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Michel Waldschmidt

Let s0, s1, . . . , sm−1 be complex numbers and r0, . . . , rm−1 rational integers in the range 0≤ r j ≤ m− 1.
Our first goal is to prove that if an entire function f of sufficiently small exponential type satisfies
f (mn+r j )(s j ) ∈ Z for 0 ≤ j ≤ m− 1 and all sufficiently large n, then f is a polynomial. Under suitable
assumptions on s0, s1, . . . , sm−1 and r0, . . . , rm−1, we introduce interpolation polynomials 3nj (n ≥ 0,
0≤ j ≤ m− 1) satisfying

3
(mk+r`)
nj (s`)= δ j`δnk for n, k ≥ 0 and 0≤ j, `≤ m− 1,

and we show that any entire function f of sufficiently small exponential type has a convergent expansion

f (z)=
∑
n≥0

m−1∑
j=0

f (mn+r j )(s j )3nj (z).

The case r j = j for 0≤ j ≤ m− 1 involves successive derivatives f (n)(wn) of f evaluated at points of
a periodic sequence w = (wn)n≥0 of complex numbers, where wmh+ j = s j (h ≥ 0, 0 ≤ j ≤ m). More
generally, given a bounded (not necessarily periodic) sequence w = (wn)n≥0 of complex numbers, we
consider similar interpolation formulae

f (z)=
∑
n≥0

f (n)(wn)�w,n(z)

involving polynomials �w,n(z) which were introduced by W. Gontcharoff in 1930. Under suitable as-
sumptions, we show that the hypothesis f (n)(wn) ∈ Z for all sufficiently large n implies that f is a
polynomial.

1. Introduction

Given a finite set of points S in the complex plane and an infinite subset S of S × N, where N =

{0, 1, 2, . . . } is the set of nonnegative integers, we ask for a lower bound on the order of growth of a
transcendental entire function f such that f (n)(s) ∈ Z for all (s, n) ∈ S. In [Waldschmidt 2019], we
discussed the case S = {s0, s1} using interpolation polynomials of Lidstone, Whittaker and Gontcharoff,
together with results of Schoenberg and Macintyre.
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Here we introduce generalizations of these interpolation polynomials to several points and we deduce
lower bounds for the growth of transcendental entire functions with corresponding integral values of their
derivatives. We first consider periodic sequences: given complex numbers s0, s1, . . . , sm−1 and rational
integers r0, . . . , rm−1 in the range 0≤ r j ≤ m− 1, we set

S = {(s j ,mn+ r j ) | n ≥ 0, 0≤ j ≤ m− 1};

under suitable assumptions, we give a lower bound for the growth order of a transcendental entire func-
tion f satisfying f (mn+r j )(s j ) ∈ Z for 0 ≤ j ≤ m − 1 and all sufficiently large n (Theorem 2). That
some assumption is necessary is obvious from the example m = 2, s0 = s1 = r0 = r1 = 0: given any
transcendental entire function g, say of order 0, the function f (z) = zg(z2) is a transcendental entire
function of the same order satisfying f (2n)(s0)= 0 for all n ≥ 0.

Next, we consider a sequence (wn)n≥0 of elements in S and we prove that an entire function of
sufficiently small exponential type satisfying f (n)(wn) ∈ Z for all sufficiently large n is a polynomial
(Theorem 5(a)).

In Section 4, we show how to interpolate entire functions of sufficiently small exponential type with
respect to periodic subsets of {s0, s1, . . . , sm−1} × N. Our approach requires that some determinant
D(s0, s1, . . . , sm−1) (depending also on r0, . . . , rm−1) does not vanish; this assumption cannot be omitted
(it could be weakened, but we do not address this issue here).

In Section 5, we introduce interpolation polynomials attached to a sequence of elements belong-
ing to {s0, s1, . . . , sm−1}. We deduce that if f is an entire function of sufficiently small exponential
type such that, for all sufficiently large n, at least one of the 2m

− 1 nonempty products of elements
f (n)(s0), f (n)(s1), . . . , f (n)(sm−1) is in Z, then f is a polynomial (Theorem 5(b)).

2. Notation and auxiliary results

We denote by δi j the Kronecker symbol,

δi j =

{
1 if i = j,
0 if i 6= j ,

and by f (n) the n-th derivative (dn/dzn) f of an analytic function f (z).
The order of an entire function f is

%( f )= lim sup
r→∞

log log | f |r
log r

, where | f |r = sup
|z|=r
| f (z)|,

and the exponential type is

τ( f )= lim sup
r→∞

log | f |r
r
·

For each z0 ∈ C, we have
lim sup

n→∞
| f (n)(z0)|

1/n
= τ( f ). (2-1)

Cauchy’s inequalities
| f (n)(z0)|

n!
rn
≤ | f |r+|z0| (2-2)
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are valid for any entire function f and all z0 ∈ C, n ≥ 0 and r > 0. We will also use Stirling’s formula:
for all N ≥ 1, we have

N N e−N
√

2πN < N !< N N e−N
√

2πNe1/(12N ). (2-3)

For the arithmetical applications, our main assumption on the growth of our functions f is

lim sup
r→∞

e−r√r | f |r <
1
√

2π
e−max{|s0|,|s1|,...,|sm−1|}. (2-4)

This condition arises from the following auxiliary result, based on Cauchy’s upper bound for the deriva-
tives and Stirling approximation formula for n! [Waldschmidt 2019, Proposition 12]:

Proposition 1. Let f be an entire function and let A ≥ 0. Assume

lim sup
r→∞

e−r√r | f |r <
e−A
√

2π
· (2-5)

Then there exists n0 > 0 such that, for n ≥ n0 and for all z ∈ C in the disc |z| ≤ A, we have

| f (n)(z)|< 1.

