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A fast multigrid solver is presented for high-order accurate Stokes problems
discretized by local discontinuous Galerkin (LDG) methods. The multigrid
algorithm consists of a simple V-cycle, using an elementwise block Gauss–Seidel
smoother. The efficacy of this approach depends on the LDG pressure penalty
stabilization parameter — provided the parameter is suitably chosen, numerical
experiment shows that (i) for steady-state Stokes problems, the convergence rate
of the multigrid solver can match that of classical geometric multigrid methods for
Poisson problems and (ii) for unsteady Stokes problems, the convergence rate fur-
ther accelerates as the effective Reynolds number is increased. An extensive range
of two- and three-dimensional test problems demonstrates the solver performance
as well as high-order accuracy — these include cases with periodic, Dirichlet, and
stress boundary conditions; variable-viscosity and multiphase embedded inter-
face problems containing density and viscosity discontinuities several orders in
magnitude; and test cases with curved geometries using semiunstructured meshes.

1. Introduction

Stokes flow describes the motion of an incompressible viscous fluid at slow speeds,
or small scales, and can be used to model a wide range of intricate phenomena,
including mantle dynamics, the swimming of microorganisms, the sedimentation of
particulates, and the flotation of water droplets in clouds. In the steady-state case,
the corresponding governing equations of motion are given by the Stokes equations,
which generally take on one of two forms: either

−µ∇2u+∇ p = f ,

∇ · u = 0,
(1)

or, alternatively,
−∇ · (µ(∇u+∇uT))+∇ p = f ,

∇ · u = 0,
(2)
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where µ specifies the viscosity of the fluid, u and p describe its velocity and
pressure fields, and f specifies the net external forces acting on the fluid. The
form given in (1) is here referred to as the standard form of the Stokes equations
and (2) as the viscous-stress form, with the particular choice depending on the end
application. For example, the viscous-stress form is generally applicable when µ is
variable or if boundary conditions on stress are imposed.

Our motivation in this work is to develop fast multigrid solvers for computing
high-order accurate solutions of the Stokes systems (1) or (2), with extensions also
to multiphase variants involving interfacial jump conditions in velocity and stress,
as well as to time-dependent problems. In particular, we consider a framework
based on local discontinuous Galerkin (LDG) methods [15], and build on prior
work developing efficient multigrid algorithms for LDG discretizations of elliptic
interface (Poisson-like) problems [20; 41]. We show that standard and simple-to-
implement geometric multigrid algorithms can be applied to the resulting multiphase
Stokes problems — in the steady-state case, results show that the solver can match
the speeds of fast geometric multigrid methods for Poisson problems; in the time-
dependent case, convergence rates further accelerate as the effective Reynolds
number is increased.

In particular, the presented multigrid algorithm consists of a standard V-cycle
using an elementwise block Gauss–Seidel smoother — individual blocks correspond
to individual mesh elements, such that the elemental degrees of freedom of both
velocity and pressure are collected into the same block. Key to the rapid convergence
of this approach is a suitable choice of the pressure penalty stabilization parameter
underlying the LDG framework — if the parameter is chosen well, then a highly
efficient multigrid algorithm is obtained. We discuss how to choose this parameter
for steady-state Stokes problems, and develop a simple strategy for generalizing
this choice to time-dependent Stokes problems. Extensive tests of the multigrid
methods are presented in this paper, including problems which impose Dirichlet
or stress boundary conditions, variable-viscosity problems, test cases with curved
geometry using semiunstructured meshes, and multiphase embedded interface
problems with viscosity and density coefficients exhibiting discontinuities several
orders in magnitude.

Previous work. A vast amount of work in computational science and engineering
has been devoted to the efficient solution of Stokes systems and saddle point
problems in general; for an in-depth review of the correspondingly wide array of
different approaches and their applications, see the review [5] of Benzi, Golub, and
Liesen. These approaches include, among others, block preconditioner methods,
which operate on the viscosity, gradient, and divergence operator block structure of
the Stokes equations; Schur complement methods, which manipulate, and usually
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approximate, the Schur complement of the saddle point system; and stationary
iterative methods, such as the well-known Uzawa method, which alternates between
updates of velocity and pressure, holding the other fixed, through the two governing
equations in (1). Here, we briefly review work on multigrid-style methods, particu-
larly schemes based on the coupled solution of velocity and pressure, as is relevant
to the present work; see also the reviews [47; 48; 34].

As mentioned, the multigrid algorithm developed here uses a block Gauss–
Seidel relaxation method, with each block collecting the velocity and pressure
degrees of freedom on each mesh element. This approach is similar in essence
to the “symmetric coupled Gauss–Seidel method” of Vanka [45; 46] and can also
be considered as a kind of “box relaxation” scheme [7]. Vanka-type smoothers,
originally devised for staggered grid finite difference methods, visit each grid cell,
solve for the velocity and pressure unknowns simultaneously via a local Stokes-like
problem, and then move onto the next cell. Typically, a damping/under-relaxation
parameter is needed to ensure convergence. In the original Vanka method, the Stokes
system is restricted to the local variables in each grid cell and off-diagonal entries of
the viscous operator are zeroed out to facilitate a simpler update for the unknowns
[47; 33]. Variations have led to schemes which include the off-diagonal terms [44; 6]
and line-based sweeping methods [44; 36; 35], and have been examined with local
mode analyses [43]. Vanka-type smoothers may also be considered as iterative
Schwarz solvers, whereby the subdomains of the Schwarz method correspond to
the collection of degrees of freedom in each grid cell. Schemes building on this
idea have since been developed for finite volume and finite element methods with
much of the attention devoted to the choice of relaxation parameters, the choice
of subdomains (e.g., whether to use one cell, or patches of cells), and theoretical
proofs of convergence in a multigrid setting; see, e.g., [42; 30; 34; 22; 9; 25; 16].
They have also found applications in variable-viscosity Stokes problems [6] and in
computational solid mechanics [49; 27]. As an example, in very recent work, Farrell,
He, and MacLachlan [19] demonstrated the application of local Fourier analysis
on these smoothers and found that smaller patches result in better convergence per
floating point operation. Meanwhile, solvers specific to discontinuous Galerkin
methods of the Stokes equations have also been devised; here, one possible approach
is to exactly enforce the divergence constraint across the multigrid hierarchy through
manipulation of the DG spaces, e.g., through H(div, �)-conforming discretizations.
In the associated multigrid solvers, the divergence constraint is built into the coarse
and fine mesh approximations; see, e.g., [9; 29; 27; 1; 16].

In many of these works, satisfactory multigrid convergence rates are reported, but
they generally do not match the speeds of an efficient geometric multigrid method
designed for scalar elliptic equations. In some cases, performance degrades as the
mesh is refined or as viscosity ratios increase or, in the case of time-dependent Stokes
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problems, as the Reynolds number changes. In contrast, for the LDG schemes
devised here, we found that a simple block Gauss–Seidel relaxation method, which
does not use any under- or over-relaxation parameters, can result in rapid multigrid
convergence across a variety of challenging Stokes problems. Another advantage
to a block Gauss–Seidel method is its simple implementation and the possibility
of parallelism; for example, Gmeiner et al. [23] and Bauer et al. [4] demonstrate
massively parallel and GPU implementations, respectively. For example, some of
the three-dimensional tests in this paper used half a billion degrees of freedom and
scaled to several hundred computing nodes, though we do not report on scaling
performance here.

Outline. In the main article, the central ideas and results are presented, while
nonessential details of the LDG discretization, grid convergence analyses, and
implementation possibilities are deferred to the appendices. First, we outline
the essential components of the LDG framework for the multiphase Stokes equa-
tions (Section 2). Second, the design of a standard multigrid V-cycle is outlined
(Section 3), after which the role of pressure penalty stabilization on multigrid
efficiency is examined (Section 4). Then results are presented for a variety of
problems for the steady-state and time-dependent Stokes equations (Sections 5
and 6, respectively). We then conclude, summarizing the key observations made in
this work along with a discussion of future research avenues (Section 7).

2. Local discontinuous Galerkin methods for multiphase Stokes problems

In this work, we build on the LDG schemes developed by Cockburn et al. [14] and
extend them to the variable-viscosity multiphase Stokes problem. The governing
equations are written as follows: we seek to determine a velocity field u :�→ Rd

and pressure field p :�→ R such that

−∇ · (µi (∇u+ γ∇uT))+∇ p = f
−∇ · u = f

}
in �i , (3)

subject to the interfacial jump conditions

[[u]] = gi j

[[µ(∇u+ γ∇uT)n− pn]] = hi j

}
on 0i j (4)

and boundary conditions

u = g∂ on 0D,

µ(∇u+ γ∇uT)n− pn= h∂ on 0N ,
(5)

where � is a domain in Rd divided into one or more subdomains �i (denoted
“phases”), 0i j := ∂�i∩∂� j is the interface between phases i and j , and 0D and 0N
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denote the parts of ∂� on which velocity Dirichlet or stress boundary conditions are
imposed, respectively. Here, either γ = 0 or γ = 1 depending on whether the Stokes
equations are in standard form or viscous-stress form, respectively. The operator
[[ · ]] denotes the jump in a quantity across an interface and n is to be understood
from context — on ∂�, n denotes the outward unit normal to the domain boundary,
whereas for an interface 0i j , n denotes the unit normal to 0i j , oriented consistently
with the definition of the jump operator. Finally, µi is a phase-dependent viscosity
coefficient, while f , f , g, and h provide the data to the multiphase Stokes problem
and are given functions defined on �, its boundary, and internal interfaces.

Here, we mainly consider meshes arising from Cartesian grids along with semi-
unstructured quadtree/octree-based implicitly defined meshes of more complex
curved domains. In this setting, it is natural to adopt a tensor product piecewise
polynomial space. Let E =

⋃
i Ei denote the set of mesh elements, let p ≥ 1 be

an integer,1 and define Qp(E) as the space of tensor product polynomials of (one-
dimensional) degree p on element E . For example, Q2 is the space of biquadratic or
triquadratic polynomials, with dimension 9 or 27 in 2D or 3D, respectively. Define
the corresponding space of discontinuous piecewise polynomial functions as

Vh =
{
u :�→ R

∣∣ u|E ∈ Qp(E) for every E ∈ E
}
,

with analogous definitions for the space of piecewise polynomial vector-valued
fields, V d

h , and the space of matrix-valued fields, V d×d
h . As discussed in [14], it

is possible to build LDG methods for the Stokes equations wherein the discrete
pressure field has either the same polynomial degree as the discrete velocity field
or is in a lower-degree space. In this work, we focus on the case that the two have
the same degree; i.e., we seek a discrete solution such that uh ∈ V d

h and ph ∈ Vh .
In one possible construction of the LDG framework, the governing set of equa-

tions (3)–(5) can be discretized in a three-step process: (i) define a discrete stress
tensor τh ∈ V d×d

h equal to the discretization of ∇uh + γ∇uT
h , taking into account

Dirichlet source data g, (ii) define σh ∈ V d×d
h as the viscous stress µτh − phI via

an L2 projection of µτh onto V d×d
h , and (iii) compute a discrete divergence of σh ,

taking into account Neumann-like data h, and add penalty stabilization parameters
for both velocity and pressure, setting the result equal to the L2 projection of the
given right-hand side f . Details of this construction, along with the associated
treatment of the divergence constraint, are provided in Appendix A; here, we
summarize the main outcomes of essential relevance. The LDG discretization
results in a symmetric linear system for (uh, ph) having the form(

A MG

GTM −E

)(
uh

ph

)
=

(
bu
bp

)
(6)

1The meaning of p, whether as pressure or polynomial degree, should be clear from context.
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where M is the block-diagonal mass matrix, G is a discrete gradient operator, and
(bu, bp) collects the entire influence of the source data f , f , g, and h onto the
right-hand side. Here, A implements the viscous part of the Stokes momentum
equations, and can be written in d × d block form corresponding to its action on
the d components of uh , with the (i, j)-th block given by

Ai j = δi j

( d∑
k=1

GT
k MµGk

)
+ γGT

j MµGi + δi j Ẽ,

where Mµ is a µ-weighted mass matrix, G is a second discrete gradient operator
closely related to the adjoint of G, and Ẽ is the operator associated with velocity
penalty stabilization. Note that if γ = 0, then A is block diagonal with identical
blocks corresponding to a discretization of the Laplacian operator −∇ · (µ∇).
Meanwhile, noting that the adjoint of G is given by M−1GTM , one may observe
that the divergence constraint of the Stokes equations is implemented in the (p, u)
block of (6) through an effective discrete divergence operator which is equal to the
negative adjoint of G.

