfect obstruction theory of

[Gholampour et al. 2017b] is a summand of the obstruction theory one gets from
localised local DT theory. The piece one has to remove is explained in terms of
a more global perfect obstruction theory arising in Vafa–Witten theory in [Tanaka
and Thomas 2017]. �

8. Generalised Carlsson–Okounkov vanishing

Theorem 6.3 expresses [S[n1,n2]]
vir as a degeneracy class. This allows us to give a

topological proof of the following result of Carlsson and Okounkov [2012], which
we will then generalise below.

Corollary 8.1. Let S be any smooth projective surface. Over S[n1]× S[n2] we have
the vanishing

cn1+n2+i
(
RHomπ (I1, I2)[1]

)
= 0, i > 0. (8.2)
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Proof. We apply the higher Thom–Porteous formula (3.12) to our modified com-
plex C(ι∗1 ◦8) (6.9) on A. It has degeneracy locus ρ−1(S[n1,n2]), over which h0

is just O, trivialised by the tautological inclusion I1 ↪→ I2 over the nested Hilbert
scheme. Hence (3.12) gives

cr1−r0+i+1
(
C(ι∗1 ◦8)[1]

)
= 0

for i > 0, where r1− r0 = n1+ n2− 1.
Since C(ι∗1 ◦8)[1] only differs from ρ∗RHomπ (I1, I2)[1] by some trivial bun-

dles H 1, H 2, this gives

ρ∗cn1+n2+i
(
RHomπ (I1, I2)[1]

)
= 0.

But ρ∗ : An1+n2−i (S[n1]× S[n2])→ AdimA−n1−n2−i (A) is an isomorphism [Kresch
1999, Corollary 2.5.7], which gives the result. �

The rest of this section is devoted to proving the following generalisation.

Theorem 8.3. Let S be any smooth projective surface. For any curve class β ∈
H2(S,Z), any Poincaré line bundle L→ S×Picβ(S), and any i > 0,

cn1+n2+i
(
Rπ∗L−RHomπ (I1, I2⊗L)

)
= 0 (8.4)

on S[n1]× S[n2]×Picβ(S).

To prove this we will work with more general nested Hilbert schemes of sub-
schemes S⊃ Z1⊇ Z2, by allowing Z1 to have dimension ≤ 1 instead of just 0. Sep-
arating out its divisorial and 0-dimensional parts, we are then led, for β ∈ H2(S,Z),
to the nested Hilbert scheme S[n1,n2]

β . As a set it is

S[n1,n2]
β

:=
{

I1(−D)⊂ I2 ⊂OS : length(OS/Ii )= ni , D Cartier with [D] = β
}
. (8.5)

As a scheme it represents the functor taking schemes B to families of nested ideals
I1(−D) ↪→ I2 ↪→ OS×B , flat over B. Here D is a Cartier divisor, the OS/Ii are
finite over B of length ni , and — on restriction to any closed fibre Sb —Db has
class β and the maps are still injections.

Setting β = 0 and n1 ≥ n2 recovers the punctual nested Hilbert scheme (5.3).
Instead setting n1 = 0 = n2 gives the Hilbert scheme of curves Sβ , which fibres
over Picβ(S) 3 L with fibres P(H 0(L)).

In the sequel [Gholampour and Thomas 2019] we will construct a natural perfect
obstruction theory and virtual cycle on S[n1,n2]

β for any β. Here we only sketch a
less general construction for classes β� 0 since we do not actually need the virtual
class, only the degeneracy locus expression, in order to prove Theorem 8.3.
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8A. Another degeneracy locus construction. So fix β � 0 sufficiently positive
that H≥1(L)= 0 for all L ∈ Picβ(S). The Abel–Jacobi map AJ : Sβ→ Picβ(S) is
then a projective bundle. Let D be the universal curve in Sβ× S (or any basechange
thereof) and as usual let π denote any projection down S. Then

RHomπ (I1(−D),O) over S[n1]× S[n2]× Sβ

has h2
= 0. Also h0

= π∗O(D) and

h1
= Ext1

π (I1(−D),O)∼= Ext2
π (OZ1(−D),O)∼=

[
(KS(−D))[n1]

]∗
,

with the last isomorphism9 given by Serre duality down the fibres of π .
Thus RHomπ (I1(−D),O) can be trimmed to a 2-term complex of vector bun-

dles E0→ E1 sitting in an exact sequence

0→ π∗O(D)→ E0→ E1→
[
(KS(−D))[n1]

]∗
→ 0,

all of whose terms are locally free.
So just as in Section 6A we may work on an affine bundle ρ :A→ S[n1]×S[n2]×Sβ

over which this splits canonically, giving an isomorphism

ρ∗RHomπ (I1(−D),O)∼= ρ∗π∗O(D)⊕ ρ∗
[
(KS(−D))[n1]

]∗
[−1]

which induces the identity on cohomology sheaves. From now on we shall omit
ρ∗ from our notation and work as if this splitting holds on S[n1]× S[n2]× Sβ since
we know that ρ∗ induces an isomorphism on Chow groups (6.30).

In particular we get an induced composition

RHomπ (I1(−D), I2) //

9

,,

RHomπ (I1(−D),O) // π∗O(D)

��

π∗O(D)
sD ·O

(8.6)

where sD :O→π∗O(D) is induced by adjunction from the section sD :π∗O→O(D)
cutting out D. At a closed point (I1, I2, D) of S[n1] × S[n2] × Sβ , the horizontal
composition along the top of (8.6) acts on h0 as follows. It takes a nonzero element
of Hom(I1(−D), I2)— i.e., a point of the nested Hilbert scheme up to scale — to
its divisorial part in H 0(O(D)); this is injective. The vertical map then compares

9Given any line bundle L on S, there is a tautological rank n1 vector bundle

L[n1] := π∗
[
(OS[n1] � L)⊗OZ1

]
over S[n1] whose fibre over Z1 ∈ S[n1] is 0(L|Z1). Here we are using the obvious family generalisa-
tion applied to the line bundle KS(−D) over S× Sβ .



660 AMIN GHOLAMPOUR AND RICHARD P. THOMAS

this to the divisor D. Thus h0(9) has one dimensional kernel O (canonically
trivialised by sD) at precisely the points of the nested Hilbert scheme

S[n1,n2]
β

ι
↪−→ S[n1]× S[n2]× Sβ, (8.7)

and the kernel is never any bigger. Said differently, the 2-term complex of vector
bundles

Cone(9)[−1]

drops rank by 1 on the subset (8.7), and no further. By working very similar to
that in Proposition 5.4 one can easily show that (8.7) also describes the degeneracy
locus scheme-theoretically, inducing a perfect obstruction theory on S[n1,n2]

β . By
the Thom–Porteous formula of Proposition 3.11 the resulting virtual cycle therefore
satisfies

ι∗[S
[n1,n2]
β ]

vir
= cb(Cone(9)),

where b = χ(Cone(9))+ 1= n1+ n2. More generally, by (3.12),

ι∗
(
c1((h0)∗)i ∩ [S[n1,n2]

β ]
vir)
= cn1+n2+i (Cone(9)).

Since we have already observed that h0(Cone(9)[−1]) ∼= O is trivialised by the
restriction of sD to (8.7), this gives

cn1+n2+i
(
Rπ∗O(D)−RHomπ (I1(−D), I2)

)
= 0 on S[n1]× S[n2]× Sβ (8.8)

for β� 0 and all i > 0. Notice how close this is to the result claimed in Theorem 8.3.

Proof of Theorem 8.3.. We want to descend (8.8) from Sβ to Picβ(S) and then
extend from β� 0 to all β ∈ H2(S,Z). We will use the formula of [Manivel 2016,
Proposition 1],

cn+i (F ⊗M)=
n+i∑
j=0

( rank F− j
n+i− j

)
c j (F)c1(M)n+i− j ,

for any perfect complex F and line bundle M , using the usual conventions for nega-
tive binomial coefficients. Applying this to F = Rπ∗O(D)−RHomπ (I1(−D), I2)

of rank n := n1+ n2 gives

cn1+n2+i (F ⊗M)=
n1+n2+i∑

j=n1+n2+1

( n1+n2− j
n1+n2+i− j

)
c j (F)c1(M)n1+n2+i− j , (8.9)

because for smaller j the inequalities n1+ n2+ i − j > n1+ n2− j ≥ 0 force the
binomial coefficient to vanish. By the vanishing (8.8) this gives

cn1+n2+i (F ⊗M)= 0 (8.10)
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for i > 0 and any line bundle M on S[n1]×S[n2]×Sβ . For any Poincaré line bundle L
pulled back from S×Picβ(S), the line bundle L(−D) is trivial on each S fibre and
is the pullback π∗M of a line bundle M on S[n1]× S[n2]× Sβ . (In fact M =O(−1)
is the tautological bundle if we consider Sβ→ Picβ(S) to be the projectivisation
of the vector bundle π∗L.) Substituting into (8.10) gives

cn1+n2+i
(
Rπ∗L−RHomπ (I1, I2⊗L)

)
= 0

on S[n1] × S[n2] × Sβ . Since this is pulled back from S[n1] × S[n2] × Picβ(S) the
Leray–Hirsch theorem shows we have the same vanishing there.

So we have proved the vanishing (8.4) for β� 0, and we need to generalise it to
all β ∈ H2(S,Z). We write the left-hand side of (8.4) on S[n1]× S[n2]×Picβ(S) in
terms of characteristic classes using the Grothendieck–Riemann–Roch theorem ap-
plied to π . The result is an H 2(n1+n2+i)

(
S[n1]× S[n2]×Picβ(S)

)
-valued polynomial

expression in the variables

(β, id, γ ) ∈ H 2(S)⊕ H 1(S)⊗ H 1(S)∗⊕ H 2(Picβ(S))

c1(L) ∈ H 2(Picβ(S)× S).

We have shown that this polynomial vanishes on an open cone of classes β � 0
(for any γ ). It therefore vanishes for all β. �

Corollary 8.11. For any curve class β, let D ⊂ S × Sβ be the universal divisor.
Then for i > 0

cn1+n2+i
(
Rπ∗O(D)−RHomπ (I1(−D), I2)

)
= 0 on S[n1]× S[n2]× Sβ .

Proof. By [Dürr et al. 2007, Lemma 2.15] we can identify the Hilbert scheme Sβ
with the projective cone P∗(R2π∗L∗(KS)) of quotient line bundles of R2π∗L∗(KS),
in such a way that its natural projection to Picβ(S) is given by the Abel–Jacobi
morphism, and O(D)∼= AJ∗ L⊗OP∗(1) over S× Sβ . Now substitute

F := Rπ∗L−RHomπ (I1, I2⊗L), M :=OP∗(1)

over S[n1]× S[n2]× Sβ into (8.9). Each of the terms on the right-hand side vanishes
for any β by Theorem 8.3. �

Remark. This result suggests that Rπ∗O(D)−RHomπ (I1, I2(D)) has the same
K-theory class as an honest vector bundle of rank n1+n2 on S[n1]× S[n2]× Sβ . We
show in [Gholampour and Thomas 2019, Equation 4.27] that this is actually true
after we pull back an affine bundle over S[n1] × S[n2] × Sβ . Therefore its higher
Chern classes are zero after pulling back to this affine bundle. Since this pullback is
an isomorphism on Chow groups [Kresch 1999, Corollary 2.5.7], this gives another
explanation for the vanishing of Corollary 8.11.
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Aravind Asok kindly pointed out that it is possible that any bundle on the affine
bundle is pulled back from the base; this would prove

Rπ∗O(D)−RHomπ (I1, I2(D))

is represented by a bundle on S[n1]× S[n2]× Sβ .

9. Alternative approach to the virtual cycle using Jac(S)

Instead of removing H 1(OS) by hand, as we did in Section 6, we can do it geo-
metrically by replacing the moduli space S[n] of ideal sheaves by the moduli space
S[n]× Jac(S) of rank-1 torsion free sheaves.

Let L be a Poincaré line bundle over S× Jac(S), and let

L1,L2→ [S[n1]× Jac(S)]× [S[n2]× Jac(S)]× S

be π∗25L and π∗45L respectively, where πi j is projection to the product of the i-th
and j-th factors.

Then the degeneracy locus of the 2-term complex10

RHomπ (I1⊗L1, I2⊗L2) (9.1)

is
S[n1,n2]× Jac(S)⊂ [S[n1]× Jac(S)]× [S[n2]× Jac(S)],

where the map is the product of the usual inclusion S[n1,n2] ⊂ S[n1]× S[n2] with the
diagonal map Jac(S)⊂ Jac(S)× Jac(S).

Therefore, just as in Sections 3 and 5, S[n1,n2] × Jac(S) inherits a perfect ob-
struction theory

(Ext1
p(I1, I2))

∗
→�S[n1]×Jac(S)×S[n2]×Jac(S)

∣∣
S[n1,n2]×Jac(S)

(note the Li cancel over the diagonal Jac(S)). And the resulting virtual cycle,
pushed forward to S[n1]× Jac(S)× S[n2]× Jac(S), is

cn1+n2+g
(
RHomπ (I1⊗L1, I2⊗L2)

)
, g := h0,1(S).

Everything so far has been invariant under the obvious diagonal action of Jac(S).
Taking a slice by pulling back to {OS} × Jac(S) ⊂ Jac(S)× Jac(S) gives the fol-
lowing.

Proposition 9.2. There is a perfect obstruction theory(
Ext1

p(I1, I2)
)∗
→�S[n1]×S[n2]×Jac(S)

∣∣
S[n1,n2]×{OS}

(9.3)

10It is only 2-term if pg(S) = 0. If pg(S) > 0 then we can pull back to an affine bundle where
H2(OS) splits off, as in Section 6A.
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on S[n1,n2]. The push-forward of the resulting virtual cycle

[S[n1,n2]]
vir
∈ An1+n2(S

[n1,n2])

to S[n1]× S[n2]× Jac(S) is

cn1+n2+g
(
RHomπ (I1, I2⊗L)[1]

)
. (9.4)

Remark. The canonical section

O→Hom(I1, I2)→ RHom(I1, I2)

over S[n1,n2]× S gives
R1 p∗O→ Ext1

p(I1, I2). (9.5)

Dualising gives (
Ext1

p(I1, I2)
)∗
→ H 1(OS)

∗
⊗OS[n1,n2]

∼=�Jac(S).

One can show that this map is the projection of (9.3) to �Jac(S).
So letting Ext1

p(I1, I2)0 denote the cokernel of the injection (9.5), we can sim-
plify the perfect obstruction theory (9.3) to(

Ext1
p(I1, I2)0

)∗
→�S[n1]×S[n2] |S[n1,n2],

recovering the one of Section 6 by Corollary 6.33.

Remark. The degeneracy locus S[n1,n2] of Proposition 9.2 lies in

S[n1]× S[n2]×{OS}
j
↪→ S[n1]× S[n2]× Jac(S), (9.6)

and (9.4) gives an expression for the push-forward of the virtual cycle to the
right-hand side of (9.6). It would be nice to deduce a similar expression for the
push-forward of the virtual cycle to the left-hand side of (9.6) (as we managed in
Theorem 6.3 using the ad hoc method of Section 6A to remove H 1(OS)). The more
geometric method of this section does not seem to give such an expression directly.
But we can deduce it from (9.4) if we use the generalised Carlsson–Okounkov
vanishing result of Theorem 8.3. This allows us to write

cn1+n2+g
(
RHomπ (I1, I2⊗L)[1]

)
= cg(Rπ∗L[1]) · cn1+n2

(
Rπ∗L−RHomπ (I1, I2⊗L)

)
(9.7)

on S[n1]× S[n2]× Jac(S), because the higher Chern classes of

Rπ∗L−RHomπ (I1, I2⊗L)

vanish. (The lower Chern classes do not feature because they are multiplied by
c>g(Rπ∗(L)) which are pulled back from Jac(S) of dimension g and so are zero.)



664 AMIN GHOLAMPOUR AND RICHARD P. THOMAS

Setting n1 = 0= n2 in (9.4) shows cg(Rπ∗L[1]) is Poincaré dual to the origin
OS ∈ Jac(S) (all multiplied by S[n1]× S[n2]). Since L and Rπ∗L become trivial on
this locus, the right hand side of (9.7) becomes

j∗cn1+n2

(
RHomπ (I1, I2)[1]

)
,

using the push-forward map (9.6). Combined again with (9.4) this recovers the
result of Theorem 6.3, that the virtual cycle’s push-forward to S[n1] × S[n2] is
cn1+n2

(
RHomπ (I1, I2)[1]

)
. This argument would only not be circular, however,

if we could prove the generalised Carlsson–Okounkov vanishing of Theorem 8.3
without using Theorem 6.3.
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the old notes [Maulik and Okounkov], which describe the local DT obstruction the-
ory [Gholampour et al. 2017a] on the nested Hilbert scheme, and a K-theoretic ver-
sion of the Carlsson–Okounkov operator on toric surfaces. With hindsight it seems
that Okounkov et al. probably knew of some form of relationship between the
virtual class and the Thom–Porteous formula for toric surfaces with H≥1(OS)= 0,
even if they’re too modest to admit it now.
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Almost C p Galois representations and vector bundles

Jean-Marc Fontaine

Let K be a finite extension of Qp and GK the absolute Galois group. Then GK

acts on the fundamental curve X of p-adic Hodge theory and we may consider
the abelian category M(GK ) of coherent OX -modules equipped with a continu-
ous and semilinear action of GK .

An almost Cp-representation of GK is a p-adic Banach space V equipped
with a linear and continuous action of GK such that there exists d ∈ N, two
GK -stable finite dimensional sub-Qp-vector spaces U+ of V , U− of Cd

p, and a
GK -equivariant isomorphism

V/U+→ Cd
p/U−.

These representations form an abelian category C(GK ). The main purpose of
this paper is to prove that C(GK ) can be recovered from M(GK ) by a simple
construction (and vice-versa) inducing, in particular, an equivalence of triangu-
lated categories

Db(M(GK ))→ Db(C(GK )).

1. Introduction

1A. We fix a prime number p, an algebraic closure Qp of Qp and a finite extension
K of Qp contained in Qp. We set GK =Gal(Qp/K ) and Cp the p-adic completion
of Qp on which GK acts by continuity.

The fundamental curve X
Qp,C

[
p

of p-adic Hodge theory, denoted by X below,
was introduced in [Fargues and Fontaine 2018]. It is a separated noetherian regular
scheme of dimension 1 defined over Qp; i.e., H 0(X,OX ) = Qp. The structural
sheaf is naturally equipped with a topology (Section 3D): if U is any open subset
of X , then OX (U ) is a locally convex Qp-algebra. There is a natural action of

Jean-Marc Fontaine passed away on 29 January 2019. I saw him last in late November 2018, when
he mentioned to me that he wanted to submit this paper to Tunisian Journal of Mathematics after
making some small changes, and asked me if I could take care of the paper in case he could not do it
himself; to which I, of course, agreed. Contributing to Fontaine’s program has been one of the joys
of my mathematical career and this paper puts the final touch to the geometrization of this program
via the Fargues–Fontaine curve. – Pierre Colmez, 4 August 2019.
MSC2010: 11S20, 14H60.
Keywords: p-adic Hodge theory, vector bundle.
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GK on X which is continuous. We may consider the abelian category M(GK ) of
GK -equivariant coherent OX -modules, that is of coherent OX -modules equipped
with a semilinear and continuous action of GK .

Any nonzero F ∈ Ob(M(GK )) has a degree deg(F) ∈ Z and a rank rk(F) ∈ N,
hence also a slope s(F) = deg(F)/rk(F) ∈ Q∪ {+∞} (with the convention that
s(F)=+∞ if F is a torsion OX -module). As in the classical case, one says that
a coherent OX [GK ]-module F is semistable if F 6= 0 and if s(F ′)≤ s(F) for any
nonzero subobject F ′ of F .