3. Integer values of derivatives of entire functions

3A. Periodic sequences. Let s0, s1, . . . , sm−1 be complex numbers, not necessarily distinct. We write s
for the tuple (s0, s1, . . . , sm−1). Let ζ be a primitive m-th root of unity and let r0, . . . , rm−1 be m integers
satisfying 0≤ r j ≤ j (0≤ j ≤ m− 1). Our main assumption is that the determinant

D(s)= det
(

k!
(k− r j )!

sk−r j
j

)
0≤ j,k≤m−1

does not vanish. Here, a!/(a− b)! is understood to be 0 for a < b. This assumption means that the linear
map

C[z]≤m−1 −→ Cm,

L(z) 7−→ (L(r j )(s j ))0≤ j≤m−1,
(3-1)

is an isomorphism of C-vector spaces, C[z]≤m−1 being the space of polynomials of degree ≤ m− 1.
For t ∈ C, consider the m×m matrix

M(t)= (ζ kr` eζ
k ts`)0≤k,`≤m−1

and its determinant 1(t),

1(t)= det


ets0 ets1 · · · etsm−1

ζ r0 eζ ts0 ζ r1 eζ ts1 · · · ζ rm−1 eζ tsm−1

...
...

. . .
...

ζ (m−1)r0 eζ
m−1ts0 ζ (m−1)r1 eζ

m−1ts1 · · · ζ (m−1)rm−1 eζ
m−1tsm−1

 .
We will show (Lemma 9) that the exponential polynomial 1(t) is not the zero function.
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Theorem 2. Assume D(s) 6= 0. Let τ > 0 be such that 1(t) does not vanish for 0< |t |< τ . Let f be an
entire function of exponential type < τ which satisfies (2-4) and also, for each n sufficiently large,

f (mn+r j )(s j ) ∈ Z for j = 0, . . . ,m− 1.

Then f is a polynomial.

In the case m = 1, we can take τ = 1 and the assumption that the exponential type is < 1 can be
replaced by the weaker condition (2-5) with A = 0, according to a classical result of Pólya on Hurwitz
functions; see [Waldschmidt 2019, §2].

Let us give two further examples. Proofs will be given in Section 4A.
Our first example is with r0 = r1 = · · · = rm−1 = 0. In this case, the assumption D(s) 6= 0 is satisfied

if and only if s0, s1, . . . , sm−1 are pairwise distinct (Section 4A, Example 1).

Corollary 3. Assume that s0, s1, . . . , sm−1 are pairwise distinct. An entire function of sufficiently small
exponential type, satisfying

f (mn)(s j ) ∈ Z

for j = 0, . . . ,m− 1 and for all sufficiently large n, is a polynomial.

For m = 2 (Lidstone interpolation), with f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z, Corollary 3 follows also
from [Waldschmidt 2019, Corollary 2], where the assumption on the exponential type τ( f ) of f is

τ( f ) <min
{

1,
π

|s0− s1|

}
,

and this assumption is best possible. Indeed:

• The function

f (z)=
sinh(z− s1)

sinh(s0− s1)

has exponential type 1 and satisfies f (2n)(s0)= 1 and f (2n)(s1)= 0 for all n ≥ 0.

• The function

f (z)= sin
(
π

z− s0

s1− s0

)
has exponential type π/|s1− s0| and satisfies f (2n)(s0)= f (2n)(s1)= 0 for all n ≥ 0.

Our second example is r j = j for j = 0, 1, . . . ,m− 1. The assumption D(s) 6= 0 is always satisfied
(Section 4A, Example 2).

Corollary 4. An entire function of sufficiently small exponential type satisfying

f (mn+ j)(s j ) ∈ Z

for j = 0, . . . ,m− 1 and for all sufficiently large n is a polynomial.
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In the case m = 2 (Whittaker interpolation), with f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z, Corollary 4 also
follows from [Waldschmidt 2019, Corollary 6] (after permutation of s0 and s1), where the assumption is

τ( f ) <min
{

1,
π

2|s0− s1|

}
,

and this assumption is best possible. Indeed:

• The function
f (z)=

sinh(z− s0)

cosh(s1− s0)

has exponential type 1 and satisfies f (2n)(s0)= 0 and f (2n+1)(s1)= 1 for all n ≥ 0.

• The function

f (z)= cos
(
π

2
z− s1

s1− s0

)
has exponential type π/(2|s1− s0|) and satisfies f (2n)(s0)= f (2n+1)(s1)= 0 for all n ≥ 0.

3B. Sequence of derivatives at finitely many points. The next result deals with a situation more general
than Corollary 4.

Theorem 5. Let A > 0, let f be an entire function satisfying (2-5), and let the exponential type τ( f ) of
f satisfy

τ( f ) <
log 2

A
.

(a) Assume that for all sufficiently large integers n, there exists wn ∈ C with |wn| < A such that
f (n)(wn) ∈ Z. Then f is a polynomial.

(b) Let s0, s1, . . . , sm−1 be m complex numbers, not necessarily distinct, satisfying

max
0≤ j≤m−1

|s j |< A.

Assume that, for all sufficiently large n, there exists a nonempty subset In of {0, 1, . . . ,m− 1} such
that the product ∏

j∈In

f (n)(s j )

is in Z. Then f is a polynomial.

