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Algebraic cryptanalysis and new security enhancements

Vitaliı̆ Roman’kov

We briefly discuss linear decomposition and nonlinear decomposition attacks using polynomial-time de-
terministic algorithms that recover the secret shared keys from public data in many schemes of algebraic
cryptography. We show that in this case, contrary to common opinion, typical computational security
assumptions are not very relevant to the security of the schemes; i.e., one can break the schemes without
solving the algorithmic problems on which the assumptions are based. Also we present another and in
some points similar approach, which was established by Tsaban et al.

Before demonstrating the applicability of these two methods to two well-known noncommutative
protocols, we cryptanalyze two new cryptographic schemes that have not yet been analyzed.

Further, we introduce a novel method of construction of systems resistant against attacks via linear
algebra. In particular, we propose improved versions of the well-known Diffie–Hellman-type (DH) and
Anshel–Anshel–Goldfeld (AAG) algebraic cryptographic key-exchange protocols.

1. Introduction

In [Roman’kov 2013a], the author introduced a method of linear decomposition applicable in algebraic
cryptanalysis. This method was further developed in [Myasnikov and Roman’kov 2015]; see also [Ro-
man’kov 2013b; 2018a; 2018b]. In [Roman’kov 2016], this method was supplemented by a nonlinear
decomposition method; see also [Roman’kov 2018b]. These methods can be applied for obtaining secret
keys without computing private parameters or solving algorithmic problems on which the protocols are
based. These applications are called linear and nonlinear decomposition attacks respectively. They
are deterministic, provable and polynomial-time. These methods were widely applied in cryptanalysis
of dozens of protocols of algebraic cryptography; see [Roman’kov 2018b]. The linear decomposition
attack can be applied to protocols based on matrix groups over arbitrary (finite or infinite) fields. The
nonlinear decomposition attack is applicable to protocols based on groups that are not necessary matrix,
or do not use matrix representations. See details in [Roman’kov 2016; 2018b].

B. Tsaban [2015] introduced a method for obtaining provable polynomial-time solutions of problems
in noncommutative algebraic cryptography called the linear span-method, or simply the span-method;
see also [Ben-Zvi et al. 2018]. This method is probabilistic and is a fundamental base for algebraic span
cryptanalysis, a general approach for provable polynomial-time solutions of computational problems in
groups of matrices over finite fields, and thus in all groups with efficient matrix representations over finite
fields. This approach is widely applicable; in particular, it is applicable to the AAG protocol. Algebraic
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span cryptanalysis improves upon earlier approaches, such as Cheon–Jun’s method [2003] and Tsaban’s
linear centralizer method [2015].

We will not describe these methods in detail, but we will give a couple of examples of how these
methods can be applied. Some of these applications, namely to the DH and to the AAG protocols, were
previously presented in the literature. We present them here because we propose improved versions of
them. There are exactly two new applications: one of them to cryptanalysis of the ElGamal-type version
of the cryptosystem MOR introduced in [Bhunia et al. 2019], and the other to the cryptosystem proposed
in [Baba et al. 2011].

A different probabilistic attack on the braid group cryptosystems is the length-based attack. The
length-based attack on AAG protocol was initially proposed by J. Hughes and A. Tannenbaum [2002].
A. D. Myasnikov and A. Ushakov [2007] showed that accurately designed length-based attack can suc-
cessfully break a random instance of the simultaneous conjugacy search problem for certain parameter
values and argued that the public/private information chosen uniformly random leads to weak keys. This
attack can be applied to other groups too. See [Garber et al. 2006; Hofheinz and Steinwandt 2002;
Hughes 2002; Myasnikov et al. 2005; 2006].

The presence of effective methods of linear algebra in algebraic cryptanalysis requires the development
of tools to counter these methods. Section 7 presents such tools. Their use makes some well-known
schemes protected against attacks by the linear algebra methods. As examples of such protection, we
provide improved versions of the DH and AAG algebraic cryptographic key-exchange protocols.

Throughout we use the following notation:

• Z, the set of integer numbers.

• N, the set of nonnegative integer numbers.

• Sn , the symmetric group of degree n.

• gh
= hgh−1, conjugate.

• [g, h] = ghg−1h−1, commutator.

For a group G, we have:

• G ′, commutant (derived subgroup).

• CG(A), centralizer of A in G.

• Aut(G), automorphism group.

2. Mathematical background for the linear algebra methods

Let F be a field and M(n, F) be the set of n× n matrices with entries in F. For a set S ⊆M(n, F), let
Alg(S) be the algebra generated by S, that is, the smallest algebra A ⊆ M(n, F) that contains S as a
subset. Every subalgebra of M(n, F) is also a vector space over the field F. Let GL(n, F) be the group
of invertible matrices in M(n, F). For a subgroup G ≤ GL(n, F), we have Alg(G) = span(G), where
span(G) is the vector space spanned by G.

Proposition 2.1 [Ben-Zvi et al. 2018, Proposition 1]. Let G = gp(g1, . . . , gk) ≤ GL(n, F) be a group,
and d ≤ n2 be the dimension of the vector space Alg(G). A basis for the vector space Alg(G) can be
computed using O(kd2n2) field operations.
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Lemma 2.2 (invertibility lemma [Tsaban 2015, Lemma 9]). For a finite field Fq of order q , let h1, . . . , hm ∈

M(n, Fq) such that some linear combination of these matrices is invertible. If α1, . . . , αm are chosen
uniformly and independently from Fq , then the probability that the linear combination α1h1+ · · ·+αmhm

is invertible is at least 1− n/q.

Let V be a finite-dimensional vector space over a field F with basis B = {v1, . . . , vr }. Let End(V )
be the semigroup of endomorphisms of V. We assume that elements v ∈ V are given as vectors relative
to B, and endomorphisms a ∈ End(V ) are given by their matrices relative to B. For an endomorphism
a ∈ End(V ) and an element v ∈ V we denote by va the image of v under a. Also, for any subsets W ⊆ V
and A⊆ End(V ) we put W A

= {wa
:w ∈W, a ∈ A}. We assume that elements of the field F are given in

some constructive form and the “size” of the form is defined. Furthermore, we assume that the basic field
operations in F are efficient; in particular they can be performed in polynomial time in the size of the
elements. In other words, F is constructive. For an element α ∈ F we write |α| for the size of α and put
|v| =max{|αi |} for a vector v = (α1, . . . , αr ) ∈ V, and |a| =max{|αi j |} for a matrix a = (αi j ) ∈ End(V ).

Lemma 2.3 (principal lemma [Myasnikov and Roman’kov 2015, Lemma 3.1]). There is an algorithm
that for given finite subsets W ⊆ V and U ⊆ End(V ) finds a basis of the subspace span(W sm(U )) in
the form {wa1

1 , . . . , w
at
t }, where wi ∈W and ai ∈ sm(U ). Here sm(U ) denotes the submonoid generated

by U. Furthermore, the number of field operations used by the algorithm is polynomial in r = dim(V )
and the cardinalities of W and U. The total estimate is O(r3

|U |2+ r |W |2).

3. Cryptanalysis of two schemes of Baba et al. by the linear algebra methods

In [Baba et al. 2011], S. Baba, S. Kotyada and R. Teja demonstrated how to define a supposedly one-way
function FACTOR in a noncommutative group. As an example of a platform for implementing FACTOR,
they proposed one of the groups, such as GL(n, Fq), UT(n, Fq) or braid groups Bn , n ∈ N. Here Fq

denotes a finite field of order q .
They believed that the function FACTOR was one-way, which means that the inverse to FACTOR

is easy to compute, while the function itself is hard to compute. Shortly afterwards Stanek [2011]
published an extension of the baby-step giant-step algorithm disproving this conjecture. Note that the
baby-step giant-step methods are limited in practice because of memory requirements. In [Romsy 2011]
a modification of Pollard’s kangaroo algorithm was presented that solves the FACTOR problem requiring
only negligible memory. Anyway these methods have very complicated implementations. We will show
that the linear algebra approach is much simpler and more efficient. At the same time, this will be an
example of using the methods presented.