There is one last operator to define in (6), whose presence is of key importance to
multigrid efficiency: the pressure stabilization operator E , which weakly enforces
continuity of the pressure field. The symmetric positive semidefinite matrix E is
defined such that2

uTEv =
∫
00

τp[[u]][[v]] (7)

holds for every u, v ∈ Vh . Here, the integral is taken over the union of every
noninterfacial interior mesh face, [[ · ]] denotes the jump across the face, and τp is a
pressure stabilization penalty parameter which scales proportionally to the element
size h and inversely proportionally to the (local) viscosity coefficient:

τp = τh/µ, (8)

where τ is a user-defined constant prefactor. Provided τ is positive, Cockburn
et al. [14] (see also extensions [11; 13]) prove the well-posedness of the single-
phase symmetric saddle point problem in (6), including satisfaction of the inf-sup
conditions. In these cited works, however, the particular choice of τ in (8) is not
extensively discussed. One of the main results in this work is to demonstrate that τ
can be chosen so as to achieve excellent multigrid solver efficiency when computing
solutions to the Stokes equations.

2In a convenient abuse of notation, a piecewise polynomial function (e.g., in Vh) may carry the
same notation as its corresponding coefficient vector in the basis of Vh , with the precise meaning
understood from context. For example, in the identity uTMv =

∫
� uv, the left-hand side employs

vectors and matrices relative to the chosen basis of Vh , whereas the right-hand side employs the
functional form.
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In the remainder of this paper, we will refer to the Stokes problem both in its
operator block form (6) and through the more succinct notation

Ah xh = bh,

where Ah is the symmetric saddle point operator and xh collects uh and ph into
one set of unknowns.

3. Multigrid design

Prior work on designing geometric multigrid methods for LDG discretizations
of Poisson-like equations [38; 39; 20; 41] shows that one can build an efficient
solver through standard multigrid concepts: a V-cycle applied to a mesh hierarchy
using straightforward interpolation and restriction operators, together with standard
relaxation methods, such as block Gauss–Seidel in which each block corresponds
to the collective set of unknowns on each mesh element. Here, we show the same
can be done for the discretized Stokes problem (6). (In the following, it is assumed
the reader is familiar with the general design of multigrid methods; see, e.g., the
books [8; 7; 47; 33] for reviews and applications.)

The multigrid methods designed here may be considered as a “purely geometric”
approach, wherein the Stokes problem is discretized on each level of the mesh
hierarchy. (A convenient strategy for constructing the coarse mesh problems —
without having to explicitly form the coarse meshes themselves — is discussed
shortly.) Three preliminary ingredients are needed to specify its design:

• Mesh hierarchy. In this work, quadtrees and octrees are used to define the finest
mesh. The tree structure naturally defines a hierarchical procedure by which to
agglomerate elements to create a nested mesh hierarchy, coarsening by a factor
of two in each dimension down each level. Regarding the multiphase case,
element agglomeration is permitted only between elements of the same phase —
as such, the interface is sharply preserved throughout the entire multigrid
hierarchy.

• Interpolation operator. Owing to the presence of a nested mesh hierarchy, the
interpolation operator I h

2h , which transfers coarse mesh corrections to a fine
mesh, is naturally defined via injection. In particular, we define (I h

2hu)|E f =

u|Ec , where E f is a fine mesh element and Ec⊇ E f is its corresponding coarse
mesh element.

• Restriction operator. The restriction operator R2h
h , which transfers the residual

of a fine mesh problem to the coarse mesh, is defined as the L2 projection onto
the coarse mesh (or, equivalently, as the adjoint of the interpolation operator).
It is related to the interpolation operator via R2h

h = M−1
2h (I

h
2h)

TMh , where Mh

and M2h are the mass matrices of the two meshes.
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The last essential, and perhaps most important, multigrid ingredient is the relaxation
method. As mentioned earlier, we have used a simple block Gauss–Seidel method,
where each block corresponds to the collective set of degrees of freedom (i.e.,
velocity and pressure combined) on each mesh element. Specifically, consider a
repartitioning of Ax = b according to these blocks, such that xi denotes the set
of velocity and pressure values on element i , and Ai j denotes the (i, j)-th block
of A, whence bi =

∑
j Ai j x j . Then, the block Gauss–Seidel method simply sweeps

over the elements, in some particular order, replacing xi←A−1
i i

(
bi −

∑
j 6=i Ai j x j

)
.

Here, Ai i is the i-th diagonal block of A and takes on the form of a miniature
Stokes operator; referring to (6), we have

Ai i =

(
Ai i Mi i Gi i

GT
i i Mi i −Ei i

)
.

Note that Ai i needs to be inverted in the Gauss–Seidel update of element i . As-
suming that the global Stokes saddle point problem Ax = b satisfies the inf-sup
conditions, it is straightforward to show that so too does Ai i , and hence the local
elementwise problem is well-posed; this has also been confirmed through numerous
and extensive numerical tests. In our specific implementation, we precompute a
symmetric indefinite factorization of Ai i for every i , and use this factorization as a
direct solver for each of these mini-Stokes problems in the Gauss–Seidel sweep.
Regarding the element ordering, we have opted for a multicolored Gauss–Seidel
method. The primary reason for this choice is that a multicolored sweep affords a
simpler parallel implementation of the method, both in terms of multithreading and
in a distributed environment (e.g., through standard domain decomposition methods
using MPI).

Using the defined interpolation and restriction operators and the block Gauss–
Seidel relaxation method, the construction of a multigrid V-cycle is relatively
standard and is outlined in Algorithm 1.3 In this algorithm, Ah is assumed to be
precomputed on every level of the mesh; a particularly convenient method for doing
so — without having to explicitly mesh each level, build quadrature rules for coarse
mesh elements, or build LDG operators via coarse mesh numerical fluxes, etc. —
uses the operator coarsening ideas of [20]. In this technique, the discrete gradient
and penalty operators underlying (6) are coarsened solely based on the interpolation
operator hierarchy, using simple block-sparse linear algebra; these methods are

3Note that (I h
2h)

T appears on line 5, rather than the restriction operator R2h
h ; this follows from a

convenient simplification common to many finite element methods: briefly, viewed as an operator
which maps V d

h ⊗ Vh to V d
h ⊗ Vh , the discrete Stokes operator is given by M−1A. Therefore,

the residual of the fine mesh problem, as a piecewise polynomial function, is M−1
h (bh −Ah xh).

This residual is then multiplied by R2h
h to define the source data for the coarse mesh problem

M−1
2h A2h = R2h

h M−1
h (bh − Ah xh). Rearranging, one obtains line 5.
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1: if Eh is the bottom level then
2: Solve Ah xh = bh with bottom solver
3: else
4: Apply block Gauss–Seidel relaxation ν1 times
5: r2h := (I h

2h)
T(bh −Ah xh)

6: x2h := V (E2h, 0, r2h)

7: xh← xh + I h
2h x2h

8: Apply block Gauss–Seidel relaxation ν2 times
9: return xh

Algorithm 1. Multigrid V-cycle V (Eh , xh , bh) with ν1 pre- and ν2 postsmoothing steps
on mesh Eh of the hierarchy.

further described in Appendix B. Returning to Algorithm 1, note that the V-cycle
computes coarse grid corrections for both the velocity and pressure, simultaneously,
and there is no need to strictly enforce the divergence constraint on any level of
the hierarchy. Regarding the bottom solver, in this work a direct solver using a
symmetric indefinite factorization of Ah on the coarsest mesh is used, together with
an appropriate treatment of its associated trivial kernel.4

As is typical, applying more and more pre- and postsmoothing steps increases
the convergence rate of the multigrid solver, but at greater computational cost.
According to a variety of numerical experiments, a general observation made in this
work is that a V-cycle with three pre- and postsmoothing steps is a good all-rounder,
based on the metric of fastest computation time in reducing solution error by a
given factor. On occasion, four presmoothing steps and two postsmoothing steps, or
vice versa, performs marginally better, but on a problem-specific basis. Naturally,
the optimal choice of multigrid design parameters is implementation- and problem-
dependent, influenced by a wide variety of aspects, e.g., the relative computational
costs of interpolation, restriction, and relaxation operators, or computing hardware
characteristics, such as shared memory or distributed memory architectures and their
associated memory communication costs. Further comments on V-cycle design, or
counterparts such as W-cycles, are provided in the concluding remarks of Section 7.

To complete the description of the multigrid method, we note that although the
V-cycle can be used as a standalone iterative solver, solver efficiency can be further
accelerated by using it as a preconditioner of a Krylov method [5]. In this work,

4With periodic boundary conditions, the Stokes problem has a trivial kernel of dimension d + 1,
spanned by constant velocity and pressure fields; with velocity Dirichlet boundary conditions, the
kernel is one-dimensional, spanned by constant pressure fields; with stress boundary conditions
in viscous-stress form, the kernel is spanned by constant velocity fields as well as less trivial ve-
locity modes such as, e.g., the velocity field (x, y) 7→ (−y, x) in 2D. The bottom solver robustly
treats these modes through a simple least squares approach which (pre)computes the symmetric
eigendecomposition of Ah , “snapping” any nearly zero eigenvalues to exactly zero.
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we have used a single V-cycle (with ν1 = ν2 = 3 pre- and postsmoothing steps) as a
left-preconditioner of the GMRES method. Specifically, applying the V-cycle to
an initial guess of zero on the fine mesh results in a linear operator, denoted in the
remainder of this paper as V ; the preconditioned system is then V A. For simplicity,
we do not consider restarted variants of GMRES here, in part because experiments
show that convergence is generally attained in as few as five to fifteen steps for a
ten-fold reduction in the order of magnitude of the residual. Moreover, convergence
behavior is generally smooth during the iterations, such that the residual reduces in
norm by a nearly constant factor each iteration of the GMRES method.

4. Influence of pressure penalty stabilization on multigrid efficiency

As outlined, the Stokes multigrid solver consists of a standard V-cycle, using a block
Gauss–Seidel relaxation method in which each block corresponds to the collective
set of degrees of freedom, of both velocity and pressure, on each mesh element.
Key to rapid multigrid convergence is an apt choice of the user-defined pressure
penalty stabilization prefactor parameter τ in (8). In general terms, if τ is below
some positive threshold, the V-cycle fails to converge; above this threshold, there
is a range of values for which convergence rates can match that of fast geometric
multigrid methods for scalar Poisson problems; and beyond this range, multigrid
efficiency will degrade.

To illustrate this behavior, as well as the suitability of the V-cycle as a pre-
conditioner for the Stokes system A, we examine the spectral properties of the
preconditioned system V A. In this particular example, we consider the standard
form of the Stokes equations (γ = 0), with periodic boundary conditions on a
128× 128 Cartesian grid using p = 2 biquadratic elements. As a function of τ ,
Figure 1 plots three quantities concerning the spectrum5 of V A: (i) the real part of
the rightmost eigenvalue, maxi Re λi , (ii) the real part of the leftmost eigenvalue,
mini Re λi , and (iii) the greatest imaginary part, maxi Im λi . Ideally, the eigenvalues
of V A should be clustered around 1, and we observe this is the case when τ ≈ 0.1;
furthermore, near this value, the eigenvalues are nearly real. However, if τ is too
small, then the leftmost eigenvalue of V A crosses the imaginary axis; in Figure 1
this occurs when τ / 10−2. This represents a breakdown of the V-cycle, as then the
(nontrivial) eigenvalues of V A cease to be bounded away from 0. (In fact, numerical

5The spectral analysis deliberately excludes the zero eigenvalues associated with the trivial kernel
of the Stokes operator. In addition, regarding the results plotted in Figure 1, the spectral extremes
have been estimated via the GMRES method, through computation of the eigenvalues of the upper-
Hessenberg matrix of the corresponding Arnoldi iteration. Although only an approximation of the true
spectrum of V A, estimation via GMRES is significantly more efficient than forming and computing
the spectrum of the dense matrix V A; furthermore, the computed quantities are found in practice to
be sufficiently accurate for the present purpose.
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Figure 1. Spectral properties of the multigrid preconditioned system V A as a function of
pressure penalty stabilization parameter; note the quasilogarithmic axis. Results correspond
to a two-dimensional Stokes problem in standard form with p = 2; similar characteristics
are obtained with other p, or in 3D, or with the viscous-stress form of the Stokes equations.

