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Away from the central axis, we prove the stability of the positive mass theo-
rem in the W7 sense for asymptotically flat axisymmetric manifolds with
nonnegative scalar curvature satisfying some additional technical assump-
tions. We also derive estimates for the volumes of regions, the areas of ax-
isymmetric surfaces, and the distances between points within the manifolds.
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1. Introduction

Based on the formulation of general relativity, our physical intuition leads us to
expect a close relationship between the ADM mass of an asymptotically flat Rie-
mannian manifold and its geometry. Recall that the ADM mass of an asymptotically
flat Riemannian manifold is defined to be

(1-1) m = lim f (gljj g]jt)V

R—o00 167‘[

In their celebrated positive mass theorem, Schoen and Yau [1979] proved that if an
asymptotically flat manifold has nonnegative scalar curvature, then the ADM mass
is nonnegative. They also proved the following rigidity theorem:

(1-2) m = 0= M is isometric to Euclidean space.
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It is natural to ask whether stability also holds; if M has small ADM mass, is M
close to Euclidean space? Lee and Sormani [2014] have shown that M need not be
smoothly, nor even C?, close to Euclidean space even in the spherically symmetric
setting; there could be increasingly deep thin gravity wells at the center. They
conjectured that M is close to Euclidean space in the Sormani—Wenger intrinsic flat
(SWIF) sense [Huang et al. 2017; Lee and Sormani 2014]. Proving it will require a
method for picking appropriate subregions geometrically and a way to show that
these regions converge in the SWIF metric to a subset of Euclidean space.

Lee and Sormani [2014] studied stability in the rotationally symmetric setting.
They showed that tubular neighborhoods of fixed radius D about coordinate spheres
of fixed area A converge to the Euclidean tubular neighborhood of radius D about
a sphere of area A. Earlier, Lee [2009] had proven convergence to Euclidean space
outside a compact set in the conformally flat setting. Assuming strong conditions on
sectional curvature, Corvino [2005] has proven that an asymptotically flat manifold
with nonnegative scalar curvature and small ADM mass must be diffeomorphic
to R3. Finster, Bray and Kath have papers bounding the L? norm of the curvature
[Bray and Finster 2002; Finster and Kath 2002]. After the Lee—Sormani paper,
LeFloch and Sormani [2015] proved that metric tensors converge in the ngc sense
in the rotationally symmetric setting. Huang, Lee, and Sormani [Huang et al. 2017]
proved SWIF convergence in the graph setting and Sormani and Stavrov Allen
[2019] proved it in the geometrostatic setting. Allen [2018] proved L? convergence
in regions where the inverse mean curvature flow is smooth.

Here, we will study the question of stability in the presence of axisymmetry.
The class of axisymmetric metrics is both flexible enough to model a range of
physically interesting phenomena and restricted enough that we have powerful tools
at hand that are not available in the most general setting. Recall that the coordinate
expression for an axisymmetric metric in cylindrical coordinates is

(1-3) g =22 dp? +dz?) + pPe P (dp + Bdp + Adz)?,

where all the functions involved depend only on p and z. The killing field associated
with the axisymmetry of g is %.
Since we will be studying large families of asymptotically flat metrics, it is

natural to require that the family satisfy some type of uniform falloff condition.

Definition 1.1. Let Jl be a family of axisymmetric metrics. Suppose we can
parametrize Jl by the functions «, u, A, and B in cylindrical coordinates (1-3).
If there exist constants C and R such that if g is a metric in M, then for all

Vp?r+z72=r> Ry we have

(1-4)-(1-7) 18"u| < ¢

0" Al< . 197BI <
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then we shall call /it uniformly asymptotically flat outside of radius Ry

Chrusciel [2008] shows that if (M, g) is a simply connected axisymmetric
manifold which is asymptotically flat, then there are cylindrical coordinates (p, z, ¢)
in which g takes the form (1-3). In fact, Chrusciel’s construction works for simply
connected axisymmetric manifolds with multiple asymptotically flat ends. In this
case, the additional “points at infinity”” will be points removed from the z-axis at
which the coordinate function u will blow up. If the metric g is assumed to be
without conical singularities and smooth, then on the z-axis we will have

aa_au_

1-8 ===
(1-8) o o~ op

away from the points of infinity removed from the z-axis. Chrusciel’s construction
also works for axisymmetric manifolds with boundary, where the boundary has
the same killing field as does the rest of the manifold. One must perform a fill-in
so that the resulting manifold will have empty boundary [Chrusciel 2008], then
construction proceeds as in the boundaryless case. However, generally this fill-in
will be unphysical. Thus, it is desirable to remove from consideration all points that
were filled in out of technical necessity. To accomplish this, one may observe that
the form of (1-3) is unchanged by a conformal transformation of the coordinates p
and z. This allows us to construct cylindrical coordinates for which the boundary of
the manifold lies on the axis of symmetry. However, the blow up of the functions
o and u at the boundary is much more severe than at points representing other
asymptotically flat ends. The effect this has on the analysis of these manifolds is
discussed more in Section 2 and Appendix A.
Suppose that g has the standard asymptotically flat falloff rate:

C
1
(1-9) |8 (g_6R3)| = rl‘H[I’

where g3 is the Euclidean metric. In general, the asymptotic falloff of the functions
o, u, A, and B will not be as strong as the those given in Definition 1.1. However,
we may make an additional assumption on the growth of the killing field of g in
the asymptotic limit which will imply that the functions «, u, A, and B do have the
same falloff as in Definition 1.1. Although, the author does not know if making
such an assumption uniform over a family of axisymmetric metrics will yield a
uniformly asymptotically flat family of axisymmetric metrics. This indicates that
there are many families of metrics satisfying the requirements of Definition 1.1,
although we do not have a geometric method for picking them out.

In Chrusciel’s construction of cylindrical coordinates, the coordinate functions p
and z are both solutions to a PDE determined by the metric g. Specifically, if we
let  denote the killing field generating the axisymmetry of g and let ¢ denote the
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metric on the orbit space induced by g, then both p and z solve

(1-10) Aqw:Agw—ﬁ(Va),Vlnlf,)gzo.
In fact, p and z are uniquely determined up to conformal maps in the plane. In
[Gibbons and Holzegel 2006, Section 2], it is noted that if we insist on mapping the
axis of symmetry to itself and preserving asymptotic flatness, then p is completely
fixed. In addition, we can see that z is unique up to translation. This uniqueness
justifies our choice to parametrize families of axisymmetric metrics as we did in
Definition 1.1

A major obstacle to proving the stability of the positive mass theorem, perhaps
the principal one, is that the ADM mass cannot control regions within outermost
minimizing surfaces. Classic examples depicting why the Penrose inequality de-
pends on the area of an outermost minimizing surface demonstrate this phenomenon.
One way to overcome this difficulty, which was applied in the work of Bray and
Finster [2002], Finster and Kath [2002], Huang, Lee, and Sormani [2017], and
Allen [2018], is to impose conditions which constrain the location, or prevent
the existence, of an outermost minimal surface. We shall follow this approach in
making the following definition.

Definition 1.2. Let Jl be a family of axisymmetric metrics and let n denote the
killing field generating their axisymmetry. Suppose that for each metric g € M we
have the following inequality

nlg
[Volg

Then we shall call Al a family of area enlarging metrics at pg. If the inequality
holds for each py, then we shall simply call the family area enlarging.

(1-11) (00, 2) = po-

Uniqueness of solutions to (1-10) implies that the above is a condition imposed
on the family Jit and has significance beyond a coordinate condition. However, it is
useful to express the above in terms of cylindrical coordinates. In coordinates the
condition reads

(1-12) (o —2u)(po, z) = 0.

In the appendices we show that the Schwarzschild solution is area enlarging.

Suppose that Jl satisfies condition (1-11) for all py. Let Sgs denote the back-
ground Euclidean metric given in the cylindrical coordinates (p, z, ¢). Then in
Proposition 5.1 we show that

(1-13) Areay(X) > Area5R3 (%)
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for axisymmetric surfaces X. Together with the Penrose inequality, the above
area inequality works to constrain the location of outermost minimal surfaces. In
Corollary 5.2 we show that if ¥ is an axisymmetric outermost minimal surface
which is also a sphere, then

(1-14) T C p (10, 2v2m)),

where m is the ADM mass of the metric under consideration.

