Download this article
 Download this article For screen
For printing
Recent Issues
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
Statement, 2023
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2576-7666 (online)
ISSN 2576-7658 (print)
Author index
To appear
 
Other MSP Journals
Cartier transform and prismatic crystals

Michel Gros, Bernard Le Stum and Adolfo Quirós

Vol. 5 (2023), No. 3, 405–456
Abstract

We show that the abstract equivalence of categories, called the Cartier transform, between crystals on the q-crystalline and prismatic sites can be locally identified with the explicit local q-twisted Simpson correspondence. This establishes four equivalences that are all compatible with the relevant cohomology theories. We restrict ourselves for simplicity to the one-dimensional case.

Keywords
prism, crystal, differential operator
Mathematical Subject Classification
Primary: 05A30, 14F30, 14F40
Milestones
Received: 18 March 2022
Revised: 6 March 2023
Accepted: 20 March 2023
Published: 2 November 2023
Authors
Michel Gros
Institut de Recherche Mathématique (IRMAR)
Université de Rennes I
Rennes
France
Bernard Le Stum
Institut de Recherche Mathématique (IRMAR)
Université de Rennes I
Rennes
France
Adolfo Quirós
Departamento de Matemáticas, Facultad de Ciencias
Universidad Autónoma de Madrid
Campus de Cantoblanco
Madrid
Spain