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Motivated by enumeration problems, we define linear orders≤Z on Cartesian products Z :=X1×X2×·· ·×Xn

and on subsets of X1 × X2 where each component set X i is [0, p] or N, ordered in the natural way. We
require that (Z ,≤Z ) be isomorphic to (N,≤) if it is infinite. We want linear orderings of Z such that, in
two consecutive tuples z and z′, at most two components differ, and they differ by at most 1.

We are interested in algorithms that determine the next tuple in Z by using local information, where
“local” is meant with respect to certain graphs associated with Z . We want these algorithms to work as well
for finite and infinite components X i . We will formalise them by deterministic graph-walking automata
and compare their enumeration powers according to the finiteness of their sets of states and the kinds of
moves they can perform.

Introduction

This article is motivated by the construction of enumeration algorithms1 [Durand 2012]. An enumerator
E A of a set A is an algorithm that lists its elements. For an example, we may wish to list the minimal
dominating sets of a given graph. Each element is determined from the previous one and the current state
of the algorithm. The set A may be countable, for example the set of prime numbers. These algorithms
can allow repetitions or, on the contrary, they can be designed to eliminate them.

New enumerators can be built from existing ones. For example, an enumerator E A for a set A= B∪C
can be built from enumerators EB and EC for B and C respectively. For the cases where B is finite, E A

can start by enumerating B and afterwards, C. Or, it can output alternatively an element of B and one
of C. This is appropriate if B is infinite or if it is extremely large and its cardinality is not known. A
library of basic enumerators and operations that build enumerators by combining existing ones has been
defined and implemented by I. Durand [2012].

Our initial motivation was to enrich this library by constructions for the Cartesian product A = B×C.
Considering B×C as a matrix, one can enumerate its elements row by row if C is finite, or column by
column if B is finite, or in a diagonal way, as in Cantor’s enumeration of N×N. The latter enumeration
can be formalised by the polynomial P(x, y)= x + (x + y)(x + y+ 1)/2 that defines the rank of a pair
(x, y). We do not use it for two reasons. First we want a unique algorithm that works for B and C, either
finite or infinite, but P does not compute consecutive ranks for the pairs in {0, 1, . . . , p}×N. Furthermore,
we do not want to use numbers that index the sets B and C. We want to build E A from enumerators
EB and EC that produce the next element or report the end of the enumeration. Actually, we will use

MSC2010: 06A05, 05C38, 68R10, 68P10.
Keywords: enumeration algorithm, diagonal enumeration, graph-walking automaton, linear order.

1Enumeration is taken in the sense of “listing” and not in that of “counting”, as in enumerative combinatorics.
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enumerators EB and EC that can also produce the previous element, which is easily implementable with
a stack.

An enumerator E A can be seen as an automaton that produces a sequence of elements of A, hopefully
exhausting it. It produces a linear order if it does not allow repetitions, and the order type is that of N if
A is infinite.

This view is adequate for the case of A = B×C where B and C are enumerated without repetitions
by EB and EC , and hence are linearly ordered. Then B ×C can be considered as graph, shaped as a
rectangular, possibly infinite, grid. An enumerator E A can be formalised as a deterministic graph-walking
automaton that traverses the grid and builds a path spanning it that represents the intended enumeration.
A graph-walking automaton has a “head” that can move in the graph (the grid) from a vertex to a
neighbouring one. The decision where to move is taken from the current state and the knowledge of
the neighbouring vertices. It is convenient to use north, west, south, southeast etc. as directions for
describing the moves. For example, the current position is on the eastern border of a finite grid if there
is no east directed edge from it.

We propose different constructions of graph-walking automata, and hence of enumerators for Cartesian
products Z := X1× X2× · · ·× Xn and for certain affine subsets Z of X1× X2 where each component
set X i is linearly ordered and has order type ω, that of N, if it is infinite. We require that (Z ,≤Z ) be
isomorphic to (N,≤) if it is infinite. Our orders are inspired by Cantor’s diagonal enumeration of N×N

establishing a bijection of this set with N.
Each ordered set X i will be taken equal to [0, p] or N, and ordered in the natural way. We want

linear orderings of Z such that, in two consecutive tuples z = (z1, . . . , zn) and z′ = (z′1, . . . , z′n), we have
|zi − z′i | ≤ 1 for each i . The reason is that we want each step to call the component enumerators for
just one forward or backward step. (Cantors’s enumeration does not satisfy this condition). Furthermore,
we define their distance d(z, z′) as the number of indices i such that zi 6= z′i . We have a dk-ordering if
this distance is always at most k. We will only consider d1- and d2-orderings in order to minimise the
number of calls to the component enumerators made at each step.

These requirements can be expressed in terms of graphs G1(Z) and G2(Z) that we describe informally
for Z = X1× X2. The graph G1(Z) is a planar rectangular grid with horizontal and vertical edges, and
G2(Z) is G1(Z) augmented with diagonal edges in each square. A d1-ordering (resp. a d2-ordering) of
Z is a Hamiltonian path in G1(Z) (resp. in G2(Z)) starting at (0, 0, . . . , 0).

We are interested in algorithms that determine the tuple in Z following a tuple z by using local
information, where local is meant with respect to G1(Z) or G2(Z), and that work as well for finite and
infinite components X i . We will formalise them by means of deterministic graph-walking automata,
whose runs on a given graph define walks (a walk is like a path, but vertices can be visited several times).
We will actually construct automata that only define paths, but the general definition cannot guarantee that
an automaton defines a path rather than a walk. These automata traverse graphs equipped with an edge
labelling where adjacent edges have different labels that we call directions. The set of directions is finite.
At a vertex reached by a walk, the automaton determines the direction of the next edge to be traversed
from the state (it may have infinitely many states) and some knowledge of a finite neighbourhood, for
example the set of directions of the incident edges, but larger neighbourhoods may be useful, as we will
see. After the traversal via the next edge, the state may be changed, according to the used transition
rule. The directions for G1(Z) and G2(Z) will be among north, west, south, southeast etc. We will not
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develop a general theory of graph-walking automata (see [Engelfriet and Hoogeboom 2007] for a study
in relation with logic, or [Fraigniaud et al. 2005]), but we will define automata well-adapted to the graphs
G1(Z) and G2(Z).

Some of our main theorems are informally stated as follows.

Theorem 1. There is no finite or infinite automaton that defines a d1-ordering in each set X1× X2 where
each X i is N or [0, p] for some p by looking at distance 1 of the current vertex. There is a finite one,
which looks at distance 2.

The height of a tuple of integers is the sum of values of its components. A level is the set of tuples of
the same height. We want to build d2-`-orderings where levels are traversed consecutively, by increasing
order of height. We say that these orderings respect levels. No d1-ordering can respect levels, except in
very particular cases.

Theorem 2. For each n, there is an automaton with 2n−1 states that defines a d2-ordering respecting
levels, on any set Z = X1× X2× · · ·× Xn such that each X i is N or [0, p] for some p.

The corresponding construction of EZ from enumerators EX1, . . . , EX2 has been implemented in the
system TRAG [Durand 2012] (see also the Appendix).

We also characterise the affine subsets of N×N having d2-`-orderings defined by finite automata.

Section 1 defines graph-walking automata. Section 2 describes d2-`-orderings of sets X × Y where
X and Y are N or parts of it, and the corresponding automata. Section 3 compares various d1-orderings
of X ×Y as in Section 2. Section 4 studies d2-`-orderings of affine subsets of N×N. Section 5 defines
d2-`-orderings of Cartesian products X1× X2× · · · × Xn for n > 2. Section 6 is a conclusion and the
Appendix presents the implementation.

1. Graph-walking automata

Definition 1.1 (directions in graphs). Let D be a finite set called the set of directions. A D-graph is a
triple G = (V, E, dir), where V and E are the vertex and edge sets of an undirected graph without loops
and parallel edges, and dir is a partial mapping V × V → D such that, for all x, y, z ∈ V, dir(x, y) is
defined if and only if x and y are adjacent, and dir(x, y)= dir(x, z) implies y = z. We denote by xd the
vertex y such that dir(x, y) = d. The directions around a vertex x are those d such that xd is defined.
We denote this set by DG(x). It describes the neighbourhood of x in G.

Definition 1.2 (graph-walking automata in D-graphs). (a) A D-graph-walking automaton (or simply, a
D-automaton) is a tuple A= (Q, T , qinit), where Q is the finite or countable set of states, qinit ∈ Q and
T is the set of transitions: they are of the form (q, δ)→ (d, q ′) or (q, δ)→ End, where q, q ′ ∈ Q, δ ⊆D
and d ∈ δ. This means that the direction d is chosen by the transition in the set δ of possible ones. From
the final state End, no transition is possible. An automaton is deterministic: each pair (q, δ) determines
a single transition. If Q is infinite, we assume that it is effectively given, and that (d, q ′) (or End) such
that (q, δ)→ (d, q ′) (or (q, δ)→ End) is computable.

(b) The walk πA(G, a) in G, defined by A and that starts from a ∈ VG , is

a = b0→ b1→ b2→ · · · → bn→ · · ·
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defined with the help of the sequence of states

qinit = q0→ q1→ q2→ · · · → qn→ · · ·

such that, for each n ≥ 0, (qn,DG(bn))→ (d, qn+1) and bn+1 := (bn)
d. Informally, the state qn at bn

and the neighbourhood DG(bn) of bn determine in a unique way a direction d such that (bn)
d is defined

and will be the next visited vertex bn+1; the state qn is updated to qn+1.

We will construct deterministic D-automata so that they define paths rather than walks.

Definition 1.3 (directions and automata in 2-dimensional grids). (a) Let Z ⊆N×N. We let G1(Z) be
the graph with vertex set Z and edges between (x, y) and (x, y+ 1) and between (x, y) and (x + 1, y).
The associated directions are

dir((x, y), (x, y+ 1)) := N,

dir((x, y+ 1), (x, y)) := S,

dir((x, y), (x + 1, y)) := E,

dir((x + 1, y), (x, y)) := W.

The set of directions is D1 := {N,S,E,W}.
We let G2(Z) be augmented with “diagonal” edges between (x, y+1) and (x+1, y) and between (x, y)

and (x+1, y+1). The associated directions are as above, together with dir((x+1, y), (x, y+1)) :=NW and
similarly for the three other diagonal directions. The set of directions is D2 := {N,S,E,W,NW,SW,NE,SE}.

(b) We will construct D1- and D2-automata that order linearly certain sets Z .

In the next section, we will extend the definitions of G1(Z) and G2(Z) to subsets Z of X1×X2×·· ·×Xn

without extending the notion of direction.

2. Definitions and first results for Cartesian products

We will order linearly sets Z := X1× X2× · · ·× Xn and subsets of X1× X2, where each component set
X i is linearly ordered with order type ω and that of N in the case it is infinite. We require that (Z ,≤Z ) be
isomorphic to (N,≤) if it is infinite. Each ordered set X i will be taken equal to [0, p] or N, and ordered
in the natural way.

We want linear orderings of Z such that, in two consecutive tuples z= (z1, . . . , zn) and z′= (z′1, . . . , z′n),
we have |zi − z′i | ≤ 1 for each i .

Definition 2.1 (distances, heights and levels). (a) The distance d(z, z′) of z = (z1, . . . , zn) and z′ =
(z′1, . . . , z′n) is the number of indices i such that zi 6= z′i .

(b) In a dk-ordering, the distance between any two consecutive tuples is at most k. We will only consider
d1- and d2-orderings.

(c) If Z ⊆ X1× X2× · · ·× Xn , we define two graphs:

• G1(Z) has vertex set Z and an edge between z = (z1, . . . , zn) and z′ = (z′1, . . . , z′n) if and only if
|zi − z′i | ≤ 1 for each i and d(z, z′)= 1.

