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We prove several results on torsion points and Galois representations for
complex multiplication (CM) elliptic curves over a number field contain-
ing the CM field. One result computes the degree in which such an elliptic
curve has a rational point of order N, refining results of Silverberg (Com-
positio Math. 68:3 (1988), 241-249; Contemp. Math. 133 (1992)). Another
result bounds the size of the torsion subgroup of an elliptic curve with
CM by a nonmaximal order in terms of the torsion subgroup of an elliptic
curve with CM by the maximal order. Our techniques also yield a com-
plete classification of both the possible torsion subgroups and the rational
cyclic isogenies of a K-CM elliptic curve E defined over K (j (E)).
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1. Introduction

Let F be a field of characteristic 0, and let E,r be an elliptic curve. We say E has
complex multiplication (CM) if the endomorphism algebra

End’ E = End(E ;) ®7 Q

is strictly larger than (2, in which case it is necessarily an imaginary quadratic field
K and O := End(E/I;) is a Z-order in K.

The general theory of complex multiplication has a long and rich history, with
important contributions made by Kronecker, Weber, Fricke, Hasse, Deuring, and
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Shimura. For a summary of these foundational results, see [Silverman 1994,
Chapter 2]. More recent contributions to the study of torsion points and Galois
representations on CM elliptic curves defined over number fields have been made
by Olson [1974], Silverberg [1988; 1992], Parish [1989], Aoki [1995; 2006], Ross
[1994], Kwon [1999], Prasad and Yogananda [2001], Stevenhagen [2001], Breuer
[2010], Lombardo [2017], Lozano-Robledo [2018b], Gaudron and Rémond [2018]
and the present authors and our collaborators [Clark et al. 2013; 2014; Bourdon
et al. 2017a; 2017b; Clark and Pollack 2015; Bourdon and Pollack 2017]. In this
paper, we consider the case of a CM elliptic curve defined over a number field that
contains the CM field. The case in which the ground field is a number field not
assumed to contain the CM field is pursued in [Bourdon and Clark 2019]. There
is related work of A. Lozano-Robledo [2018a] done concurrently with the present
work, which determines all possible images of the £-adic Galois representations of
a CM elliptic curve E over Q(j(E)) up to conjugacy.

Throughout this introduction we maintain the following notation: K is an imagi-
nary quadratic field, O is an order in K, fis the conductor of O, K (§) is the f-ring
class field of K (i.e., K(f) = K(j(E)) for any O-CM elliptic curve E), F is a
number field containing K and N is a positive integer.

1A. The Torsion Degree Theorem. Let O be an order in the imaginary quadratic
field K, and let N € Z*. The following result was first proven by Silverberg [1988;
1992] and then subsequently by Prasad and Yogananda [2001].

Theorem 1.1 (Silverberg). Let F O K be a number field, and suppose that there is
an O-CM elliptic curve E;r with an F-rational point of order N. Then

¢(N) <#O* -[F : K].

Theorem 1.1 is a crucial result in the study of torsion subgroups of CM elliptic
curves over general number fields. For instance, it was the main tool in the complete
enumeration of torsion subgroups of CM elliptic curves defined over number fields
of small degree [Clark et al. 2013; 2014].

The hypotheses of Theorem 1.1 force F D K (f) = K (j(E)). Thus it is natural
to define 7 (O, N) to be the least degree [F : K (f)] of a number field F' D K over
which some O-CM elliptic curve admits an F'-rational point of order N. We show
in Theorem 6.2 that

) ¢(N) [ #0™ - T(O, N),

i.e., Theorem 1.1 holds as a divisibility.
Our first main result computes 7 (O, N) in all cases and gives the analogous
divisibility refinement.
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Theorem 1.2. Let O be an order in the imaginary quadratic field K, and let N be
a positive integer. There is an integer T (O, N), explicitly computed in Section 7,
such that

(1) if F D K is a number field and E,r is an O-CM elliptic curve with an F-
rational point of order N, then T (O, N) | [F : K(})], and

(ii) there is a number field F O K and an O-CM elliptic curve E;r such that
[F:K{)]=T(O, N) and E(F) has a point of order N.

Equivalently, Theorem 1.2 determines the least degree of a closed O-CM point
on X|(N),x and shows that this degree divides the degree of all closed O-CM
points.

1B. The Isogeny Torsion Theorem. A key feature of the present work is that we
work with all imaginary quadratic orders O, not just the maximal order O . Working
with nonmaximal orders entails certain technical complications. For instance, if
F D K is a number field, then E (F)[tors] is a finite O-submodule of E(C). As we
will see in Section 2B, every finite O-submodule of E(C) is cyclic if and only if
the order O is maximal.

The phenomenon of “ascending isogenies” can sometimes be used to study O-
CM elliptic curves in terms of O -CM elliptic curves, and this happens twice in the
present paper. Specifically, let E be an O-CM elliptic curve defined over a number
field F, and let f' be a positive integer that divides f. Then by [Bourdon and Pollack
2017, Proposition 2.2], there is an elliptic curve (Ey),r such that O®F) :=End Ey
is the order of conductor § in K and an F-rational isogeny ty : E — Ej that is
cyclic of degree f/f'. There is an embedding F < C such that the base change of
ty to C is the natural map C/O — C/O(f") of complex elliptic curves. The map ¢y
is universal for maps from an O-CM elliptic curve to an O(f')-CM elliptic curve
[Bourdon and Clark 2019, §2.6] and is thus unique, up to isomorphism on the target.
Here is the first result making use of this canonical isogeny.

Theorem 1.3 (Isogeny Torsion Theorem). Let O be an order in an imaginary
quadratic field K, of conductor §, and let §' be a positive integer dividing . Let
F D K be a number field, and let E,r be an O-CM elliptic curve. Let 1y : E — Ey
be the F-rational isogeny to an elliptic curve Ey with CM by the order in K of
conductor f, as described above. Then we have

#E(F)[tors] | #Ey (F)[tors].

In particular, taking f = 1, we see that #E (F)[tors] is bounded by #E (F)[tors],
where (E1),r is an Og-CM elliptic curve. We give examples where the expo-
nent of Ey(F)[tors] is strictly smaller than that of E(F)[tors], showing in gen-
eral we cannot view E(F)[tors] as a subgroup of Ejy(F)[tors], and we prove
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that#Ey (F)[tors]/#E (F')[tors] can be arbitrarily large (see Propositions 6.8 and 6.9).
Moreover, the statement is false if we do not require F D K. Theorem 1.3 has
applications to determining fields of moduli of partial level N structures (Sections 6B

and 6C).

1C. The reduced Galois representation. There is a well-known interplay between
points on modular curves over number fields and Galois representations of elliptic
curves. The proofs of Theorems 1.2 and 1.3 make use of Galois representations,
and in the former case we build on a nearly complete description of the image of
the mod N Galois representation on an O-CM elliptic E/k ).

For an elliptic curve E defined over a number field F' and a positive integer N,
the Z-linear action of gp := Aut(F /F) on E[N] gives rise to the mod N Galois
representation:

pn :9F — GlLo(Z/NZ).
When E does not have CM, a celebrated result of Serre [1972] asserts that as N
varies over all positive integers, the index [GLy(Z/NZ) : pn (gF)] remains bounded.
This is certainly not the case when E has CM: as usual, here we consider the case
in which F is a number field containing the CM field K. Then for N € Z™, Galois
acts by O-linear endomorphisms of E[N], which is a free O/N O-module of rank
one. Thus the mod N Galois representation takes the form

pn : gF — (O/NO)Y* < GL,(Z/N2Z).

In the CM case, the analogue of Serre’s result is the boundedness of the index
of py in (O/NO)* as N varies. In fact more is true: a slight variant of py is
surjective for all O and N. To motivate this, observe that fixing O is the same
as fixing j(E) (up to Galois conjugacy), but fixing j(E) does not determine the
K (f)-rational model of E and thus not py. One gets from one model to another
via a twist by d € K(§)*/K (f)>**°". If E and E? are elliptic curves over K (f)
and pg, pga : gk — (O/NO)™ are their mod N Galois representations, then
PEd = PE ® Xa, Where x4 : gg5) — O™ is the character corresponding to d. Thus
we define the reduced mod N Cartan subgroup

Cn(0) =Cn(0)/gn(07)

to be the quotient of Cn(0O) = (O/NO)* by the image of O under the natural
map gy : O — O/NQO and the reduced mod N Galois representation to be the
composite homomorphism

PN 1 0F 25 Cn(0) — Cn(O).

The key feature of py is that it is independent of the K (f)-rational model.
For an elliptic curve E defined over a field F of characteristic O, there is an
F-rational isomorphism ¢ : E/ Aut(E) = P!, and a Weber function on E is
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any function b : E — P! obtained by composing the quotient map with such an
isomorphism ¢. Then the field extension cut out by the reduced Galois representation
is the field obtained by adjoining to K (f) the values of the Weber function on the

N -torsion points of E:
—ker py

Q =K HEIND).
When O = Ok the first main theorem of complex multiplication tells us that for
any ideal I of Ok we have that K (f)(h(E[I])) is KD, the I-ray class field of K.
It turns out that
[K': KD =#Cn(0)

and thus py is surjective. The case of an arbitrary order is much less classical but
still known: Stevenhagen [2001] used Shimura’s reciprocity law to show that for all
N € 77, the Weber function field K (f)(h(E[N])) is K(f)NOK, the N-ray class field
of O —this is the finite abelian extension of K corresponding to the image of the
subgroup C* x {x € O | x =1 (mod N)} in the norm one idele class group of K.
Moreover, it follows from the adelic description [Stevenhagen 2001, p. 8] that

Aut(K ()% /K () = Cn ().
Thus we have the following result.

Theorem 1.4 (Stevenhagen). Let O be an order in the imaginary quadratic field K,
and let N € 7. Then the reduced mod N Galois representation

PN 9k 5 — Cn(O)

—ker pn

is surjective and Q = K(HNOK, the N-ray class field of O.

We will give a new proof of Theorem 1.4, as follows. Let E,kj) be an O-CM
elliptic curve. Using the canonical isogeny (| : E — E; to an Og-CM elliptic
curve, we show that the torsion field K (f) (E[N]) contains the ray class field K NOk
Theorem 2.11(b). Using an observation of Parish we show that K (f) (E[N]) contains
the ring class field K (Nf): Theorem 4.1. By Theorem 2.10(c), we have

KM OEIND) D KV K (Nf) = KV,
where the last equality can be shown using class field theory (Section SA). Since

[KHBHEIND) : K ()] <#Cn(O0) = [KHVO¥ : K (],

we get
—ker oy

Q " =K®OEIND) = KHVOk.

Theorem 1.4 has the following useful consequences:



48 ABBEY BOURDON AND PETE L. CLARK

Corollary 1.5. For all number fields F D K and all O-CM elliptic curves E,r we
have

[CNn(O): pn(gp)] | #O™[F : K(H] < 6[F : K(P].

Remark 1.6. Corollary 1.5 strengthens a result of D. Lombardo [2017, Theo-
rem 1.5], who showed that [Cn(O) : py(gr)] <6[F : K].

Corollary 1.7. Let N € Z™. There is a number field F O K and an O-CM elliptic
curve E;p such that EIN] = E[N](F) and [F : K(j(E))] =#Cn(O).

Corollary 1.8. For all N € 7%, there is an O-CM elliptic curve E /K () such that
PE.N(8k () = Cn(O).

Using Theorems 1.2 and 1.4 we also obtain a complete classification of the set
of N € Z* such that an O-CM elliptic curve E g admits a K (f)-rational cyclic
N-isogeny, and of the possible torsion subgroups of an O-CM elliptic curve E k).
See Sections 6F and 6G.

2. Preliminaries

2A. Foundations. We begin by setting some terminology for orders in imaginary
quadratic fields. Let K be an imaginary quadratic field, with ring of integers Ok,
and let wg = #Ox be the number of roots of unity in K. Let O be a Z-order in K.
Let f =[Ok : O] be the conductor of O, and let A be the discriminant of O. Then

O=7+§0k, A=fAg.

For fixed K and f € Z* there is a unique order O(f) in K of conductor §. Thus an
imaginary quadratic order is determined by its discriminant A, a negative integer
which is 0 or 1 modulo 4. Conversely, for any negative integer A which is O or 1
modulo 4, we put
A+ VA
5

and then Z[ta] is an order in K = @(\/Z) of discriminant A.

Throughout this paper we will use the following terminological convention: by
“an order O” we always mean a Z-order O in an imaginary quadratic field, which is
determined as the fraction field of O and denoted by K. We may specify an order O
by giving its discriminant, which also determines K. If K is already given, then we
specify an order O in K by giving the conductor f.

