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Let r, m be positive integers. Let 0 < x < 1 be a rational number. We denote by &, (x, z) the s-th Lerch

function

o k+1

P

P k+x+1)s
with s = 1,2,...,r. When x = 0, this is the polylogarithmic function. Let «;, ..., «,, be pairwise
distinct algebraic numbers with 0 < ;| < 1 (1 < j <m). We state a linear independence criterion over
algebraic number fields of all the rm + 1 numbers: @ (x, o;), o(x, 1), ..., D, (x, 1), P1(x, a2),
Dyr(x,000)y ovvy Op(x,2), ..., DX, ), Po(x, @), ..., Pr(x,a,) and 1. We obtain an explicit
sufficient condition for the linear independence of values of the r Lerch functions ®;(x, z), ..., ®,(x, z)

at m distinct points in an algebraic number field of arbitrary finite degree without any assumptions on r
and m. When x = 0, our result implies the linear independence of polylogarithms of distinct algebraic
numbers of arbitrary degree, subject to a metric condition. We give an outline of our proof together with
concrete examples of linearly independent polylogarithms.

1. Introduction

Let s be a nonnegative integer and 0 < x < 1 be a rational number. We study the linear independence of
values of the s-th Lerch function defined by

o k+1

b4
di(x,2) =)y —m—, C, 1.
(x,2) g htxtl)y zel, |z| <

The s-th Lerch function &, (x, z) satisfies the inhomogeneous differential equation

Ly, 2) = 101 (x,2) — E,(x,2), 5> 1. (1)
dz Z Z

Then the s-th Lerch function is a G-function in the sense of Siegel [1929]; see also [Feldman and
Nesterenko 1998].

Note that in the case of x =0, we have ®,(0, z) = Li;(z), where

i S
Lis(z) =) ——, z2€C [zl <],
P (k+1)

is the s-th polylogarithmic function.
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Let r, m be positive integers and K be an algebraic number field. Consider oy, ..., o, € K \ {0} with
o, #Faj, forl <ij<ip<mand 0 <x e Q.
We define the vector of formal power series @ by

=11, D1 (x, 212), ..., Dr(x, 012), ..., P1(x, m2), ..., Pr(x, 2)) € K[2]™,

the vector of rational functions g(a,-) ="o;/(1 —;2),0,...,0) € K(z)" and an r x r matrix A(x) by
_x/z 0 .« e 0

Ax) == {/Z _,)f/z ? ifr>2, A(x):(—g) ifr=1.

6 R V54 —);/z

Then, taking the differential equation (1) into account, the vector d satisfies the following system of
differential equations in y:

0 0 -~ 0
i S b ™
Z . . . .

Al@n) O -+ A®x)

We see that (2) is indeed a system of homogenous differential equations in y.

We consider r Lerch functions ®,(x, z), 1 <s <r. The linear independence of Li(«) at one rational
number «, with 1 < s < r, was studied by E. M. Nikishin [1979a]. It was generalized to the Lerch
function by Kawashima [2014] and to algebraic cases by M. Hirose, M. Kawashima and N. Sato [Hirose
et al. 2017]. See also [Hirata-Kohno et al. 2017] for examples. M. Hata [1990] adapted generalized
Legendre polynomials modifying Padé-type constructions of G. V. Chudnovsky [1979; 1982; 1983],
see also [Chudnovsky and Chudnovsky 1985], to obtain the linear independence of Lis(«) (indeed of
the Lerch transcendent function) for different s but at one rational number «. His result implies the
irrationality of Li,(1/q) with g integer, g > 12, whereas it was announced in [Chudnovsky 1979] the
irrationality of Liy(1/q) with g > 14. Later, Hata [1993] gave the irrationality of the value of Liy(1/q)
with ¢ integer, ¢ > 7 or g < —5.

Rhin and C. Viola [2005] adapted their permutation group method, established in [Rhin and Viola
1996], to get the irrationality of Li; () for certain o € @, involving the irrationality Liy(1/¢), with g > 6,
q € Z, in qualitative and quantitative forms. More recently, Viola and W. Zudilin [2018] extended the per-
mutation group method with constructions to establish the linear independence of 1, Li;(1/¢q), Li»(1/q),
Lip(1/(1 — q)) over Q with an integer ¢ > 9 or ¢ < —8 and more generally, that of 1, Li; (&), Liy(«),
Liz(a/(a — 1)) for certain o € Q. See also important related works [Fischler et al. 2019; Marcovecchio
2006; Miladi 2001; Rivoal 2003; Zudilin 1996].

With respect to logarithms, G. Rhin and P. Toffin [1986] created a system of Padé approximants to show
the linear independence of the natural logarithms of distinct «y, . . ., «,,, either rational or quadratic imag-
inary numbers, under a metric condition requiring the points «y, ..., &, to be very close to the origin 0.
This method provides a refinement of previous lower bounds for linear forms in logarithms, especially
for effective bounds obtained by A. Baker [1975] and an essential improvement due to N. I. Feldman
[1968], valid under the above-stated metric condition. This proof in [Rhin and Toffin 1986] opened a
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new path, albeit unexplored systematically, during the next decades to show the linear independence of
logarithms over Q at distinct o € Q, relying only on Padé approximations.