We may consider the full subcategory M0(GK ) of M(GK ) whose objects are
semistable of slope 0. One of the main results of [Fargues and Fontaine 2018] is
that, if F is any object of M0(GK ), then F(X)= H 0(X,F) is a finite-dimensional
Qp-vector space, hence is an object of the abelian category RepQp

(GK ) of p-adic
representations of GK (that is of finite-dimensional Qp-vector spaces equipped
with a linear and continuous action of GK ) and that the functor

M0(GK )→ RepQp
(GK ), F 7→ F(X)

is an equivalence of categories (with V 7→OX ⊗Qp V as a quasi-inverse).
The main purpose of this paper is to discuss the following question: Is there an

extension of this result enabling us to give an analogous Galois description of all
objects of M(GK )?

1B. In [Fontaine 2003], I introduced the category of almost Cp-representations of
GK : A Banach representation of GK is a p-adic Banach space (i.e., a topological
Qp-vector space whose topology can be defined by a norm and which is complete)
equipped with a linear and continuous action of GK . With an obvious definition
of morphisms, Banach representations of GK form an additive category B(GK )

containing the category RepQp
(GK ) as a full subcategory. By continuity, GK acts

on the p-adic completion Cp of Qp and Cp has a natural structure of a Banach
representation. The category C(GK ) of almost Cp-representations of GK is the full
subcategory of B(GK ) whose objects are those V ’s for which one can find d ∈ N,
two GK -stable finite-dimensional sub-Qp-vector spaces U+ of V and U− of Cd

p

and an isomorphism V/U+→ Cd
p/U− in B(GK ). This category turns out to be

abelian (loc. cit.).

The curve X has only one closed point∞ which is GK -stable and the orbit under
GK of any other closed point is infinite. This implies that a torsion object of M(GK )

is supported at∞. As the completion of OX,∞ is the ring B+d R of p-adic periods,
the category M∞(GK ) of torsion objects of M(GK ) (⇐⇒ semistable objects of
slope∞) can be identified with the category Reptor

B+d R
(GK ) of B+d R-modules of finite

length equipped with a semilinear and continuous action of GK . The topology of
any B+d R-module of finite length is the topology of a p-adic Banach space and we
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may consider the forgetful functor

Reptor
B+d R
(GK )→ B(GK ).

We proved in loc. cit. that this functor is fully faithful and that the essential image
C∞(GK ) is contained in C(GK ). Hence, setting C0(GK )= RepQp

(GK ), we see that
for s ∈ {0,∞}, the functor F 7→ F(X) induces an equivalence of categories

Ms(GK )→ Cs(GK ).

Similarly as for a smooth projective curve over a field, we defined in [Fargues
and Fontaine 2018] the Harder–Narasimhan filtration of any F ∈M(GK ): this is
the unique filtration

0= F0
⊂ F1

⊂ · · · ⊂ Fr−1
⊂ Fr

= F

such that all the F i/F i−1 are semistable and that s(F i/F i−1) > s(F i+1/F i ) for
0< i < r . We call the s(F i/F i−1), for 1≤ i ≤ r , the HN-slopes of F .

Let M≥0(GK ) the full subcategory of M(GK ) whose objects are effective, i.e.,
such that all their HN-slopes are ≥ 0.

Similarly let C≥0(GK ) the full subcategory of C(GK ) whose objects are effective,
i.e., those V ’s which are isomorphic to a subobject (in C(GK )) of an object of
C∞(GK ).

If F is any coherent OX [GK ]-module, then F(X) is a topological Qp-vector
space equipped with a linear and continuous action of GK . Our main result is this:

Theorem 5.9. If F is any coherent OX [GK ]-module, F(X) is an effective almost
Cp-representation of GK . By restriction to M≥0(GK ) the functor F 7→ F(X)
induces an equivalence of categories

M≥0(GK )→ C≥0(GK ).

This equivalence doesn’t extend to an equivalence between M(GK ) and C(GK ).
Nevertheless each of these two categories can be reconstructed from the other: The
above functor induces an equivalence of triangulated categories

Db(M(GK ))→ Db(C(GK ))

and each of them can be reconstructed as the heart of a t-structure. More precisely:

• Denote by M<0(GK ) the full subcategory of M(GK ) whose objects are those for
which all HN-slopes are < 0. Then t = (M≥0(GK ),M<0(GK )) is what is called a
torsion pair on M(GK ). From this torsion pair, we can construct an other abelian
category f(M(GK ))

t which is the full subcategory of Db(M(GK )) whose objects
are those F • such that F i

= 0 for i /∈ {0, 1}, while

H 0(F •) is an object of M<0(GK ) and H 1(F •) is an object of M≥0(GK ).
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There is a natural equivalence (M(GK ))
t
→ C(GK ).

• Similarly, denote by C<0(GK ) the full subcategory of C(GK ) whose objects are
those V ’s for which Hom(V,W )= 0 for all W in C∞(GK ). Then

t ′ = (C<0(GK ), C≥0(GK ))

is a torsion pair on C(GK ) which can be used to define the abelian subcategory
(C(GK ))

t ′ which is the full subcategory of Db(C(GK ) whose objects are those V •

such that V i
= 0 for i /∈ {0, 1}, while

H 0(V •) is an object of C≥0(GK ) and H 1(V •) is an object of C<0(GK ).

There is a natural equivalence (C(GK ))
t ′
→M(GK ).

A description à la Beauville–Lazlo of vector bundles on X gives an equiva-
lence of categories between GK -equivariant vector bundles on X and Berger’s B-
pairs [Berger 2008]. Specializing the above results to the subcategory BundX (GK )

of M(GK ) of vector bundles recovers (via this equivalence of categories) some
results of Berger [2009].

1C. Contents. In Section 2, we recall and slightly extend the results of [Fontaine
2003] on almost Cp-representations. We first recall (Section 2A) some basic facts
about locally convex spaces over a nonarchimedean field. We introduce (Section 2B)
the category of (p-adic) ind-Fréchet representations (of GK ). Then (Section 2C),
we recall some basic facts about the ring of periods B+d R and Bd R that we equip
with a locally convex topology. In Section 2D, we discuss some properties of
B+d R-representations and Bd R-representations (of GK ).

We describe (Section 2E) the main properties of the category C(GK ) of al-
most Cp-representations and of its full subcategories C0(GK ) of finite-dimensional
p-adic representations and C∞(GK ) of B+d R-representations of finite length. In
Section 2E, we also introduce the category Ĉ(GK ) of representations of GK which
are suitable limits (in the category of locally convex p-adic representations of GK )
of almost Cp-representations. In Section 2F, we recall the notion of almost split
exact sequence of B(GK ) and the fact that an extension in B(GK ) of two almost Cp-
representations is an almost Cp-representation if and only if the associated short
exact sequence almost splits.

In Section 3, we study the category RepBe
(GK ) of Be-representations of GK

(several of the results we obtain are already in [Berger 2008; 2009]). We also
recall and make more precise some of the results of [Fargues and Fontaine 2018] on
coherent OX [GK ]-modules. We first recall (Section 3A) some basic facts about the
sub-Qp-algebras B+cris and Be of Bd R which are stable under the action of GK and
equipped with a natural topology of locally convex algebras. Then we introduce
(Section 3B) RepBe

(GK ) and show that this is a Qp-linear abelian category.
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We recall (Section 3C) the definition of the fundamental curve X = X
Qp,C

[
p

of p-adic Hodge theory introduced in [Fargues and Fontaine 2018] on which GK

acts and give a description of the category Coh(OX ) of coherent OX -modules. We
discuss (Section 3D) the topology on the structural sheaf OX and give a description
of the category M(GK ) of coherent OX [GK ]-modules (Section 3E). We describe
(Section 3F) the Harder–Narasimhan filtration on any F ∈M(GK ).

We consider two full subcategories of M(GK ):
– the category M0(GK ) of the semistable objects of slope 0,
– the category M∞(GK ) of objects whose underlying OX -module is torsion.
We show (Section 3G) that the global sections functor induces equivalence of

categories
M0(GK )→ C0(GK ) and M∞(GK )→ C∞(GK ).

In Section 3H, we introduce two kinds of twists of the objects of M(GK ), the
Tate twists and the Harder–Narasimhan twists.

Say that a Be-representation 3 is trivialisable if there exists U ∈ C0(GK ) and
an isomorphism Be ⊗Qp U → 3. In Section 3I, we show that RepBe

(GK ) is the
smallest subcategory of itself containing trivialisable Be-representations and stable
under taking extensions and direct summands.

In Section 3A0, we show that, if 3 is a Be-representation of GK , then the un-
derlying topological Qp-vector space equipped with its action of GK is an object
of Ĉ(GK ) and that the forgetful functor

RepBe
(GK )→ Ĉ(GK )

is exact and fully faithful. (This was already known to Berger [2009, théorème B].)
We conclude this section by discussing the cohomology of coherent OX -modules

(Section 3A1) and of coherent OX [GK ]-modules (Section 3A2). We show that,
taking the global sections, we get a functor

M(GK )→ C(GK ), F 7→ F(X)= H 0(X,OX )

whose essential image is contained in C≥0(GK ).

The aim of Section 4 is to construct a left adjoint

C(GK )→M(GK ), V 7→ FV

of the functor F 7→ F(X).
We show (Section 4C) that any almost Cp-representation V has a Be-hull, i.e.,

there is a pair Ve = (Ve, ι
V
e ) with Ve a Be-representation (of GK ) and ιVe : V → Ve

a morphism in Ĉ(GK ) such that, for all 3 ∈ RepBe
(GK ), the map

HomRepBe (GK )(Ve,3)→ HomĈ(GK )
(V,3)
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induced by ιVe is bijective.
Similarly with obvious definitions, we show that V has a B+d R-hull V+d R and a

Bd R-hull Vd R .
Using the existence of these hulls and the relations between them and knowing

the description of M(GK ) given in Section 3E, the construction of the functor
V 7→ FV is quite simple.

The proof of the existence of these hulls relies heavily on the description of all
extensions in C(GK ) of an object of C∞(GK ) by an object of C0(GK ), which is
given in Section 4B.

The aim of Section 5 is to prove our main result (Theorem 5.9).
We show in Section 5A (resp. 5B) that M≥0(GK ) (resp. C≥0(GK )) is the smallest

full subcategory of M(GK ) (resp. C(GK )) containing M0(GK ) and M∞(GK ) (resp.
C0(GK ) and C∞(GK )) and stable under extensions and direct summands.

In Section 5C we prove by dévissage that the functor

M≥0(GK )→ C≥0(GK ), F 7→ F(X)

is an equivalence of exact categories (see Section 1E), the functor V 7→ FV being
a quasi-inverse.

The purpose of Section 6 is to extend the main result to the categories M(GK )

and C(GK ).
After some general nonsense on derived categories of exact subcategories of

abelian categories (Section 6A), we first extend the main result to an equivalence
of of triangulated categories (Section 6B),

Db(M(GK ))→ Db(C(GK )).

To go further, we need to introduce the full subcategories M<0(GK ) of M(GK )

and C<0(GK ) of C(GK ) of coeffective objects. The main theorem said that, if
F ∈M≥0(GK ), then H 0(X,F) has a natural structure of an object of C≥0(GK )

and this structure determines F . We prove in Section 6C that, if F ∈M<0(GK ),
then H 1(X,F) has a natural structure of an object of C<0(GK ) and this structure
determines F .

Using this result, we can build C(GK ) from M(GK ) and conversely. We give
two different recipes (with independent proofs) for that. In Section 6D we describe
explicitly the heart of the t-structure on Db(M(GK )) corresponding to C(GK ) and
of the t-structure on Db(C(GK )) corresponding to M(GK )). In Section 6E, we
explain that (M≥0(GK ),M<0(GK )) is a torsion pair on M(GK ). One can use it to
construct a new abelian category equipped with a torsion pair. Up to equivalence,
it is C(GK ) equipped with the torsion pair (C<0(GK ), C≥0(GK )).
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1D. A remark on possible generalisations. The results of this paper are obviously
a special case of a much more general result where K is replaced by any reasonable
rigid analytic, Berkovich or adic space. Let’s sketch a description of the case where
K is now any field complete with respect to a nonarchimedean nontrivial absolute
value with perfect residue field of characteristic p.

• We can define the abelian category Coh(OX K ) of coherent modules on the curve
X K . When K is a perfectoid field, X K is the curve XQp,K [ constructed in [Fargues
and Fontaine 2018]. If K is not perfectoid, then X K doesn’t exist but one can
define the category of coherent modules over this virtual curve. When K is a finite
extension of Qp, there is a natural equivalence of categories

Coh(OX K )→M(GK ).

• We still have the Harder–Narasimhan filtration on Coh(OX K ) and may consider
its exact subcategories Coh≥0(OX K ) and Coh<0(OX K ) which form a torsion pair t
on Coh(OX K ).

• The construction of the curve X K is functorial in K . If C is the completion of a
separable closure K s of K , for any coherent OX K -module F , we may consider the
pull-back f ∗F of F via f : XC → X K .

If GK = Gal(K s/K ), we may consider the exact category B(GK ) of p-adic
Banach representations of GK and we have exact and faithful functors

Coh≥0(OX K )→ B(GK ), F 7→ H 0(XC , f ∗F),
Coh<0(OX K )→ B(GK ), F 7→ H 1(XC , f ∗F).

But, in general, these functors are not fully faithful. Working with B(GK )

amounts to work over the small pro-étale site of K and we need to work with
a bigger site. A possibility is to use the big pro-étale site Kproét of K as defined
in [Scholze 2017, §8]1 and to replace B(GK ) with the category VectQp(K ) of Qp-
sheaves over Kproét, and C(GK ) with the category of pseudo-geometric Qp-sheaves,
an abelian full subcategory of VectQp(K ) defined by imitating the definition of
C(GK ) as a full subcategory of B(GK ).

The correspondence K 7→ X K can be extended to a functor

U 7→ XU

1More precisely, we fix an uncountable cardinal κ satisfying the properties of [Scholze 2017,
Lemma 4.1]. The underlying category is the category of perfectoid spaces over K which are κ-small
[loc. cit., Definition 4.3] and coverings are as defined in [loc. cit., Definition 8.1] (the only difference
with the big pro-étale site of Scholze is that we restrict ourself to perfectoid spaces lying over the
given nonarchimedean field K ).
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from the category of perfectoid spaces to the category of Qp-schemes. We also
have exact and faithful functors

Coh≥0(OX K )→ VectQp(K ), F 7→
(
U 7→ H 0(XU , f ∗UF)

)
,

Coh<0(OX K )→ VectQp(K ), F 7→
(
U 7→ H 1(XU , f ∗UF)

)
,

where fU : XU → X K is the structural morphism.
It seems likely (and not so hard to prove) that these functors are fully faithful

and that one can describe their essential images Vectpg,≥0
Qp

(K ) and Vectpg,<0
Qp

(K ).
These two functors seem to induce an equivalence of categories

(Coh(OX K ))
t
→ Vectpg

Qp
(K )

the induced torsion pair on Vectpg
Qp
(K ) being t ′ = (Vect<0

Qp
(K ),Vect≥0

Qp
(K )).

In the case where K is the p-adic completion of an algebraic closure of Qp,
this result has been proved by Le Bras [2018]. We hope to come back soon to this
generalisation.

1E. Conventions and notations. If C is a category, we often write C ∈ C for C ∈
Ob(C).

An exact subcategory of an abelian category A is a strictly full subcategory of
A containing 0 and stable under extensions.

If B is an exact subcategory of A, we say that a sequence of morphisms of A
is exact if it is exact as a sequence of morphisms in A. In particular, we have the
obvious notion of a short exact sequence. It is easy to see that, equipped with this
class of short exact sequences, B is an exact category in the sense of Quillen (cf.
[Quillen 1973], see also [Laumon 1983]). Actually, any exact category B in the
sense of Quillen can be viewed as an exact subcategory of an abelian category (cf.
[Quillen 1973, §2]).

As usual Zp(1) is the Tate module of the multiplicative group, and, for all n ∈N,

Zp(n)= Symn
Zp

Zp(1), Zp(−n)= LZp(Zp(n),Zp).

If M is any Zp-module equipped with a linear action of GK , for all n ∈ Z,

M(n)= M ⊗Zp Zp(n).

2. Representations of GK

In this paper, each time we say “representation", we mean “representation of GK ".
In this section, we introduce a few categories of such representations and de-
scribe some of their properties. Most of them are already known (see in particular
[Fontaine 2003]) or easy consequences of known properties.
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2A. Banach, Fréchet, ind-Banach and ind-Fréchet. We refer to [Emerton 2017]
and [Schneider 2002] for basic facts about p-adic functional analysis. All results
of this paragraph are either contained or easy consequences of results contained in
at least one of these two memoirs.

We fix a nonarchimedean field E , i.e., a field complete with respect to a non-
trivial nonarchimedean absolute value, and denote by OE its valuation ring. In the
applications in this paper, E will be Qp.

• A locally convex E-vector space is a topological E vector space V such that the
open sub-OE -modules of V form a fundamental system of neighbourhood of 0.

• A Fréchet E-vector space or an E-Fréchet is a locally convex E-vector space
which is metrisable and complete.

• A Banach E-vector space or an E-Banach is a Fréchet vector space whose
topology can be defined by a norm.

• An ind-Fréchet (resp. ind-Banach) E-vector space or an ind-E-Fréchet (resp.
ind-E-Banach) is a locally convex E-vector space V , such that one can find an
increasing sequence (Vn)n∈N of closed sub-E-vector spaces such that

(i) V =
⋃

n∈N Vn ,
(ii) each Vn , with the induced topology, is an E-Fréchet (resp. an E-Banach),

(iii) the topology of V is the coarsest locally convex topology with these prop-
erties.

Condition (iii) is equivalent to the fact that a sub-OE -module L of V is open if
and only if L ∩ Vn is open in Vn for all n ∈ N.

If V is a topological E-vector space, V is an E-Fréchet if and only if V is com-
plete and its topology can be defined by a countable family (qn)n∈N of seminorms.

In this situation, replacing each qn by q ′n = sup0≤i≤n qi , we may assume that
qn ≤ qn+1 for all n. Then, if V n is the Hausdorff completion of V , with respect
to qn , this is an E-Banach and we have an homeomorphism

V 7→ lim
←−−n∈N

V n

(with the inverse limit topology on the RHS). Conversely, any inverse limit, indexed
by N, of E-Banach is an E-Fréchet.

Let V be a topological E-vector space. We say that a decreasing filtration
(FnV )n∈Z by closed sub-E-vector spaces of V is admissible if

(i)
⋃

n∈Z FnV = V and
⋂

n∈Z FnV = 0,

(ii) if m ∈ Z and r ∈ N, then Fm V/Fm+r V , equipped with the induced topology,
is an E-Banach,
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(iii) if m ∈ Z, the natural map

Fm V → lim
←−−r∈N

Fm V/Fm+r V

is an homeomorphism (with the inverse limit topology on the RHS),

(iv) a sub-OE -module L of V is open if and only if L ∩ FnV is open in FnV for
all n.

The following result is obvious:

Proposition 2.1. Let V be a topological E-vector space.

(i) V is an ind-E-Fréchet if and only if it has an admissible filtration.

(ii) V is an E-Banach (resp. an E-Fréchet, resp. an ind-E-Banach) if and only if
has an admissible filtration (FnV )n∈Z such that F0V = V and F1V = 0 (resp.
F0V = V , resp. F1V = 0).

Proposition 2.2. Let V1 and V2 two ind-E-Fréchet, (FnV1)n∈Z an admissible fil-
tration of V1 and (FnV2)n∈Z an admissible filtration of V2. Let u : V1 → V2 an
E-linear map. The following are equivalent:

(i) The map u is continuous. For all m ∈Z, there exists n ∈Z such that u(Fm V1)⊂

FnV2 and the induced map

Fm V1→ FnV2

is continuous.

Proof. (ii)=⇒(i): It is enough to show that, if L is an open lattice in V2, then
f −1(L) is open in V1 which means that if m ∈ Z, then f −1(L) ∩ Fm V1 is open
in Fm V1 which is indeed true as, if n is such that f (Fm V1) ⊂ FnV2, this is the
inverse image of the continuous map Fm V1→ FnV2 which is induced by f .