For any O-CM elliptic curve E we have K (j(E)) = K(J), the ring class field
of K of conductor f ([Cox 1989, Theorem 11.1]) Thus [K (j(E)) : K] is determined
via the following formula.

TA
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Theorem 2.1. For N € 7%, let K(N) denote the N-ring class field of K. Then
K (1) = KW is the Hilbert class field of K, and for all N > 2 we have

2 A 1
(D7 _ L
[K(N): K ]_wKN| |(1 ( ) )

PIN pJp

Proof. See, e.g., [Cox 1989, Corollary 7.24]. U

For a number field F, N € Z" and E r an elliptic curve, we denote by py the
homomorphism
gr > AWt E[N]=GL,(Z/N2),

the modulo N Galois representation. If E;r has CM by the order O in K, then
E[N]=p O/NO —i.e., we have an isomorphism of O-modules (see [Parish 1989,
Lemma 1], generalized in Lemma 2.4 below) —and provided F O K we have

oN : 8F <> Auto E[N]1= GL{(O/NO) = (O/NO)*.

In other words, the image of the mod N Galois representation lands in the mod N
Cartan subgroup
Cn(0) = (O/NO)™.
Lemma 2.2. Let O be an order of discriminant A, and let N = p{" - -- pt € Z*+.
(a) We have Cy(O) = ]_[;:1 C i (O) (canonical isomorphism).
_ N2 A1 1
(b) We have #Cy(O) = N> T, v (1= (5)5) (1= )

Proof. (a) It suffices to tensor the Chinese remainder theorem isomorphism Z/NZ =
]_[f: 2/ p?" Z with the Z-module O and pass to the unit groups.

(b) By [Clark et al. 2013], for any prime number p we have

wcio-r(-(2)3)r-1)

The natural map C«(O) — C,(0O) is surjective with kernel of size p*~2 [Clark
and Pollack 2015, p. 3]. Together with part (a) this shows that if N = p{" - - - p%
then

4O (0) =TT p2-2 i_1(i_<é)):1v2 <1_(é)l)(1_l)_m
N()EP, (Pi=Dri=| pll_IIV )5 >

2B. Torsion kernels. Let E,c be an O-CM elliptic curve. For a nonzero ideal /
of O, we define the I-torsion kernel

E[ll:={PeE |forallaxdel, aP =0}.
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There is an invertible ideal A C O such that

E = C/A.

If we put
A:D):=xeClxICA}={xeK|xI CA}

then we have (immediately) that
Elll={xeC/A|xI CA}=(A:])/A.
Let |I| :=#0O/1
Lemma 2.3. Let I, J C O be nonzero ideals and E ;¢ be an O-CM elliptic curve.
(a) IfI C J, then E[J] C E[I].
(b) We have E[I] C E[|I|]. In particular,
#E[T < |11%.

Proof. (a) This is immediate from the definition.
(b) By Lagrange’s theorem, every element of O/ is killed by |/|, so |I]| € |1|O C I.
Apply part (a). O
Lemma 2.4. If [ is an invertible O-ideal, then

E[INl=1"A/A=p O/I.
In particular, #E[I] = |I| = #O/ 1.
Proof. An ideal I is invertible if and only if there is an O-submodule 7~! of K
such that 77~! = O. If so, then for x € K we have

xICAExIT ' =xO0CcI 'A< xecl A,

giving E[I1=1""A/A. Because A is a locally free ©-module, for all p € Spec O
we have A, = O, and thus (I 'A/A), = (I71/0), = (O/1),. Thus I7'A/A is
locally free of rank one as an O/I-module. But the ring O/ is semilocal, and
hence has trivial Picard group: any locally free rank one O/I-module is isomorphic
to O/1 [Clark 2015, Corollary 13.38]. O

Lemma 2.5. Let R be a Dedekind domain, and let M be a cyclic torsion R-module,
and let N C M be an R-submodule. Then:

(a) N is also a cyclic R-module.
(b) We have N = R/ ann N.

Proof. Let I =ann M. Since M is a finitely generated torsion module over a domain,
we have I #0 and M = R/I. Thus N = [’/ for some ideal I’ O I. The ring R/1



TORSION POINTS AND GALOIS REPRESENTATIONS ON CM ELLIPTIC CURVES 51

is principal Artinian [Clark 2015, Theorem 20.11], so the ideal I'/I of R/I is
principal. Thus N is a cyclic, torsion R-module, so N = R/ ann N. (]

Theorem 2.6. Let E ;¢ be an Ok-CM elliptic curve, and let M C E(C) be a finite
Ok -submodule. Then M = E[ann M] =0, Ok /ann M and thus #M = |ann M |.

Proof. That M C E[ann M] is a tautology. Because Ok is a Dedekind domain,
every nonzero O -ideal is invertible, so Lemma 2.4 gives #FE[ann M| = |ann M |.
On the other hand, let t = #M. Then M C E[t] =p, Ok /tOk, a finite cyclic
Ok-module. By Lemma 2.5 we have M = Og /ann M so #M = |ann M|. Thus
M = Elann M], so Lemma 2.4 gives M = Ok /ann M and #M = |ann M. (]

Example 2.7. Theorem 2.6 fails for all nonmaximal orders. Indeed, let O be a
nonmaximal order in an imaginary quadratic field K. There is nonzero prime ideal p
of O such that the local ring O, is not a DVR. If pNZ = (¢), then O/p = Z /7.
Since every ideal of O can be generated by two elements, we have dimp,, p/ p’=2.
Thus #O/p? = £3 and (£3) C p> It follows that in the quotient ring O/£30, the
maximal ideal p + €3O is not principal. Let E ,c be an O-CM elliptic curve, so

E[3] =0 O/£3O So the O-submodule M = pE[Z3] of E[¢3] is not cyclic and
thus not isomorphic to O/ann M.

For a nonzero ideal I of O, let K! denote the I-ray class field of K.

Theorem 2.8 (first main theorem of complex multiplication). Let E,¢c be an Ok-
CM elliptic curve, and let I be a nonzero ideal of Ok. Let ) : E — P! be a Weber
function. Then:

KV h(EM) =K.

Proof. See, e.g., [Silverman 1994, Theorem I1.5.6]. O

Combining Theorems 2.6 and 2.8, we get the class-field theoretic containment cor-
responding to any finite Qg -submodule of E (F), for any Ox-CM elliptic curve E
defined over a number field F D K.

For convenience, we record here the formulas for [K' : K(V]. Here, ¢ denotes
Euler’s totient function and ¢k (/) the natural generalization for a nonzero ideal
of Ok. That is,

ok (1) =#(Ok /)" |I|H(1——)
LU
Lemma 2.9. Let I be a nonzero ideal of K. We put Uy (K)={x e U(K)|x—1¢€1}
and U (K) = Og.

(a) We have
ek (1)
[U(K): U (K)]

[K': kP =
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(b) If K #Q(+v/—1), Q(~/—=3), then

ek (1), T1](2),
exd - 14(2).

(K': KD

(©) If K =Q(/—1), then

e (D), T[+10),
(KT kW=D 1y +i)and ]| (2),

e T4 (2).

(d) If K = Q(/—3), then

1, I=(),
I, () Wz([)» I#M)and 1| (5 —1),
[K K ]_ (740 =0
3 _( )7
‘01(6(1) ,  otherwise.

Proof. Parts (b)—(d) can be deduced from (a), which appears as [Cohen 2000,
Corollary 3.2.4]. U

2C. On Weber functions. Let F be a field of characteristic 0. For an elliptic
curve E/p,leth: E — P! be a Weber function for E (cf. Section 1C).

Theorem 2.10 (Weber function principle). Let N € ZZ2, let O be the order of
conductor f in K, and let F = K(f). For an O-CM elliptic curve E,r, fix an
embedding F — C such that j(E) = j(C/O). Define

W(N,O) = KHOBH(EIN]).
(a) W(N, O) is a subfield of F(E[N]) and [F(E[N]) : W(N, O)] divides

#0O*, N >3,
B N=2

(b) There is an elliptic curve E such that

[F(EINT): W(N, O)] = {#OX’ N=3.
’ B, N=2.

(c) As we range over all elliptic curves E,r with j(E) = j(C/O), we have

ﬂF(E[N]) = W(N, O).
E
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Proof. (a) Let
{#(’)X, N >3,
w =

#OX
5 N =2.

Let 1, be the image of O — Cx(0O), a cyclic group of order w. The field
F(E[N])/F is Galois with Galois group py(gr) C Cy(O). Since h(P) = h(Q)
for points P, Q on E if and only if there is £ € O™ such that £(P) = Q (e.g., [Lang
1987, Theorem 1.7]), it follows that

W (N, O) = F(E[N])*¥@r)

Thus
[F(E[N] : W(N,O)] | w.

(b)and (¢) If E/p, E)p with j(E)=j(E"), then K(F)(h(E[NT) =K H(H(E'[N])
by the model independence of the Weber function. So W(N, O) C (g F(E[N]).
To see that equality holds, let E,r have j(E) = j(C/O). Let p be a prime of Of
that is unramified in F' = F(E[N]). By weak approximation, there is 77 € p\p> Put
L =F(@@'"), and let x : gr — pw be a character with splitting field errx =L.
(Explicitly, we may take x (o) = o(@"wy/x/® ) Then L/F is totally ramified
over p, so F" and L are linearly disjoint over F. It follows that

PN Ex(GF) = (PN.E,; @ X)(8F) = X (8F) = M-
Thus
w=[F(EX[N]): F(EIN) N F(EX[NDI|[F(EX[ND: W(N,O)] | w,

so F(EX[N]) has degree w over W(N, O) = F(E[N])N F(EX[N]). O

2D. A containment of Weber function fields.
Theorem 2.11. Let K be an imaginary quadratic field, and let O C O’ be orders
in K.
(a) For all N € Z" we have a containment of Weber function fields W (N, O) D
W(N, O).
(b) If E is a K-CM elliptic curve defined over a number field F O K, then we have

(2) F(H(E[N])) D KNOx,

Proof. (a) Let f (resp. §') be the conductor of O (resp. of O'), so ' | §. Let E k5 be
an O-CM elliptic curve. Let t = ;5 : E — E’ be the canonical cyclic §/{'-isogeny
to an O'-CM elliptic curve (E’) /i j. There is an embedding K (f) < C such that
E(C)ZE/Oand (E')(C)ZE/O and ¢: E/O — E/O' is the natural map. Then
{ maps % +Oto % + O, which generates E'[N] as an O’-module. Thus

K{(EIND) D KH(E'IND) D K(F)(E'IN) D WN, O),
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and Theorem 2.10(c) gives
W(N,O) D W(N,O).
(b) This follows from part (a) and Theorem 2.8. O

Though Theorem 2.11 is a consequence of Theorem 1.4, we prove it here as
an ingredient in our new proof of Theorem 1.4. Part (b) had been proved earlier
in [Bourdon et al. 2017b, Theorem 3.16], but the present argument seems more
transparent.

3. Proof of the Isogeny Torsion Theorem

For a quadratic field K and d € Z+ we will write O(d) for the unique order in K
of conductor d. We recall the setup: let F' O K be a number field, let E,r be an
elliptic curve with endomorphism ring an order O of conductor f in K, and let
be a positive integer that divides f. Then there is a canonical F-rational cyclic
f/f -isogeny ¢y : E — Ejy such that End Ey = O(f).

There is a field embedding F < C such that E(C) =C/O(f), Ey(C)=C/O(f)
and (ty) ¢ is the quotient map C/O(f) — C/O(f'). Put ¢ = %(AK + +/Ak), so
O(f) = Z[frx] and O(f) = Z[ftk]. For N € Z™, let

1
(N =+ O, eaf(V) = %’( +O6),

f'tx
N
Then ker(E[N] &> Ep[N]) is cyclic of order ged(N, §/f), generated by

+ O(f).

1
eLy(N):= =+ O(f), exp(N):=

———ej(N),
gcd(N, %) f
and Lf/(el,f(N)) = el,f/(N).