Since Lij (z) coincides with the usual natural logarithm, the Rhin—Toffin method suggests how to adapt
Padé approximations to deal with the linear independence of polylogarithms at distinct points «q, . . ., &,.

We give a new criterion to show the linear independence of all the rm + 1 numbers: ®;(x, 1),
Dr(x,ap), ..., D(x,01), Pi(x,x0), Po(x, ), ..., P(x,002), ..., P1(x, ), Po(x,0n), ...,
®, (x, ayy) and 1, over an algebraic number field K, supposing «, .. ., o, pairwise distinct in K, assumed
to be sufficiently close to the origin, which we will make precise later. We also give an outline of our
proof with basic ideas.

Our linear independence criterion for the values of the Lerch functions, including the case of polyloga-
rithmic functions, at distinct points in an algebraic number field of arbitrary finite degree, is not covered
by the previous criterion in [Galochkin 1974; 1975], as is explained below in Remarks 1.1, 1.3 and 1.4
and Example 6.3.

Remark 1.1. Let us describe here previous linear independence results concerning with values of the
Lerch functions, at distinct rational or imaginary quadratic points, due to A. I. Galochkin [1974; 1975],
Y. Z. Flicker [1977] K. Viéidninen [1980], together with a result by K. Viéininen and G. Xu [Véinédnen and
Xu 1988]. First, we introduce the result of Galochkin [1974, Theorem 1]. All notation and conventions
are those of the above-mentioned article, pages 385-388; see also [Nurmagomedov 1971].

Theorem 1.2 [Galochkin 1974, Theorem 1]. Let I be Q) or an imaginary quadratic field and K be a finite
extension of I with [K : [ =k < oo. For 1 <s € Z, consider f1(z2), ..., fs(z) € K[z]l which belong to
the subclass G(K, Cy, O, A) with CoQ > 2, C =max(1, Cp) (see [Galochkin 1974, Definitions 1, 2]).
Assume that the functions are not connected by any nonzero polynomial in s variables, of degree not
exceeding N, with coefficients in C(z). Let 1 <d € Z and

e (N;ks> +K<N—Sd—|—s> _K(N:—S)’

with N > d.
Suppose now
u>0. 3)
Then there exists an explicit constant co > 0 which depends on N, d and fi(z2), ..., fs(2), satisfying the
following property: for any integer with |q| > co and a nonzero polynomial P(xy, ..., xs) € Z[x1, ..., Xs]

of degree d < N, we have
P(fi(1/q), ..., fs(1/q)) #0.

In particular, when d = 1, we have su = (Nfl\}“){N + s(1 — k)}. Thus, under the condition that

N > s(k — 1) together with the assumption of the algebraic independence of the functions f1(z), ..., f5(2)
over C(z), the linear independence of values of these s functions over K at the point 1/q follows.

It is worth noting that Flicker [1977] proved a p-adic analogue of Galochkin’s theorem. Building on
both Galochkin’s and Flicker’s work, Viinédnen [1980] refined the above-mentioned results and gener-
alized to a system of differential equations, both in the complex and the p-adic cases and also proved a
Baker-type lower bound for linear combinations of classical logarithms and polylogarithms, also subject
to a metric condition as above.
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For these results to work, one needs that the G-functions belong to the subclass G(K, Co, Q, A)
with CyQ > 2, that is, roughly speaking, a set of particular G-functions satisfying a system of linear
differential equations, under a hypothesis called the Galochkin condition or (G, C)-condition, given in
Definition 2 of [Galochkin 1974] (this is the same as (G, C)-function condition in [Chudnovsky 1984]
and the (G, C)-assumption in [Chudnovsky and Chudnovsky 1985]).

More significant progress was made by Chudnovsky [1984], who proved that, for G-functions satis-
fying a differential equation system as in (2), Galochkin’s condition automatically holds.

Summing up, thanks to the above-mentioned results, as soon as we can show that the considered G-
functions satisfy a linear system of differential equations as in (2), as well as that the functions are linearly
independent over C(z), we get the linear independence of the special values provided condition (3) is
satisfied. Condition (3) comes from the use of Siegel’s lemma to construct Padé approximants (whereas
we avoid using Siegel’s lemma in the present article).

We are now in a position to compare our results with the above-mentioned series of results. Restraining
ourselves to the functions 1, ®;(x, o;z), with 1 <i <m, 1 <s < r, one can check they are linearly
independent over C(z), in a similar way to [Viidndnen 1980, pp. 292, 293]; see [David et al. > 2020a]
(it may be worth noting that Galochkin’s condition can be checked by hand in this special case, and thus
one can also proceed without using Chudnovsky’s observation). Hence, we are in the case N = 1; thus
necessarily d = 1.