0.0
0.2
0.4
0.6
0.8
1.0

Figure 2. Multigrid efficiency as a function of pressure penalty stabilization parameter.
Here, the convergence rate ρ, defined by (9), measures the average reduction factor per
iteration in the residual of the V-cycle preconditioned GMRES method.

experiments examining the efficacy of the V-cycle as a standalone iterative method
show that the V-cycle ceases to have spectral radius less than 1 at this same point.)
Meanwhile, if τ is too large, e.g., τ ' 1, then the eigenvalues of V A begin to
diverge away from 1.

In this work, the primary metric used to assess multigrid efficiency is the conver-
gence rate ρ of the multigrid preconditioned GMRES method. This metric correlates
with the spectral characteristics described above, and also to the performance of the
V-cycle as a standalone iterative solver. Here, ρ is defined as the average residual
reduction factor per iteration of the (left) preconditioned GMRES method,

ρ = exp
(

1
n

log
‖V Axn − V b‖2
‖V Ax0− V b‖2

)
, (9)

where n is the number of iterations required to reduce the residual by a factor of 108

from its starting value. In particular, a right-hand side of b = 0 is used, with initial
guess x0 given by a randomly generated (d+1)-dimensional vector field. With high
probability, the randomly generated field contains modes which are damped slowest
by the multigrid method, and thus ρ represents a typical “worst-case” convergence
rate. Figure 2 shows the convergence rate ρ as a function of τ for the same example
considered in Figure 1. Optimal convergence is attained when τ ≈ 0.1, precisely
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Stokes form d polynomial degree p
1 2 3 4 5

standard 2D 0.19 0.10 0.086 0.019 0.031
3D 0.12 0.088 0.084

viscous stress 2D 0.14 0.046 0.034 0.0095 0.011
3D 0.12 0.039 0.040

Table 1. Optimal values of pressure penalty stabilization parameter, attaining minimal
multigrid iteration count.

Stokes form d polynomial degree p
1 2 3 4 5

standard 2D (0.15, 0.28) (0.082,0.12) (0.067,0.11) (0.013, 0.029) (0.021, 0.041)
3D (0.061,0.30) (0.070,0.11) (0.064,0.12)

viscous stress 2D (0.091,0.18) (0.040,0.056) (0.027,0.043) (0.0058,0.021) (0.0072,0.020)
3D (0.025,0.19) (0.031,0.066) (0.021,0.059)

Table 2. Range of pressure penalty stabilization parameters for which the number of
multigrid iterations is at most 12.5% more than optimal.

when the spectrum of V A is tightly clustered around 1; meanwhile, when τ / 10−2,
ρ is approximately 1, representing the fact that GMRES is unable to effectively
reduce the residual owing to a breakdown of the preconditioner.

Similar behavior to that seen in Figures 1 and 2 is observed for other choices
of polynomial degree p, for different grid sizes, for the viscous-stress form of the
Stokes equations, and in 3D as well as 2D. In all cases, the convergence rate ρ
exhibits a well-defined valley as a function of τ . At present, a formula for the corre-
sponding optimal value of τ is not known. In this work, a simple one-dimensional
parameter sweep was used to find the optimal value of τ on successive grid sizes
n×n(×n) for n= 4, 8, 16, . . . up to n= 256 in 2D and n= 128 in 3D; experiments
indicated that the optimum essentially converges around n = 64 or 128, beyond
which arg minτ ρ is relatively insensitive to the grid size. Table 1 contains the
results of the search for a variety of p in 2D and 3D. In addition to the optimal
value, a “window” of acceptable τ may also be computed: one can search for all τ
such that ρ(τ)≤ (min ρ)1−ε , where 0≤ ε < 1 represents a user-defined threshold
for which the number of multigrid iterations increases by a factor of 1/(1− ε)
above the optimal minimum. For example, with ε = 1

9 , the corresponding range
of τ values yields at most 12.5% more iterations than optimal; Table 2 contains
the corresponding ranges, and shows that, even if τ is not chosen exactly at the
optimum, there is a relatively wide range of values for τ that will nevertheless attain
good multigrid efficiency. Finally, numerical experiments indicate that the pressure
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penalty parameter has very little influence on the velocity or pressure discretization
error (see, for example, the demonstration given in Appendix C.1); this is ideal,
as it allows us to concentrate mainly on the impact of τ on multigrid performance.
Further comments concerning the selection of τ are given in the concluding remarks.

5. Multigrid efficiency for the time-independent Stokes equations

In the next two sections, multigrid performance is examined for a variety of Stokes
problems, in both standard and viscous-stress forms, and with different types of
boundary conditions. We also consider test cases with variable viscosity, multiphase
problems exhibiting large discontinuities in µ across an embedded interface, and
curved geometry problems which use semiunstructured meshes. Our primary focus
is on demonstrating effective multigrid performance under the action of mesh
refinement. The order of accuracy in the velocity and pressure, in the L2 and
maximum error norms, is also measured and reported. In two dimensions, grid
sizes typically range from 4 × 4 up to 1024 × 1024, with polynomial degrees
p = 1, 2, . . . , 5; in three dimensions, owing to limited computing resources, only
p = 1, 2, 3 are considered (i.e., trilinear, triquadratic, and tricubic polynomials) on
grid sizes up to 128× 128× 128 (the largest of these problems has half a billion
degrees of freedom and requires 1 TB of memory to store just the block-diagonal
component of the block-sparse matrix A). In the remainder of this paper, for every
test case, the pressure penalty stabilization parameter is chosen equal to the values
reported in Table 1. Multigrid convergence rates are assessed using the average
reduction factor in residual per iteration of the GMRES method, i.e., using (9),
on a test problem with right-hand side b = 0, initial guess defined by a randomly
generated (d + 1)-dimensional vector field, over as many iterations as necessary to
reduce the initial residual by a factor of 108.

5.1. Periodic boundary conditions. We begin with perhaps the simplest Stokes
problem, i.e., the Stokes equations in standard form, with µ = 1 and periodic
boundary conditions, on the unit square/cube domain �= (0, 1)d . Figure 3 plots
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Figure 3. Measured multigrid convergence rates when solving the Stokes equations in
standard form, with µ= 1 and periodic boundary conditions.
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Figure 4. Measured multigrid convergence rates when solving the Stokes equations in
standard form, with µ= 1 and velocity Dirichlet boundary conditions.

the measured convergence rate ρ as a function of grid size n× n(×n). With the
exception of p = 1, ideal convergence rates are attained. For example, ρ ≈ 0.05
corresponds to needing only seven iterations to reduce the residual by a factor of 109.
When p= 1, however, slower convergence is seen — compared to the higher-degree
cases, it appears that the elementwise block Gauss–Seidel relaxation method is less
effective for a bilinear and trilinear LDG discretization of the Stokes equations.
This behavior is consistently observed across all of the presented tests; see also
the next two examples. Regarding the order of accuracy, numerical experiments
show that both velocity and pressure attain order p+ 1 accuracy, in both the L2

and maximum error norms, for all p considered, in 2D and 3D; see Appendix C.

5.2. Dirichlet boundary conditions. The next test problem is identical to the pre-
vious, but with velocity Dirichlet boundary conditions imposed on ∂�. Figure 4
plots the measured multigrid convergence rates and shows that, with the exception
of p = 1, excellent multigrid performance is attained, similar to that of the periodic
case in Figure 3. When p = 1, we observe a stronger failure of multigrid efficiency,
with ρ diverging toward 1 as the mesh is refined. Another difference compared
to the periodic case concerns the order of accuracy: numerical experiments show
that the velocity attains order p + 1, in both the L2 and maximum error norms,
whereas the pressure field attains order p+ 1

2 in the L2 norm and order p in the
maximum norm; see Appendix C. The order reduction in the computed pressure
field, as compared to the order p + 1 observed in the periodic case, is due to a
numerical boundary layer (see, e.g., Figure 5); it is important to note, however, that
this numerical boundary layer does not impact the optimal order accuracy of the
computed velocity. See also the discussion of Cockburn et al. [14], wherein a priori
estimates show that order p accuracy in pressure is to be expected for this LDG
discretization of the Stokes equations.

5.3. Stress boundary conditions. We next test performance of the Stokes multigrid
solver when stress boundary conditions are imposed, in which case the pertinent
form of the Stokes equations is the viscous-stress form (γ = 1). Similar to the
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−0.000015 0 0.000015

u− uh

−0.000015 0 0.000015

v− vh

−0.004 0 0.004

p− ph

Figure 5. Illustration of the discrete error for the test case considered in Section 5.2,
corresponding to a single-phase Stokes problem in standard form with velocity Dirichlet
boundary conditions. The error in velocity u = (u, v) and pressure p is shown in the
case of a 16× 16 Cartesian mesh, for p = 3 bicubic polynomials. Note the numerical
boundary layer in pressure, which according to grid convergence analyses does not impact
the maximum norm optimal order accuracy of the velocity field.
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Figure 6. Measured multigrid convergence rates when solving the Stokes equations in
viscous-stress form, with µ= 1 and stress boundary conditions.

previous test problems, (2) with µ= 1 is solved on an n× n(×n) mesh of a unit
square/cube domain�= (0, 1)d , with stress boundary conditions σ ·n= h∂ imposed
on ∂�. Figure 6 plots the measured multigrid convergence rates. Compared to
the previous two test problems (which employed the standard form of the Stokes
equations), we observe a mild increase in ρ for the cases in which p > 1, most
visible in 2D. The slight increase in ρ is mainly attributed to the viscous-stress
form of the Stokes equations, and not solely to the imposition of stress boundary
conditions. (Indeed, if one imposes Neumann-like boundary conditions for the
Stokes equations in standard form, convergence rates similar to those in Figures 3
and 4 are obtained.) In Figure 6, for p = 1, we once again see less than ideal
multigrid efficiency, though with marginal improvements compared to the case of
velocity Dirichlet boundary conditions. Since the case of p = 1 is generally not of
significant practical interest in the context of high-order accurate DG methods, we
will focus on degrees p > 1 in the remainder of the presented results. Meanwhile,
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Figure 7. Measured multigrid convergence rates when solving the Stokes equations in
viscous-stress form with a nonconstant viscosity function µ :�→ R+ given by (10), and
stress boundary conditions.

for the current test problem, numerical experiments show that the velocity field
attains order p+ 1 accuracy in the maximum norm, while the pressure field attains
order p+ 1

2 in the L2 norm and order p in the maximum norm; see Appendix C. As
a general rule, our results indicate that whenever boundary conditions (or interfacial
jump conditions) are imposed, the pressure field loses one order of accuracy near
the boundary (or interface) owing to a numerical boundary layer, but this never
affects the optimal order accuracy of the computed velocity field.

5.4. Variable viscosity. In the next example, we consider the possibility of a non-
constant viscosity function µ : �→ R+, varying throughout the domain. This
problem serves three main purposes: (i) to test the application of the local inverse
scaling by µ of the pressure penalty stabilization parameter suggested in (8), (ii) to
demonstrate whether or not multigrid efficiency is impacted by variable ellipticity
coefficient, and (iii) to examine the order of accuracy of the discrete solution in
the variable-coefficient case. Specifically, we consider the Stokes equations in
viscous-stress form on the unit square/cube domain �= (0, 1)d , where µ :�→R+

is given by

µ=

{
1+ 1

2 sin 4πx sin 4πy in 2D,

1+ 1
2 sin 4πx sin 4πy sin 4π z in 3D,

(10)

together with stress boundary conditions on ∂�. Measured multigrid convergence
rates, plotted in Figure 7, show very similar behavior to the constant-viscosity test
problem of the previous example (Figure 6). Meanwhile, numerical experiments
examining the order of accuracy (see Appendix C) confirm that the velocity field
attains order p+ 1 in the maximum norm, while pressure attains order p+ 1

2 in the
L2 norm and order p in the maximum norm.

5.5. Curved domain geometry. In the last single-phase example of this section,
we consider a Stokes problem in a curved domain. Here, and in all others involving
curved geometry, we make use of implicitly defined meshes, building on the implicit
mesh DG framework developed in prior work [38; 39]. Briefly, an implicitly defined
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circular domain circular interface

Figure 8. Examples of implicitly defined meshes generated with a background 16× 16
Cartesian grid. Left: circular domain, used in the single-phase Stokes problem examined in
Figure 9. Right: square domain with an embedded circular interface, used in the two-phase
time-dependent Stokes problem considered later in this article, in Figure 12.

mesh uses one or more level set functions, describing the domain geometry and/or
embedded interfaces, to cut through the cells of a background quadtree or octree;
tiny cut cells are then merged with neighboring cells to create a mesh such that
elements adjacent to curved geometry have their shape defined implicitly by the
level set functions. In particular, the resulting mesh is interface- and boundary-
conforming, thereby sharply representing the implicitly defined geometry. To use an
implicitly defined mesh with a DG method, the main task is to compute quadrature
schemes for the elements and faces whose geometry is implicitly defined; these are
computed using the high-order accurate algorithms detailed in [37; 40], and then
used when computing mass matrices, discrete gradient operators, L2 projections, etc.
For details on the implicit mesh DG framework, see [38; 39], and for illustrations
demonstrating the associated (implicitly formed) mesh hierarchy underlying the
multigrid method, see [20].

