Download this article
 Download this article For screen
For printing
Recent Issues
Volume 18
Volume 16
Volume 15
Volume 14
Volume 13
Volume 12
Volume 11
Volume 10
Volume 9
Volume 8
Volume 6+7
Volume 5
Volume 4
Volume 3
Volume 2
Volume 1
The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
ISSN (electronic): 2640-7345
ISSN (print): 2640-7337
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
The exceptional simple Lie group $F_{4(-20)}$, after J. Tits

Alain J. Valette

Vol. 20 (2023), No. 2-3, 599–610

This is a semisurvey paper, where we start by advertising Tits’ synthetic construction (1953) of the hyperbolic plane H2(Cay ) over the Cayley numbers Cay and of its automorphism group which is the exceptional simple Lie group G = F4(20). Let G = KAN be the Iwasawa decomposition. Our contributions are:

  • Writing down explicitly the action of N on H2(Cay ) in Tits’ model, facing the lack of associativity of Cay .

  • If MAN denotes the minimal parabolic subgroup of G, characterizing M geometrically.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

exceptional simple Lie groups, octonions, hyperbolic plane
Mathematical Subject Classification
Primary: 22E15
Secondary: 17A35, 51A10, 51A45
Received: 17 November 2022
Revised: 27 March 2023
Accepted: 19 April 2023
Published: 13 September 2023
Alain J. Valette
Institut de mathématiques, Faculté des Sciences
Université de Neuchâtel