For finite commutative groups 77 and 7>, we have #7| | #7, if and only if
#T1[£°°] | #T,[£°°] for all prime numbers £. So it suffices to show that for all prime
numbers €, we have #E (F)[£>®] | #Ey (F)[£>]. Write f = €] with ged(f, €) = 1
and f = £§ with gcd(/, £) = 1. Then we have

#E(F)[EF] =#Ee (F)[L™],  #Ep(F)[£F] = #E e (F)[L™],

so we may assume that f = £°! and § = £2. Indeed, it is enough to treat the case
¢y = ¢ — 1, since repeated application of this case yields the general case. So
suppose f = £¢ for some ¢ € Z* and f = £~!. By, for example, the Mordell-Weil
theorem, there are integers 0 < a < b such that

E(F)[(®1=7/°787)¢07.
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Let Q .= eiu + O(f) € E(F). Since ty is F-rational, Q' := 1y(Q) = zla + O(f) lies
in Ey(F) and generates Ey[£] as an O(f')-module, so Ey[¢¢] = Ey(F)[£¢]. If
a = b, it follows that #E (F)[£>°] | #Ey (F)[£*°], so we may assume b > a. Since
ker(E[£%°] 2> Ey[£°°]) has order £, we have Z/¢Z @ 7/e5717 — Ey(F)[£>].
Thus it suffices to show that Ey(F) has either a point of order £ or has full
24+ _torsion.

Let P = E(F) be a point of order ¢°, and write P = ace; §(£%) + Be5(£°) with
o, BEZ/LPZ. 1f £{« then since f = ¢f we have that tp (P) = arey 5 (€2) +£Bes 1 (€7)
has order £° and we are done, so we may assume that £ | «, in which case £ { B.
With respect to the basis e Lf(Zb), ez,f(ﬁb ) of E[£"], the image of the mod £b Galois
representation on E consists of matrices of the form

a be2eAE ik
b a+bleAg

(3) } with a, b € 7/0°7.

Since E(F) has full £%-torsion, we have a =1 (mod ¢%) and b =0 (mod £%). Thus

e [1rea o
Peert (QF (B 14094

A, B eZ/ea“z}.

Since ¢/—¢1p = ozelvf(fa“) + ﬁezvf(Z““) is F-rational, all such matrices in the

image of Galois satisfy
14+4¢4A 0 al |a
¢B 1+eA||B] [B)

and thus £“aB 4+ B +(“AB = B (mod £411). Since ¢ | a, we get
°AB = —0aB =0 (mod ¢4,

and thus £ | A and pge+1(gF) consists of matrices of the form

I 0
¢“B 1
for B € Z/¢4T'7. Tt follows that for all o € gr, there is B € Z/£4*'Z such that
oty (er j (7)) =ty (1 j(E"T) + BL 1y (e ;(£HD))
=1y (el,f(Za+l)) + Bga(Zezﬁf,(gaH)) — lf’(ﬁ,,t(@““)),

Thus ey j (£4T1) = 1y (e1,;(€4T)) € Ey (F). Since the O(f')-submodule generated
by 1,y (L91) is Ep[€4T], we get Z/¢4T'Z @ Z/¢*T'Z < Ey(F), completing the
proof of Theorem 1.3.
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4. The projective torsion point field

Let F be a field. For a positive integer N not divisible by the characteristic of F
and E/r an elliptic curve, we define the projective modulo N Galois representation
as the composite map

Poy:gr 2% Aut E[N]=GL,(Z/NZ)—PGLy(Z/NZ):=GLy(Z/NZ)/(Z/NZ)*.

The projective torsion field is

F(PE[N]) = F""",

Thus F(PE[N]) is the unique minimal field extension of F' on which the image
of py consists of scalar matrices. It follows that F(E[N])/F(PE[N]) is a Galois
extension with automorphism group a subgroup of (Z/NZ)*.

Observe that the projective Galois representation and thus the projective torsion
field are unchanged by quadratic twists. If E,r has CM by an order of discriminant
A =§2Akx # —3,—4 and F D K, then the projective N-torsion field is a well-
defined abelian extension of K (f). When A = —4 (resp. A = —3) we have quartic
twists (resp. sextic twists) which can change the projective Galois representation
and the projective torsion field.

Theorem 4.1. Let O be an order of discriminant A = {*Ag. Let E be an O-CM
elliptic curve defined over F = K (f). Let N > 2.

(a) ([Parish 1989]) We have F(PE[N]) D K(Nf). Thus we may put
d(E,N)=[F([PE[N]): K(Np].

(b) ([Parish 1989]) If A ¢ {—3, —4},thend(E, N) =1, ie., F(PE[N]) = K (N{).
(c) If A=—4,thend(E, N) | 2.

(d) If A= —-3,thend(E, N) | 3.
Proof. For N € Z*, let O(N) be the order of conductor N in K. Thus O = O(f).

Step 1: We show that F(PE[N]) D K (N¥) in all cases.

There is a field embedding F < C such that E(C) = C/O. The C-linear
map z — Nz carries O(f) into O(NT) and induces a cyclic N-isogeny C/O(f) —
C/O(NY). Let C be the kernel of this isogeny, viewed as a finite étale subgroup
scheme of E/,c. Then C has a (unique) minimal field of definition F(C) C F (E[N]),
hence of finite degree over F. The field F(PE[N]) is precisely the compositum of
the minimal fields of definition of all order N cyclic subgroup schemes C C Ec,
so F(C) C F(PE[NY)). Since C is F(PE[N])-rational, the elliptic curve E/C has
a model over this field, and thus

F(PE[N]) D K(j(E/C)) = K(NJ).
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Step 2: In view of Step 1, we have F(PE[N]) D K(Nf) D K(f) = K(j(E)), so
we have F(PE[N]) = K(N¥) if and only if [F(PE[N]) : K(f)] < [K(NF) : K(f)].
We have

AN 1
[F(PEIND): K (D] =#Ppy(ar) <#O/NOY* /(Z/NZ)* =N H(l— (;) ;).
PIN

« Suppose f > 1. Using Theorem 2.1 to compute [K (N§) : K D] and [K () : KV]
gives

iy QYD KO
[K(Nf)-K(f)]—W Nn ( <p>p) Nll,;[v( ( ) )

because 1 — (p)— =1 forall p|{. Thus d(E, N) =1 in this case.
e Suppose f =1, so A = Ag. Then

(KNP : K] =[K(N): KD = N I <1 _ <_> _>

DIN p/p
If A gé {—3, —4} then = =1, and again we get d(E,N) = 1. If A = —4 then
wl , so the calculatlon shows d(E, N) € {1, 2}, and if A = —3 then .= = %,
so the calculatlon shows d(E, N) € {1, 3}. [l

Remark 4.2. (a) Theorem 4.1(a) and (b) are due to Parish [1989, Proposition 3].
However, he alludes to a calculation of the above sort rather than explicitly
carrying it out. Since Theorem 4.1 will play an important role in the proof of
Theorem 1.4, we have given a complete proof.

(b) Parish [1989, Proposition 3] assumes K # Q(y/—1), Q(+~/=3). Later [1989,
p. 263], he claims
o if A =—4then F(PE[N])= K(N) for all N > 3, and
e if A= —3then F(PE[N]) = K(N) forall N > 4.
As we will see shortly in Example 4.4, both claims are false.

The following result is an analogue of [Bourdon et al. 2017b, Theorem 5.6] for
higher twists.

Proposition 4.3 (higher twisting at the bottom). For M € Zt, we denote the mod M
cyclotomic character by xu.

(@) Let K = Q(/—1) and let £ = 5 (mod 8) be a prime number. There is a
character V : gx — (Z/LZ)* of order % and an Ok -CM elliptic curve E g
such that the mod € Galois representation is

| ¥(o) 0
“H”(")‘[ 0 w-%wm(a)]'
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(b) Let K =Q(+/—3) and let £ =7, 31 (mod 36) be a prime number. There is a
character V : gg — (Z/LZ)* of order % and an Ok -CM elliptic curve E g
such that the mod € Galois representation is

V(o) 0 ]

"H"e("):[ 0 W le)x(o)

Proof. (a) Let (E1),k be an Og-CM elliptic curve. Because £ =1 (mod 4), the
Cartan subgroup C,(Ok) is split. It follows that there are precisely two C¢(Ok)-
stable one-dimensional Z/£Z-subspaces of E[£], so we may take basis vectors e;
and e, for E[{¢] lying in these two subspaces. For such a basis, the mod ¢ Galois
representation has the form

\111(0') 0 ]

o> pe(0) = [ 0 W(0)xe(o)

for a character V| : gg — (Z/£Z)*. Under this isomorphism, the matrix represen-
tation of i € Ok is a diagonal matrix

z 0
0z

where z is a primitive fourth root of unity in Z/¢Z. A general Ox-CM elliptic
curve over K is of the form E }0 for a character ¢ : gy — u4 C (Z/€2)*. Let
0s)=(Z/e2)* ](Z]LZ) %4 Then the image of z in Q4(£) has order 4: if not, there
is w € (Z/€7)* such that z = w? and then w has order 8 in (Z/£Z)*, contradicting
the assumption that £ = 5 (mod 8). Thus the natural map pus — Q4(£) given by
i — z (mod (Z/EZ)X“) is an isomorphism; we denote the inverse isomorphism
Q4(f) — g by t. Now take

Viax Y @/en)< s 04(0) —s s

here g is the quotient map. Let W, = ¢y W;. Then the twist E ;ﬂ has mod ¢ Galois
representation
Vs (0) 0 ]

o pule) = [ 0 W l()xe(o)

The composite ¥, : gx — (Z/£2)* — Q4(£) is trivial, so W (gg) has order ¢ | %.
Thus

0 —1)?
#py py (k) lc(t=1) | % =[KY: kM =[K"Y: K],

where the last equality holds since K has class number 1. Because K (E ;/' () > K©®,
we have #p, v (gx) =+ —1)*and c =1 —1).
B
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(b) Since £ =1 (mod 3), we have a primitive sixth root of unity z in Z/£Z. Since £ =
7,31 (mod 36), we have 4, 91£—1, so z has order 6 in Q¢(¢) = (Z/ZZ)X/(Z/EZ)X6.
Also £(¢—1)? =[K® : KD]. The argument of part (a) carries over. O

Example 4.4. (a) Let K = Q(+/—1), and let £ = 5 (mod 8). Let E g be an Ok-
CM elliptic curve with mod ¢ Galois representation as in Proposition 4.3(a). Then
for a number field L O K, p¢lg, has scalar image if and only if Xg‘lf_2|gL is
trivial. Since x; : gx — (Z/€Z)* has order £—1 —that is, forall 1 <k < £ —1,
Xé‘ # 1 —and W~ has order dividing Ele, the character x, W2 has order £ — 1.
Thus [K(PE[£]): K]=4¢—1, whereas [K({) : K] = % Sod(E, ) =2.

(b) Let K = Q(+/=3), and let £ =7, 31 (mod 36). Let E x be an O-CM elliptic

curve with mod ¢ Galois representation as in Proposition 4.3(b). As in part (a), we
have [K (PE[€]): K]=¢—1and [K(0): K]=1. Sod(E,¢)=3.

Proposition 4.5. Let O be an order of discriminant A=§> Ak, and let N € Z*. Then
there is an O-CM elliptic curve E i (ny) such that the mod N Galois representation
consists of scalar matrices.

Proof. When A ¢ {—3, —4}, this is immediate from Theorem 4.1(b): in that
case, the elliptic curve has a model defined over K (f). Thus we may assume that
Ae{-3,—-4}),sof=1.Let¢ € OIX( be a primitive wg-th root of unity. Let O(N)
be the order in K of conductor N, let E /k(v) be an O(N)-CM elliptic curve, let
t: E — E be the canonical K (N)-rational isogeny to an Og-CM elliptic curve E, let
1V : E — E be the dual isogeny, and let C be the kernel of ¢". Identifying E[N] with
N0k /O CC/Ok, 1Y :C/Og — C/O(N) is the map z + Ok > Nz + O(N),
so C is the Z-submodule of C/Og generated by P} = % + Ok . Because C is stable
under the action of gg (), this action is given by an isogeny character, say,

o(P)=VY(o)P.
Let P, = ¢ Pi. Then { Py, P»} is a Z/NZ-basis for E[N]. Moreover, for o € gx (),
oP,=0(Pi=(0P =¢V(o)P=V(0); P =V(0)P;.

It follows that o € gk (n) acts on E[N] via the scalar matrix W (o). O

5. Proof of Theorem 1.4 and its corollaries

5A. An equality of class fields. Let O and O’ be orders in an imaginary qua-
dratic field K of conductors § and Nf, respectively. Here we prove K (f)NOk =
KNPk K(Nf). We may assume that N > 2. Class field theory (see, for example,
[Stevenhagen 2001, (3.2)]) gives a canonical isomorphism,

4) W Aut(K®/K (F)) = 0% /0.
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Thus it suffices to prove an equality of open subgroups of Ok~ /O%. We abbreviate
0, =0Q72,.
Put

A={xe0 |x=1mod N)} =[]O; x[[1+NO,). A:=A0f,

PN PIN
B:=0"=]]"}. B:=BOj,
p
C:={xeOx" |x=1(mod N)} =[[0x); x[ [+ N(©k),). C:=COf.
pIN pIN

Under class field theory, the field K (f)N Ok corresponds to A (cf. [Stevenhagen
2001, p. 9]), the field K (Nf) corresponds to B and the field K NOk corresponds
to C, so showing that K (f)N9x = KNOk K(Nf¥) is equivalent to showing that

A=BnC.
Step 1: We show that A= BNC. Writing A,, B, and C,, for the components of p
of each of these groups, it is enough to show that
A, = B,NC, for all primes p.