However, for N =d = 1, condition (3) reads u = s(1 —x)+1 < —s+1 < 0 if ¥ > 2; hence the
assumption u > 0 of Galochkin’s theorem never holds when N =1 as soon as the base field considered
is not contained in an imaginary quadratic field.

On the contrary, our criterion covers also such a case, since the base field can be an arbitrary number
field. Namely our result gives the linear independence of values of the Lerch functions, when N = 1,
applying our explicit construction of Padé approximations of 1, ®(x, «; /z) that is done around infinity,
not around the origin (this is one of the reasons why our corresponding assumption is much weaker than
that of Galochkin’s theorem). Nevertheless, as we see in Example 6.3 below, our linear independence
result for the values of Lerch functions is valid for algebraic points in K of arbitrary degree, to which
neither Galochkin’s [1974; 1975] nor Viaidndnen’s [1980] results apply.

Remark 1.3. It is also worth noting that our result (see [David et al. > 2020a] for details) is quantitative,
with totally explicit constants, which is not the case of previous results.

Remark 1.4. A result of [Védndnen and Xu 1988] actually deals with general base fields as in our case.
However, this is not applicable in our situation, because of the degenerate nature of the system (2).

The new ingredient in the article relies on a few points. First and foremost, we introduce a systematic
construction of Padé approximants, which heavily relies on the computations made by past authors. Our
modifications and generalizations of the method Nikishin [1979a; 1979b] developed, as well as of the
Rhin—Toffin method [1986], supply a formally regulated construction of Padé approximants. Secondly
an irrationality criterion, combined with the metric property provided for by Padé approximation, leads
to the irrationality for the values of the Lerch functions at points sufficiently close to the origin (the
precise sufficient condition, which we explain later, comes from the coupling of the criteria with Padé
approximation). This strategy works only if one can ensure the injectivity of evaluation maps defined by
systems of Padé approximation, which can be now interpreted as a nonvanishing property of a Hermite-
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type determinant, which we succeed in proving. Our criterion also gives much more relaxed assumptions
than the previous results in [Galochkin 1974; 1975], since we rely on our new formal construction of
explicit Padé approximants, by avoiding the use of Siegel’s lemma.

2. Notation and main results

We fix an algebraic closure of @ and denote it by Q. For a finite subset S C @, we define the denominator
of S by
den(S) :=min{0 < n € Z | nx is an algebraic integer for any o € S}.

Let N be the set of strictly positive integers. Let m, r € N and K be an algebraic number field of finite
degree over ). We denote the ring of integers of K by Ok and the completion of K with respect to the
fixed embedding (o : K < C by K. Then [K : R] =1 if Koo CR, and [K : R] = 2 otherwise.

Let x e @NJO, 1). Put
w(x) ;= den(x) I1 g/,

q:prime, g| den(x)

Consider o := (o, ..., ap) € (K\{0)D™, with o; #a; forall 1 <i < j <m.For1<g <[K:0Q], we
denote by (@ the g-th conjugate of & € K over Q.

Let B8 € K \ {0} with max;<;<,(|a;]|) < |B]. We put

D(e, B) :=den(ay, ..., an, B).
We also define

Alee, B, x) :==1og|B| — (rm + 1) log max(|o;])
— {rm(log D(a, B) +r[den(x) +log 3]) + r(log 3 +log u(x))},
A® (a, B, x) :=rm(log D(et, B) 4 log max(1, min(|a®’)~" - |8®]) + r[den(x) — log 2])

+r(log p() + ) log(2 ey | +3" max(lo |, m@m) +log3 for1<g<[K:Q]

i=1

g=
[Ko : R]

KD A® (o, B, x)
Via, B, x) = A, f,x) + AV (@, B, x) - L :
We then obtain the following statement.

Theorem 2.1. Assume V («, B, x) > 0. Then the rm + 1 numbers

L®(x,ar/B), ..., Or(x,a1/B), ..., Pr(x, am/B), ..., Pr(x, am/B)

are linearly independent over K.

In the special case where K equals (Q or an imaginary quadratic field, Corollary 6 in [Vé4ndnen 1980]
gives an analogous quantitative result for polylogarithms, but the needed condition there is not so explicit
as ours, V(a, 8, 0) > 0. For a general number field K, Theorem 2.1 is the first result to give the linear
independence of the values of the Lerch function, even in the case of polylogarithms, at distinct algebraic
numbers.
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3. Construction of Padé approximants

We now explain how we construct Padé approximants of the Lerch functions. Since the full proof is long,
it will be provided, with all relevant details, in the forthcoming articles [David et al. > 2020a; > 2020b],
with a p-adic analogue as well as quantitative measures of linear independence.

First we recall the definition of Padé approximants of formal Laurent series. In the rest of this section,
we denote by L a unique factorization domain of characteristic 0. We define the order function ord at
7 =00 by

1
ordes : LIz][1/2] = ZU {00}, Y _ax+— +> min{k € Z | a; # 0}.
<
k
Lemma 3.1. Let r be a positive integer, f1(z), ..., fr(z) € 1/z-L[1/z] and n := (ny,...,n,;) € N".