(i)=⇒(ii): All the FnV2 are E-Fréchet. For each fixed m, so is Fm V1 and the
existence of such an n is explained in [Schneider 2002, Corollary 8.9]. �

Corollary 2.3. Let V be an ind-E-Fréchet and (FnV )n∈Z an admissible filtration.
Then V is an E- Banach (resp. an E-Fréchet, resp. an ind-E-Banach) if and only if
there exists m ≤ n such that Fm V = V and FnV = 0 (resp. m such that Fm V = V ,
resp. n such that FnV = 0).

Corollary 2.4. Let V be an ind-E-Fréchet and (Fn
1 V )n∈Z and (Fn

2 V )n∈Z two ad-
missible filtrations. For all m ∈ Z, there exists n ∈ Z such that Fm

1 V ⊂ Fn
2 V .

An ind Fréchet E-algebra is a topological E-algebra B which has a multiplica-
tive admissible filtration, i.e., an admissible filtration (Fn B)n∈Z of the underlying
topological E-vector space such that, if m, n ∈ Z, and, if b ∈ Fm B, b′ ∈ Fn B, then
bb′ ∈ Fm+n B.
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A Banach (resp. Fréchet, resp. ind-Banach) E-algebra is an ind Fréchet E-
algebra B which has a multiplicative admissible filtration (Fn B)n∈Z such that
F0 B = B and F1 B = 0 (resp. F0 B = B, resp. F1 B = 0).

2B. Ind-Fréchet representations. From now on E will be Qp. We will say Ba-
nach, Fréchet, ind-Banach, ind-Fréchet instead of Qp-Banach, Qp-Fréchet, ind-
Qp-Banach, ind-Qp-Fréchet. We will say Banach algebra, Fréchet algebra, and
so on, instead of Qp-Banach algebra, Qp-Fréchet algebra.

The category IF(GK ) of ind-Fréchet representations (of GK ) is the category
whose objects are ind-Fréchet equipped with a Qp-linear and continuous action
of GK , and whose morphisms are GK -equivariant continuous Qp-linear map.

The category IF(GK ) is an additive Qp-linear category and any morphism

f : V1→ V2

has a kernel and a cokernel: the kernel is the GK -stable closed sub-Qp-vector space
which is the kernel of the underlying Qp-linear map. The cokernel is the quotient
of V2 by the GK -stable closed sub-Qp-vector space which is the closure of f (V1).

We say that a morphism f is strict if the map

Coim( f )→ Im( f )

is an homeomorphism.

Similarly one can define in an obvious way the categories B(GK ), IB(GK ) and
F(GK ) of Banach, ind-Banach, Fréchet representations (of GK ). This is consistent
with the definition of B(GK ) already given in the introduction.

2C. The rings B+d R and Bd R and their topologies. We denote by Bd R the usual
field of p-adic periods. Recall (from [Fontaine 1994, §1.5], for instance) that this
is the fraction field of a discrete valuation ring B+d R , that GK acts naturally on these
two Qp-algebras and that Zp(1) is naturally a GK -stable sub-Zp-module of B+d R .
We choose a generator t of Zp(1). This is also a generator of the maximal ideal
of B+d R . Therefore, for all d ∈ Z, the d-th power of this ideal is

Fild Bd R = B+d R.t
d
= B+d R(d)

and is stable under GK . For each d ≥ 0, we set

Bd = B+d R/Fild Bd R.

Recall [Fontaine 1994, §1.5.3] that Bd has a natural structure of a Banach algebra
on which the action of GK is continuous, that, in particular, B1 = Cp, and that,
for each d ∈N, the projection Bd+1→ Bd is also continuous. Equipped with the
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topology of the inverse limit, B+d R becomes a Fréchet algebra on which GK acts
continuously.

For all n ∈ Z, multiplication by tn defines a bijection B+d R → Filn Bd R and we
equip Filn Bd R with the induced topology (for which the action of GK is continu-
ous); note that multiplication by tn does not commute with the action of GK .

If n ∈ Z, then Filn+1 Bd R is closed in Filn Bd R and we equip Bd R with its natural
locally convex topology. (A sub-Zp-module L of Bd R is open if and only if, for
all n ∈ Z, the Zp-module L ∩Filn Bd R is open in Filn Bd R .)

We see that Bd R is an ind-Fréchet K -algebra, with (Filn Bd R)n∈Z as a GK -equiva-
riant multiplicative admissible filtration. In particular Bd R has a natural structure
of an ind-Fréchet K -representation of GK .

2D. B+d R and Bd R-representations. Any B+d R-module of finite type has a natural
structure of a K -Fréchet and any finite-dimensional Bd R-vector space has a natural
structure of an ind-Fréchet K -vector space.

A B+d R-représentation (resp. a Bd R-representation) (of GK ) is a B+d R-module of
finite type (resp. a finite -dimensional Bd R-vector space) equipped with a semilin-
ear and continuous action of GK . With the GK -equivariant B+d R-linear maps as
morphisms, these representations form a category that we denote by RepB+d R

(GK )

(resp. RepBd R
(GK )).

The category Reptor
B+d R
(GK ) = C∞(GK ) of torsion B+d R-representations (of GK )

defined in the introduction (Section 1B) is the full subcategory of RepB+d R
(GK )

whose objects are such that the underlying B+d R-module is torsion (⇐⇒ of finite
length).

Recall (from [Stacks, 02MN], for instance) that a Serre subcategory C of an
abelian category A is a strictly full subcategory of A containing 0 which is stable
under subobjects, quotients and extensions. In particular, this is an abelian category.
Given A and C, one can define the quotient category A/C which is an abelian
category, solution of the obvious universal problem.

Proposition 2.5. The category C∞(GK ) is a Serre subcategory of RepB+d R
(GK ).

The functor

RepB+d R
(GK )→ RepBd R

(GK ), W 7→ Bd R ⊗B+d R
W

is essentially surjective and induces an equivalence

RepB+d R
(GK )/C∞(GK )

'
→ RepBd R

(GK ).

Proof. The essential surjectivity comes from the fact that, for any Bd R-representation
W , there is a GK -stable lattice B+d R-lattice W+. This result itself comes from the
fact that if W+0 is a B+d R-lattice of W , then W0 is an ind-Fréchet K -vector space
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with (tnW+0 )n∈Z forming an admissible filtration. For each w ∈ W , the g(w)’s
for g ∈ GK form a compact subset of W , hence it is bounded which implies (by
[Schneider 2002, Proposition 5.6]) that it is contained in t−nW+0 for n� 0. Hence,
if e1, e2, . . . , ed is a basis of W over Bd R , there exists n∈N such that g(ei )∈ t−nW+0
for 1 ≤ i ≤ d and g ∈ GK . Therefore the sub-B+d R-module W+ of W generated
by all these g(ei )’s is also contained in t−nW+0 and is a GK -stable B+d R-lattice
of W . The continuity of the action of GK on W implies the continuity of the action
on W+ which is an object of RepB+d R

(GK ). We have an obvious identification of
Bd R ⊗B+d R

W+ to W and the functor is essentially surjective.
The rest of the proof is straightforward. �

If W is any object of C∞(GK ), there is an integer d such that the underlying
B+d R-module is a Bd-module of finite type. As Bd is a Banach Qp-algebra, the
underlying topological Qp-vector space is a Banach and W has a natural structure
of a p-adic Banach representation.

Proposition 2.6 [Fontaine 2003, théorème 3.1]. The forgetful functor

C∞(GK )→ B(GK )

is fully faithful.

In other words, given a p-adic Banach representation W of GK , there is at most
one structure of B+d R-module of finite length on W extending the action of Qp such
that W becomes a torsion B+d R-representation.

We use this result to identify C∞(GK ) to a full subcategory of B(GK ).

We denote by
Ĉ∞(GK )

the full subcategory of IF(GK ) whose objects are those W ’s which admit a GK -
equivariant admissible filtration (FnW )n∈Z such that Fm W/FnW ∈ C∞(GK ) for
all m ≤ n in Z. By passing to the limit, the previous proposition implies that, on
such a W , there is a unique structure of B+d R-module such that the action of GK is
semilinear and each Fm W is a sub-B+d R-module (and this structure is independent
of the choice of (FnW )n∈Z). We also see that Ĉ∞(GK ) is an abelian category and
that any morphism of Ĉ∞(GK ) is B+d R-linear.

Moreover RepB+d R
(GK ) can be identified with a full subcategory of Ĉ∞(GK ).

Proposition 2.5 implies that this is also true for RepBd R
(GK ).

Proposition 2.7. Let d ∈ N.

(i) Let W1 be an object of C∞(GK ) such that lengthB+d R
W1 ≥ d. There exists a

finite extension K ′ of K contained in Qp and a G K ′-stable sub-B+d R-module
W ′1 of W1 of length d.
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(ii) Let W2 be an object of RepB+d R
(GK ) with lengthB+d R

W2 ≥ d. There exists a
finite extension K ′ of K contained in Qp and a G K ′-stable sub-B+d R-module
W ′2 of W2 such that lengthB+d R

W2/W ′2 = d.

Proof. (i) Via an obvious induction, we see that it is enough to check it for d = 1.
Replacing W1 by the kernel of the multiplication by t in W1, we may assume that
W1 is a Cp-representation.

Recall some basic facts of Sen’s theory [1980/81]:
Let χ : GK → Z∗p be the cyclotomic character, HK the kernel of χ and L =

(Cp)
HK which is also the completion of K∞ = Q

HK
p . We set 0K = GK /HK =

Gal(K∞/K ). The character χ factors through a character 0K → Z∗p that we still
denote by χ .

For any Cp-representation W (of GK ), denote by W f
K the union of the finite-

dimensional sub-K -vector spaces of W HK stable under the action of GK (acting
through 0K ). This is a finite dimensional K∞-vector space equipped with a semi-
linear action of 0K . With obvious notations, we have:

• The functor
RepCp

(GK )→ RepK∞(0K ), W 7→W f
K

is exact and fully faithful.

• For any W ∈ RepCp
(GK ), the obvious map

Cp⊗K∞ W f
K →W

is an isomorphism.

• For all W ∈ RepCp
(GK ), there exists a unique endomorphism αW,K of the K∞-

vector space W f
K such that

for all w ∈W f
K , there is an open subgroup 0w of 0K such that, if γ ∈0w, then

γ (w)= exp(log(χ(γ )).αW,K )(w).

(The series exp(λαW,K ) converges to an endomorphism of W f
K for all small

enough λ ∈ Zp.)

It is easy to see that, if K1 is a finite extension of K contained in Qp, then W f
K1

can be identified with (K1)∞⊗K∞ W f
K and that αW,K1 is the (K1)∞-endomorphism

of W f
K1

deduced from αW,K by scalar extension.
Choose such a K1 containing an eigenvalue λ of αW,K , hence also of αW,K1 and

choose a nonzero eigenvector ω0 ∈W f
K1

for α f
W,K1

. There is a finite extension K ′

of K1 contained in Qp such that, for all γ ∈ 0K ′ , we have

γ (w0)= exp(log(χ(γ )).λ).w.
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We can view w0 as a nonzero element of W f
K ′ and we see that for all b ∈ K ′ and

all γ ∈ 0K ′ , we have

γ (bw0)= γ (b). exp(log(χ(γ )).λ).w,

hence the K ′-line of W f
K ′ generated by w0 is stable under the action of 0K ′ . There-

fore the Cp-line W ′1 of W1 generated by w0 is stable under the action of G K ′ .

(ii) Replacing W2 by W2/tr W2 with r big enough, we may assume that W2 is
an object of C∞(GK ). The result follows by duality from the assertion (i) applied
to the Pontryagin dual W = LB+d R

(W2, Bd R/B+d R) of W2. �

2E. Almost C p-representations. If V1 and V2 are two objects of IF(GK ), an al-
most isomorphism

f : V1 V2, also denoted by f̃ : V1/U1→ V2/U2,

is a triple f = (U1,U2, f̃ ) where U1 is a finite-dimensional GK -stable sub-Qp-
vector space of V1, U2 is a finite dimensional GK -stable sub-Qp-vector space of
V2 and

f̃ : V1/U1→ V2/U2

is an isomorphism of ind-Fréchet representations.
We say that two objects V1 and V2 of IF(GK ) are almost isomorphic if there

exists an almost isomorphism

f : V1 V2.

Proposition 2.8 [Fontaine 2003, théorème 5.3]. Let V be an object of B(GK ). The
following are equivalent:

(i) V is almost isomorphic to a torsion B+d R-representation.

(ii) V is almost isomorphic to a Cp-representation.

(iii) There is d ∈ N such that V is almost isomorphic to Cd
p (equipped with the

natural action of GK ).

We denote by C(GK ) the category of almost Cp-representations (of GK ), that is
the full subcategory of B(GK ) whose objects satisfy the equivalent conditions of the
previous proposition. This is coherent with the definition given in the introduction
(Section 1B).

The category C(GK ) contains C∞(GK )=Reptor
B+d R
(GK ) and C0(GK )=RepQp

(GK )

as full subcategories.
A weak Serre subcategory B of an abelian category A is a strictly full subcate-

gory which is abelian, such that the inclusion functor is exact and which is closed
under taking extensions.
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The following results are essentially contained in [Fontaine 2003]:

Theorem 2.9. The category C(GK ) is abelian and any morphism of C(GK ) is strict
as a morphism of B(GK ). A sequence of morphisms of C(GK ) is exact if and only
if the underlying sequence of Qp-vector spaces is exact. The category C0(GK ) is a
Serre subcategory of C(GK )and C∞(GK ) is a weak Serre subcategory of C(GK ).

Furthermore:

(i) If U ∈ C0(GK ) and W ∈ C∞(GK ), then HomC(GK )(W,U )= 0.

(ii) There exists additive functions

d : Ob C(GK )→ N and h : Ob C(GK )→ Z,

uniquely determined respectively by d(U )= 0 if U ∈ C0(GK ) and d(Cp)= 1
(resp. h(U ) = dimQp(U ) if U ∈ C0(GK ) and h(Cp) = 0); moreover, if W ∈
C∞(GK ), then d(W )= lengthB+d R

(W ) and h(W )= 0.

Proof. This is [Fontaine 2003, théorème 5.1] with some extras:

• The fact that C0(GK ) is a Serre subcategory of C(GK ), which is a triviality.

• The fact that C∞(GK ) is a weak Serre subcategory of C(GK ). The only thing
which is not obvious is the stability under extensions of C∞(GK ) inside of C(GK ),
which is contained in [loc. cit., proposition 6.3].

• The fact that if U ∈ C0(GK ) and W ∈ C∞(GK ), then HomC(GK )(W,U )= 0, which
is the corollary [loc. cit., théorème 5.1]. �

For instance, we see that, if U is a GK -stable finite dimensional sub-Qp-vector
space of Cp, then d(Cp/U )= 1 and h(Cp/U )=−dimQp U .

If V ∈ C(GK ), W ∈ C∞(GK ) and f̃ : V/U+→W/U− is an almost isomorphism,
from the diagram

0 // U+ // V // V/U+
'
��

// 0

0 // U− // W // W/U− // 0

whose lines are exact, we deduce that

d(V )= d(W ), h(V )= h(U+)− h(U−)= dimQp(U+)− dimQp(U−).

Corollary 2.10. (i) For any V ∈ C(GK ), we have V ∈ C0(GK )⇐⇒ d(V )= 0 (in
which case h(V )= dimQp V ≥ 0).

(ii) If g : V → W is a monomorphism of C(GK ) with W ∈ C∞(GK ) such that
d(V )= d(W ), then g is an isomorphism.

Proof. Looking at an almost isomorphism as above, the first assertion is immediate.
For the second, let U be the cokernel of g. We have d(U )=0, hence U ∈C0(GK ),

hence U = 0, as there is no nontrivial morphism from W to an object of C0(GK ). �



ALMOST Cp GALOIS REPRESENTATIONS AND VECTOR BUNDLES 683

Remark 2.11. As C0(GK ) is a Serre subcategory of C(GK ), we may consider the
quotient

C̃(GK )= C(GK )/C0(GK )

It is known [Fontaine 2003, proposition 7.1] that this abelian category is semisim-
ple with exactly one isomorphism class of simple objects which is the class of Cp

viewed as an object of this category. Hence C̃(GK ) is completely determined, up
to equivalence, by the somewhat mysterious huge skew field DK of the endomor-
phisms of Cp in this category [loc. cit., proposition 7.2].

We denote by
Ĉ(GK )

the full subcategory of IF(GK ) whose objects are those V ’s which admit a GK -
equivariant admissible filtration (FnV )n∈Z such that Fm V/FnV ∈ C(GK ) for all
m ≤ n in Z.

By passing to the limit, we see that the previous theorem implies:

Proposition 2.12. Any morphism of Ĉ(GK ) is strict (as a morphism of IF(GK ))
and this category is abelian. A sequence of morphisms of Ĉ(GK ) is exact if and
only if the underlying sequence of Qp-vector spaces is exact. The category C(GK )

is a Serre subcategory of Ĉ(GK ) of which Ĉ∞(GK ) is a weak Serre subcategory.

Remark 2.13. As RepB+d R
(GK ) and RepBd R

(GK ) are Serre subcategories of Ĉ∞(GK ),
these two categories are also weak Serre subcategories of Ĉ(GK ).

2F. Almost split exact sequences. We say that a sequence of morphisms of IF(GK )

is exact if the underlying sequence of Qp-vector spaces is exact.
An almost splitting of a short exact sequence

0→ V ′→ V → V ′′→ 0

in IF(GK ) is a GK -stable closed sub-Qp-vector space S of V such that

(i) the compositum S ⊂ V → V ′′ is onto,

(ii) the Qp-vector space S ∩ V ′ is finite-dimensional.

We say that such an exact sequence almost splits if there exists such an al-
most splitting. This is equivalent to saying that there exists a GK -stable finite-
dimensional sub-Qp-vector space U of V ′ such that the sequence

0→ V ′/U → V/U → V ′′→ 0
splits.

We observe that any almost splitting S of a short exact sequence

0→ V ′→ V → V ′′→ 0
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defines, in an obvious way, almost isomorphisms

V  V ′⊕ V ′′ S⊕ V ′′.

Proposition 2.14 [Fontaine 2003, théorème 5.2]. Let

0→W ′→W →W ′′→ 0

be a short exact sequence in IF(GK ) with W ′ and W ′′ in C∞(GK ). Then W is in
C∞(GK ) if and only if the sequence almost splits.

Proposition 2.15 [Fontaine 2003, proposition 5.2]. Let

0→ V ′→ V → V ′′→ 0

be a short exact sequence in IF(GK ) with V ′ and V ′′ in C(GK ). Then V is in
C(GK ) if and only if the sequence almost splits.

Corollary 2.16. Among the strictly full subcategories of B(GK ) which are abelian,
containing Cp and C0(GK ) and stable under almost split extensions, there is a
smallest one. This is C(GK ).

Proof. Clear! �

3. Be-representations and coherent OX [GK ]-modules

3A. The topological Q p-algebras B+cris and Be. Recall (from, e.g., [Fontaine 1994,
§2.3 and §4.1]) that B+cris is a Banach algebra equipped with a continuous endo-
morphism ϕ and a continuous action of GK commuting with ϕ. There is a natural
GK -equivariant continuous injective homomorphism of topological Qp-algebras

B+cris→ B+d R

that we use to identify B+cris to a subring of B+d R containing t .
For each d ∈ N, we set

Pd
= {b ∈ B+cris | ϕ(b)= pdb}.

This is a GK -stable closed sub-Qp-vector space of B+cris as well as of B+d R (e.g. [Kisin
2003, Lemma 3.3]). Moreover B+cris and B+d R induce the same topology on Pd

which can be viewed as a Banach representation of GK . We have a canonical short
exact sequence (see [Colmez and Fontaine 2000, proposition 1.3], for instance)

0→Qp(d)→ Pd
→ Bd → 0

where Qp(d)=Qptd and Pd
→ Bd is the compositum Pd

⊂ B+cris ⊂ B+d R
proj
→ Bd .