• G2(Z) is similar with an edge between z and z′ if and only if |zi − z′i | ≤ 1 for each i and d(z, z′)
is 1 or 2.
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Hence, a di-ordering of Z ⊆ X1× X2× · · ·× Xn , where i is 1 or 2, is a Hamiltonian path in Gi (Z)
starting at (0, 0, . . . , 0).

(d) The height of a tuple of integers is the sum of the values of its components. The level k of Z ⊆
X1× X2× · · ·× Xn is the set of its tuples of height k.

(e) A d2-`-ordering of Z is a d2-ordering such that the levels are traversed consecutively by increasing
order of height.

We now present a diagonal enumeration2 of N×N, its extension to certain subsets of the form X × Y
and the corresponding D2-graph-walking automata.

Definition 2.2 (the diagonal d2-`-ordering≤1 of N×N). We define the type τ(i, j) of a pair (i, j)∈N×N

as the following pair, also in N×N:

τ(i, j) := IF i + j is even THEN (i + j, i) ELSE(i + j, j).

Note that (i, j) can be recovered from τ(i, j):

τ−1(m, n)= IF m is even THEN (n,m− n) ELSE (m− n, n).

The pairs (i, j) ∈ N×N are ordered by increasing lexicographic order of their types τ(i, j). That is,

(i, j)≤1 (i ′, j ′) if and only if τ(i, j)≤lex τ(i ′, j ′).

We obtain a d2-`-ordering of N×N. The corresponding ordered set is denoted by N1N. Its level k
is the interval of pairs (i, j) such that i + j = k. It begins with /00/10,01/02,11,20/30,21,12,03/04, . . . ,
where we separate levels with a slash. Odd levels are traversed in reverse lexicographic order.

The pair next(i, j) that follows (i, j) in this order is obtained by the clauses below where we use “∧”
as logical “and”:

next(i, j)= IF i + j is even ∧ j > 0 THEN(i + 1, j − 1), ELSE

IF i + j is even ∧ j = 0 THEN (i + 1, j), ELSE

IF i + j is odd ∧ i > 0 THEN (i − 1, j + 1), ELSE

IF i + j is odd ∧ i = 0 THEN (i, j + 1), END

In terms of automata the property “i + j is even” is handled as a state that we call Down, and similarly,
“i+ j is odd” is a state called Up. In Figure 1, the vertices 02, 11, 20 of height 2 are ordered “downwards”.
The Boolean values of the tests “i = 0” and “ j = 0” describe the four possible positions of (i, j) with
respect to the borders of G2(N×N) represented in the plane. The condition “i = 0” characterises the
western border and “ j = 0” characterises the southern border. There are no northern and eastern borders.

Borders can also be detected by looking at the directions around the current position in the grid,
that is a vertex of G2(N×N). For example, the southern border is characterised by the neighbourhoods
{N, E, NE} and {N, E, W, NW, NE}. The second clause can be formalised by automaton transitions expressing
the following:

(Down, “on the southern border”)→ (“move to the east”, Up),

2It is not Cantor’s enumeration (see Remark 2.6)
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Figure 1. A d2-`-ordering of N×N.

that is, in terms of neighbourhoods (see Section 1)

(Down, {N, E, NE})→ (E, Up), (Down, {N, E, W, NW, NE})→ (E, Up).

In Figure 1, these two transitions define respectively the edges (0, 0)→ (1, 0) and (2n, 0)→ (2n+1, 0)
belonging to the path that orders N×N. The edges directed to NW and SE, defined by the first and the
third clauses, do not change the level i + j of a pair (i, j) because they “go” from it to (i − 1, j + 1) or
(i + 1, j − 1). The state defined from the arithmetic parity of the level is not changed.

The last clause yields the edge (0, 3)→ (0, 4) derived from the transition expressing the following:

(Up, “on the western border”)→ (“move to the north”, Down).

Definition 2.3 (a d2-`-ordering of X × Y ⊆ N×N). We modify the algorithm of Definition 2.2 so that
it defines a d2-`-ordering of X × Y when X and/or Y is finite. The order is defined from types τ(i, j) as
above. The corresponding Hamiltonian path in G2(Z (3,6)), where Z (3,6) := [0, 3]× [0, 6], is illustrated
in Figure 2. If X is finite, its maximum is denoted by max(X).

The information about neighbourhood also uses the Boolean tests i =maxX and j =maxY that are
always false if X or, respectively Y, is infinite.

In the first clause, the pair next(i, j) is undefined because (i, j) is the last element, and its “value” is
the message “none” indicating the end of the enumeration. The clauses are

next(i, j)= IF i =maxX ∧ j =maxY THEN none ELSE

IF i + j is even ∧ j 6= 0 ∧ i 6=maxX THEN (i + 1, j − 1) ELSE

IF i + j is even ∧ i =maxX THEN (i, j + 1) ELSE

IF i + j is even ∧ j = 0 ∧ i 6=maxX THEN (i + 1, j) ELSE

IF i + j is odd ∧ i 6= 0 ∧ j 6=maxY THEN (i − 1, j + 1) ELSE

IF i + j is odd ∧ j =maxY THEN (i + 1, j) ELSE

IF i + j is odd ∧ i = 0 ∧ j 6=maxY THEN (i, j + 1) END.



ON DEFINING LINEAR ORDERS BY AUTOMATA 259
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Figure 2. The diagonal enumeration of Z (3,6).

There are nine clauses. The conditions relative to i and j can be replaced by conditions on neigh-
bourhoods, as in Definition 2.2, where “on the southern border” is expressed by “the neighbourhood is
{N, E, NE} or {N, E, W, NW, NE}”.

Here is an alternative formalization by the automaton, which we will use again. There are nine possible
types of position of a vertex (i, j) on the grid if X and Y are not singletons:3

• origin (numbered 0),

• on the southern border (1),

• on the western border (2),

• in the middle (3),

• at the southeastern corner (4),

• at the northwestern corner (5),

• on the northern border (6),

• on the eastern border (7) and

• at the northeastern corner (8).

See Figure 3. Each type can be determined by a combination of Boolean conditions such as “ j = 0” and
“i 6=maxX ” or of possible neighbourhoods. Position 3 is characterised by the maximum neighbourhood,
that is, {N, E, W, S, NW, NE, SW, SE} = D2.

In Table 1, and for readability, we define an automaton B by using the digits 0 to 8 to indicate the
types of positions instead of combinations of Boolean conditions or neighbourhoods. Position “2, 3, 5, 6”
means of type 2 or 3 or 5 or 6. The initial state is Down. The final state is End. Figure 4 shows the same
information as Table 1.

The complete description of B by a table should include the special cases where X and/or Y is singleton,
but we want to keep the table readable.

3If X is singleton and Y is not, then 0 and 4 coincide, and so do 2 and 7 and 5 and 8.
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Figure 3. The different types of borders used by B.

Proposition 2.4. The automaton B defines a d2-`-ordering.

Remarks 2.5. (1) B is actually a D2`-automaton, where we define D2` := {N, E, W, S, NW, SE}. Position
3 is correctly determined by the neighbourhood {N, E, W, S, NW, SE} and no transitions use the directions
NW and SE.

(2) The description in Table 1 is appropriate if X and Y are not singletons. However, the definition of
next works well in all cases. If X or Y is singleton, there is a unique d2-`-ordering. Otherwise, there

state position action next state

Down 0,1 E Up
2,3,5,6 SE Down

4,7 N Up

Up 1,3,4,7 NW Up
2 N Down

5,6 E Up

Up or Down 8 End

Table 1. Automaton B.

Down

Up

End

3,2,5,6 / SE 

1,3,4,7 / NW 

0,1 / E 

7,4 / N 

2 / N 

5,6 / E 

8  

8  

Figure 4. The automaton B of Proposition 2.4.
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are exactly two, one starting by (0, 0)→ (1, 0) (as in Figures 1 and 2) and the other by (0, 0)→ (0, 1).
The latter one is obtained by taking Up as the initial state and adding to Table 1 the transition from the
origin (defined by i = 0 ∧ j = 0) to the state Down with a move north. The obtained path starts with
/00/01,10/20,11,02/03, . . . . We will denote by B# this modified automaton. In automaton B, the state Up
corresponds to the odd levels and Down to the even ones. For B#, Down corresponds to the odd levels and
Up to the even ones.

(3) The automaton B (as defined by next, see Definition 2.3) also works in the special case where
Y = {0}. All positions satisfy j = 0∧ j =maxY . The transitions used are defined by

IF i + j is even ∧ j = 0 ∧ i 6=maxX THEN (i + 1, j)
and

IF i + j is odd ∧ i 6=maxX ∧ j =maxY THEN (i + 1, j).

Its works also in the special case where X = {0}. All positions satisfy i = 0∧ i =maxX . The transitions
used are defined by

IF i + j is even ∧ i =maxX THEN (i, j + 1)
and

IF i + j is odd ∧ i = 0 ∧ j 6=maxY THEN (i, j + 1). �

By using D2`-automata, we have formalised the construction of Hamiltonian paths in the graphs
G2(X × Y ), which represent d2-`-orderings of X × Y. We will use D1-automata similarly in graphs
G1(X × Y ) so as to define d1-orderings. In Section 4, we will define automata that define Hamiltonian
paths in G2(X1× · · ·× Xn).

In a concrete implementation, we use an oracle (a program) that determines the membership in Z
of any pair b = (i, j) and the set DG(b), especially when Z is defined by affine conditions, such as
i ≤ 3 j + 5∧ j ≤−10i + 30. See Section 4C.

Remark 2.6. Cantor’s bijections N×N→ N are defined by the polynomials

P(x, y)= x + (x + y)(x + y+ 1)/2 and P(x, y)= y+ (x + y)(x + y+ 1)/2.

Fueter and Polya proved that no other quadratic polynomial defines such a bijection. References are in
[Wikipedia 2015]. The enumeration by the second polynomial starts with 00/10/01/20/. . . , and hence
does not satisfy the condition that the first components in consecutive pairs must differ by at most 1. The
corresponding sequence is not a path in G2(N×N).

3. D1-orderings on sets X1 × X2 × · · · × Xn

Proposition 3.1. From a d1-ordering of a finite set Y ⊆ X1× X2×· · ·× Xn , one can define a d1-ordering
of Z := N× Y.

Proof. D1-orderings are Hamiltonian paths in the graphs G1(Y ) and G1(Z ). Let Pa,b from a= (0, 0, . . . , 0)
to some vertex b be a Hamiltonian path in G1(Y ). The opposite path is Pb,a from b to a. For each i ∈ N,
let i � Pa,b be the path (i, a)→ (i, c1)→ (i, c2)→ · · ·→ (i, b), where Pa,b is a→ c1→ c2→ · · ·→ b.
Then, one gets in Z the infinite Hamiltonian path 0� Pa,b→ 1� Pb,a→ 2� Pa,b→ 3� Pb,a→ · · ·

starting from (0, . . . , 0)= (0, a) ∈ Z . (The arrow→ represents the concatenation of paths). �
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Remark 3.2. This construction is related to that of Gray codes; see [Wikipedia 2011]. The 3-ary Gray
code with 3 digits is the sequence of 3-tuples in {0, 1, 2}× ({0, 1, 2}× {0, 1, 2}) that reads

000, 001, 002, 012, 011, 010, 020, 021, 022,

122, 121, 120, 110, 111, 112, 102, 101, 100,

200, 201, 202, 212, 211, 210, 220, 221, 222.