The case m = 2 in part (b) of Theorem 5 is [Waldschmidt 2019, Theorem 8].

3C. Content. In Section 4 we deal with periodic subsets of S×N: we generalize the construction of
Lidstone polynomials to several points and we prove Theorem 2 and Corollaries 3 and 4. In Section 5,
we introduce and study interpolation polynomials associated with a sequence of elements in S and we
prove Theorem 5.

4. Periodic case

Let s0, s1, . . . , sm−1 be distinct complex numbers and r0, . . . , rm−1 rational integers satisfying 0≤ r0 ≤

r1 ≤ · · · ≤ rm−1 ≤ m− 1.
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4A. The determinant D(z): proofs of Corollaries 3 and 4. Let z0, z1, . . . , zm−1 be independent vari-
ables. Write z for (z0, z1, . . . , zm−1). Let K be the field Q(z0, z1, . . . , zm−1) and D(z) be the determinant

det
(

k!
(k− r j )!

zk−r j
j

)
0≤ j,k≤m−1

∈Q[z] ⊂ K .

Recall a!/(a− b)! = 0 for a < b.
For j = 0, 1, . . . ,m− 1, the row vector

v j =

(
k!

(k− r j )!
zk−r j

j

)
k=0,1,...,m−1

=

(
0, 0, . . . , 0, r j !,

(r j + 1)!
1!

z j ,
(r j + 2)!

2!
z2

j , . . . ,
(m− 1)!

(m− 1− r j )!
zm−1−r j

j

)
belongs to {0}r j×K m−r j. If r j > j for some j ∈{0, 1, . . . ,m−1}, then the m− j vectors v j , v j+1, . . . , vm−1

all belong to the subspace {0} j+1
× K m− j−1 of K m, the dimension of which is m − j − 1; hence the

determinant D(z) vanishes.
Assume r j ≤ j for 0 ≤ j ≤ m − 1. For the degree given by the lexicographic order, the leading

term of the polynomial D(z) is the product of the elements on the diagonal. The degree in z j of D(z) is
≤ m− 1− r j . For k = 0, 1, . . . ,m− 1, define

E(k)= {(i, j) | 0≤ i < j ≤ m− 1, ri = r j }.

In the ring Q[z0, z1, . . . , zm−1], the polynomial D(z) is divisible by∏
(i, j)∈E(k)

(z j − zi ).

If there is no extra nonconstant factor, the only zeros of D(z) are given by zi = z j with ri = r j and i < j .
But extra factors may occur.

Examples. (1) [Poritsky 1932], quoted by [Macintyre 1954, §3; Buck 1955]:

r0 = r1 = · · · = rm−1 = 0.

The Vandermonde determinant

D(s)= det(sk
j )0≤ j,k≤m−1 = det


1 s0 s2

0 · · · sm−1
0

1 s1 s2
1 · · · sm−1

1
1 s2 s2

2 · · · sm−1
2...

...
...

. . .
...

1 sm−1 s2
m−1 · · · sm−1

m−1

=
∏

0≤ j<`≤m−1

(s`− s j )

does not vanish if and only if s0, s1, . . . , sm−1 are pairwise distinct.

(2) [Gontcharoff 1930], quoted by [Macintyre 1954, §4; Buck 1955]:

r j = j for j = 0, 1, . . . ,m− 1.
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Then

D(s)= det
(

k!
(k− j)!

sk− j
j

)
0≤ j,k≤m−1

= det



1 s0 s2
0 s3

0 · · · sm−2
0 sm−1

0
0 1 2s1 3s2

1 · · · (m−2)sm−3
1 (m−1)sm−2

1
0 0 2 6s2 · · · (m−2)(m−3)sm−4

3 (m−1)(m−2)sm−3
2...

...
...

...
. . .

...
...

0 0 0 0 · · · (m−2)! (m−1)!sm−1

0 0 0 0 · · · 0 (m−1)!


=

m−1∏
j=0

j !

does not vanish.

(3) Take m = 3, r0 = r1 = 0, r2 = 1. Then

D(z0, z1, z2)=

∣∣∣∣∣∣∣
1 z0 z2

0

1 z1 z2
1

0 1 2z2

∣∣∣∣∣∣∣= (z1− z0)(2z2− z1− z0).

A polynomial of degree 2 vanishing at s and −s with s 6= 0 has a zero derivative at the origin. For the
study of entire functions f satisfying

f (3n)(s0) ∈ Z, f (3n)(s1) ∈ Z, f (3n+1)(s2) ∈ Z for n ≥ 0,

the assumption D(s) 6= 0 amounts to 2s2 6= s1+ s0.

4B. Interpolation polynomials. The following interpolation polynomials generalize the sequences of
polynomials introduced by Lidstone, Whittaker, Poritsky, Gontcharoff and others.

Proposition 6. Assume D(s) 6= 0. Then there exists a unique family of polynomials (3nj (z))n≥0,0≤ j≤m−1

satisfying
3
(mk+r`)
nj (s`)= δ j`δnk for n, k ≥ 0 and 0≤ j, `≤ m− 1. (4-1)

For n ≥ 0 and 0≤ j ≤ m− 1 the polynomial 3nj has degree ≤ mn+m− 1.

This result plays a main role in our paper; we give two proofs of it.