In particular we see that Pd is an almost Cp-representation with d(Pd) = d and
h(Pd)= 1.
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As usual, we set Bcris = B+cris[1/t], which we can view as a GK -stable subring
of Bd R .

We have ϕ(t)= pt and ϕ extends uniquely to Bcris. Moreover the natural map
Bcris→ Bd R = B+d R[1/t] is still injective and we use it to identify Bcris to a GK -
stable sub-Qp-algebra of Bd R .

Recall that
Be = {b ∈ Bcris | ϕ(b)= b}

is also a GK -stable sub-Qp-algebra of Bd R . We endow it with the topology induced
by the (locally convex) topology of Bd R .

Then, we have
Be = lim

−−→d∈N
Fil−d Be =

⋃
d∈N

Fil−d Be

where, for all d ∈ N,

Fil−d Be = Be ∩ B+d Rt−d
= Pd .t−d

= Pd(−d)

is an almost Cp-representation (with d(Pd(−d))= d and h(Pd(−d))= 1) home-
omorphic to Pd as a Banach. Setting Pd

= Pd(−d)= 0 for d > 0, we see that Be

is an ind-Banach algebra with (P−n(n))n∈Z a GK -stable multiplicative admissible
filtration.

3B. Be-representations. The topology of Be induces on each Be-module of finite
type a natural topology for which it is an ind-Fréchet (actually an ind-Banach).
A Be-representation (of GK ) is a Be-module of finite type equipped with a semi-
linear and continuous action of GK . With the GK -equivariant Be-linear maps as
morphisms, Be-representations form a category that we denote by RepBe

(GK ).

Proposition 3.1. The Be-module underlying any Be-representation is free of finite
rank. The category RepBe

(GK ) is a Qp-linear abelian category.

Proof. Recall that Be is a principal ideal domain [Fargues and Fontaine 2018,
théorème 6.5.2]. In particular it is a noetherian ring and the fact that RepBe

(GK )

is a Qp-linear abelian category is obvious.
Moreover [loc. cit., proposition 10.1.1], for any maximal ideal p of Be, the orbit

of p under the action of GK is infinite. This implies that there is no nontrivial
GK -equivariant ideal of Be. If 3 is any nonzero Be-representation of GK , the
annihilator of its torsion sub-module is a proper GK -equivariant ideal and must
be 0. Therefore the Be-module underlying 3 is torsion free, hence free of finite
rank. �

Remark 3.2. Let Ce be the fraction field of Be. This is the union of the fractional
ideals of Be. For each such ideal a, the choice of a generator a defines a bijection

Be→ a, b 7→ ba,
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and we put on a the topology defined by transport de structure, which is indepen-
dent of the choice of the generator. Hence each a is naturally an ind-Banach (Qp-
vector space). If a⊂ b are two fractional ideals, this inclusion is continuous and a

is a closed sub-Qp-vector space of b. Hence we may endow Ce with the coarsest
locally convex topology such that, for all fractional ideal a, the map a→ Ce is
continuous (a lattice L in Ce is open if and only if L∩ a is open in a for all a).

The action of GK on Ce is continuous for this topology (but Ce doesn’t seem
to be an object of IF(GK )) and we may consider the category RepCe

(GK ) of Ce-
representations (of GK ), that is of finite-dimensional Ce-vector spaces equipped
with a semilinear and continuous action of GK . This is obviously a Qp-linear
abelian category.

We have an obvious exact Qp-linear functor

RepBe
(GK )→ RepCe

(GK ), 3 7→ Ce⊗Be 3.

This functor is fully faithful: if M ∈RepCe
(GK ) is a Ce-representation of dimension

d , there is at most one GK -equivariant sub-Be-module of rank d because if 31 and
32 are two of them, so are 31+32 and (31+32)/31 is torsion, hence 0.

Remark 3.3. If 3 is any Be-representation of GK , the underlying Qp-vector space
is locally convex and 3 inherits a natural structure of an object of IF(GK ). We
will see later that the forgetful functor

RepBe
(GK )→ IF(GK )

is fully faithful (Proposition 3.11) and that its essential image is contained in Ĉ(GK )

(Proposition 3.12).

Proposition 3.4. Let W ∈ C∞(GK ) and 3 ∈ RepBe
(GK ). Then

HomIF(GK )(W,3)= 0.

Proof. Let f : W → 3 such a morphism. We see that Bd R ⊗Be 3 is a Bd R-
representation of GK and that

g :3→ Bd R ⊗Be 3, λ 7→ 1⊗ λ

is a morphism of IF(GK ). But g f :W→Bd R⊗Be3must be B+d R-linear (Section 2D).
As the B+d R-module W is torsion, and Bd R ⊗3 is torsion free, we have g f = 0,
hence also f = 0 as g is injective. �

3C. Coherent OX -modules. We know that Be is a PID and we may consider the
“open curve"

Xe = Spec Be,



ALMOST Cp GALOIS REPRESENTATIONS AND VECTOR BUNDLES 687

a noetherian regular affine scheme of dimension 1 whose function field is the frac-
tion field Ce of Be that we can see as a subfield of Bd R . For each closed point x
of X , the local ring OX,x is a DVR and we denote by vx the corresponding valuation
on Ce normalised by vx(C∗e )= Z.

Recall (cf. [Fargues and Fontaine 2018, §6.5.1]) that the curve X = X
Qp,C

[
p

can be defined as the compactification at ∞ of Xe. More precisely, as Bd R is
the fraction field of the discrete valuation ring B+d R , it is naturally equipped with
a valuation vd R: if b ∈ Bd R is 6= 0, then vd R(b) is the largest n ∈ Z such that
b ∈ Filn Bd R . We denote by v∞ the restriction of vd R to Ce. The topological space
underlying X is obtained from the topological space underlying Xe by adding the
closed point∞ defined by v∞. Hence, the function field of X is Ce and, if U is
any nonempty open subspace of X , we have

OX (U )= {b ∈ Ce | vx(b)≥ 0, ∀x ∈U }.

We have X \ {∞} = Xe, the ring B+d R is the completion of OX,∞ and Bd R is the
completion of Ce for the topology defined by v∞.

Consider the following category Coh(OX ):

• An object of Coh(OX ) is a triple (Fe,F+d R, ιF ) with Fe a Be-module of finite
type, F+d R a B+d R-module of finite type and

ιF : F+d R→ Bd R ⊗Be Fe

a B+d R-linear map inducing an isomorphism of Bd R-vector spaces

Bd R ⊗B+d R
F+d R→ Bd R ⊗Be Fe.

• A morphism (Fe,F+d R, ιF )→ (Ge,G+d R, ιG) is a pair ( fe, f +d R) with fe :Fe→ Ge

a Be-linear map and f +d R : F
+

d R→ G+d R a B+d R-linear map such that the obvious
diagram commutes.

To any coherent OX -module F , we can associate an object (Fe,F+d R, ιF ) of this
category:

• Fe = F(Xe),

• F+d R = B+d R ⊗OX,∞ F∞, the completion of the fiber of F at∞,

• the completion at∞ of the general fiber is Bd R⊗B+d R
F+d R as well as Bd R⊗Be Fe

and ιF : F+d R→ Bd R ⊗Be Fe is the natural map.

This correspondence is obviously functorial and it is immediate to see that it
gives an equivalence of categories. We use it to identify the category of coherent
OX -modules to Coh(OX ). In this equivalence we see that the category Bund(X) of
vector bundles over X , i.e., of torsion free coherent OX -modules, can be identified
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with the full subcategory of Coh(OX ) whose objects are triples (Fe,F+d R, ιF ) such
that the Be-module Fe and the B+d R-module F+d R are torsion free (⇐⇒ free).

3D. The topology on OX . The curve X can be also described ([FF], §6.5.1) as

X = Proj
⊕
d∈N

Pd

and there is (loc. cit., théorème 6.5.2) a one to one correspondence between the
closed points of X and the Qp-lines in P1 (the map associating to such a line the
prime ideal of P =

⊕
d∈N Pd that it generates is a bijection between the set of

these lines and the set of nonzero homogeneous prime ideals of P different from⊕
d>0 Pd ). In this correspondence∞ corresponds to the line generated by t .
Moreover, if x1, x2, . . . , xr are closed points of X and if, for 1 ≤ i ≤ r , we

choose a generator ti of the Qp-line associated to xi , we see that the Qp-algebra
OX (X \ {x1, x2, . . . , xr }) has a natural topology: If we set u = t1t2 . . . tr , we have

OX (X \ {x1, x2, . . . , xr })=
⋃

n∈N

Pnr u−n

and we see that it is an ind-Banach algebra with (Pnr u−n)n∈N a multiplicative
admissible Banach filtration. Thus we may consider OX as a sheaf of ind-Banach
algebras (the restriction maps are obviously continuous).

3E. The category M(GK ). The group GK acts continuously on X and it makes
sense to speak of the category M(GK ) of coherent OX [GK ]-modules, that is of
coherent OX -modules equipped with a semilinear and continuous action of GK .

We see that:
– the open subset Xe = Spec Be is stable under GK and GK acts continuously

on the ind-Banach algebra Be,
– the point∞ is fixed by GK and the action of GK on the Fréchet algebra B+d R

(resp. on the ind-Fréchet algebra Bd R), completion at ∞ of OX,∞ (resp. of the
function field Ce of X ) is continuous.

From the description of coherent OX -modules of the previous paragraph, we see
that we can identify M(GK ) to the following category:

• An object is a triple F = (Fe,F+d R, ιF ), where Fe is a Be-representation, F+d R is
a B+d R-representation and

ιF : F+d R→ Bd R ⊗Be Fe

is a GK -equivariant homorphism of B+d R-modules such that the induced Bd R-
linear map

Bd R ⊗B+d R
F+d R→ Bd R ⊗Be Fe

is bijective.
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• A morphism
f : (Fe,F+d R, ιF )→ (Ge,G+d R, ιG)

is a pair ( fe, f +d R) with fe : Fe → Ge (resp. f +d R : F
+

d R → G+d R) a morphism
of Be-representations (resp. B+d R-representations) such that the obvious diagram
commutes.

When there is no ambiguity about the map ιF , we write abusively

F = (Fe,F+d R)

We also denote by

Fd R = Bd R ⊗Be Fe = Bd R ⊗Ce (Ce⊗Be Fe)

the completion at∞ of the generic fiber Fη = Ce⊗Be Fe of F .
The category BundX (GK ) of GK -equivariant vector bundles over X is the full

subcategory of M(GK ) whose objects are those for which the underlying OX -
module is torsion free. From the fact that any Be-representation is torsion free, we
see that, if F is any coherent OX [GK ]-module, there is no torsion away from∞.
Therefore BundX (GK ) is the full subcategory of M(GK ) whose objects are those F
such that the B+d R-module F+d R is free (⇐⇒ torsion free), i.e., the B-pairs of [Berger
2008].

3F. The Harder–Narasimhan filtration. The abelian category Coh(OX ) is equipped
with two additive functions, the rank and the degree [Fargues and Fontaine 2018,
chapitre 5]:

rk : Coh(OX )→ N, deg : Coh(OX )→ Z

The rank of F = (Fe,F+d R, ιF ) is the rank of the Be-module Fe. It is 0 if and only
if F is torsion. It is more difficult to compute the degree. But this additive function
is characterised by the following facts:

• if D is a divisor, then

deg(L(D))= deg(D)=
∑

closed
points of X

nx if D =
∑

nx [x],

• if F is a vector bundle of rank r , then

deg(F)= deg(∧rF),

• if F is a torsion OX -module, then

deg(F)=
∑

closed
points of X

lengthOX,x
Fx .
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The slope of a nonzero coherent OX -module F is

slope(F)= deg(F)/rank(F) ∈Q∪ {+∞}

(with the convention that the slope of a nonzero torsion coherent OX -module is
+∞).

The following statements are similar to the classical case:

• A coherent OX -module F is semistable if it is nonzero and if slope(F ′) ≤
slope(F) for any nonzero coherent sub-OX -module of F .

• The Harder–Narasimhan filtration of a coherent OX -module F is the unique
increasing filtration

0= F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = F

by coherent sub-OX -modules such that each Fi/Fi−1 is semistable with

slope(F1/F0) > slope(F2/F1) > · · ·> slope(Fm−1/Fm−2) > slope(Fm/Fm−1).

The Harder–Narasimhan filtration splits continuously but not canonically. The
slopes of the Fi/Fi−1 for 1≤ i ≤ m are called the HN-slopes of F .

If F is an object of M(GK ), the unicity of the Harder–Narasimhan filtration
implies that this filtration is by subobjects in M(GK ). In general, there is no GK -
equivariant splitting of this filtration.

3G. The equivalences M0(GK )→ C0(GK ) and M∞(GK )→ C∞(GK ). For all
s ∈ Q ∪ {+∞}, we denote by Ms(GK ) the full subcategory of M(GK ) whose
objects are semistable of slope s. We also write M∞(GK )=M+∞(GK ).

We have H 0(X,OX ) = Qp. A central result of [Fargues and Fontaine 2018]
(théorème 8.2.10) is that a coherent OX -module F is semistable of slope 0 if and
only if it is isomorphic to Or

X for some positive integer r . From that we deduce:

Proposition 3.5. If F ∈M0(GK ), then F(X)∈C0(GK ) and rank(F)=dimQpF(X).
The functor

M0(GK )→ C0(GK ), F 7→ F(X)

is an equivalence of categories. The functor

C0(GK )→M0(GK ), U 7→OX ⊗U = (Be⊗Qp U, B+d R ⊗Qp U )

is a quasi-inverse.

If F ∈M(GK ), as there is no torsion away from∞, we have F ∈M∞(GK ) if
and only if Fe = 0. From that, we deduce:
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Proposition 3.6. If F ∈M∞(GK ), then F(X) = F+d R and belongs to C∞(GK ).
Moreover

deg(F)= lengthB+d R
F(X).

The functor
M∞(GK )→ C∞(GK ), F 7→ F(X)

is an equivalence of categories. The functor

C∞(GK )→M∞(GK ), W 7→W = (0,W )

is a quasi-inverse.

For any s ∈Q, we denote by M≥s(GK ) (resp. M<s(GK )) the full subcategory
of M(GK ) whose objects are those which have all their HN-slopes ≥ s (resp. < s).

For any F∈M(GK ), we denote by F≥0 the largest term of the Harder–Narasimhan
filtration which belongs to M≥0(GK ) and F<0

= F/F≥0. We have a short exact
sequence

0→ F≥0
→ F→ F<0

→ 0

with F≥0
∈M≥0(GK ) and F<0

∈M<0(GK ).
The category M(GK ) is equipped with a tensor product. From the classification

of vector bundles over X [Fargues and Fontaine 2018, théorème 8.2.10], we get
the fact that if s, t ∈Q∪{+∞}, if F ∈Ms(GK ) and if G ∈Mt(GK ), then F⊗G ∈
Ms+t(GK ) (with the convention that s+ t =+∞ if s or t is +∞).

The additive category BundX (GK ) has an internal hom

(F,G) 7→ HomOX (F,G)

We see that (HomOX (F,G))e = LBe(Fe,Ge) is the Be-module of the Be-linear
maps Fe → Ge, and (HomOX (F,G))

+

d R = LB+d R
(F+d R,G

+

d R) is the B+d R-module of
the B+d R-linear maps F+d R→ G+d R .

In BundX (GK ), there is also a duality: The dual of F is F∨ = HomOX (F,OX ).
If F,G ∈BundX (GK ), then HomOX (F,G)=F∨⊗G. If F is semistable of slope s,
then F∨ is semistable of slope −s.

3H. Tate and Harder–Narasimhan twists. Recall that, for any p-adic vector space
V equipped with a linear action of GK and n ∈ Z, the n-th Tate’s twist of V is

V (n)= V ⊗Qp Qp(n)

where Qp(n)=Qptn
⊂ Bd R . This construction is functorial.

For any n ∈ Z, we denote by

OX (n)T =OX ⊗Qp(n)= (Be(n), B+d R(n))= (Be.tn, B+d R.t
n)
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(where Be.tn (resp. B+d R.t
n) is the sub-Be-module (resp. B+d R-module) of Bd R gen-

erated by tn) the GK -equivariant line bundle of slope 0 associated to Qp(n).
For F ∈M(GK ) and n ∈ Z, the n-th Tate twist of F is

F(n)T = F ⊗OX (n)T = (Fe(n),F+d R(n), ιF (n)).

It has the same degree, the same rank and the same slope as F .
For any n ∈ Z, we consider the GK -equivariant line bundle

OX (n)H N = (Be, B+d R(−n))= (Be, B+d R.t
−n).

There is an obvious short exact sequence

0→OX →OX (n)H N → (0, Bn(−n))→ 0 if n ≥ 0,

0→OX (n)H N →OX → (0, B−n)→ 0 if n < 0,

In particular, OX (n)H N is a modification of OX and is of degree n. It is semistable
of slope n.

For F ∈M(GK ) and n ∈Z, we define the n-th Harder–Narasimhan twist of F as

F(n)H N = F ⊗OX (n)H N = (Fe,F+d R(−n), ιF (−n))= (Fe, t−n.F+d R, ιF (−n)).

It has the same rank as F . If F is semistable of slope s, then F(n)H N is semistable
of slope s+ n.

These two constructions are obviously functorial and commute with Harder–
Narasimhan filtration. In particular:

• If F is semistable of slope s, then F(n)T is semistable of slope s, and F(n)H N

is semistable of slope s+ n.

• The HN-slopes of F(n)T are the same as the HN-slopes of F , and the HN-slopes
of F(n)H N are the s+ n for s running through the HN-slopes of F .

These constructions commute: for m, n ∈ Z, we have

F(m)T (n)H N = F(n)H N (m)T .

Remark 3.7. In [Fargues and Fontaine 2018, définition 8.2.1] the GK -equivariant
line bundle OX (n)H N (n)T is denoted OX (n). We have to avoid confusion between
the three GK -equivariant line bundles OX (n)T , OX (n)H N and

OX (n)= (Be(n), B+d R)= (Be.tn, B+d R).

3I. Potentially trivialisable Be-representations. Let 3 be a Be-representation of
GK and K ′ a finite extension of K contained in Qp. We say that 3 is G K ′-
trivialisable if there is U ∈ C0(G K ′) and a G K ′-equivariant isomorphism of Be-
modules

Be⊗Qp U '3.
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We say that 3 is trivialisable if it is GK -trivialisable and potentially trivialis-
able if there is a finite extension K ′ of K contained in Qp such that 3 is G K ′-
trivialisable.

Proposition 3.8. Any absolutely irreducible Be-representation of GK is potentially
trivialisable.

Proof. Let 3 be such a Be-representation. Then 3d R = Bd R ⊗Be 3 is a Bd R-
representation. Let L be the set of GK -stable B+d R-lattices of 3d R . We know
(Proposition 2.5) that L is not empty. For each L ∈ L, we may consider the GK -
equivariant vector bundle over X

FL = (3, L).

Such an FL is semistable (otherwise the Harder–Narasimhan filtration would be
nontrivial and would induce a nontrivial filtration of the Be-representation (FL)e =

3 which is not possible as 3 is irreducible).
Chose such an FL . Replacing FL with FL(n)H N with n ∈ N big enough, we

may assume that the degree d of FL is ≥ 0. By Proposition 2.7, we can find a finite
extension K ′ of K contained in Qp and a G K ′-stable sub-B+d R-lattice L0 ⊂ L such
that lengthB+d R

(L/L0)= d . Then FL0 = (3, L0) is a G K ′-equivariant vector bundle
over X of degree d − d = 0. As the Be-representation 3 is absolutely irreducible,
it is irreducible as a Be-representation of G K ′ . Hence, FL0 is semistable of slope 0.
By Proposition 3.5, there is a Qp-representation U of G K ′ such that

FL0 'OX ⊗U.

Therefore 3, as a Be-representation of G K ′ , is isomorphic to Be⊗Qp U . �

Corollary 3.9. The category RepBe
(GK ) is the smallest full subcategory of itself

containing potentially trivialisable Be-representations and stable under taking ex-
tensions. This is also the smallest full subcategory of itself containing trivialisable
Be-representations and stable under taking extensions and direct summands.