As in prior work on stability, we must judiciously decide which regions we will
study. In view of the above discussion, the regions
(1-15) 800 ={m+o=p=p lz= 2} x10.2m),
for some fixed pg and o > 0, are natural choices. If o is identically zero, then
we shall write ©27;. Since we mainly work in the orbit space, we shall often
only consider the image of 27 (') under the projection map, which is simply the
rectangle

(1-16) ) ={p+o<p=<p.lz =2}

If o is taken to be zero, then we shall write 0, .
Instead of the area enlarging assumption (1-11), we will at first work with another
requirement.

Definition 1.3. Let Jit be a family of axisymmetric metrics. Suppose that for each
metric g € Jl we have the inequality

5
(1-17) —(1—|"|g )50
dp \ P Vpl,

on the set {p = po}. Then we shall call the family radially monotone at pg. If M is
radially monotone at each py, then we will simply call Jl radially monotone.

This too is a geometric condition on a family of axisymmetric metrics. In
Proposition B.3 we show that if g is an axisymmetric metric, and p is the solution
to (1-10), then g is radially monotone if and only if the level sets of the function p
form a sub-inverse-mean-curvature flow.

The radial monotonicity condition has a useful expression in cylindrical coordi-
nates:
d(a—2u) <o

ap -
In this form, a similar inequality to the above can be found in Section 3.2 of
[Chrusciel and Nguyen 2011].

One could wonder if there is any relationship between the area enlarging condition

and the radial monotonicity condition. Pointwise, there is no such relationship.

(1-18)
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However, if radial monotonicity holds everywhere, then the area enlarging condi-
tion must also hold everywhere, see Proposition B.4. Thus, radial monotonicity
everywhere also constrains the location of minimal surfaces, as in (1-14).

In Appendix B we will show that the Kerr—-Newman and axisymmetric ge-
ometrostatic metrics satisfy radial monotonicity and the area enlarging condition,
respectively. In fact, the Kerr—Newman metrics satisfy radially monotonicity strictly,
so that small perturbations of the Kerr—-Newman metrics are also radially monotone.
The same is true for small perturbations of axisymmetric geometrostatic metrics with
regards to the area enlarging condition. However, there is an important difference
between the geometric static case and the Kerr—Newman metrics: although there is
a minimal surface in the geometric static case, the initial data is extended past this
surface “into the black hole,” while the explicit form of the Kerr—Newman metric
that we use is given only outside of the minimal surface, and the minimal surface is
located on the axis of symmetry. As discussed later, this changes the mass formula,
though it does not change how we use the mass formula. Until Appendix A, we
will assume all of our manifolds have empty boundary, but may have multiple
asymptotically flat ends.

We now state the stability of the positive mass theorem in the W7 sense.

Theorem 1.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose that M is radially monotone at py and that for each metric in
M, we have

(1-19) A=B=0.

For every p; > max{pg, Ro}, € >0, 0 >0,and 1 < p < 2 there exists a 6 > 0 such
that if the ADM mass of g € M is less than §, then

(1-20) 18 = S llwir @0 @) < €
and
(1-21) lg = dr2llwip @t @) <€

where 83 denotes the Euclidean metric in cylindrical coordinates, Si2 denotes the
Euclidean metric in the (p, z) plane, and q denotes the orbit metric of g in the
(p, 2) plane. ﬁﬁé (0) denotes the cylinder given in (1-15) and Qﬁ(') (o) denotes its
orbit space.

Remark 1.5. Although we are restricting our attention to metrics with no boundary,
we are still allowing the possibility of multiple asymptotically flat ends. Thus, there
may be closed embedded minimal surfaces in our metric. This shows, once again,
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how we are using the radial monotonicity condition to handle the presence of these
minimal surfaces.

The assumption that the functions A and B vanish is very likely unnecessary,
however it does simplify the analysis considerably. That the exponent p is required
to be less than two is natural to the problem at hand. Suppose we were able
to prove an analogous result for p > 2. Then, we would be able to apply the
Sobolev embedding theorem to conclude that the convergence was actually Cy
convergence. However, as mentioned before, see [Lee and Sormani 2014], there
are counterexamples to Cy stability.

It is not yet known if W!-? convergence implies SWIF convergence. However,
in the course of proving W7 stability, we obtain similar estimates to those Huang,
Lee, and Sormani [Huang et al. 2017] use to prove the stability of the positive mass
theorem in the SWIF metric for graphical manifolds. Let J( be a family of three
dimensional asymptotically flat graphical manifolds in R* and let C,, denote the
infinite cylinder with base a ball of radius r( about the origin in R> ¢ R*. Huang,
Lee, and Sormani studied the regions €2,, C M € .l defined by

(1-22) Q= MNCyy,

for some appropriately large rg. Additionally, they assume a uniform diameter
bound on the €2,,. They then show that as the ADM mass approaches zero, the
regions €2, converge in the SWIF metric to a three dimensional Euclidean ball
in R4,

(1-23) B(0, rp) x {0}.

Their proof follows from three assertions. First, they showed that the volumes of
the €2,, converge to the volume of B(0, rp). Second, they showed that the area
of 0€2,, approaches the area of 9 B(0, rp). Finally, they showed that 9$2,, N 9C,,
Lipschitz converges to d B(0, ry) x {0}.

We are able to establish volume convergence for the cylinders §~Zﬁ(‘) (o) defined as
in (1-15).

Theorem 1.6. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose also that M is radially monotone at pg. For any constants € > 0,
o >0, and p; > max{pg, Ro}, there exists a § > 0 such that if g € M and

(1-24) m(g) <4,
then

(1-25) 2] +€ = volg (L) > | —€
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for any region 2 such that
(1-26) QcC Qb (o).
We are also able to establish control over areas inside our designated regions.

Theorem 1.7. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose also that M is radially monotone at pg. For any fixed axisym-
metric surface X, constant € > 0, and constant p; > max{pg, Ry}, there exists a
& > 0 such that if m(g) < 8, then

(1-27) IZNQ0 ()] +€ = Areag(ENQ2 () = [Z N QL (0)| —e.

0

We obtain an estimate on distances between certain points in 's“zgg (o) which can

be used to give an upper bound on the diameter of ﬁﬁé (o).

Theorem 1.8. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose M is also radially monotone at po. Additionally, assume that
A = B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given € > 0, o > 0, and p; > max{pg, Ro}. There exists a constant
6 > 0 such that if m(g) < § and x and y are any points such that the Euclidean line
segment connecting them lies in Qg(‘) (o) x {¢o} for any ¢g, then

(1-28) de(x,y) <d(x,y)+e.

For more general pairs of points x and y in ﬁﬁé we have a pointwise estimate
on their distance to each other.

Theorem 1.9. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose also that M is radially monotone at py. Additionally, assume
that A = B =0 in the coordinate representations of the metrics under consideration.
Suppose we are given € > 0 and o > 0 and points x and y such that the Euclidean
line segment connecting them lies in QZ(‘J (0). There exists a constant § > 0 such
that if m(g) <6, then

(1-29) dg(x,y) <d(x,y) +e.

Finally, we are able to establish uniform convergence at large distances from the
origin.

Theorem 1.10. Let MM be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
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radius Ro. Suppose that M is radially monotone and that for all g € M we have
(1-30) A=B=0.

Let Ry > Rg and let A(Ry, Ry) denote the coordinate spherical annulus centered
at the origin. For any given 0 < 8 < 1 and € > 0 there exists a § > 0 such that if
geMand

(1-31) m(g) <3,
then
(1-32) lg — dm3llcosacry, k) < €

These theorems are proven in Section 5 after we prove a series of lemmas
estimating various terms in the coordinate system. All of the above theorems hold if
we assume the area enlarging condition (1-11) instead of radial monotonicity (1-17).
The only change is that in addition to assuming (1-11), we must assume that our
family of manifolds satisfies a stronger uniform asymptotic falloff than the one
given in Definition 1.1.

Definition 1.11. Let Jil be an uniformly asymptotically flat family of metrics.
Suppose that in addition to the uniform asymptotic falloff (Definition 1.1), we have
some uniform 7 > 0 such that

C
rltr’

(1-33) la| <

Then we shall call A strongly uniformly asymptotically flat.

In the future we would like to prove the Lee—Sormani stability conjecture that
regions outside outermost minimizing surfaces converge in the SWIF sense to
regions in Euclidean space. Our volume, area, and distance controls should be
useful towards such a proof. Here we used an extra condition (1-11) to constrain, a
priori, the location of outer most minimal surfaces. Another approach would be
to actually locate outermost minimal surfaces without any assumption. This was
done easily in [Lee and Sormani 2014] thanks to spherical symmetry and was a
huge challenge in the work of Sormani and Stavrov Allen [2019]. Locating the
outermost minimal surfaces in an axisymmetric manifold is of independent interest
and would be worthy of a paper on its own.

