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Let p be a prime, and suppose that F is a field of characteristic zero which is p-
special (that is, every finite field extension of F has dimension a power of p). Let
α ∈KM

n (F)/p be a nonzero symbol and X/F a norm variety for α. We show that
X has a KM

m -norm principle for any m, extending the known KM
1 -norm principle.

As a corollary we get an improved description of the kernel of multiplication by
a symbol. We also give a new proof for the norm principle for division algebras
over p-special fields by proving a decomposition theorem for polynomials over
F-central division algebras. Finally, for p = n = m = 2 we show that the known
KM

1 -multiplication principle cannot be extended to a KM
2 -multiplication principle

for X .

1. Introduction

Let D be a finite dimensional F-central division algebra. Then D has the reduced
norm homomorphism Nrd : D → F . The norm principle for D states that the
image of the reduced norm is an invariant of the class of D in Br(F), that is,
Nrd(D)= Nrd(Mk(D)) for any k ∈ N. Equivalently, NK/F (K )⊆ Nrd(D) for any
finite separable field extension K/F splitting D. The multiplication principle states
that for any two maximal subfields K1, K2 ⊂ D and elements k1 ∈ K1, k2 ∈ K2,
there is a third maximal subfield K3 ⊂ D and an element k3 ∈ K3 such that
Nrd(k1)Nrd(k2)= Nrd(k3), reflecting the fact that the reduced norm is multiplica-
tive with respect to the multiplication of D.

The above can be rephrased as follows: Let D be a central division algebra over
F of index n and let X =SB(D) be the Severi–Brauer variety of D. Let A0(X,KM

1 )

be the group of KM
1 -zero cycles on X . It is generated by elements [x, λ], where x

is a closed point of X and λ ∈ F(x). Let An
0(X,K

M
1 ) be the subgroup generated
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by elements [x, λ], where x is of degree at most n (that is, [F(x) : F] ≤ n). There
is a well defined norm homomorphism

N : A0(X,KM
1 )→ A0(spec(F),KM

1 )= F×,

defined on generators by N([x, λ]) = NF(x)/F (λ). The above norm principle can
be restated as N(A0(X,KM

1 ))=N(An
0(X,K

M
1 )), that is, for any closed point x ∈ X

and λ ∈ F(x) there is a finite number of closed points x1, . . . , xt ∈ X of degree at
most n and λi ∈ F(xi ) such that NF(x)/F (λ)=

∏t
i=1 NF(xi )/F (λi ).

The multiplication principle says that for any two closed points x1, x2 ∈ X of de-
gree at most n and λ1 ∈ F(x1), λ2 ∈ F(x2), there is a third closed point x3 ∈ X of de-
gree at most n and λ3 ∈ F(x3) such that NF(x1)/F (λ1)NF(x2)/F (λ2)=NF(x3)/F (λ3).

This is generalized as follows. Let p be a fixed prime, F a field of characteristic
zero which is p-special, and α ∈KM

n (F)/p a nonzero symbol α = a1 · · · an , where
ai ∈ KM

1 (F)/p. A crucial part of the proof of the Bloch–Kato conjecture is the
fact that symbols have (at least in characteristic zero) p-generic splitting varieties,
generalizing Severi–Brauer varieties, introduced by Rost; see [Haesemeyer and
Weibel 2009; Rost 2002]. Rost then generalized the norm principle for division
algebras (more specifically symbol algebras) to a norm principle for the group of
reduced KM

1 -zero cycles:

A0(X,KM
1 )= coker

(
A0(X × X,KM

1 )
(pr1)∗−(pr2)∗
−−−−−−−→ A0(X,KM

1 )
)
.

This principle states that N(A0(X,KM
1 )) = N(Ap

0 (X,K
M
1 )), that is, the image of

the norm on A0(X,KM
1 ) is the same as the image of the norm restricted to the

subgroup Ap
0 (X,K

M
1 ) generated by elements [x, λ], where x ∈ X is closed of degree

at most p.
The multiplication principle is also generalized and states that the product of two

generators of Ap
0 (X,K

M
1 ) is a generator; equivalently, for any two closed points

x1, x2 ∈ X of degree at most p and λ1 ∈ F(x1), λ2 ∈ F(x2), there is a third closed
point x3 ∈ X of degree at most p and λ3 ∈ F(x3) such that

NF(x1)/F (λ1)NF(x2)/F (λ2)= NF(x3)/F (λ3).