In the current test problem, we consider solving the Stokes equations, in standard
form, on a unit diameter circle or sphere, �=

{
x ∈ Rd

∣∣ |x |< 1
2

}
, with µ= 1 and

velocity Dirichlet boundary conditions. An example of the corresponding implicitly
defined mesh generated by a background 16×16 Cartesian grid is shown in Figure 8,
left. Measured multigrid convergence rates for this test case are shown in Figure 9 for
polynomial degrees p= 2 and p= 3. Overall, efficient multigrid convergence rates
are witnessed; however, once n≥256 we observe that ρ increases in value compared
to previous test cases; we attribute this to the worsening conditioning of the discrete
Stokes operator. In particular, inspection of numerical results shows that the condi-
tioning of A exceeds 108 in these cases. Since the V-cycle is built by coarsening the
components of the fine mesh operator A, and since ρ is measured according to how
many GMRES iterations it takes to reduce the (preconditioned) residual by a factor
108, it follows that ρ may be impacted by this conditioning. Regarding the grid
convergence analysis (see Appendix C), numerical results once again confirm that
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Figure 9. Measured multigrid convergence rates when solving the Stokes equations in
standard form, with µ = 1 in a unit diameter spherical domain using implicitly defined
meshes together with velocity Dirichlet boundary conditions. Here, n denotes the number
of cells in the background uniform Cartesian n×n(×n) grid used to build the corresponding
implicitly defined mesh; see Figure 8, left.

the velocity field attains order p+ 1 in the maximum norm, whereas the pressure
attains order p+ 1

2 in the L2 norm and order p in the maximum norm.

5.6. Multiphase Stokes equations with interfacial jump conditions. In this last
example for the steady-state Stokes equations, we consider a challenging situation
in which the viscosity coefficient µ exhibits jumps several orders in magnitude
across an embedded interface. In particular, let�= (0, 1)d be divided into an interior
square or cubic phase, �1 =

( 1
4 ,

3
4

)d , together with an exterior phase, �2 =� \�1.
Four different ratios of viscosity jump across the interface are considered: in every
case, the exterior phase has unit viscosity, µ2 = 1, whereas the interior phase will
have one of four values, µ1 ∈ {10−6, 10−3, 103, 106

}. We consider the multiphase
viscous-stress form of the Stokes equations, (3)–(5) with γ = 1, for which interfacial
jump conditions in velocity and the stress tensor are imposed on 0= ∂�1∪∂�2. To
tackle this problem, we apply two distinct but complementary strategies: viscosity-
upwinded weighted fluxes on interfacial mesh faces, and a diagonal scaling to
improve the conditioning of the Stokes operator; these are discussed next.

Prior work on LDG methods for elliptic interface problems [41] shows that, in
order to obtain ideal multigrid efficiency and solution accuracy, one should apply a
biasing strategy for the LDG numerical fluxes on interfacial faces, wherein û and σ̂
(see Appendix A) are biased toward one phase or the other, depending on the local
viscosity coefficients. Here, we build on these ideas and extend it the multiphase
Stokes case.

The strategy of biasing can be intuitively motivated as follows. Suppose that the
interior phase has a vastly smaller viscosity than the exterior phase, i.e., µ1 = ε

with 0< ε� 1. Suppose also that the velocity u and its gradient is unit order in
magnitude near the interface. From a physical standpoint, the pressure scales as
p ∼ µU/L (where U is a typical velocity scale and L is a typical length scale),
and so suppose also that pressure and its gradient is unit order in magnitude in
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the exterior phase and scales with ε in the interior phase. Then, in the limit of
vanishingly small ε, the stress jump condition in (4) approximately reduces to
phase �2 having a stress-like boundary condition, µ2(∇u+∇uT )n− pn ≈ h12

on 0. Except for the modes associated with the trivial kernel of the corresponding
Stokes operator, this is enough to determine the solution (u2, p2) in �2 and thus the
phase �2 (nearly) decouples from phase �1. Once (u2, p2) is found, the remaining
jump condition in (4) essentially reduces to a Dirichlet boundary condition for the
Stokes problem in phase �1, i.e., u1|0 ≈ u2|0− g12, which is enough to determine
(u1, p1) up to the modes associated with its kernel. Therefore, in the limit of
vanishingly small ε, the highly viscous phase essentially “sees” a stress boundary
condition on 0 (whose data is nearly independent of the other phase), and the nearly
inviscid phase “sees” a Dirichlet boundary condition on 0 (whose data depends on
the solution across the interface). It follows, therefore, that it may be advantageous
to bias the numerical fluxes of the LDG formulation in the same way, to reflect the
physical nature of the interfacial jump conditions in (4).

For elliptic interface problems, a common approach is to bias the fluxes according
to a kind of harmonic weighting; in [41], a stronger kind of biasing is advocated,
denoted viscosity-upwinded weighting. Here, we adopt the same strategy and
refer the reader to [41] for discussion, much of which is directly analogous to the
multiphase Stokes case, and to Appendix A with details on how the multivalued
numerical flux functions û and σ̂ are chosen for interfacial mesh faces.

In addition to the application of viscosity-upwinded numerical fluxes, one other
numerical technique is employed to improve the conditioning of the multiphase
Stokes equations. For a single-phase, constant-coefficient Stokes problem with
viscosity µ, i.e., {−µ∇2u+∇ p = f , −∇ · u = f }, the largest positive eigenvalue
of the discretized Stokes operator scales as µ/h2, whereas all negative eigenvalues
scale inversely proportional to µ (and independently of h). Thus, unlike a Poisson
problem, whose conditioning is independent of an arbitrary multiple of its ellipticity
coefficient, the conditioning of the Stokes problem worsens quadratically in µ as µ
is made arbitrarily large. In essence, the two operators of the momentum equations,
µ∇2u and ∇ p, are not on equal footing if µ is large and u and p are treated as
independent variables. However, as noted earlier, from a physical point of view,
the pressure scales as p ∼ µU/L , and so the magnitude of p depends on µ. This
apparent ill-conditioning of the Stokes operator can be easily remedied by rescaling
one of the variables u or p by µ or 1/µ, respectively, effectively recasting the
Stokes equations into a unit-viscosity form, −∇2ũ+∇ p̃ = f̃ .

This issue of ill-conditioning is exaggerated for the multiphase Stokes equations,
in which the largest positive eigenvalue scales as maxi µi/h2. However, as moti-
vated by the single-phase case, a simple rescaling of the solution variables u and p
can be used to mitigate the issue (see also [21; 2; 6]). In this work, we achieve
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Figure 10. Measured multigrid convergence rates when solving the multiphase Stokes
equations in viscous-stress form, wherein �1 =

( 1
4 ,

3
4
)d has viscosity µ1 and �2 =

(0, 1)d \�1 has viscosity µ2, with the viscosity ratio as indicated and periodic boundary
conditions. In each case, 2D results are plotted on the left and 3D results on the right.

this through a diagonal pre- and postscaling of the Stokes operator, i.e., replace the
Stokes operator in (6) with(

α 0
0 β

)(
A MG

GTM −E

)(
α 0
0 β

)
where α and β are diagonal matrices whose entries equal 1/

√
µ and

√
µ, respec-

tively. (More precisely, for every velocity field u and pressure field p, we have that
(αu)|E = µ

−1/2
E u|E and (βp)|E = µ

1/2
E p|E for every element E ∈ E, where µE is
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the viscosity on element E .) This pre- and postscaling is built into the multigrid
schemes by replacing the Stokes operator with the scaled version on all levels of
the hierarchy. Note that it is straightforward to adapt the original linear system to
the scaled approach: instead of solving Ax = b, one solves for Ãx̃ = b̃, where Ã is
the scaled Stokes operator and b̃ = diag(α, β)b, whereupon solving for x̃ gives the
original unscaled solution as x = diag(α, β)x̃ .

With the application of viscosity-upwinded numerical fluxes and the simple
diagonal scaling to improve conditioning, Figure 10 plots the measured multigrid
convergence rates when solving the multiphase Stokes equation in viscous-stress
form with periodic boundary conditions, for the four different viscosity ratios
considered, µ1/µ2 ∈ {10−6, 10−3, 103, 106

}. Compared to previous test problems,
we observe marginally slower convergence rates, representative of the challenging
Stokes problems at hand. Nevertheless, good convergence rates are obtained across
significant viscosity ratios, i.e., typically seven to ten iterations of multigrid precon-
ditioned GMRES for a 108 reduction in the residual norm. Numerical experiments
examining the order of accuracy (see Appendix C) show that the velocity attains
order p+ 1 in the maximum norm, while pressure attains order p+ 1

2 in the L2

norm and order p in the maximum norm. As in other test problems, a numerical
boundary layer exists in the pressure field: in the present case, the layer is adjacent
to the interface but, as in other test problems, does not impact the optimal order
accuracy of the velocity.

6. Multigrid efficiency for the time-dependent Stokes equations

So far, we have focused on the efficacy of the multigrid solver when applied to
the steady-state Stokes equations. The time-dependent Stokes equations, however,
may pose additional challenges, owing to the competing effects of the temporal
derivative and viscous-stress operator [5]. To illustrate, consider the time-dependent
Stokes equations in the form

(ρi/δ)u−∇ · (µi (∇u+ γ∇uT))+∇ p = f
−∇ · u = f

}
in �i , (11)

where ρi is a phase-dependent density and δ is a parameter proportional to the time
step1t of a temporal integration method. Its LDG discretization is a straightforward
modification to the corresponding steady-state Stokes equations, and reads(

(1/δ)Mρ + A MG

GTM −E

)(
uh

ph

)
=

(
bu
bp

)
, (12)

where Mρ is a ρ-weighted mass matrix, with all other operators unchanged.
When the viscous operator dominates (i.e., a small effective Reynolds number

such that µδ/ρ is sufficiently large, depending on mesh resolution), the dominant
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operator is the steady-state Stokes equations, with a small ρ/δ-weighted identity
shift added to the viscous operator; in this case, one may expect a good steady-state
Stokes solver to be effective. On the other hand, in the case when viscous effects are
weak (i.e., a large effective Reynolds number such that µδ/ρ is small or the mesh
is unable to resolve viscous effects), then (11) essentially reduces to a Helmholtz–
Hodge projection problem (having strong connections to Chorin’s projection method
for solving the incompressible Navier–Stokes equations [10; 24; 31]). In the latter
case, a solver designed specifically for the steady-state Stokes equations may
deteriorate.

In this work, a simple strategy is employed to automatically account for these two
competing effects, resulting in fast multigrid solvers across a full range of Reynolds
numbers. In essence, the strategy chooses the pressure penalty stabilization param-
eter τp in (7) according to the expected scaling of the maximal eigenvalue of the
operator (ρ/δ)I−∇·(µ(∇+γ∇T)). In the steady-state case, e.g., ρ= 0, the penalty
parameter should scale as τp ∼ h/µ. However, in the degenerate time-dependent
Stokes case, in which µ= 0, (12) reduces to an LDG method, written in flux form,
for computing the solution of a Poisson problem with operator ∇ · ((δ/ρ)∇ p); the
appropriate scaling of the pressure penalty stabilization parameter in this case is
then τp ∼ δ/(ρh) [15; 41]. Both of these scaling statements may be summarized
as follows: the penalty parameter should scale such that τ ∼ (h3)−1, where 3 is
the maximal eigenvalue of either the discretized operator −∇ · (µ(∇ + γ∇T)) (in
the former case) or (ρ/δ)I (in the latter case). This leads to a simple, but effective,
idea to treat the general case: let τ ∼ (h3)−1 where 3 is the sum of the expected
scalings of the maximal eigenvalues of the two operators. Using this idea, the
definition of the pressure penalty parameter in (7)–(8) is replaced with the relation

τp =

(
hρ
τ0δ
+
µ

τh

)−1

. (13)

Note that (13) reduces to the correct penalty parameter for the steady-state Stokes
case when ρ = 0, i.e., τp = τh/µ, where τ is the multigrid-optimal parameter
given in Table 1; in the other extreme, when µ= 0 (or δ is vanishingly small), (13)
reduces to τ = τ0δ/(hρ), appropriate for a scalar Poisson problem with ellipticity
coefficient δ/ρ, where τ0 is a user-defined constant prefactor. In the general situation,
i.e., between these two extremes, it is important to note the scaling of (13) may
change across the multigrid hierarchy — on a very fine mesh, h is small so that
the second term may dominate; on a coarse mesh, however, h is large and the first
term may dominate. This should be taken into account when building the multigrid
method — in a purely geometric approach, wherein Ah is explicitly built on every
level, (13) can be utilized directly; for the operator coarsening strategy, a simple
modification to existing schemes is discussed in Appendix B.
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The penalization choice in (13) blends across the two extremes of the time-
dependent Stokes equations: a steady-state Stokes problem at one extreme, and a
pure Poisson problem (written in flux form) at the other. Across a full range of
Reynolds numbers, convergence results confirm optimal order of accuracy and that
this choice of τ neither saturates the discretization error nor underpenalizes. As in
the case of steady-state Stokes problems, we found that a V-cycle with three pre- and
postsmoothing steps (used throughout this work) resulted in approximately optimal
convergence speed, independent of the effective Reynolds number; occasionally
a different combination of pre- and postsmoothing steps (at least two and at most
four) can be slightly faster, but as mentioned earlier, the precise optimal value
depends on a host of implementation, hardware, and problem-dependent factors.