Then, using the FACTOR function as a primitive, the authors of [Baba et al. 2011] defined a public
key cryptosystem which is comparable to the classical ElGamal system based on the discrete logarithm
problem. Recall, that the ElGamal system can be described as follows: Let G be a public finite cyclic
group with generator g, and let x ∈ Z be Alice’s private key. The element gx is public. To send a message
m ∈ G, Bob picks a random integer y and sends the ciphertext c= (gy, gxym) to Alice. To decrypt, Alice
calculates (gy)x = gxy and inverts it to retrieve m. There are a couple of cryptosystems of ElGamal-type.
See, for example, [Kahrobaei and Khan 2006; Fine et al. 2016]. The versions proposed in [Mahalanobis
2008; 2012] were analyzed in [Roman’kov and Obzor 2018]. See also cryptanalysis in [Roman’kov
2018b].
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In [Baba et al. 2011], the authors also proposed a key exchange, analogous to the DH key exchange
protocol in a noncommutative setting using FACTOR. Recall, that the classical DH protocol can be
described as follows: Let G be a public finite cyclic group with generator g, and let x ∈ Z be Alice’s
private key and y ∈ Z be Bob’s private key. Alice publishes gx and Bob publishes gy. Then each of them
computes the exchanged key gxy

= (gx)y
= (gy)x.

In this paper, we apply and compare two methods of algebraic cryptanalysis via linear algebra, namely,
the linear decomposition method invented and developed by the author in [Roman’kov 2013a; 2013b;
2018b] and in [Myasnikov and Roman’kov 2015], and the span-method invented by B. Tsaban and
developed with A. Ben-Zvi, and A. Kalka [Tsaban 2015; Ben-Zvi et al. 2018] to show the vulnerability
of the cryptosystem and protocol proposed in [Baba et al. 2011].

3A. The ElGamal-type cryptosystem based on FACTOR [Baba et al. 2011]. Let G be any group and let
g, h ∈ G be two noncommuting elements chosen by Alice. Let gp(g) and gp(h) be the cyclic subgroups
generated by these elements, respectively. In order to define the FACTOR function one assume that
gp(g)∩ gp(h) = {1}. Let ϕ : gp(g)× gp(h)→ G be a function defined by ϕ(gx , h y) = gx

· h y, where
x, y ∈ Z. Obviously, ϕ is injective. Then FACTOR(gx h y)= ϕ−1(gx h y).

We suppose that Alice is the recipient of the messages and Bob is communicating with Alice. Let
m ∈ G be a message.

Algorithm. • Alice picks arbitrary random integers x, y ∈ Z and sets a public key (G, g, h, gx h y).
Alice has a private key (gx , h y) for decryption.

• To send m, Bob picks arbitrary random private integers x ′, y′ and sends the ciphertext

c = (gx+x ′h y+y′, gx ′h y′m)

to Alice.

• To decrypt the ciphertext, Alice uses her private key and calculates

(gx)−1(gx+x ′h y+y′)(h y)−1
= gx ′h y′ .

Then she inverts it to retrieve m.

The authors of this scheme hoped that the security of the cryptosystem described above reduces to
solving FACTOR problem in the underlying group. Below we will show that the system is vulnerable to
linear algebra attacks.

3B. Cryptanalysis of the ElGamal-type cryptosystem based on FACTOR. We will show that any in-
truder can efficiently retrieve m.

First we will use the span-method.

Theorem 3.1. Suppose that G is a finite group presented as a matrix group over a finite field Fq of
order q; i.e., G ≤M(n, Fq). Let g, h ∈ G be two noncommuting elements such that gp(g)∩ gp(h)= {1}.
Given gx h y, gx+x ′h y+y′

∈ G, where x, x ′, y, y′ ∈ N, one can find in polynomial time (in the size of the
public data) the element gx ′h y′.
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Proof. Let V = span(gp(g)) be the linear subspace of M(n, Fq) generated by all matrices of the form gi,
i ∈ Z. Then dim(V ) ≤ n − 1. Since g is the root of its characteristic polynomial of degree n, ma-
trices 1, g, g2, . . . , gn are linearly dependent. Obviously, if gk+1 lies in span({1, g, g2, . . . , gk

}), then
gk+t , g1−t

∈ span({1, g2, . . . , gk
}) for every t = 2, 3, . . . .

By the Gaussian elimination method, we can efficiently construct a basis for V. For example, we can
take as a basis the maximum independent set of elements of the form 1, g, g2, . . . , gk, checking for each
subsequent l = 0, 1, . . . whether or not gl+1 lies in span({1, g, g2, . . . , gl

}).
Consider the equation

f (gx h y)h = h f (gx h y)∼ f gx h = h f gx , (1)

which is linear with respect to n2 unknown entries of matrix f . We will seek f in the form

f =
k∑

i=0

αi gi
;

i.e., we seek a solution f in V. We know that there is a nondegenerate solution f = g−x. By Proposition 2.1
we can efficiently construct a basis e1, . . . , ep of the subspace of all solutions of (1) in V. Then we apply
the invertibility lemma, Lemma 2.2 to find an invertible solution f .

Let the element f be found. Then

f (gx+x ′h y+y′)= gx ′( f (gx h y′))h y
= (gx ′h y′) f (gx h y)

and
(gx ′h y′) f (gx h y)(gx h y)−1 f −1

= gx ′h y′ . �

Now we apply the result just obtained to the protocol under consideration.

Corollary 3.2. We have
(gx ′h y′)−1(gx ′h y′m)= m,

and the message m is thus computed.

Now we will show how, using the linear decomposition method, we can calculate the message m for
an arbitrary constructive field by a deterministic algorithm.

Theorem 3.3. Let G ≤M(n, F) be a matrix group over an arbitrary (constructive) field F. Let g, h ∈ G
be two noncommuting elements such that gp(g) ∩ gp(h) = {1} and m ∈ G. Given the elements
gx h y, gx+x ′h y+y′, gx+x ′h y+y′m ∈ G, where x, x ′, y, y′ ∈ Z, one can find in polynomial time (in the
size of the public data) the element m.

Proof. Let V = span(gp(g)gx h y gp(h)) be the linear subspace of M(n, F) generated by all matrices of
the form gi (gx h y)h j, i, j ∈ Z. Then dim(V ) ≤ (n− 1)2. In the notation of Lemma 2.3, V = W sm(U ),
W = {gx h y

}, U = sm(l(g±1, r(h±1)), where for any f ∈ G, l( f ) means the endomorphism of M(n, F)

corresponding to left-sided multiplication by f . Similarly r( f ) means the endomorphism of M(n, F)

corresponding to right-sided multiplication by f .
By Lemma 2.3, we can efficiently obtain a basis ei = gui (gx h y)hvi , ui , vi ∈ Z, i = 1, . . . , r of V.
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Since, gx+x ′h y+y′
∈ V, by Lemma 2.3 we can efficiently obtain an expression of the form

gx+x ′h y+y′
=

r∑
i=1

αi ei , αi ∈ F, i = 1, . . . , r. (2)

The right side of (2) is equal to

gx
( r∑

i=1

αi gui hvi

)
h y, (3)

and it follows by (2) that

gx ′h y′
=

r∑
i=1

αi gui hvi . (4)

The message m is retrieved as above. �

Remark 3.4. Recall that the authors of [Baba et al. 2011] suggest as a platform for their cryptosystem
one of the groups GL(n, Fq), UT(n, Fq), or braid groups Bn , n ∈ N. In our cryptanalysis, we consider
only matrix groups. Any group Bn admits a faithful matrix representation [Bigelow 2001; Krammer
2002]. The braid group Bn is linear via the so-called Lawrence–Krammer (LK) representation Bn →

GL(m,Z[t±1, 1/2]), where m = n(n− 1)/2, which is injective. The LK representation can be computed
by a polynomial-time algorithm. This representation is also invertible by (similar) polynomial-time
algorithm; see [Krammer 2002; Cheon and Jun 2003].

3C. The DH key exchange protocol based on FACTOR [Baba et al. 2011] as a particular case of the
protocol in [Sidelnikov et al. 1993]. Suppose Alice and Bob want to exchange keys. Suppose G, g, h
are as in Section 3A.

Algorithm 1. • Alice chooses a random pair of integers (x1, y1). Then Alice sends the element gx1h y1

to Bob.

• Bob picks up two random integers (x2, y2). Then Bob sends the element gx2h y2 to Alice.