Together, the above norm and multiplication principles state the following: Let X
be a norm variety for a nonzero symbol α ∈ KM

n (F)/p, x ∈ X any closed point (of
arbitrary finite degree) and λ ∈ F(x). Then there is a closed point y ∈ X of degree
at most p and γ ∈ F(y) such that NF(x)/F (λ)= NF(y)/F (γ ).

In this work we show that the norm principle can be extended to higher K-
cohomology groups, but the multiplication principle does not extend. As an appli-
cation we recall that using these varieties one can give the following exact sequence
describing the kernel of multiplication by a symbol, taken from [Merkurjev and
Suslin 2010]; see also [Weibel and Zakharevich 2017] for a similar description.
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Theorem 1. Let F be a field of characteristic prime to p and θ ∈ H n
ét(F, µ

⊗n
p ) a

symbol, where µp denotes the Galois module of all p-th roots of unity. Then for an
arbitrary k ∈ N, there is an exact sequence∐

L

H k
ét(L , µ

⊗k
p )

∑
NL/F

−−−−→ H k
ét(F, µ

⊗k
p )

· θ
−→ H k+n

ét (F, µ⊗k+n
p )∏

E resE/F
−−−−−→

∏
E

H k+n
ét (E, µ⊗k+n

p ),

where the coproduct is taken over all finite splitting field extensions L/F for θ and
the product is taken over all splitting field extensions E/F.

As a result of the higher norm principle we can add that the coproduct is taken
over all splitting fields L/F such that p2 does not divide [L : F], as is the case for
p = 2; see [Orlov et al. 2007] for details.

The work is organized as follows. In Section 3 we prove a generalized norm
principle. In Section 4 we give a purely algebraic proof of the main theorem used
for the proof of the norm principle in [Haesemeyer and Weibel 2009] for the case
of division algebras, resulting in a new proof for the norm principle for division
algebras over p-special fields. To this end we prove that if F is p-special (with no
restriction on the characteristic) and D is an F-central division algebra, then any
polynomial in D[λ] of degree less than p splits into linear factors (see Theorem 14).
In Section 5 we show that (at least for p = n = m = 2) there is no generalized
multiplication principle.

2. Background and notations

Let p be a fixed prime, and suppose that F is a field of characteristic zero which
is p-special — that is, for any field extension K/F we have that [K : F] is a p-th
power, or equivalently (for perfect fields), the absolute Galois group of F is a pro-p
group.

Let a1, . . . , an be in KM
1 (F)/p ∼= F×/(F×)p and α = a1 · · · an be a nontrivial

symbol in KM
n (F)/p, where KM

n (F) is the n-th Milnor K group of F . In a work
by Rost, it was shown that there exists a “p-generic splitting variety” over F of
dimension pn−1

−1 for α, namely a smooth, irreducible, projective variety X of di-
mension pn−1

−1, such that for any field extension L/F , αL vanishes in K M
n (L)/p

if and only if X (L ′) 6=∅, where L ′/L is a field extension of dimension prime to p.
Such a variety is called a norm variety for α. For a detailed construction of such
X we refer the reader to [Haesemeyer and Weibel 2009; Suslin and Joukhovitski
2006].

As an example, in the case n = 2, X can be the Severi–Brauer variety of the
central simple algebra associated to α by the norm residue map.
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Definition 2. Let X/F be a smooth irreducible projective variety of dimension d
and let n be an integer. The group of KM

m -zero cycles, A0(X,KM
m ), is defined as

A0(X,KM
m )= coker

( ∐
codim(x)=d−1

KM
m+1(F(x)) →

∐
codim(x)=d

KM
m (F(x))

)
.

It is generated by elements [x, α], where x is a closed point of X (marking its index
in the coproduct) and α ∈ KM

m (F(x)). Also define the subgroup

Ap
0 (X,K

M
m )=

〈
[x, α] | x is closed of degree at most p

〉
.

Remark 3. There is a well defined norm map N : A0(X,KM
m )→ KM

m (F) induced
by the usual norm on fields: N([x, α])= CorF(x)/F (α).

As we are going to be interested in norms of elements, we make the following
definitions.

Definition 4. For X/F as above define the group

Ã0(X,KM
m )= A0(X,KM

m )/Ker(N)
and its subgroup,

Ãp
0 (X,K

M
m ))= Ap

0 (X,K
M
m ))/Ker(N).