6.1. Single-phase time-dependent Stokes equations. To demonstrate multigrid
performance on time-dependent single-phase Stokes problems, we consider two
effective Reynolds numbers Re = ρU L/µ: Re ≈ 100, representing a viscous-
dominated case (but where the time-derivative operator nevertheless influences
performance characteristics) and Re≈ 10 000 (wherein the time-derivative operator
definitively dominates). In both cases, the velocity and length scales are unitary,
U = 1 and L = 1; density is set to ρ = 1, while viscosity satisfies µ = 10−2 in
the former case and µ = 10−4 in the latter. In addition, we set δ = 0.1h, where
h is the element size on the finest-level mesh, representing a typical scenario of
applying the time-dependent Stokes equations in a temporal integration method with
CFL about 0.1. As before, multigrid efficiency is quantified through the average
convergence rate ρ; Figure 11 plots the results (note the magnified vertical axis).6

In Figure 11, top, we observe an upward trend in ρ as the mesh is refined; this
corresponds to the fact that as the mesh is refined, eventually the viscous operator
will definitively dominate and multigrid convergence rates similar to the steady-state
Stokes equations will be attained. In the weakly viscous case with Re ≈ 10 000,
Figure 11, bottom, shows exceptionally fast multigrid convergence rates, with
ρ ≈ 0.01, corresponding to needing only four GMRES iterations to achieve a factor
108 reduction in the initial residual. In the context of solving the incompressible
Navier–Stokes equations, these results suggest that a fast nonstationary Stokes
solver may outperform a fast projection method solver; further remarks on this topic
are given in the conclusions. Meanwhile, grid convergence experiments examining
the order of accuracy (see Appendix C) show a departure from the typical results
seen elsewhere in this work. In the weakly viscous case with Re ≈ 10 000, the

6In the results of this section, we have reincluded the case of p = 1, mainly to serve as a point of
interest: specifically, for steady-state Stokes problems, we noted in Section 5 that suboptimal multigrid
efficiency may occur when p = 1; for unsteady Stokes problems, and depending on the effective
Reynolds number, ideal multigrid convergence can be restored in this case, as seen in Figures 11
and 12.
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µ= 10−2 corresponding to Re≈ 100
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Figure 11. Measured multigrid convergence rates when solving the time-dependent,
single-phase Stokes equations in standard form with µ as indicated and δ = 0.1h, together
with Neumann boundary conditions.

velocity is order p+ 1 in the maximum norm, and so is the pressure, despite the
presence of boundary conditions. This apparent “superconvergence” in pressure is
attributed to the property that, for very large Reynolds numbers, the time-dependent
Stokes equations nearly reduce to a Helmholtz–Hodge projection, where one may
naturally expect to attain optimal order accuracy in the pressure field; see, e.g., [38].
On the other hand, in the viscous-dominated case with Re ≈ 100, the pressure
reduces to order p+ 1

2 in the L2 norm and order p in the maximum norm, while
the velocity maintains order p+1 in the maximum norm. This is perhaps expected,
based on the order of accuracy results reported elsewhere in this work, together
with the property that the viscous-dominated case essentially represents a mildly
perturbed stationary Stokes problem.

6.2. Multiphase time-dependent Stokes equations. In our last two examples, we
combine the challenging aspects of a multiphase Stokes problem together with
nonstationary effects and consider a problem in which both the density ρ and
viscosity µ have discontinuities several orders in magnitude across an embedded
interface. The specific parameters considered correspond to two scenarios: a water
bubble surrounded by gas, and a gas bubble surrounded by water. Specifically,
ρwater = 1, ρgas = 0.001, µwater = 1, and µgas = 0.0002 (approximately accurate
values for water and air at ambient temperature in CGS units). The radius of the
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water bubble surrounded by gas
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Figure 12. Measured multigrid convergence rates when solving the time-dependent multi-
phase Stokes equations in viscous-stress form, with ρwater = 1, ρgas = 0.001, µwater = 1,
µgas = 0.0002, and δ = 0.1h, together with velocity Dirichlet boundary conditions. Here,
n denotes the number of cells in the background uniform Cartesian n×n(×n) grid used to
build the corresponding implicitly defined mesh; see Figure 8, right.

bubble is 0.3, centered in a unit square/cubic domain, �= (0, 1)d ; (11) with γ = 1
and (4)–(5) are solved with velocity Dirichlet boundary conditions and stress jump
conditions across the gas-water interface. As in the test case on curved domain
geometry, a level set function describing the interface geometry is used together with
an implicit mesh DG framework to create a semiunstructured, interface-conforming
mesh; an example is shown in Figure 8, right. As before, the time step is set equal
to δ = 0.1h, where h is the typical element size on the finest mesh, representing the
application of a time-stepping method with CFL number about 0.1.

This example combines three distinct but complementary strategies developed in
prior examples: (i) viscosity-upwinded numerical fluxes, to robustly and accurately
handle the large jump in viscosity across the interface, (ii) diagonal pre- and
postscaling of the Stokes operator, to remove the unnecessary ill-conditioning
caused by viscosity coefficients differing by several orders of magnitude, and (iii) a
pressure penalty stabilization parameter controlled by (13), to automatically adjust
penalization behavior between the two extremes of the time-dependent Stokes
equations. As such, this example serves to demonstrate a variety of subtleties in
efficiently solving the multiphase time-dependent Stokes equations, but as shown in
the results plotted in Figure 12, combined together, one can attain highly efficient
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multigrid solvers. For the particular scales chosen in this problem, the water-bubble
and gas-bubble problems correspond to a unit-order Reynolds number. As such,
grid convergence analyses confirm the expectation that the velocity attains order
p+ 1 in the maximum norm, and pressure attains order p+ 1

2 in the L2 norm and
order p in the maximum norm.

7. Concluding remarks

In this paper, we devised efficient geometric multigrid solvers for the Stokes equa-
tions discretized by local discontinuous Galerkin (LDG) methods. The approach
follows standard geometric multigrid concepts, utilizing a V-cycle and a simple
block Gauss–Seidel relaxation method free from under-relaxation parameters. With
a suitably chosen pressure penalty stabilization parameter, a wide array of tests
showed that the Stokes multigrid solver can match the speed of classical geometric
multigrid methods for Poisson problems [20; 41]. For example, typical convergence
rates ranged from ρ ≈ 0.05 to 0.1, corresponding to needing about six to eight
iterations for a 108 reduction of the residual; fewer iterations are required for
unsteady time-dependent Stokes equations. To implement the multigrid algorithm,
one possibility is to explicitly build the mesh and associated LDG operators on every
level of the hierarchy; an alternative method, not requiring the explicit formation of
coarse meshes, can be implemented based on the operator coarsening algorithms
detailed in Appendix B. In addition, we also extended the LDG methods of [14]
to variable-viscosity and multiphase problems exhibiting interfacial stress jump
conditions; across all test problems, grid convergence analyses demonstrated order
p+ 1 accuracy in the maximum norm for the computed velocity field, and at least
order p accuracy in the maximum norm for pressure.

Key findings of this work include the following aspects:

• Multigrid efficiency depends on an appropriate choice of the pressure penalty
stabilization parameter τp. In general, for the steady-state Stokes equations,
τp scales linearly with the local element size h and inversely proportional to
the local viscosity, leaving the end user to define the prefactor τ in the formula
τp = τh/µ. Table 1 provides values of τ resulting in optimal multigrid
convergence rates, showing that τ depends on the polynomial degree of the
DG space, the spatial dimension, and whether the standard form or viscous-
stress form of the Stokes equations is being solved. Table 2 shows that an
associated range of values exists for τ within which multigrid performance is
very close to optimal. (See also [28] by Kanschat, in which the performance
of an approximate Schur-form block preconditioner for LDG was also noted
to depend crucially on the pressure penalty parameter, although the scaling
of τ determined therein is very different from the results of the present work.)
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• In the case of the time-dependent Stokes equations, (13) implements an ef-
fective strategy to automatically adjust the penalty parameter based on the
competing effects of the viscous and time-derivative operators.

• For multiphase problems, in which the viscosity may exhibit jumps several
orders in magnitude across an embedded interface, one should bias the numer-
ical fluxes (here implemented with viscosity-upwinded weighting) to reflect
the physical nature of the interfacial stress and velocity jump conditions. In
addition, it can be advantageous to employ a diagonal preconditioning of the
Stokes operator to correct the potential adverse effects large viscosities may
have on the spectral characteristics of the saddle point problem.

A formula for the optimal pressure penalty parameter τ is not known at this time.
In this work, a simple one-dimensional parameter sweep was used to find τ for
particular choices of p, but a theoretical result would be ideal. Here, it may be
possible to use analytical tools such as convergence criteria for block Gauss–Seidel
methods [18], local mode analyses [43; 22], or local Fourier analyses [25; 19] to
help determine a formula. On a similar note, it may also be possible to derive
analytical proofs of the convergence of the overall multigrid method; see also, e.g.,
[42; 30; 17; 29; 27].

Other areas of study include the following. In this work, we mainly considered
structured meshes (such as Cartesian grids) and semiunstructured, nonconforming
implicitly defined meshes resulting from cell-merging procedures. Efficacy of the
multigrid Stokes solver on fully unstructured meshes is also worthy of examination —
for highly anisotropic meshes, one may need to group elements into clusters for
the block Gauss–Seidel method to be effective [44; 35; 49]. Another possibility is
to accelerate the Gauss–Seidel method through low-degree Chebyshev iterations,
as was noted by Farrell et al. [19] for Vanka-type smoothers. Meanwhile, a wide
variety of work on developing multigrid methods for the Stokes equations reports
that W-cycles can be more effective than V-cycles, or even variable V-cycles which
change the smoothing counts between levels of the hierarchy; see, e.g., [22; 17;
19; 29; 1]. Although a V-cycle with fixed presmoothing and postsmoothing steps
was found highly effective in this work, these alternative strategies could prove
useful for different applications. In the presented results, we also mentioned that
the block Gauss–Seidel method is less effective when p = 1, i.e., for a bilinear
or trilinear LDG discretization of the Stokes equations; although p = 1 is rarely
of interest for DG methods, one possibility here is to use a p > 1 method as a
preconditioner for the p = 1 system, or perhaps cluster elements into larger blocks
for the Gauss–Seidel method. Meanwhile, the results of this paper could also be
used to inform the design of algebraic multigrid methods [32].
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Finally, we remark that the measured multigrid convergence rates for the time-
dependent Stokes equations are particularly encouraging, indicating a strong po-
tential for developing fast solvers for the general incompressible Navier–Stokes
equations. In particular, preliminary work indicates that a fast Stokes solver could
outperform the well-known and widely applied projection method of Chorin [10; 24]
and could be integrated into arbitrary-order time-stepping methods for Navier–
Stokes [31]; this will be further investigated in future work.