• Alice computes K A = gx1(gx2h y2)h y1 = gx1+x2h y1+y2 .

• Bob computes K B = gx2(gx1h y1)h y2 = gx1+x2h y1+y2 .

• Now Alice and Bob have their exchanged secret key K1 = K A = K B .

This algorithm is a particular case of the following algorithm of [Sidelnikov et al. 1993].
Let G be a group, A and B two of its commutative subgroups, and g ∈ G. This data is public.

Algorithm 2. • Alice chooses a random pair of elements (a, b) ∈ A × B. Then Alice sends the
element agb to Bob.

• Bob picks up two random elements (a′, b′) ∈ A× B. Then Bob sends the element a′gb′ to Alice.

• Alice computes K A = aa′gb′b.

• Bob computes K B = a′agbb′.

• Now Alice and Bob have their exchanged secret key K2 = K A = K B .
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3D. Cryptanalysis the DH key exchange protocols presented above. Now we will apply the linear de-
composition method to reveal K.

Theorem 3.5. Let G ≤M(n, F) be a matrix group over an arbitrary constructive field F. Let g ∈ G and
let A = gp(a1, . . . , am), B = gp(b1, . . . , bs) be two finitely generated subgroups of G. Given agb, a′gb′,
where a, a′ ∈ A, b, b′ ∈ B, one can find in polynomial time (in the size of the public data) the element
aa′gbb′.

Proof. Let V = span(AgB) be the linear subspace of M(n, F) generated by all matrices of the form ugv,
u ∈ A, v ∈ B. Then dim(V )≤ (n− 1)2.

In the notation of Lemma 2.3, V =W sm(U ), where W ={g}, U = sm(l(a±1
i ), r(b j±1)), i = 1, . . . ,m,

j = 1, . . . , s. Let ei = ui gvi i = 1, . . . , r , be a basis of V that can be efficiently obtained by Lemma 2.3
Since, agb ∈ V, we can efficiently obtain an expression of the form

agb =
r∑

i=1

αi ei , αi ∈ F, i = 1, . . . , r. (5)

Then
r∑

i=1

αi ui (a′gb′)vi = a′
( r∑

i=1

αi ei

)
b′ = aa′gbb′, (6)

completing the proof. �

Corollary 3.6. Each of the keys K1 and K2 of Algorithms 1 and 2 can be efficiently calculated in poly-
nomial time (from the size of the public data of the algorithms).

The described cryptanalysis has many analogues, presented in [Roman’kov 2013a; 2013b; 2016;
2018a; 2018b; 2019a; Ben-Zvi et al. 2018; Tsaban 2015]. In [Roman’kov 2018a], a general scheme
based on multiplications is presented. It corresponds to a number of cryptographic systems known in the
literature, which are also vulnerable to attacks by the linear decomposition method. Note that Tsaban’s
span-method allows him to show the vulnerability of the well-known schemes of [Anshel et al. 1999],
and the triple decomposition key exchange protocol of [Peker 2014].

4. Cryptanalysis of a new version of the MOR scheme

S. Bhunia, A. Mahalanobis, P. Shinde and A. Singh [Bhunia et al. 2019] studied the ElGamal-type
version of the MOR cryptosystem with symplectic and orthogonal groups over finite fields Fq of odd
characteristics. The MOR cryptosystem over SL(d, Fq) was previously investigated by the second of
these authors. In that case, the hardness of the MOR cryptosystem was found to be equivalent to the
discrete logarithm problem in Fqd . It is shown in [Bhunia et al. 2019] that the MOR cryptosystem over
Sp(d, q) has the security of the discrete logarithm problem in Fqd . The MOR cryptosystem was also
studied in [Paeng et al. 2001; Mahalanobis 2015] and was cryptanalyzed in [Monico 2016].

We are to show that the version of MOR in [Bhunia et al. 2019] is not entirely accurate. It should be
supplemented with an additional assumption. The equivalence theorem there should be clarified too.

We also show that the proposed ElGamal-type version of MOR over any finitely generated matrix
group G ≤ GL(d, Fq) is vulnerable with respect to the linear decomposition attack in any case when
the automorphism ϕ can be naturally extended to a linear transformation of the linear space span(G)
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generated by G in M(d, F), for example, if ϕ is an inner automorphism. In fact, there exists an efficient
algorithm to compute the original message by its ciphertext. It can be done for every constructive field,
i.e., a field for which all operations are efficient, and the Gaussian elimination process is efficient too.

4A. The ElGamal version of the MOR cryptosystem [Bhunia et al. 2019]. Let G = gp(g1, g2, . . . , gn)

be a (finite) public group and ϕ a nontrivial public automorphism of G.
Alice’s keys are as follows:

• Private key: t ∈ N.

• Public key: {ϕ(gi ) : i = 1, . . . , n} and {ϕt(gi ) : i = 1, . . . , n}.

We suppose that Alice is the recipient of the messages and Bob is communicating with Alice. Let m ∈ G
be a message.

Algorithm. • To send the message (plaintext) m Bob picks up a random integer r , then he computes
{ϕr (gi ) : i = 1, . . . , n} and ϕtr (m). The ciphertext is ({ϕr (gi ) : i = 1, . . . , n}, ϕtr (m)).

• Since Alice knows t , she computes ϕtr (gi ) from ϕr (gi ) and then ϕ−tr (gi ), i = 1, . . . , n. Finally,
the message m can be computed by ϕ−tr (ϕtr (m))= m.

Remark 4.1. There is one obstacle to the implementation of the decryption process. To recover m, Alice
should compute {ϕ−tr (gi ) : i = 1, , n} by {ϕtr (gi ) : i = 1, . . . , n} or compute it by ϕr . It can be done if
she knows ϕ−1, i.e., {ϕ−1(gi ) : i = 1, . . . , n}.

In the general case, the calculation of the inverse automorphism is not an obviously efficient process.
We have to assume that Alice can do it, for example, because she knows s ∈ N such that ϕs

= id. It
happens, in particular, if she knows the order s1 of ϕ or the order s2 of Aut(G). Then ϕ−1

= ϕs−1 (s = s1

or s = s2). Also Alice can know ϕ−1.
Alice can simultaneously build ϕ and ϕ−1 during the setting of parameters of the protocol.

This obstacle manifests itself more significantly in the proof of the following theorem.

Theorem [Bhunia et al. 2019, Theorem 2.1]. The difficulty in breaking the above MOR cryptosystem is
equivalent to the DH problem in the group gp(ϕ).

Proof. It is easy to see that if one can break the DH problem, then one can compute ϕtr from ϕt in the
public key and ϕr in the ciphertext. This breaks the system.

On the other hand, observe that the plaintext is m = ϕ−tr (ϕtr (m)). Assume that there is an oracle that
can break the MOR cryptosystem, i.e., given ϕ, ϕt and a ciphertext (ϕr , f ) will deliver ϕ−tr ( f ). Now
we query the oracle n times with the public key and the ciphertexts (ϕr (gi ), gi ) for i = 1, . . . , n. From
the output, one can easily find ϕ−tr (gi ) for i = 1, 2, . . . , n. So we just witnessed that for ϕr (gi ) and
ϕt(gi ) for i = 1, . . . , n, one can compute ϕ−tr ( f ) for every f = f (g1, . . . , gn) using the oracle. This
solves the DH problem. �

Remark 4.2. In the first part of the proof one computes ϕtr, but one needs ϕ−tr to compute m in the
protocol. However, it is not always easy to find the inverse. There are some cryptographic schemes based
on the complexity of the problem of finding the inverse to a given automorphism.
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4B. Cryptanalysis of the ElGamal version of the MOR cryptosystem. We propose the following crypt-
analysis that works in the case of an arbitrary (constructive) field F.

Suppose that the ElGamal-type system MOR is considered over a finitely generated matrix group
G ≤ GL(d, F). Then G ⊆ M(d, F). Let G = gp(g1, . . . , gn). We suppose that ϕ can be naturally
extended to a linear transformation of V = span(G) that is a linear subspace generated by G in M(d, F).
It happens for example, if ϕ is an inner automorphism of G. Note, that the case of inner automorphism ϕ

is considered in [Bhunia et al. 2019] as the most significant.
To reveal m using only open protocol data, we perform the following actions.