Proof. For any Be-representation 3 of GK , one can find a finite extension K1 of
K contained in Qp such that 3, viewed as a Be-representation of G K1 , can be
viewed as a successive extension of absolutely irreducible Be-representations of
G K1 and the first assumption results from the previous proposition. Hence we may
find a finite extension K ′ of K contained in Qp such that 3, as a Be-representation
of G K ′ , is a successive extension of G K ′-trivialisable Be-representations. Therefore
the induced Be-representation of GK

3′ = Be[GK ]⊗Be[G K ′ ]
3=Q[GK ]⊗Q[G K ′ ]

3

is a successive extension of trivialisable Be-representations of GK . But the obvious
GK -equivariant projection 3′→3 splits (as, if 3∨ denotes the Be-dual of 3 and
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if H = Gal(K ′/K ), we have a short exact sequence

0→ HomRepBe (GK )(3,3
′)→ HomRepBe (G K ′ )

(3,3)→ H 1(H,3∨⊗Be 3
′)

and, as Be is of characteristic 0, we have H 1(H,3∨⊗Be 3
′)= 0). Therefore, 3 is

a direct summand of a successive extension of trivialisable Be-representations. �

Remark 3.10. The results of this paragraph can also be deduced from the work of
Berger ([Berger 2008] and [Berger 2009]) relating (ϕ, 0)-modules on the Robba
ring and Be-pairs.

3J. The forgetful functor RepBe(GK )→ Ĉ(GK ).

Proposition 3.11. The forgetful functor

RepBe
(GK )→ IF(GK )

is fully faithful.

Proof. Let 3 and 3′ two Be-representations. We want to prove that any GK -
equivariant continuous map

3
α
→3′

is Be-linear.
Let K ′ be a finite Galois extension of K contained in Qp such that 3 and

3′ are successive extensions of trivialisable Be-representations of G K ′ . If H =
Gal(K ′/K ), we have

HomRepBe (GK )(3,3
′)= (HomRepBe (G K ′ )

(3,3′))H ,

HomIF(GK )(3,3
′)= (HomIF(G K ′ )

(3,3′))H .

Therefore, replacing K by K ′ we may assume again that there is r ∈ N and a
filtration of 3 by sub-Be-representations

0=30 ⊂31 ⊂ · · · ⊂3r−1 ⊂3r =3

such that each 3i/3i−1 is trivialisable.
We proceed by induction on r , the case r = 0 being trivial. Assume r ≥ 1

and that 3r/3r−1 = Be⊗Qp U for some U ∈ C0(GK ). Chose a Be-linear section
s : Be⊗U →3 of the projection 3→ Be⊗U . We have a decomposition of 3 as
a Be-module into a direct sum

3=3r−1⊕ s(Be⊗U )=3r−1⊕ (Be⊗ s(U )).

By induction, the restriction of α to 3r−1 is Be-linear. Hence there is a unique
Be-linear map

α0 :3→3′
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such that α0(λ)= α(λ) if λ ∈3r−1 and α0(s(u))= α(s(u)) for all u ∈U . It is easy
to check that α0 is continuous and GK -equivariant. The maps

α, α0 :3→3′

coincide on 3r−1⊕ s(U ) and the map α−α0 induces, by going to the quotient, a
morphism in IF(GK )

β :3/(3r−1⊕ s(U ))→3′.

Recall (cf. eg [Colmez and Fontaine 2000], proposition 1.3) that Bd R = Be+ B+d R ,
and Be ∩ B+d R =Qp. Hence, if we set B̃d R = Bd R/B+d R , we can identify Be/Qp to
B̃d R .

Therefore we have

3/(3r−1⊕ s(U ))= (3r/3r−1)/U = Be⊗U/U = B̃d R ⊗Qp U.

and β ∈ HomIF(GK )(B̃d R ⊗U,3′).
We see that B̃d R is the direct limit of the Bd(−d), for d ∈ N, hence

B̃d R ⊗U = lim
−−→d∈N

Bd(−d)⊗Qp U.

Each Bd(−d)⊗U is an object of C∞(GK ). Hence, Proposition 3.4, implies that

HomIF(GK )(Bd(−d)⊗U,3′)= 0.

Therefore β = 0 and α = α0 is Be-linear. �

We use this result to identify RepBe
(GK ) to a full subcategory of IF(GK ).

Proposition 3.12. We have

RepBe
(GK )⊂ Ĉ(GK ).

More precisely, for any Be-representation 3 of GK , there is a GK -equivariant ad-
missible filtration (Fn3)n∈Z with F13= 0 and Fn3 ∈ C(GK ) for all n. Moreover,
we may choose this filtration so that, if b ∈ Fil−d Be and λ ∈ Fn3 (with d ∈ N,
n ∈ Z), then bλ ∈ Fn−d3.

Proof. Assume first that3 is a successive extension of trivialisable Be-representations,
i.e., that there is r ∈ N and a filtration by sub-Be-representations

0=30 ⊂31 ⊂ · · · ⊂3r−1 ⊂3r =3

such that each 3i/3i−1 is trivialisable. We proceed by induction on r , the case
r = 0 being trivial. Assume r ≥ 1. Setting 3r−1 =3

′ and choosing U ∈ C0(GK )
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such that3r/3r−1' Be⊗Qp U , we may assume that we have a short exact sequence
of Be-representations

0→3′→3→ Be⊗U → 0

and, using induction hypothesis, that we have an admissible filtration (Fn3′)n∈Z

of 3′ satisfying the required properties. Let s : Be⊗U →3 a Be-linear section of
the projection 3→ Be⊗U , so that we have a decomposition of the Be-module 3
into a direct sum

3=3′⊕ s(Be⊗U )=3′⊕ (Be⊗ s(U )).

The map

ρ : GK ×U →3′, (g, u) 7→ g(s(u))− s(g(u))

is continuous. Therefore, if T is a GK -stable lattice of U , then ρ(GK × T ) is
compact, hence bounded which implies (by [Schneider 2002, proposition 5.6]) that
there exists m ∈ Z such that ρ(GK × T ), hence also ρ(GK ×U ) is contained in
Fm3′.

If, for n ∈ Z, we set

Fn3=

{
Fn3′⊕ (Fn−m Be⊗U ) if n ≤ m,

0 if n > m,

we see that (Fn3)n∈N is an admissible filtration satisfying the required properties.
– In the general case, we choose a finite extension K ′ of K such that 3 is a

successive extension of trivialisable Be-representation of G K ′ . Therefore we can
find a G K ′-equivariant decreasing admissible filtration

(Fn
K ′3)n∈Z

such that, if n ∈ Z, then Fn
K ′3 ∈ C(G K ′) and that, if b ∈ Fil−d Be, for some d ∈ N

and λ ∈ Fn
K ′3, then bλ ∈ Fn−d

K ′ 3.
For each n ∈ Z, denote by Fn3 the smallest sub-Qp-vector space of 3 contain-

ing Fn
K ′3 and stable under GK . This is also the image of the obvious map

Qp[GK ]⊗Qp[G K ′ ]
Fn

K ′3→3.

If h1, h2, . . . , hm is a system of representatives of GK /G K ′ in GK , this is also∑m
i=1 hi (Fn3K ′) ⊂ 3 which is still bounded and it is clear that the (Fn3)n∈Z

satisfy the required properties. �

Remark 3.13. We see immediately that RepBe
(GK ) is a weak Serre subcategory

of Ĉ(GK ).
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3K. Cohomology of coherent OX -modules. We denote by Bd R the Be-module
Bd R/Be. It is not of finite type but, as the cokernel of the inclusion Be → Bd R

which is a morphism of Ĉ(GK ), it can be viewed as an object of this category. The
equalities Bd R = Be + B+d R and Qp = Be ∩ B+d R imply that Bd R , as an object of
Ĉ(GK ), can also be identified with B+d R/Qp.

If F = (Fe,F+d R, ιF ) ∈ Coh(OX ). The map

Fe→ Fd R = Bd R ⊗Be Fe, x 7→ 1⊗ x

is injective, we use it to identify Fe to a sub-Be-module of Fd R and we denote by
Fd R the quotient Fd R/Fe.

Proposition 3.14 [Fargues and Fontaine 2018, proposition 8.2.3]. For any F ∈
Coh(OX ), we have H i (X,F)= 0 for i /∈ {0, 1} and

F(X)= H 0(X,F) 6= 0 ⇐⇒ F≥0
6= 0,

H 1(X,F) 6= 0 ⇐⇒ F<0
6= 0.

Moreover, there is a canonical exact sequence of Qp-vector spaces

(1) 0→ H 0(X,F)→ Fe⊕F+d R
dF
→ Fd R→ H 1(X,F)→ 0

(where dF (x, y)= ιF (y)− x) which is functorial in F .

We have a commutative diagram of Qp-vector spaces

0

��

0

��

Fe

��

Fe

��

0 // H 0(X,F) // Fe⊕F+d R

��

// Fd R H 1(X,F)

��

//// 0

F+d R

��

// Fd R

��

0 0

whose columns and the two first lines are exact. Hence we have also an exact
sequence

(2) 0→ H 0(X,F)→ F+d R
dF
→ Fd R→ H 1(X,F)→ 0

where dF (y) is the image of ιF (y) in Fd R .



698 JEAN-MARC FONTAINE

3L. Cohomology of coherent OX [GK ]-modules. We say that an almost Cp-repre-
sentation is effective if this object of C(GK ) is isomorphic to a sub-object of C∞(GK ).
We denote by C≥0(GK ) the full subcategory of C(GK ) whose objects are those
which are effective.

Proposition 3.15. Let f : W → V a morphism of C(GK ) with W ∈ C∞(GK ) and
V ∈ C≥0(GK ). Then the kernel of f belongs to C∞(GK ).

Proof. By assumption, there exists a monomorphism g : V → W ′ in C(GK ) with
W ′ ∈ C∞(GK ). The kernel of f is the same as the kernel of g f :W →W ′. As W
and W ′ are in C∞(GK ), so is this kernel. �

Proposition 3.16. Let F ∈M(GK ). Then H 0(X,F) ∈ C≥0(GK ).

Proof. We see that Fe, F+d R and Fd R can be viewed as objects of the abelian
category Ĉ(GK ). The inclusion Fe ↪→ Fd R is a morphism of this category, hence
Fd R can also viewed as an object of Ĉ(GK ). The map dF of the exact sequence
(2) is obviously a morphism of this category, hence

H 0(X,F)= ker dF and H 1(X,F)= coker dF

are objects of Ĉ(GK ).
For m ∈ N, big enough, F(−m)H N has all its HN-slopes strictly negative and

H 0(X,F(−m)H N )= 0. But this is the kernel of the map

F+d R(m)→ Fd R, b⊗ tm
7→ tmb (mod Fe).

Hence we have a commutative diagram

0 // 0

��

// F+d R(m)

��

// Fd R

0 // H 0(X,F) // F+d R
// Fd R

(the first nonzero vertical arrow sends b⊗ tm to tmb) whose lines are exact. There-
fore, the compositum H 0(X,F)→F+d R→F+d R/tmF+d R is injective and H 0(X,F),
subobject in Ĉ(GK ) of F+d R/tm .F+d R ∈ C

∞(GK ) is in C≥0(GK ). �

4. Hulls and construction of the functor V 7→FV

4A. Generalities. In what follows, B? is either Be, B+d R or Bd R .
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We know (Remarks 3.13 and 2.13) that RepB?
(GK ) can be identified with a weak

Serre subcategory of Ĉ(GK ). We have “inclusions" of weak Serre subcategories

RepB+d R
(GK )

))

RepBd R
(GK ) // Ĉ(GK )

RepBe
(GK )

55

Let V be an almost Cp-representation. We say that V has a B?-hull if the functor

RepB?
(GK )→Qp-vector spaces, W 7→ HomĈ(GK )

(V,W )

is representable, i.e., if there is a (necessarily unique up to unique isomorphism)
pair (V?, ι

V
? ), with V? a B?-representation and ιV? : V → V? a GK -equivariant con-

tinuous Qp-linear map, such that, for all B?-representation W , the map

HomRepB?
(GK )(V?,W )→ HomĈ(GK )

(V,W ),

induced by ιV? , is bijective.
When it is the case, we call (V?, ι

V
? ), or abusively V?, the B?-hull of V .

Our purpose is to show that such an hull always exists and to use these hulls to
construct a functor

C(GK )→M(GK ), V 7→ FV .

Remark 4.1. Let V be an almost Cp-representation and let IV the class of mor-
phisms

ι : V →Wι

of Ĉ(GK ) whose source is V and target a B?-representation. With suitable con-
ventions and abuses, to say that V has a B?-hull means that the directed inverse
limit

V? = lim
←−−ι∈IV

Wι

exists and that the B?-module underlying this “pro-B?-representation of GK " is of
finite type.

Restricted to the full subcategory of C(GK ) of almost Cp-representations admit-
ting a B?-hull, the correspondence V 7→ V? is obviously functorial.

Let V ∈ C(GK ) such that, with obvious notations, (V+d R, ι
V,+
d R ) exists, let M ∈

RepBd R
(GK ) and f : V → M a morphism in Ĉ(GK ). We see that the sub B+d R-

module W of M generated by f (V ) is an object of C∞(GK ), hence there is a
unique morphism (in Ĉ(GK ) or, in this case, equivalently in C∞(GK ))

g : V+d R→W ⊂ M
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such that f = g ◦ ιV,+d R and we have

HomĈ(GK )
(V,M)= HomĈ(GK )

(V+d R,M)=

HomĈ(GK )
(Bd R ⊗B+d R

V+d R,M)= HomRepBd R (GK )
(Bd R ⊗B+d R

V+d R,M).

Therefore Vd R exists and can be identified with Bd R ⊗B+d R
V+d R .

The same argument applies to the case where (Ve, ι
V
e ) exists. Hence we have:

Proposition 4.2. Let V ∈ C(GK ).

(i) If V+d R exists, Vd R exists and is, canonically and functorially, Bd R ⊗B+d R
V+d R .

(ii) If Ve exists, Vd R exists and is, canonically and functorially, Bd R ⊗Be Ve.

Proposition 4.3. Let B? as above and let V be an almost Cp-representation of GK

which has a B?-hull (V?, ι
V
? ).

(i) The image of ιV? generates V? as a B?-module.

(ii) If moreover
0→ V ′→ V → V ′′→ 0

is a short exact sequence in C(GK ), then V ′′ has a B?-hull which is the quotient
of V? by the sub-B?-module of V? generated by the image of V ′.

(iii) In this situation, if V ′ has a B?-hull, then the sequence

V ′? → V?→ V ′′? → 0

is exact.

Proof. (i) Let W0 be the sub-B?-module of V? generated by the image of V . As B?

is noetherian, this is a B?-module of finite type. By the universal property of V?,
there is a unique morphism ν : V?→W0 such that the map V →W0 is ν ◦ ιV? and
we see that V? =W0⊕ ker ν. The fact that idV? is the unique endomorphism of V?

such that ν ◦ ιV? = ι
V
? forces ker ν to be 0.

(ii) If W is any B?-representation, we have

HomĈ(GK )
(V ′′,W )=

{
f ∈ HomĈ(GK )

(V,W ) | f (V ′)= 0
}

=
{

f ∈ HomRepB?
(GK )(V?,W ) | f (ιV? (V

′))= 0
}

= HomRepB?
(GK )(V?/B?ι

V
? (V

′),W ).

(iii) Let N be the kernel of the projection V? → V ′′? . The image of V ′? in V? is
clearly contained in N . As N is the sub-B?-module generated by the image of V ′,
the map V ′? → N is surjective and

V ′? → V?→ V ′′? → 0

is exact. �
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4B. Construction of trivialisable almost C p-representations. A trivialisation of
an almost Cp-representation V is a short exact sequence

0→U → V →W → 0

in C(GK ) with U ∈ C0(GK ) and W ∈ C∞(GK ).
An almost Cp-representation is trivialisable if it admits a trivialisation.
If V ∈ C(GK ), if f̃ : V/U+→W/U− is an almost isomorphism with W ∈ C(GK )

and if V̂ =W ×W/U− V , we have, in C(GK ), a commutative diagram

0

��

0

��

U+
��

U+

��

0 // U− // V̂

��

// V

��

// 0

0 // U− // W

��

// V/U+
��

// 0

0 0

and V is a quotient of V̂ which is trivialisable as it is an extension of W by U+ ∈
C0(GK ).

Given U ∈ C0(GK ) and W ∈ C∞(GK ), it is easy to construct all almost Cp-
representations which are extensions of W by U :

Recall that
Bd R = Be+ B+d R and Be ∩ B+d R =Qp

and that we set
B̃d R = Bd R/B+d R = Be/Qp.

Let U be an object of C0(GK ) and W an object of C∞(GK ). Tensoring the exact
sequence

0→Qp→ Be→ B̃d R→ 0

by U we get a short exact sequence in Ĉ(GK )

0→U → Be⊗Qp U → B̃d R ⊗Qp U → 0

inducing a map

δU,W : HomĈ(GK )
(W, B̃d R ⊗Qp U ) // Ext1Ĉ(GK )

(W,U )

HomĈ∞(GK )
(W, B̃d R ⊗Qp U ) Ext1C(GK )

(W,U )
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Proposition 4.4 [Fontaine 2003, proposition 3.7]. Let U ∈ C0(GK ) and W ∈
C∞(GK ). The map

δU,W : HomĈ∞(GK )
(W, B̃d R ⊗Qp U )→ Ext1C(GK )

(W,U )

is an isomorphism.

Hence if V is a trivialisable almost Cp-representation and if

(T ) 0→U → V →W0→ 0

is a trivialisation of V , there is a unique

ρT ∈ HomĈ∞(GK )
(W0, B̃d R ⊗Qp U )

such that the square
V

��

// W0

ρT
��

Be⊗Qp U // B̃d R ⊗Qp U

is cartesian.

4C. Construction of the hulls.

Proposition 4.5. Any almost Cp-representation V has a Be-hull Ve, a B+d R-hull
V+d R and a Bd R-hull Vd R . We have

Vd R = Bd R ⊗Be Ve = Bd R ⊗B+d R
V+d R,

rankB+dR
V+dR = rankBeVe = dimBdR VdR ≥ h(V)

and equality holds when V is trivialisable.
Moreover:

(i) If U ∈ C0(GK ), then Ue = Be⊗Qp U and U+d R = B+d R ⊗Qp U ,

(ii) If W ∈ C∞(GK ), then We = 0 and W+d R =W ,

(iii) If

(T ) 0→U → V →W0→ 0

is a trivialisation of an almost Cp-representation V , then
(a) the map Ue = Be⊗Qp U → Ve is an isomorphism, and
(b) we have a short exact sequence

0→ B+d R ⊗Qp U → V+d R→W0→ 0

More precisely, V+d R is the fiber product (Bd R⊗Qp U )×B̃d R⊗Qp U W0 (where

W0→ B̃d R ⊗Qp U is the map ρT ).
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Proof. From Proposition 4.2, we see that the existence of Ve and V+d R implies the
existence of Vd R and the equalities:

Vd R = Bd R ⊗Be Ve = Bd R ⊗B+d R
V+d R,

rankB+dR
V+dR = rankBeVe = dimBdR VdR.

(i) Let U ∈ C0(GK ). By adjunction, for any Be-representation 3, we have

HomĈ(GK )
(U,3)= HomRepBe (GK )(Be⊗Qp U,3)

hence Ue exists and is Be⊗Qp U . Similarly, for any object W0 ∈ C∞(GK ), we have

HomC(GK )(U,W0)= HomĈ∞(GK )
(B+d R ⊗Qp U,W0)

hence U+d R exists and is B+d R ⊗Qp U . In particular, dimBd R Ud R = h(U ).

(ii) Let W ∈ C∞(GK ). For all Be-representation 3, we have HomĈ(GK )
(W,3)=

0 (Proposition 3.4). Therefore We exists and is = 0. For any W0 ∈ C∞(GK ), we
have HomC(GK )(W,W0)=HomC∞(GK )(W,W0) (Proposition 2.6) hence W+d R exists
and is W . In particular dimBd R Wd R = 0= h(W ).