Appendix A: Local discontinuous Galerkin methods for the multiphase
Stokes equations

In this section, an LDG framework is derived for the variable-viscosity multiphase
Stokes equations. The construction partly follows the schemes set out by Cockburn
et al. [14] but with some differences, including (i) the formulation is derived in a way
which makes the role of the discrete gradient operator and its adjoint more visible
(relevant to the operator coarsening multigrid schemes presented in Appendix B),
(ii) the penalty stabilization operators are separated out from the numerical fluxes,
and (iii) the formulation is extended to treat variable-viscosity and multiphase
Stokes problems. For reference, the governing equations are repeated here: we seek
to compute a velocity field u :�→ Rd and pressure field p :�→ R such that

−∇ · (µi (∇u+ γ∇uT))+∇ p = f
−∇ · u = f

}
in �i , (14)

subject to the interfacial jump conditions

[[u]] = gi j

[[µ(∇u+ γ∇uT)n− pn]] = hi j

}
on 0i j (15)

and boundary conditions

u = g∂ on 0D,

µ(∇u+ γ∇uT)n− pn= h∂ on 0N .
(16)

We begin with some preliminary set up and notation. As stated in the main article,
we consider meshes arising from Cartesian grids or, for domains or interfaces with
curved geometry, semiunstructured quadtree/octree-based implicitly defined meshes.
In this setting, it is natural to adopt a tensor product piecewise polynomial space.
Let E=

⋃
i Ei denote the set of mesh elements, let p ≥ 1 be an integer, and define

Qp(E) as the space of tensor product polynomials of (one-dimensional) degree p
on element E . We assume in this work that the mesh is interface-conforming; i.e.,
if there is an interface separating the domain into two or more phases, then the
interface does not cut through any element. Then, regarding the faces of the mesh,
we denote intraphase faces as those shared by two elements in the same phase,
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interphase faces as those shared by two elements in differing phases (therefore
situated on 0i j for some i, j), and boundary faces as those situated on ∂�. Each
face has an associated normal vector n; on intraphase faces, which are always flat
and lie in a particular coordinate plan, n is defined to point “left to right”; e.g.,
for vertical faces in 2D, n = x̂. Interphase faces adopt the same normal vector
as the interface 0i j on which they coincide, defined to point from the phase with
smallest phase index i into the phase with largest index, j > i . Boundary faces adopt
the natural outwards-pointing normal to the domain boundary. The notation [[ · ]]
denotes the jump of a quantity across an interface or face and is defined consistent
with its orientation; in particular, [[u]] := u−−u+ where u±(x)= limε→0+ u(x±εn)
denotes the left and right trace values u− and u+, respectively. In addition, define 00

as the set of all points belonging to intraphase faces, and for an element E ∈ E,
define χ(E) to be the phase of that element, such that E ⊆�χ(E).

In the first step of the LDG formulation, a discrete approximation to ∇u is
defined through a “strong-weak” form.7 Given u ∈ Vh , η ∈ V d×d

h is defined such
that ∫

E
η : ω =

∫
E
∇u : ω+

∫
∂E
(ûχ(E)− u) ·ω · n (17)

holds for every element E ∈ E and every test function ω ∈ V d×d
h , where ûχ is a

numerical flux function defined as

ûχ :=



u− on any intraphase face,
λu−+ (1− λ)(u++ gχ i ) on 0χ i if χ < i,
λ(u−− giχ )+ (1− λ)u+ on 0iχ if χ > i,
u− on 0N ,

g∂ on 0D.

(18)

(See Figure 13 for a schematic illustration.) Note that the flux is multivalued on
interphase faces — on these faces, the interfacial jump condition [[u]] = gi j on 0i j

in (15) is taken into account as follows: when an element “reaches across” the
interface to evaluate the trace of u on the other side, the trace value is compensated by
the jump data to correctly account for the intended discontinuity in the solution. Note

7The strong-weak form states that η must satisfy
∫

E η :ω=
∫

E ∇u :ω+
∫
∂E (û−u)·ω·n for all test

functions ω, whereas the weak form states that η must satisfy
∫

E η :ω=−
∫

E u ·(∇ ·ω)+
∫
∂E û ·ω ·n.

The two forms are equivalent whenever the associated quadrature scheme exactly preserves the identity
of integration by parts. This is often the case for many implementations, including on quadrilateral,
prismatic, or simplicial elements. However, this property may not hold when approximate quadrature
schemes are used, e.g., for implicitly defined meshes which use high-order accurate quadrature
schemes (wherein integration by parts only holds up to a high-order truncation error). In the latter
situation, to ensure symmetry of the final discretized Stokes operator, it is necessary to use the
strong-weak form to define ∇u and the weak form to defined ∇ · σ (see (22)), or vice versa. For
further discussion as it relates to the analogous case of elliptic interface problems, see [38].
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intraphase face interphase face on 0i j , i < j stress boundary face Dirichlet boundary face

− + − + − −

n n

n n

0N

χ = i χ = j

0D

û = u−
σ̂ = σ+

ûi = λu−+(1−λ)(u++gi j )
σ̂i = (1−λ)σ−+λ(σ++hi j⊗n)

û j = λ(u−−gi j )+(1−λ)u+
σ̂ j = (1−λ)(σ−−hi j⊗n)+λσ+

û = u−
σ̂ = h∂⊗n

û = g∂
σ̂ = σ−

Figure 13. Schematic of the numerical flux functions û and σ̂ defined by (18) and (23).
Except for interphase faces, the flux is single-valued; on interphase faces, the flux is
multivalued so as to incorporate the interfacial jump conditions [[u]]= gi j and [[σ ·n]]= hi j
on 0i j , i < j . Plus and minus signs denote the elemental values on the right and left of the
face, respectively; e.g., for a point x on the face, u±(x)= limε→0+ u(x ± εn).

also that interfacial fluxes are weighted through a convex combination parameter
λ ∈ [0, 1], which can vary from face to face. (For example, if λ = 0, then the
numerical flux is sourced solely from the right element’s trace u+; if λ= 1, it is
sourced solely from the left element’s trace u−.) The purpose of λ is to implement
the strategy of viscosity-upwinded numerical fluxes, as detailed in Appendix A.2.
Upon summing (17) over every element of the mesh, one has∫
�

η : ω =
∑
E∈E

∫
E
∇u : ω+

∫
00

[(û− u−) ·ω− · n− (û− u+) ·ω+ · n]

+

∑
j>i

∫
0i j

[(ûi − u−) ·ω− · n− (û j − u+) ·ω+ · n]

+

∫
0D

(û− u−) ·ω− · n+
∫
0N

(û− u−) ·ω− · n

=

∑
E∈E

∫
E
∇u : ω−

∫
00

(u−− u+) ·ω+ · n

−

∑
j>i

∫
0i j

[(1− λ)(u−− u+) ·ω− · n+ λ(u−− u+) ·ω+ · n]

+

∑
j>i

∫
0i j

(1− λ)gi j ·ω
−
· n+ λgi j ·ω

+
· n

+

∫
0D

(g∂ − u−) ·ω− · n, (19)

which motivates the definition of the following operators:

• Let ∇h : Vh → V d
h be the broken gradient operator, and let L : Vh → V d

h be
the lifting operator, such that∫

�

(∇hu) · v =
∑
E∈E

∫
E
∇u · v
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and∫
�

(Lu) · v =
∑
j>i

∫
0i j

(1− λ)(u+− u−)v− · n+ λ(u+− u−)v+ · n

+

∫
00

(u+− u−)v+ · n−
∫
0D

u−v− · n

hold for every v ∈ V d
h .

• Define Jg ∈ V d×d
h such that∫

�

Jg : ω =

∫
0D

g∂ ·ω− · n+
∑
j>i

∫
0i j

(1− λ)gi j ·ω
−
· n+ λgi j ·ω

+
· n

holds for every ω ∈ V d×d
h .

With these definitions, (19) is equivalent to the statement that

ηi j = G j ui + Jg,i j ,

where G : Vh → V d
h is the discrete gradient operator, G := ∇h + L , having

components G = (G1, . . . ,Gd), ηi j denotes the (i, j)-th component of η, and ui

denotes the i-th component of u. To complete this step of the LDG construction,
we define τ as the natural discretization of ∇u+ γ∇uT:

τ := η+ γ ηT, i.e., τi j := G j ui + γGi u j + Jg,i j + γ Jg, j i .

In the second step of the LDG formulation, a discrete approximation of σ =
µτ − pI is defined. In essence, this is implemented via an L2 projection of µτ onto
V d×d

h . We define σ ∈ V d×d
h as the unique piecewise polynomial function such that∫

E
σ : ω =

∫
E
(µτ − pI) : ω (20)

holds for every element E ∈ E and every test function ω ∈ V d×d
h . In the case

that µ is piecewise constant, computing this L2 projection is a simple matter of
multiplying τ by a scalar and subtracting the discrete pressure p∈Vh . In the general
case, it is straightforward to show that a µ-weighted L2 projection is equivalent to
multiplication by the block-diagonal matrix M−1 Mµ, where Mµ is the µ-weighted
mass matrix such that uTMµv =

∫
�

uµv holds for all u, v ∈ Vh . In this work, Mµ

is computed with sufficiently high-order accurate quadrature schemes, typically
Gaussian quadrature schemes. Using this relation, (20) is equivalent to

σi j :=M−1 Mµτi j− pδi j =M−1 Mµ(G j ui+γGi u j+ Jg,i j+γ Jg, j i )− pδi j . (21)

In the third step, we consider a weak formulation for computing the divergence
of σ . This proceeds similarly to defining the discrete gradient of u, except numerical



178 ROBERT I. SAYE

fluxes act in the opposite direction. For simplicity of presentation, the following
numerical flux for σ is matrix-valued; however, only the normal component of the
flux is used. Given σ ∈ V d×d

h , define w ∈ V d
h as the discrete divergence of σ such

that ∫
E
w · v =−

∫
E
σ : ∇v+

∫
∂E
v · σ̂χ(E) · n (22)

holds for every test function v ∈ V d
h and every element E ∈ E. Here, the numerical

flux is defined by (see also Figure 13)

σ̂χ :=



σ+ on any intraphase face,
(1− λ)σ−+ λ(σ++ hχ i ⊗ n) on 0χ i if χ < i,
(1− λ)(σ−− hiχ ⊗ n)+ λσ+ on 0iχ if χ > i,
h∂ ⊗ n on 0N ,

σ− on 0D.

(23)

As in the numerical flux for û, the interfacial jump condition [[σ · n]] = hi j on 0i j

in (15) is taken into account via a multivalued interfacial flux, such that whenever an
element reaches across the interface, the neighboring element’s trace is compensated
by hi j to correctly put it in the context of the source element. Summing (22) over
every element, one has, for every v ∈ V d

h ,∫
�

w · v =−
∑
E∈E

∫
E
σ : ∇v+

∫
00

(v−− v+) · σ̂ · n+
∑
j>i

∫
0i j

(v− · σ̂i − v
+
· σ̂ j ) · n

+

∫
0D

v− · σ̂ · n+
∫
0N

v− · σ̂ · n

=−

∑
E∈E

∫
E
σ : ∇v+

∫
00

(v−− v+) · σ+ · n

+

∑
j>i

∫
0i j

(1− λ)(v−− v+) · σ− · n+ λ(v−− v+) · σ+ · n

+

∑
j>i

∫
0i j

λv− · hi j + (1− λ)v+ · hi j

+

∫
0D

v− · σ− · n+
∫
0N

v− · h∂ . (24)

Similar to the operator Jg defined above, let Jh ∈ V d
h be such that∫

�

Jh · v =

∫
0N

v− · h∂ +
∑
j>i

∫
0i j

λv− · hi j + (1− λ)v+ · hi j
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holds for every v ∈ V d
h . Then, upon using the lifting operator defined earlier, (24)

is equivalent to the statement that, for every v ∈ V d
h ,

(w, v)=−

d∑
i=1

(σi ,∇hvi )− (σi , Lvi )+ (Jh, v)=−

d∑
i=1

(σi ,Gvi )+ (Jh, v),

where vi denotes the i-th component of v and σi denotes the i-th row of the
matrix σ . Transferring the G operator onto σi via the adjoint, it follows that
wi =−

∑d
j=1 M−1GT

j Mσi j+Jh,i , wherewi is the i-th component ofw. Combining
with (21), we have

wi =−

d∑
j=1

M−1GT
j Mµ(G j ui + γGi u j )+M−1GT

i Mp

−

d∑
j=1

M−1GT
j Mµ(Jg,i j + γ Jg, j i )+ Jh,i . (25)

This is the weak statement that w is equal to the discrete divergence of σ , itself a
discrete approximation toµ(∇u+γ∇uT)−pI, taking into account velocity Dirichlet
boundary data, stress boundary data, and interfacial jump condition data (if any).
One may recognize the first term of (25) as implementing ∇ · (µ(∇u+ γ∇uT))

and the second term as implementing −∇ p, while the remaining terms represent
the contribution of any boundary or interfacial jump data.