Case 1: Suppose p 1 N. Then

A, = 0%,
B, = (O} =A,,
Cp=(0x)}.

soC, DA,=B,and thus B,NC, =A,.

Case 2: Suppose p | N. Write Ox =21+ Ztg, so O =71+ Zfrx. We have
A,=14+NO,=1+NZ,1+ NfZ,tk,
B, =(04+2Z,14+NfZ,tx)",
C,=1+NOk),=1+NZ,1+NZ,7k,

so indeed we have B, NC)p = A). )

i It Lfollo\jvs that BNC = BOx NCOx D AOg = A, so it remains to show that

BNC CA.

Step 2: Suppose Ax < —4, so Oy = {+1}. Then B =B, soifze BNC, then

there is € € {£1} suchthatz€ B, —ze€ Band ez € C, so ez € BNC = A and thus
z€A.
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Step 3: Suppose K = Q(+/—1) and let ¢ be a primitive fourth root of unity, so
Ok =71+ Z¢ and O = {1,¢,¢2,¢3). Suppose z € BN C. Then there are
i,j€{0,1,2,3}, be B and c € C such that

z=¢b="0lc.

We have z € A if and onlyif ¢ /z e A, so we may assume that j =0. If i is even we
may argue as in Step 2, so assume that i € {1, 3}, and thus we have either ¢b =c or
¢c = b. But we claim that there are no such elements » and ¢, which will complete
the argument in this case. Indeed, choose a prime p dividing N, and let b, and ¢,
be the components at p. There is a reduction map

Ok)p —> Ok QZ/pl =7/pZ1+Z/plt.

Under this map, every element of B, U C,, lands in Z/pZ1, so by, c, € Z/pZ1
while ¢b,, {c, € Z/pZ¢. Thus we cannot have ¢b, = ¢, or {c, =b,.

IfK= @(«/—_3), then we let ¢ be a primitive sixth root of unity, so Ox =Z1+27¢
and (9;; ={1,¢,¢% ¢3, ¢4 ¢}, and the argument is very similar: we cannot have
+¢by, =cp or £b, ={cp.

5B. Proof of Theorem 1.4. By Theorems 2.11 and 4.1(a) and Section 5A, we have

KHOB(EIND) D KN K (Nf) = K (HNOK.

———kerpy

For any O-CM elliptic curve E/ g f), the splitting field K (f) of the reduced
mod N Galois representation py on E (cf. Section 1C) is K (f)(h(E[N])), so

[KFBEND) : K ()] = #Cn(0).

As described in the introduction, it is immediate from (4) and the definition of
K (HNOK that
Aut(Hy,0/K (§)) = Cn(0),

and thus it follows that
K BH(EIND) = KNOK K (NF).

5C. Proof of Corollaries 1.5, 1.7 and 1.8.
Proof of Corollary 1.5. Theorem 1.4 implies that for any number field F' D K (j (E))

and N € Z", we have
[CN(QO) :on(gp)] | [F - K(j(E))]
and thus
[CN(O) : pn(gp)] | #OX[F : K(j(E))] < 6[F : K(j(E))]. O
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Proof of Corollary 1.7. We may assume that N > 2. Let w = #gxn(0*), so

#0*, N >3,
w = «
e, N=2.

Once again we denote by w,, the image of O™ in Cy(O), a cyclic group of order w.
Let E /g (5 be any O-CM elliptic curve. We may view G = Aut(K (f)(E[N])/ K (f))
as a subgroup of Cy(0). Let H=G Ny and L = (K(f)(E[N]))H, S0 a suitable
twist (E’);r of E,; has trivial mod N Galois representation. As shown in the
proof of Theorem 2.10, we have L = K (f)(h(E[N])), so by Theorem 1.4 we have
[L: K{]=#Cn(O). U
Proof of Corollary 1.8. We may assume that N >2. Let gy : O* — Cy (O) be the nat-
ural homomorphism. By Theorem 2.10(b), there is an elliptic curve E/k j) such that

. |#o*. N=3,
[KGEIND : KHOEINIT=#gn(O7) = § 4ox N2

2 ’

By Theorem 1.4, [K(f)(h(E[N]): K ()]=#Cn(O). Thus pg n (gk ) =Cn(0). [

6. Applications

6A. Divisibility in Silverberg’s theorem.

Lemma 6.1. Let J, M be subgroups of a group G. If M is normal and J "M = {1},
then#J | [G : M.

Proof. The composite homomorphism J < G — G /M is an injection. ]

The following result extends [Bourdon et al. 2017a, Corollary 2.5] from maxi-
mal orders to all imaginary quadratic orders, thereby confirming the expectation
expressed in [Bourdon et al. 2017a, Remarks following the proof of Corollary 2.5].

Theorem 6.2. Let O be an order in an imaginary quadratic field K, and let E be
an O-CM elliptic curve defined over a number field F > K. If E(F) has a point of

order N € 77T, then
#OX [F : Q]
N .
M == 4pico

Proof. Let Iy = [Cn(O) : py(gF)] be the index of the mod N Galois representation
in the Cartan subgroup. By Corollary 1.5 we have

#OX [F : Q]
2 #PicO’
Since there is a rational point of order N, the subgroup py (gr) contains no scalar ma-

trices other than the identity. Applying Lemma 6.1 with G = Cn(O), M = pn(gF)
and J the subgroup of scalar matrices, we get ¢(N) | Zy, and we are done. U

Iy |#OX[F : K((E)]=
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6B. A theorem of Franz. Let O be an order in K, of conductor f, and let E/x
be an O-CM elliptic curve. Choose a field embedding K (f) < C such that
J(E) = j(C/O) and an isomorphism E(C) = C/O. This induces an isomor-
phism E (K_(f)) [tors] = C/O[tors], which we use to view (the image in C/O of)
K = %(AK +/Ax) as a point of E(K_(f)) [tors] of order f.

Theorem 6.3 [Franz 1935]. With notation as above, we have

K Oh(x)) =KD.

Proof. As in the proof of Theorem 1.3, over C we may view the canonical isogeny
ast:C/O— C/Ok. We take e; = %—l—O and e, = 1 + O as a basis for E[f]. Then
ey generates ker(t), a K (f)-rational cyclic subgroup of order f, and with respect to
{e1, e2} the image of the mod f Galois representation associated to E/ k) consists
of matrices of the form

2 Ax—A2
{Z bf+bf4A K} with a, b € Z/Z.
a K

Viewing entries mod f, we see there is a character ¥ : gx ) — (Z/§Z)™ such that

pesor=[* 0 ]

¥  W(o)

If f < 2, then K(f)(h(tx)) = K(f) = KD and the result holds. Thus we may
assume f > 3. Let L := K(f)(h(ez)). Since | > 3, we have j(E) # 0, 1728, so
[L(ez) : L] divides 2 and the restriction W|g, : g; — {&1} defines a quadratic
character x. On the twist EX of E/; the point e; becomes L-rational. As in the
proof of Theorem 5.5 of [Bourdon et al. 2017b], let vt gk — (Z/f27)/{£1}
denote the composition of W with the natural map (Z/§2)* — (Z/§Z)* /+£1. Then
LC (K_(f))ker‘l'i, so[L:KMII ‘p—gﬂ. If « : EX — E’ is the canonical isogeny, then
the proof of Theorem 1.3 shows that ((e;) is an element of E’(L) which generates
E'[f] as an Og-module. Thus E’ has full f-torsion over L, so by Theorem 2.8,
KD cL.So

[L:KG)]= KD K[l = %‘c) > [L: K],
and thus K (f)(h(e2)) =L = KD, O

6C. The field of moduli of a point of prime order. Let K # Q(v/—1), Q(~/=3)
be an imaginary quadratic field, and let O C K be the order of conductor §. Here
we use Theorem 1.3 to determine the smallest field F D K for which there exists
an O-CM elliptic curve E,r with an F-rational point of order £ > 2.
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Lemma 6.4. Let K be an imaginary quadratic field, let f € 7™, and let £ > 2 be
prime. Then K© N K (£f) = K (0).

Proof. Let A = f? Ag. The statement is immediate if f = 1, so suppose f > 1. By
Theorem 2.1,

Kep:Kpr=e—(2).
Since [K QK (¢) : K (f)] = #C(0)/2 by Theorem 1.4, in both cases we have
(KOK @ : K(epl= O _ 11y,

0Kt : K(H] 2

Thus [K© : KONKH]=[KOK ) : K(¢H]= (¢ —1). As we have K (£) C
KONK(¢f) and [K© : K(£)] = 1(£ — 1), the result follows. O

Theorem 6.5. Let K # Q(«/—1), Q(~/—3) be an imaginary quadratic field, and
let O be the order of conductor f in K. Let F D K.

(a) Let E/r be an O-CM elliptic curve such that E(F) contains a point of prime
order £ > 2. Then there is a prime p of Ok lying over £ such that K (f)K? C F.

M) If (%) # —1, then there is a prime p of Ok lying over £ and an O-CM elliptic
curve E g kv such that E(K (f)K®) has a point of order £.

If (%) = —1, then an O-CM elliptic curve E,r with an F'-rational point of order £
must have full ¢-torsion (see [Bourdon et al. 2017b, Theorem 4.8] or Lemma 6.12).
In this case, K (()K® C F by Theorem 1.4. The existence of an elliptic curve
E k(e k@ with full £-torsion is guaranteed by Corollary 1.7.

Proof. (a) Let F D K and E,r be an O-CM elliptic curve with an F-rational
point of order £. By Theorem 1.3, there is an Og-CM elliptic curve E } F With an
F-rational point P of order £. If M is the Og-submodule of E'(F) generated by P,
then M = E’[ann M] and #M = |ann M| by Theorem 2.6. Since ¢ | #M, we must
have p | ann M for some prime p of Ok above £. By Theorem 2.8 we have

KHK' c KHK™M = K(j(E)KY (H(E'[ann M])) C F.

(b) If (3) # —1, then an O-CM elliptic curve E g j possesses a K (f)-rational
cyclic subgroup of order £. (See, e.g., [Clark et al. 2013, p. 13]. This is also a
special case of Theorem 6.18.) By [Bourdon et al. 2017b, Theorem 5.5], there is
an extension L/K (f) of degree (¢ — 1)/2 and a quadratic twist (E),, such that
E1(L) has a point of order £. By part (a), there is a prime p of Ok lying over £
such that K (f)K* C L, so it will suffice to show that [K (f)KP : K (f)] > %.

If £ 1§, then primes above £ are unramified in K (f)/K". Thus K (§), K¥ are
linearly disjoint over KV, and we have [K (HKP : K(H]=[KP: KD =1 -1
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since (25) = (%) # —1. If £ |, then applying Lemma 6.4 with % in place of f, we have
KPNKF CcKONK®F =K (®).

Thus KP N K (f) = KP N K (£), so
[KHKP:KMI=[K":KPNKHI=[K": K" NK@O)]=[K(O)K": K(£)]

and it is enough to show that [K (¢)KP : K(£)] > %.

. (%) = 1: We will prove that K* N K (¢£) = KV using CM elliptic curves.
Let (Eo), gm be an Og-CM elliptic curve. Then Eg[p] is stable under the action
of gxm and generated by a point P of order £. By [Bourdon et al. 2017b, Theo-
ream 5.5], there is an extension L/K (D of degree (¢ — 1)/2 and a quadratic twist
(E1),1 such that P becomes L-rational. By Theorem 2.8 we have K¥ C L, and
K? = L since [KP : K] = %(Z —1). Over K (£)K®, the curve E; has a rational
point of order ¢, and the mod ¢ Galois representation is scalar by Theorem 4.1.
Thus E; has full ¢-torsion over K (£)KP, and K® C K(¢)KP. This implies
T=D[K@OKP: K@©]=[KP: K*NK()]. Since [KP: KD =1 —1), we
have KP N K (¢) = KD, and [K H)KP: K] =[KP: KD =L —1).

« (55) = —1: In this case, K* = K, so KP N K () = K(¢). This implies
[K(HKP: KH]=[KP: K@O)]=3(¢—1).