2. Background information

The ADM mass is calculated by taking a limit of integrals over the boundaries of
increasingly large coordinate balls. Thus, it is unclear how the ADM mass should
control the geometry inside of these balls. In fact, arbitrary local perturbations of a
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metric would not change its ADM mass. However, if we restrict our attention to
metrics with nonnegative scalar curvature, then we are no longer entirely free in
our choice of local perturbation. This restores our hope that the ADM mass can
control geometry.

In an attempt to relate ADM mass and the interior geometry, it is natural to make
use of the divergence theorem,
1) mg) = fim s [ (g =gt = fim [ diveg - g0

R—oo0 167 [yp. =" ’ R—o0 167 [p, ’ ’

to get an integral over the interior. For now, we are ignoring the question of which
metric we should use to take the divergence. Intuitively, we think of scalar curvature
as a local energy density. As such, we would like to relate the divergence term to
the scalar curvature. Ideally, the nonnegativity of the scalar curvature should give
control over the integral of the divergence term. This approach can be successfully
carried out in the case of axisymmetric metrics. Furthermore, Witten [1981] used
a more sophisticated version of this idea to prove the positive mass theorem for
manifolds with spinors.

In cylindrical coordinates for axisymmetric metrics we have the following formula
for the scalar curvature [Brill 1959]:

2 ,—2a 2
- | 1 5 1 da  p-e 0B 0A
(2—2) Rg:4€ ( a)[AR3(u—§Ol)—§|VM|5+%%—T(¥—% .
Here we can see that the scalar curvature is indeed closely related to a divergence,
namely Aps (u - %) This observation leads to a very useful formula for the mass
of an axisymmetric metric, including those with multiple asymptotically flat ends
[Brill 1959; Chrusciel 2008]:

(23) m(g) =

2 ,—da+2u 2
1 —2(u—a) p-e oB dA )
— R,+5— (= -== 2|V .
16”/@% [ 3 <3z ) | \Vul3 |pdpdzde

If there are multiple asymptotically flat ends, which will be points on the z-axis,
then the function u will blow up at these points. In fact, we see that u is roughly
the logarithm of the distance to these points in the Euclidean background metric.
Since we are integrating over R>, one may use polar integration to be convinced
that (2-3) is finite. For details of the case in which there are multiple asymptotically
flat ends, see [Chrusciel 2008, Theorems 2.9 and 3.3].

Since all other terms are explicitly nonnegative, if we assume that R > 0, then the
ADM mass immediately gives control over the gradient of u. In an asymptotically
flat metric, # must be arbitrarily small on large coordinate spheres. It is therefore
reasonable to suppose that we can use the fundamental theorem of calculus to
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control u everywhere in the manifold. In order to make this precise, we will use
the following representation formula to express u in terms of its gradient and its
value on large coordinate spheres.

Suppose 2 is a compact region on which the divergence theorem holds and let I
be the fundamental solution for the Laplacian. Assume further that u is a function
which is differentiable on CL(£2). Then we have

(2-4) u(x) =—/BQM(y)(VF(x,y),n)dy+/Q(VM(y),VF(x,y))dy-

In order to see this, we follow the calculations appearing as 2.15 in [Gilbarg and
Trudinger 1998], except we use the divergence theorem on the vector field Z defined
by

(2-5) Z=u(y)VI'(x,y).

Since we should not expect to have any physically relevant information inside
of a minimal surface, it is reasonable to exclude from consideration all parts of
a manifold lying within the outermost minimal surface. As such, it is desirable
to include manifolds with minimal surface boundary in our analysis. In fact, we
will choose coordinates for which the boundary of the manifold is taken to lie
on the axis of symmetry: the boundary will consist of disjoint rods lying on the
z-axis. The function u will still blow up logarithmically, but now as the logarithm
of the distance to a rod on the axis. Integrating using cylinders should convince
one that (2-3) should no longer be finite. In modifying the mass formula to suit
manifolds with boundary, we pick up boundary terms which complicate our analysis
[Chrusciel 2008; Khuri et al. 2019]. In the case of a connected boundary, see [Khuri
et al. 2019, Equations (2.10)—(2.12)], the mass formula becomes

mo
(2-6) m(g) = % 2|Vit|*+e*“ "R, dx+§/ @(0, 2)—2i(0, 7) dz+my,
T Jr —mo
where u and « are appropriate regularizations of u and «, respectively. This formula
has a lot in common with the boundaryless case (2-3), however, to the best of the
author’s knowledge, it has not been demonstrated that

o
(2-7) I / @(0, z) —2ii(0, z) dz +mg > 0,
—mo
nor even a lower bound established in general. Thus, it is no longer clear that mass
controls the right hand side of (2-6). If (2-7) holds, then Sobolev stability, and all
of the related theorems, are still valid in the nonempty connected boundary case, as
will be detailed in Appendix A. For now, we will assume that we are in the case of
an empty boundary.
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The ease with which we can obtain estimates for u is encouraging, however there
is one more hurdle. If we want to use mass to control the metric (1-3), then we
must be able to turn our estimates for u into estimates for e*. Luckily, we may
use the well known Moser—Trudinger inequality [Gilbarg and Trudinger 1998] to
accomplish this.

In view of the coordinate expression for an axisymmetric metric (1-3), we know
@=2u a5 well as e*, then we have achieved good control over
the metric. Although it is less clear, it is possible to use the mass formula (2-3)
and the scalar curvature equation (2-2) to show that the ADM mass controls the
WP norm of a — 2u. The process is similar to what we do to estimate u. However,
we use Green’s representation formula, instead of (2-4), to express o — 2u as a
boundary term plus an integral of its derivatives. We recall Green’s representation
formula now.

Let €2 be a compact region on which the divergence theorem holds and let I" be
the fundamental solution of the Laplacian. Suppose that w is a twice differentiable
function on CL(£2). Then we have the following representation of w:

o' (x, 0
2-8) w(x) =/ [w(y)—(ax Y) —F(x,y>—‘”(”]dy+/ F(x. y)Aw(y)dy.
a0 v av Q

that if we can control e

This result appears in [Gilbarg and Trudinger 1998] as Equation 2.16.

With W!P estimates for @ — 2u in hand, we might hope to use the Moser—
Trudinger inequality to get estimates for e*~2*. Unfortunately, the Moser—Trudinger
inequality doesn’t apply in this case. Luckily, because of axisymmetry, we are
essentially working in two dimensions. This gives us extra control that does not
exist in higher dimensions. In this setting we are able to prove a result similar to
the Moser-Trudinger inequality, which allows us to turn W!-? estimates for o — 2u
into WP estimates for e® 2,

In using (2-4) and (2-8) to control the W!? norms of u and « — 2u, we rely on
estimates of the Riesz potential. Recall that the Riesz potential of a function f over
a region €2, denoted (V) f)(x), is defined as

(2-9) V)@ = [y F o) dy.
Q
forue(0,1]. Let0<5=46(p,q) = q_l — p‘1 < 1 and let w, denote the volume

of the unit » dimensional ball. The following inequality appears as Lemma 7.12 in
[Gilbarg and Trudinger 1998]:

1—8\'7°
(2-10) II(VMf)IIPS(m) w,],_“IQI“_‘SIIfIIq,

where €2 is some open region in R" with compact closure and f is in L7 (£2).
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3. Sobolev estimates for z and e*

In this section we will see in greater detail the steps needed to estimate the W!-»
norm of e* using the mass formula (2-3). Our end goal is to produce estimates over
the regions Qﬁ(') (0), see (1-16). In fact, we are always able to take o to be zero. To
simplify notation, such rectangles will be denoted by %;.

To start, the ADM mass only explicitly bounds the L?(R*) norm of Vu. The
following lemma demonstrates that this is enough to get W!-2(B,,) control over u
for a ball of fixed radius r( about the origin in R>.

Lemma 3.1. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry, and let B, be the ball of radius ro about the origin. For any € > 0 there
exists a § > 0 such that if g € M and

(3-1) m(g) <4,
then
(3'2) ”u”WI'Z(B,O) < €.