We now turn to the LDG discretization of the divergence constraint of the Stokes
equations. Given u ∈ V d

h , define w ∈ Vh as the discrete divergence of u via the
strong-weak form, such that∫

E
wv =

∫
E
v∇ · u+

∫
∂E
v(ûχ(E)− u) · n (26)

holds for every element E ∈ E and every v ∈ Vh . Here, the same numerical flux
for u as was used to define its gradient (see (18)) is employed, but only the normal
component is seen by (26). A similar derivation as before reveals thatw is essentially
equal to the trace of η, i.e.,

w =

d∑
i=1

Gi ui + Jg·n,

with Jg·n ∈Vh such that
∫
�

Jg·nv=
∫
0D
v−g∂ ·n+

∑
j>i

∫
0i j
((1−λ)v−+λv+)gi j ·n

holds for every v ∈ Vh .
Lastly, in what is essentially the final step of the LDG formulation for the

Stokes equations (14)–(16), penalty stabilization terms are added to ensure the well-
posedness of the discrete problem [14; 3; 26]. These terms weakly impose solution
continuity between neighboring element polynomials in the same phase, weakly
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impose Dirichlet boundary conditions, and weakly enforce interfacial jump condi-
tions (if any). Regarding the stabilization parameters for velocity, we classify them
according to three types: boundary (τu,∂ ), intraphase (τu,0), and interphase (τu,i j ).
Let Eu,g : V d

h → V d
h be the affine operator such that, for each u ∈ Vh ,∫

�

Eu,g(u) · v =
∫
00

τu,0[[u]] · [[v]] +
∑
j>i

∫
0i j

τu,i j ([[u]] − gi j ) · [[v]]

+

∫
0D

τu,∂(u−− g∂) · v− (27)

holds for every test function v ∈ V d
h . Note that Eu,g(u)= (Eu,0u1, . . . ,Eu,0ud)+

Eu,g(0), where Eu,0 represents the linear part of the operator acting on the vector
field components, defined analogously to (27) with homogeneous jump and boundary
data. Concerning the stabilization parameter τp for pressure, define the linear
operator Ep : Vh→ Vh such that, for each p ∈ Vh ,∫

�

Ep(p)v =
∫
00

τp[[p]][[v]]

holds for every test function v ∈ Vh . Following the formulation presented in [14],
subject to a suitable specification of the parameter values to be discussed shortly,
these operators are added and subtracted to the discretization of the Stokes momen-
tum equations and divergence constraint, respectively. Specifically, the discretized
multiphase Stokes problem (14)–(16) consists of finding a velocity field u ∈ V d

h
and pressure field p ∈ Vh such that

d∑
j=1

M−1GT
j Mµ(G j ui + γGi u j )+Eu,0ui −M−1GT

i Mp

= PV d
h
( fi )−

d∑
j=1

M−1GT
j (Jg,i j + γ Jg, j i )+ Jh,i −Eu,g,i (0) (28)

holds for each i = 1, . . . , d , where fi denotes the i-th component of f , subject to
the divergence constraint

−

d∑
i=1

Gi ui −Ep p = PVh ( f )+ Jg·n. (29)

Multiplying both (28) and (29) by M , taken together these equations may be
succinctly written in block form as(

A MG

GTM −E

)(
u
p

)
=

(
bu
bp

)
(30)

where the block operators are as follows:
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• A implements the viscous part of the Stokes momentum equations, and can be
written in d × d block form corresponding to its action on the d components
of u, where the (i, j)-th block is given by

Ai j = δi j

( d∑
k=1

GT
k MµGk

)
+ γGT

j MµGi + δi j Ẽ, (31)

where Ẽ := MEu,0 is the penalty stabilization matrix associated with velocity
stabilization.

• G= (G1, . . . ,Gd) is a discrete gradient operator, closely related to the adjoint
of G, whose components are given by

Gi =−M−1GT
i M.

• E is the penalty stabilization matrix associated with pressure, defined by
E := MEp.

• Lastly, (bu, bp) collects the entire influence of the right-hand-side data, ( f , f ),
together with Dirichlet, stress, and interfacial jump source data, and corre-
sponds to the multiplication by M of the right-hand sides of (28) and (29).

A.1. Specification of penalty parameters. As described, four different kinds of
penalty parameters need specification for the LDG formulation of the Stokes equa-
tions — three for velocity on the boundary, intraphase, and interphase faces of
the mesh, and one for pressure stabilization. Remarks concerning their general
specification and particular choices made in this work are provided here.

• In general, strictly positive parameters are sufficient to ensure well-posedness
of the final linear system, i.e., to ensure it has the expected trivial kernel
of the continuum Stokes operator, and to ensure the inf-sup conditions hold
[14; 11; 13].8 However, this is not a necessary condition. For example, on a
regular Cartesian mesh, with purely one-sided intraphase numerical fluxes for
û and σ̂ that “upwind” in the opposite direction, as used in this work, one can
set the intraphase penalty parameter for velocity to zero, τu,i = 0; see, e.g., [12]
in the case of LDG for scalar Poisson problems. On the other hand, a choice
of penalty parameter which is too large can impact discretization accuracy
and overall conditioning of the final linear operator as well as multigrid solver
efficiency.

• If 0D is nonempty, then τu,∂ must be positive to ensure well-posedness.

8Subtleties may arise in the multiphase case owing to the nonpenalization of pressure jumps across
the interface, depending on mesh topology and the choice of numerical fluxes û and σ̂ . Discussion is
deferred to future work.
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• Although no specific lower bound on parameter values is required for the
LDG system to be well-posed, for consistent discretization behavior (including
invariance with respect to stretching the mesh as well as preserving spectral
characteristics as the mesh is refined), velocity penalty parameters should
scale proportionally to h−1 and pressure penalty parameters should scale
proportionally to h. For anisotropic meshes, one can be more precise and
require that penalty parameters on a particular mesh face scale appropriately
with the measure of the face divided by the measure of the elements on either
side [14], but this extra kind of precision is not pursued here.

• To ensure correct scaling with respect to ellipticity coefficient, penalty param-
eters should also scale with viscosity. For velocity penalty parameters, this
implies τu,∂ ∼ µ

− and τu,0 ∼ µ, where µ is the local value of the viscosity
on the mesh face in question, and for interphase velocity penalty parameters,
τi j should scale with the smaller of the two viscosities on either side of the in-
terface [41]. Meanwhile, the pressure penalty parameter should scale inversely
proportionally to the local viscosity to preserve the spectral characteristics of
the Stokes operator; see, e.g., [11].

• One can also choose to scale τ with the polynomial degree, and this can be
important for the study of DG methods utilizing very high-degree polynomials;
e.g., one could scale according to τu ∼ p2. However, in this work, only
moderate-order polynomials are used and a linear scaling in p is applied, as
defined next.

The specification of the pressure penalty stabilization parameter is one of the main
subjects of this work and is discussed in the main article. Regarding the remaining
penalty parameters, unless otherwise specified, the following values have been used
throughout this work:

• On faces associated with the imposition of velocity Dirichlet boundary condi-
tions, τu,∂ = 10pµ−/h, where p is the (one-dimensional) polynomial degree,
µ− is the local viscosity of the face, and h is the typical element size.

• For intraphase penalty parameters, τu,0 = 0 on all Cartesian mesh examples,
and τu,0 = 0.5pµ/h on all examples using semiunstructured meshes, where µ
is the local viscosity of the face.

• For interphase penalty parameters, τu,i j = Cp min(µ−, µ+)/h, where µ± is
the local viscosity of the two phases on either side of the interfacial mesh face.
Here, C = 3 in the case of Cartesian grid meshes, whereas C = 8 in the case
of implicitly defined meshes, which benefit from slightly increased penalty
stabilization owing to their marginally less uniform variety of element shapes
next to the interface.
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• Lastly, regarding the time-dependent Stokes equations and their generalized
form of the pressure penalty parameter τp (see (33)), τ0= 0.5p is the prefactor
used for the limiting case of vanishing viscosity.

These values have been chosen based on the dual goals of obtaining high-order
discretization accuracy as well as good multigrid performance, and follow typical
values employed in prior work [41].

A.2. Viscosity-upwinded numerical fluxes. As discussed in the main body of the
article, viscosity-upwinded numerical fluxes [41] are utilized for the multiphase
Stokes problems. This corresponds to defining λ in the numerical flux functions û,
(18), and σ̂ , (23), for interfacial mesh faces as (see also Figure 13)

λ=


0 if µ− < µ+,
0.5 if µ− = µ+,
1 if µ− > µ+.

(32)

Accordingly, û is biased to the more viscous phase, and σ̂ is biased to the less
viscous phase, with interfacial jump data gi j and hi j incorporated appropriately.

Appendix B: Operator coarsening geometric multigrid methods

In this section, we describe an operator coarsening strategy which allows one to
compute the discrete Stokes operator Ah on every level of the mesh hierarchy,
without having to explicitly build the mesh. This approach is equivalent in function
to a purely geometric multigrid method, but provides a variety of convenient
benefits, including that (i) elements and faces do not need to be enumerated on
coarse meshes, (ii) construction of quadrature schemes for coarse mesh elements
or faces can be avoided, (iii) the viscosity coefficient µ is automatically coarsened
down the mesh hierarchy in a manner consistent with performing repeated L2

projections, and (iv) LDG operators, such as the discrete gradient and penalty
stabilization operators, are built automatically such that the chosen numerical flux
functions of the finest mesh are inherited consistently by the coarse meshes. The
technique is also amenable to simple block-sparse linear algebra routines, providing
an opportunity to optimize the implementation. These schemes were originally
derived for LDG methods applied to elliptic problems in [20] and then extended to
variable-coefficient elliptic interface problems with large viscosity jumps in [41];
here, they are extended to variable-viscosity multiphase Stokes problems.

The operator coarsening approach is similar to the “RAT” paradigm often seen
in multigrid methods, where the coarse mesh operator is defined by the fine mesh
operator, pre- and postmultiplied by the restriction (“R”) and interpolation (“T”)
operators, respectively. Such an approach is often applied to the primary elliptic
operator itself, e.g., the discrete Laplacian operator. However, as shown in [20], this



184 ROBERT I. SAYE

approach leads to breakdown of multigrid performance for LDG methods. Instead,
a more appropriate strategy is to apply “RAT” to the individual discrete gradient
and divergence operators underlying the LDG method. In [20], it is proven this is
equivalent to a purely geometric method, and it is straightforward to extend the
methods therein to prove the same is true for the LDG formulation of the Stokes
equations described above in Appendix A. We summarize this construction here
and omit the proof.

Given a general operator A : Vh → Vh defined on a fine mesh, its coarsened
counterpart C(A) : V2h→ V2h on a coarse mesh is defined variationally. Specifically,
C(A) is defined such that

(C(A)u, v)V2h = (AI h
2hu, I h

2hv)Vh

for all u, v ∈ V2h; here ( · , · ) denotes the standard inner product, and V2h denotes
the piecewise polynomial space associated with the coarse mesh. Equivalently, as a
matrix acting on coefficient vectors in the chosen basis,

C(A)= R2h
h AI h

2h = M−1
2h (I

h
2h)

TMh AI h
2h

where Mh and M2h are the mass matrices of the two meshes.

B.1. Time-independent Stokes equations. We derive the operator coarsening strat-
egy for the Stokes system (30), as follows:

(1) The mass matrix of the coarse mesh is given by M2h = (I h
2h)

TMh I h
2h [20]. If

Mµ,h is a µ-weighted mass matrix on the fine mesh, its coarsened counterpart
is given by Mµ,2h = (I h

2h)
TMµ,h I h

2h [41].

(2) The coarsened operators making up the Stokes operator are given by C(Gh),
C(Gh), 1

2 M2hC(M−1
h Ẽh), and 2M2hC(M−1

h Eh) for the discrete gradient oper-
ator, the adjoint form of the discrete gradient operator, the velocity penalty sta-
bilization operator, and the pressure penalty stabilization operator, respectively.
In particular, note the 1

2 and 2 prefactors in the coarsened penalty operators —
these correspond to the observation that velocity penalty parameters scale
proportionally to h−1 and pressure penalty parameters scale proportionally
to h, and that one should preserve this scaling across the full multigrid hierarchy
to attain ideal multigrid performance [41].

(3) Lastly, the discrete Stokes operator on the coarse mesh is formed by computing
the viscous operator in (31) using the coarsened discrete gradient operators,
and then building the overall operator using the form given in (30).