It is thus of the form 0� P→ 1� P ′→ 2� P, where P is

00→ 01→ 02→ 12→ 11→ 10→ 20→ 21→ 22,

and P ′ is the opposite path. �

Proposition 3.1 does not apply to Z :=N×N, and an ordering “row by row” is obviously not adequate
as its order type will be ω+ω+· · · =ω ·ω 6=ω. This is a motivation for using the diagonal d2-`-ordering
of Definition 2.2. However, d1-orderings can also be defined.

Proposition 3.3. (1) There is a d1-ordering on N×N definable by an infinite D1-automaton.

(2) Each set Z = X1× X2× · · ·× X p, where each X i is finite or infinite, has a d1-ordering.

Proof. (1) See Figures 5 and 6. Theorem 3.5 will establish a more general result for G1(X × Y ) where
X and/or Y may be finite.

(2) We first consider Np. We use an induction on p. For p= 2, the result holds by Assertion (1). Assume
we have a d1-ordering “≤p” of Np. Since (Np,≤p) is isomorphic to (N,≤), we have by (1) an ordering
of Np+1

=N× (Np). In this order, a step from a vertex to the next one either modifies the first component
(in N) or the second one (in Np). In the latter case, only one component of Np is modified, as ≤p is a
d1-ordering. In both cases, this step modifies a single component of Np+1. Hence, we have a d1-ordering.

If Z is finite, Proposition 3.1 gives the answer. Otherwise, one can permute the components and write
Z =N×· · ·×N× Xq×· · ·× X p, with Xq , . . . , X p finite. Thus Z is isomorphic to Nq

×(Xq×· · ·× X p)

and hence to N× Y with Y finite, and Proposition 3.1 gives the answer.

0 1 2 3 4 5 · · ·

0

1

2

3

4

5

...

Figure 5. A d1-ordering of N×N.
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0 1 2 3 4 5 6 7 8 9 · · ·
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1

2

3

4

5

6

Figure 6. A d1-ordering for [0, 2n]×N.

The computation of the vertex following any z in Z is computable as all definitions and proofs are
effective. Hence, there exists a D1-automaton, with infinitely many states.4 �

We now examine whether automata can define d1-orderings. Figure 6 shows a d1-ordering of X × Y
where Y is finite of odd cardinality and X is finite or infinite, that is, defined by an infinite D1-automaton.
Whether X and/or Y is finite need not be known at the beginning, but is determined at some point of the
computation. This automaton is easy to define with states including counters.5

More generally, there are D1-automata that construct d1-orderings of X×Y by using some information
about X and/or Y. This information can be:

(1) X is finite.

(2) Y is finite.

(3) X is either infinite or finite of odd cardinality.

(4) Y is either infinite or finite of odd cardinality.

(5) X is either infinite or finite of even cardinality.

(6) Y is either infinite or finite of even cardinality.

The automata for Cases (1) and (2) are finite. In Cases (1), (3), (5), Y may be of any type. In the
others, X may be of any type. In Cases (3) and (5), the automaton need not know whether X is infinite
or not, and similarly for Y in Cases (4) and (6). Without such information, no deterministic automaton
can work correctly, as we prove now.

Theorem 3.4. There is no ( finite or infinite) D1-automaton that constructs a d1-ordering of X × Y for
arbitrary (linearly ordered) sets X and Y.

Proof. To get a contradiction, we assume the existence of a D1-automaton A = (Q, T , qinit) that finds
a Hamiltonian path starting at (0,0) in G1(X × Y ) for any linearly ordered sets X, Y, either N or [0, p].

4As in fly-automata, see [Courcelle and Durand 2016], we allow countable sets of states but transitions must be computable.
5For defining the path of Figure 5, one can use a finite D1-automaton that tests whether the current vertex is on the southwest-

northeast diagonal.



264 BRUNO COURCELLE, IRÈNE DURAND AND MICHAEL RASKIN

Figure 7. A d1-ordering of N×N that is adaptable to X × Y, where X and/or Y is finite.

This automaton uses only the directions N, E, S, W. The sets X and Y are finite or infinite, which the
automaton “does not know”: this means that A works in all cases. The set of states may be infinite, but
determinism will yield a contradiction.

The neighbourhood DG(x) describes the following possible positions of a vertex x , numbered 0, 1, 2, 3
in Figure 3:

x is the origin: DG(x)= {N, E},
or on the southern border, and not the origin: DG(x)= {N, E, W},
or on the western border, and not the origin: DG(x)= {N, E, S},
or in the middle: DG(x)= {N, E, S, W}.

We first run the automaton on N×N. Let P be a Hamiltonian path defined by A in G1(N×N). It has
a subpath P[a, b] from a to b, for some a on the southern border and some b on the western border, such
that all intermediate vertices x have neighbourhood DG(x) = {N, E, S, W}. The initial part P[(0, 0), a]
of P is inside the finite portion R of G1(N×N) (drawn on the plane) determined by P[a, b] and the
western and southern borders by an obvious planarity argument. We let R contain the vertices of P[a, b]
and the initial parts of the borders, from (0, 0) to (a, 0) and from (0, 0) to (0, b).

Let m be the maximal integer such that (m, j) belongs to P[a, b] for some j . Let c := (m+ 1, j) for
such a j . The vertex c is not in R.

We now consider A running in G1([0,m+1]×N). It follows the path P[(0, 0), b], as it does not distin-
guish G1([0,m+1]×N) from G1(N×N) when traversing R. The path continues in G1([0,m+1]×N)

from b to c outside of R. But after c it must continue southwards, and cannot reach (m+ 1, p) for large
values of p. Hence we obtained the desired contradiction. �

We now enrich our automata by letting them foresee whether, from a vertex x , they can make two
moves east and/or two moves north. That is, we enlarge neighbourhoods. We extend accordingly the def-
initions of Section 1 and define the set of checkable directions around a vertex as E := {N, NN, E, EE, S, W}.
If in DG(x) we have EE (two consecutive east moves are possible), we must also have E. If E is in DG(x)
but EE is not, this means that x is at distance 1 from the eastern border. Similar facts hold for NN and N.
The corresponding path is in Figure 7.

We first encourage the reader to contemplate Figures 8, 9 and 10. The construction of the path in
Figure 8 corresponding to the case |X | = 7, |Y | = 5 extends to N×N; see Step 2 of the proof. Diffi-
culties arise in the cases where X and/or Y have even cardinality. One typical case is shown in Figure 9
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Figure 8. The basic case of X × Y with sets X, Y of odd cardinalities.

0 1 2 3 4 5 6
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Figure 9. Extended the previous order to accommodate set Y of even cardinality.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 10. Extended the previous order to accommodate sets X, Y of even cardinality.

corresponding to the case |X | = 7, |Y | = 6. Another one is for |X | = 8, |Y | = 6 (Figure 10). Dotted
lines indicate modifications from Figure 8.

Theorem 3.5. There exists a finite E-automaton that constructs a d1-ordering of X × Y for arbitrary
(linearly ordered) sets X and Y.

Proof. Step 1: The intended automaton will first handle the particular cases where X and/or Y have
cardinality 1 or 2. This can be checked from DG((0, 0)) as (0, 0) is the starting vertex. Hence, Y has
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Down

Up

End

3,2,5,6 / ESSE 

5',6' / NESSSE 

 0,1 / EE 

7,4 / NN 

7",4" / ENWN 

8' / N 

8" / E 

8''' / ENW 

8' / N 

8 

8 

8" / E 

8''' / ENW 

1,3,4,7 / NWWN 

4" / ENWWWN 

7" / ENWN 

 5,6 / EE 

2 / NN 

5' / NESE 

Figure 11. The E-automaton of Theorem 3.5.

state position action new state

Down 0, 1 E;E Up
2, 3, 5, 6 E;S;S;E (instead of SE;SE) Down

4, 7 N;N Up

Up 1, 3, 4, 7 N;W;W;N (instead of NW;NW) Up
2 N;N Down

5, 6 E;E Up

Up or Down 8 End

Table 2. The automaton C.

cardinality 1 if and only if E is not in DG((0, 0)) and cardinality 2 if and only if EE is not in DG((0, 0))
but E is. We omit details relative to these special cases.

Step 2: We now build an automaton C intended to work for all sets X , Y that are either infinite or of finite
odd cardinality at least 3. It is based on the D2`-automaton B of Proposition 2.4.

From B, we first define a D2`-automaton B′ by duplicating actions: N becomes N;N, that is two moves
north, SE becomes SE;SE, etc. Because of the assumptions on the cardinalities of X and Y, from each
vertex reached by a path with an even number of edges that is defined by B′, if one can make one step east,
one can make another one to the east, and similarly for north, southeast and northwest. This automaton
need not check the “double” directions EE and NN.

A D1-automaton C is defined by Table 2, is obtained from B′ by replacing respectively the “double”
moves SE;SE by E;S;S;E and NW;NW by N;W; W;N. This replacement is made explicit in Table 2. The
same numbering of types of positions on borders, at corners and in the middle is used, as for describing
B and B′; see Figures 3 and 12. As for B′, one need not check the “double” directions EE and NN.

Claim: The D1-automaton C defines a d1-ordering of X × Y for any sets X, Y as stated.

Proof of claim. First we prove that C defines a path, i.e., a walk that does not visit the same vertex twice.
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0 1

2 3

4

5 6
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8

0 1

2 3

4

5′ 6′
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8′

0 1

2 3

4′′

5 6

7′′

8′′

0 1

2 3

4′′

5′ 6′

7′′

8′′

Figure 12. Numbering of types of positions relative to the borders. In particular, close
to the northern and eastern borders.

A 2×2 square in the grid G1(X, Y ) is a subgraph induced by [2p, 2p+ 2]× [2q, 2q+ 2] for p, q ≥ 0.
Each of them can be coloured black or white, so that two adjacent squares (adjacent by a border, not just
a corner) are of different colour. Let [0, 2]× [0, 2] be white. By B′, it is traversed by the “double” moves
NW; NW. Those of the form SE;SE traverse black 2×2 squares.

When defining C, we replace SE;SE by E;S;S;E, so that we go through two more vertices, say x
and y, in the middle of the top and bottom borders of that 2×2 square. In the surrounding 2×2 white
squares, the replacements are of NW; NW by N;W;W;N, and these replacements involve neither x nor y. A
similar observation holds at the borders.

Hence, we have a path. It is easy to check, by a similar argument based on this colouring of the
2×2 squares that it goes through all vertices of G1(X, Y ).

If X and Y are finite, it terminates at the corner numbered 8, i.e., at (max(X),max(Y )); an example
is in Figure 8. �

Step 3: We must handle the three cases where |X | and/or |Y | is even. See Figure 4 showing the four
types of borders and corners for finite sets X and Y.

Case 1: |X | is odd or infinite, |Y | is even. The vertices on the row just below the topmost one are in
positions of types 5′, 6′ and 8′ (see Figure 12) characterised by the following conditions relative to a
vertex x :

5′ : N,EE,S ∈ DG(x), W,NN /∈ DG(x),

6′ : N,EE,W,S ∈ DG(x), NN /∈ DG(x),

8′ : N,EE,W,S ∈ DG(x), E,NN /∈ DG(x).

If X is infinite, positions of types 4, 7, 8′ do not occur.
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5 5′

5 5′

E;S;S;E N;E;S;S;S;E

E;E N;E;S;E

Figure 13. Some detours for vertices close to the northern border.

In order to reach the vertices on the top row, we make small detours defined as follows. When the
current state is Down:

• Action E;S;S;E from vertices of type 5 or 6 is replaced by N;E;S;S;S;E, from vertices of type 5′

or 6′ (see the top part of Figure 13).

• From vertex 8′, action is N, terminating the path.