(iii) Let V a trivialisable almost Cp-representation and

(T ) 0→U → V →W0→ 0

a trivialisation.

(a) Let 3 be a Be-representation. The inclusion U → V induces a map

α : HomĈ(GK )
(V,3)→ HomĈ(GK )

(U,3)
'
−→ HomRepBe (GK )(Be⊗Qp U,3)= HomĈ(GK )

(Be⊗Qp U,3)

(Propositions 3.11 and 3.12). We have a cartesian square (Section 4B)

(S)

V

ρ

��

// W0

ρT
��

Be⊗Qp U // B̃d R ⊗Qp U

and we may use ρ to get a map

β : HomĈ(GK )
(Be⊗Qp U,3)→ HomĈ(GK )

(V,3)

Let f ∈HomĈ(GK )
(Be⊗Qp U,3) and f ′ = α(β( f )). If

∑
bi ⊗ui ∈ Be⊗Qp U , we

have

f ′
(∑

bi ⊗ ui
)
=
∑

bi (β( f )(ui ))=
∑

bi f (ui )= f
(∑

bi ⊗ ui
)

as f is Be-linear, hence f ′ = f .
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Let g ∈ HomĈ(GK )
(V,3) and g′ = α(β(g)). If u ∈U , as ρ(u)= u, we have

g′(u)= β(α(g))(u)= α(g)(u)= g(u)

Hence g′− g factors through a morphism in Ĉ(GK )

W0→3

which is necessarily 0 (Theorem 2.9), hence g′ = g. Therefore we see that α is an
isomorphism. It is implies that Ve exists and is equal to Ue = Be⊗Qp U .

(b) We want to show that V+d R exists and is equal to

W1 = (Bd R ⊗Qp U )×B̃d R⊗Qp U W0.

Using the cartesian square (S) and the inclusion Be⊗Qp U ⊂ Bd R ⊗Qp U , we get
a morphism of Ĉ(GK )

V →W1

and we have a commutative diagram in Ĉ(GK )

(∗)

0 // U //

��

V //

��

W0 // 0

0 // U+d R
// W1 // W0 // 0

whose lines are exact.
If W is any B+d R-representation, we have a commutative diagram

0 // Hom(W0,W ) // Hom(V,W )

��

// Hom(U,W )

'��

// Ext1(W0,W )

0 // Hom(W0,W ) // Hom(W1,W ) // Hom(U+d R,W ) // Ext1(W0,W )

(where all the Hom and Ext1 are computed in Ĉ(GK )) which implies that

HomC(GK )(V,W )→ HomC(GK )(W1,W )= HomC∞(GK )(W1,W )

is an isomorphism. Hence V+d R exists and is equal to W1.

Finally, let V be any object of C(GK ). We can find an exact sequence

0→U → V̂ → V → 0

with V̂ trivialisable. The existence of V̂e and V̂+d R implies (Proposition 4.3) the
existence of Ve and V+d R . The exactness of the sequence

Ud R→ V̂d R→ Vd R→ 0

implies that

dimBd R Vd R ≥ dimBd R V̂d R − dimBd R Ud R = h(V̂ )− h(U )= h(V ). �
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4D. The functor V 7→FV . For any almost Cp-representation V , denote

ιV : V+d R→ Vd R = Bd R ⊗Be Ve

the natural map. It induces an isomorphism Bd R ⊗B+d R
V+d R→ Vd R . Therefore

FV = (V+d R, Ve, ιV )

is a coherent OX [GK ]-module. This construction is clearly functorial and we get
an additive functor

C(GK )→M(GK ), V 7→ FV .

From the universal properties of the functor V 7→ V+d R and V 7→ Ve, we deduce
the fact that V 7→ FV is left adjoint to F 7→ F(X).

5. The equivalence M≥0(GK )→ C≥0(GK )

5A. A characterisation of effective coherent OX [GK ]-modules.

Theorem 5.1. The category M≥0(GK ) is the smallest strictly full subcategory of
M(GK ) containing M0(GK ) and M∞(GK ) and stable under taking extensions
and direct summands.

Lemma 5.2. Let s be a positive rational number. There exists Gs ∈Ms(GK ) which
is an extension of an object of M∞(GK ) by an object of M0(GK ).

Proof of the theorem given the lemma. As a subcategory of M(GK ), the cate-
gory M≥0(GK ) is obviously stable under taking extensions and direct summands.
Hence, it suffices to show that any F ∈M≥0(GK ) can be written as a direct sum-
mand of successive extensions of direct summands of objects which are extensions
of an object of M∞(GK ) by an object of M0(GK ). Using the Harder–Narasimhan
filtration, it is enough to show that, if F is semistable of slope s ≥ 0, then F is
such a direct summand.

If s = 0, then F ∈M0(GK ) and, if s = +∞, then F ∈M∞(GK ) and we may
assume that s is a positive rational number.

Let Gs as in the lemma, so that we have a short exact sequence

0→ G0
s → Gs→ G∞s → 0

with G0
s ∈M0(GK ) ans G∞s ∈M∞(GK ). As Gs is a vector bundle (it has no torsion),

its dual G∨s is well defined and semistable of slope −s. Therefore

F0 = F ⊗G∨s

is semistable of slope 0. We have a short exact sequence

0→ F0⊗G0
s → F0⊗Gs→ F0⊗G∞s → 0
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and F0⊗Gs is an extension of F0
⊗G∞s ∈M∞(GK ) by F0

⊗G0
s ∈M0(GK ).

But, with obvious notations,

F0⊗Gs = F ⊗G∨s ⊗Gs = F ⊗End(Gs).

If End0(Gs) is the subsheaf of elements of trace 0 in End(Gs), we have

End(Gs)=OX ⊕End0(Gs)

hence
F0⊗Gs = F ⊗ (OX ⊕End0(Gs))= F ⊕ (F ⊗End0(Gs))

and F is a direct summand of F0⊗Gs . �

Proof of the lemma. We may assume K =Qp. Recall the following facts ([Fargues
and Fontaine 2018, proposition 10.5.3]; see also [Colmez and Fontaine 2000, §5]):

• A filtered ϕ-module over Qp is a pair (D,Fil) consisting of

(a) a ϕ-module over Qp, i.e., a finite-dimensional Qp-vector space D equipped
with an automorphism ϕ : D→ D,

(b) an exhausted and separated decreasing filtration (Filn D)n∈Z.
(i) There is a fully faithful additive functor

(D,Fil) 7→ FD,Fil

from the category of filtered ϕ-modules over Qp to the category of GQp -
equivariant vector bundles over X (the essential image consists of those
equivariant vector bundles which are crystalline, i.e., those F’s such that
the natural map

Bcris⊗Qp

(
Bcris⊗Be Fe

)GK
→ Bcris⊗Be Fe

is bijective): we have FD,Fil = (FD,Fil,e,F+D,Fil,d R) where
– FD,Fil,e is the Be-module (Bcris⊗Qp D)ϕ=1 which implies that

FD,Fil,d R = Bd R ⊗Be FD,e = Bd R ⊗Qp D,

– F+D,Fil,d R = Fil0(Bd R ⊗Qp D)=
∑

n∈Z Fil−n Bd R ⊗Filn D.

Set s = d/h with d, h positive integers, prime together.
Consider the ϕ-module D over Qp whose underlying Qp-vector space is of

dimension h, with (er )r∈Z/hZ as a basis and

ϕ(er )=

{
er+1 if r + 1 6= 0,
p−de0 if r + 1= 0.
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We equip D with two distinct filtrations Fil and Fil0:

Filn D =
{

D if n ≤ 0,
0 if n > 0,

Filn0 D =


D if n ≤−d,⊕

r 6=0 Qper if − d < n ≤ 0,
0 if n > d.

Set Gs = FD,Fil and G0
s = FD,Fil0 . Both are coherent OX [GK ]-module of rank

h. As the polynomial Xh
− p−d is irreducible over Qp, the Qp[ϕ]-module D is

irreducible which implies that Gs and G0
s are stable, hence semistable. An easy

computation shows that deg(Gs) = d and deg(G0
s ) = 0, hence Gs is semistable of

slope d/h = s and G0
s is semistable of slope 0, hence belongs to M0(GK ). We see

that G0
s,e = Gs,e and that (G0

s )
+

d R ⊂ (Gs)d R . Therefore G0
s is a subobject of Gs and

the cokernel G∞s is torsion, and so belongs to M∞(GK ). �

5B. Some properties of effective almost C p-representations. Recall (Section 1E)
that an exact subcategory of an abelian category is a strictly full subcategory con-
taining 0 and stable under extensions. For instance the previous theorem shows
that M≥0(GK ) is an exact subcategory of M(GK ).

Theorem 5.3. Let V ∈ C(GK ). The following conditions are equivalent:

(i) V is effective (i.e., V ∈ C≥0(GK )).

(ii) There is a finite extension K ′ of K contained in Q p such that V , as an object
of C(G K ′) is a successive extension of objects belonging either to C0(G K ′) or
to C∞(G K ′).

(iii) V belongs to the smallest strictly full subcategory of C(GK ) containing C0(GK )

and C∞(GK ) and stable under taking extensions and direct summands.

Moreover C≥0(GK ) is an exact subcategory of C(GK ).

Before proving this theorem, let’s state an other result. Recall (Section 4D) that,
to any V ∈ C(GK ), we associated the coherent OX [GK ]-module

FV = (V+d R, Ve, ιV ).

We have
(FV )

+

d R = V+d R, (FV )e = Ve, ιFV = ιV .

Therefore, if we set V d R = FV d R = Vd R/Ve, we have (cf. Section 3L) an exact
sequence

(C) 0→ H 0(X,FV )→ V+d R
ιV
→ V d R→ H 1(X,FV )→ 0

(where ιV = ιFV is the compositum of ιV with the projection Vd R→ Vd R/Ve) and,
as V ⊂ Ve is injective, the image of V in V+d R is contained in FV (X)= H 0(X,FV ).
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Proposition 5.4. Let V ∈ C≥0(GK ).

(i) We have h(V )≥ 0 and dimBd R Vd R = h(V ).

(ii) We have V ∈ C∞(GK )⇐⇒ h(V )= 0,

(iii) The sequence

0→ V → V+d R
ιV
→ V d R→ 0

is exact.

(iv) the map V → H 0(X,FV ) is bijective and FV ∈M≥0(GK ).

Moreover, the restriction to C≥0(GK ) of the four functors C(GK )→ Ĉ(GK )

V 7→ V+d R, V 7→ Ve, V 7→ Vd R V 7→ V d R

and of the functor
C(GK )→M(GK ), V 7→ FV

are exact.

Proof of the theorem and beginning of the proof of the proposition. For any V ∈
C≥0(GK ), we denote by dV the infimum of the d(W )’s for all W ∈ C∞(GK ) such
that V is isomorphic to a subobject of W (note that d(V )≤ dV ).

Denote by K the set of finite extensions L of K contained in Qp. For any
L ∈ K, let C?(GL) the full subcategory of C(GL) whose objects can be written as
a successive extension of objects belonging either to C0(GL) or to C∞(GL).

We now show assertion (i) of the proposition and the implication (i)=⇒(ii) of
the theorem, i.e., that, if V ∈ C≥0(GK ), then

dimBd R Vd R=h(V ) (so h(V )≥ 0) and there exists K ′ ∈ K such that V ∈C?(G K ′).

We proceed by induction on dV , the case dV = 0 being trivial.
Let V ⊂W an embedding of V into an object W ∈ C∞(GK ) satisfying d(W )=

dV > 0. We can find (cf. Proposition 2.7) K1 ∈ K and a G K1-stable sub-B+d R-
module W ′ of W of length 1. Setting W ′′ =W/W ′, V ′ = V ∩W ′ and denoting V ′′

the image of V in W ′′, we get a commutative diagram in C(G K1)

0 // V ′

��

// V

��

// V ′′

��

// 0

0 // W ′ // W // W ′′ // 0

whose rows are exact and vertical arrows are injective which implies that V ′ and
V ′′ belong to C≥0(G K1). We have d(V ′) ≤ d(W ′) = 1. From Corollary 2.10, we
get that either d(V ′)= 1 in which case V ′ =W ′ or d(V ′)= 0 which implies that
V ′ ∈ C0(G K1).

– If V ′ =W ′, we have h(V ′)= 0 and (V ′)+d R =W ′ hence V ′d R = 0.
– If V ′ ∈ C0(G K1), we have h(V ′)= dimQp V ′ and V ′d R = Bd R ⊗Qp V ′.
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In both cases, we have dimBd R V ′d R=h(V ′). By induction, we have dimBd R V ′′d R=

h(V ′′). The exactness of the sequence

V ′d R→ Vd R→ V ′′d R→ 0

implies that

dimBd R Vd R ≤ dimBd R V ′d R + dimBd R V ′′d R = h(V ′)+ h(V ′′)= h(V ),

hence, as dimBd R Vd R ≥ h(V ) (Proposition 4.5), we get dimBd R Vd R = h(V ), i.e the
assertion (i) of the proposition.

Also by induction, as V ′′ belongs to C≥0(G K1), there is K ′ ∈ K containing K1

such that V ′′ ∈ C?(G K ′). Then V , as a representation of G K ′ , is an extension of
V ′′ by either an object of C∞(G K ′) (if d(V ′) = 1) or by an object of C0(G K ′) (if
d(V ′)= 0). In both cases, V belongs to C?(G K ′).

Therefore, given V ∈ C≥0(GK ), there is K ′ ∈K and a filtration of V by subobjects
in C+(G K ′)

0= V0 ⊂ V1 ⊂ · · · ⊂ Vr−1 ⊂ Vr = V

such that, if i = 1, 2, . . . , r , then Vi/Vi−1 belongs either to C0(G K ′) or to C∞(G K ′).
This proves the implication (i)=⇒(ii) of the theorem.

In particular, we have h(V )=
∑r

i=1 h(Vi/Vi−1) which is > 0 unless h(Vi/Vi−1)

vanishes for all i , which means that Vi/Vi−1 belongs to C∞(GK ). As C∞(GK ) is
stable under taking extensions, we get the equivalence

h(V )= 0⇐⇒ V ∈ C∞(GK )

which is the assertion (ii) of the proposition.

The implication (ii)=⇒(iii) of the theorem is obvious: If V satisfies (ii), the
induced representation Qp[GK ] ⊗Qp[G K ′ ]

V belongs to C?(GK ) and V is a direct
summand of this representation.

As a full subcategory of C(GK ), the category C≥0(GK ) is obviously stable un-
der taking direct summands. Hence, we see that the implication (iii)=⇒(i) of the
theorem and the fact that C≥0(GK ) is an exact subcategory of C(GK ) result from
the following:

Lemma 5.5. Assume we have a short exact sequence in C(GK )

(1) 0→ V0→ V1→ V2→ 0

with V2 ∈ C≥0(GK ) and V0 belonging either to C0(GK ) or to C∞(GK ). Then V1 ∈

C≥0(GK ) and the sequence

0→ V+0,d R→ V+1,d R→ V+2,d R→ 0

is exact.
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Proof of the lemma. Assume first that V0 belongs to C0(GK ): we have a commuta-
tive diagram

0 // V0

��

// V1

��

// V2

��

// 0

V+0,d R
// V+1,d R

// V+2,d R
// 0

whose rows are exact, the maps V0→ V+0,d R and V2→ V+2,d R being injective. I will
show that the map V+0,d R→ V+1,d R is injective. As V+0,d R = B+d R ⊗Qp V0 is a torsion
free B+d R-module, it is enough to check that V0,d R→ V1,d R is injective. If it were
not true, we would have

dimBd R V1,d R < dimBd R V0,d R + dimBd R V2,d R = h(V0)+ h(V2)= h(V1).

As we have (Proposition 4.5) dimBd R V1,d R ≥ h(V1), this can’t happen. This forces
V1→ V+1,d R to be also injective, hence V1 ∈ C≥0(GK ).

Now assume instead that V0 belongs to C∞(GK ). As the sequence (1) almost
splits (Proposition 2.15), we can find an extension S in C0(GK ) of V2 by some
U ∈ C0(GK ) such that V1 = V0⊕U S. By what we just saw, S ∈ C≥0(GK ) and we
have a commutative diagram

0 // U

��

// S

��

// V2

��

// 0

0 // U+d R
// S+d R

// V+2,d R
// 0

whose line are exacts and vertical arrows are injective.
We also have a commutative diagram

0 // U

��

// W ⊕ S

��

// V1

��

// 0

U+d R
// W ⊕ S+d R

// V+1,d R
// 0

(the map U → W ⊕ S send u to (u,−u)) whose rows are exact and the two first
vertical arrows are injective.

The injectivity of U+d R → S+d R implies the injectivity of U+d R → W ⊕ S+d R . To
finish the proof we only need to show that the map V1→ V+1,d R is injective or, with
obvious identifications, that inside of W ⊕ S+d R , we have

U+d R ∩ (W ⊕ S)=U.

Assume (w, s) ∈W ⊕ S belongs to U+d R . This implies that s ∈ S∩U+d R which is U
as the map V2→ V+2,d R is injective. We then need w =−s and (w, s) is the image
of −s ∈U . �
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Proof of the exactness of the functors V 7→ Vd R , V 7→ Ve and V 7→ V d R . If

0→ V ′→ V → V ′′→ 0

is a short exact sequence in C≥0(GK ), we know that the sequences

V ′e → Ve→ V ′′e → 0, V ′d R→ Vd R→ V ′′d R→ 0

are exact. As

dimBd R Vd R = h(V )= h(V ′)+ h(V ′′)= dimBd R V ′d R = dimBd R V ′′d R

the map V ′d R→ Vd R must be injective and the functor V 7→ Vd R is exact.
As the Be-modules V ′e , Ve and V ′′e are torsion free and as

rankBe(V
′

e)= dimBd R V ′d R,

rankBe(Ve)= dimBd R Vd R,

rankBe(V
′′

e )= dimBd R V ′′d R.

the same argument shows the exactness of V 7→ Ve.
We then have a commutative diagram

0

��

0

��

0

��

0 // V ′e

��

// Ve

��

// V ′′e

��

// 0

0 // V ′d R

��

// Vd R

��

// V ′′d R

��

// 0

0 // V ′d R

��

// V d R

��

// V ′′d R

��

// 0

0 0 0

whose three columns and the two first rows are exact. This implies the exactness
of the last row.

Lemma 5.6. Let
0→ V ′→ V → V ′′→ 0

a short exact sequence in C≥0(GK ). Assume the sequences

0→ V ′→ (V ′)+d R→ V ′d R→ 0

and
0→ V ′′→ (V ′′)+d R→ V ′′d R→ 0
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are exact. Then the sequences

0→ V → V+d R→ V d R→ 0

and
0→ (V ′)+d R→ V+d R→ (V ′′)+d R→ 0

are exact.

Proof of the lemma: We have a commutative diagram:

0

��

0

��

0

��

0 // V ′

��

// V

��

// V ′′

��

// 0

0 // (V ′)+d R

��

// V+d R

��

// (V ′′)+d R

��

// 0

0 // V ′d R

��

// V d R

��

// V ′′d R

��

// 0

0 0 0

whose first and third rows are exact. By assumption, the first and the third columns
are also exact. We also know that, except may be in (V ′)+d R , the second line is exact
and, as V ∈ C≥0(GK ), that the map V → V+d R is injective. By diagram chasing, we
get the fact that the second line and the second column are also exact. �

We resume the proof of the proposition.
We first prove (iii), i.e., for all V ∈ C≥0(GK ), the exactness of the sequence

0→ V → V+d R
ιV
→ V d R→ 0.

(a) If V ∈ C∞(GK ), as V+d R = V and Vd R = V d R = 0, exactness is obvious.