Step 1: Let Vi , i ∈ {1, . . . , n}, be the subspace of V generated by all elements of the form ϕk(gi ) for
k ∈ Z. There is a basis of Vi of the form e1(i) = ϕ0(gi ) = gi , e2(i) = ϕ(gi ), . . . , eli (i) = ϕ

li−1(gi ). It
can be efficiently constructed as follows.

Initially, we include e1(i) = gi in the basis. Then we check whether ϕ(gi ) belongs to the linear
subspace generated by e1(i). If not, then we add e2(i)= ϕ(gi ) to the basis under construction. Suppose
e1(i), . . . , e j (i) is a constructed part of the basis. Then we check whether ϕ j (gi )= ϕ(e j (i)) belongs to
the linear subspace generated by e1(i), . . . , e j (i). If not, then we add e j+1(i)= ϕ j (gi ) to the basis under
construction, and continue. If so, we stop the process and claim that the basis is constructed and li = j .
Indeed, a linear presentation of ϕ j (gi ) via e1(i), . . . , e j (i) after applying ϕ gives a linear presentation of
ϕ j+1(gi ) via e2(i), . . . , e j (i), ϕ j (gi ), and so via e1(i), . . . , e j (i). This argument works for every j + v,
v ≥ 1. Similarly we can obtain the linear decomposition of each ϕ−v(gi ), v ≥ 1.

Step 2: For each i = 1, . . . , n, we have constructed a basis e1(i), . . . , eli (i) of Vi , where e j+1(i)= ϕ j (gi ),
j = 0, . . . , li − 1. Each subspace Vi is ϕ-invariant. In the general case, li ≤ d2.

In [Bhunia et al. 2019], the authors single out as the main the case of inner automorphism ϕ. They
write:

The purpose of this section is to show that for a secure MOR cryptosystem over the classical
Chevalley and twisted orthogonal groups, we have to look at automorphisms that act by conjuga-
tion like the inner automorphisms. There are other automorphisms that also act by conjugation,
like the diagonal automorphism and the graph automorphism for odd-order orthogonal groups.
Then we argue what is the hardness of our security assumptions.

Then they note that by the Dieudonné theorem, ϕ = σ ιηγ θ , where σ is a central automorphism, ι
is an inner automorphism, η is a diagonal automorphism, γ is a graph automorphism, and θ is a field
automorphism.

Then they continue:

The group of central automorphisms is too small and the field automorphisms reduce to a
discrete logarithm in the field Fq . So there is no benefit of using these in a MOR cryptosystem.
Also there are not many graph automorphisms in classical Chevalley and twisted orthogonal
groups other than special linear groups and odd-order orthogonal groups. In the odd-order
orthogonal groups, these automorphisms act by conjugation.

Recall that our automorphisms are presented as actions on generators. It is clear [Maha-
lanobis 2012, Section 7] that if we can recover the conjugating matrix from the action on the
generators, the security is a discrete logarithm problem in Fqd , or else the security is a discrete
logarithm problem in Fqd2 .



132 VITALIĬ ROMAN’KOV

In our cryptanalysis, we assume that ϕ can be naturally extended to an automorphism of the linear
space V. This happens if ϕ is an inner or field automorphism or is induced by an inner automorphism of
GL(d, F).

We return to the above-introduced subspaces Vi , i = 1, . . . , n. For a fixed Vi , denote by ϕi the linear
map of Vi induced by ϕ. The matrix A(ϕi ) in the basis Ei = {e1(i), . . . , eli (i)} has the form

A(ϕi )=



0 1 0 · · · · · · 0
0 0 1 0 · · · 0

. . .
. . .

. . .

0 · · · · · · 0 1 0
0 · · · · · · · · · 0 1
α1 α2 · · · · · · · · · αli


,

where ϕ(eli (i))=
∑li

k=1 αkek(i), αk ∈ F.
In this way, we can efficiently compute for each i the value ϕ−1(gi ) corresponding to the first row of

A(ϕi )
−1. So we can compute ϕ−1.

Now we know the matrices A(ϕi )
±1, A(ϕi )

±r, A(ϕi )
±t, i = 1, . . . , n, and we need to calculate r or t .

Then we can calculate ϕ−r t
i and restore m. We can provide sufficient calculations using only one or more

of the matrices above.
In [Menezes and Vanstone 1992], it was shown how the discrete logarithm problem in some special

class of matrices can be reduced to the discrete logarithm problem in some extensions of the underlying
field. In [Menezes and Wu 1997], these results were extended to show how the discrete logarithm problem
in every group GL(d, F) can be reduced in probabilistic polynomial time to the similar problem in small
extensions of F. The case of a finitely generated nilpotent group is considered in [Roman’kov 2019b].

We see that matrix groups over finite fields offer no significant advantage for the implementation of
cryptographic protocols whose security is based on the difficulty of computing discrete logarithms.

The described cryptanalysis has many analogues, presented in [Roman’kov 2013a; Myasnikov and
Roman’kov 2015]. In [Roman’kov 2018a], a general scheme based on multiplications is presented. It
corresponds to a number of cryptographic systems known in the literature, which are also vulnerable
to attacks by the linear decomposition method. The nonlinear decomposition method was invented in
[Roman’kov 2016]. The nonlinear method can be applied when the group chosen as the platform for a
cryptographic scheme is not linear or the least degree of their representability by matrices is too big for
efficient computations. See details in [Roman’kov 2018b].

A protection against linear algebra attacks was recently invented in [Roman’kov 2019a]. It is described
in the case of the cryptographic scheme of [Anshel et al. 1999] but can be applied to the DH and some
other schemes too. See [Roman’kov 2019c; 2019d]. Further, we’ll present this protection in more detail.
This version is improved with respect to [Anshel et al. 1999].

5. Cryptanalysis of the Ko et al. and Anshel–Anshel–Goldfeld classical protocols
of algebraic cryptography

5A. Noncommutative analogues of the DH protocol. In algebraic cryptography, the following noncom-
mutative analogues of the DH protocol are considered:
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• An analogue with conjugations [Ko et al. 2000]: for a group G and an element g ∈ G, determine by
two elements ga

=aga−1 and gb
= bgb−1, where a, b∈G, ab= ba, the element gab

=abga−1b−1
=

bagb−1a−1.

• An analogue with twoside multiplication: for a group G and an element g ∈ G, determine by two
elements of the form aga′ and bgb′, where a, b ∈ G, ab = ba, a′b′ = b′a′, the element abga′b′ =
bagb′a′.

• An analogue with automorphisms: for a group G and an element g ∈ G, determine by two elements
of the form α(g) and β(g), where α, β ∈ Aut(G), αβ = βα, the element α(β(g))= β(α(g)).

The linear decomposition method under certain natural conditions into the group G (first of all, this
is the existence of an effective embedding in a finite-dimensional linear space) effectively solves each of
these problems.

The case of two-sided multiplication in its slightly weak form was analyzed in Section 3C. Now
we consider the case with conjugations. We will demonstrate two attacks, the first based on the linear
decomposition, and the second based on the nonlinear decomposition.

5B. The Ko et al. protocol [2000]. Let G ≤M(n, F) be a public matrix group over an arbitrary (construc-
tive) field F, and let g be a public element of G. Suppose that A= gp(a1, . . . , ak) and B = gp(b1, . . . , bl)

are two pointwise commuting public subgroups of G.
Alice’s keys are as follows:

• Private key: a ∈ A.

• Public key: ga
= aga−1.

Bob’s keys are as follows:

• Private key: b ∈ B.

• Public key: gb
= bgb−1.

Algorithm. • Alice sends ga to Bob.

• Bob sends gb to Alice.

• Since Alice knows a, she computes (gb)a = gab from gb.

• Since Bob knows b he computes (ga)b = gba.

• Now both, Alice and Bob, know a secret key K = gab, because ab = ba.

5C. Cryptanalysis of the Ko et al. protocol. We will apply the linear and nonlinear decomposition attacks.

Linear decomposition attack. Let V = span(g A) be the linear subspace of M(n, F) generated by all
matrices of the form gc, c ∈ A. Then dim(V ) ≤ n2.

Let e1, e2, . . . , er be a basis of V that can be efficiently obtained; see [Roman’kov 2013a; 2018b;
Myasnikov and Roman’kov 2015]. Let ei = gci , ci ∈ A, i = 1, . . . , r .