. (%) = 0: Since [K(¢) : KP] = ¢ and [KP : K] = %(E — 1), we have

KPNK() =KD Thus [KHKP: KH1=[KP: KD =1 —1). O
Remark 6.6. Assume the setup of Theorem 6.5 but take K = QW=D orK =
Q(+/—3). Then the assertion of Theorem 6.5(b) is false. Indeed, if ¢ > 5 and
(2) # —1, we have [K (HKP : K(P)]| ﬁ(@ —1). (See Lemma 2.9.) Suppose F D K,
and let E,r be an elliptic curve with CM by the order in K of conductor f. If E(F)
contains a rational point of order £, then Theorem 6.2 implies %(E -DI|[F:KM]
Thus F must properly contain K (f) K.

6D. Sharpness in the Isogeny Torsion Theorem. The following result was estab-
lished during the proof of Theorem 1.3.

Lemma 6.7. Let E be an O-CM elliptic curve defined over a number field F
containing the CM field K, and for a positive integer ' dividing the conductor §
of O, let L. E — E’' be the canonical F-rational isogeny to an elliptic curve E’ with
CM by the order in K of conductor §. Write

E(F)ltors)|=Z/sZ x Z]eZ, E'(F)[tors|=7Z/s'7 x Z/e'Z,

where s |eand s’ | €. Then s | s’
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Ross [1994, §4], claims that if E is a CM elliptic curve defined over a number
field F containing the CM field, then the exponent of the finite group E (F)[tors]
is an invariant of the F-rational isogeny class. In the setting of Lemma 6.7, this
would give e = ¢/, and combining this with the conclusion of Lemma 6.7 we would
get an injective group homomorphism E (F)[tors] < E(F’)[tors]. This conclusion
is stronger than that of Theorem 1.3. However Ross’s claim is false: in the setup
of Lemma 6.7, one can have ¢’ < e (in which case there is no injective group
homomorphism E (F)[tors] < E’(F)[tors]), as the following result shows.

Proposition 6.8. Let £ > 3 be a prime number, let K = QW—0), letn € ZZ3, let ©
be the order in K of conductor § = ¢35 and let F = K (f). For any O-CM elliptic
curve E, there is an extension L/ F of degree ¢(£") such that E(L) has a point
of order €", and no Og-CM elliptic curve has an L-rational point of order £* for
k > %(n +14+ L%J) (hence no L-rational point of order £™).

Proof. Let E,r be an O-CM elliptic curve. As in (3) we may choose a basis {e1, e>}
for E[£"] so that the image of the mod £" Galois representation consists of matrices

2 Ak—A%
[Z by bf4 } witha, b e 7/¢"Z.
a+ bfAg

Since ¢ ramifies in K and f = £2), we have ord, (bf?>(Ax — A%)/4) =1 +2|5 | =n,
so the matrices have the form

[Z . +1(9)fAK] with a, b € Z/0"Z.

The action of g on (e,) gives a character ®: gr — (Z/£"Z)*. Take M = (F)*er®,
Then [M : F]|¢(£") and ®|g,, is trivial. Thus there exists an extension L/F with
[L: F]=¢@{") such that E(L) contains e;.

Let E } ; be an Ox-CM elliptic curve, and suppose E’(L) contains a point P of
order £X. Let p be the prime ideal of Ok such that £Ox = p> We claim that the
Ok -submodule M = (P)p, of E'(L) generated by P contains E [ka_l] and so, by
Theorem 2.8, that K C L. Indeed, by Theorem 2.6, we have M = E[I] for
some ideal I of Ok such that (Ok /I, 4) has £-power order and exponent £, Since
¢ ramifies in O, this forces I to be of the form p? for some a € Z™, and the smallest
a such that (Og /p®, +) has exponent £X is a = 2k — 1, establishing the claim. Thus

ordg (K" KW =2k —2 < ordy (L : KDV7) = L%J +n—1,

sok<i(m+1+|2]. O

In the setting of Theorem 1.3, one wonders whether #E (F)[tors] = #E’(F)[tors].
In fact #E'(F)[tors]/#E (F)[tors] can be arbitrarily large:
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Proposition 6.9. Let € be an odd prime, let K # Q(v/—1), Q(v/—3) be an imagi-
nary quadratic field, let O be the order in K of conductor £, and let F = K (£). For
any O-CM elliptic curve Ep there is an extension L/F such that if 1 : E — E' is
the canonical isogeny to an Ok -CM elliptic curve E’, then

#E'(L)[tors]

¢l #E(L)[tors]

Proof. Let E;r be an O-CM elliptic curve. As above, there is a basis {e}, e} for
E[¢] such that

pe(ar) C {[Z 2] | abe Z/ez}

and there is an extension L/F with [L : F] = £ — 1 such that E(L) contains e;.
In fact, E(L)[£*°] = Z/¢Z. Indeed, E does not have full £-torsion over L since
Theorem 1.4 would imply K@K (¢2) C L and $£(¢ — 1) = [KOK (€?) : K(0)]. In
addition, £ (L) has no point of order 02 by Theorem 6.2.

Let¢: E — E’ be the canonical L-rational isogeny from E/ to E } .» where E’
has Og-CM. Since e, € E (L), the second paragraph of Section 3 shows that ((e}) €
E’(L), and t(e1) generates E'[£] as an Og-module. In other words, Z /€7 x 7 /€7 —>
E’(L)[tors]. It follows that £ | #E’(L)[tors]/#E (L)[tors]). O

Finally, Theorem 1.3 requires K C F. This hypothesis cannot be omitted:

Proposition 6.10. Let £ > 3 be a prime with £ =3 (mod 4) and letn € 7=>. Let K =
Q(«/—1£), and let O be the order in K of conductor § = 03 Let F = QG (C/0)).
There is an elliptic curve E,r and an extension L/ F of degree <p(e ) such that

() L DK,
(i) E(L) has a point of order ", and
(iii) for every Ok -CM elliptic curve E we have € { #E'(L)[tors].

Proof. Let E;r be an O-CM elliptic curve. By [Kwon 1999, Corollary 4.2], E has
an F-rational subgroup which is cyclic of order £". It follows from [Bourdon et al.
2017b, Theorem 5.6] that there is a twist £ of E,r and an extension L/ F of degree
@(£")/2 such that E{(L) has a point of order £". Note [L : Q] = hgtls) %en) is odd
(see [Cox 1989, Proposition 3.11]), so K ¢ L.

Let E " be an Og-CM elliptic curve. Since [L : @] is odd, E’(L)[£°*°] must be
cyclic, as full ¢k -torsion would imply Q(,+) C L by the Weil pairing. As in the last
paragraph of the proof of Proposition 6.8, E'(LK) contains no point of order ¢".
Hence E’(L) contains no point of order £", and £" 1 #E'(L)[tors]. O
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6E. Minimal and maximal Cartan orbits. Let O be an order, let N € Z", and let
P € O/NO be a point of order N. Since Cy(O) contains all scalar matrices, if
P € O/NO has order N, then the orbit of C(O) on P has size at least ¢(N). On
the other hand, the orbit of C (O) on P is certainly no larger than the number of
order N points of O/NO.

In this section we will find all pairs (O, N) for which there exists a Cartan orbit
of this smallest possible size and also all pairs for which there exists a Cartan orbit
of this largest possible size.

We introduce the shorthand H (O, N) to mean: there is a point P of order N in
O/N O such that the Cy (O)-orbit of P has size ¢(N).

Lemma 6.11. Let O be an order, and let N = E‘l” - 4% € 7. Then H(O, N)
holds if and only if H (O, Zl-ai) holds forall 1 <i <r.

Proof. This is an easy consequence of the Chinese remainder theorem. ([

Lemma 6.12. Let O be the order of discriminant A, £ a prime number and a € 7.

(a) If (%) =1, there is an O-submodule of O /€% O with underlying Z-module 7 [{¢ 7.

®d) If (%) = —1, then Cw.(O) acts simply transitively on the order £ elements
of O/£°0.

Proof. (a) If (£) = 1, then O/LO = Ok /LOx = Z/0Z x Z/LZ, s0 O Q Z is
isomorphic as a ring to Z, x Z, (see, e.g., [Eisenbud 1995, Corollary 7.5]) and thus
0/£?0 is isomorphic as aring to Z /L7 x 7 /¢ 7.

(b) If (§) = —1, then O® Z; = Ok ® Z, is a complete DVR with uniformizer ¢,
so the ring O/£“ QO is finite, local and principal with maximal ideal (£). An element
of 0/£%O has order £¢ if and only if it lies in the unit group Cy(O). U

Lemma 6.13. Let O be the order of discriminant A, and let N € Z+. The following
are equivalent:

(i) If2| N, then (%) # 1.
(i) The Z/NZ-subalgebra of O/N O generated by Cn(O) is O/NO.

Proof. Using the Chinese remainder theorem we reduce to the case of N = £ a
power of a prime number £. Let B be the Z/£%Z-subalgebra generated by C. (O),
so #B = ¢ for some b < 2a.

(i)=(ii) Since 0 € B\ C(O), we have
#B > #Cpa (0O) + 1
4 p2a 2a—1
(B (B G ) TS L S
¢ L/t 441> 027! ifg=2and (%) # 1.
Thus b =2a and B = 0/¢°0.
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—(i)=> —(ii) If ¢=2and (§) =1, then

0/200 = {[g 2] |a,ﬁeZ/2“Z}

and C«(O) consists of the set of such matrices with «, B € (Z/2%Z)*. Thus C.(O)
is contained in the subalgebra

B:{[g g] |o.pez/2zanda=p (modZ)}

of order 2%¢~1,s0 B C BC 0/2°0.! O
Lemma 6.14. For an order O and N € 7™, the following are equivalent:

(1) There is an ideal I of O with O/1 =Z/NZ.

(ii) There is an O-submodule of O/ N O with underlying commutative group Z/NZ.
(iii) H(O, N) holds.
Proof. (i)<=(ii) Step 1: Let A be a free, rank 2 Z-module, and let A’ be a Z-
submodule of A containing N A. By the structure theory of modules over a PID,

there is a Z-basis ey, e for A and positive integers a | b such that aey, be; is a
Z-basis for A’. Thus

AN =Z/aZ ®Z/bZ, N /NAZZ/(N/H)ZSZ/(N/a)Z.

It follows that A/A' =Z/NZ < AN'/NA =7Z/NZ.

Step 2: If I is an ideal of O with O/ =Z/NZ,then I D NO,so [/[NO=Z/NZ
by Step 1. Let M be an O-submodule of O/N O with underlying Z-module Z/NZ.
Then M = I/NQ for an ideal I of O, and by Step 1 we have O/ =Z/NZ.

(il))=(ii1) Let P € O/NO have order N such that the subgroup generated by P
is an O-submodule. For all g € Cy(0), gP=agyP for a, € (Z/NZ)*. Conversely,
since Cn (O) contains all scalar matrices, the orbit of Cy(O) on P has size ¢(N).
(iii)=>(ii) Case 1: Suppose 2{ N or () # 1. Let P € O/NO be a point of
order N with Cy(O)-orbit of size ¢(N). There is a Z/NZ-basis e, e; of O/NO
with e; = P, and our hypothesis gives that with respect to this basis Cy (O) lies in

the subalgebra
ab
{[0 d] |a,b,deZ/NZ}

of upper triangular matrices. By Lemma 6.13, O/N O also lies in the subalgebra of
upper triangular matrices, and thus (P) is an O-stable submodule with underlying
Z-module Z/NZ.