Proof. We note once again that control over [[Vu/|| 2 Byy) is an immediate con-
sequence of the mass formula and the nonnegative scalar curvature assumption.
In the calculations that follow we will denote the volume of a three dimensional
unit ball by w3. First, we look at some very large coordinate ball B(0, r;) with
r1 > max{rg, Ro}. If we let I be the fundamental solution for the Laplacian, then
using (2-4) we may express u as

(3-3) ux)= —/

u<y><VF<x,y>,n>dy+f (Vu(y), VT (x, ) dy
dB(0,r1)

B(0,r1)

Taking the absolute value of both sides and using the triangle inequality on the
right-hand side shows us that

G s [ Ol [ T,
) B

B(0,r1) Swslx — y|2 0,r1) 3ws|x — y|2 )

We now integrate |u|? over B(0, rp) and use the well known inequality

(3-5) (a+b)*<2@*+b* fora,beR
to obtain
(3-6) lu(x)|* dx

B(0,rp)

2 2
Vv
52/ </ lu(y)l zdy) +(/ IVu(y)] zdy) .
B(0,r0) \J3B(0,r)) 3w3|x — y| B(0,r)) 3W3]X — Y]
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To bound the second integral on the right hand side we make use of the mass
formula (2-3) and the Riesz potential estimate (2-10) with u = %
get

v 2
(3-7) / (/ Ly)lz dy) dx < 8mrim.
B(0,r) \JB(0,r) 3w3|x — |

Using uniform asymptotic flatness (Definition 1.1), we estimate the first integral on
the right as follows:

2 2
1 C 1
B(0,r0)\J2B(0,r)) 3w3]X — ¥ 903 JB0.r)\JaB0.r1) |X — Y711

a)grgczrf

andg=p=2to

T (1 —ro)*rf
Substituting the above two inequalities into (3-6), we obtain

2 C2w3rgrf' 2
(3-9) lu(x)|“dx <2 —2+8nr1m
B(0,r0) (r1 —ro)*r;

If we let r; grow arbitrarily large, then the first term on the right will become
arbitrarily small. We may counter any growth in the second term on the right by
choosing the mass to be small enough. ([

The next step is to estimate ¢”. In order to do that we will apply the Moser—
Trudinger inequality to u. Let us now recall the exact statement of the Moser—
Trudinger inequality. Let 2 C R" and w € Wol’"(Q). Then there exists constants ¢
and ¢, depending only on r, such that

o] n/(n—1)
3-10 - < Ql.
(5-40) /&eXp((QHVamn> )"c” |

This inequality appears as Theorem 7.15 in [Gilbarg and Trudinger 1998]. Lemma 3.1
gives W12 control over u, so if we want to apply the Moser—Trudinger inequality,
we will have to work over two dimensional domains. Luckily, we have the following
almost trivial corollary to Lemma 3.1.

Corollary 3.2. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Let Q5 denote the region

(3-11) {mspstAS%}
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For every e > 0, pg > 0 and p; > po there exists a § > 0 such that if the ADM mass
of g € M is less than 8, then

Proof. Consider the region S~2ﬁ(') = Qb x [0, 27r). Choose r¢ large enough that

(3-13) 34! C By,

In Qf) we know that pg < p. Thus, we may observe that

(3-14) /
Q

u? +|Vul?dpdz < [u® + |Vu|*lpdp dz d¢

g 270 Jag,
1 2
=< m ||M || Wl’z(BrO)'
Now we may apply Lemma 3.1. U

We’re now in a position to estimate the W!? norm of ¢“. For the L” norm of
e" the proof is an almost direct application of the Moser—Trudinger inequality. To
estimate the L” norm of Ve* = e*Vu, we use Holder’s inequality to analyze each
term separately For the ¢ term we will once again apply the Moser—Trudinger
inequality. To estimate Vu we will rely on Corollary 3.2.

Lemma 3.3. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically outside of ra-
dius Ry. Let Qb denote the region {(,0, Dlpo<p=p,lzl < %} For every
p1 > po >0, € >0and p <2 there exists a § > 0 such that if the ADM mass of

g € M is less than §, then
(3-15) e~ Ly o <e.

Proof. Since g is smooth, u is bounded and has bounded derivatives in Q5}, though
we have not made any assumption on what these bounds might be. Thus, e/l is
Lipschitz, and so

(3-16) / |V(e”—1)|”:/ |Ve'“'|1’:/ ePll|vu|P,
Q! Q! Q!

P0 P0 P0

Now, we let r = % and 7’ be the conjugate exponent to r. After applying Holder’s
inequality with r, we get

) 1/r p/2
(3-17) / eP'“'|Vu|P5<f e’f"”'> (/ |Vu|2> .
) Qb )

PO 0

Let D(0, ro) denote the two dimensional disk centered about the origin with ra-
dius rg. Choose rq so that Qﬁé C D(0, rp). We may extend u to a function « in
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W01’2(D(0, ro)); see Theorem 4.7 in [Evans and Gariepy 2015]. We may choose
the extension u such that

(3-18) 1221l w2 2 p0.ryy = K llttllyr2etn)

where the constant K is independent of the function u. A quick application of the
Cauchy—Schwarz inequality gives us the estimate

_ 3 @\’
(3-19) r/p|u|s%(wpclnwnz)%(—_ ,
c1llVullz

where ¢ is the constant appearing in (3-10). We may now use the Moser—Trudinger
inequality (3-10) to see that

1/r 1/r
o (L) =(f e
o — \UD©.ro)

< exp(3r'(peil|Viil12)?) (2| D(O, r) )"

When written entirely in terms of u, the above inequality becomes

’ ]/r/ / /
(3-21) ) < expl T (Kperllullyiog)’ | @I DO D'
o 4 0

Combining this with Corollary 3.2 gives

] jul|p r d l/r’(4_m)"/2
(3-22) /Q , Ve < expl 5 (Kperllullynzayy) ] (DO ) (22

Now that we have successfully estimated V(e!“l — 1), we turn to estimating
el*l —1. We use the expansion of e/* to get that

(3-23) f |e'"—1|1’—f <i ﬂf
o) e k!

Pl

0 1
Factoring out |u| and over estimating the rest shows that the right hand side is
bounded above by

(3-24) f |u|P el
Q

Pl
P0

Now, we let r = % and apply Holder’s inequality to get

p/2 ) 1/r
(3-25) / |u|pep“|§(/ |u|2> (/ e”"”')
oA 2 oA

P
P0
Finally, we may once again apply Corollary 3.2 and (3-21) to obtain the result. [J
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4. Sobolev estimates for & — 2u and ¢*~2*

We must now concentrate on estimating o — 2u and e® 2%, We will try to imitate
as closely as possible the steps which let us successfully estimate u and e“. First,
we obtain W7 estimates for « — 2u from the mass formula (2-3). Unfortunately,
even at this early stage, the process is notably harder than it was for u.

In our attempt to estimate the W2 norm of u we used a representation formula
to express u in terms of its values on a large sphere and its gradient in a large
ball. Then we used the asymptotic falloff and the mass formula to control these
quantities, respectively. This was a relatively simple process because ||Vu|| is a
term in the mass formula. However, the gradient of o« — 2u does not appear directly
in the mass formula. Rather, it is the Laplacian of o — 2u which appears in the mass
formula by way of the scalar curvature equation. We will see the precise nature
of this relationship in the following lemmas. For now, the important point is that
instead of using (2-4) to express o — 2u, we should use Green’s representation (2-8).
It is widely known that one may replace the fundamental solution I" in (2-8) with
a function G(x, y), the Green’s function of the domain, which vanishes on the
boundary of the domain. This choice simplifies Green’s representation formula
significantly. Unfortunately, the explicit formula for G(x, y) can be complicated
depending on the domain. Thus, although our representation formula has been
simplified, it is difficult to estimate G (x, y). Luckily, we are working over very
simple domains, namely the rectangles 2. Therefore, a compromise is possible.
We may simplify the representation formula for any one side of the rectangle.
Specifically, we may choose a “Green’s” function which vanishes, or whose normal
derivative vanishes, on one side of the rectangle. Since we have the least amount of
a priori knowledge about the metric near the axis of symmetry, we will choose to
simplify our representation formula on the side nearest the axis of symmetry.

For the rectangle ©2/;, let x denote the reflection of the point x about the vertical
line {p = pp}. We can define the following two functions

1 1 _
(@-1) Hy(x, y) = 5—log(lx = y]) + 5 log(1E — )
and
4-2) Hp(x,y) = 2 log(lx — y]) — - log(| — y])

A quick check shows that we may replace I by either Hy or Hp in (2-8). Further-
more, a calculation shows that
dHN(x,y)

4-3 _— =0
) dv 928 N{p=po}
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and
4-4) Hp(x, y”aﬂﬁéﬂ{p:po} =0.

Since we will be integrating against the functions Hy and Hp in what follows, and
since Hy and Hp are sums of functions of the form log(|x — y|), it will be useful
in what follows to have an L? estimate for log(|x — y|) over bounded regions.

Lemma 4.1. Let Q be a bounded region in R* and let
4-5) ro = max{diam(£2), 1}.

