Vol. 4, No. 1, 2022

Download this article
Download this article For screen
For printing
Recent Issues
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN (electronic): 2576-7666
ISSN (print): 2576-7658
Author Index
To Appear
 
Other MSP Journals
Twisted differential operators of negative level and prismatic crystals

Michel Gros, Bernard Le Stum and Adolfo Quirós

Vol. 4 (2022), No. 1, 19–54
DOI: 10.2140/tunis.2022.4.19
Abstract

We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasinilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier transform on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.

Keywords
prism, crystal, differential operator
Mathematical Subject Classification
Primary: 05A30, 13N10, 14F30, 14F40
Milestones
Received: 9 October 2020
Revised: 23 March 2021
Accepted: 22 April 2021
Published: 30 March 2022
Authors
Michel Gros
CNRS UMR 6625, IRMAR
Université de Rennes 1
Campus de Beaulieu
35042 Rennes Cedex
France
Bernard Le Stum
Institut de Recherche Mathematique (IRMAR)
Universite de Rennes I
263 Avenue du General Leclerc
CS 74205
35042 Rennes CEDEX
France
Adolfo Quirós
Departamento de Matemáticas
Universidad Autónoma de Madrid
Campus de Cantoblanco
28049 Madrid
Spain