ISince #B > #Cpa (0) + 1 =224"2 4 1 > 224=2 iy fact we have B = B.
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Case 2: Suppose 2 | N and (4) = 1, and write N = 2N’ with 2 { N’. By
Lemma 6.12 and the equivalence of (i) and (ii), there is an ideal I} in O with
O/1, £ 7/2%Z, and by Case 1 there is an ideal I in O with O/, = Z/N'Z. By
the Chinese remainder theorem, we have O/1,1, = Z/NZ. Since (i) <= (ii), this
suffices. O

Theorem 6.15. Let O be an order of discriminant A, and let N € Z™. The following
are equivalent:

(1) H(O, N) holds.
(i) A isasquarein Z/ANZ.
Proof. Using Lemma 6.11, we reduce to the case in which N = £¢ is a power of a
prime number £.
Case 1 (€ is odd): Since gcd(4, £*) =1, we may put D = % €Z/¢*Z. Then A is a
square in Z/4€%7 if and only if D is a square in Z/¢*Z, and
(5) OO = (Z/¢°D)[t]/(t* — D).
If there is s € Z/£Z such that D = s2, then
OO =(Z/e" D[]/ ((t +5)(t —5)),

so if I is the ideal (¢ +s, £) of O, then O/ =7 /¢“Z. By Lemma 6.14, H (O, £%)
holds. Conversely, suppose H (O, £9) holds, so by Lemma 6.14 there is an ideal I of
OwithOQ/I =7/¢%Z. Since £ € I, we may regard I as an ideal of O /£ O such that
(0/e40)/1 = Z/¢*Z. In other words, we have a Z/¢%7Z-algebra homomorphism

f:7/0°7(t])(t* — D) — Z/¢°Z.
Then f(t)> =D € Z/¢°Z, so D is a square in Z/{°Z.
Case2 (¢ =2, Aisodd): Here, ($)=+£1.

o If (%) =1, then A =1 (mod 8); by Hensel’s lemma, A is a square in Z/¢%Z.
On the other hand, by Lemmas 6.12(a) and 6.14, H (O, £) holds.
« If (§) =—1, then A=5 (mod 8), so A is not a square modulo 8 and thus not
a square modulo 4 - 2¢ On the other hand, by Lemma 6.12(b), H (O, £%) does
not hold.
Case 3 (£ =2, Aiseven): Again we may put D = % € Z/¢?Z, and again (5) holds.
The argument of Case 1 shows that H (O, £%) holds if and only if D is a square
modulo Z/¢47 if and only if A is a square modulo Z/4¢°7. ([
Proposition 6.16. Let O be an order, and let N € Z. The following are equivalent:

(1) Cn(O) acts simply transitively on order N elements of O/NO.
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(i) Cn(O) acts transitively on order N elements of O/N O.

(iii) For all primes € | N we have (%) =-—1.

Proof. As usual, we may assume N = ¢ is a prime power. Certainly (i) = (ii).

#Cpa (0) = 029720 — 1)(£ — (%))

whereas the number of elements of order £¢ in O /2?0 is

(i1) = (ii1): We have

N(O, £9) :=#O /19O —#LO /19O = 2720 — 1)L+ 1).
Transitivity of the action implies #C (O) > N (O, £%), which holds if and only if

(7)=-1

(iil) = (1): Since (%) # 0, we have O/£0O = Ok /O, and thus also Cy (O) =
(O/L40)* = Cpa(Ok). Thus O/£4O is a finite local principal ring with maximal
ideal m = (£) and unit group Cy(O) = O/£O \ m. The set of order £ elements
of O/L40 is O/L*O\ m = Cp (O), so the action of the unit group Cy«(QO) on this
set is the action of Cy«(O) on itself, which is simply transitive. (]

Corollary 6.17. Let O an order of conductor §. Let N = [[;_, £ € Z be such
that (%) = —1foralli. Let F be a number field, and let E,r be an O-CM elliptic
curve such that E(F) has a point of order N. Then

(6) #Cn(O) | [FK - K(f)].

Further for all O and N satisfying the above conditions, equality can occur in (6).

Proof. Replace F by FK; then F D K(f). By Proposition 6.16, Cy(O) acts
transitively on order N elements of O/N O, so the O-submodule generated by any
one of them is O/NO. Thus the existence of one F-rational point of order N
implies that py is trivial. Applying Theorem 1.4 gives (6). That equality can occur
follows from Corollary 1.7. (]

6F. Torsion over K(j): Part I. Let O be an order of discriminant A = sz K-
We will give a complete classification of the possible torsion subgroups of O-CM
elliptic curves E/ k). In this section we will treat the cases A # —3, —4. For the
remaining cases we will make use of Theorem 7.2, so we will come back to those
cases in Section 7E.

If E(K(f)) has a point of order N, then since [Cn(O) : py(gx )] | #O*, there
must be some P € O/NQ of order N with a Cy (O)-orbit of order dividing #O*.

e By Theorem 6.2, if E(K(f)) has a point of order N, then ¢(N) | 2, so
N e{l1,2,3,4,6}.
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o Lemma 2.2(b) implies that for all N > 3, we have #C y (O) > 4 (equality holds if
N =3and A =1 (mod 3)). By Theorem 1.4 we cannot have E[N] = E[N](K(})).

Thus E (K (f))[tors] is isomorphic to one of the groups in the following list:
{e}, 2727, 7/3Z, 7)AZ, 7)6Z, Z]27 x Z]2Z, Z]2Z x Z]4Z, Z]2Z x 7 ]/6Z.
We will show that all of these groups occur.

Points of order 2. By Theorem 1.4, E (K (f))[2] has order 4 if 2 splits in O, order 2
if 2 ramifies in O and order 1 if 2 is inert in O. Thus:
{e}, A =5 (mod 8),
E(K(f)I21=12/22, A =0 (mod 4),
7/27 x 2]27, A =1 (mod8).
Points of order 3, 4, or 6. Let Ekj) be any O-CM elliptic curve. We claim that
for N € {3, 4, 6}, there is a quadratic twist E? of E such that EP(K (f)) has a
point of order N if and only if H(O, N) holds. Indeed, as above, since the index
of the mod N Galois representation in Cy(O) divides 2, if some EP (K (f)) has a
point of order N, then O/N O has a point of order N with a Cy (O)-orbit of size 2.
Since ¢(N) = 2, there is a Cartan orbit of size 2 if and only if H(O, N) holds.
Conversely, if H(O, N) holds then there is a point of order N with a Cy (O)-orbit
of size 2, hence on some quadratic twist E” we have an F-rational point of order N.
Applying Theorem 6.15, we get:
» Some O-CM E k) has a point of order 3 if and only if A =0, 1 (mod 3).
» Some O-CM E /i ) has a point of order 4 if and only if A=0, 1, 4,9 (mod 16).
» Some O-CM E ;) has a point of order 6 if and only if A =0, 1, 2,9, 12, 16
(mod 24).

Because the only full N-torsion we can have is full 2-torsion, and 2-torsion is
invariant under quadratic twists, we immediately deduce the complete answer in all
cases.

o If A =0 (mod 48), then there are twists E;, E;, E3 of E with
Ei(K(M))ltors] =2Z/27, E»(K(§)[tors]=2Z/47Z, E3(K(f))[tors]=7Z/6Z.
e [f A=1,9, 25,33 (mod 48) then there are twists E, E, of E with
E{(K(f)ltors] =27/27 x 7/27, E>(K(f))[tors] =7/27 x Z]6Z.
o If A=4,16,36 (mod 48), then there are twists E;, E», E3 of E with

Ei(K()ltors] =2/27,  Ex(K(f)) =Z2/4Z,  E3(K())) =Z2/6Z.
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If A =5,29 (mod 48), then E(K (f))[tors] = {e}.
If A =8, 44 (mod 48), then E(K(f))[tors] =Z/27.
If A =12,24,28,40 (mod 48), then there are twists £, E; of E with

Ei(K(M))ltors] =2Z/272, E(K({)=2Z/6Z.

If A =13,21, 37,45 (mod 48), then there are twists Eq, E; of E with

E((K(f)[tors] = {e}, E>(K(f))[tors] =Z/37Z.

If A =17,41 (mod 48), then there are twists E;, E> of E with

Ev(K(§)[tors] = Z/2Z x Z/2Z,  E»>(K (§)[tors] = Z/2Z x Z/4Z.

If A =20, 32 (mod 48), then there are twists E;, E; of E with
E\(K (D)ltors] £2/27,  Ex(K () = Z/42.

6G. Isogenies over K(j): Part L.

Theorem 6.18. Let O be an order of discriminant A = {*Ag, and let N € 7.

o If A#£ =3, —4, then there is an O-CM elliptic curve E g 5 with a K (f)-rational
cyclic N-isogeny if and only if A is a square in Z/4N Z.

o If A = —4, then there is an O-CM elliptic curve E k5 with a K (f)-rational
cyclic N-isogeny if and only if N is of the form 20" ---£% for primes {; =
1 (mod4)ande,ay,...,a, € Nwithe <2.

o If A = =3, then there is an O-CM elliptic curve E ks with a K (f)-rational
cyclic N-isogeny if and only if N is of the form 2¢3°L{" - -- % for primes {; =
1 (mod3), €, a,a,...,a €Nwith (€, a) €{(0,0), (0, 1), (0,2), (1,0), (I, D}.

Proof. Step 1: Let E/k ;) be an O-CM elliptic curve. If A is a square in Z/4NZ,
then by Theorem 6.15 there is a point P of order N in O/N O such that C = (P)
is invariant under Cy(O), so C is gkj-stable and E — E/C is a cyclic N-
isogeny. If A ¢ {—4, —3}, then the projective Galois representation Poy : gk ) —
Cn(O)/(Z/NZ)* is a quotient of the reduced Galois representation, hence surjec-
tive. So K (f)-rational cyclic N-isogenies correspond to Cy (O)-orbits on O/NO
of size ¢ (N), which by Theorem 6.15 exist if and only if A is a square in Z/4NZ.

Step 2: If A € {—4, =3}, then as above the condition that A is a square modulo 4N
is sufficient for the existence of a K (f)-rational cyclic N-isogeny, but it is no longer
clear that it is necessary, and in both cases it turns out not to be. The complete
analysis will make use of Theorem 7.2, so we defer the end of the proof until
Section 7F. O
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7. The Torsion Degree Theorem

7A. Statement and preliminary reduction. Throughout this section O denotes an
order of conductor § and discriminant A = f?Ag.

For N € 772, let T(O, N) be the least size of an orbit of C(O) on an order N
point of O/NO.

if(3) # -1,
3if(3)=-1.
Proof. By Theorem 6.15, we have () # —1 if and only if there is a C>(O)-orbit

of size (2) = 1 on O/20 if and only if f((?, 2) =1. In the remaining case,

(%) = —1, we have #C,(O) = 3 and no orbit of size 1, hence f(@, 2)=3. [l

Lemma 7.1. We have T(0,2) =

Theorem 7.2 (Torsion Degree Theorem). Let O be an order of conductor §, and let
N e 7=
(a) Thereis T(O, N) € Z" such that
e if F D K(f) is a number field and E r is an O-CM elliptic curve with an
F-rational point of order N, then T(O, N) | [F : K({)], and
e there is a number field F D K (f) with [F : K(})]=T (O, N) and an O-CM
elliptic curve E;r with an F-rational point of order N.
(b) If (A,N)=(-3,3),then T(O, N) = 1.
(c) Suppose (A, N) # (=3, 3). Let N = €' - - - £% be the prime power decompo-
sition of N. Then
H;:l T(O’ Elal)
#OX '
(d) If £¢ = 2, then f((’), %) = 2 is computed in Lemma 7.1. If {* > 2, then
T (O, £%) is as follows, where k = ord,(f):
ele=1 if
(1) If €15, then T(O, %) = { 24720 — 1) if
52a72(£2 _ 1) lf

T(O,N)=

—_ o~~~
>N

~— — ~—
Il
S =

—1.

-1 if
-1 if
(2) If €| f, then T(O, £9) = { g2a=2%k=1(g _ 1) f

el —1) if
£2a72k72(£ _ 1) lf

Remark 7.3. The case N = 2 is excluded because of the somewhat anomalous
behavior of 2-torsion. But it is easy to see that Theorem 7.2(a) remains true when
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N =2, and, moreover:

o If A e{—4,—-3}then T(O,2)=1.

1 if (§) # -1,
e Otherwise, T(0,2) = : ] (i) a
3 if(5)=-1
Let F D K (f) be a number field, and let E,r be an O-CM elliptic curve. As
usual, we choose an embedding F < C such that j(E) = j(C/O). Let P € E[tors]
have order N. We call the field

KHOH(P))

the field of moduli of P. It is independent of the chosen model of E, r, and there
exists an elliptic curve E ; K(HbP)) with an isomorphism v : E — E’ such that v (P)
is K(f)(h(P))-rational. Further, the pair (E, P) induces a closed point P on the
modular curve X{(N),k, and K (f)(h(P)) is the residue field K (P). Theorem 7.2
concerns the degree [K (f)(h(P)) : K(f)]. Our setup shows that it is no loss of
generality to assume F = K (§).

Let gy : O — O/NO be the natural map, and let g5, : O* — Cn(O) be the
induced map on unit groups. As in the introduction, we define the reduced mod N
Cartan subgroup:

Cn(0) =Cn(0)/gn(07).

Let E[N] be the set of O*-orbits on E[N]. Then the action of Cy(O) on E[N]
induces an action of Cy(O) on E[N]. The field of moduli K (f)(h(P)) depends
only on the image P of P in E[N]. By Theorem 1.4, the composite homomorphism

gr £2% Cn(0) = Cn(0)

is surjective (and model-independent). Let Hp = {g € Cn(O) | g}_) =P }. It follows
that

Aut(K () (h(P))/K(f)) = Cn(O)/Hp.