Algorithm 2 defines the overall operator coarsening scheme, to be applied recursively
down the mesh hierarchy. We note that in this algorithm, both of the discrete gradient
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1: M2h := (I h
2h)

TMh I h
2h

2: Mµ,2h := (I h
2h)

TMµ,h I h
2h

3: G2h := M−1
2h (I

h
2h)

TMhGh I h
2h

4: G2h := M−1
2h (I

h
2h)

TMhGh I h
2h ; (equivalently, G2h,i := −M−1

2h GT
2h,i M2h)

5: Ẽ2h :=
1
2 (I

h
2h)

T Ẽh I h
2h

6: E2h := 2(I h
2h)

TEh I h
2h

7: Build the coarsened viscous operator in d×d block form, with (i, j)-th block given by

A2h,i j := δi j

( d∑
k=1

GT
2h,k Mµ,2hG2h,k

)
+ γGT

2h, j Mµ,2hG2h,i + δi j Ẽ2h

8: Form the coarsened Stokes operator

A2h :=

(
A2h M2hG2h

GT
2h M2h −E2h

)

Algorithm 2. Construction of coarse mesh operators for the time-independent multiphase
Stokes equations, given fine mesh operators Mh ,Mµ,h ,Gh ,Gh , Ẽh , Eh .

operators G and G are coarsened; this is to assist in overall clarity; however, it also
suffices to coarsen just one.

B.2. Time-dependent Stokes equations. As discussed in the main article, a modifi-
cation to the pressure penalty parameter scaling is appropriate for the time-dependent
Stokes equations. In this setting, the relation τp = τh/µ is replaced with

τp =

(
hρ
τ0δ
+
µ

τh

)−1

. (33)

To incorporate this scaling into the operator coarsening strategy described above,
the prefactor of 2 in the coarsening of the pressure stabilization operator, E2h =

2M2hC(M−1
h Eh), should be appropriately modified to reflect the property that the

scaling in (33) may change from τp∼h to τp∼1/h down the multigrid hierarchy. In
this work, this is implemented through the coarsening of two stabilization operators
for pressure, which are then combined into a net result via a harmonic weighting.
Specifically, on the finest mesh we define Eµ and Eρ such that

uT Eµv =
∫
00

τh
µ
[[u]][[v]] and uT Eρv =

∫
00

τ0δ

hρ
[[u]][[v]]

hold for every u, v ∈ Vh . Then, Eµ is coarsened using a prefactor of 2, and Eρ is
coarsened using a prefactor of 1

2 . The two block-sparse operators are then combined
using a heuristic based on the Frobenius norm of each block. Specifically, if
Eµ,i j denotes the (i, j)-th block of Eµ (similarly for Eρ), where individual blocks
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1: M2h := (I h
2h)

TMh I h
2h

2: Mµ,2h := (I h
2h)

TMµ,h I h
2h

3: Mρ,2h := (I h
2h)

TMρ,h I h
2h

4: G2h := M−1
2h (I

h
2h)

TMhGh I h
2h

5: G2h := M−1
2h (I

h
2h)

TMhGh I h
2h ; (equivalently, G2h,i := −M−1

2h GT
2h,i M2h)

6: Ẽ2h :=
1
2 (I

h
2h)

T Ẽh I h
2h

7: Eµ,2h := 2(I h
2h)

TEµ,h I h
2h

8: Eρ,2h :=
1
2 (I

h
2h)

TEρ,h I h
2h

9: Combine Eµ,2h and Eρ,2h into one effective pressure stabilization operator, E2h , via
(34)

10: Build the coarsened viscous operator in d×d block form, with (i, j)-th block given by

A2h,i j := δi j

( d∑
k=1

GT
2h,k Mµ,2hG2h,k

)
+ γGT

2h, j Mµ,2hG2h,i + δi j Ẽ2h

11: Form the coarsened Stokes operator,

A2h :=

(
(1/δ)Mρ,2h + A2h M2hG2h

GT
2h M2h −E2h

)

Algorithm 3. Construction of coarse mesh operators for the time-dependent multiphase
Stokes equations, given fine mesh operators Mh ,Mµ,h ,Mρ,h ,Gh ,Gh , Ẽh , Eµ,h , Eρ,h .

correspond to individual elements of the mesh, then we define E such that

Ei j =

(
‖Eρ,i j‖F

‖Eµ,i j‖F +‖Eρ,i j‖F

)2

Eµ,i j +

(
‖Eµ,i j‖F

‖Eµ,i j‖F +‖Eρ,i j‖F

)2

Eρ,i j . (34)

This formula is based on the identity (1/x + 1/y)−1
= (x2 y+ y2x)/(x + y)2 and

is simply a heuristic means of recombining Eµ and Eρ into one operator based
on the form of (33); other methods of deriving an operator coarsening strategy for
the pressure stabilization operator are likely possible. Algorithm 3 summarizes the
operator coarsening strategy for this generalization to the time-dependent Stokes
equations, which, as before, is to be applied recursively to define all necessary
operators down the mesh hierarchy.

Appendix C: Grid convergence analyses

Throughout this work, grid convergence analyses have been used to measure the
discretization order of accuracy. In every test case, the same exact solution is used
to define the source data f , f , interfacial jump data gi j , hi j , and boundary data
g∂ , h∂ in the governing equations. This exact solution is based on a simple smooth
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Figure 14. Discretization accuracy as a function of pressure penalty stabilization parame-
ter. Here, the errors in velocity (left) and pressure (right) are normalized by their minimum
attained value.

Figure 15. Grid convergence analysis for the single-phase Stokes problem in standard
form, with µ= 1 and periodic boundary conditions (see Section 5.1). Here, h denotes the
mesh element size and the lines of indicated slope illustrate the asymptotic convergence
rate in the corresponding error norm, e.g., a slope of 4 indicates fourth-order accuracy.
Polynomial degrees are symbolized by ◦, •, N, �, for p = 1, 2, 3, 4, 5, respectively.

sinusoidal wave, for both velocity and pressure, with a translation depending on the
component (and phase in the multiphase case) to avoid any coincidental alignment
with the mesh or cancellation in jump data. It is defined by the velocity field
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Figure 16. Grid convergence analysis for the single-phase Stokes problem in standard
form, with µ= 1 and velocity Dirichlet boundary conditions (see Section 5.2). (Results
for the test problem considered in Section 5.3, i.e., with stress boundary conditions,
have similar characteristics.) Here, h denotes the mesh element size and the lines of
indicated slope illustrate the asymptotic convergence rate in the corresponding error norm.
Polynomial degrees are symbolized by ◦, •, N, �, for p = 1, 2, 3, 4, 5, respectively.

u :�→ Rd , u = (u1, . . . , ud), and pressure field p :�→ R, where

ui (x)=
d∏

j=1

sin 2π(x j − 0.2i − 0.25(χ − 1)),

p(x)= µχ
d∏

j=1

sin 2π(x j + 0.2− 0.25(χ − 1)),

where the term 0.2i represents a component-dependent shift, χ is the phase (i.e.,
x ∈�χ ), and µχ is a typical viscosity coefficient of phase χ .

Whether the continuum (steady-state) Stokes problem is posed with velocity
Dirichlet boundary conditions, or stress boundary conditions, or periodic boundary
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Figure 17. Grid convergence analysis for the single-phase Stokes problem in viscous-
stress form, with nonconstant variable viscosity and stress boundary conditions (see
Section 5.4). Here, h denotes the mesh element size and the lines of indicated slope
illustrate the asymptotic convergence rate in the corresponding error norm. Polynomial
degrees are symbolized by ◦, •, N, �, for p = 1, 2, 3, 4, 5, respectively.

conditions, there is always an associated kernel of dimension at least one.9 This
kernel is referred to as the “trivial kernel”, for it consists of constant-valued velocity
fields and/or constant pressure fields, and possibly additional modes in the case
of the viscous-stress form with stress boundary conditions (e.g., the velocity field
(x, y) 7→ (−y, x), for which ∇u + ∇uT is zero). Since the Stokes operator is
symmetric, it follows that the right-hand-side data (bu, bp) must be orthogonal to
the kernel; this is always the case for the method of manufactured solution applied
here. However, the continuum solution is only unique up to modes in the kernel, and
the discrete solution computed via the multigrid preconditioned GMRES method
may contain arbitrary modes of the corresponding discrete kernel. To appropriately
measure the discrete error, these modes are therefore disregarded. In particular, we

9The dimension of the kernel may be smaller for time-dependent Stokes problems; for example, if
Neumann or stress boundary conditions are applied, the kernel is zero-dimensional.
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Figure 18. Grid convergence analysis for the single-phase Stokes problem in standard
form, with µ= 1 and velocity Dirichlet boundary conditions, in a unit diameter spherical
domain using implicitly defined meshes (see Section 5.5). Here, h denotes the typical
mesh element size and the lines of indicated slope illustrate the asymptotic convergence
rate in the corresponding error norm. Polynomial degrees are symbolized by ◦, •, N for
p = 1, 2, 3, respectively.

compute the discrete error (u−uh, p− ph) and nullify any components in the kernel
through a simple Gram–Schmidt process applied to a basis of the kernel, known
ahead of time. The resulting discrete error (u− uh, p− ph) is then measured in
the L2 norm and the maximum norm, and is reported in the following collection of
graphs, Figures 15–22. In each case, data points represent the measured error, and
the lines of indicated slope are plotted to illustrate the asymptotic convergence rate.
In some cases, the discrete error is saturated by numerical conditioning associated
with double-precision arithmetic, forcing the cessation of high-order convergence;
these data points are excluded from the graphs.

C.1. Impact of pressure penalty parameter on discretization error. To supple-
ment the discussion in Section 4, shown here is a test case examining the impact of
the pressure penalty parameter τ on discretization error. We consider a single-phase
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Figure 19. Grid convergence analysis for the multiphase Stokes problem in viscous-stress
form, in which�1=

( 1
4 ,

3
4
)d has viscosity µ1= 10−6, and�2= (0, 1)d \�1 has viscosity

µ2 = 1, with stress boundary conditions (see Section 5.6). (Results for the other viscosity
ratios considered, i.e., µ1 ∈ {10−3, 10+3, 10+6

}, have similar characteristics.) Here, h
denotes the mesh element size and the lines of indicated slope illustrate the asymptotic
convergence rate in the corresponding error norm. Polynomial degrees are symbolized by
◦, •, N, �, for p = 1, 2, 3, 4, 5, respectively.

Stokes problem in standard form, with µ= 1 and periodic boundary conditions, on
a uniform Cartesian grid with p = 2 biquadratic elements. In the following tests,
we consider extreme values of τ and utilize a direct solver instead of multigrid
(thereby eliminating possible issues of multigrid nonconvergence associated with
extreme values of τ ); as such, a coarser grid of 16× 16 is used. With the same
range of τ as used in the discussion of Section 4, Figure 14 shows the discrete error
in the velocity and pressure in the L2 and maximum norms; in each case the error
is normalized by the minimum attained value, e.g., Cu,2 = minτ‖u− uh‖2, and
similarly for the other quantities shown. (The order of magnitude of these errors
can be inferred from the 2D results of Figure 15.) According to Figure 14, note
that τ has relatively little influence on the error in both velocity and pressure, with
maximal discretization errors at most 10% greater than optimal. Although only a
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Figure 20. Grid convergence analysis for the time-dependent single-phase Stokes problem
in standard form, with µ=10−2 and δ=0.1h, corresponding to Re≈100 (see Section 6.1).
Here, h denotes the mesh element size and the lines of indicated slope illustrate the
asymptotic convergence rate in the corresponding error norm. Polynomial degrees are
symbolized by ◦, •, N, �, for p = 1, 2, 3, 4, 5, respectively.

minor improvement, note also that the best error in pressure is attained when τ is
approximately equal to or larger than the optimal τ values found in Table 1. Overall,
this kind of behavior has been observed across many of the examples considered in
this work, leading to the conclusion that, at least for relatively well-resolved Stokes
problems, the discretization error is largely insensitive to the value of τ , thereby
allowing this parameter to be tuned for excellent multigrid performance.
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Figure 21. Grid convergence analysis for the time-dependent single-phase Stokes problem
in standard form, with µ = 10−4 and δ = 0.1h, corresponding to Re ≈ 10 000 (see
Section 6.1). Here, h denotes the mesh element size and the lines of indicated slope
illustrate the asymptotic convergence rate in the corresponding error norm. Polynomial
degrees are symbolized by ◦, •, N, �, for p = 1, 2, 3, 4, 5, respectively.
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