First proof of Proposition 6. Assuming D(s) 6= 0, we prove by induction on n that the linear map

ψn : C[z]≤m(n+1)−1 −→ Cm(n+1),

L(z) 7−→ (L(mk+r`)(s`))0≤`≤m−10≤k≤n,

is an isomorphism of C–vector spaces. For n = 0 this is the assumption (3-1). Assume ψn−1 is injective
for some n ≥ 1. Let L ∈ kerψn . Then L(m) ∈ kerψn−1; hence L(m) = 0, which means that L has degree
< m. From (3-1) we conclude L = 0.

The fact that ψn is injective for all n implies that if a polynomial f ∈ C[z] satisfies f (mk+r`)(s`)= 0
for all k ≥ 0 and all ` with 0≤ `≤m−1, then f = 0. This shows the unicity of the solution 3nj of (4-1).

Since ψn is injective, it is an isomorphism, and hence surjective: for 0≤ j ≤ n−1 there exists a unique
polynomial 3nj ∈ C[z]≤m(n+1)−1 such that 3(mk+r`)

nj (s`)= δ j`δnk for 0≤ j, `≤ m− 1. These conditions
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show that the set of polynomials 3k j for 0 ≤ k ≤ n, 0 ≤ j ≤ m − 1, is a basis of C[z]≤m(n+1)−1: any
polynomial f ∈ C[z] of degree ≤ m(n+ 1)− 1 can be written in a unique way

f (z)=
m−1∑
j=0

n∑
k=0

ak j3k j (z),

and therefore the coefficients are given by ak j = f (mk+r j )(s j ). �

Second proof of Proposition 6. The conditions (4-1) mean that any polynomial f ∈ C[z] has an expansion

f (z)=
m−1∑
j=0

∑
n≥0

f (mn+r j )(s j )3nj (z), (4-2)

where only finitely many terms on the right-hand side are nonzero.
Assuming D(s) 6= 0, we first prove the unicity of such an expansion by induction on the degree

of f . The assumption D(s) 6= 0 shows that there is no nonzero polynomial of degree < m satisfying
f (mn+r j )(s j )= 0 for all (n, j) with 0≤ n, j ≤m−1. Now if f is a polynomial satisfying f (mn+r j )(s j )= 0
for all (n, j) with n ≥ 0 and 0≤ j ≤ m− 1, then f (m) satisfies the same conditions and has a degree less
than the degree of f . By the induction hypothesis we deduce f (m) = 0, which means that f has degree
< m; hence f = 0. This proves the unicity.

For the existence, let us show that, under the assumption D(s) 6= 0, the recurrence relations

3
(m)
nj =3n−1, j , 3

(r`)
nj (s`)= 0 for n ≥ 1, 3

(r`)
0 j (s`)= δ j` for 0≤ j, `≤ m− 1

have a unique solution given by polynomials 3nj (z) (n ≥ 0, j = 0, . . . ,m− 1), where 3nj has degree
≤ mn+m− 1. Clearly, these polynomials will satisfy (4-1).

From the assumption D(s) 6= 0 we deduce that, for 0≤ j ≤ m− 1, there is a unique polynomial 30 j

of degree < m satisfying
3
(r`)
0 j (s`)= δ j` for 0≤ `≤ m− 1.

By induction, given n ≥ 1 and j ∈ {0, 1, . . . ,m− 1}, once we know 3n−1, j (z), we choose a solution L
of the differential equation L(m) =3n−1, j ; using again the assumption D(s) 6= 0, we deduce that there is
a unique polynomial L̃ of degree <m satisfying L̃(r`)(s`)= L(r`)(s`) for 0≤ `≤m−1; then the solution
is given by 3nj = L − L̃ . �

Remark. The following converse of Proposition 6 is plain: if there exists a unique tuple

(300(z),301(z), . . . , 30,m−1(z))

of polynomials of degree ≤ m− 1 satisfying

3
(r`)
0 j (s`)= δ j` for 0≤ j, `≤ m− 1,

then D(s) 6= 0.

Examples. Special cases of Proposition 6 have already been introduced in the literature.

(1) Lidstone polynomials with {0, 1} [Waldschmidt 2019, §3.1]:

m = 2, s0 = 0, s1 = 1, r0 = r1 = 0, 3n0(z)=3n(1− z), 3n1(z)=3n(z).
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(2) Lidstone polynomials with {s0, s1} and s0 6= s1; with the notation of [Waldschmidt 2019, §3.2]:

m = 2, r0 = r1 = 0, 3n0(z)=−3̃n(z− s1), 3n1(z)= 3̃n(z− s0).

(3) Whittaker polynomials with {0, 1}; with the notation of [Waldschmidt 2019, §5.1]:

m = 2, s0 = 1, s1 = 0, r0 = 0, r1 = 1, 3n0(z)= Mn(z), 3n1(z)= M ′n+1(z− 1).

(4) Whittaker polynomials with {s0, s1}; with the notation of [Waldschmidt 2019, §5.2] (beware that
this reference deals with the even derivatives at s0 and the odd derivatives at s1, while here we impose
r0 ≤ r1):

m = 2, r0 = 0, r1 = 1, 3n0(z)= M̃n(z− s1), 3n1(z)= M̃ ′n+1(z− s0).

(5) [Poritsky 1932], quoted by [Macintyre 1954, §3; Buck 1955] (see also [Gelfond 1971, Chapter 3,
§4.3]): assuming s0, s1, . . . , sm−1 are pairwise distinct,

r0 = r1 = · · · = rm−1 = 0.

(6) [Gontcharoff 1930], quoted by [Macintyre 1954, §4; Buck 1955] (see also [Gelfond 1971, Chapter 3,
§4.2]):

r j = j for j = 0, 1, . . . ,m− 1.