Definition 5. We say that X has a KM
m -norm principle if Ã0(X,KM

m ))= Ãp
0 (X,K

M
m )),

or equivalently, N(A0(X,KM
m ))= N(Ap

0 (X,K
M
m )).

Definition 6. We say that X has a KM
m -multiplication principle if every element in

Ãp
0 (X,K

M
m ) is a single generator [x, β], or equivalently, the norm of every element

in Ap
0 (X,K

M
m ) can be obtained as the norm of just one generator [x, β].

Let α ∈ KM
n (F)/p be a nontrivial symbol. For every m, we have the morphism

of multiplication by α:

KM
m (F)/p

·α
−→ KM

n+m(F)/p.

Let X be a norm variety for α. Then by Theorem 1, for every m, the kernel Kerm(α)

of this morphism can be described by the exact sequence

Ã0(X,KM
m )

π◦N
−−→ KM

m (F)/p
·α
−→ KM

n+m(F)/p,

where π : KM
m (F)→ KM

m (F)/p is the natural projection. If X has a KM
m -norm

principle we get that the sequence

Ãp
0 (X,K

M
m )

π◦N
−−→ KM

m (F)
·α
−→ KM

n+m(F)

is exact, giving a better description of the kernel of multiplication by α.
Beyond proving the norm principle for X , we would like to give a “nice” gener-

ating set for the kernel Kerm(α). To this end we make the following definitions.
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Definition 7. A basic element of Ker(α) in KM
m (F) is an element of the form

a1 · · · am−1 · am , where a1, . . . , am−1 ∈ KM
1 (F)/p and am ∈ NL/F (L×)/p, where

L is a splitting field for α of degree (at most) p.

Definition 8. For a symbol α define BKerm(α) to be the subgroup of Kerm(α)

generated by all basic elements of Kerm(α).

Remark 9. A description of Kerm(α) was given in [Orlov et al. 2007] for the case
p = 2, where it was proved that BKerm(α)=Kerm(α) for all m. Also, by the norm
and multiplication principles for A0(X,KM

1 ) one has BKer1(α)= Ker1(α).

We prove that over p-special fields (of characteristic zero), BKerm(α)=Kerm(α)

for a symbol α ∈ KM
n (F) for arbitrary n and m.

3. Norm principle

In this section we prove the higher norm principle for the norm variety of a sym-
bol α. Recall the following well known lemma.

Lemma 10 [Gille and Szamuely 2006, p. 195, Corollary 7.2.10]. Let F be a field
of characteristic prime to p which is p-special, and K/F be a field extension of
degree p. Then KM

n (K )=
∑

KM
n−1(F)K

M
1 (K ).

Also recall the following theorem taken from [Haesemeyer and Weibel 2009]
(which is the main ingredient in the proof of the norm principle).

Theorem 11 [Haesemeyer and Weibel 2009, Theorem 9.6]. Let F be a p-special
field of characteristic zero, and E/F a field extension with [E : F] = p. Write
E = F[ε] with ε p

∈ F. For a nontrivial symbol α ∈KM
n (F)/p suppose that αE 6= 0

and that X is a norm variety for α. For [x, α] ∈ A0(E), where x ∈ X E is of degree at
most p (over E), there exist points xi ∈ X of degree p over F , ti ∈ F and bi ∈ F(xi )

such that NE(x)/E(α)=
∏

NE(xi )/E(bi + tiε).

We are ready to prove the higher norm principle:

Theorem 12. Let F be a p special field of characteristic zero, and X a norm
variety for a nontrivial symbol α ∈ KM

n (F)/p. Then X has a KM
m -norm principle

for any m. Moreover, Kerm(α)= BKerm(α) for any m.

Proof. In order to prove the higher norm principle, we have to show that

N(A0(X,KM
m ))= N(Ap

0 (X,K
M
m )).

It is clear that it is enough to show

N(A0(X,KM
m ))⊆ N(Ap

0 (X,K
M
m )).