Put N :=)"_, nj. Let M be a positive integer with M > N. Then there exists a family of polynomials
(Po(2), Pi(2), ..., P.(2)) € L[z '\ {0} satisfying the following conditions:

(1) deg Po(z) < M.
(i1) orde Po(2) fj(z) — Pij(z) =nj+1for1 < j<r.

Definition 3.2. Using the notation of Lemma 3.1, we call a family of polynomials (Py(z),P1(z), ..., P (2)€
L[z]"*! satisfying the properties (i) and (ii) Padé-type approximants of (fi, ..., f.) of weight n and of
degree M.

For the Padé-type approximants (Py(z), Pi(z), ..., P-(2)), of (f1, ..., f) of weight rn, we call the
family of formal Laurent series (Py(2) fj(z)— P;(2))1<<r Padé-type approximation systems of (f1, ..., fr),
of weight n and of degree M.

In the sequel, we take x € L \ Z_¢ and assume x + k are invertible in L for any k € N.

We now introduce notation for formal primitive, derivation, and evaluation maps. Let I be a finite
set; we assume that L contains K[X;, 1/X;]x,er, where K is a number field. In the sequel, it will be
convenient to work formally and thus to treat as many quantities as variables as is useful, and we shall
freely extend the set I as need arises.

Notation 3.3. (i) For o € L, we denote by Eval, the linear evaluation map L[T] — L, P +— P(x).
(i) For P € L[T], we denote by [ P] the multiplication by P (Q — P Q).
(iii)) We also denote by Prim, (formal primitive) the linear operator L[T] — L[T], defined by

1

P T1+x

T
| &P
0
(iv) We denote by Deri, the derivative map

d
P> T — (T P(T)),
dT( (T))
and by S, , for n > 1 the map taking
k D,
o w;ﬁc
n!

Tk

’
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where (k+x+ 1), :=(k+x+1)--- (k+x+n), that is, the divided derivative mapping

1 d" 1/d xY
P —T*——(T""P)=—| —+ =) T"(P),
=l art ) n!(dT+T> (P)
so that Deriy = S .

(v) If ¢ is an L-automorphism of an L-module M and k an integer, we define

k times
po---0@ if £ > 0,
o® = lidy, if k=0,

-

(pflo---o(pf1 if k <O0.
—_——

—k times
For a given [ € Z, we define the linear map ¢, . ; as follows.

Notation 3.4. Qo1 := [a] 0 Eval, o Prim®.

For any nonnegative integers k, note that ¢ , ;(T*) is a formal analogue of

1 « 1
/ T 1log*~! — dT.
s—D!Jy T

For convenience, we collect below the following elementary facts.

Facts 3.5. (i) The map Prim, is an isomorphism and its inverse is Deri, for x € L \ Z_¢. Hence ¢q x ¢
is well-defined for s < —1.

(ii) For any integers ny > 0,n, >0 and x € L \ Z_o with x 4+ k invertible in L for any k € N, the divided
derivatives S, » and S, x commute; namely Sy, x © Suy.x = Snyx © Suypx-

(iii) For any integer s € Z and any o € L, we have @y , s o Deriy = @y x.5—1-
(iv) By continuity, all the above-mentioned maps extend to L[7]] with respect to the natural valuation.
(v) The kernel of the map ¢, o is the ideal (T — «) for any x € L \ Z .

Using Facts 3.5(iv), the classical Lerch function is indeed expressed as a natural image by ¢, s, With

s >1, by |
o
Pa,x,s (Z——T) = O <X, Z) “4)

Consider & := (ay, ..., ay) € (L \{0)™ with o; # «; for i # j. We study Padé approximants of
type II of the functions (P (x, i /2))1<i<m. 1<s<r-

Let [/ be a nonnegative integer with 0 </ < rm. For a positive integer n, we define the family of
polynomials

m
Py (e, x | z) :=Eval, oS{"), (T’ [J- oz,-)”’), (5)
i=1

Pn’[(OL,X |Z)_ P,L[(OC,X | T)
z—T

Puis(o, x|z):= (Pa,-,x,s< ) forl<i<m,1<s<r (6)
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Under the notation above, we obtain the following theorem.

Theorem 3.6. For each 0 <l <rm, the family of polynomials (P, j(et, x | 2), Pnjis(0, X |2))1<i<m, 1<s<r
Sforms a Padé-type approximants system of (g (x, i /2))1<i<m. 1<s<r Of weight (n, ..., n) € N and of
degree rmn + 1.

Proof. By the definition of P, (e, x | z), we have
deg P, (e, x |z2) =rmn+1.

Hence the condition on the degree is verified. We only need to check the condition on the valuation.
Put

Rn,l,i,s(a7 xlz):= Pn,l(a7 x| 2)Dy(x, Oli/Z) - Pn,l,i,s(“’ x|z).