4C. Exponential sums, following D. Roy. This section is due to D. Roy (private communication).
Given complex numbers a0, a1, . . . and nonnegative real numbers c0, c1, . . . , we write∑

i≥0

ai zi
�z

∑
i≥0

ci zi

if |ai | ≤ ci for all i ≥ 0. In the same way, given two power series
∑

i≥0, j≥0 ai j t i z j and
∑

i≥0, j≥0 ci j t i z j

with ai j ∈ C and ci j ∈ R≥0, we write∑
i≥0

∑
j≥0

ai j t i z j
�t,z

∑
i≥0

∑
j≥0

ci t i z j

if |ai j | ≤ ci j for all i, j .
We first give a quantitative version of Proposition 6.

Lemma 7. There exists a constant 2> 0 such that

3nj (z)�z

m(n+1)−1∑
i=0

2m(n+1)−i

i !
zi

for all n ≥ 0 and j = 0, 1, . . . ,m− 1.

Proof. We proceed by induction. For n = 0 it suffices to choose 2> 0 sufficiently large so that

30 j (z)�z

m−1∑
i=0

2m−i

i !
zi
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for j = 0, 1, . . . ,m− 1. Assume

3n−1, j (z)�z

mn−1∑
i=0

2mn−i

i !
zi

for some integer n≥ 1 and for j = 0, 1, . . . ,m−1. Fix an integer j and let L(z)∈C[z] be the polynomial
satisfying

L(m)(z)=3n−1, j (z) and L(0)= L ′(0)= · · · = L(m−1)(0)= 0.
We have

L(z)�z

mn−1∑
i=0

2mn−i

(i +m)!
zi+m
=

m(n+1)−1∑
i=m

2m(n+1)−i

i !
zi .

Set A =max{1, |s0|, . . . , |sm−1|}. For `= 0, 1, . . . ,m− 1, we have

|L(r`)(s`)| ≤
mn−1∑
i=0

2mn−i Ai+m−r`

(i +m− r`)!
=2mn Am−r`

mn−1∑
i=0

(A/2)i

(i +m− r`)!
≤2mn Am exp(A/2).

From the isomorphism (3-1) it follows that there is a constant B > 0 such that, for any polynomial
L̃(z) ∈ C[z]≤m−1,

L̃(z)�z
(

max
0≤`≤m−1

|L̃(r`)(s`)|
)
B

m−1∑
i=0

zi

i !
·

Choosing L̃(z) such that
L̃(r`)(s`)= L(r`)(s`)

for `= 0, 1, . . . ,m− 1 and assuming 2≥ 1 sufficiently large so that

2≥ B Am exp(A/2),
we get

L̃(z)�z 2
mn+1

m−1∑
i=0

zi

i !
�z

m−1∑
i=0

2m(n+1)−i

i !
zi
;

hence

3nj (z)= L(z)− L̃(z)�z

m(n+1)−1∑
i=0

2m(n+1)−i

i !
zi . �

For j = 0, 1, . . . ,m− 1 and z ∈ C, consider the power series ϕ j (t, z) ∈ C[[t]] defined by

ϕ j (t, z)=
∑
n≥0

tmn+r j3nj (z). (4-3)

From Lemma 7 it follows that we have

ϕ j (t, z)�t,z

∑
n≥0

m(n+1)−1∑
i=0

2m(n+1)−i

i !
tmn+r j zi ,

and therefore the function of two complex variables (t, z) 7→ ϕ j (t, z) is analytic in the domain |t |< 1/2,
z ∈ C.
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Lemma 8. For |t |< 1/2 and z ∈ C, we have

et z
=

m−1∑
j=0

ets jϕ j (t, z).

Proof. Define, for |t |< 1/2 and z ∈ C,

F(t, z)=
m−1∑
j=0

ets jϕ j (t, z)− et z.

We have

F(t, z)=
m−1∑
j=0

ets j
∑
n≥0

tmn+r j3nj (z)− et z
=

∑
n≥0

an(z)tn,

where an(z) ∈ C[z]≤n+m−1 for all n ≥ 0. We obtain, for all k ≥ 0 and `= 0, 1, . . . ,m− 1,(
∂

∂z

)mk+r`
F(t, z)

∣∣∣∣
z=s`

=

m−1∑
j=0

ets j
∑
n≥0

tmn+r j3
(mk+r`)
nj (s`)− tmk+r` ets` = 0;

hence ∑
n≥0

a(mk+r`)
n (s`)tn

= 0

for |t | < 1/2. Therefore a(mk+r`)
n (s`) = 0 for all k ≥ 0, n ≥ 0 and ` = 0, 1, . . . ,m − 1. We conclude

an(z)= 0 for all n ≥ 0, which proves Lemma 8. �

For 0< |t |< 1/2 and j = 0, 1, . . . ,m− 1, we have(
∂

∂z

)m

ϕ j (t, z)=
∑
n≥0

tmn+r j3
(m)
nj (z)=

∑
n≥1

tmn+r j3n−1, j (z)= tmϕ j (t, z).