Since, ga
∈ V, we can efficiently obtain a presentation of the form

ga
=

r∑
i=1

αi ei , αi ∈ F, i = 1, . . . , r. (7)
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Then
r∑

i=1

αi gci gbg−ci =

( r∑
i=1

αi ei

)b

= K . (8)

The exchanged key is recovered without computing the private parameters a and b. We did not solve the
underlined search conjugacy problem (to find a by ga or to find b by gb).

Nonlinear decomposition attack. All assumptions and algorithms are the same as above except the as-
sumption that G is a linear group. In addition we suppose that every subgroup of G is finitely generated
and the membership problem for G is efficiently decidable. For example, G is a finitely generated
nilpotent or more generally polycyclic group. See [Roman’kov 2016; 2018b] for details.

Let g A be subgroup of G generated by all elements of the form gc, c ∈ A. Let gi = gci , ci ∈ A,
i = 1, . . . , r , be a finite generating set of g A. We suppose that this generating set can be efficiently
constructed; see [Roman’kov 2016; 2018b] again.

Since, ga
∈ g A, we can efficiently obtain a presentation of the form

ga
=

s∏
i=1

gεi
i j
, i j ∈ {1, . . . , r}, εi ∈ {±1}, i = 1, . . . , s. (9)

Then
s∏

i=1

ci j (g
b)εi c−1

i j
=

( s∏
i=1

gεi
i j

)b

= K . (10)

The exchanged key is recovered without computing the private parameters a and b. We did not solve the
underlined search conjugacy problem (to find a by ga or to find b by gb).

5D. The Anshel–Anshel–Goldfeld protocol [Anshel et al. 1999]. M. Anshel, I. Anshel and D. Goldfeld
[Anshel et al. 1999], see also [Myasnikov et al. 2008; 2011; Roman’kov 2012], proposed a group-based
key exchange protocol that we call the AAG protocol. It works as follows.

Suppose two correspondents Alice and Bob want to exchange a key. They agree about a group G
given by a finite set of generators that is used as the platform. It is supposed that G is equipped with
an efficient normal form of its elements and the main group operations can be computed efficiently. All
the information about G, the normal form and efficient algorithms to compute products of elements, its
inversions and normal forms, is public. In particular, the word problem is efficiently solvable for G.

To exchange a key the correspondents act as follows.
Alice fixes a positive integer k and chooses a tuple of elements ā = (a1, . . . , ak). Bob fixes a positive

integer l and chooses a tuple of elements b̄ = (b1, . . . , bl). These two tuples are public.

Algorithm. • Alice picks a private group word u=u(x1, . . . , xk); then she computes u0=u(a1, . . . ,ak)

and sends the tuple b̄u0 = (bu0
1 , . . . , bu0

l ) to Bob.

• Bob picks a private group word v = v(y1, . . . , yl); then he computes v0 = v(b1, . . . , bk) and sends
the tuple āv0 = (av0

1 , . . . , av0
k ) to Alice.

• Alice computes
u(av0

1 , . . . , av0
k )u

−1
0 = uv0

0 u−1
0 = [v0, u0].
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• Bob computes
v0v(b

u0
1 , . . . , bu0

l )
−1
= v0(v

u0
0 )
−1
= [v0, u0].

Now the commutator
K = [v0, u0]

is the secret exchanged key.

5E. Cryptanalysis of the Anshel–Anshel–Goldfeld protocol. The AAG protocol was analyzed by Tsa-
ban in [Tsaban 2015; Ben-Zvi et al. 2018]. We will give his analysis for the reader’s convenience because
we are going to present an improvement of AAG to make it resistant to such sort of attacks.

The commutator key-exchange protocol uses the Artin braid group Bn , n ∈ N, as its platform group.
It was shown in [Tsaban 2015] that the problem of computing the exchanged key reduces, polynomially,
to the same problem in matrix groups over finite fields. Now let G be a matrix group and two sets
{a1, . . . , ak} and {b1, . . . , bl} be as in the protocol. Let A = gp(a1, . . . , ak) and B = gp(b1, . . . , bl) be
subgroups generated by these sets respectively. Also denote by Alg(A) and Alg(B) the subalgebras (and
so vector spaces) generated by A and B respectively.

The linear span-method by Tsaban works as follows:

(1) Compute bases for the vector spaces of Alg(A) and Alg(B).

(2) Solve the following homogeneous system of linear equations in the unknown matrix x ∈ Alg(A):

bi · x = x · bu0
i , i = 1, . . . , l,

a system of linear equations on the coefficients determining the matrix x , as a linear combination
of the basis of the space Alg(A).

(3) Fix a basis for the solution space, and pick random solutions until the picked solution x0 is invertible.

(4) Solve the following homogeneous system of linear equations in the unknown matrix y ∈ Alg(B):

a j · y = y · av0
j , j = 1, . . . , k,

a system of linear equations on the coefficients determining y, as a linear combination of the basis
of the space Alg(A).

(5) Fix a basis for the solution space, and pick random solutions until the picked solution y0 is invertible.

(6) Output:
[x0, y0].

It is easy to prove, see [Ben-Zvi et al. 2018], that the output is correct, i.e., [x0, y0] = [u0, v0]. That steps
(3) and (5) terminate quickly follows from the invertibility lemma, Lemma 2.2.

Remark 5.1. The linear span-method by Tsaban et al. described above is efficiently applicable to schemes
based on the intractability of the conjugacy search problem for matrix groups over finite fields. It cannot
be directly applied to schemes that use abstract groups or matrices over infinite fields groups as the
platforms.
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6. Marginal subsets

In this section we introduce a new concept that can be effectively used to improve some cryptographic
schemes, including algebraic cryptography protocols like AAG and DH. This concept formally general-
izes the well-known concept of the marginal subgroup, but it is worth noting that this generalization is
very different from the original concept.

The marginal subgroup is determined by the word, and the marginal subset is determined by the word
and its chosen value. The set of all marginal subsets is not closed under group-theoretic operations. A
marginal subset can be very wild.

Let F be a free group on a countably infinite set {x1, x2, . . . } and let W be a nonempty subset of F.
If w = w(x1, . . . , xn) ∈W and g1, . . . , gn are elements of a group G, we define the value of the word w
at (g1, . . . , gn) to be w(g1, . . . , gn). The subgroup of G generated by all values in G of words in W is
called the verbal subgroup of G determined by W,

W (G)= gp(w(g1, . . . , gn) : gi ∈ G, w ∈W ).

If W is a nonempty set of words in x1, x2, . . . and G is any group, a normal subgroup N is said to be
W -marginal in G if

w(g1, . . . , gn)= w(u1g1, . . . , ungn)

for all w(x1, . . . , xn) ∈ W, gi ∈ G, ui ∈ N, 1 ≤ i ≤ n. This is equivalent to the requirement gi =

fi (mod N ), 1≤ i ≤ n, always implies that w(g1, . . . , gn)= w( f1, . . . , fn).
In particular, for n ∈ N, any group word w = w(x1, . . . , xn) and any group G, a normal subgroup N

is said to be w-marginal in G if

w(g1, . . . , gn)= w(u1g1, . . . , ungn)

for all gi ∈ G, ui ∈ N, 1 ≤ i ≤ n. This is equivalent to the requirement gi = fi (mod N ), 1 ≤ i ≤ n,
always implies that w(g1, . . . , gn)= w( f1, . . . , fn).

Since every set of W -marginal subgroups of G generate a normal subgroup that is also marginal, there
is the maximal W -marginal (in particular w-marginal) subgroup of G denoted by W ∗(G) (in particular
w∗(G)). See [Robinson 1982] for more details about verbal and marginal subgroups.

We introduce a new notion that significantly extends the marginality property. For simplicity we give
this notion for the case when W consists of a single word w. This notion can be easily extended to any
set W.

Definition 6.1. For n ∈ N, let w = w(x1, . . . , xn) be a group word, G be a group and ḡ = (g1, . . . , gn)

be a tuple of elements of G. We say that a tuple c̄ = (c1, . . . , cn) ∈ Gn is a marginal tuple determined
by w and ḡ if

w(c1g1, . . . , cngn)= w(g1, . . . , gn).