Then, by the definition of R, ;; ¢(e, x | z) with property (4), we obtain

Rn,l,i,s(“a X I 7) = Pn,l(a, X | Z)(pai,x,s <—
z—T

) - Pn,l,i,s(“a X | Z)

P, x|T) > 1
= Q.5 (Z_—T =2 Gepors (T Pt ¥ | T) 7 (7)
k=0

Note that in Endg (K[T']) we have the identities

1
Sn,x:—'SLXO-”O(SI,X‘F”—I) fOI‘I’LGN,
n!
[T*10 81« = (S1.c —k) o [TX] for k € Z=.
By the definition of P, ;(e, x | T') and the identities above, for each 1 <s <r, 0 <k <n — 1, there exists
a polynomial Us ¢ (X) € Q[X] of deg U x = nr — s, satisfying
m
T*Py (o, x | T) = S{") 0 Uy 4 (S1.2) (T"*’ [ - m)’”).
i=1
By the Leibniz rule, we obtain that Uy x(S1,«) (T** T/L,(T —;)"") belongs to the ideal (T — ;) for
each 1 <i <m. Hence we get
m
P s (T P i@, X | T)) = 0,200 Us 1 (S1.2) (T"*’ [ - a»’”) =0
i=1

forl<i<m, 1<s<randO<k<n-1.
Consequently, by the expansion above of R, ;; s(e, x | 7), we obtain

ordee Ry jis(e,x|z)>n+1 forl<i<m,1<s<r.

Then Theorem 3.6 follows. O
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4. Metric approximations and linear independence criteria

We now give a few of the estimates associated with the Padé approximation we just constructed. They
do not need involved arguments to be proven; however, due to the technical nature of the construction,
computations are somewhat heavy and we skip them to keep in line with the spirit of this article.

The estimates in Lemma 4.1 can be combined with an appropriate linear independence criterion to
provide for a measure.

Lemma 4.1. Let n be a positive integer, x a rational number with 0 <x < 1 and B € K \ {0}. Then for
any 1 < g <[K : Q], we have

® @ (3" (3 i 0® @py)
g 8) yrm r.,\& r 8
omax [P0, (@, x| B)] < max(eg*') (5) (W [ 1127151 +3" max(le |>])
1<i<m Jj=1

1<s<r

(min(|a¥'])~1| B yrmtD
X1 min(je® )1 B@] -1
rm(n+1) ifmin(|a,-(g)|)_]|,3(g)| <1

if min(ja®')1BW| > 1,

forl <i<m.

For the error term, we have

2
max |R, s, x|B)| < maxtzian(l o) (g)r m+r(maxj(|aj|)rm+l )n(3(§)rm )m
n,l,i,s 0, =
0<I<rm |,8|—man(|Olj|) 2 |81 2

We give here an outline of the proof. By (5) and (6), we have

Pus(et, x2) = Z[ 2 (l_[ (Z)(—a,-ynkﬂ (—(" Tl 1)"> e

n!
k=0"1<i<m ‘i=1
0<k;<rn
> ki=k
+1—1 +1 —
rmn rmn m rn e (1+k+x),, r Ol{( u
poesio= 3 [X (X T1(7)eer ) (S ]
i’ n —Uu
u=max(l,1)—1 “k=u+1 > 1<i'<m i'=1 > '
0<k,<rn
>irki=k—I

By the above equalities together with the triangle inequality, we obtain the upper bounds for |Pn(’§?i’s(a, x|B8)]
and | Py (o, x | ).
For the term |R, ;; s(et, x | B)|, we use (7).

We then state a general linear independence criterion:

Proposition 4.2. Let K be an algebraic number field of finite degree over Q. We denote the completion
of K with respect to the fixed embedding t~ by K. Let m € Nand 6y := 1,61, ...,0, € C\ {0}.
Suppose that there exists a set of matrices

{(An1,j)o<t,j<mIneN C My11(Ok) NGLy 1 (K).
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Assume further that there exist positive real numbers

(A o<k

and a positive real number A satisfying the conditions

,max A% | <e A@nton)  for | < g <[K : Q] (n — 00), (8)
< /<m

max A, 10-6; — Apg,jl <€ 4" (1 — 00). )

0<I<m

1<j<m
We put [ @]

Z K:Ql 1)
Vi=A+AD -
" (KRBT

If V > 0, then the numbers 6y, . . ., 6,, are linearly independent over K.