The functions ϕ0(t, z), ϕ1(t, z), . . . , ϕm−1(t, z) are the solutions of the differential equation

f (m)(z)= tm f (z)
with the initial conditions (

∂

∂z

)r`
ϕ j (t, s`)= tr`δ j` for 0≤ j, `≤ m− 1. (4-4)

Recall that ζ is a primitive m-th root of unity. The general solution of this differential equation is a linear
combination of the functions eζ

k t z (k = 0, 1, . . . ,m − 1) with coefficients depending on t . Hence for
0< |t |< 1/2 there exist complex numbers c jk(t) ( j, k = 0, 1, . . . ,m− 1) such that

ϕ j (t, z)=
m−1∑
k=0

c jk(t)eζ
k t z. (4-5)

For `= 0, 1, . . . ,m− 1, this yields
m−1∑
k=0

c jk(t)(ζ k t)` =
(
∂

∂z

)̀
ϕ j (t, z)

∣∣∣∣
z=0
=

∑
n≥0

tmn+r j3
(`)
nj (0),



382 MICHEL WALDSCHMIDT

and thus we deduce that

t`
m−1∑
k=0

c jk(t)ζ k`
�t

∑
n≥0

2m(n+1)−`tmn+r j .

Since the matrix (ζ k`)0≤k,`≤m−1 is invertible, this shows that the functions c jk(t) are meromorphic for
|t |< 1/2 with at most a pole at t = 0 of order ≤ m− 1.

4D. Analytic continuation of ϕ j (t, z). From (4-4) and (4-5) we deduce that for j = 0, 1, . . . ,m − 1
and 0< |t |< 1/2, we have

m−1∑
k=0

c jk(t)ζ kr` eζ
k ts` = δ j` (0≤ `≤ m− 1).

Hence for |t |< 1/2 the matrix (c jk(t))0≤ j,k≤m−1 is the inverse of the matrix M(t). Recall (Section 3A)
that 1(t) is the determinant of the matrix M(t)= (ζ kr` eζ

k ts`)0≤k,`≤m−1. We deduce:

Lemma 9. The determinant 1(t) does not vanish for 0< |t |< 1/2·

The determinant 1(t) defines a nonzero entire function in C. We extend the definition of c jk(t) to
meromorphic functions in C by the condition that the matrix (c jk(t))0≤ j,k≤m−1 is the inverse of the
matrix M(t). From the assumption in Theorem 2 that 1(t) does not vanish for 0< |t |< τ , we infer that
c jk(t) is analytic in the domain 0 < |t | < τ . By means of (4-5), this defines ϕ j (t, z) for all z ∈ C and
for all t with 1(t) 6= 0. In particular the function of two variables t 7→ ϕ j (t, z) is analytic in the domain
|t |< τ , z ∈ C, and (4-3) is valid in this domain.

Lemma 10. Let % satisfy 0< % < τ . For z ∈ C and 0≤ j ≤ m− 1 we have

|3nj (z)| ≤ %−mn−r j sup
|t |=%
|ϕ j (t, z)|.

Proof. The Taylor expansion at the origin of the meromorphic function t 7→ ϕ j (t, z) is given by the
formula (4-3), which is therefore valid for |t |< τ . Hence

3nj (z)=
1

2iπ

∫
|t |=%

ϕ j (t, z)t−mn−r j−1 dt.

Lemma 10 follows. �

Examples. (1) Lidstone [Waldschmidt 2019, §3.1]: m = 2, s0 = 0, s1 = 1, r0 = r1 = 0,

ϕ0(t, z)=
sinh((1− z)t)

sinh(t)
, ϕ1(t, z)=

sinh(t z)
sinh(t)

·

(2) Whittaker [Waldschmidt 2019, §5.1]: m = 2, s0 = 1, s1 = 0, r0 = 0, r1 = 1,

ϕ0(t, z)=
cosh(t z)
cosh(t)

, ϕ1(t, z)=
sinh((z− 1)t)

cosh(t)
·

(3) Poritsky interpolation; see [Macintyre 1954, §3]: r0 = r1 = · · · = rm−1 = 0. The condition D(s)= 0
means that s0, s1, . . . , sm−1 are pairwise distinct. The coefficient of tm(m−1)/2 in the Taylor expansion at
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the origin of 1(t) is given by the following formula involving two Vandermonde determinants:

1
1! 2! · · · (m− 1)!

det


1 1 · · · 1
1 ζ · · · ζm−1

1 ζ 2
· · · ζ 2(m−1)

...
...

. . .
...

1 ζm−1
· · · ζ (m−1)2

 det


1 1 · · · 1
s0 s1 · · · sm−1

s2
0 s2

1 · · · s2
m−1...

...
. . .

...

sm−1
0 sm−1

1 · · · sm−1
m−1

 .
Hence 1(t) has a zero at the origin of multiplicity m(m− 1)/2.

For 0≤ j ≤ m− 1, the order of the zero at t = 0 of 1(t)ϕ j (t, z) is at least m(m− 1)/2.

(4) Gontcharoff interpolation; see [Macintyre 1954, §4]: r j = j for j = 0, 1, . . . ,m − 1. In this case
1(0) is the Vandermonde determinant

det


1 1 · · · 1
1 ζ · · · ζm−1

1 ζ 2
· · · ζ 2(m−1)

...
...

. . .
...

1 ζm−1
· · · ζ (m−1)2

 ,
and hence is not zero.

4E. Laplace transform. The main tool for the proof of Theorem 2 is the following result.

Proposition 11. Assume D(s) 6= 0 and1(t) 6= 0 for 0< |t |<τ . Then any entire function f of exponential
type < τ has an expansion of the form (4-2), where the series in the right-hand side is absolutely and
uniformly convergent for z on any compact space in C.

As a consequence:

Corollary 12. Under the assumptions of Proposition 11, if an entire function f has exponential type < τ
and satisfies

f (mn+r j )(s j )= 0 for j = 0, . . . ,m− 1 and all sufficiently large n,

then f is a polynomial.