When the current state is Up:

• Action E;E from vertices of type 5 is replaced by N;E;S;E from vertices of type 5′.

• Action E;E from vertices of type 6 is replaced by N;E;S;S;S;E from vertices of type 6′.

• From vertex 8′, action is N, terminating the path.

Case 2: |X | is even, |Y | is odd or infinite. Vertices on the column just to the right of the last one are of
types 4′′, 7′′ and 8′′, characterised by the following conditions:

4′′ : N,E,W ∈ DG(x), S,EE /∈ DG(x),

7′′ : NN,E,S,W ∈ DG(x), EE /∈ DG(x),

8′′ : E,S,W ∈ DG(x), N,EE /∈ DG(x).

If Y is infinite, positions of types 5, 6, 8′′ do not occur.
When the current state is Down:

• Action N;N from vertices of type 4 is replaced by: E;N;W;W;W;N from vertices of type 4′′.

• Action N;W;W;N from vertices of type 4 is replaced by: E;N;W;W;W;N from vertices of type 4′′. (See
Figure 14).

• Action N;N from vertices of type 7 is replaced by: E;N;W;N, from vertices of type 7′′.

• From vertex 8′′, action is E, terminating the path.
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4 4′

N;W;W;N E;N;W;W;W;N

Figure 14. The detour at southeastern corner.

state position action next state

Down 0, 1 E;E Up
2, 3, 5, 6 E;S;S;E Down

4, 7 N;N Up
5′, 6′ N;E;S;S;S;E Down
4′′, 7′′ E;N;W;N Up

8′ N End
8′′ E

Up 1, 3, 4, 7 N;W;W;N Up
2 N;N Down

5, 6 E;E Down
4′′ E;N;W;W;W;N Up
5′ N;E;S;E Down
6′ N;E;S;S;S;E Down
7′′ E;N;W;N Up

Up or Down 8 End
8′ N End
8′′ E End
8′′′ E;N;W End

Table 3. The E-automaton of Theorem 3.5.

Case 3: |X | and |Y | are even. This case combines Cases 1 and 2. The relevant types of positions replacing
4, 5, 6, 7, 8 from the basic case are 4′′, 5′, 6′, 7′′ characterised as above and

8′′ : N,E,S,W ∈ DG(x), NN,EE /∈ DG(x),

From a vertex of type 8′′, the action is E;N;W, terminating the path.
These definitions are collected in Table 3. �

Remark 3.6. It is clear that Z has no d1-ordering, and that, curiously, Z×Z has one, that is a kind of
spiral around the origin. So has N×Z and thus Zp for p > 2.

4. Diagonal orderings of subsets of N × N

Figure 15 shows that the automaton B of Section 2 can order proper subsets of N× N that are not
Cartesian products. In this section, we develop this observation.
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Figure 15. A proper subset of a Cartesian product ordered by automaton B of Section 2.

4A. D2-`-orderings of subsets of N × N. We ask the following questions.

Question 4.1. Which subsets Z of N×N have a d2-`-ordering?

We will consider D2-automata, more powerful than D2`-automata as they can move northeast in
addition to northwest, north, east, southwest and south. As we want them to define d2-`-paths, i.e.,
Hamiltonian paths corresponding to d2-`-orderings, they will make no moves southwest.

Question 4.2. When is a d2-`-ordering definable by a finite or infinite D2-automaton?

If Z is finite and d2-`-orderable, then such an ordering is definable by a finite D2-automaton with
|Z | states. Hence, this question is only interesting for one infinite set Z or for a class of finite and/or
infinite sets.

Definition 4.3 (conditions on a set Z ⊆N×N). (a) We denote by Zk the level k of Z . For each nonempty
level Zk , min(Zk) (resp. max(Zk)) is its unique vertex of minimal (resp. maximal) second coordinate.

(b) We define for Z ⊆ N×N containing (0, 0) the following conditions:

(C1) The graph G2(Z) is connected.

(C2) Each nonempty level Zk is connected in G2(Z), and hence, induces a north-west-southeast diag-
onal path.

(C3) Each nonempty level can be labelled by Up or Down, so that if Zk and Zk′ are two consecutive
nonempty levels with k < k ′, then Last(Zk) is adjacent to First(Zk′) in G2(Z), where6

• if Zk is labelled by Down, then First(Zk) :=max(Zk) and Last(Zk) :=min(Zk) and
• if Zk is labelled by Up, then First(Zk) :=min(Zk) and Last(Zk) :=max(Zk).

Condition (C1) implies that, if Zk and Zk′ are as in (C3), then k ′ is k+1 or k+2. If G1(Z) is connected,
then so is G2(Z) and hence condition (C1) holds; furthermore, if a level is not empty, all previous levels
are not either; that is, we have k ′ = k+ 1 for k, k ′ as in (C3).

Example 4.4. The set Z := {(0, 2i), (1, 2i + 1) | i ≥ 0} satisfies conditions (C1), (C2) and (C3), with all
levels labelled by Up. It has no level of odd height.

6These definitions are the same for Zk′ .
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Figure 16. The set W of Example 4.6(1) used in Proposition 4.7.

Proposition 4.5. A subset of N × N containing (0, 0) has a d2-`-ordering if and only if it satisfies
conditions (C1), (C2) and (C3).

Proof. Let Z be a subset of N×N that has a d2-`-ordering with associated path P in G2(Z). This set
satisfies conditions (C1) and (C2). We label by Up a nonempty level that is traversed upwards by P,
that is from southeast to northwest, and by Down in the other case. We label arbitrarily a singleton level
Zk = {x} and in either case we have Last(Zk)= First(Zk)= x . Then condition (C3) holds with this
labelling.

Conversely, let Z satisfy (C1) and (C2). From any labelling satisfying (C3), we obtain a path P from
(0, 0) with appropriate transitions between levels, which describes a d2-`-ordering of Z . �

Example 4.6. (1) Figure 16 shows an example of a set W ⊆ N×N that satisfies conditions (C1)–(C3).
It has a d2-`-path starting with (0, 0)→(1, 0), shown in this figure. An initial step (0, 0)→(0, 1) can
be extended into a d2-`-path until (0, 4) but not after because max(W4) and max(W5) are not adjacent.
Anticipating the sequel, we observe that W is defined by the conditions i ≤ 3 and j ≤−i/3+ 4.

(2) The related set X of Figure 17 has no d2-`-ordering for a similar reason. It is defined by the conditions
j ≤−i/2+ 4 and j ≤−2i + 8. It satisfies (C1) and (C2).

0 1 2 3 4

0

1

2

3

4

Figure 17. Set X of Example 4.6(2).
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Figure 18. Set Y of Example 4.6(3).

(3) The finite set Y shown in Figure 18 has eight d2-`-orderings. Three of them are:

00/10, 01/11/21/31, 22/32/42/52, 43/53, defined by B,
00/01, 10/11/21/22, 31/32/42/43, 52/53, defined by B#, and

00/10, 01/11/21/22, 31/32/42/52, 43/53, defined neither by B nor by B#.

Its infinite extension Y ′ defined by i/2− 1/2≤ j ≤ i/2+ 1 has infinitely many d2-`-orderings. �

We continue the study of sets Z ⊆ N×N. If G1(Z) is connected and Z has a d2-`-ordering that
is definable by a D2-automaton, then this ordering is definable by a D2`-automaton, actually the same,
because no move northeast can be used.

We recall that automata are deterministic and must have computable transitions; see Definition 1.2(a).

Proposition 4.7. (1) There exists an infinite set of finite sets Z ⊆N×N that have unique d2-`-orderings,
but these orderings are not definable by any finite or infinite D2-automaton.

(2) There exists an infinite set Z ⊆N×N that has a unique a d2-`-ordering that is not definable by any
finite or infinite D2-automaton.

Proof. We let W ⊆ [0, 3] × [0, 4], shown in Figure 16. It has a unique d2-`-path (defined by B) from
s := (0, 0) to t := (3, 3). Let W ⊆ [0, 4] × [0, 3] be obtained from W a symmetry with respect to
the southwest-northeast diagonal. It has a unique d2-`-path (defined by B#) also from s := (0, 0) to
t := (3, 3).

(1) Let wn be the word 0n1. We define X (n)
⊆ N×N by concatenating copies Ui of W or W such that

Ui is a copy of W if wi = 0 and of W otherwise. Two consecutive copies Ui and Ui+1 are linked by a
horizontal edge between ti and si+1. See Figure 19 for X (2). Each set X (n) has a unique d2-`-ordering.
Assume that a D2-automaton (equivalently, a D2`-automaton) can d2-`-order all the sets X (n). When it
reaches a vertex si , it cannot “know” whether the next move must be north or east because it cannot
know whether Ui is of type W or W. Infinitely many states would not help.

(2) We now construct X similarly from an infinite word w in {0, 1}ω. It has a unique d2-`-ordering. If
w is not ultimately periodic, this ordering cannot be defined by a finite D2-automaton, by an argument
similar to that used in (1). It is definable by an infinite one (whose transitions must be computable, see
Definition 1.2(a)) if there exists a computable function fw: {0, 1}∗→ {0, 1} such that fw(u) defines the
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Figure 19. Set X (2) of Proposition 4.7.

letter 0 or 1 that follows u in w in the case where u is a prefix of w (otherwise, it yields 0). As there
are uncountably many infinite words and countably many computable functions, there exist uncountably
many words w in {0, 1}ω such that fw is not computable, and hence uncountably many sets X of the
above form with unique d2-`-orderings that are not definable by any D2–automaton. �

One might consider more powerful automata whose transitions from a vertex x are determined from
the state and the neighbourhood of x consisting of vertices at distance at most some p. A similar proof
can be done with sets similar to W, of diameter larger than p.

4B. A D2-automaton extending B. We define a D2-automaton F that extends B and is intended to d2-
`-order sets Z such that G2(Z) is connected but G1(Z) is not. In Table 4, in the “possible directions”
column, “. . . ” means “any”. (The list of cases read from top to bottom can be implemented by IF THEN

ELSE expressions). The initial state is Down and the final one is End.

Example 4.8. (1) Let Z be defined by 2i/3≤ j ≤ 3i/2. Its first levels are {(0, 0)}, ∅, {(1, 1)}, ∅, {(2, 2)},
{(2, 3), (3, 2)}. A d2-`-ordering can be defined by F that makes northeast moves (0, 0)→ (1, 1)→ (2, 2)
and then continues with the transition rules of B.

state possible directions action next state

Down SE, . . . SE Down
¬SE, E, . . . E Up
¬SE, ¬E, N, . . . N Up

¬SE, ¬E, ¬ N, NE, . . . NE Up
¬SE, ¬E, ¬ N, ¬ NE, . . . End

Up NW, . . . NW Up
¬NW, N, . . . N Down
¬NW, ¬ N, E, . . . E Down

¬NW, ¬ N, ¬E, NE, . . . NE Down
¬NW, ¬ N, ¬E, ¬ NE, . . . End

Table 4. The D2-automaton F .
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(2) Let Z be defined by i/2≤ j ≤ (i + 1)/2. Its first levels are {(0, 0)}, ∅, {(1, 1)}, {(2, 1)}, ∅, {(3, 2)}.
All levels are singleton. It satisfies conditions (C1), (C2) and (C3). �

Our next aim is to characterise the sets Z ⊆ N×N that are d2-`-ordered by the D2-automaton F and
the D2`-automaton B of Section 4B.

In the following definition, we use the notation of Definition 4.3.

Definition 4.9 (other conditions on sets Z ⊆N×N). We consider the following variant of condition (C3):

(C4) Each nonempty level is labelled by Down or Up, in such a way that:
(C4.0) Z0 is labelled by Down.
(C4.1) If Zk′ follows Zk labelled by Down (resp. Up) then, it is labelled by Up (resp. Down).
(C4.2) If Zk′ follows Zk , then Last(Zk) is adjacent to First(Zk′) in G2(Z).