We will write c̄ ⊥ w(ḡ) in this case. A set C ⊆ Gn is said to be marginal with respect to w and ḡ, and
write C ⊥ w(ḡ), if c̄ ⊥ w(ḡ) for every tuple c̄ ∈ C .

Remark 6.2. Let G be a group, w=w(x1, . . . , xn) be a word and ḡ= (g1, . . . , gn) be a tuple of elements
of G. Then the following marginality properties are true for G, w and ḡ:

(1) Each subset of a marginal set is marginal.
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(2) The direct power (w∗)n is marginal.

(3) The component ci of any marginal tuple c̄ can be any element of the group G if w is independent
of xi .

(4) The set Ci , i = 1, . . . , n, consisting of all i-th components of all c̄ ∈ C , is generally not closed with
respect to group operations. For example, if gi occurs in w(ḡ) all times in the form g2

i then any
element h ∈ G such that h2

= 1 and hgi = gi h can be the i-th component of a marginal tuple c̄ with
trivial other components. But the product of two such elements h cannot be an involution and so
this product is out of Ci in the general case.

(5) There are many ways to construct a marginal set. Obviously, we can even construct a nonrecursive
marginal set in the case of the infinite group G. Below we present a very simple and efficient
algorithm for constructing a marginal set using the word w.

A method for constructing the marginal set C,C ⊥ w, based on w. As we noted in Remark 6.2, the
marginal set C,C ⊥ w, is generally not closed under group operations. This set can be chosen as very
wild; for example, it can be computable, but not recursive. We are to develop various methods for
creating such sets. We also note that the proposed idea can be established as an improvement of many
other cryptographic schemes based on the insolubility of the problem of finding conjugacy in groups to
make these schemes resistant to attacks by the linear algebra methods.

Now we give a very simple and efficient algorithm for constructing the marginal set C using the
word w. This method is universal because it does not depend on the structure of G.

Let w = w(a1, . . . , ak)= a1a2 · · · ak , ai ∈ G, i = 1, . . . , k, be any expression in the straight form of
a fixed element f ∈ G. It is possible that ai = a j or ai = a−1

j for i 6= j . Also this expression can be
nonreduced. Consider the equation

x1a1x2a2 · · · xkak = f. (11)

Every solution of (11) can be included in a marginal set C,C ⊥ w. We can fix i and choose any values
x j = c j , j 6= i , c j ∈ G. Then we obtain the solution of (11) by setting

xi = a−1
i−1c−1

i−1 · · · a
−1
1 c−1

1 f a−1
k c−1

k · · · a
−1
i+1c−1

i+1. (12)

We can also generate a solution of (11) using a sequence of the following random elementary inserts.
Suppose we have a solution (c1, . . . , ck) of (11). For any i and any random element d ∈G we can change
ci to c′i = ci ai da−1

i and ci+1 to c′i+1= dci+1. Then we get a new solution of (11). Continuing this process
with random i and d , we get a series of new solutions of (11).

Remark 6.3. In the case when G ≤ M(n, F) is a matrix group over F, the notion of a marginal set
can be naturally generalized to any ring-word (even to any algebra-word). Let R be a free associative
algebra on a countably infinite set {x1, x2, . . . } over a field F, and let W be a nonempty subset of R. If
w=w(x1, . . . , xn) ∈W and u1, . . . , un are elements of M =M(n, F), we define the value of the word w
at (u1, . . . , un) to be w(u1, . . . , un). Let ḡ = (g1, . . . , gn) be a tuple of elements of G. We say that a
tuple c̄ = (c1, . . . , cn) ∈ Mn is a marginal tuple determined by w and ḡ if

w(c1g1, . . . , cngn)= w(g1, . . . , gn).

Other generalizations when we use the ring T instead of the group G or use more general operations
instead of multiplication on the left side are also possible.
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7. Improved versions of the AAG and Ko et al. cryptographic protocols

Suppose two correspondents Alice and Bob want to exchange a key. They agree about a group G given
by a finite set of generators that is used as the platform. It is supposed that G is equipped with an
efficient normal form of its elements and the main group operations can be computed efficiently. All the
information about G, the normal form and efficient algorithms to compute products of elements, their
inversions and normal forms, is public. In particular, the word problem is efficiently solvable for G.

7A. An improved version of the AAG key exchange protocol. To exchange a key the correspondents
act as follows.

Alice fixes a positive integer k and chooses a tuple of elements ā = (a1, . . . , ak). Then she picks up
a private group word u = u(x1, . . . , xk) and computes u(ā)= u(a1, . . . , ak). Also she finds a marginal
set C ⊆ Gk, C ⊥ u(ā).

Bob fixes a positive integer l and chooses a tuple of elements b̄ = (b1, . . . , bl). Then he picks up a
private group word v = v(y1, . . . , yl) and computes v(b̄)= v(b1, . . . , bl). Also he finds a marginal set
D ⊆ Gl, D ⊥ v(b̄).

Alice publishes elements a1, . . . , ak as aπ(1), . . . , aπ(k), where π ∈ Sk is a random permutation. The
same permutation is applied to the corresponding tuples c̄ ∈ C .

Bob acts in the similar way.

Virtual and hidden elements. Alice can also introduce a virtual element h that is not used in the expres-
sion for u(ā). Then she add a new random component to any c̄ ∈ C , C ⊥ w. She can add many such
components with aim to hide the length of the word u, or to hide equality (12), or choose some element h
with huge centralizer as well as with small centralizer, to make solution of the problem more difficult for
an intruder. Bob acts similarly.

Also Alice can hide some elements ai as follows. Let ai = a j and the corresponding components
ci = c j for all c̄ ∈ C . Then Alice does not publish a j and removes the j-component from every c̄. Bob
acts similarly.

These two operations are recommended. After these operations the parameters k and l can be changed
to k ′ and l ′ respectively.

Alice publishes elements a1, . . . , ak′ as aπ(1), . . . , aπ(k′), where π ∈ Sk′ is a random permutation. The
same permutation is applied to the corresponding tuples c̄ ∈ C .

Bob acts in the similar way.
Alice publishes elements a1, . . . , ak′ as aπ(1), . . . , aπ(k′), where π ∈ Sk′ is a random permutation. The

same permutation is applied to the corresponding tuples c̄ ∈ C , and they are published.
Bob acts in the similar way.

Algorithm. • Alice picks a private tuple d̄ = (d1, . . . , dl ′) ∈ D and computes db = (d1b1, . . . , dl ′bl ′).
Then she sends the tuple dbu(ā)

= ((d1b1)
u(ā), . . . , (dl ′bl ′)

u(ā)) to Bob.

• Bob picks a private tuple c̄= (c1, . . . , ck′) ∈C and computes ca = (c1a1, . . . , ck′ak′). Then he sends
the tuple cav(b̄) = ((c1a1)

v(b̄), . . . , (ck′ak′)
v(b̄)) to Alice.

• Alice computes

u((c1a1)
v(b̄), . . . , (ckak)

v(b̄)= u(ā)−1u(c1a1, . . . , ckak)
v(b̄)
= [u(ā), v(b̄)].



ALGEBRAIC CRYPTANALYSIS AND NEW SECURITY ENHANCEMENTS 139

• Bob computes similarly

v((d1b1)
u(ā), . . . , (dlbl)

u(ā))−1v(b̄)= (v(d1b1, . . . , dlbl)
u(ā))−1v(b̄)= [u(ā), v(b̄)].

Now the commutator
K = [u(ā), v(b̄)]

is the secret exchanged key.

Definition 7.1. The conjugacy-membership problem is solvable for G with respect to C ⊆k if there is
an algorithm that decides for any two tuples ā = (a1, . . . , ak) and f̄ = ( f1, . . . , fk) of elements of G
whether or not there exists an element y ∈ G such that ( f y

1 a−1
1 , . . . , f y

k a−1
k ) ∈ C . In short, is there an

element y ∈ G such that f̄ y ā−1
∈ C? The corresponding problem, which is a mixture of conjugacy and

membership problems, is the question of the existence of an algorithm that finds a solution, if such a
solution exists.