The bound for the exponential type is sharp: if α 6= 0 is a zero of 1, then there exists a transcendental
entire function of exponential type |α| satisfying the vanishing conditions of Corollary 12; for the proof,
see Proposition 9(a) of [Waldschmidt 2019].

The strategy for the proof of Proposition 11 will be to check that for |t |< τ the function ft(z)= et z

admits the expansion (4-2), and then to deduce the general case by means of the Laplace transform,
which is called the method of the kernel expansion in [Buck 1955; Boas and Buck 1964, Chapter I, §3;
Macintyre 1954, §1].

We have f (m)t = tm ft and
f (r j )
t (s j )= tr j ets j .

Proof of Proposition 11. Let
f (z)=

∑
n≥0

an

n!
zn
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be an entire function of exponential type τ( f ). Using (2-1), we deduce that the Laplace transform of f ,

F(t)=
∑
n≥0

ant−n−1,

is analytic in the domain |t |> τ( f ). From Cauchy’s residue theorem, it follows that for % > τ( f ) we
have

f (z)=
1

2π i

∫
|t |=%

et z F(t) dt.

Hence
f (mn+r j )(z)=

1
2π i

∫
|t |=%

tmn+r j et z F(t) dt.

Assume τ( f ) < τ . Let % satisfy τ( f ) < % < τ . We deduce from (4-3) (which is valid for |t |< τ ) and
Lemma 8 that, for |t | = %, we have

et z
=

m−1∑
j=0

ets jϕ j (t, z)=
∑
n≥0

m−1∑
j=0

ets j tmn+r j3nj (z),

which is the expansion (4-2) for the function ft(z)= et z.
We now use Lemma 10 and permute the integral and the series to deduce

f (z)=
∑
n≥0

m−1∑
j=0

(
1

2π i

∫
|t |=%

tmn+r j ets j F(t) dt
)
3nj (z)=

∑
n≥0

f (mn+r j )(s j )3nj (z).

Using again Lemma 10 together with (2-1), we check that the last series is absolutely and uniformly
convergent for z on any compact space in C. �

Proof of Theorem 2. Let f be an entire function satisfying the assumptions of Theorem 2. From the
assumption (2-4) and Proposition 1, we deduce that for n sufficiently large, we have

f (mn+r j )(s j )= 0 for j = 0, . . . ,m− 1.

Since the exponential type of f is < τ , we deduce from Corollary 12 that f is a polynomial. �

5. Sequence of derivatives at several points

Given a sequence w = (wn)n≥0 of complex numbers, we investigate the entire functions f such that the
numbers f (n)(wn) are in Z. Under suitable assumptions, we reduce this question to the case where these
numbers all vanish.

5A. Abel–Gontcharoff interpolation. We start with any sequence w = (wn)n≥0 of complex numbers.
Following [Gontcharoff 1930] (see also [Evgrafov 1954; Popov 2002]), we define a sequence of polyno-
mials (�w0,w1,...,wn−1)n≥0 in C[z] as follows: we set �∅ = 1, �w0(z)= z−w0, and, for n ≥ 1, we define
�w0,w1,w2,...,wn (z) as the polynomial of degree n+1 which is the primitive of �w1,w2,...,wn vanishing at w0.
For n ≥ 0, we write �n;w for �w0,w1,...,wn−1 , a polynomial of degree n which depends only on the first
n terms of the sequence w. The leading term of �n;w is (1/n!)zn . An equivalent definition is

�
(k)
n;w(wk)= δkn
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for n ≥ 0 and k ≥ 0. As a consequence, any polynomial P can be written as a finite sum

P(z)=
∑
n≥0

P (n)(wn)�n;w(z).

In particular, for N ≥ 0 we have

zN

N !
=

N∑
n=0

1
(N − n)!

wN−n
n �n;w(z).

This gives an inductive formula defining �N ;w: for N ≥ 0,

�N ;w(z)=
zN

N !
−

N−1∑
n=0

1
(N − n)!

wN−n
n �n;w(z). (5-1)

We also have
�w0,w1,...,wn (z)=�0,w1−w0,w2−w0,...,wn−w0(z−w0).

With w0 = 0, the first polynomials are given by

2!�0,w1(z)= (z−w1)
2
−w2

1,

3!�0,w1,w2(z)= (z−w2)
3
− 3(w1−w2)

2z+w3
2,

4!�0,w1,w2,w3(z)= (z−w3)
4
− 6(w2−w3)

2(z−w1)
2
− 4(w1−w3)

3z+ 6w2
1(w2−w3)

2
−w4

3.

From the definition we deduce the following formula, involving iterated integrals:

�w0,w1,...,wn−1(z)=
∫ z

w0

dt1

∫ t1

w1

dt2 · · ·
∫ tn−1

wn−1

dtn.

These polynomials are also given by a determinant [Gontcharoff 1930, p. 7]:

�w0,w1,...,wn−1(z)= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
z
1!

z2

2!
· · ·

zn−1

(n− 1)!
zn

n!

1
w0

1!
w2

0

2!
· · ·

wn−1
0

(n− 1)!
wn

0

n!

0 1
w1

1!
· · ·

wn−2
1

(n− 2)!
wn−1

1

(n− 1)!

0 0 1 · · ·
wn−3

2

(n− 3)!
wn−2

2

(n− 2)!
...

...
...

. . .
...

...