Proof. Assume that there exists a vector B:= (o, . ..., Bu) € Ok \{0} satisfying A(B, 0):=> /., B;i6; =0.
For n € N, as we have det(A, 1, j)o</, j<m # 0, there exists 0 <[, < m satisfying

m
By, =) Aui,.iB #0. (10)
=0
Put R, ; ;= Apn 00, — Apny,j for 1 < j <m and 0 <! < m. Then by the definitions of A(B, ), B;,, and
R, j, we obtain
m
0=Ans, 0AB.0) =B+ Ruy, B
j=1
Using the product formula for B;, € Ok \ {0}, it follows that
" g(® @ [N o
<1182 1 1B IF~S =TTI1BI x |> Rus,.iB (11)
8 g j=1

Here ’ in ]_[ means that g satisfies 2 < g <[K : Q] if Koo =R and 3 < g <[K : Q] if K, = C. Firstly,
we look for an upper bound of |B(g)| for g #1if Koo =R and g # 1, 2 if Ko = C. Using inequality

(8), we have

|Bl(,,g)| < eA“*’)n—i-o(n) (n — 00). (12)

Secondly, we give an upper bound for |Zj~1:1 Ry, iB; | By (9), we get

m
> Ru,.iBi|<e
j=1

Substituting the inequalities (12) and (13) into inequality (11), taking the 1/[K o : R]-th power of the
inequality, we obtain

—Anton) (5 5 x0). (13)

1 <e Vo (1 > 00).

Since V > 0, we arrive at a contradiction for this inequality for all sufficiently large n € N. g

Theorem 3.6 gives us the sequence of matrices. The growth control of the size of the matrices to carry
out the approximations is provided for in Lemma 4.1. However, the matrices do not always have algebraic
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integer entries. This is not a big deal. The defect of integrality comes from our operators Prim,, Deri,
and it is corrected by multiplying by a suitable power of the least common multiple d,, :=lcm(1, ..., n),
which is standard in the theory.

Plugging in these estimates in Proposition 4.2 leads us to the proof of the main theorem. The metric
condition requiring the numbers to be sufficiently close to the origin is translated to the condition V > 0
in the linear independence criterion Proposition 4.2.

However, there is still a significant step to be performed. Now we need to prove that the matrices
coming from the Padé approximation are indeed invertible. We describe this main step in the next section.

5. Nonvanishing of a determinant and the final step of the proof

In this section, we use the following notation. Let m, r be positive integers and K be a field with
characteristic 0. We assume that «y, ..., ®;, z, T all belong to the set of variables I, so our ring L
contains Kle;,z, T, 1/, 1/2,1/T]. Put e := (arq, ..., ot).

For a positive integer [ with 0 </ < rm, and for x € K, we put

Py 1(2) = Py (e, x| 2),
Pn,l,i,s(z) = Pn,l,i,s(av x|z) forl<i<m,1<s<r.

The polynomials in the right-hand sides above have been already defined in (5) and (6) respectively.
We define a column vector ﬁn’l(z) e [([Z]r"“r1 by

ﬁn,l(z) = Z(Pn,l(z)’ Pn,l,l,l @, ..., Pn,l,l,r(z)’ ey Pn,l,m,l(z)a ceey Pn,l,m,r(z))-

Proposition 5.1. We use the same notation as above. For any positive integer n, we have

Ay (z) = det(ﬁn,O(Z) te ﬁn,rm(z)) € K(ay, 02, ...,0,)\{0}.

To prove this, we firstly prove that the determinant A, = A,(z) is a constant, i.e., is independent of z.
Secondly, we regard A, as an element of K («y, ..., o) viewing oy, . .., &, as indeterminates, and fac-
tor it up to a constant depending only on n, m, r. We finally show that this absolute constant A,, is nonzero.
For this last step, we identify this determinant with a certain real integral to show that it does not vanish.

We shall prove

A,(z) e K(ay,...,ap) forallneN.

For this, denote P, ;(2)Ps(x, i /2) — Py.1.i.s(2) by R,.1.i5(2) asabove (0<I<rm, 1 <i<m, 1 <s<r).
In the matrix giving the determinant A,(z), we add, the first row multiplied by the ®;(x, «;/z), to the
(G—=Dr+s+1)-throw (1 <i <m, 1 <s <r), to obtain

Pn,O(Z) .- Py rm(2)
Rn011@) o Rurm1,1@)
Rn,O,l,r(Z) cee Rn,rm,l,r(z)

Ap(2) = (=1 det

Rn,O,m,l(Z) ce Rn,rm,m,l(z)

Rn,O,m,r(Z) cee Rn,rm,m,r(z)
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We denote by A, ;;(z), the (s, #)-th cofactor of the matrix in the right-hand side of the identity above.
Then we have, developing along the first row

Au(2) =(=D™ (Z Pn,z(z)An,1,z+1(z)>- (14)
1=0
Since we have

ordee Ry jis(2) =n+1 forO0<l/<rm,1<i<mand1<s<r,

we get
ordeo Ay 1,41(2) = (n+ 1)rm.

Combining the fact deg P, ;(z) = rmn + [ with the lower bound of ord, A, 1/+1(z) above, we obtain
Ppi(2)Ap104+1(2) € 1/z2-K([[1/z]] forO <l <rm—1,
P rm(2) Ap 1 rmt1(2) € K[[1/2]].
Note that in the relation above, the constant term of Py, ;1 (2) An 1,rm+1(2) 18

(coefficient of z™ " Dof P, .,.(z)) x (coefficient of 1/z"™ " Vof A, | rmi1(2)).