Let [x, γ ] ∈ A0(X,KM
m ), so that x ∈ X is a closed point and γ ∈ KM

m (F(x)).
Since F is p-special, x is of degree pt for some t ≥ 1. If t = 1 there is nothing
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to prove, so we assume t > 1. Pick subfields F ⊆ L ⊆ K ⊆ F(x) such that
[F(x) : K ] = p, [K : L] = p and K is not a splitting field of α (if K is a splitting
field, then corF(x)/F (γ ) = corK/F (corF(x)/K (γ )) and we are done by induction).
Write F(x) = K (x ′) for a closed point x ′ ∈ X K . By Lemma 10, we may write
corF(x)/F (γ ) = corF(x)/F

(∑
γi · bi

)
for some γi ∈ KM

m−1(K ), bi ∈ F(x). By
Theorem 11, there are closed points xi j ∈ X L of degree p and βi, j ∈ L(xi, j ) such
that corK (x ′)/K (bi )=

∑
j corK (xi, j )/K (βi, j ). Now compute

N([x, γ ])= corF(x)/F (γ )

= corF(x)/F

(∑
i

γi · bi

)
= corK/F

(∑
i

γi · corK (x ′)/K (bi )

)
= corK/F

(∑
i

γi ·
∑

j

corK (xi, j )/K (βi, j )

)
= corK/F

(∑
i, j

γi · corK (xi, j )/K (βi, j )

)
=

∑
i, j

corK/F corK (xi, j )/K (γi ·βi, j )

=

∑
i, j

corK (xi, j )/F (γi ·βi, j )

=

∑
i, j

corL(xi, j )/F corK (xi, j )/L(xi, j )(γi ·βi, j )

= N
(∑

i, j

[xi, j , corK (xi, j )/L(xi, j )(γi ·βi, j )]

)
.

Notice that [L(xi, j ) : F] = pt−1, and clearly L(xi, j ) splits α, so we are done by
induction on t . We proved that N(A0(X,KM

m ))= N(Ap
0 (X,K

M
m )), so X has a KM

m -
norm principle. The last statement follows from Lemma 10 and the proof thus
far. �

Corollary 13. Let F be a field of characteristic prime to p and θ ∈ H n
ét(F, µ

⊗n
p )

a symbol, where µp denotes the Galois module of all p-th roots of unity. Then for
an arbitrary k ∈ N, there is an exact sequence∐

L

H k
ét(L , µ

⊗k
p )

∑
NL/F

−−−−→ H k
ét(F, µ

⊗k
p )

· θ
−→ H k+n

ét (F, µ⊗k+n
p )∏

E resE/F
−−−−−→

∏
E

H k+n
ét (E, µ⊗k+n

p ),
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where the coproduct is taken over all splitting field extensions L/F for θ of degree
not divisible by p2, and the product is taken over all splitting field extensions E/F.

Proof. This is just applying Theorem 12 to Theorem 1. �

4. Norm principle for division algebras

In this section we give a purely algebraic proof of a variant of Theorem 11 for any
division algebra and not just a symbol. When n = 2, we have that the m torsion
part of the Brauer group mBr(F) is isomorphic to KM

2 (F)/m. So we may consider
symbols as division algebras and their norm varieties as the Severi–Brauer varieties.

Polynomials over division rings. We first recall some known facts concerning
polynomials over division algebras. For a more thorough reference we point the
reader to [Jacobson 1996, Chapter 1; 1943, Chapter 3; Haile and Rowen 1995]. Let
D be an F-central division algebra (i.e., its center is F) and R = D[λ] the ring of
(left) polynomials over D (where λ is central in R). Let c ∈ D be a central element.
Then there is a well defined substitution homomorphism ϕ :R→D defined by λ 7→c.
In particular, if we can decompose f (λ)= g(λ)h(λ), then f (c)= g(c)h(c).

The polynomial ring R= D[λ] is a left (and also right) Euclidean domain; that is,
for any f (λ), g(λ) ∈ R there are q(λ), r(λ) ∈ R such that f (λ)= q(λ)g(λ)+ r(λ)
and deg r(λ)< g(λ) or r(λ)= 0. As a consequence we get that every left (and right)
ideal is principal, so R is a (left and right) principle ideal domain (PID). For left
ideals of R, R f ⊆ Rg if and only if f = hg for some h ∈ R. Thus R f is maximal
if and only if f is irreducible, which happens if and only if R/R f is simple as a
(left) module over R.

