Vol. 9, No. 3, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Volume 11, Issue 4
Volume 11, Issue 3
Volume 11, Issue 2
Volume 11, Issue 1
Volume 10, Issue 4
Volume 10, Issue 3
Volume 10, Issue 2
Volume 10, Issue 1
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Older Issues
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 2-3
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 1-2
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 3-4
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
founded and published with the
scientific support and advice of
mathematicians from the
Moscow Institute of
Physics and Technology
ISSN (electronic): 2640-7361
ISSN (print): 2220-5438
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
On defining linear orders by automata

Bruno Courcelle, Irène Durand and Michael Raskin

Vol. 9 (2020), No. 3, 253–291

Motivated by enumeration problems, we define linear orders Z on Cartesian products Z := X1×X2××Xn and on subsets of X1 × X2 where each component set Xi is [0,p] or , ordered in the natural way. We require that (Z,Z) be isomorphic to (,) if it is infinite. We want linear orderings of Z such that, in two consecutive tuples z and z , at most two components differ, and they differ by at most 1.

We are interested in algorithms that determine the next tuple in Z by using local information, where “local” is meant with respect to certain graphs associated with Z. We want these algorithms to work as well for finite and infinite components Xi. We will formalise them by deterministic graph-walking automata and compare their enumeration powers according to the finiteness of their sets of states and the kinds of moves they can perform.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

enumeration algorithm, diagonal enumeration, graph-walking automaton, linear order
Mathematical Subject Classification 2010
Primary: 06A05, 05C38, 68R10, 68P10
Received: 27 November 2019
Revised: 2 April 2020
Accepted: 17 April 2020
Published: 15 October 2020
Bruno Courcelle
University of Bordeaux and CNRS
Irène Durand
University of Bordeaux and CNRS
Michael Raskin
Technische Universität München
Garching bei München