Thus by (14), the determinant A, (z) is a polynomial in z with nonpositive valuation with respect to
ord.o; consequently it turns to be a constant. Moreover, the terms of strictly negative valuation should
be canceled out. Hence we have

Ap=An(2) = (=1)" (Z‘ Pn,,<z>An,1,z+1<z>>

1=0
= (—1)"(constant term of P, ., (2)Ay.1.rm+1(2)) € K. (15)
We now need to rewrite A, as a rational function of oy, ..., o, in a workable way. We further extend

the set of variables and assume that the set / contains the rm variables ¢; ;, 1 <i <m, 1 <s <r, so that
L contains

K[(X]»"'aam’Za T7 l/alv"" l/aﬂh ]/Z’ l/T][tl,.S]

For each variable ¢ ; and any integer /, we have a well-defined map for o € L,

ak+l

. ; i YA Ve P k _—
(ptx,t,“s,x,l . L[tl,s]lflfm,lfsfr — L[tl .8 ](1 ) F£(,s) tl’s = (k+x T l)l
since L[t ¢]i<i<m.1<s<r can be regarded as a polynomial ring in one variable L'[f; ] over L' =

L[t 1t sy s)-
Now for a positive integer n and an integer [ with 0 </ < rm, we put

At (T =T'T[(T —a)™.

i=1

By the definition of A, ;(T), we have P, ;(z) = Eval, oS,(,fi (A, 1(T)).
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Let us define a column vector 7, ; € L™ by
7n,l = t((Pal,tl_l,x,l(tflAn,l(tl,l)), sy (pal,tl.r,x,r(tﬁrAn,l(tl,r))a L)
(pam,tml,x,l(t,’,z,]An,l(tm,l))’ ey (Pam,tm_r,x,r(t:g’rAn,l(tm,r)))-

Lemma 5.2. Under the notation above, we obtain the identity

(+rmn+rm+x),
_ (__1\rmn
Ap=(=1) < py

,
> det(Fn,O T Fn,rm—l)-
Proof. Using (15), we calculate constant term of Py 1, (2) Ap.1,rm+1(2) € K[1/2]l.

We need to deal with the noncommutativity of the multiplication by [7T'] and the morphisms S,(,k))c The

defect of the commutativity is given by the following identity: there exists a set of rational numbers
{enxto<k<rn C Q with ep0=(—1" and

[T"]oSY) = Z en kS o [T,

Then we obtain
rn

Qayor.s (T" Pat(T)) = en kP x5 © S{r o [T"1(An s (T))
k=0
s—1

= en ka0 [T 1A (T)) + Z en kPa;.x.00 S|y o [T" (A (T))
k=0 k=s
s—1

=Y eniPur, (T Ani(T))

k=0

for 1 <i <m and 1 <s <r; the conclusion follows, interpreting the above relations as linear manipulations
of lines and columns leaving the determinant unchanged. (|

Now, for nonnegative integers u, n, we put
un(tl s) —1_[1_[[ l_[(tls _a])rn:| l_[ (tiz,sz _ti1,sl)a
i=1s=1 (1,s1)<(i2,52)

where the order (i1, s1) < (ip, s») follows lexicographically.
By O, we denote the composite of morphisms. When no confusion is deemed to occur, we omit the
subscripts o = («q, ..., &) and write

K/f v/a = 1_1 ngl (pa;,l,;x,x,s-

Note that, by definition of det(F, ¢ - - - 4. rm—1), We have

det(?n,o e ;n,rm—l) = w(Pnn)

Let u be a nonnegative integer. We are going to study the value

Cn,u,m = w(Pu,n)-
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By induction, we obtain the following proposition.

Proposition 5.3. There exists a nonzero constant ¢, , m € K satisfying

m
r(u+l)+r2n+(£) n+1)r?
Cn,u,m =Cn,u,m 1_[0‘1' l_[ (O‘iz - ai])( ) s

i=1 I<ij<ir<m
with (5) =0ifr = 1.
We write the details of the proof of the proposition in the forthcoming articles [David et al. > 2020a;

> 2020b]; however, we describe here our basic idea. Indeed, we prove the proposition by reducing to
the case m = 2 and showing:

(1) C,.u.2 1s homogeneous of degree 2r(u + 1) + 2rn + 2(;) +Q2n+ Dr2.
(i) (ayap) @HD+n+() divides Cp 2.
(iii) (a1 — o) @+ divides Cp 2.
Here, we explain how the constant ¢, , ,, in Proposition 5.3 becomes nonzero. Whenever it is shown,

then the determinant does not vanish.
We use the same notation as in Proposition 5.3. Define
Chum 2
U, _ oy \@n+Dr
Hm ar(u+l)+r2n+(£) = Cnum X l_[ (alz a“) :