The proposed version of the AAG protocol is based on intractability of the mixed conjugacy-membership
search problem when C is a marginal set, C ⊥ u(a1, . . . , ak), for the unknown word u(x1, . . . , xn) (or
similarly when D is a marginal set, D ⊥ v(b1, . . . , bl)). Indeed, suppose that an intruder finds c̄′ ∈ C
and y ∈ G such that cav(b̄) = c′ay, and similarly he finds d̄ ′ ∈ D and x ∈ G such that dbu(ā)

= d ′bx. Then
[x, y] = [u(ā), v(b̄)] as in the original version.

There are other problems that should probably be addressed first. The presence of virtual and hidden
elements does not allow us to calculate the lengths of u and v. We also note that each solution of (11)
is also a solution to each equation of the form ai ai+1 · · · aka1 · · · ai−1 = f , i = 2, . . . , k, and possibly
some other equations. Therefore, the open data does not allow us to unambiguously restore f v(b̄), even
if the attacker knows the length of v and all the letters v(b̄) with their multiplicity.

7B. An improved version of the Ko et al. key exchange protocol. To exchange a key the correspondents
act as follows.

Let G be a group. Alice and Bob agree about a public element g ∈ G. Let A and B be two finitely
generated elementwise commuting subgroups of G. This data is public.

Alice fixes a positive integer k and chooses a tuple of elements f̄ = ( f1, . . . , fk) such that g ∈
gp( f1, . . . , fk). Then she picks a private group word u = u(x1, . . . , xk) such that g = u( f̄ ). Also she
finds a marginal set C ⊆ Gk, C ⊥ u( f̄ ). Alice publishes C .

Bob fixes a positive integer l and chooses a tuple of elements f̄ ′ = ( f ′1, . . . , f ′l ) such that g ∈
gp( f ′1, . . . , f ′l ). Then he picks a private group word v = v(x1, . . . , xl) such that g = v( f̄ ′). Also he
finds a marginal set D ⊆ Gl, D ⊥ v( f̄ ′). Bob publishes D.

If G is a matrix group, the words u and v can be ring-words.

Algorithm. • Alice chooses a private tuple h̄=(h1, . . . ,hk)∈CG(B)k and computes f̃=( f1h1,..., fkhk).
Then she publishes f̃ .

• Bob chooses a private tuple h̄′= (h′1, . . . ,h
′

l)∈CG(A)l and computes f̃ ′= ( f ′1h′1, . . . , f ′l h′l). Then
he publishes f̃ ′.

• Alice picks a random tuple d̄ = (d1, . . . ,dl) ∈ D and computes d̄ f̃ ′ = (d1 f̃ ′1, . . . ,dl f̃ ′l ). She also
chooses a random private element a ∈ A. Then she sends (d̄ f̃ ′)a = ((d1 f̃ ′1)

a, . . . , (dl f̃ ′l )
a) to Bob.
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• Bob picks a random tuple c̄= (c1, . . . ,ck)∈C and computes c̄ f̃ = (c1 f̃1, . . . ,ck f̃k). He chooses a
random private element b∈ B. Then he sends (c̄ f̃ )b= ((c1 f̃1)

b, . . . , (ck f̃k)
b) to Alice.

• Alice computes

(c̄ f̃ )bh̄−1
= ((c1 f̃1)

bh−1
1 , . . . , (ck f̃k)

bh−1
k )= ((c1 f1)

b, . . . , (ck fk)
b)= (c̄ f̄ )b.

• Alice computes
u((c̄ f̄ )b)= u(c̄ f̄ )b= u( f̄ )b= gb.

• Bob computes

(d̄ f̃ ′)a(h̄′)−1
= ((d1 f̃ ′1)

a(h′1)
−1, . . . , (dl f̃ ′l )

a(h′l)
−1)= ((d1 f ′1)

a, . . . , (dl f ′l )
a)= (d̄ f̄ ′)a.

• Bob computes
v((d̄ f̄ ′)a)= v(d̄ f̄ ′)a = v( f̄ ′)a = ga.

• Alice computes K A= (gb)a = gab.

• Bob computes K B = (ga)b= gab, and

K = K A= K B = gab

is the secret exchanged key.

Remark 7.2. Alice publishes instead of f1, . . . , fk changed elements f̃1, . . . , f̃k . This is done in order
to make it difficult for a potential cracker to select the expression u( f1, . . . , fk). Since each element hi

lies in CG(B), the element b ∈ B acts on hi trivially. Alice may exclude hb
i = hi from ci f̃ b and get ci f b

i .
Some of the elements f1, . . . , fk are virtual. This means that the value u( f1, . . . , fk) does not depend
on them. Therefore, the choice in the marginal set C of the corresponding components can be carried
out randomly. It is also possible that for i 6= j we have fi = f j . Then both of these elements are
published, and the corresponding elements hi , ci and h j , c j are chosen independently. If an element fi

occurs several times in the expression u( f1, . . . , fk), then it is published once. The elements hi and ci

corresponding to it are also selected once.
All of the above also holds true for Bob to select parameters.

We show a toy example of the just-considered improved version of the key exchange protocol with
simple parameters.

Example 7.3. First we will give a symbolic description of the protocol.
Let G = GL(6,Z), and let A, B ≤ G be two elementwise permutable subgroups of G given by their

generating sets {a1, . . . , ak} and {b1, . . . , bl} respectively, and g ∈ G. This data is public. Suppose that

u(x1, x2, x3)= [x1, x2]x−1
2 + x2x3− x1

is a ring word in which the variables x1 and x2 take invertible values.
We choose a pair of elements f1 and f2 of G so that the element

f3 = f −1
2 g− f −1

2 [ f1, f2] f −1
2 + f −1

2 f1

is invertible.
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Then
g = u( f1, f2, f3)= [ f1, f2] f −1

2 + f2 f3− f1.

For c1, c2, c3 ∈ M(6,Z), the equality

u(c1 f1, c2 f2, c3 f3)= u( f1, f2, f3)

is true if and only if
c3 = f −1

2 c−1
2 (g− [c1 f1, c2 f2] f −1

2 c−1
2 + c1 f1) f −1

3 . (13)

The formula (13) describes the full marginal set C̃ ⊥ u( f1, f2, f3). Then Alice constructs an infinite
marginal set C3 = {(c1(i), c2(i), c3(i)) : i = 1, 2, . . . }, choosing the elements c1(i) and c2(i) in G and
calculating c3(i) according to (13).

Then Alice randomly chooses the elements h1, h2, h3 ∈ CG(B) (where CG(B) denotes the centralizer
of B in G) and calculates the elements f̃i = fi hi for i = 1, 2, 3. She also chooses a number k ≥ 3
and the random virtual elements f̃4, . . . , f̃k ∈ G. For each i = 4, 5, . . . , she takes the random elements
c4(i), . . . , ck(i)∈G and publishes the constructed marginal set C={(c1(i), c2(i), c3(i), c4(i), . . . , ck(i)) :
i = 1, 2, . . . }. In practice, she also applies a random permutation to the indices of the tuple ( f̃1, . . . , f̃k)

and to each of the corresponding tuples from C , so as not to show which ones are virtual. To simplify
the recording, we do not do this hereinafter.

In continuation of the algorithm Bob picks a random element b ∈ B, chooses randomly c̄(q) ∈ C ,
calculates and publishes the elements

(ci (q) f̃i )
b for i = 1, . . . , k.

Alice calculates
(ci (q) f̃i )

bh−1
i = (ci (q) fi )

b for i = 1, 2, 3. (14)
Then she obtains

u((c1(q) f1)
b, (c2(q) f2)

b, (c3(q) f3)
b)= u(c1(q) f1, c2(q) f2, c3(q) f3)

b
= u( f1, f2, f3)

b
= gb. (15)

Also Alice randomly chooses an element a ∈ A and computes the key: (gb)a = gab.
Bob acts the same way.
Next, we will give numerical values for the protocol parameters in our example. We set

A = gp(t13, t31, t35, t53), B = gp(t24, t42, t46, t64),

where ti j = e+ ei j , i 6= j , is a transvection and, for each pair i j , ei j is an elementary matrix that differs
from the zero matrix by one element 1 that stands in the i j -position. Obviously, A and B are elementwise
permutable. We also set

g = e+ e12+ e23+ e34+ e45+ e56, f1 = t23, f2 = t34.