Thus [K H)(h(P)) : K(f)] is the size of the orbit of the reduced Cartan subgroup
Cn(O) on P. (As we will see, in almost every case this is the size of the orbit of
Cn(O) on P divided by #O*.) This reduces the proof of Theorem 7.2 to a purely
algebraic problem.

7B. Generalities. For an order N point P € O/NO, let Mp = {x P | x € O} be the
cyclic O-submodule of O/NO generated by P. If we put Ip ={x € O | xP =0},

then we have
Mp=p0O/Ip.

The isomorphism is canonical and determined by mapping P € Mp to 14+1p € O/Ip.
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Lemma 7.4. (a) With notation as above, let

S(Ip) =1{g € Cx(O) | g =1 (mod Ip)}.
Then with respect to the Cy (O)-action, S(Ip) is the stabilizer of P, so as a Cy(0O)-
set the orbit of Cn(O) on P is isomorphic to Cn(O)/S(Ip).
(b) Further, there is a canonical isomorphism of groups Cn(0)/S(Ip) = (O/Ip)™.
Proof. (a) For g e Cy(O), wehave gP =P <= (g—1)P=0<=(g—1) € Ip,
giving the first assertion. The orbit stabilizer theorem gives the second assertion.

(b) The ring homomorphism f : O/NO — O/I induces a homomorphism on unit
groups f*:Cn(0O)— (O/Ip)*, with kernel S(Ip). Since O/N O has finitely many
maximal ideals, f* is surjective [Clark 2015, Theorem 4.32]. ]

Lemma 7.5. There is a positive integer M | N such that
O/Ip =7 Z/NZDZ/MZ.

Proof. As a Z-module, O/Ip is a quotient of O/ NO =7 Z/NZ S Z/NZ, so
O/lp=77Z/N'Z7®7Z/M7

with M | N’ | N. Since P has order N in (O/Ip, +), we have N' = N. O

The following result computes the size of the reduced Cartan orbit on an order N
point of O/NO in terms of the size of the Cartan orbit. We recall that we have
assumed N > 3.

Lemma 7.6. (a) Suppose (A, N) %= (=3,3), and let P € O/NQO have order N.
Then the orbit of Cn(O) on P has size #O times the size of the orbit of
Cn(O) on P.

(b) Suppose (A, N) = (=3, 3). Then the order 3 points of O /30 lie in two orbits
under C3(O): one of size 2 and one of size 6. The corresponding reduced
Cartan orbits each have size 1.

Proof. (a) The Cartan orbit has size #(O/Ip)*, and the reduced Cartan orbit is
smaller by a factor of the cardinality of the image of O™ — (O/Ip)*.

e Suppose A ¢ {—4, —3}. Then O* = {£1}, and since N > 3, we have —1 #
1 (mod Ip).

e Suppose A = —4. Since Ip 2 (2), by Lemma 2.9 the group Uy, (K) is trivial,
and thus the map O* — (O/Ip)* is injective.

o Suppose A = —3. By assumption, N > 4, so Ip { ({3 — 1) and the map
O* — (O/Ip)* is injective.
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(b) The assertion about Cartan orbits is a case of [Clark et al. 2013, Lemma 19].
(Another proof will be given in the next section.) The fact that both reduced Cartan
orbits have size 1 follows from the already established fact that there is an O-CM
E 0= with full 3-torsion. ([

In view of Lemma 7.6, to prove Theorem 7.2 it suffices to compute the least size
of an orbit of C(O) on an order N point of O/NQO and show that this divides the
size of every such orbit. The following result further reduce us to the case of N a
prime power.

Proposition 7.7. Let N > 2 have prime power decomposition N = £{" - - - £%. Let
P € O/NO have order N, and let Ip = ann P. For 1 <i <vr,let P; = N/E?’ P, and
let Ip, = ann P;. Then:

(a) The ideals Ip,, ..., Ip, are pairwise comaximal, so Ip, + Ip, = O foralli # j.
(b) We have Ip =1Ip, ---Ip,.

r

(c) We have a canonical isomorphism of rings

o/Ip = []0/1Ip,

i=1

which induces a canonical isomorphism of unit groups

r

O/1p) = []©O/1p)".

i=1
(d) The Cartan orbit of P is isomorphic, as a Cy(O)-set, to the direct product of
the C i (O)-orbits of the P;’s.

Proof. (a) For 1 <i <r, we have (O/Ip, +) ZZ/L“Z S Z/L7 7 with 0 < b; < a;;
in particular it is an £;-group. Thus for i # j, (O/(I; +I;), +) is a homomorphic
image of an ¢;-group and an ¢ j-group, so it is trivial.

(b) By the Chinese remainder theorem, we have Ip, ---Ip, =(;_, Ip,. Since P; isa
multiple of P, we have Ip C Ip, forall i, and thus Ip C ﬂle Ip,. Conversely, choose
Yi,.-.,yr €Zsuchthat Y ., yiN/€ =1.1f x € (_, Ip, then xN/¢{' P =0 for
all i, hence

~ N
0= E yiFXP =)CP,
i=1 t

sox €lp. Thus Ip=(\_, Ip. =1Ip, -+ Ip,.

(c) The Chinese remainder theorem gives the first isomorphism; the second follows
by passing to unit groups.

(d) Apply Lemma 7.4 and part (c). U
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7C. The case L17.

Theorem 7.8. Let E /i j) be an O-CM elliptic curve. Let £* > 2 be a prime power
such that £ 1§. We will give the sizes and multiplicities of all orbits of Cya(O) on
order £ points of O /€.
(a) If (%) = 1, there are 2a + 1 orbits: two orbits of size £~ (£ — 1), for all
1 <i <a—1, two orbits of size £°T'=2(£—1)2, and one orbit of size £2*~%(£—1)>.
(b) If(%) =0, there are two orbits: an orbit of size Ez"*z(ﬂ — 1) and an orbit of
size L2971 (0 —1).
(©) If(%) = —1, there is one orbit, of size £2*2(£> —1).
Proof. Step 1: Suppose O = Ok . Then every O-submodule of E[N] is of the form
E[I]foranideal I D NO, and E[I] =» O/I: thus every submodule is of the form
Mp = (P)o and is determined by its annihilator ideal /p. Conversely, if I > NO
is an ideal, then Lemmas 2.3 and 2.4 give that E[I] is an O-submodule of E[N]
with annihilator ideal 1.
Split case: (%) = 1. Here, £O = pp, for distinct prime ideals p;, p, of norm £.
The ideals containing ¢“O are precisely pfp‘zi with max(c, d) < a. We have ring
isomorphisms
O/p§pd = O/pS x O)pd =7/6°7 x 7/0°7,

and hence unit group isomorphisms

(O/pip9)* = (O/p) x (O/p)* = @D x Z/t'D)",
SO J o
#(O/pip3)" = (L)@ (L7).
To get points of order £ we impose the condition max(c, d) = a. Thus O-modules
generated by the points of order £¢ are

E[p1, Elpipal, ..., EIpipil= E[£°], E[pS~"p51, ..., Elpipsl, Elpsl.

So there are 2a + 1 Cartan orbits, one of size ¢ (£%)@(£?) and, forall 0 <i <a —1,
two of size ¢ (¢*)@(£'). The smallest orbit size is £4~1 (¢ — 1), and all the other
orbit sizes are multiples of it.

Ramified case: (%) =0. Then £O = p? for a prime ideal p of norm £. For any

b € 77, the ring O/’ is local of order £ with residue field Z/£Z, so the maximal
ideal has size ¢! and thus

#O/pH) =b — P = —1).

Since p? = (£), the least ¢ € N such that £¢ € p? is ¢ = (%] It follows that

b o4y r3 13
O, H) =7/ 707)0' 2 7.
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So the annihilator ideals of points of order £¢ in ©/£¢© are precisely p>*~! and p>¢.
We get two Cartan orbits, one of size #(O/p>*~1)* = £2¢=2(¢ — 1) and one of size
#((9/;32“)X = ¢22=1(¢ — 1). The smallest orbit size is £2¢~2(¢ — 1), and the other
orbit size is a multiple of it.

Inert case: (%) = —1. Here, £O is a prime ideal, so the ideals containing £*O are
precisely £/ O for i < a. Clearly ©/¢'O has exponent £¢ if and only if i = a, so the
O-module generated by any point of order £¢ is E[£?]. There is a single Cartan

orbit, of size #(O/L4O0)* = pg (£4) = £2972(£> — 1).

Step 2: Now let O be an order with £t f. The natural maps O/¢°O — Ok /€*Ok
and Cpa (O) — Cpa(Ok) are isomorphisms, so the sizes and multiplicities of orbits
carry over from Ok to O. ([

7D. The case £ | §. Suppose £ | f. The ring O/£0O is isomorphic to Z/£Z[€]/(€*) —
as one sees, e.g., using the explicit representation of (3) — and is thus a local Artinian
ring with maximal ideal p, say, and residue field Z/£Z. Because [p: £O]=¢, the only
proper nonzero O-submodule of O/£0O is p/£. Thus there are two Cartan orbits on
the order £ elements of ©/£O: one of order £—1 and one of order £2—£ =#(O/LO)*.

For all a € Z™, the ring O/£Q is local — for a maximal ideal m of O, we have
{4 e m <= ¢ € m—with residue field Z/£Z. In turn it follows that for any order £¢
point P € O/€°O and Ip = {x € O | x P =0}, the ring O/Ip is local with residue
field Z/¢Z. By Lemma 7.5, we may write

(7 Mp=0/Ip =, Z/0°7 S7/0"7

for some 0 < b < a, and then

#0/1

#(O/1p)* =#0/Ip — TP — ¢@tb=1g 1),

So the size of a Cartan orbit on an order ¢ element of O/£40O is of the form
(£ —1)£¢ for some a — 1 < ¢ <2a — 1. So in this case it is a priori clear that the
minimal size of a Cartan orbit divides the size of all the Cartan orbits. We want to
understand how Cartan orbits grow when we lift a point of order £¢ to a point of
order £°*!, First observe that x — £x gives an O-module isomorphism

OO0 =5 L0 /14T O,
so we can view O0/£9O as an O-submodule of ©/£¢T1®. With P as in (7), let
Q € 0/£°F1©O be such that £Q = P. Put
Mo={xQ|x€0O} and Ip={xecO|xQ =0},
and write
(8) Mo=0/1p =7/t 707/¢"7
for 0 < b’ <a+ 1. Because £Q = P, we have {My = Mp. Thus we find: if b =0,



80 ABBEY BOURDON AND PETE L. CLARK

then b’ € {0, 1}, whereas if b > 1 then necessarily ' = b+ 1. So: if the Cya (O)-orbit
on P has the smallest possible size ¢ (£%), then the C.+1(O)-orbit on Q either has
size (€271 or size p(£41?) (as we will see shortly, both possibilities can occur),
whereas if the Cypa (O)-orbit on P has size <p(£“+b ) > @(£), then the Cyat1(O)-orbit
on Q has size (£4++2): i.e., upon lifting from P to Q the size grows by a factor
of ¢2.

Since H (O, £¢t1) implies H (O, £%), for each fixed £ and O there are two possi-
bilities.
Type I: H(O, £%) holds for all a € Z™.

In Type I, for all a € ZT, the least size of a Cya (O)-orbit is ¢ (£%).

Type II: There is some A € Z" such that H (O, £%) holds if and only if a < A.
In Type II, for 1 < a < A, the least size of a Cy(O)-orbit is p(£*), but for
all a > A, whenever we lift a point of order £¢ to a point of order £°*! the size

of the Cartan orbit grows by a factor of ¢2, so for all @ > A the least size of a
C e (O)-orbit is £~ A (£%).
We now determine the smallest size of a Cy (O)-orbit on an order £ point of

0O/£20O by using Theorem 6.15 to determine the type and compute the value of A
in Type 1L

Case 1: Suppose (%) =1. Then H(Ok, £*) holds for all a € Z*, so Ak is a
square modulo 4¢%, hence A = f>Ag is also a square modulo 4¢¢, so H (O, £%)

holds, and we are in Type 1.
Case 2: Suppose (££) = —1, and put k = ord, ().

o Letl>2. Ifa<2k,then£”| A, so A is a square mod £ and hence also mod 4£¢:
thus H (O, £%) holds. However, if a = 2k + 1 then we claim H (O, £%) does
not hold. Indeed, suppose there is s € Z such that A = fAx = s> (mod £4).
Then ¢F | s; taking S = s/£¢ we have j2/£* Ax = §? (mod £4~%¢), which
implies that Ak is a square modulo ¢, which gives a contradiction. So we are
in Type II with A = 2k.

e Let £ =2, and write | = 2kF. Suppose a < 2k. Since 4 | Ax — 1, we have
2 @' F(Ag — ) =A—(2'F),

so H(O, 2%) holds. Suppose a > 2k + 1. If A is a square modulo 292, then
we find that Ax = 1 (mod 8), so (4£) = 1; this is a contradiction. So we are
in Type II with A = 2k.