If G1(Z) is connected, we have k ′ = k+ 1 in conditions (C4.1) and (C4.2).
Example 4.4 satisfies conditions (C1)–(C3) but not condition (C4). By condition (C4), the labelling of

nonempty levels is defined in a unique way, because we want to characterise the existence of deterministic
automata in the next theorem. Conditions (C1), (C2) and (C4) imply condition (C3).

Theorem 4.10. Let Z ⊆ N×N. It is d2-`-ordered by automaton F if and only if it satisfies conditions
(C1), (C2) and (C4). It is d2-`-ordered by automaton B if and only if G1(Z) is connected (which implies
(C1)) and Z satisfies conditions (C2) and (C4).

Proof. Let Z ⊆ N×N satisfy conditions (C2) and (C4).
If G1(Z) is connected, then, the automata F and B order Z by traversing the levels in the order

Z0, Z1, . . . . They are in state Down on even levels and in state Up on the others.
If G2(Z) is connected but G1(Z) is not (some levels may be empty), the automaton F traverses the

nonempty levels in increasing order.
Conversely, consider a Hamiltonian d2-`-path defined by B. As its moves that increase the height of a

vertex are north and east only, G1(Z) is connected. This path is a sequence of intervals, all elements of
which have same height. This proves condition (C2). The transitions between two levels are by moves
north or east. These transitions prove condition (C4).

The proof is similar for a path defined by F . �

4C. Sets that satisfy conditions (C1)–(C4). We consider sets defined by conjunctions of arithmetical
conditions, and hence that are intersections of finitely many half-planes.

Definition 4.11 (affine subsets of N×N). We call affine7 a subset Z of N×N defined by the conjunction
of finitely many conditions of the following forms, intended to specify that (i, j) ∈ Z :

(i) i ≤ a,
(ii) j ≤ bi + c,

(iii) j ≥ di − e,

where a, b, c, d, e ∈Q, a, c, d, e ≥ 0.
That a, c, e ≥ 0 ensures that (0, 0) is in Z . We restrict coefficients to rational numbers in order to

be able to design algorithms for deciding properties of a given affine set Z that are listed below. Each
level Zk can be enumerated in a straightforward brute force manner.

7A more general definition of an affine set could be obtained by omitting the nonnegativity conditions on a, c, d and e.
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Questions 4.12. (1) Is a given affine set Z finite?

(2) Is G2(Z) connected? Is G1(Z) connected?

(3) Are conditions (C1)–(C3) satisfied?

(4) If they are, does there exist an automaton8 that defines a d2-`-ordering?

The following examples show a variety of cases.

Example 4.13. We let Z be defined by the following conditions:

(1) i/2− 1/3≤ j ≤ i/2. Then Z = {(2n, n) | n ∈ N} and G2(Z) is infinite without edges.

(2) (i−1)/2≤ j ≤ i/2. Then Z ={(2n, n), (2n+1, n) | n ∈N} and G2(Z) is connected but G1(Z) is not.

(3) i ≤ j ≤ i . Then G2(Z) is an infinite diagonal southwest-northeast path and G1(Z) has no edge.

(4) (4i − 1)/10≤ j ≤ i/2. Then G2(Z −{(0, 0)}) is connected but G2(Z) is not as Z1, Z2 and Z3 are
empty.

The sets Z of cases (1) and (4) are not d2-`-ordered by any automaton. Those of cases (2) and (3) are
by F but not by B. �

Definition 4.14 (convexity properties). We define for a subset Z of N × N the following convexity
properties:

(horizontal convexity) If (i, j) and (i + k, j) ∈ Z , then (i + k ′, j) ∈ Z for 0< k ′ < k.

(vertical convexity) If (i, j) and (i, j + k) ∈ Z , then (i, j + k ′) ∈ Z for 0< k ′ < k.

These properties are preserved by intersection. They are satisfied by each set defined by a single
inequality, and hence by every affine set. Furthermore, a similar argument shows than an affine set
satisfies the following:

(diagonal convexity) If (i, j+k) and (i+k, j) ∈ Z , then (i+k ′, j+k−k ′) ∈ Z for 0< k ′ < k,
which is equivalent to condition (C2).

We will also use the following two notions:

(knight convexity)9 (H) If (i, j + 1) and (i + 2, j) ∈ Z , then (i + 1, j) ∈ Z .
(V) If (i, j + 2) and (i + 1, j) ∈ Z , then (i, j + 1) ∈ Z .

An affine set Z defined by a inequality of type (i) or (iii) satisfies condition (H); if it is defined by an
inequality of type (i) or (ii) with b ≥ 0, it satisfies condition (V). Diagonal and knight convexities are
also preserved by intersection.

Theorem 4.15. One can decide if an affine subset of N×N is finite and if it satisfies conditions (C1),
(C3) and (C4).

Lemma 4.16. (1) An affine subset is finite if its description contains, among other inequalities, one of
the form j ≤ bi + c with b < 0 or two of the following forms: i ≤ a and j ≤ bi + c with b ≥ 0, or
j ≤ bi + c and j ≥ di − e with d > b > 0. If so, one can enumerate it and check conditions (C1),
(C3) and (C4).

8One might also wish to order Z by a d2-ordering, that does not necessarily respect levels. We leave this study for future
research.

9Named by reference to the move of knights in chess.
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(2) An affine subset defined Z by bi − e ≤ j ≤ bi + c with b, c, e ≥ 0 is empty or infinite. This can be
decided.

Proof. (1) The listed inequalities imply finiteness. In each case, the set Z can be enumerated level by
level. One can then check whether it satisfies conditions (C1), (C3) and (C4).

(2) Let b = r/q. A pair (i, j) of nonnegative integers is in Z if and only if (i + q, j + r) is. The result
follows by elementary arithmetic. �

In the description of an affine set, we can eliminate an inequality i ≤ a′ if we already have i ≤ a
with a < a′ in the description, and similarly for the inequalities of types (ii) and (iii) (of Definition 4.11).
After these eliminations, we obtain a nonredundant description (although possibly not minimal).

Example 4.17. The following affine sets are infinite:

(1) The set Z defined by j ≥ i/2, j ≥ i − 2 and i ≤ 7 (conditions of type (i) and (iii)).

(2) The set Z ′ defined by i/2 ≤ j ≤ i (conditions of type (ii) and (iii)). The level Z ′1 is empty but
G1(Z ′− Z ′0) is connected.

(3) The set Z ′′ defined by i = j (hence by conditions of type (ii) and (iii)). The graph G1(Z ′′) has no
edge but G2(Z ′′) is connected. �

If Z ⊆ N×N, and p < q, with p, q ∈ N∪ {∞}, we denote by Z[p,q[ the union of the levels Zk for
p ≤ k < q .

Lemma 4.18. Let Z be an affine subset of N×N. Let Z p be a nonempty level. The following equiva-
lences hold:

(1) G1(Z) is connected if and only if G1(Z[0,p+1[) and G1(Z[p,∞[) are so.

(2) Z satisfies (C1) and (C3) if and only if Z[0,p+1[ and Z[p,∞[ do so and the label Up or Down of Z p is
the same in condition (C3) for Z[0,p+1[ and for Z[p,∞[.

(3) If Z contains (0, 0), then it satisfies (C1) and (C4) if and only if Z[0,p+1[ satisfies (C1) and (C4), and
Z[p,∞[ satisfies (C1), and its nonempty levels have a labelling that satisfies (C4.1) and (C4.2), such
that the label of Z p is the same for Z[0,p+1[ and Z[p,∞[.

Proof. (1) This is clear since Z[0,p+1[∩Z[p,∞[= Z p 6=∅. The same holds for G2(Z), i.e, for condition (C1).

(2) This is clear from (1) and the definition of (C3).

(3) This is clear from (1) and the definitions. In the labelling of the levels of Z[p,∞[, instead of condition
(C4.0), we require that Z p, the first nonempty level of Z[p,∞[, have same label for Z[0,p+1[ and Z[p,∞[. �

Proof of Theorem 4.15. Let Z be an affine subset of N×N defined by a nonredundant description. We
have the following five cases, where each one excludes the previous ones. They cover all descriptions of
affine sets.

Case 1: We are in the cases covered by Lemma 4.16(1); hence Z is finite and this lemma yields the
result.

Case 2: The description of Z consists of inequalities of types (i) and (iii). Then Z is infinite, G1(Z)
is connected and Z satisfies knight convexity of type (H). All levels are nonempty, and one can label
them according to (C4.0) and (C4.1). We check condition (C4.2). Let Zk be labelled by Down. Then
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Last(Zk)=min(Zk)= (i, j) is adjacent to (i, j + 1) of height k+ 1. By condition (H) we cannot have
(i + 2, j − 1) ∈ Zk+1. Hence First(Zk+1)=min(Zk+1) is (i, j + 1) or (i + 1, j) and thus is adjacent to
Last(Zk). If Zk is labelled by Up, then Last(Zk)=max(Zk)= (0, j) and First(Zk+1)=max(Zk+1)=

(0, j + 1) is adjacent to it. The set Z of Example 4.17(1) is of this type.

Case 3: The description of Z consists of inequalities of types (ii) with b ≥ 0. Then Z is infinite, G1(Z)
is connected and Z satisfies knight convexity of type (V). The proof is similar to that of Case 2.

For the next cases, we define I (Z) as the set of coordinates (x, y) ∈Q×Q of the intersection points
in the plane of the lines associated with the defining inequalities, including the inequalities i ≥ 0 and
j ≥ 0. We let i(Z) be the smallest integer i such that i ≥ x + y for all (x, y) in I (Z).

Case 4: Z is defined by inequalities of type (ii), of the form j ≤ bi + c, and of type (iii), of the form
j ≥ di − e with b > d ≥ 0 for any such two inequalities. Let b̄ be the minimal such b and d̄ be the
maximal such d, Let c̄ and ē be the corresponding constant coefficients.

We first consider W defined by the inequalities j ≤ b̄i + c̄ and j ≥ d̄i − ē and we let r, q ∈ N be such
that b̄> r/q > d̄ . Let i, j be such that i ≥ (d̄q− ē− c̄)/(b̄− d̄) and d̄i+ d̄q− ē≤ j ≤ b̄i+ c̄. We have in
W the vertices (i, j), (i +q, j) and (i +q, j +r), as one checks easily. Hence, by horizontal and vertical
convexities, we have a path in G1(W ) from (i, j) to (i + q, j + r). This path can translated into a path
from (i + nq, j + nr) to (i + (n+ 1)q, j + (n+ 1)r) for each n > 0. These translated paths concatenate
into an infinite path in G1(W ) starting from (i, j). By horizontal and vertical convexity again, we obtain
that G1(W ) is connected.

We let p :=max{i + j, i(Z)}. It is clear that Z ⊆W, Z p is not empty and G1(Z[p,∞[) is connected. It
satisfies conditions (C4.1) and (C4.2), where Z p can be labelled Up or Down. For proving (C4.2), we use
knight convexities, as in Cases 2 and 3. As Z[0,p+1[ is finite, we can enumerate it and use Lemma 4.18
to decide if Z satisfies conditions (C1), (C3) and (C4).

Case 5: The set Z is defined by inequalities, among which are j ≤ bi + c and j ≥ bi − e with
b = r/q ≥ 0. Let W be defined by these two inequalities (we may have b = e = 0 and, necessarily,
c ≥ 1). By Lemma 4.16(2), we can identify the case where W, whence Z , is empty. Assume now W
is infinite. Other possible defining inequalities are of the forms j ≤ b′i + c and/or j ≥ di − e with
b′ > b > d .