Then

f3= e+e12+2e23+e34+e45+e56−e24−e35,

f −1
3 = e−e12−2e23−e34−e45−e56+2e13+3e24+2e35+e46−3e14−5e25−2e36+5e15+5e26−5e16.

Alice picks
h1 = t31, h2 = t13t−1

53 , h3 = t2
15t53.
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Then

f̃1 = f1h1 = e+ e23+ e21+ e31,

f̃2 = f2h2 = e+ e34+ e13− e53,

f̃3 = f3h3 = e− e33+ e12+ 2e23+ e34+ e45+ e56− 2e13− e24− e35+ 2e15+ e43+ e53.

Bob chooses randomly c̄(q0) ∈ C . For example he takes

c1(q0)= e− e34+ e21,

c2(q0)= t23,

c3(q0)= e− 2e22+ 6e23− e34+ e35− 10e24+ 16e25− e36− 16e26+ 2e21, ,

ci (q0) for i = 4, . . . , k

(we do not specify these virtual elements).
Then Bob picks b = t24 ∈ B, he calculates the elements

(c1(q0) f̃1)
b
= e+ e23− e34+ 2e21+ e31,

(c2(q0) f̃2)
b
= e+ e34+ e13− e53,

(c3(q0) f̃3)
b
= e+ e12+ e23+ e45+ e56− 2e13− 3e24− e35+ 5e25− e14+ 2e15+ 2e21+ e43+ e53,

(ci (q0) f̃i )
b for i = 4, . . . , k.

Then he publishes
(c1(q0) f̃1)

b, . . . , (ck(q0) f̃k)
b).

Suppose that Alice picks a = t35 ∈ A.
Alice calculates

(c1(q0) f1)
b
= (c1(q0) f̃1)

bh−1
1 = e+ e23− e34+ e21,

(c2(q0) f2)
b
= (c2(q0) f̃2)

bh−1
2 = e+ e34,

(c3(q0) f3)
b
= (c3(q0) f̃3)

bh−1
3 = e+ e12+ 4e23+ e45+ e56− 3e24− e35− e14+ e25+ 2e21.

By (15) she obtains that

gb
= e+ e12+ e23+ e34+ e45+ e56− e14+ e25.

Then
(gb)a = gab

= e+ e12+ e23+ e34+ e45+ e56+ e36− e14 (16)

is the exchanged key.
Bob takes a ring word

v(x1, x2, x3, x4))= x1x2− x3+ x4

and elements
f ′1 = e+ e24− e21, f ′3 = e− e23− e45− e56+ e24− e21− e32,

f ′2 = e+ e34, f ′4 = e+ e12− e32.
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Then
g = v( f ′1, . . . , f ′4)= f ′1 f ′2− f ′3+ f ′4.

Bob picks the following random elements in CG(A):

h′1 = e+ e24, h′2 = e− e42, h′3 = e+ e46+ e42, h′4 = e+ 2e24.

Then he computes

f̃ ′1 = f ′1h′1 = e− e21+ 2e24,

f̃ ′2 = f ′2h′2 = e+ e34− e42− e32,

f̃ ′3 = f ′3h′3 = e− e23− e45− e56+ e24− e21− e32+ e46+ e42+ e26+ e22,

f̃ ′4 = f ′4h′4 = e+ e12− e32+ 2e24+ 2e14− 2e34.

The full marginal set D̃ ⊥ v( f ′1, . . . , f ′4) is described by

d4 = (g− d1 f ′1d2 f ′2+ d3 f ′3)( f ′4)
−1.

Then one has
v(d1 f ′1, . . . , d4 f ′4)= v( f ′1, . . . , f ′4).

Bob constructs an infinite marginal set D4 = {(d1(i), . . . , d4(i)) : i = 1, 2, . . . }.
Bob chooses a number l ≥ 4 and the random virtual elements f ′5, . . . , f ′l . For each i = 5, 6, . . . he

takes the random elements d5(i), . . . , dl(i) and publishes the constructed marginal set

D = {d1(i), . . . , d4(i), d5(i), . . . , dl(i) : i = 1, 2, . . . }.

In practice, he also applies a random permutation to the indices of the tuple ( f̃ ′1, . . . , f̃ ′l ) and to each of
the corresponding tuples from D, so as not to show which ones are virtual. To simplify the recording,
we do not do this hereinafter.

Alice chooses d̄(p0) ∈ D:

d1(p0)= e+ e32, d2(p0)= e− e23, d3(p0)= e− e45+ e13,

d4(p0)= e+ e22+ e33+ e23− e45+ e13+ e24+ e46− e32+ e31, di (p0)

for i = 5, . . . , l. She computes

(d1(p0) f̃ ′1)
a
= e− 2e34+ 2e24− e21+ e32− e31,

(d2(p0) f̃ ′2)
a
= e+ e22− e23+ e34− e24+ e25− e32− e42,

(d3(p0) f̃ ′3)
a
= e+ e22− e23− e45− e56+ e24+ e46+ e25− e36+ e26− e21− e32+ e42,

(d4(p0) f̃ ′4)
a
= e+ e22+ e33+ e23− e45+ e13+ e24− e35+ e46− e25− e15− e32+ e31,

and (di (p0) f̃ ′i )
a for i = 5, . . . , l.

Then she publishes
((d1(p0) f̃ ′1)

a, . . . , (dl(p0) f̃ ′l )
a).
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Bob computes

(d1(p0) f ′1)
a
= (d1(p0) f̃ ′1)

a(h′1)
−1
= e+e34+e24−e21+e32−e31,

(d2(p0) f ′2)
a
= (d2(p0) f̃ ′2)

a(h′2)
−1
= e−e23+e34−e24+e25,

(d3(p0) f ′3)
a
= (d3(p0) f̃ ′3)

a(h′3)
−1
= e−e12−e23−2e45−e56+e13+e24+e46+e25−e36−e15−e21−e32,

(d4(p0) f ′4)
a
= (d4(p0) f̃ ′4)

a(h′4)
−1
= e+e33+e23−e45+e13+e24+e46−e35−e25−e15−2e32+e31.

Now he obtains

v((d1(p0) f ′1)
a, . . . , (d4(p0) f ′4)

a)= v(d1(p0) f ′1, . . . , d4(p0) f ′4)
a
= ga, (17)

and computes (ga)b = gab; see (16).
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VITALIĬ ROMAN’KOV:

romankov48@mail.ru
Mathematical Center, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences,
Novosibirsk, Russia

MJCNT — published in partnership with the
Moscow Institute of Physics and Technology msp

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=pdma&paperid=451&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=pdm&paperid=637&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=pdm&paperid=637&option_lang=eng
https://eprint.iacr.org/2011/483.pdf
http://msp.org/idx/mr/1272805
https://eprint.iacr.org/2011/059.pdf
http://dx.doi.org/10.1007/s00145-013-9170-9
http://msp.org/idx/mr/3355794
http://msp.org/idx/zbl/1356.94086
mailto:romankov48@mail.ru
https://mipt.ru/english/
http://msp.org


Moscow Journal of Combinatorics
and Number Theory

msp.org/moscow

EDITORS-IN-CHIEF

Yann Bugeaud Université de Strasbourg (France)
bugeaud@math.unistra.fr

Nikolay Moshchevitin Lomonosov Moscow State University (Russia)
moshchevitin@gmail.com

Andrei Raigorodskii Moscow Institute of Physics and Technology (Russia)
mraigor@yandex.ru

Ilya D. Shkredov Steklov Mathematical Institute (Russia)
ilya.shkredov@gmail.com

EDITORIAL BOARD

Iskander Aliev Cardiff University (United Kingdom)
Vladimir Dolnikov Moscow Institute of Physics and Technology (Russia)

Nikolay Dolbilin Steklov Mathematical Institute (Russia)
Oleg German Moscow Lomonosov State University (Russia)

Michael Hoffman United States Naval Academy
Grigory Kabatiansky Russian Academy of Sciences (Russia)

Roman Karasev Moscow Institute of Physics and Technology (Russia)
Gyula O. H. Katona Hungarian Academy of Sciences (Hungary)

Alex V. Kontorovich Rutgers University (United States)
Maxim Korolev Steklov Mathematical Institute (Russia)

Christian Krattenthaler Universität Wien (Austria)
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