The two-sided ideals of R are all of the form R f = f R, where f ∈ F[λ]. For
a left ideal R f , the maximal two-sided ideal contained in R f (called the bound
of R f ) is the annihilator I = ann(R/R f ). Note that if R f is a maximal left ideal
( f is irreducible) and I 6= 0 then I is a maximal two-sided ideal. Write I = Rg 6= 0
(where g ∈ F[λ]). Then R/I ∼= D⊗(F[λ]/F[λ]g), where F[λ]/F[λ]g is a simple
F[λ]-module of dimension deg(g)— that is, a field extension of degree deg(g).

Norm principle for division algebras. For this subsection we assume our base
field F is p-special (no restriction on char(F)), and D is any F-central division
algebra. We discuss further polynomials over D, and then prove our version of
Theorem 11.

Theorem 14. Let D be an F-central division algebra (which by assumption has
index pt for some t). The only irreducible polynomials over D are of degree a
power of p.
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Proof. Let f ∈ R= D[λ] be a polynomial of degree d such that d is not a power of p.
Recall from the previous subsection that f is irreducible if and only if M = R/R f
is a simple R-module.

If M is a simple R-module then it is also a simple module over S = R/ann(M).
The ideal ann(M) is nonzero, since f divides its reduced norm, which is nonzero
(see [Haile and Rowen 1995]). This can also be seen by comparing the dimension
over F of M and R. As we assume f is irreducible we have that ann(M) is a
maximal two-sided ideal, and since R is a principle ideal domain we can write
ann(M)= 〈g〉 such that g ∈ F[λ] (see the previous subsection). This implies that
S ∼= D⊗F E , where E = F[λ]/〈g〉 is a field extension of F . As F is p-special we
have that dimF (E)= ps for some s, so dimF D⊗F E = p2t+s .

If indeed M were a simple module, it would be a simple module of D⊗E , which
is either D⊗F E (if it is a division algebra) or E pt

(if D⊗E ∼=Mpt (E)) or any other
possibility in between. Either way, we get that the dimension of a simple module
is a power of p but dimF (M)= d dimF (D)= dp2t is not a power of p. Hence M
is not a simple module, which forces f to be reducible. �

The next corollary is now immediate.

Corollary 15. For a division algebra D over a p-special field, every polynomial
over D of degree less than p splits into linear factors.

The factorization of polynomials of degree less then p over D enables us to give
the following purely algebraic proof of the crucial Theorem 11 (which works for
any division algebra, not just symbols).

Corollary 16. Let D be a division algebra over a p-special field F , and let F ⊂ E
be a field extension of dimension p such that DE = D⊗F E is a division algebra.
Then for every d ∈ DE there are d0, . . . , dp−1 ∈ D and ε ∈ E such that

d = d0

p∏
i=1

(ε− di ).

Proof. Since F is p-special we may write E = F[ε | ε p
∈ F], and so the extension of

D can be written as DE =D+Dε+Dε2
+· · ·+Dε p−1. Thus, any element d ∈DE is

of the form d= d ′0+d ′1ε+· · ·+d ′p−1ε
p−1, where d ′i ∈ D. Looking at the polynomial

f (λ)= d ′0+d ′1λ+· · ·+d ′p−1λ
p−1
∈ D[λ], we have that f (ε)= d . By Corollary 15,

f (λ) splits to linear factors f (λ)= d0(λ−d1) ·(λ−d2) · · · (λ−dp−1) in D[λ], and
since ε is central we get that d = f (ε)= d0(ε− d1) · (ε− d2) · · · (ε− dp−1). �

Corollary 17. Suppose F is p-special and D is an F-central division algebra of
degree d. Let E = F[ε | ε p

∈ F] be a field extension of degree p such that DE is a
division algebra. For every element d ∈ DE , there are maximal subfields Ei ⊆ D
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and elements di ∈ D such that

NDE/E(d)= NE0⊗F E/E(d0)
∏

NEi⊗F E/E(ε− di ),

where NDE/E is the reduced norm for DE .

Proof. The proof follows from the well known fact that for maximal subfields
of D the field norm coincides with the reduced norm. In particular, write d =
d0(ε − d1) · (ε − d2) · · · (ε − dp−1) as in Corollary 16. Now define Ei to be any
maximal subfield of D containing di and apply the reduced norm on both sides of
the factorization of d to get the required result. �

We use this factorization to get a direct proof of the norm principle for division
algebras.