Hence Z contains the vertex (nq, nr) for each integer n such that nr+nq ≥ i(Z). We let p=m(r+q)
be the minimal integer larger than or equal to i(Z) (with m ∈ N). It is clear that Z ⊆W, Z p is not empty
and Z[p,∞[ =W[p,∞[. However, G2(Z[p,∞[) need not be connected (see Example 4.13(1)).

The finite set Z[p,p+r+q+1[ is isomorphic to Z[p+r+q,p+2(r+q)+1[ by a translation of vector (r, q). The
intersection of these two sets is Z p+r+q . Hence, Z[p,∞[ is the union of the pairwise isomorphic sets
Z[p+n(r+q),p+(n+1)(r+q)+1[.

Then we have that G1(Z[p,∞[) (resp. G2(Z[p,∞[)) is connected if and only if G1(Z[p,p+r+q+1[)
(resp. G2(Z[p,p+r+q+1[) is.

Thus Z[p,∞[ satisfies (C3) (resp. (C4)) if and only if Z[p,p+r+q+1[ does, which is decidable. As
Z[0,p+1[ is finite, we can decide it satisfies conditions (C1), (C3) and (C4), and we obtain the final result
by means of Lemma 4.18. �

Open question: Is there an efficient algorithm for the decision problem of Theorem 4.15?
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5. Dimension > 2

We consider next the definition of d2-`-orderings of sets X1 × X2 × · · · × X p, where X1, . . . , X p are
finite or infinite linearly ordered sets, equivalently, [0,m] or N. We will prove that a unique automaton10

with 2p−1 states can define a d2-`-ordering of any such a set, without knowing whether the components
X i are finite or infinite. We will use an induction on p for which we require more facts about orderings
of Xq × · · ·× X p.

5A. Levels. We generalise the notion of level from Definition 2.1. We define it abstractly in a linearly
ordered set. The notion of height will arise from that of level.

Definition 5.1 (levelled linear order). (a) A levelled linear order (llo) is a linear order Z defined as a
finite or infinite concatenation of finite nonempty intervals Z0, Z1, . . . , Zn, . . . such that Z0 < Z1 <

· · ·< Zn < · · · Each interval is called a level. If m ∈ Z j , then ht (m) := j is the height of m.
We define Lev(Z) as the linearly ordered set N if Z is infinite (all levels are nonempty), and [0, p] if

Z p is the maximal nonempty level.

(b) The product of a linear order X ⊆ N and an llo Z is the llo on the set U := X × Z defined as
in Definition 2.2, with a notion of type, which depends here on the levels of Z . The Z -type of a pair
(i,m) ∈ X × Z is the triple of integers

σ(i,m) :=IF i + ht (m) is even THEN (i + ht (m), i,m),

ELSE (i + ht (m), ht (m),m).

A pair (i,m) can be determined from its type σ(i,m).
The order ≤U on pairs (i,m) is increasing lexicographically on the Z -types σ(i,m). The level Uk is

the interval consisting of the pairs (i,m) such that i + ht (m)= k. It is important that each level of Z be
finite in the case where Z is infinite.

Intuitively, U is obtained by substituting in X × Lev(Z), ordered as in Definition 2.3, the interval
i � Z j to (i, j), where i � (s0, . . . , sq) denotes the linear order ((x, s0), (x, s1), (x, s2), . . . , (x, sq)).

Example 5.2. (1) An example of an llo is Z (3,6) := [0, 3] × [0, 6] of Definition 2.3, which we can
describe as

/00/10, 01/02, 11, 20/30, 21, 12, 03/ . . . /26, 35/36/

by separating levels. See Figure 2. Every linear order from Definition 2.3 is an llo, as a notion of
level is defined.

(2) From a linear order X and an integer p, we can define an llo where each level has p elements, except
the last one, which may have less. For X :=N and p = 3, we get the llo /0, 1, 2/3, 4, 5/6, 7, 8/ . . . .

(3) From a levelled linear order X and an integer q, we can define an llo by restricting X to its first
q levels.

(4) The llo on [0, 3]× [0, 3] is

/00/10, 01/02, 11, 20/30, 21, 12/13, 22, 31/32, 23/33/.

10It is a graph-walking automaton traversing the graph G2(Z) but its description will not use directions.
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Figure 20. The d2-`-ordering of Example 5.2(5).

(5) The llo on [0, 3]× ([0, 3]× [0, 3]) is (see Figure 20)

/000/100, 010, 001/002, 011, 020, 110, 101, 200/300, 210, 201,

102, 111, 120, 030, 021, 012, 003/013, 022, 031, 130, . . . ,

301/302, 311, 320, 230, . . . , 023/ . . . /233, 332, 323/333/.

For conciseness, we write, e.g., 121 instead of (1, 21), a notation that we use below.

Observation 5.3 (concrete descriptions of the levels of X × Z ). (1) If X and Z are infinite, the levels Ui

of the llo on U := X × Z of Definition 5.1 are as follows (where • denotes concatenation of sequences):

• If i is even, then Ui = (0� Zi ) • (1� Zi−1) • · · · • (i � Z0).

• If i is odd, then Ui = (i � Z0) • (i − 1� Z1) • · · · • (0� Zi ).
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We can determine as follows the pair (y, z′) that follows (x, z) in U, where z∈ Z j and thus (x, z)∈Ux+ j .
There are three cases with subcases:

(a) z is not last in Z j (so that (x, z) is not last in Ux+ j ). Then y = x and z′ follows z in Z j .

(b) (x, z) is not last in Ux+ j but z is last in Z j . There are two subcases:

(b0) If x + j is even, we must have j > 0; otherwise z is last in Z0 and (x, z) is last in Ux+ j =Ux .
Hence, we have y = x+1 and z′ is the first element in Z j−1 (see the definition of backZ below).

(b1) If x + j is odd, we must have x > 0; otherwise (x, z)= (0, z) is last in Ux+ j =Uj . Hence, we
have y = x − 1 and z′ is the first element in Z j+1.

(c) If (x, z) is last in Ux+ j (hence, z is last in Z j ), we have two subcases:

(c0) If x + j is even, then j = 0, z is last in Z0, y = x + 1 and z′ is the first element in Z0 (possibly
equal to z).

(c1) If x + j is odd, then x = 0, z is last in Z j , y = 0 and z′ is the first element in Z j+1.

Here, the height of (y, z′) is one more than that of (x, z). In the previous two cases, it is the same.
We can visualise case (c) as follows:

If i is even, then

Ui •Ui+1 = (0� Zi ) • · · · • (i � Z0) • ((i + 1)� Z0) • · · · • (0� Zi+1),

and if i is odd, then

Ui •Ui+1 = (i � Z0) • · · · • (0� Zi ) • (0� Zi+1) • · · · • ((i + 1)� Z0).

In case (b0) the transition from the last element of Z j to the first one in Z j−1 is called a back step
in Z . In Case (c0) the transition from z, last in Z0, to z′, first in Z0, is also a back step inside the
level Z0 of Z , in the case where Z0 is not singleton. However, Z0 is singleton if Z = Xq ×· · ·× X p.

(2) If X and/or Z is finite, this description must be modified. We define m X in N∪{∞} as the least upper
bound of X , and, similarly, MZ as the least upper-bound of Lev(Z). We let k ≤ m X +MZ (Um X+MZ is
the last nonempty level). To describe Uk , we define

α :=max{0, k−MZ } = k−min{k,MZ },

β :=max{0, k−m X } = k−min{k,m X }.

We have α ≤ k−β ≤ k because k−MZ ≤ m X .
If k is even, we have

Uk = (α� Zk−α) • ((α+ 1)� Zk−α−1) • · · · • ((k−β)� Zβ).

If k is odd, we have

Uk = ((k−β)� Zβ) • ((k−β + 1)� Zβ−1) • · · · • (α� Zk−α).

Regarding the determination of the next pair, cases (a) and (b) described above are applicable. For
case (c) there are several subcases depending on whether x is maximal and Z j is the maximal nonempty
level of Z .
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(c′0) If k is even, then

Uk •Uk+1 = (α� Zk−α) • · · · • ((k−β)� Zβ) • ((k+ 1−β ′)� Zβ ′) • · · · • (α′� Zk+1−α),

where β ′ := k+ 1−min{k+ 1,m X } and α′ = k+ 1−min{k+ 1,MZ }.
We let (x, z) be the last element in (k−β)� Zβ , followed by (x ′, z′) in (k+ 1−β ′)� Zβ ′ .
There are three subcases to consider. Examples are from Figure 20:

(i) If k < m X , then β = β ′ = 0, x = k, x ′ = k + 1, and z′ is the first element in Z0 = Zβ . For
example, (x, z)= (2, 00), (x ′, z′)= (3, 00).

(ii) If k = m X , then β = 0, β ′ = 1, x ′ = x = m X , and z′ is the first element in Z1; hence it follows
that z is in Z . There is no example because m X = 3.

(iii) If k >m X , then β = k−m X , β ′ = β+1, x ′ = x =m X , and z′ is the first element in Zβ ; hence
it follows that z is in Z . For example, (x, z)= (3, 01), (x ′, z′)= (3, 02).

In case (i) we have a transition z→ z′ inside Z0.

(c′1) Similarly, if k is odd, then

Uk •Uk+1 = (k−β� Zβ) • · · · • (α� Zk−α) • (α
′
� Zk+1−α′) • · · · • (k−β ′� Zβ ′).

We let (x, z) be the last element in α� Zk−α, followed by (x ′, z′) in α′� Zk+1−α′ . There are
again three subcases:
(iv) If k < MZ , then α = α′ = 0, x = x ′ = 0, and z′ is the first element in Zk+1. Hence it follows

that z is in Z . For example, (x, z)= (0, 23), (x ′, z′)= (0, 33).
(v) If k = MZ , then α = 0= x , α′ = 1= x ′, and z′ is the first element in Zk = Z MZ . There is no

example because MZ = 6.
(vi) If k > MZ , then α = x = k−MZ , α′ = 1= x ′, and z′ is the first element in Z MZ . For example,

(x ′, z′)= (1, 23), (x ′, z′)= (0, 33).
In cases (v), (vi), we have a transition z→ z′ inside Z MZ .

Definition 5.4 (back steps from last elements in their levels). (a) If Z is an llo, we define backZ as
the set of pairs (max(Zk),min(Zk−1)) such that k > 0 and Zk is not empty. If Zk and Zk−1 are
singleton, then min(Zk−1) is just the element preceding max(Zk) in Z .

(b) The Last in level test LilZ applied to z ∈ Z means that z is the last element in its level.

Example 5.5 (back steps in Cartesian products). Let Z := [0, 3]× [0, 3], U := [0, 3]× Z and consider
in Figure 20 the level

U4=
(
(0, 13), (0, 22), (0, 31), (1, 30), (1, 21), (1, 12), (1, 03), (2, 02), (2, 11), (2, 20), (3, 10), (3, 01)

)
.

We write i j for a pair (i, j) of Z and (k, i j) for a pair in U corresponding to a triple (k, (i, j)) in
[0, 3]× ([0, 3]× [0, 3]). Level U4 has a transition (0, 31)→(1, 30) based on a back step in Z from 31 to
30 that decreases height in Z . In this llo, some other backZ transitions are used for ordering U : 20→ 10
(for (0, 20)→ (1, 10)), 33→ 32 (for (2, 33)→ (3, 32)), 23→ 13 (for (1, 23)→ (2, 13)) and 33→ 32
(for (2, 33)→ (3, 32)).