Then for y € cl(2) we have
X k! X
(4-6) [log(lx — yDI" dx < St 27 (ro — Dro log(ro)
Q

for positive integers k.

Proof. We observe that
4-7) / llog(lx — yDI* dx 5/ llog(|x — y|)[* dx
Q B(y,ro)

1 ro
= / (—=D*27r log(r)* dr + / 27 log(r)k dr
0 1
The second term on the right has the simple estimate
(4-8) 27 (rg — 1ro log(ro)*.

To estimate the first term, one must carry out the integration. By induction, we have
the following result.
1
k!
(4-9) /0 (—D*2mrlog(r)*dr = TR O
With all of this in mind, we begin the process of estimating the W!-? norm of
o —2u.

Proposition 4.2. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose in addition that M is radially monotone at py. For every p1 > po,
€ >0and 1< p <2 there exists a § > 0 such that if the ADM mass of g € M is less
than 8, then

(4-10) ||a—2u||W1_,)(Q£(1)) <e€
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Applying Green’s representation formula to @ — 2u over the domain 2, gives

us

@-11) (Ot—2u)(x):/ [(“—ZM)M—HN(x,y)M]
Bl v p)

P0

dy

—I—/ Hy(x, y)Ala —2u) dy.
Qb

The above representation breaks our problem into two pieces. First we must estimate
A(o — 2u) over Q) and then we must estimate & — 2u on the boundary of Q7.
The necessary estimates are the content of the following two lemmas.

Lemma 4.3. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. If g is a metric in M and

(4-12) m(g) <m,
then
4 4./o1m
(4-13) I AQu )l gy < 22 4 2P
o) = po £0

for any p; > pg > 0.

Proof. We must relate A(x — 2u) to the mass formula. First, we recall that the
scalar curvature equation is

(4-14) Ry =4e* [AW (u—La)—3IV

da  p2e 2 (3B 9A\
2 ()]

where we have written Aps to emphasize the fact that it is the three dimensional
Laplacian which appears, and not the two dimensional Laplacian A. However, if
we remember that all of the functions involved don’t depend on ¢, then we can see
that

(4-15) AW(M—%):A(M—%)Jrﬁ%;a).

By plugging the above into the scalar curvature equation, we get

9 2 ,—2a OB 9A 2
(4-16) Rg=4e2(u—a)|:A(u—%a)—1|Vu|§—{—%—z_’oe—(___> ]
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We now solve the scalar curvature equation for A(x — 2u) and integrate in order to
arrive at

(4-17) / |A(a — 2u)| dp dz
o

2 2« 2
e 0B 0A
P (_ _ _) dp dz.

2(a—u) 2 ou
e 2
< Re+|Vul} +=|—
_/Q‘;é 2 ¢ IVals 4 dz  9p

p|ap

Now, since we are integrating over a region in which p > pg, we have from the
mass formula (2-3) that

dodz < —.
4 dz  dp pac=

£0

ple 2 (83 8A)2 4m
2

eZ(a—u) )
(4-18) Ry +|Vuls +
Qb

P0

To estimate the final term on the right hand side of (4-17) requires only a little
more work. Namely, if we apply Holder’s inequality to

9
(4-19) / 204
Q) P

ap
and make the simple estimate |g—Z’ < |Vuls, then we obtain

’ 4 1/2 1/2
(4-20) / £ dpdz < (/ —2) (/ |Vul3dp dz) .
QP QP ol

0]
Using the mass formula once more, we see that

4\1/2 12 4
4-21) (/ —2) </ |Vu|§dpdz) < vam
QP Q) Lo

0

dpdz

ou

ap

Putting each of these estimates together gives the desired result. U

We now want to estimate boundary terms on 3$2/,. Due to the asymptotic falloff
conditions (Definition 1.1), it is relatively straight forward to estimate terms on
(aszﬁg) — {p = pp}. It is more difficult to estimate terms on (0 Qg;) N{p = po}.

Lemma 4.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Assume that M is also radially monotone at py. For p; > max{pg, Ro},
if g € M and

(4-22) m(g) <m,
then
Ao —2 4
(4-23) / (ot —2u) S4_m+ «/le+671C,
@OH{p=po}| IV £0 00 01

where the constant C is the one appearing in Definition 1.1.
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Proof. 1t is an easy observation that
d 0
(4-24) — =——
v lapi N{p=po} ap

If we write the radial monotonicity condition entirely in terms of coordinate func-
tions, then we may see that for g € Jil

d(cx —2u)
(4-25) ——(p0, 2) 0.

Thus, we observe that

(4-26) /
Iy Nip=po}

A quick application of Stokes” Theorem over the region

(o —2u)

B fm/z 3(a — 2u)
av B

—pij2 0P

(p,2)dz.

(4-27) {po <p. 218 }
gives

n/2 g 2
(4-28) f (O‘ u)

p1/2

d(a —2u
_—/ A(oz—2u)d,0dz—|—f g
{po=<p, 1zI<p1/2} {0>po, 1zI=p1/2} 9z

We may estimate the second integral on the right by plugging in the asymptotic
estimates (Definition 1.1). The result is the following inequality

o —2
/ (o —2u) 5/ 3C _dp.
ozpo, ldl=p1/2) 02 to=po. lzl=p1/2) 1(P, 2]

We may see by a straightforward integration that

(o —2
(4-30) ‘/ (¢ —2u) < 6 C
{p=po, |zI=p1/2} 0z 01

(4-29)

The last piece of the puzzle is the term

(4-31) ‘f Al —2u)dpdz
po=p, |z|<p1/2}

5/ | Ao —2u)| dp dz.
{po=p, IzI<p1/2}

We now use the proof of Lemma 4.3 to bound this term. Putting everything together,
we get

(4-32) / ,
a9 Nlp=po)

We have the necessary estimates to obtain W!-? control over a — 2u.

d(a —2u) -

4
— 4_m+ \/le+6nC' 0

£0 £0 L1
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Proof of Proposition 4.2. Consider szf) for some p; > Ry. We also choose p; to be
much larger than p;. As before, we let

(4-33) Hy (x, ) = 5 log(lx = yI) + 5~ log(1% — y)),

where x is the reflection of x about the line {o = pp}. Recall that Green’s represen-
tation gives us the following formula for o — 2u:

d0Hy
(4-34) (Ot—2u)(X)—/aQ (Ot—ZM)(y)—(x y) — Hy(x, y)g()’)d

+ o Hy(x, y)A(a —2u)(y) dy.

We will imitate the estimates that we made for u in Corollary 3.2. Namely, we see
that

(4-35) /m [( —2u)(x)|? dx

P0

is bounded above by

@36) C(p) (/ 220
o \Joaap!

Hy

H p
'( —2u) )

p
+ (/p |HNA(a—2u)|dy) dx,
1

P0

for some constant C(p) depending only on p. We estimate each of the three terms
above in turn. For the first two terms, we will break 9QJ, into

(4-37) 9Q0! —{p = po}
and
(4-38) 20 N {p = po}.

Let’s start with (4-37). For this piece of the boundary we can use the uniform
asymptotically flat condition to obtain the required estimates. First, notice that for
x in Q5 and y in (4-37) we have

10g(2diam($2fg(]J ) - log(2+/261)
f— 7-[ ’

(4-39) |Hy(x, y)| <

since p; is much larger than py. From the asymptotic falloff given in Definition 1.1,
we see that for y in (4-37)

(4-40) ()

=

d(a —2u)
dv

3C
— -
1
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Thus, we may see that

(4-41) ( f ~
Qpp \J 9y —{o=po)

9(a —2u) P
Hy(x, )’)T(y)‘ dy) dx

~ P
5 / (9log<2ﬁpl>C) "
Qs T P1

2 (3 log(2v/251)C )p
1 - .

o1

=p
The other term has a similar estimate:

v [,
Q0 \Jaqpl —(p=po}

Using the two estimates above, we see that
9(a —2u) b
(4-43) ) Hy—— dy
ot \Jsofip=n) av

3log(2fp1)c) 2( 6C )P)
c e .
i )( ( P1 T P1— p1

We can now move to the inner piece of the boundary, (4-38). We will further
divide 9Q5, N {p = po} into

OH
(a0 — 2u) =
v

+‘( 2u)

(4-44) 09 N {p = po, |zl < p1}
and
(4-45) QL N {p=po, |z = p1}.

We now estimate

1/p
(4-46) ( / ( / y) dX) :
gl Qplﬂ{p ro, |zI<p1}

Here we apply Minkowski’s inequality for integrals [Folland 1999] to bound the

above by
p I/p
dx) dy.