(b) If V ∈ C0(GK ), this sequence can be rewritten

0→ V → B+d R ⊗Qp V → Bd R ⊗Qp V → 0

and exactness is deduced by tensoring with V from the exactness of

0→Qp→ B+d R→ Bd R→ 0

(recall that Bd R = Be+ B+d R , that Bd R = Bd R/Be and that Be ∩ B+d R =Qp).

(c) In general, we proceed by induction on the smallest integer rV such that there is
K ′ ∈ K with the property that V is a successive extension of rV objects belonging
either to C0(G K ′) or to C∞(G K ′). Replacing K by K ′ if necessary, we may assume
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K ′ = K . We just proved it is OK if rV = 1. Assume rV ≥ 2, so that we can find a
short exact sequence in C≥0(GK )

0→ V ′→ V → V ′′→ 0

with rV ′ and rV ′′ < rV . Then, by induction, the sequences

0→ V ′→ (V ′)+d R→ V ′d R→ 0

0→ V ′′→ (V ′′)+d R→ (V ′′)d R→ 0

are exact and the result follows from the two assertions of the previous lemma.
From the exact sequence (C), we see that V = H 0(X,FV ) and that H 1(X,FV )=

0 hence that F ∈M≥0(GK ), which proves (iv).

We are left to prove the exactness of the functors V 7→ V+d R and V 7→ FV , i.e.,
that, if

0→ V ′→ V → V ′′→ 0

is a short exact sequence in C≥0(GK ), then the sequences

0→ (V ′)+d R→ V+d R→ (V ′′)+d R→ 0

and
0→ FV ′→ FV → FV ′′→ 0

are exact. As we now know the assertion (iii) of the proposition, the exactness of
the first sequence is a consequence of the previous lemma. Finally, we see that
exactness of the second is equivalent to the exactness of

0→ (V ′)+d R→ V+d R→ (V ′′)+d R→ 0

and of
0→ V ′e → Ve→ V ′′e → 0

and we are done. �

Proposition 5.7. Let V ∈ C(GK ). Any decreasing sequence of subobjects of V

V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ Vn+1 ⊃ · · ·

is stationary.

Proof. Chose V̂ ∈ C≥0(GK ) such that V is a quotient of V̂ . For all n ∈ N, set

V̂n = V̂ ×V Vn.

The V̂n form a decreasing sequence of subobject of V̂ and, for all n ∈ N, we have
a canonical isomorphism V̂n/V̂n+1 ' Vn/Vn+1. In particular

Vn+1 = Vn⇐⇒ V̂n+1 = V̂n.



714 JEAN-MARC FONTAINE

Replacing V by V̂ and the Vn’s by the V̂n’s if necessary we ay assume that V ,
therefore also the Vn’s are in C≥0.

As d(Vn+1) ≤ d(Vn) and d(Vn) ≥ 0, there is an integer m such that d(Vn) =

d(Vn+1) for n ≥ m.
For n ≥ m, we have d(Vn/Vn+1)= 0, hence Vn/Vn+1 ∈ C0(GK ) and, if we set

hn = dimQp(Vn/Vn+1) (∈N), we have h(Vn+1)= h(Vn)−hn . As Vn+1 ∈ C≥0(GK ),
we have h(Vn+1) ≥ 0. Therefore, there is an integer m′ ≥ m such that hn = 0 if
n ≥ m′. This implies that Vn+1 = Vn . �

Remark 5.8. On the other hand, there are objects of C(GK ) which admit non-
stationary increasing sequences of subobjects. For instance, it is easy to see that
Cp contains infinitely many subobjects belonging to C0(GK ). From that, one can
constructs nonstationary increasing sequences

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ · · ·

of subobjects of Cp belonging to C0(GK ).

5C. The main result. We may consider the functors

M≥0(GK )→ C≥0(GK ), F 7→ F(X)

and
C≥0(GK )→M≥0(GK ), V 7→ FV .

Theorem 5.9. The functor

M≥0(GK )→ C≥0(GK ), F 7→ F(X)

is an equivalence of exact categories and

C≥0(GK )→M≥0(GK ), V 7→ FV

is a quasi-inverse.

Proof. As the functor V 7→ FV is left adjoint to F 7→ F(X) (Section 4D), we are
reduced to checking the following claims:

(i) If V ∈ C≥0(GK ), the map V → FV (X) coming from adjunction is an isomor-
phism,

(ii) If F ∈M≥0(GK ), the map FFV (X)→F coming from adjunction is an isomor-
phism.

(iii) If
0→ V ′→ V → V ′′→ 0
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is a short exact sequence of C≥0(GK ), the sequence

0→ FV ′→ FV → FV ′′→ 0

is exact.

(iv) If
0→ F ′→ F→ F ′′→ 0

is a short exact sequence of M≥0(GK ), the sequence

0→ F ′(X)→ F(X)→ F ′′(X)→ 0

is exact.

(1) and (3) have already been proved (Proposition 5.4) and (4) results from the
fact that, if F ′ ∈M≥0(GK ), then H 1(X,F ′)= 0 (Proposition 3.14).

Let’s prove (2): Let M the full subcategory of M≥0(GK ) whose objects are
those F’s for which FFV (X)→ F is an isomorphism. It is obviously stable under
taking direct summands. By exactness of the functors F→ F(X) and V 7→ FV , it
is stable under extensions. It contains M0(GK ) and M∞(GK ). Then Theorem 5.1
implies that M=M≥0(GK ). �

6. From M(GK ) to C(GK ) and conversely

6A. Some general nonsense. Let A be an abelian category and B be an exact
subcategory of A. Recall (cf., e.g., [Laumon 1983, §1.1]) that one can define
the derived category of bounded complexes of B that we denote Db

A(B): in the
triangulated category Kb(B) of bounded complexes of B up to homotopies, the full
subcategory N of bounded acyclic complexes (in B) form a null system and we set

Db
A(B)= Kb(B)/N .

Let A be an abelian category, B an exact subcategory of A and D a strictly full
subcategory of B which is a Serre subcategory of A (hence D is abelian).

• We say that the exact embedding B ↪→A is left big with respect to D if,

(i) any quotient in A of an object of B belongs to B,

(ii) for any object A of A, one can find a short exact sequence

0→ A→ B→ D→ 0

of A with B an object of B and D an object of D.

• We say that the exact embedding B ↪→ A is right big with respect to D if
Bop ↪→Aop is left big with respect to Dop which amounts to requiring that

(i) any subobject in A of an object of B belongs to B,
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(ii) for any object A of A, one can find a short exact sequence

0→ D→ B→ A→ 0

of A with B an object of B and D an object of D.

We say that an exact embedding B ↪→A is left big (resp. right big) if one can
find a Serre subcategory D of A contained in B such that B ↪→A is left big (resp.
right big) with respect to D.

Proposition 6.1. Let B ↪→A an exact embedding which is either left big or right
big. Then the natural functor

Db
A(B)→ Db(A)

is an equivalence of triangulated categories.

It is a formal consequence of the more precise following statement:

Proposition 6.2. Let B ↪→ A be an exact embedding and D a Serre subcategory
of A contained in B such that B ↪→A is left big (resp. right big) with respect to D
and let A• a bounded complex of A.

(i) There exists a short exact sequence of bounded complexes of A

0→ A•→ B•→ D•→ 0 (resp. 0→ D•→ B•→ A•→ 0 )

with B• a bounded complex of B and D• an acyclic complex of D.

(ii) If

0→ A•→ B ′•→ D′•→ 0 (resp. 0→ D′•→ B ′•→ A•→ 0 )

isan other short exact sequence of the same kind, there exists a a third short
exact sequence of the same kind

0→ A•→ B ′′•→ D′′•→ 0 (resp. 0→ D′′•→ B ′′•→ A•→ 0 )

together with morphisms of complexes

B•→ B ′′• and B ′•→ B ′′• (resp. B ′′•→ B• and B ′′•→ B ′•)

such that the diagram

A•

$$��zz

B ′• // B ′′• B•oo

(
resp.

B ′•

$$

// B ′′•

��

B•oo

zz

A•

)
is commutative.

Proof. It is enough to treat the case were the strict embedding is right big. Assume
this is the case. To prove (i), by induction, we are reduced to proving this:
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Lemma 6.3. Let r ∈ Z and let

0→ D•r → B•r → A•→ 0

a short exact sequence of bounded complexes of A. Assume that D•r is an acyclic
complex of D, that Dn

r = 0 for n ≥ r and that Bn
r is an object of B for all n < r .

Then, there exists a short exact sequence of bounded complexes of A

0→ D•r+1→ B•r+1→ A•→ 0

where D•r+1 is an acyclic complex of D with Dn
r+1 = 0 for n ≥ r + 1 and Bn

r+1 an
object of B for all n < r + 1.

Proof of the lemma. We can identify Bn
r to An for n ≥ r . Granted to right bigness

of B ↪→A, we can find a short exact sequence

0→ D→ B→ Ar
→ 0

with B an object of B and D an object of D. Set

Bn
r+1 =


Bn

r for n < r − 1,
Br−1

r ×Ar B for n = r − 1,
B for n = r,

Bn
r = An for n > r.

We have a commutative diagram

0

��

0

��

D

��

D

��

· · · // Br−2
r+1

// Br−1
r+1

��

// Br
r+1

��

// Br+1
r+1

// · · ·

· · · // Br−2
r

// Br−1
r

��

// Br
r

��

// Br+1
r

// · · ·

0 0

whose rows are complexes and columns are exact. Hence we have a quasi-iso-
morphism B•r+1 → B•r . Moreover Bn

r+1 is an object of B for all n < r + 1 (for
n = r − 1, this is due to the fact that Br−1

r+1 is a subobject of Br−1
r ⊕ B which

belongs to B).
The compositum

B•r+1→ B•r → A•
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is a surjective morphism of complexes which is a quasi-isomorphism. Then the
kernel D•r+1 is acyclic. As it is the complex

· · · → Dr−3
r → Dr−2

r → Dr−1
r+1→ D→ 0→ · · · → 0→ · · ·

we see that Dn
r+1 = 0 for n ≥ r+1 and that all the Dn

r+1 belong to D (for n = r−1,
this is due to the fact that we have a short exact sequence

0→ D′′→ Dr−1
r+1→ D→ 0

with D′′ = coker (Dr−3
r → Dr−2

r ) ∈ D, hence, as Dr−1
r+1 is an extension in A of

D ∈ D by D′′ ∈ D, it belongs to D). �

To prove part (ii) of the proposition we take, for each n ∈ Z, the fiber product

B ′′n = B ′n ×An Bn.

For each n, we have an exact sequence

0→ D′′n→ B ′′n→ An
→ 0

with D′′n = D′n ⊕ Dn and all the required properties are obviously fulfilled. �

6B. The equivalence of triangulated categories.

Theorem 6.4. The equivalence of categories of Theorem 5.9 extends uniquely to
an equivalence of triangulated categories

Db(M(GK ))→ Db(C(GK )).

Proof. Uniqueness is obvious.
Recall (Section 5C) that M≥0(GK ) is an exact subcategory of M(GK ) and

C≥0(GK ) is an exact subcategory of C(GK ).

• The category M∞(GK ) is a Serre subcategory of M(GK ) contained in M≥0(GK )

and any quotient F ′′ in M(GK ) of an object F of M≥0(GK ) is in M≥0(GK )

(as F ∈M≥0(GK )⇐⇒ H 1(X,F)= 0=⇒ H 1(X,F ′′)= 0⇐⇒ F ′′ ∈M≥0(GK )).

If F ∈M(GK ), for all n ∈ N, as, for all n ∈ N, the HN-slopes of F(n)H N are the
s + n for s describing the HN-slopes of F (cf. Section 3H), for n� 0, we have
F(n)H N ∈M≥0(GK ).

Tensoring with F the short exact sequence (Section 3H)

0→OX →OX (n)H N → (0, Bn(−n))→ 0

we get a short exact sequence

0→ F→ F(n)H N → (0,F+d R ⊗B+d R
Bn(−n))→ 0.
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As F(n)H N belongs to M≥0(GK ) and (0,F+d R⊗B+d R
Bn(−n)) belongs to M∞(GK ),

it shows that the exact embedding M≥0(GK )→M(GK ) is left big with respect to
M∞(GK ). Therefore (Proposition 6.1) the natural functor

Db
M(GK )

(M≥0(GK ))→ Db(M(GK ))

is an equivalence of triangulated categories.

• Similarly, the category C0(GK ) is a Serre subcategory of C(GK ) contained in
C≥0(GK ) and any subobject in C(GK ) of an object of C≥0(GK ) belongs to C≥0(GK ).

Let V ∈ C(GK ) and choose an almost isomorphism V/U+ 'W/U− with W ∈
C∞(GK ) (cf. Section 2E). Set

V̂ = V ×W/U− W

(where the map V →W/U− is the compositum of the projection V → V/U+ with
the isomorphism V/U+→W/U−).

We have a diagram
0

��

U+
��

0 // U− // V̂

��

// V // 0

W
��

0

whose line and column are exacts. The column shows that V̂ ∈ C≥0(GK ) and,
therefore, the line shows that V is a quotient of an object of C≥0(GK ) by an object
of C0(GK ). In other words, the exact embedding C≥0(GK )→ C(GK ) is right big
with respect to C0(GK ). Hence (Proposition 6.1) the natural functor

Db
C(GK )

(C≥0(GK ))→ Db(C(GK ))

is an equivalence of triangulated categories.
As the equivalence M≥0(GK )

'
→ C≥0(GK ) is an equivalence of exact categories,

it extends uniquely to an equivalence of triangulated categories

Db
M(GK )

(M≥0(GK ))→ Db
C(GK )

(C≥0(GK )).

• It is now clear that there is a unique equivalence of triangulated categories

Db(M(GK ))→ Db(C(GK ))
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such that the square

Db
M(GK )

(M≥0(GK ))

��

// Db
C(GK )

(C≥0(GK ))

��

Db(M(GK )) // Db(C(GK ))

is commutative and that this equivalence extends that of Theorem 5.9. �

6C. The equivalence M<0(GK )→ C<0(GK ). We say that a coherent OX [GK ]-
module is co-effective if all its HN slopes are < 0. We saw (Proposition 3.14) that
F ∈M(GK ) is co-effective if and only if H 0(X,F) = 0. The full subcategory
of M(GK ) whose objects are co-effective is M<0(GK ) and is stable under taking
subobjects and extensions.

Any F ∈M(GK ) as a biggest quotient F<0 belonging to M<0(GK )and the
sequence

0→ F≥0
→ F→ F<0

→ 0

is exact.
We say that an almost Cp-representation V is co-effective if, for all W ∈ C∞(GK ),

we have HomC(GK )(V,W )= 0. We denote C<0(GK ) the full subcategory of C(GK )

whose objects are co-effective. It is obviously stable undertaking quotients and
extensions.

Proposition 6.5. Let V be an almost Cp-representation. The following conditions
are equivalent:

(i) V is co-effective.

(ii) V+d R = 0.

(iii) FV = 0.

These conditions also imply

Ve = Vd R = V d R = 0.

Proof. The equivalence (i)⇐⇒(ii) results from the universal property of V+d R and
(ii)⇐⇒(iii) is trivial. If V+d R = 0, we have Vd R = Bd R ⊗B+d R

V+d R = 0, hence also
Ve = 0 as the map Ve→ Vd R is injective and therefore V d R = Vd R/Ve = 0. �

Proposition 6.6. Let V ∈ C(GK ). The set of subobjects of V in C(GK ) belonging
to C<0(GK ) has a biggest element V<0 and the set of quotients of V in C(GK )

belonging to C≥0(GK ) as a biggest element V≥0. Moreover V<0 (resp. V≥0) is the
kernel (resp. the image) of the natural map V → V+d R . The sequence

0→ V<0
→ V → V≥0

→ 0

is exact.



ALMOST Cp GALOIS REPRESENTATIONS AND VECTOR BUNDLES 721

Proof. If V ′ and V ′′ are subobjects of V belonging to C<0(GK ), we see that V ′+V ′′

also. Hence to show the existence of V<0 it is enough to show that any increasing
sequence

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ · · ·

of subobjects of V belonging to C<0(GK ) is stationary. As the sequence of the
integers d(Vn) is increasing and bounded by d(V ), there exists m ∈ N such that
d(Vn) = d(Vm) for all n ≥ m. For such an n, we have d(Vn+1/Vn) = 0, hence
Vn+1/Vn ∈ C0(GK ). This implies Vn+1 = Vn as, otherwise, the compositum of the
projection of Vn+1 onto Vn with the injective map

Vn+1/Vn→ B+d R ⊗Qp (Vn+1/Vn), v 7→ 1⊗ v

would be a nonzero morphism from Vn+1 to an object of C∞(GK ).

If V ′ and V ′′ are quotients of V belonging to C≥0(GK ), then the image of V →
V ′ ⊕ V ′′ also (as it is a subobject of V ′ ⊕ V ′′ ∈ C≥0(GK )). Hence to show the
existence of V≥0 it suffices to show that any sequence

· · · → V n+1→ V n→ · · · → V 1 ⊂ V 0

of quotients of V (belonging to C<0(GK )) is stationary. If Ṽn is the kernel of the
projection V → V n , the sequence (Ṽn)n∈N is a decreasing sequence of objects of
C(GK ), hence is stationary (Proposition 5.7), therefore the sequence of the V n’s
also.

Set V0 = ker(V → V+d R). We obviously have V<0
⊂ V0 and to show the equality

it is enough to show that V0 ∈ C<0(GK ). Otherwise, we could find a nonzero
morphism f : V 0

→W with W ∈ C∞(GK ). Let V1 = ker f and consider the short
exact sequence

0→ V0/V1→ V/V1→ V/V0→ 0.

As V0/V1 injects into W , it belongs to C≥0(GK ). As V/V0 injects into V+d R , it also
belongs to C≥0(GK ). Therefore, as C≥0(GK ) is stable under extensions, V/V1 ∈

C≥0(GK ). Hence the sequence

0→ (V0/V1)
+

d R→ (V/V1)
+

d R→ (V/V0)
+

d R→ 0

is exact. As obviously (V/V1)
+

d R = (V/V0)
+

d R = V+d R , it contradicts the fact that,
as V0/V1 is a nonzero object of C≥0(GK ), we have (V0/V1)

+

d R 6= 0.

Let V2 = im(V → V+d R). As the map V2 → V+d R is injective, V2 belongs to
C≥0(GK ) and is, therefore a quotient of V≥0. The kernel V3 of the projection
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V≥0
→ V2 belongs also to C≥0(GK ) (as this category is stable under taking subob-

jects) and we have an exact sequence in C≥0(GK )

0→ V3→ V≥0
→ V2→ 0

Therefore the sequence

0→ V+3,d R→ V≥0,+
d R → V+2,d R→ 0

is also exact.
As V≥0 is a quotient of V , we see that V≥0,+

d R is a quotient of V+d R . But clearly
V+2,d R = V+d R . Therefore V≥0,+

d R = V+d R and V+3,d R = 0. As V3 ∈ C≥0(GK ), this
implies V3 = 0, hence V≥0

= V2.

The exactness of
0→ V<0

→ V → V≥0
→ 0

is now clear. �

Remarks 6.7. (i) To any V ∈ C(GK ), we just associated the canonical short exact
sequence

0→ V<0
→ V → V≥0

→ 0

It is worth comparing with the canonical short exact sequence

0→ F≥0
→ F→ F<0

→ 0

associated to any F ∈M(GK ).

(ii) We know that, for any F ∈ M(GK ), the natural map F≥0(X) → F(X) is
an isomorphism.The two previous propositions together imply that, for any V ∈
C(GK ), the natural map FV 7→ FV≥0 is an isomorphism. In particular, FV always
belongs to M≥0(GK ).

It is clear that M<0(GK ) is an exact subcategory of M(GK ), and C<0(GK ) is
an exact subcategory of C(GK ).