Theorem 18 (norm principle for division algebras). Let F be a p-special field and
D an F-central division algebra of index d = pn . Let E/F be a finite dimensional
splitting field for D and let e ∈ E. Then there is a maximal subfield K of D and
k ∈ K such that NE/F (e)= NK/F (k).

Proof. We proceed by induction on the index ind(D)= pn . The case of n = 0 is
trivial. We now assume the theorem for ind(D)≤ pk and prove it for ind(D)= pk+1.
Let E/F be a splitting field for D of degree r , noting that since D is division we
have r ≥ ind(D). We proceed by induction on r . The case r = d follows from
the fact that in this case E embeds in D as a maximal subfield. We now assume
the theorem for r ≤ ind(D)+ s and prove it for r = ind(D)+ s + 1. As F is
p-special we can find a subfield F ⊂ E1 ⊂ E such that E1 is of degree p over F .
Consider DE1 = D ⊗ E1. First assume that DE1

∼= Mp(D′) for an E1-central
division algebra D′ of index pk . Then by induction on ind(D) we get that there
is a maximal subfield T ⊂ D′ and t ∈ T such that NT/E1(t)= NE/E1(e), implying
NT/F (t)= NE/F (e). But now, considering T over F , we see that T splits D and
[T : F] = pk+1

= ind(D), so T embeds in D as a maximal subfield and we are
done.

Now assume DE1 is division. Notice that E splits DE1 and is of lesser de-
gree (over E1). Thus by induction there exist a maximal subfield T ⊂ DE1 and
t ∈ T such that NT/E1(t) = NE/E1(e), implying NT/F (t) = NE/F (e). Writing
E1 = F[ε | ε p

∈ F] and using Corollary 17 we get maximal subfields Ki ⊂ D and
elements di ∈ Ki such that

NT/F (t)= NE1/F (NT/E1(t))

= NE1/F (NK0⊗F E1/E1(d0))
∏

NE1/F (NKi⊗F E1/E1(ε− di ))

= NK0⊗F E1/F (d0)
∏

NKi⊗F E1/F (ε− di )

= NK0/F (NK0⊗F E1/K0(d0))
∏

NKi/F (NKi⊗F E1/Ki (ε− di )).
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Thus NT/F (t) is a product of norms from the maximal subfields Ki ⊆ D. Using
the fact that the reduced norm is multiplicative and coincides with the field norm
for maximal subfields we see that NT/F (t)= NK/F (d), where K is any maximal
subfield of D containing d and d = NE/F (t)

∏
NKi⊗F E1/Ki (ε− di ). �

Remark 19. Using a noncommutative analog of the determinant, the Dieudonné
determinant, one can show that over any field the image of the reduced norm of
a central simple algebra is an invariant of its class in the Brauer group of F ; see
[Pierce 1982, 16.5]. The above gives a simple proof of this result for p-special
fields.

5. Multiplication principle

In this section we prove that for p= n=m= 2 there is no generalized multiplication
principle (see Definition 6). We start by quoting the following lemma.

Lemma 20 [Matzri 2019, Lemma 4.1]. Let F be a p-special field of characteristic
prime to p. Let α ∈ KM

n (F)/p be a symbol and b ∈ KM
1 (F)/p. Then α · b = 0 if

and only if there exist si ∈ KM
1 (F), i = 1, . . . , n, and a presentation α = s1 · · · sn

such that sn · b = 0.

The proof uses both norm and multiplication principles. Since we already have
a generalized norm principle, if there were a generalized multiplication principle
we would be able to prove a generalization of Lemma 20.

Lemma 21. Assume the generalized multiplication principle holds. Let α ∈ KM
n /p

and β ∈ KM
m /p be symbols. Then, α · β = 0 if and only if there are presentations

α = a ·α′ and β = b ·β ′, where a, b ∈ KM
1 (F) are such that a · b = 0 (that is, b is

a norm from the field extension F[ p
√

a]).