Construction 5.6. We define an automaton AU intended to define the llo on U := X×Z (see Definition 5.1),
where X and Z are llo’s that satisfy the following conditions:
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(1) All levels of X are singleton, and so is the minimal level Z0 of Z and its maximal one if it is finite.

(2) We are given an automaton AZ for Z that defines back steps, and more precisely, such that, based
on it, we have routines for the following tests and actions:

firstZ , lastZ , LilZ , nextZ , backZ .

For X , LilX (x) is always true, and backX is nothing but prevX . We will use the routines
firstX , lastX , nextX and prevX .

Describing automata with directions N, E, SE etc. is no more convenient. We will use Boolean condi-
tions on X and Z instead. If X is an interval of integers, then

firstX (x) is implemented by the test (x = 0)?,

lastX (x) is implemented by the test (x = m X )?,

nextX by x := x + 1, and

prevX by x := x − 1.

We use these notations for uniformity with those for Z that cannot be easily expressed from integers.
(However, see Proposition 5.8 below).

The minimal level U0 and the maximal one (if U is finite) are singleton. This will allow us to use
recursively this construction. For the same reason, we will build an automata AU that defines the same
five tests and actions as for Z .

Definition of AU . Its states are pairs (Up, s) and (Down, s), where s is a state of AZ .
The initial state is (Down, InitZ ) where InitZ is the initial state of AZ .
We define

firstU := firstX ∧ firstZ and lastU := lastX ∧ lastZ .

and LilU is defined by Table 5. In Tables 5–8, “state” indicates the first component of the state. The
second component is used in the computations of firstZ , lastZ , LilZ , nextZ and backZ . It replaces
the directions and border conditions used in the automata of Sections 2, 3 and 4. The examples concern
U := [0, 3]× Z , where Z := [0, 3]×[0, 3], and the d2-`-ordering shown in Figure 20. The actions nextU

and backU are described in Tables 6–8. In Tables 6 and 7, “property” indicates if LilU holds before the
transition is done. The indicated cases (a), (b), (i), (ii) etc. refer to Observation 5.3.

The number of states of AU is twice that of the automaton for Z . If all levels of Z are singleton, then
AZ has only one state. �

5B. Application to Cartesian products.

Theorem 5.7. There is an automaton with 2n−1states that defines a d2-`-ordering of U = X1 × X2 ×

· · ·× Xn , where X1, X2, . . . , Xn are finite or infinite linearly ordered sets.

Proof. We use Construction 5.6 recursively by writing U = X1× Z = X1× (X2× (· · · × Xn)). To have
a d2-ordering, we must check that the distance between consecutive elements is at most 2.

We let P(Z) for an llo Z (intended to be X i×(· · ·×Xn) for some i) be the conjunction of the following
properties:
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state subcondition examples

Up firstX ∧ LilZ (0, 03)
Up lastZ (1, 33)

Down firstZ (0, 00),(2, 00)
Down lastX ∧ LilZ (3, 03), (3, 01)

Up or Down lastX ∧ lastZ (3, 33)

Table 5. Cases where LilU is true.

conditions subcondition property action new state examples; cases

¬LilZ ¬LilU nextZ Down (1, 21)→(1, 12)(a)
LilZ ¬lastX∧¬firstZ ¬LilU nextX ; backZ Down (1, 03)→(2, 02)(b)
LilZ lastX∧¬last Z LilU nextZ Up (3, 03)→(3, 13)(ii)-(iii)
LilZ firstZ∧¬last X LilU nextX Up (2, 00)→(3, 00)(i)

lastX∧ lastZ LilU End

Table 6. nextU for state=Down.

condition subconditions property action new state examples; cases

¬LilZ ¬LilU nextZ Up (0, 21)→(0, 12)(a)
LilZ ¬firstX∧¬lastZ ¬LilU prevX ; nextZ Up (2, 03)→(1, 13)
LilZ firstX∧¬last Z LilU nextZ Down (0, 23)→(0, 33)
LilZ ¬lastX∧last Z LilU nextX Down (1, 33)→(2, 33)

lastX∧lastZ LilU End (3, 33)

Table 7. nextU for state=Up.

conditions subcondition action new state examples

Down ¬firstX∧firstZ prevX Up (2, 00)→(1, 00)
Down lastX∧LilZ backZ Up (3, 03)→(3, 02)
Up firstX∧LilZ backZ Down (0, 03)→(0, 02)
Up ¬firstX∧lastZ prevX Down (1, 33)→(0, 33)

Table 8. backU .

(a) Z0 is singleton and so is the maximal level if Z is finite. (Think of X i × (· · · × Xn)).

(b) The action backZ changes a single component.

(c) If LilZ holds, then nextZ changes a single component.

(d) If LilZ does not hold, then nextZ changes at most two components.

Property P(Z) holds if all levels of Z are singleton, in particular for Z = Xn ⊆ N. Then LilZ always
holds and backZ is prevZ .
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Next we consider P(U ) where U := X × Z and P(Z) holds.

(a) We have this by the definitions.

(b) This holds by the definition of backU in Table 8 and assertion (b) for Z .

(c) Assume that LilU holds. From Table 5, we have LilZ in all cases, because lastZ implies LilZ

and so does firstZ because Z0 is singleton (by (a)).
Consider Table 6. The transition whose action is nextX ; backZ and precondition is ¬lastX ∧

¬firstZ is not compatible with the condition LilU which needs, in state Down, firstZ or lastX .
By P(Z), all transitions change a single component. Similarly, consider Table 7. The transition whose
action is prevX ;nextZ and precondition is ¬firstX ∧¬lastZ is not compatible with the condition
LilU , which needs, in state Up, firstX or lastZ . This proves (c).

(d) This is clear from Tables 6 and 7. �

Condition (a) is necessary for Construction 5.6 to work.

The automaton is the same for sets X i either infinite or finite with maximal value mi .

Direct computation of the next element. We take each X i to be [0,mi ] or N, with known least upper-
bound mi . We wish to compute the n-tuple following a given one, say (3, 0, 2, 4, 0, 0) to take an example,
without having to enumerate U until one reaches the given tuple and the one following it.

Proposition 5.8. Let U := X1 × X2 × · · · × Xn such that the values mi are known. There exists an
algorithm that, for input x = (x1, . . . , xn) such that xi ≤ mi for all i , determines in time O(n) the
n-tuple that follows x in ≤U without enumerating U.

Proof. We will compute nextU ((x1, . . . , xn)) by means of at most n auxiliary computations of

LilX i×···×Xn ((yi , . . . , yn)),

nextX i×···×Xn ((yi , . . . , yn)),

backX i×···×Xn ((yi , . . . , yn)))

for 1≤ i ≤ n and appropriate tuples (yi , . . . , yn).
To simplify notation, we will use Lili (yi , . . . , yn) for LilX i×···×Xn ((yi , . . . , yn)), and similarly for

next and back. We fix U := X1× X2× · · ·× Xn such that the values mi are known.
If (yi , . . . , yn) ∈ X i × · · ·× Xn , 1≤ i ≤ n, we define

3i (yi , . . . , yn) :=
(
Lili (yi , . . . , yn), nexti (yi , . . . , yn), backi (yi , . . . , yn)

)
,

where Lili (yi , . . . , yn)∈{true, false}, nexti (yi , . . . , yn) is⊥ (undefined) if (yi , . . . , yn)= (mi , . . . ,mn)

and is in X i × · · ·× Xn otherwise, backi (yi , . . . , yn) is ⊥ if Lili (yi , . . . , yn)= false or (yi , . . . , yn)=

(0, . . . , 0), and it is in X i × · · ·× Xn otherwise.

We compute 31(x1, . . . , xn) by recursion, by means of 32(· · · ), . . . , 3n(· · · ) for appropriate argu-
ments.

For computing 3i (yi , . . . , yn), we use Tables 5, 6, 7 and 8. The state is Up if yi + · · ·+ yn is odd and
Down if it is even.

If i = n, then 3n(yn) := (true, yn + 1,⊥) (or (true,⊥,⊥) if yn = mn).
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We now examine how to compute 3i (yi , . . . , yn) if i < n.
For computing Lili (yi , . . . , yn) (see Table 5), we use

(yi = 0)? for firstX ,

(yi = mi )? for last Lili+1(yi+1, . . . , yn) for LilZ and
((yi+1, . . . , yn)= (mi+1, . . . ,mn))? for lastZ .

For computing nexti (yi , . . . , yn) and backi (yi , . . . , yn) (see Tables 6, 7 and 8), we use

((yi+1, . . . , yn)= (0, . . . , 0))? for firstZ ,

nexti+1(yi+1, . . . , yn) for nextZ ,

backi+1(yi+1, . . . , yn) for backZ

and the same definitions as above for firstX , lastX and lastZ . �

Example 5.9. Here are some particular cases and examples:

(1) If x = (m1, . . . ,mn) ∈ Nn , there is no next element because x is last in U.

(2) If x = (2p, 0, . . . , 0) and 0≤ 2p < m1, or x = (0, 0, . . . , 0, 2p+ 1) and 0< 2p+ 1< mn , then, x
is last in its level and the following element x′ is, respectively, (2p+ 1, 0, . . . ) or (0, 0, . . . , 0, 2p+ 2).

(3) Let x = 302400 ∈ N6, m1 > 3, m4 = 2, m5 = 4, m2,m3,m6 > 0,
For x = 302400, the state is Up, Lil6(x) = false (see Table 5: 3 is not first in X1 and 02400 is not

last in X2× · · ·× X6) and so next6(x)= 3 • next5(02400).
The state is now Down; then Lil5(02400)= false (0 is not last in X2, 2400 is not first in X3×· · ·×X6)

and so next6(x)= 3 • 0 • next4(2400).
The state is Down; then Lil4(2400)= Lil3(400)= true and

next4(2400)= 2 • next3(400)= · · · = 2401.

Hence next6(x)= 302401. Note that we did not need to compute back in this case.

(4) Let now x = 4323 ∈ N4, m4 = 5, m1 = m2 = m3 = 1.
Then Lil4(4323)= false, Lil3(323)= true, and next4(x)= (4+ 1) • back3(323)= 5313. �

Remark 5.10. Computation is accelerated if we note the following facts, stated as in Proposition 5.8.

Claim 1: Lili (yi , . . . , yn) implies Lili+1(yi+1, . . . , yn).

Claim 2: ¬Lili+1(yi+1, . . . , yn) implies nexti (yi , . . . , yn)= yi • nexti+1(yi+1, . . . , yn).

Open questions 5.11. With the hypothesis of Proposition 5.8, design an algorithm to determine the rank
rk(x) of tuple x in the ordering ≤U , and conversely, to determine the tuple of given rank i .

These tasks are easy in the case of Definition 2.2, i.e., when n = 2 and m1 = m2 =∞, because then

rk(i, j)= IF i + j is even THEN (i + j + 1)(i + j + 2)/2− j

ELSE (i + j + 1)(i + j + 2)/2− i.

Conversely, given rk(i, j)=n, one determines i+ j as the least integer m such that (m+1)(m+2)/2≥n,
from which one obtains i and j depending on its parity.
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6. Conclusion

We presented a few open questions in the previous sections; here are some more.

(1) Which “simple” automata can define d1-orderings of N×N×N, and more generally, of Cartesian
products N×N× · · ·×N?

(2) Which automata can define d2-orderings, which may not respect levels?

(3) What about sets defined by Boolean combinations of linear inequalities? They may not be convex.

(4) Does there exist a finite automaton that can d2-`-order an affine subset Z ⊆N×N×· · ·×N defined
by conditions of the form a1i1+ · · ·+ anin ≤ b, with b ≥ 0 (ensuring that Z contains (0, 0, . . . , 0)).
Already for n = 2, we have a counterexample in Figure 17. We would need to generalise conditions
(C1)–(C4) to larger dimensions.

