Download this article
 Download this article For screen
For printing
Recent Issues
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
Statement, 2023
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2576-7666 (online)
ISSN 2576-7658 (print)
Author index
To appear
 
Other MSP Journals
Sur la noethérianité locale des foncteurs polynomiaux

Aurélien Djament and Antoine Touzé

Vol. 6 (2024), No. 1, 97–113
Abstract

Soient A un anneau commutatif de type fini et k un anneau commutatif noethérien. On montre que, dans la catégorie des foncteurs des A-modules projectifs de type fini vers les k-modules, tout foncteur polynomial de type fini est noethérien et possède une résolution projective de type fini.

Let A be a finitely generated commutative ring and k a noetherian commutative ring. We show that, in the category of functors from finitely generated projective A-modules to k-modules, each finitely generated polynomial functor is noetherian and has a finitely generated projective resolution.

Keywords
polynomial functors, strict polynomial functors, noetherianity, finitely generated projective resolutions
Mathematical Subject Classification
Primary: 16P40, 18A25, 18E05, 18G10, 20G43
Milestones
Received: 29 November 2022
Revised: 30 May 2023
Accepted: 18 June 2023
Published: 20 January 2024
Authors
Aurélien Djament
LAGA (UMR 7539)
CNRS
Institut Galilée
Villetaneuse
France
Antoine Touzé
Laboratoire Paul Painlevé (UMR 8524)
Faculté des Sciences et Technologies
Université de Lille
Villeneuve-d’Ascq
France