Proof. The “only if” part is clear. For the other direction, assume that α ∈ KM
n /p,

β ∈ cKm/p are symbols such that α ·β = 0. By Theorem 12,

β =
∑

[Ki :F]=p

NKi/F (βi )

for some splitting fields Ki and elements βi ∈ Ki . By the generalized multiplication
principle this is equal to

∑M
i=1 NK/F (γi · ki ), where K is a (single) splitting field

for α of degree p, ki ∈ K and γi ∈ F . Thus, as α splits over K = F[ p
√

b : b ∈ F]
we can write α = α′ · b. Now by the projection formula and the description of β
we have that β · b = 0, and so by Lemma 20 we can decompose β = β ′ · a such
that a · b = 0. �

We now show that, at least for p = n = m = 2, the generalization of Lemma 20
implied in the last lemma is false. To this end we use the theory of quadratic forms
and valuations.
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Lemma 22. Let F be a field of characteristic 6= 2, with a valuation ν : F → 0,
where 0 is a well ordered abelian group. Assume that for a1, . . . , an ∈ F×, the
images of ν(a1), . . . , ν(an) in 0/20 are pairwise different. Then the quadratic
form ϕ = 〈a1, . . . , an〉 is anisotropic.

Proof. Write ϕ(v) = α2
1a1 + · · · + α

2
nan . Notice that for i 6= j we have that

ν(α2
i ai ) 6= ν(α

2
j a j ) (for otherwise ν(ai ) would be equivalent to ν(a j ) in 0/20).

Thus, ν(ϕ(v))= ν(α2
i ai ) for some i such that αi 6= 0. Now,

ν(α2
i ai )= 2ν(αi )+ ν(ai ) 6= ∞,

so ϕ(v) 6= 0 unless v = 0. �

Now we can give a counterexample (suggested by Stephen Scully and commu-
nicated to us by Stefan Gille)

Proposition 23. Let F = Q(x, y, z) and α = 〈〈x, y〉〉, β = 〈〈z,−x + yz〉〉. Then
α ⊥ β ′ is anisotropic, where β ′ is the pure subform of β.

Proof. Take the (x, y, z)-adic valuation of F , with values in the discrete group
0 = Z3 ordered lexicographically from left to right. By the previous lemma, the
quadratic forms α, β and φ = α ⊥ 〈−z, x − yz〉 are anisotropic, and so α ⊥ β ′ =
φ⊥ 〈−xz+ yz2

〉 is anisotropic if and only if−xz+ yz2 is not a value of φ. Assume
α2

0(−xz+yz2)=α2
1−α

2
2 x−α2

3 y−α2
4z+α2

5 xy+α2
6(x−yz) for some αi ∈ F , where

α0 6= 0. Multiplying by a common denominator, we can assume αi ∈ Q[x, y, z].
We can rewrite the equation as

z(−α2
0 x +α2

4 +α
2
6 y)=−α2

0 yz2
+α2

1 −α
2
2 x −α2

3 y+α2
5 xy+α2

6 x .

Compering even and odd z-degree, we get that −α2
0 x + α2

4 + α
2
6 y = 0, which

contradicts the fact that α is anisotropic. �

Remark 24. Note that by Springer’s theorem, the above example works even if
we take prime to 2 closure of F .

Corollary 25. There is no generalized multiplication principle for the case p =
m = n = 2.

Proof. Assume that the generalized multiplication principle holds. By the Milnor
conjecture, consider the quadratic Pfister forms α = 〈〈x, y〉〉 and β = 〈〈z,−x + yz〉〉
in I 2/I 3 over a prime to p closure of F =Q(x, y, z). We notice that

α ·β = 〈〈x, y, z,−x + yz〉〉 ∼= 〈〈x, y,−yz,−x + yz〉〉 ∼= 〈〈y, xyz, x − yz,−x + yz〉〉

is hyperbolic. Thus, by Lemma 21 there is a presentation β = 〈〈b〉〉 · 〈〈t〉〉 such that
α · 〈〈b〉〉 is hyperbolic. Since b is an entry of β if and only if b is a value of the
pure subform β ′, and b is also a value of α, we get that α ⊥ β ′ is isotropic, in
contradiction to Proposition 23. �
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We note that even for an odd prime p and F = Q(ρ, x, y, z), where ρ is a
primitive root of unity, we can define α= (x, y) and β = (z,−x+ yz) in KM

2 (F)/p
and still get that α ·β = 0. We conjecture that this should give a counterexample
for the generalized multiplication principle for the case n =m = 2, p an odd prime.
In order to prove it one would need to show there is no presentation α = a · b
such that b · β = 0. It seems that considering α, β as symbol algebras in the
Brauer group of F and using valuation theory one could show such a presentation
is not possible, but we could not make it work. For example, if one can show that
Im(Nrdα)∩ Im(Nrdβ) = F p, it would imply the needed condition, but again, we
could not do it.
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