0 0 0 · · · 1
wn−1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

With the sequence w = (1, 0, 1, 0, . . . , 0, 1, . . . ), we recover the Whittaker polynomials [Waldschmidt
2019, §5]

�2n;w(z)= Mn(z), �2n+1,w(z)= M ′n+1(z− 1).

Another example, considered by N. Abel (see [Halphén 1882; Gontcharoff 1930, p. 7; Buck 1948, §7]),
is the arithmetic progression w = (a+ nt)n≥0 with a in C and t in C \ {0}, where

�n;w(z)=
1
n!
(z− a)(z− a− nt)n−1
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for n ≥ 1, which satisfies
�′n;w(z)=�n−1;w(z− t).

Theorem III in [Gontcharoff 1930, p. 29] gives sufficient conditions on the sequence (wn)n≥0 so that an
entire function f satisfying some growth condition has an expansion

f (z)=
∑
n≥0

f (n)(wn)�n;w(z).

In the case that we are going to consider where the sequence (|wn|)n≥0 is bounded, say |wn −w0| ≤ r ,
the condition [Gontcharoff 1930, (31′), p. 33] reduces to τ < 1/(er). See also [Whittaker 1934, §10] for
an improvement in the case m = 2.

From now on we assume that the sequence (|wn|)n≥0 is bounded. Let A > supn≥0 |wn|.

Proposition 13. Let κ > 1/ log 2. For n sufficiently large, we have, for all r ≥ |A|,

|�n;w|r ≤ (κr)n.

Proof. Let c0, c1, c2, . . . be the sequence of positive numbers defined by induction as follows: c0 = 1
and, for n ≥ 1,

cn =
1
n!
+

c0

n!
+

c1

(n− 1)!
+ · · · +

cn−2

2!
+ cn−1.

From (5-1) we deduce by induction, for |z| ≤ r and all n ≥ 0,

|�n;w(z)| ≤ cnrn.

Let κ1 satisfy 1/log 2< κ1 < κ and let A > 0 satisfy

A ≥ (2− e1/κ1)−1 max
n≥0

1
κn

1 n!
·

One checks by induction cn ≤ Aκn
1 for all n ≥ 0 thanks to the upper bound

1
n!
+ Aκn

1 (e
1/κ1 − 1)≤ Aκn

1 .

Therefore, for sufficiently large n, we have cn < κ
n . �

In the case m = 2 and wn ∈ {0, 1} for all n ≥ 0, a sharper estimate has been achieved in [Whittaker
1934, §10], namely

|�n;w(z)| ≤ 1
2 e2( 1

2 + R
)n

for
∣∣z− 1

2

∣∣= R. The proof relies on explicit formulae for the polynomials �n;w(z).
From Proposition 13 we deduce the following interpolation formula:

Proposition 14. Let f be an entire function of exponential type τ( f ) satisfying

τ( f ) <
log 2

A
·

Let r be a real number in the range

A ≤ r <
log 2
τ( f )
·
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Then
f (z)=

∑
n≥0

f (n)(wn)�n;w(z),

where the series on the right-hand side is absolutely and uniformly convergent in the disk |z| ≤ r .

Proof. Let κ and τ satisfy

κ >
1

log 2
, τ ( f ) < τ <

1
κr
·

Write the Taylor expansion of f at the origin:

f (z)=
∑
N≥0

aN
zN

N !
·

From (2-1) we deduce that there exists a constant c > 0 such that, for all N ≥ 0, we have |aN | ≤ cτ N.
For |z| ≤ r , we have

|aN |

N∑
n=0

∣∣∣∣ 1
(N − n)!

wN−n
n �n;w(z)

∣∣∣∣≤ cτ N
N∑

n=0

AN−n(κr)n

(N − n)!
≤ ceA/κr (τκr)N ,

which is the general term of a convergent series, since τκr < 1. Hence

f (z)=
∑
N≥0

aN

N∑
n=0

1
(N − n)!

wN−n
n �n;w(z)

=

∑
n≥0

�n;w(z)
∑
N≥n

aN
1

(N − n)!
wN−n

n =

∑
n≥0

�n;w(z) f (n)(wn). �

Remark. Notice that here the expansions are valid in a bounded domain of C, not in the entire complex
plane as in Section 4E for instance.

Corollary 15. If an entire function f of exponential type τ( f ) < log 2/A satisfies f (n)(wn)= 0 for all
sufficiently large n, then f is a polynomial.

Replacing z by Az, one may assume A = 1, and then Corollary 15 is [Whittaker 1964, Theorem 8], a
special case of one of Takenaka’s theorems.

In the special case where the set {w0, w1, w2, . . . } is finite, say S = {s0, s1, . . . , sm−1} with

max{|s0|, |s1|, . . . , |sm−1|}< A,

Corollary 15 reduces to the following statement:

Corollary 16. If an entire function f of exponential type τ( f ) < log 2/A satisfies
m−1∏
j=0

f (n)(s j )= 0

for all sufficiently large n, then f is a polynomial.
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5B. Sequence of elements in S.

Proof of Theorem 5. Denote by τ( f ) the exponential type of f . Since f satisfies the hypothesis (2-5) of
Proposition 1, for n sufficiently large we have | f (n)(z)|< 1 for all |z|< A.

Under the assumption (a) of Theorem 5, for n sufficiently large we have f (n)(wn)= 0. Corollary 15
implies that f is a polynomial.

For each sufficiently large n, the product
∏

j∈In
f (n)(s j ) is an integer of absolute value less than 1,

and hence it vanishes. Part (b) of Theorem 5 follows from Corollary 16. �
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