Download this article
 Download this article For screen
For printing
Recent Issues
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
Statement, 2023
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 2576-7666
ISSN (print): 2576-7658
Author index
To appear
 
Other MSP Journals
Construction of minimizing traveling waves for the Gross–Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$

André de Laire, Philippe Gravejat and Didier Smets

Vol. 6 (2024), No. 1, 157–188
Abstract

As a sequel to our previous analysis of the Gross–Pitaevskii equation on the product space × 𝕋, we construct finite energy traveling waves as minimizers of the Ginzburg–Landau energy at fixed momentum. The proof of the compactness of minimizing sequences relies on a new symmetrization argument, well-suited to the periodic setting.

Keywords
Gross–Pitaevskii equation, traveling waves
Mathematical Subject Classification
Primary: 35C07, 35C08, 35J20, 35Q55, 37K40
Milestones
Received: 11 July 2023
Accepted: 3 October 2023
Published: 20 January 2024
Authors
André de Laire
Laboratoire Paul Painlevé
Université de Lille
Cité Scientifique
Villeneuve d’Ascq
France
Philippe Gravejat
Laboratoire Analyse Géométrie Modélisation
CY Cergy Paris Université
Cergy-Pontoise
France
Didier Smets
Laboratoire Jacques-Louis Lions
Sorbonne Université
Paris
France