Case 3: Suppose (££) =0, and put k = ord,(f).

eletl>2 Ifa<2k+1,then £ | A, so A is a square mod ¢“ and hence
also mod 4¢%: thus H (O, £%) holds. However, if a = 2k + 2 then we claim
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H (O, £%) does not hold. Indeed, ord,(A) =2k+1 < a, so if A =52 (mod £%),
then ordy (s?) = 2k 4 2: contradiction. So we are in Type II with A = 2k + 1.

o Let £ =2, and write f = 2X F. Suppose a < 2k + 1. Since 4 | Ak, there is s € Z
such that 8 | Ax — s so

2a+2 | 22k+3 | (ZkF)Q(AK _ S2) = A— (szS)Z,

so H(O,2%) holds. Suppose a > 2k + 2. If A is a square modulo 2412, then
Ak is a square modulo 2a+2=2k hence modulo 16: contradiction. So we are
in Type II with A =2k + 1.

7E. Torsion over K (j): Part II. We return to complete the classification of torsion
on O-CM elliptic curves E k() begun in Section 6F.
Suppose A = —4,s0 j =1728 and K (f) = K = Q(«~/—1).

e By Theorem 6.2, if E(K) has a point of order N, then ¢(N) | 4, so

Nef{l,2,3,4,5,6,8, 10}.
e Using Theorem 7.2 we get

TO,1)=T0,2)=T(0,4)=T(0,5=T(0,10) =1,
T70,3)=T(0,6)=2, T(0,8)=4.

e We have C»(0) = p4/{£1}. Thus #C,(O) = 2 so every O-CM elliptic curve
Ek has a K-rational point of order 2, and some O-CM elliptic curve E, g has
E[2] = E[2](K).

« Because T(O, 5) =4, if an O-CM elliptic curve E,/k has a K-rational point
of order 5, the index of the mod 5 Galois representation in C5(0) is divisible
by 4. Because #C»(0O) =2, if an O-CM elliptic curve E,k has full 2-torsion
then the index of the mod 2 Galois representation in C,(0O) is divisible by 2.
Thus if an O-CM elliptic curve E/x had Z/27 x 7/10Z — E(K)[tors], the
index of the mod 10 Galois representation in C19(Q) would be divisible by 8,
contradicting Corollary 1.5.

o If N > 3 then #Cn (O) > #0O*, so no O-CM elliptic curve E, g has E[N] =
E[N](K).

o If there were a CM elliptic curve E, g with E(K)[tors] = Z/4Z, then there
would be an ideal I of O such that O/ is isomorphic as a Z-module to Z/47Z.
But there is no such an ideal, a special case of the analysis done in the proof
of Theorem 7.8.

Thus the groups which can occur as E(K)[tors] are precisely

Z/2Z, 7/10Z, Z/2Z xZ)2Z, 727 xZ/4Z.
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Example 7.9. For K = Q(+/—1), every Ox-CM elliptic curve E g is isomorphic
over K to
Ea:y>=x>+ Ax

for some A € K*. We exhibit such elliptic curves with all possible torsion subgroups:

A | E@(v/=T1))[tors]
2 z/27

64 — 128 /—1 7/10Z
1 Z/27 x 7)2Z
4 Z)27 x 7/4Z

For the groups Z/27, 727 x 7/2Z and Z/27 x Z/4Z, we have A € Q* and thus E 4
arises from an elliptic curve defined over Q via base extension. Gonzalez-Jiménez [2019,
Theorem 1] has shown that for no A € @* do we have E 4 (K)[tors] = Z/10Z. Najman
[2010; 2011] has classified the torsion subgroups of all elliptic curves (CM or otherwise)
defined over K.

Suppose A =—3,50 j =0and K(f) = K = Q(+v/=3).
e By Theorem 6.2, if E(K (f)) has a point of order N, then ¢(N) | 6, so
Nef{l,2,3,4,6,7,9, 14, 18}.
e Using Theorem 7.2 we get

TWO,1H)=T0,2)=T(0,3)=T0,6)=T(0,7) =1,
T(O,4)=2,
T(0,9) =T(0,14) =3,
T(O,18)=09.
e We have C>(O) = ug/{£1}. Therefore as we range over all O-CM elliptic

curves E g, the group E(K)[2] can be trivial (using Corollary 1.8) or have
size 4, but it cannot have size 2.

» We have C3(0) = ue. Thus there is an O-CM elliptic curve E,x with E[3] =
E[31(K).

o If N > 4 then #Cn (O) > #0O*, so no O-CM elliptic curve E g has E[N] =
E[N](K).

Thus the groups which can occur as E(K)[tors] are precisely
{ey, z/3z, 7172, Z]2Zx7)27Z, Z/2ZxZ]6Z, Z]3Z xZ/3Z.

Example 7.10. For K = Q(+/—3), every Og-CM elliptic curve E g is isomorphic
over K to
Er:y*=x*+B
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for some B € K*. We exhibit such elliptic curves with all possible torsion sub-
groups:

B E(Q(/—1))[tors]
2 {e}
4 7/37
64/—3 — 54 777
-1 7/27 x 7)27
1 7/27 x 767
16 7/37 x7)37

For the groups {e}, Z/37Z, 7/27 x 727, 727 x Z/6Z and Z/3Z x Z/3Z, we have
B € Q@ and thus Ejp arises from an elliptic curve defined over @ via base extension.
Again Gonzélez-Jiménez [2019, Theorem 1] has shown that for no B € @* do we have
Ep(K)[tors] = Z/77Z. And again Najman [2010; 2011] has classified the torsion subgroups
of all elliptic curves (CM or otherwise) defined over K.

Remark 7.11. (a) The calculations in Section 6F where A # —3, —4 give a more
detailed and explicit version of one of the main results of [Parish 1989]. Parish
offers addenda on the cases where A = —3 and —4, but without proof, and the
possibilities £ (K ())[tors] = Z/10Z when A = —4 and E (K (f))[tors] = Z/7Z and
E(K(f)[tors] =Z/3Z x Z/3Z when A = —3 are not mentioned.

(b) If A = -3 or —4, a classification of the possibilities for E (K (f))[tors] apart
from the “Olson groups” {e}, Z/2Z, 7/3Z, Z/4Z, Z/6Z, Z]27 x Z/2Z was
made in [Bourdon et al. 2017b, Theorem 1.4] using computer calculations on
degrees of preimages of j =0 and j = 1728 on modular curves [Bourdon et al.
2017b, Table 2]. This result was used to find E 4 with E(Q(+v/—1)[tors] = Z/10Z
in Example 7.9 and E with E(Q(y/—3)[tors] = Z /77 in Example 7.10.

7E. Isogenies over K (j): Part II. We return to complete the classification of K (j)-
rational cyclic isogenies for elliptic curves with CM by the orders of discriminants
A = —4 and A = —3. Recall that these cases have additional complexity coming
from the fact that wg acts nontrivially on the projectivized torsion group PE[N].
In this case, there is an O-CM elliptic curve (Eg),k for which the projective mod N
Galois representation

Ppn : gk > CN(O)/(Z/NZ)*
is surjective. As we vary over the K-models of Ey, the representation Ppy twists
by a character
Px :g9x — ux/{£1}.

Thus the index of Poy(gg) in Cny(O)/(Z/NZ)* divides 2 when wgx = 4 and
divides 3 when wg = 6.
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We will rule out the existence of K -rational cyclic N-isogenies for various values
of N using the following “T—argument”: suppose that T(O,N)> @(N )%wN k- Then
every Cy (O)-orbit on a point of order N in O/N O has size a multiple of T (O, N),
so every Cn(0)/(Z/NZ)*-orbit on PE[N] has size a multiple of T(O, N)/@o(N),
which by our hypothesis is greater than wg /2. So after passing to a field extension L
of degree wg /2 to trivialize Py, we find that g;, acts without fixed points on PE[N],
and there is no L-rational cyclic N-isogeny and thus no K -rational cyclic N-isogeny.

Let O be the order of discriminant A = —4, so K(j) = K = Q(+/—1) and
WK = 4.

o If £=1 (mod 4), then for all a € Z* we have that —4 is a square in Z/4¢°7
so there is a K-rational cyclic £¢-isogeny. In fact we get that every O-CM
elliptic curve E,g has a K-rational cyclic £-isogeny.

e If £ =3 (mod 4), since
TO.0 £-1  t+1

= = 1
e “20-1) 2

by the f—argument there is no K -rational £-isogeny.

o If £ =2, then since T(O, 4) = 1, we can have a K-rational point of order 4
(as already seen in Section 7E), hence a cyclic K -rational 4-isogeny. Since

T(0,38) 16

by the f—argument there is no cyclic K -rational 8-isogeny.

Any elliptic curve over a number field admitting a rational cyclic N-isogeny also
admits a rational cyclic M-isogeny for all M | N. Moreover, if an elliptic curve E ¢
admits F-rational cyclic Ny, ..., N, isogenies for pairwise coprime Ny, ..., N;,
then the subgroup generated by the kernels of these isogenies is F-rational and
cyclic of order N - - - N, so E admits an F-rational cyclic Nj - - - N.-isogeny. The
assertion of Theorem 6.18(b) now follows.

Let O be the order of discriminant A = —3, so K(j) = K = Q(+/—3) and
WK = 6.
e If £=1 (mod 3), then much as in the A = —4 case above we get that every
O-CM elliptic curve E g has a K -rational cyclic £*-isogeny for all a € Z*+.
e If =2 (mod 3) and ¢ > 2, then since
TO.0  £-1  t+1
e 3¢—-1) 3

> 1,

by the f—argument there is no cyclic K -rational £-isogeny.
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o If £ =2, then since T(0O, 2) = 1 there is an O-CM elliptic curve E g with a
K -rational 2-isogeny.

e Since

by the f—argument there is no cyclic K -rational 4-isogeny.

e We claim that there is an O-CM elliptic curve E,g with a K-rational cyclic
9-isogeny. Let p be the unique prime ideal of O lying over 3, and let P
be a generator of the cyclic O-module E[p3] C E[9], so P has order 9. By
Lemma 7.4, the Co(O)-orbit on P can be identified with the unit group (O/p>)*,
of order 18. The O-module generated by P is also isomorphic to (¢3—1)O/90,
and using this representation it is easy to compute that the group (O/p>)* is
generated by the images of the scalar matrices (Z/97)* and the cube roots of
unity. Thus Galois acts on the image of P in PE[9] via a character Py. After
twisting by the inverse of this character, the image of P in PE[9] becomes
fixed by Galois and we get a K -rational cyclic 9-isogeny.

e Since
T(O,18) 54
= >
g0(18)w7'< 3.6

1,

by the f—argument there is no K -rational cyclic 18-isogeny.

¢ Since
T(O,27) _ 162

= 1,
QD% 318

by the f—argument there is no K -rational cyclic 27-isogeny.

o From Section 7E (or Theorem 7.2) we know there is an O-CM elliptic curve
Ex with a rational point of order 6, hence certainly a cyclic K-rational
6-isogeny.

Using the same considerations as in the A = —4 case above we get the assertion of
Theorem 6.18(¢c).

Example 7.12. There are 13 imaginary quadratic discriminants A such that the
corresponding order O(A) has class number 1. For each such A we list in Table 1
the set of N > 1 for which there is an O(A)-CM elliptic curve E defined over
K = Q(+/A) that admits a K -rational cyclic N-isogeny — otherwise put, for which
there is an O(A)-CM point on Xo(N)(Q(v/A)).
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=3 [ 2030t g with ;=1 (mod3),  (a,b) € {(0,0),(1,0), (2,0), (0, 1), (I, 1)}
—4 20471 - 47" with £;=1 (mod 4), a<?2

=7 79 with g /7=1, a<l
-8 2047 -4 with£;=1,3 (mod 8), a <1
=11 | 119t gfr with €;/11=1, a<l

—12 | 293b¢{t . g with ;=1 (mod3), a<2,b<1
—-16 2047 - 47" with ;=1 (mod 4), a<3

=19 | 199¢{" -4 with €;/19=1, a<l
=27 | 293b¢{ .. g with ;=1 (mod3), a<2,b<3
—28 74070 with £;/7=1, a<l
—43 | 439" -0 with €;/43=1, a<l
—67 | 6790{" - 47" with ¢;/67=1, a<l
—163 | 1639¢{" -+ £7"  with £;/163=1, a<l1

Table 1. Values of N > 1 with an O(A)-CM point on Xo(N)(Q(+/A)).
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