Proposition 6.8. If F ∈M(GK ), then H 1(X,F) ∈ C<0(GK ) and the map

H 1(X,F) 7→ H 1(X,F<0)

is an isomorphism.
Moreover, the functor

M<0(GK )→ C<0(GK ), F 7→ H 1(X,F)

is an equivalence of exact categories.
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Proof. If F ∈M(GK ), we may find a short exact sequence in M(GK )

0→ F→ F0
→ F1

→ 0

with F0
∈M≥0(GK ). As H 1(X,F0) = 0, we see that H 1(X,F) is the cokernel

of H 0(X,F0)→ H 0(X,F1), hence belongs to C(GK ).
We know that H 1(X,F) is a quotient of Fd R therefore also of Fd R . If f :

H 1(X,F) → W were a nonzero morphism of C(GK ) with W ∈ C∞(GK ), the
compositum Fd R→ H 1(X,F)→ W would be a nonzero morphism in Ĉ∞(GK )

and, therefore, would be B+d R-linear. As multiplication by t is invertible in Fd R

and nilpotent in W , the map must be 0 which implies that H 1(X,F) ∈ C<0(GK ).

If A is an object of an abelian category and d ∈ Z, we denote A[d] the bounded
complex in A which is A in degree −d and 0 elsewhere.

Denote by

0 : Db(M(GK ))→ Db(C(GK )) (resp. 1 : Db(C(GK ))→ Db(M(GK )) )

the functor extending F 7→ F(X) (resp. V 7→ FV ). If F ∈M<0(GK ) and if

0→ F→ F0
→ F1

→ 0

is as above (observe that F0
∈M≥0(GK )=⇒ F1

∈M≥0(GK )), we see that (with
obvious conventions)

0(F[0])= 0(F0
→ F1)= (H 0(X,F0)→ H 0(X,F1))= H 1(X,F)[−1]

(as F ∈M<0(GK ) and F0
∈M≥0(GK ), the sequence

0→ H 0(X,F0)→ H 0(X,F1)→ H 1(X,F)→ 0

is exact).

Let V ∈ C<0(GK ). We can find a short exact sequence in C(GK )

0→ V 0
→ V 1

→ V → 0

with V 1
∈ C≥0(GK ) which implies V 0

∈ C≥0(GK ). With obvious conventions, we
have

1(V [−1])=1(V 0
→ V 1)= (FV 0 → FV 1)= F[0]

with F the kernel of FV 0 → FV 1 (as V ∈ C<0(GK ), we have V+d R = Ve = 0 which
implies that

FV 0 = (V 0+
d R , V 0

e , ιV 0)→ FV 1 = (V 1+
d R , V 1

e , ιV 1)

is an epimorphism).
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We have a commutative diagram

0
��

0
��

0
��

0 // H 0(X,F)
��

// V 0

��

// V 1

��

0 // F+d R

��

// V 0+
d R

��

// V 1+
d R

��

0 // Fe // V 0
e

// V 1
e

whose rows and columns are exact. The injectivity of V 0
→ V 1 implies that

H 0(X,F)= 0, i.e., that F ∈M<0(GK ).

Finally, we see that, if we view

• M<0(GK ) as the full subcategory of Db(M(GK )) whose objects are of the form
F[0] with F ∈M<0(GK ),

• C<0(GK ) as the full subcategory of Db(C(GK )) whose objects are of the form
V [−1] with V ∈ C<0(GK ),

then 0 induces the required equivalence of categories. �

6D. t-Structures and hearts. The functors

0 : Db(M(GK ))→ Db(C(GK )) and 1 : Db(C(GK ))→ Db(M(GK ))

are as in the proof of the previous proposition.
Let (D≤0

M , D≥0
M ) be the canonical t-structure on Db(M(GK )): we see that D≤0

M
(resp. D≥0

M ) is the full subcategory of Db(M(GK )) whose objects are those F •

such that H i (F •) = 0 for i > 0 (resp. i < 0). Therefore if we denote by 0(D≤0
M )

(resp. 0(D≥0
M )) the essential image under 0 of D≤0

M (resp. D≥0
M ), we see that

(0(D≤0
M ), 0(D≥0

M )) is a t-structure on Db(C(GK )) whose heart 0(D≤0
M )∩0(D≥0

M )

is an abelian category equivalent via 1 to M(GK ).
Similarly, let (D≤0

C , D≥0
C ) the canonical t-structure on Db(C(GK )): hence D≤0

C
(resp . D≥0

C ) is the full subcategory of Db(CGK ) whose objects are those V • such
that H i (V •) = 0 for i > 0 (resp. i < 0). Therefore if we denote by 1(D≤0

C )

(resp. 1(D≥0
C )) the essential image under 1 of D≤0

C (resp. D≥0
C ), we see that

(1(D≤0
C ),1(D≥0

C )) is a t-structure on Db(M(GK ))whose heart1(D≤0
C )∩1(D≥0

C )

is an abelian category equivalent via 0 to C(GK ).

Proposition 6.9. (i) 0(D≥0
M ) (resp.0(D≤0

M )) is the full subcategory of Db(C(GK ))

whose objects are those V •’s such that H r (V •)= 0 for r < 0 and H 0(V •) ∈
C≥0(GK ) (resp. H r (V •)= 0 for r > 1 and H 1(V •) ∈ C<0(GK )).
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(ii) 1(D≥0
C ) (resp. 1(D≤0

C )) is the full subcategory of Db(M(GK )) whose objects
are those F •’s such that H r (F •) = 0 for r < −1 and H−1(F •) ∈M<0(GK )

(resp. H r (F •)= 0 for r > 0 and H 0(F •) ∈M≥0(GK )).

Proof. Let’s prove that the description of 0(D≥0
M ) is correct (the proof of the three

other statements are similar):
Any object F of D≥0

M can be represented by a bounded complex F • such that
F i
= 0 for i < 0. From the fact that, for any F ∈M(GK ), one can find a short

exact sequence
0→ F→ F0→ F1→ 0

with F0,F1 ∈M≥0(GK ) and the fact that any quotient, in M(GK ), of an object
of M≥0(GK ) still belongs to M≥0(GK ), one easily deduces that the complex F •

is quasi-isomorphic to a bounded complex F •0 with Fr
0 = 0 for r < 0 and Fr

0 ∈

M≥0(GK ) for all r ∈ N. Therefore 0(F) is represented by the bounded complex

· · · → 0→ · · · → 0→ F0
0 (X)→ F1

0 (X)→ · · · → Fr
0 (X)→ Fr+1

0 (X)→ · · ·

all of whose terms belong to C≥0(GK ). In particular, as C≥0(GK ) is stable under
taking subobjects in C(GK ), we see that 0(F) belongs to the full subcategory D≥0

C,M
of Db(C(GK )) whose objects are those V ’s such that H r (V ) = 0 for r < 0 and
H 0(V ) ∈ C≥0(GK ).

Conversely, any object V of D≥0
C,M(GK ) can be represented by a complex V •0

such that V r
0 = 0 for r < 0 and that the kernel of V 0

→ V 1 belongs to C≥0(GK ).
Using the fact that, for any V ∈ C(GK ) one can find a short exact sequence in
C(GK )

0→ V1→ V0→ V → 0

with V1, V0 ∈ C≥0(GK ), one easily deduces that the complex V •0 is quasi-isomorphic
to a bounded complex V • with V r

= 0 for r < 0 and V r
∈ C≥0(GK ) for r > 0.

We have a short exact sequence (with d : V 0
→ V 1 the differential in the complex

V •)
0→ (V 0

d=0)→ V 0
→ dV 0

→ 0

The inclusion dV 0
⊂ V 1 implies that dV 0

∈ C≥0(GK ). As V 0
d=0 = H 0(V •), we

have (V 0)d=0 ∈ C≥0(GK ). We know that C≥0(GK ), as a full subcategory of C(GK ),
is stable under extension. Therefore V 0

∈ C≥0(GK ).
As all the V r ’s belong to C≥0(GK ), we see that 1(V ) is represented by the

bounded complex

· · · → 0→ · · · → 0→ FV 0 → FV 1 → · · · → FV r → FV r+1 → · · ·

hence belong to D≥0
M . �
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6E. Torsion pairs in M(GK ) and in C(GK ). The langage of torsion pairs (see
[Happel et al. 1996, Chapter 1]) is very convenient to give an explicite descrip-
tion of the way to go from M(GK ) to C(GK ) and conversely. The results of this
subsection and of the next one are independent of those of the previous one and
give an other proof of the description of the heart of the t-structures we considered
(Proposition 6.9).

Recall (loc. cit.) that a torsion pair in an abelian category A is a pair t =
(A+,A−) of full subcategories of A containing 0 such that:

(i) If B is an object of A+ and C is an object of A−, then HomA(B,C)= 0,

(ii) for any object A of A, there is a short exact sequence in A

0→ A+→ A→ A−→ 0

with A+ ∈ Ob(A+) and A− ∈ Ob(A−).

Condition (1) implies that the exact sequence of (2) is unique up to a unique
isomorphism and that the correspondences A 7→ A+ and A 7→ A− are functorial.

We define the heart At of t as the full subcateogry of the derived category Db(A)
whose objects are those A• such that

H−1(A•) ∈ Ob(A−), H 0(A•) ∈ Ob(A+), H n(A•)= 0 if n /∈ {−1, 0}.

Proposition 6.10. Let t = (A+,A−) be a torsion pair in an abelian category A.
Consider the full subcategories D≤0

= D≤0
t (A) and D≥0

= D≥0
t (A) of D= Db(A)

defined by

(i) Ob(D≤0)= {A• ∈Ob(Db(A)) | H 1(A•) ∈Ob(A+) and H n(A•)= 0,∀n > 1},

(ii) Ob(D≥0)= {A• ∈Ob(Db(A)) | H 0(A•) ∈Ob(A−) and H n(A•)= 0,∀n < 0}.

Then (D≤0, D≥0) is a t-structure on D whose heart is At .

Proof. To show that (D≥0, D≤0) is a t-structure, we have to check (cf. [Kashiwara
and Schapira 1990, Definition 10.1.1]) that (with standard notations)

(i) D≤−1
⊂ D≤0 and D≥1

⊂ D≥0,

(ii) HomD(X, Y )= 0 for X ∈ Ob(D≤0) and Y ∈ Ob(D≥1),

(iii) For any X ∈ Ob(D), there exists a distinguished triangle X0→ X → X1→
+1

in D with X0 ∈ Ob(D≥0) and X1 ∈ Ob(D≥1).

(1) is obvious. (2) is clear as, if f : X→ Y with X ∈ Ob(D≤0) and Y ∈ Ob(D≥1),
we have H n( f ) = 0 for n ≤ 0 (as H n(Y ) = 0), for n > 1 (as H n(X) = 0) and
for n = 1 (as H 1(X) ∈ Ob(A+) and H 1(Y ) ∈ Ob(A−)). Let’s check (3): we have
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H 1(X) = X1
d=0/d X0. Let U = (Ĥ 1(X))+ where Ĥ 1(X) is the inverse image of

H 1(X) in X1
d=0. We have a short exact sequence of complexes

0→ X0→ X→ X1→ 0

where

Xn
0 =


Xn if n < 1,
U if n = 1,
0 if n > 1,

Xn
1 =


0 if n < 1,

X1/U if n = 1,
Xn if n > 1,

which gives the desired distinguished triangle.
We have At

= D≤0
∩ D≥0 and the last assertion is obvious. �

In particular, At is an abelian category [Kashiwara and Schapira 1990, proposi-
tion 10.1.11].

Denote by At
0 the full subcategory of At whose objects are those A• such that

An
= 0 for n /∈ {0, 1}. To give an object A• of At

0 amounts to give a morphism

dA = d0
A• : A0

→ A1

of A such that ker(dA) is an object of A− and coker(dA) an object of A+.
The inclusion functor At

0→At is obviously an equivalence of categories: there
is even a canonical quasi-inverse

At
→At

0,

which sends A• to A−1/d A−2
→ (A0)d=0.

We have an obvious functor

ι+t :A
+
→At

0, A 7→ (0→ A).

It is easy to check that this functor is fully faithful and we denote At,−
0 its essential

image.
Similarly, it is easy to check that the functor

ι−t :A
−
→At

0 : A 7→ (A→ 0)

is fully faithful and we denote by At,+
0 its essential image.

It is also easy to check that t̃ = (At,+
0 ,At,−

0 ) is a torsion pair in At
0.

Proposition 6.11. (i) t = (M≥0(GK ),M<0(GK )) is a torsion pair in M(GK ).

(ii) t ′ = (C<0(GK ), C≥0(GK )) is a torsion pair in C(GK ).

Proof. (i) We already know (Section 6C) that, for any object F of M(GK ), we
have a canonical exact sequence

0→ F≥0
→ F→ F<0

→ 0
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with F≥0
∈M≥0(GK ) and F<0

∈M<0(GK ).
If f : F → G is a morphism of M(GK ), it sends F≥0 to G≥0. Therefore if

F ∈M≥0(GK ) (⇐⇒ F≥0
= F) and if G ∈M<0(GK ) (⇐⇒ G≥0

= 0), we have
f = 0.

(ii) We already know (Proposition 6.6) that, for any object V of C(GK ), we have a
canonical exact sequence

0→ V<0
→ V → V≥0

→ 0

with V<0
∈ C<0(GK ) and V≥0

∈ C≥0(GK ). Let f : V1 → V2 be a morphism of
C(GK ) with V1 ∈ C<0(GK ) and V2 ∈ C≥0(GK ). We can find a monomorphism
V2→W with W ∈ C∞(GK ). As any morphism from V1 to W is 0, the compositum
V1→ V2→W is 0, hence f = 0. �

Denote by Art(M(GK )) the full subcategory of the categories of arrows of
M≥0(GK ) whose objects are those dF : F0

→ F1 such that ker dF ∈M<0(GK ).
Denote (M(GK ))

t
00 the full subcategory of (M(GK ))

t
0 whose objects are of the

form
dF : F0

→ F1

with F0 and F1 objects of M≥0(GK ).
As M≥0(GK ) is stable by taking quotients, (M(GK ))

t
00 and Art(M(GK )) have

the same objects. With obvious conventions, (M(GK ))
t
00 is the category deduced

from Art(M(GK )) by working up to homotopies and inverting quasi-isomorphisms.

Proposition 6.12. The inclusion functor

(M(GK ))
t
00→ (M(GK ))

t
0

is an equivalence of categories.

Proof. It means that any object dF : F0
→ F1 of (M(GK ))

t
0 is quasi-isomorphic

to an object of (M(GK ))
t
00. Indeed, we may find a monomorphism F0

→ G0 of
M(GK ) with G0

∈M≥0(GK ). Set

G1
= G0

⊕F0 F1.

We have a short exact sequence

0→ G0
→ G1

→ cokerdF → 0

where G0 is a quotient of G0. Then coker dF ∈ M≥0(GK ) by assumption and
G0 also because M≥0(GK ) is stable under taking quotients. As it is also stable
under extensions, G1 also belongs to M≥0(GK ). Hence, G0

→ G1 is an object of
(M(GK ))

t
00 which is quasi-isomorphic to F0

→ F1. �
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Similarly, denote by Art ′(C(GK )) the full subcategory of the categories of arrows
of C≥0(GK ) whose objects are those dV : V 0

→ V 1 such that cokerdV ∈ C<0(GK ).
Denote (C(GK ))

t ′
00 the full subcategory of (C(GK ))

t ′
0 whose objects are of the form

dV : V 0
→ V 1

with V 0 and V 1 objects of C≥0(GK ).
As C≥0(GK ) is stable by taking subobjects, (C(GK ))

t ′
00 and Art ′(C(GK )) have the

same objects. With obvious conventions, (C(GK ))
t ′
00 is the category deduced from

Art ′(C(GK )) by working up to homotopies and inverting quasi-isomorphisms.

Proposition 6.13. The inclusion functor

(C(GK ))
t ′
00→ (C(GK ))

t ′
0

is an equivalence of categories.

Proof. The proof is entirely similar to the proof of the previous proposition: It
means that any object dV : V 0

→ V 1 of C(GK )
t ′
0 is quasi-isomorphic to an object

of (C(GK ))
t ′
00. Indeed, we may find an epimorphism W 1

→ V 1 of C(G K ) with
V 1
∈ C≥0(GK ). Set

W 0
= V0×V 1 W 1

We have a short exact sequence

0→ ker dV →W 0
→W ′→ 0

where W ′ is a subobject of G0. Then ker dV ∈ C≥0(GK ) by assumption and W ′ also
because C≥0(GK ) is stable under taking subobjects. As it is also stable under ex-
tensions, W 0 also belongs to C≥0(GK ). Hence, V 0

→ V 1 is an object of (C(GK ))
t ′
00

which is quasi-isomorphic to V 0
→ V 1. �

Theorem 6.14. (i) The functor

0̂ : Art(M(GK ))→ C(GK ), (dF : F0
→ F1) 7→ coker(F0(X)→ F1(X))

factors uniquely through a functor

0 :M(GK )
t
00→ C(GK )

and 0 is an equivalence of categories.

(ii) The functor

1̂ : Art ′(C(GK ))→M(GK ), (dV : V 0
→ V 1) 7→ ker(FV 0 → FV 1)

factors uniquely through a functor

1 : C(GK )
t ′
00→M(GK )
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and 1 is an equivalence of categories.

Proof. Let’s prove (i). Set M̂= Art(M(GK )) and M=M(GK )
t
00. If dF = F0

→

F1 is an object of one of these categories we denote it also dF or F0
→ F1.

We see that M has an obvious structure of an exact category and that the natural
functor M̂→M is exact.

• Let M̂+ (resp. M+) the full subcategory of M̂ (resp. M) whose objects are
those dF ’s such that cokerdF = 0. For such an object, as ker dF ∈M<0(GK ), and
F0 and F1 belong to M≥0(GK ), the long exact sequence of coherent cohomology
associated to the exact sequence of M(GK )

0→ ker dF → F0
→ F1

→ 0

is reduced to

0→ F0(X)→ F1(X)→ H 1(X, ker dF )→ 0.

Granted Proposition 6.8, this shows that the restriction of 0̂ to M̂+ factors through
a functor

0+ :M+
→ C<0(GK )

which is an equivalence of categories.

• Let M̂− (resp. M−) the full subcategory of M̂ (resp. M) whose objects are
those dF such that F0

= 0. The natural functor M̂−
→M− is an equivalence of

categories and, granted Theorem 5.9, the restriction of 0̂ to M̂+ factors through
an equivalence of categories

0− :M−
→ C≥0(GK ).

• For any dF ∈ M̂ , we have a canonical short exact sequence

0→ dF+→ dF → dF−→ 0

with dF+ = (F0
→ im dF )∈ M̂+ and dF− = (0→F1)∈ M̂− and this construction

is functorial. Moreover, we see that the sequence

0→ 0̂(dF+)→ 0̂(dF )→ 0̂(dF−)→ 0

is exact.

From these facts, we see that 0̂ factors through a functor 0 :M→ C(GK ) and
that this functor is faithful. It is also straightforward to check that it is exact.

We are left to check the essential surjectivity: Let V ∈ C(GK ). We can find a
short exact sequence in C(GK )

0→U → V̂ → V → 0
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with U ∈ C0(GK ) and V̂ ∈ C≥0(GK ). Let F− be the kernel of the morphism
FU → FV̂ of M(GK ). As the functor global section is left exact, we have an exact
sequence

0→ F−(X)→ FU (X)→ FV̂ (X).

But FU (X) = U , FV̂ (X) = V̂ and the map U → V̂ is the given map which is
injective. Therefore F−(X)= 0 which means that F− ∈M<0(GK ) and

dF = (FU → FV̂ )

is an object of M. Clearly 0(dF )= V , i.e., 0 is essentially surjective.
The proof of (ii) is entirely similar and we leave it to the reader. �

Remark 6.15. The category M(GK )
t
00 is a full subcategory of Db(M(GK )) and

C(GK ) is a full subcategory of Db(C(GK )). The functor 0 of the previous theo-
rem is the restriction to M(GK )

t
00 of the functor 0 : Db(M(GK ))→ Db(C(GK ))

considered in Section 6D. Similarly, the functor 1 of the previous theorem is the
restriction to C(GK )

t ′
00 of the functor 1 : Db(C(GK ))→ Db(M(GK )) considered

in Section 6D.
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