i=1%; 1<ii<ir<m

Dn,u,m =

A straightforward calculation of an integral gives us

Dn,u,m = O?:logf:ﬂpl,tir’sr,x,s’ (1_[1_[|: (tz K l)rn' 1_[ (Ol,'tiys —Ol;.)m:|

i=ls=1 i

1<i<m

Xl_[( l_[ (# 50—t s1)> 1_[ 1_[ (alztlz AT s1)>

51<82 i1<ip 1<s1,:<r
We substitute o, =0 in D, ,, ,,; then we have
m—1
_ 2n+1)r? 2n+1)r?
Dn,u,m|am:0—cn,u,m l_[(_ai)( ) 1_[ (aiz_ail)( )
i=1 1<ij<i<m—1
,
(2n+l)r u rn
=+ H Ol 1911y, oros (H[tm,s-um,s—l) Ix 1 (rm,sz—tm,s»)
i=l1 s=1 1<s;<so<r

i=1 s=1

1<i<m-—1
X 1_[ ( 1_[ (ti,é‘z_ti,sl)) X 1_[ l_[ (aiztiz,sz_ailtil,Sl))

=1 ‘l<si<s<r 1<ii<ir<m—1 1<s1,5<r

)
—il_[ @nt1r? @l (]_[[z;,s-(tm,s—l)’”]x I1 (tm,.vz—tm,xl)>

i=1 s=1 1<si<sy<r

m—1 r
—1 +r(n+1
Mo lo A (nn[ 0D -y T <aiz,-,s—a;>rn}
ii

2n+1)r?
XCn,u+rn+1),m—1 1_[ (aiz_ail)( ) .

1<ii<ir<m—1
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Thus we obtain

,
Cnum = + Og’zl P11, ¢ .x.5' < 1_[[1‘1?1,3‘ : (tm,s - l)rn] X l_[ (tm,sz - tm,s1)>cn,u+r(n+l),ml

1<si<sr<r
m
==+ l_[< =191, ty,x,s’ (H[fu_Hl Drint1) (t l_[ (tSZ tsl ))
i=1

s=1 1<si<s2<r

We are then in a position to conclude. Indeed, using the definition of the operators ¢ ;, r s, the compo-
sition of these operators is nothing but an integral over [0, 1]". More precisely,

r
OZ’:]@],IS/,X,S’ ( H[tg : (ts )rn l_[ (tsz ts1 >
s=1

1<s;<so<r
r l 1 1T
=Hm/ f ﬂ[t;‘“m—l)’"logs 1—} [T .- wﬂdf»
s'=1 *J0 0 s=1 1<si<sy<r

then a direct computation enables us to show this last integral does not vanish, which yields Proposition 5.1.
The statement of Theorem 2.1 now follows from Proposition 4.2, since the determinant is a nonvan-
ishing algebraic constant.

6. Examples

We show here three examples of linearly independent polylogarithms, which are shown by our criterion.

Example 6.1. Put 7 =m = 10 and x = 0. Take & := (1, 3, . ..

have D(«, b) = dp = 2520. Since we have the inequalities

, 10) and B = b with |b| > ¢?’1>. Then we

log 2520 < 7.84, log3 < 1.10, log% < 0.92,

we have
log |b| > 100(10+10g 2520+ 10 log %) + 10 log 3.

Then the 107 + 1 numbers
1, Liy(1/b), ..., Lijo(1/b), ..., Liy(1/(10b)), ..., Lijo(1/(10b))
are linearly independent over ().

Example 6.2. Let k > 2 be an integer, set r =m = 10, x = 0. Take & := (J)1<j<i0t and B =b € Z with
|b| > exp(2- 103"). Since k > 2, we can easily verify

log |b| > (rm +1)log 10 + (r*m (14 log 3) + r log 3)
=k(10* +1)log 10+ (10% (1 +log 3) + 10" log 3).

Then the 10%* + 1 numbers

1, Lij(1/b), ..., Lijc(1/b), ..., Li;(10¥/b), . .., Lijoc (10X /b)
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are linearly independent over Q. For instance, we take » =m = 10* and b = 3%10" then the 108 + 1
numbers

1, Lip (1/3%19%), . Lijge(1/3%19%), .. Liy(10%/3219%) . L (10473210,
are all linearly independent over Q.

Example 6.3. Let M > 5 be a natural number. Define the polynomial

(X)) = (2+ %))ﬁ X+ %

Then X = (M £ M2 —4M —2)/(2M + 1) are roots of fy;(X).

Put
8. 2M +1
S M—VMP—4M =2
K :=Q(p) and § := "% We take r = m = 10, a := (1’ %"“’11_0) and

282 — 8+ 1+ /484 +483—-352—65+5
48 — 4 '

M >

Then we have
Ve, B,0) =A(a, B,0) — AP (a, B,0) > log |B| — 7908 > 0.

Thus by Theorem 2.1, the 10> 4+ 1 numbers

1, Liy(1/B), ..., Lij(1/B), ..., Li1(1/10B), ..., Li,p: (1/108),

are linearly independent over K. For example,we take M > ¢'>8!7  the 10 4+ 1 numbers

1, Lit(1/8), ..., Lijc(1/B), ..., Li1 (1/108), ..., Lijpr (1/108),

are linearly independent over K.
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