I S
920 N{p=po, lz|<p1} \J 25

We may rewrite this expression as

(4-48) /
00N {p=po, IzI<p1)

Hy(x. y)w

d(a —2u)

Hy(x,y) ™

d(a —2u)
av

1/p
([, 1w vrrar) a.
Q

P0
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In view of Lemma 4.4, we must estimate the L¥ norm of Hy (x, y) as a function
of x over Q/; for each y in

(4-49) QL N {p = po, |z| < p1}.

We see that the points x and y are both contained in Q%g ', Which has diameter
2«/5,01. Let
(4-50) F(x)=x.

Since F is an isometry, if we apply the change of variable formula to F' and note
that y =y for y in {p = pp}, then we may see that for any g, we have

@sy [ ogi-ypirar=[ . flog(x—y)itax.
Q! F (")
Thus, we may use (4-6) to see that
(4-52) |Hy(x,y)ldx < [ | |Hy(x, )| < 5+ 16pf log(2v2p1),
o Q!
and

1/2 1/2
4-53) (/ |HN<x,y>|2dx) 5(/ |HN<x,y>|2dx)
Qll Q!

P0 P0

< %\/271 + 6471,012 log(2x/§p1)2.

We do a simple interpolation between the above two estimates to get

1/p
(4-54) ( / IHn(x, y>|f’dx> < (§+16p log(2v2p1)) @™ """
Ql

P0

’

1 2p-2)/p
x <Z‘/ 2 +647p° log(2\/§p1)2)

We now combine the above with Lemma 4.4 to bound (4-48) by

_ 1 2p-2)/p
4-55) [L+16p2log2v/2p1)] "/ ”[E\/zn +64mp? log(2\/§p1)2]
0T
y (4_m Lo 671_0)

£0 £0 o1

The term
o(a —2u)
(4-56) ( f ( / ~ Hy(r, y) 28— 2
oy \Jagiinto=po. 121} ov

p 1/p
dy) dx)
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is much easier to estimate. In fact, for x in Q/, and y in 852;';‘) N{p=po, |z| > p1},
we have

@-57) [y (r, )] = - max{[log (2 )], log2v/2501}.

Once again, combining the above with Lemma 4.4 bounds (4-56) by

. 4/p
, |10g(2«/§p1)|}<4;—’: e, 6’T—C)

4-58 =
( ) L0 L1

(p1)*P
T

max{‘log(%)

The final piece of the puzzle is the estimate of
P
(4-59) / (/ |HN(x,y)A(oe—2u)(y)|dy) dx.
o \Jafy

Here we may use Minkowski’s inequality for integrals once more to see that the
above is bounded by

1/p P
(4-60) (fg |A(a—2u)<y)|(/gm |Hy(x, y)|de) dy) :

L0 £0

Thus, we may bound (4-59) by

1/p P
(4-61) (fﬂ IA(a—Zu)(y)I(/- . IHN(x,y)I”dX) dy) :
Qb QUIUF Q)

P 0

Again, using the change of variable formula and (4-6), we bound (4-59) by

- - - ~ —12@p-2)/p
(4-62) ([%+16,012 log2v/25)]* " ”[%\/277 + 647 52 log(Zﬁpl)zJ

4m —|—4,/,51m)p
X ——— ] .
£0

Putting everything above together shows that
(4-63) / o —2u|? < C(p)*(4-43)+ C(p)*((4-55)7 + (4-58)) + C(p)(4-62).
Qp

Thus, for any € > 0 and p; > pg we can pick an appropriate p; and ADM mass m
so that
€

(4-64) lor = 2ull g, < 5-
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We can get similar estimates for V(a¢ — 2u) by differentiating the representation
formula:

(4-65) V(“‘Zu)(x)=f =20V 2 g e,y 220
BQ% av Py

—i—/_ (Vi Hy)A(a —2u).
ot
We see that

(4-66) [ |V (a —2u)|”
o

=) Q° </asz‘31
) £0

d(a —2u)
av

OH
(@ —2u)V, =X

)4

v )

p

+</ IV, Hyl |A(a—2u>|) .
Qh

0

VxI_IN +

As before, we will break 852,’?(‘) into (4-37) and (4-38). We start with (4-37). A
quick calculation shows that

(4-67) VeHy] < 50 (e + )
2r \|x—=y|  |x—y
and
JHy 3 1 1
4-68 & <—( _ )
(+-68) o | S iy T

Estimating the integral over (4-37) now proceeds as before.
As a first step in estimating the integral over (4-38), we note that
dHy

=0.
T oo ){p=po}

(4-69)

Next, we again break (4-38) into (4-44) and (4-45). For both pieces we proceed
much as we did before. On (4-44) it is crucial that p < 2, since it is only then that
the integral

(4-70) f IV, Hy|”
QZ(I)

is bounded for all y in (4-44). For (4-45), the necessary changes in the argument
are straightforward.
Finally, to estimate

)4 )4
@-71) (/ |<VXHN>A<a—2u>|) 5/- <f |<vaN)A<a—2u>|)
Qpp \Jap! Q oyl

Pl
P0 P0 P0
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we may use the Riesz potential estimates (2-10) with the appropriate choice of
constants. Thus, for p; chosen large enough and m chosen small enough, we may
conclude that

(4-72) ”O[ —2u ”Wlp(QZ(lJ) < €. D

In the course of proving Proposition 4.2 we actually proved a little more. For
future convenience, we record this result as the following corollary.

Corollary 4.5. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ro. Suppose also that M is radially monotone at py. For any p; > pg, € > 0,
and 1 < p < 2 there exists a § > 0 such that if g € M and

4-73) m(g) <4,

then

(4-74) f o —2ul? < —
o) Po

and

(4-75) / V(e —2u)|? < i,,
1
20 0

Having successfully estimated the W'-» norm of o — 2u, we must now turn to
estimating the WP norm of ¢®~2“, As was noted earlier, control over the W7
norm of @ — 2u for 1 < p < 2 falls short of what we need to apply the Moser—
Trudinger inequality to o —2u. It is thus not immediately clear how to turn estimates
for o — 2u into estimates for ¢*~2*. Luckily, the special nature of the fundamental
solution to the Laplacian in two dimensions allows us to prove a Moser—Trudinger
like inequality which we can use on o — 2u.

Lemma 4.6. Let 2 be a bounded domain in the plane on which the divergence
theorem holds and let I be the fundamental solution for the Laplacian. Suppose we

have yr € C2(Q)NCY(Q) and Ay € LY(Q). Let 2, denote ={x e Q:d(x, Q) >0}
and let ro = max{1, diam(L2)}. Then we have the estimate:

|| Ay Ay /27
(4-76) / el'/’|§<|Qg|+—+2JT(r — Drolr —1]
o, dr— Ayl TN

X sup exp(/
x€Q, aQ

Proof. From Green’s representation we have

oI’ 0
V()5 y)' + ’F(x, y>—"”(y)‘ dy)
v ov

ar 9
@77 Y(x) = 1/f(y)—8 (x,y)—F(x,y)—w(y)der/F(x,y)m/f(y)dy
i1} v dv Q
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Using the representation formula to rewrite fQ elV!, we obtain

(4-78) fe'W(x)ldxff exp|:/
Q Qo IQ

ol’ 0
YOI ()~ T, y)—"’(y)‘ dy]
v v

xexp[/ﬂ\l“(x,y)Aw(yﬂdy} dx

We bound the first term on the right pointwise by its supremum over €2,. Then we
may take it outside of the integrand.

(4-79) / eV@ldx < sup exp|:/
Qa XEQa 0Q

or oy
(Sl CE y)‘ + ’F(x, y)—(y)‘ dy]
v av
x f exp[/ INEROVNACH] dy} dx
Q0 Q
We may now concentrate on estimating

(4-80) f exp[ / TG, ) AY ()] dy]
Qs Q

The strategy is to expand the above integral using the Taylor series for the exponential
function and then bound each term appearing in the expansion:

00 k
(4-81) / (elall Gy AE=20()1dy) dsz/ (JoIT G, AP (y)|dy) dx.
QU k=0 QG k!