Appendix

The Enum package is part of the TRAG11 system which is written in Common Lisp. The code can be
found at https://idurand@bitbucket.org/idurand/trag.git. The first version of this package was presented
in [Durand 2012]. It offered the possibility of creating basic enumerators (inductive, from a list, . . . ) and
combining existing ones by using operations like taking a product, sequencing or filtering. The general
product built on the binary product does not give d2-orderings.

Here we give some hints about how we programmed a bidirectional levelled enumerator which enu-
merates a (possibly infinite) Cartesian product by producing d2-`-orderings.

A.1. Enumerators and bidirectional enumerators.

A.1.1. General enumerators. In the following, an enumerator E is identified with the enumerated se-
quence. In the Enum package, each enumerator E has at least the following operations:

• next-element-p (E): does there exist a next element?

• next-element (E): move to the next element.

For the implementation, we also need:

• init-enumerator (E): put E in its initial state.

• copy-enumerator (E): independent copy of E.

Examples with a finite enumerator.

ENUM> (defparameter *ABC* (make-list-enumerator ’(A B C))) => *ABC*
ENUM> (next-element *ABC*) => A
ENUM> (next-element *ABC*) => B
ENUM> (next-element-p *ABC*) => T
ENUM> (next-element *ABC*) => C
ENUM> (next-element-p *ABC*) => NIL
ENUM> (collect-enum *ABC*) => (A B C) ;; only if finite

11https://trag.labri.fr

https://idurand@bitbucket.org/idurand/trag.git
https://trag.labri.fr
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Examples with an infinite enumerator.

ENUM> (defparameter *naturals*
(make-inductive-enumerator 0 (lambda (n) (1+ n)))) => *NATURALS*

ENUM> (next-element *naturals*) => 0
ENUM> (next-element *naturals*) => 1
ENUM> (next-element *naturals*) => 2
ENUM> (init-enumerator *naturals*) => #<INDUCTIVE-ENUMERATOR {100B58E013}>
ENUM> (next-element *naturals*) => 0
ENUM> (next-element *naturals*) => 1
ENUM> (next-element-p *naturals*) => T ;; always true
ENUM> (collect-n-enum *naturals* 9) => (0 1 2 3 4 5 6 7 8) ;; the first 9 values

A.1.2. Bidirectionals enumerators. A bidirectional enumerator B has in addition a way (+1 to move
forward, -1 to move backwards), an initial-way and the following operations to handle them:

• initial-way (B): initial way,

• change-initial-way (way, B): change initial-way to way,

• way (B): current way,

• inverse-way (B): inverse way of B,

together with the following operations:

• way-next-element-p (way B): does there exist a next element in this way?

• way-next-element (way B): move to the next element in this way.

• latest-element (B): latest object enumerated.

The operations next-element-p and next-element can be written with way-next-element-p and
way-next-element:

(defun next-element-p (B) (way-next-element-p (way B) B))
(defun next-element (B) (way-next-element (way B) B))

The implementation of a bidirectional enumerator uses two stacks past-objects and future-objects,
the first one containing the already enumerated objects (that are before the latest one) and the second, the
ones that are after, and a slot latest-object containing the last enumerated object. If the enumerator
is moving backwards, the top element of past-object will be produced and moved to latest-object;
otherwise the top element of future-object will be produced and moved to latest-object.

Creation and initialization of a bidirectional enumerator. Given a nonempty enumerator E, enumerat-
ing e0, e1, . . . , one can obtain its bidirectional version B-E with (make-bidirectional-enumerator E
initial-way). In B-E, one has access to E, the underlying enumerator, by (enum B-E). At initialization,
if initial-way is -1, we move forward (enum B-E) towards the first element in the positive way, so
towards the first element of E, e0, in order to go back to this element at the next call of next-element.
Consequently, the first call (next-element-p B-E) will return T, the first call (next-element B-E) will
return the first element of E that is e0; then (next-element-p B-E) will return Nil as long as its way
remains -1.
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Example of creation and use of a bidirectional enumerator.

ENUM> (defparameter *B-NATURALS*
(make-bidirectional-enumerator *naturals*)) => *B-NATURALS*

ENUM> (next-element *B-NATURALS*) => 0
ENUM> (next-element *B-NATURALS*) => 1
ENUM> (next-element *B-NATURALS*) => 2
ENUM> (way *B-NATURALS*) => 1
ENUM> (inverse-way *B-NATURALS*) => -1
ENUM> (way *B-NATURALS*) => -1
ENUM> (next-element *B-NATURALS*) => 1
ENUM> (next-element *B-NATURALS*) => 0
ENUM> (next-element-p *B-NATURALS*) => NIL
ENUM> (inverse-way *B-NATURALS*) => 1
ENUM> (next-element-p *B-NATURALS*) => T
ENUM> (next-element *B-NATURALS*) => 1
ENUM> (next-element *B-NATURALS*) => 2
ENUM> (latest-element *B-NATURALS*) => 2
ENUM> (way-next-element -1 *B-NATURALS*) => 1

A.2. Enumeration of Cartesian products. Let E1, . . . , E p be nonempty enumerators (finite or not) such
that Ei = (ei

0, ei
1, . . . ) if it is infinite, Ei = (ei

0, ei
1, . . . , ei

ci−1) where ci = |Ei | otherwise. There are no
repetitions. Let Tp = E1×E2×· · ·×E p. The necessity of diagonal enumeration of Tp arises in particular
when one of the components is infinite.

A.2.1. Levelled enumerators of Cartesian products. The height of a tuple t = (e1
j1, e2

j2, . . . , ep
jp
) ∈ Tp is

the sum 6
p
i=0 ji of the indices of the elements in the sets Ei . We note here by L i the i-th level of Tp

which is the finite set of tuples of height i . Then Tp is the partition of its levels. If Tp is infinite, its
number of levels is infinite. The definitions of height and level in Definition 2.1 of Section 2 concern the
particular case where the enumerated sequences are N or intervals [0, p] ⊂ N.

A levelled enumerator enumerates L0, L1, . . . in increasing order. We call major step a step that
moves to the next level and minor step a step inside a level. Levelled enumerators have in addition the
predicate

minor-step-p (E),

which is true if the next step (next-element) does not change the level. It is false when we are done
with the enumeration of the current level.

A.2.2. Bidirectionals levelled enumerators. A levelled bidirectional enumerator is a levelled enumerator
which in addition, is bidirectional (it has a way and an initial-way). When going forward (way = +1),
it enumerates levels in increasing order: L0, L1, . . . When going backwards (way = -1), it enumerates
them in decreasing order: L i , L i−1, . . . while keeping the forward order inside the levels.

A.2.3. Diagonal product of a bidirectional enumerator with a bidirectional levelled enumerator. We
implement Definition 5.1(b). Let X be a bidirectional enumerator and Y be a bidirectional levelled enu-
merator which when going forward enumerates the levels Y 0, Y 1, . . . . We define below DP(X, Y), the
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diagonal product of X and Y. When DP(X, Y) is created, the initial way of X is set to +1 and the initial
way of Y is set to -1. A minor step on level is a step that changes the level of X in a way and the level
of Y in the opposite way but not the level of D. In addition to the usual operations we have the accessors
enum-x (D) and enum-y (D) to access respectively to X and to Y. The other operations are written:

(defun latest-element (D)
(cons (latest-element(enum-x D) (latest-element (enum-y D)))))

(defun minor-step-p (D) ;; precondition (next-element-p D)
(and (next-element-p (enum-y D))

(or (next-element-p (enum-x D)) (minor-step-p (enum-y D)))))

(defun way-next-element-p (way D)
(or (way-next-element-p (way D) (enum-x D))

(way-next-element-p (way(D) (enum-y D)))))

(defun way-next-element (way D)
(let* ((enum-x (enum-x enum))

(enum-y (enum-y enum))
(next-x (next-element-p enum-x))
(next-y (next-element-p enum-y)))

(cond
((and next-y (minor-step-p enum-y)) ;; lower-level minor step
(next-element enum-y))

((and next-y next-x) ;; minor-step on level
;; each one makes a major in its way
(next-element enum-x) (next-element enum-y))

;; major step
((not (or next-x next-y))
(corner-step enum-x enum-y way))

(t (sliding-step enum-x enum-y way))))
(latest-element enum))

(defun sliding-step (X Y way)
;; precondition: X or Y can move in its way
(if (next-element-p Y)

(way-next-element way Y)
(way-next-element way X))

(inverse-way X)
(inverse-way Y))

The call (sliding-step X Y 1) corresponds to a jump-up (move to upper level) and the call
(sliding-step X Y -1) corresponds to a back step (move to lower level, see Definition 5.4). If neither
X nor Y can move in their current ways and the enumeration is not over, we are in a case called corner
step, which may happen only when at least one of the enumerators is finite (otherwise there is always a
possible sliding step). In the case of a corner step, we reverse the way of the enumerator, which goes in
the opposite direction of way (of the product enumerator) and move it to the next level according to way.
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If way = 1, we move to the upper level. If way = -1, we move to the lower level. The other enumerator
changes its way (it could not contribute to the level change because it is blocked in the direction way).

(defun corner-step (X Y way)
;; change the way of the enumerator which goes in opposite direction
;; to way and move it; the other enumerator changes way
(when (plusp (* way (way enum-x)))

;; put in enum-x the one that goes in direction -way
(psetf enum-x enum-y enum-y enum-x))

(inverse-way enum-x) ;; enum-x will move in direction way
(next-element enum-x) ;; enum-y will move in direction -way
(inverse-way enum-y))

A.3. Diagonal enumeration of a Cartesian product. Let Nil be the bidirectional levelled enumerator
corresponding to the empty product enumerating the singleton set containing a single tuple of length 0:
Nil= {()} it has only one level L0

= {()}.
We may show that recursive use of DP yields the levelled-`-ordering defined in Definition 5.1 and

described in Observation 5.3.

Proposition A.1. Let E1, E2, . . . , E p be bidirectional enumerators. The enumerator

DP(E1, DP(E2, DP(. . . , DP(E p, Nil))))

is a bidirectional levelled enumerator and defines a d2-`-ordering of E1× E2× · · ·× E p.

In the examples, we will use only integers so that the level of a tuple is the sum of its elements.

ENUM> (defparameter *e2* (make-list-enumerator ’(0 1))) => *E2*
ENUM> (defparameter *e3* (make-list-enumerator ’(0 1 2))) => *E3*
ENUM> (collect-enum *e2*) => (0 1)
ENUM> (collect-enum *e3*) => (0 1 2)
ENUM> (collect-enum (make-product-enumerator (list *e3* *e3*)))
((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (2 1) (1 2) (2 2))
ENUM> (collect-enum (make-product-enumerator (list *e3* *e3* *e3*)))
((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1)
(2 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2)
(1 2 1) (1 1 2) (2 0 2) (2 1 1) (2 2 0) (2 2 1) (2 1 2) (1 2 2) (2 2 2))
ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3*)) 30)
((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (3 0) (2 1) (1 2) (2 2) (3 1) (4 0) (5 0)
(4 1) (3 2) (4 2) (5 1) (6 0) (7 0) (6 1) (5 2) (6 2) (7 1) (8 0) (9 0) (8 1)
(7 2) (8 2) (9 1) (10 0))
ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3*)) 20)
((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (3 0) (2 1) (1 2) (2 2) (3 1) (4 0) (5 0)
(4 1) (3 2) (4 2) (5 1) (6 0) (7 0) (6 1))
ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3* *e3*)) 20)
((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1)
(2 0 0) (3 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2)
(0 2 2) (1 2 1))
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