First, recall that the fundamental solution of the Laplacian in two dimensions is
given by

1
4-82 — 1 -
(4-82) = oglx — y|

Second, after observing that 2, C €2, and pulling constants out, we get the inequality

[T =AY dy[* ¢
R < o /Q ( /Q |Aw(y>||1og(|x—y|)|dy> dx

We apply Jensen’s inequality to the integral on the right to obtain

k
1
(4-84) ng(fguogux—m|Aw<y>|dy) dx

A k—1
= % / /g“"gﬂx —yDIFIAY () dy da

We now use Tonelli’s theorem to switch the order of integration to get

(4-85) //|log(|x—y|>|k|Aw<y>|dydx =/|Aw<y>|/|1og(|x—y|)|kdxdy
QJIQ Q Q
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Putting (4-6), (4-85), and (4-84) together gives

dx

k
@30 & [| [ oot snaviay

IIAllfIIk

k!
(Zn)kk' ( +2m (ro — Drolog(ro) )

After a quick application of the monotone convergence theorem to the summation
over k from k = 1 to infinity of (4-83) we get

(4-87) AlaTEnavmal 4,
Q
Tl Ay log(ro) | A |11
=Kt A -1 T )-1|. O
<| U|+4JT—||A1//||1+(rO )7’0|:6Xp( o

We have the following corollary, which is the actual inequality we will use.

Corollary 4.7. Suppose y € C*(Q2h)NC(cl(Q25))) and let ro=max{1, diam(Q25})}.
Then

(4-88) / oV
(Q))o
is bounded above by
ﬂllelh Ay | /27
(4-89) eCl@oDllAY (|(Q Do | _|_ - [ K
— Ayl 0

0
vy HNa—‘p(y)‘dy)
Vv

X sup exp<
xe(Qpd)o 3

where C (o, p1) = 5 max({|log(c)|, [log(2v/2p1)]}.
Proof. If we replace I" by Hy in (4-77), then the right hand side of (4-79) becomes

0Hy
(4-90)  sup exp tﬁ(y) -
xe(Qd)o klort)

0
‘HNa—w(y)‘dwf |F<x,y)Aw|]
V ol

P0

X/ , eXpU IF(x,y)Axlf(y)ldy]-
Qe Q
We see that

(4-91) sup /p [T VAP < Clo, pO AV Il Loy
xe( @)y Y U ’
The corollary now follows from Lemma 4.6. U

In order to apply Corollary 4.7 to « —2u, we need an L' bound on A (« —2u) and
an uniform bound on the boundary. In Lemma 4.3 we established the necessary L'
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bound. Now, we will demonstrate the needed uniform control on the boundary. The
following result is very similar to Lemma 4.4, however, due to technical necessities,
the statement and proof are slightly different.

Lemma 4.8. Let MM be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose also that M is radially monotone at po. Let Qb denote the
region

(4-92) {o.01p0=p=p 1212,

and (20} denote {x € Qb) | d(x, 320y) > o). Let p1 > Ro. If g € M and the ADM
mass of g is less than m, then

(4-93) sup exp ( /
xe(@h)s o7

PO

0Q2u — oH
M<y>‘+’(2u—oz><y> =

HN(x’y) 9

(x, y)' dy)

<exp[C(m, o, p1, po)]
where

m+4\/p1m 3C
(4-94) C(m,U,/01,,00)=max{|10g2\/§/01|,|10g0|}( ,01) —

PO o
Proof. As we observed earlier, for three sides of the rectangle 5, , the necessary
estimates to control the left-hand side of (4-93) follow from the uniformly asymp-
totically flat condition. Let’s make this more precise. First, consider those pieces of
the rectangle parallel to the p-axis.

From the definition of uniform asymptotic flatness, we know that

d(a —2u) d(a —2u) 3C
4-95 —_— =|—
(4-95) ‘ ™ ) ‘ 3z | = e
Analogously, we have
(4-96) oo — 2u] < %

In fact, the same is true on the final edge, so the above estimates are true on all of
I — {p = po}.
Armed with these estimates, let’s take a look at the integral

(4-97) / (@
Qs —{p=po}

Hy (x, y)—(y)‘
Since the point x is at a distance of at least o away from the boundary, we know
that

(o — 2u)(y)—(x y)|dy

aHN< 1

(4-98) <
ov o
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and
(4-99) [Hy (3, )| < = max{| log2v2p1)], |log()]}

To start, we can bound

(4-100) [ e 2om S| d
IR0 —{p=p0}
from above by
(@-101) / 3C gy <3€
09 —o=po} O TV o

since |y| > p; for y in dQ5, — {p = po}. We now make a similar estimate for

(4-102) /
928 —{p=po}

As we did before, we may bound this quantity from above by

d(o—2
Hy (e ) "2 )y

(4-103) SC max{Jlog2v/2p1]. llogo |} dy
09 —{p=po} 1
< ?O—C;max{ﬂog 27/2p11, |logo|}.

We need to estimate

(4-104) /
(89050 {o=po}

for x € (Qﬁé)a. Using (4-99) and Lemma 4.4 we get

d(a —2u)

Hy(x,y) o

o(a —2u)

4-105
( ) ™

HN()C, )’)

@2%))N{p=

‘;l|>—~_,-

=

max{| log(2v/2p1)]. |log(a>|}( 0 Hoim 6’“)

00 o1

Putting the estimates together gives

dHy
@106 s ep( [ e 200 42005 0| )
TE(Qph)o 9,
<C(m,o, p1,po). U
With all of the above estimates in hand, controlling the W7 norm of e®~* is

relatively straightforward. The technical requirements of Corollary 4.7 force us to
consider regions Qgé (o) for positive o, see (1-16).
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Lemma 4.9. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Let Q5 denote the region {(p, Dlpo<p=<pi,lz| < %} Suppose that
M is also radially monotone at py. For every p; > max{pg, Ry}, € >0, o > 0, and
1 < p < 2 there exists a § > 0 such that if the ADM mass of g € M is less than 8,

then
(4-107) ||e|oc72ul _ 1||W]‘p(95(1)(0)) <e€.

Proof. By assumption, « — 2u is bounded and has bounded derivatives, although
we make no assumption on what these bounds might be. Thus, we have that e/* =2
is Lipschitz. As in Lemma 3.3, we get

(4-108) / Velr=2 — 1P < / |V (o = 2u)| P12,
Qpp (@) Q0 (o)

Let r > 1 be such that rp < 2. Applying Holder’s inequality to the above gives

1/r 1/r
(4-109) (/ IV(a — 2u)|”’) (/ e P'“—2“'> ,
2 (@) Q@)

where r’ is the conjugate exponent to r. In order to control the left hand side we
appeal to Proposition 4.2. In order to bound the right hand side we first note that

+
(4-110) QL (o) C (257 )
Thus
(4-111) / e ple2ul < f e Pla2ul,
(o) —J@n ),

We may apply Corollary 4.7 to the function r’ p(« — 2u) and modify Lemma 4.8 as
necessary in order to see that

(4-112) / ¢! Pla—2ul

Qe

is uniformly bounded for all m small enough. Thus, combining the two estimates
above shows that

la—2u| €
(4-113) Ve Lot oy < 3

for sufficiently small m. Similarly, for m small enough, we can show that

€

o —2u|
4-114) e N @gon < 3
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5. Proofs of the theorems

In this section we will apply the lemmas to prove the theorems stated in the
introduction. Most of the above lemmas analyzed functions over the rectangles Q5.
Now we move our focus to the cylindrical annuli

(5-1) 30 () = Q81 (0) x [0, 27),

see (1-15). Except for the final theorem, this change of focus doesn’t involve any
new difficulties.

Proof of Theorem 1.4: We first restate the theorem.

Theorem 1.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose that M is radially monotone at py and that for each metric in
M, we have

(1-19) A=B=0.

For every p; > max{pg, Ry}, € >0, 0 >0, and 1 < p <2 there exists a 6 > 0 such
that if the ADM mass of g € M is less than §, then

(1-20) 18 = Sms lwir @ ) <€
and
(1-21) g = Srellw1p@ft o)) < €

where 83 denotes the Euclidean metric in cylindrical coordinates, Sg> denotes the
Euclidean metric in the (p, z) plane, and q denotes the orbit metric of g in the
(p, 2) plane. ﬁﬁé (0) denotes the cylinder given in (1-15) and Qﬁf) (o) denotes its
orbit space.

Proof. Since we have assumed that A = B = 0, in order to show that g is W!?
close to dps for small ADM mass, we need only show that

(5-2) ”;023_2” - p2||W1-P(§g(l)((j)) <€
and

200 —2,
(5-3) e~ — 1||W1<P(§Z(1)(g)) <€

if the ADM mass is sufficiently small. For (5-2) this follows quickly from Lemma 3.3.
Demonstrating (5-3) is only a little more difficult.
As before, we see that

(5-4) / |62(a—u) _ 1|17 < / 20 — 2u|p62p(a—u).
oA o

1
0
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After applying Holder’s inequality to the above with some r > 1 such that rp <2

we obtain

1/r 1/r

(5-5) ( f 12(a — u)|’P) ( / e2rr <°‘—">) .
ok Q

In order to estimate the above, we first observe that

Pl
P0 P0

(5-6) 2( —u) =2u +2(ox — 2u).

We can now estimate the left hand term using the triangle inequality, Corollary 3.2,
and Proposition 4.2 for the exponent rp < 2. For the right hand side we have

(5-7) / eZpr’(afu) — f eZpr’ueZpr’(a72u)‘

Q5 o
After applying Holder’s inequality, we may use Lemma 4.9 and Lemma 3.3 applied
to 2pr'u and 2 pr’(a —2u), respectively, to bound the L? norm of e2@=2u Tn fact, in
the same way, for any fixed g we can bound the L9 norm of ¢>*~2* for all m small
enough, depending on pj, po, and g. For what follows, we pick g large enough,
depending on p. If we take the gradient of ¢>*~2* we get

(5-8) (€272 (2o — 2u) = 272 (V2u + 2V (a — 2u)).

We again use Holder’s inequality, Lemma 3.3, Proposition 4.2 and Lemma 4.9
to control the L” norm of Ve?*~24, O

Proof of Theorem 1.6: Let us first restate the theorem:

Theorem 1.6. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ro. Suppose also that M is radially monotone at py. For any constants € > 0,
o > 0, and p; > max{pg, Ry}, there exists a § > 0 such that if g € M and

(1-24) m(g) <4,
then
(1-25) |2+ € > volg(2) > Q2] — €

for any region 2 such that
(1-26) QC Q0 (o).

Proof. A quick calculation shows that the volume form of g in cylindrical coordinates
is

(5-9) pe® 3 dpdzdg.
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Thus, we have that
(5-10) [voly (Q) — 12| = ‘ / (@ _ 1) pdpdzdg
Q
< / |23 _ 1lpdpdzdg.
Gh
As we have done before, we can see that

(5-11) ﬁ
Q

We may now apply Holder’s inequality to the above in order to see that

1/p 1/p
(5-12) f |2a—3u|e'2“3”5</ |2a—3u|p) (f eﬂm') ,
Ql oOx S

Pl
L0 0 P0

where p and p’ are conjugate exponents and 1 < p < 2. We may use the triangle

inequality to make the estimate

€273 _1|pdpdzdp < /m 120 — 3ule!®* " p dp dz d¢.

Pl
0 P0

1/p
(5-13) </~ 200 — 3u|p> < lullwrr + 2/l = 2u|| 1.0
)
We may combine Corollary 3.2 and Proposition 4.2 to control the above. For the
exponential term, we use the estimate

/ / /
(5_14) el |20 —3u| < el |u|e2p |t —2u|

and Holder’s inequality once more to see that

12
(5-15) / ep/IZa—3u| < (62[’/|“|)1/2 (/ e4p’|a—2u> ‘
& B &

We now wish to apply Lemma 3.3 and 4.9 to the above to see that it is uniformly
bounded for m small enough, depending on p;, pg and p. Combining the two
estimates finishes the proof. ([

Pl
0

Proof of Theorem 1.7: Let us first restate the theorem.

Theorem 1.7. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose also that M is radially monotone at py. For any fixed axisym-
metric surface X, constant € > 0, and constant py > max{pg, Ry}, there exists a
6 > 0 such that if m(g) < 8, then

(1-27) 12 NQA(0)| +€ > Areag (TN QL (0) = |ENQ0 (0)] —e.
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Proof. Let s be a fixed curve in the (p, z) plane representing an axisymmetric
surface, which we will call 2. A calculation shows that the area form associated
with X is

(5-16) p os()e 2% 5|5 dt do.
Note that the Euclidean area form for X is

(5-17) pos(t)|slsdtde.
From Lemma 4.9 we deduce that for any € > 0

(5-18) e = pllyri (@ o)) < €

if the ADM mass is small enough. Now, the curve segment s N Q5 (o) is part of the
boundary of some region in £/: (o). Thus, we may use the trace inequality [Evans
and Gariepy 2015] to conclude that

(5_19) ”peOZ—ZM - IOHLl(stﬁ(l)) < €.
This proves the theorem. O

If the family Jl is area enlarging everywhere, then we also have a stronger lower
bound on the area of axisymmetric surfaces than the one given above.

Proposition 5.1. Let g be an axisymmetric metric. Let (p, z, ¢) be the cylindrical
coordinates for g, let dps be the flat metric in cylindrical coordinates, and let & be
a C! axisymmetric surface. If g is area enlarging, then we have

(5-20) Areag(X) > Areas_; (X)

Proof. Let ¥ be a C! axisymmetric surface. Let s(z) be the C' curve in the (p, z)
plane which, when revolved around the p-axis, gives . We get the following map

(5-21) (t,9) = (s(1), $)

from I x [0, 27r) to X. Let A, denote the area form of the surface with respect to the
metric induced by g, and let As,: denote the area form induced by the background
Euclidean metric. Then using (5-16) and (5-17) we see that

(5-22) Ag=e""MA 5

In coordinates, the area enlarging condition is equivalent to the nonnegativity of
o — 2u. Thus, we know that ¢*~2* is greater than 1. The result now follows. [

We may combine the well known Penrose Inequality with the above proposition
to constrain the location of outer most minimal surfaces.
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Corollary 5.2. Let MM be a family of uniformly asymptotically flat metrics with
nonnegative scalar curvature. Suppose JM is either radially monotone or area
enlarging. Let g be a metric in M and X be the outermost minimal surface. If X is
axisymmetric and topologically a sphere, and

(5-23) m(g) <m,

then

(5-24) ® C p ([0, 2v2m)).
Proof. Let

(5-25) po =max{p: (p,z) € X},

let xo be a point in ¥ point at which p attains the maximum pg, and let [xo] denote
its orbit under the killing field. From the Penrose inequality, we know that

| Areay (%)

Since ¥ is axisymmetric and topologically a sphere, it must be represented in the
(p, 2) plane by a curve y which intersects the axis of symmetry twice. In particular,
y must emanate from the axis, then touch the point [xo] and then make its way
back to the axis. Let Dy, denote the disk represented by a line connecting the axis
to the point [xg]. Since this disk has minimal Euclidean area among axisymmetric
surfaces with boundary [x], we may conclude that

(5-27) Area3R3 (%) > 2Area(;R3 (Dy,) = 271,03.

Thus, combining the Penrose inequality with the above and the area enlarging
inequality (5-20) gives

L0
5-28 m>——. O
(5-28) 272

If the metric g in the above has positive scalar curvature, then it is a well known
result that the outermost minimal surface must be a sphere. The author does not
know if in an axisymmetric metric an outermost minimal surface must also be
axisymmetric, though it does seem plausible.

Proof of Theorems 1.8 and 1.9.

Theorem 1.8. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose M is also radially monotone at py. Additionally, assume that
A = B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given € > 0, o > 0, and p; > max{pg, Ro}. There exists a constant
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6 > 0 such that if m(g) < § and x and y are any points such that the Euclidean line
segment connecting them lies in Q0 (a) x {¢o} for any ¢y, then

(1-28) do(x,y) <d(x,y) +e.

Proof. We use the extension theorem for Sobolev functions, appearing as Theo-
rem 4.7 in [Evans and Gariepy 2015]. Following the notation of [Evans and Gariepy
2015], if we let U = Q53 (X), V =200 (), and p = 1, then we may see that there
is a constant K, depending on Qﬁé (0), and extensions of the functions ¢*™* — 1,
also denoted e*™* — 1, such that

(5-29) e ™ = Uiy < K 1™ = a2 o)

In order to obtain an upper estimate for d, (x, y), it suffices to estimate the length
of one curve connecting the points x and y. Let y,, denote the Euclidean line in
Qi (o) x {¢o} connecting x to y parametrized by Euclidean arc length In orbit
space

(5-30) Yay (1) = (2, (1), ¥, (1)),

Every such curve lies on the boundary of a square of side length the diameter of
Qﬁé (o). All such squares are rotations or translations of each other. Thus, there
exists a single constant C such that if 2 is a square with side length the diameter
of 0} (o), then the trace inequality holds with constant C:

(5-31) lollpiee) < Cllollyiig)-

Let /,(y) be the length of y as measured in the metric g. Then we have

d(x,y)
(5-32) lo(y) = / el@—woy ) g4
0
We now use the trace inequality [Evans and Gariepy 2015] to see that
d(x,y)
633w Lo [ 1O~
0
= 1 =1 = Clle* ™ = iy,
a0

where y lies on the boundary of 2. Furthermore, we have

(5-38) e ™ — Uy < 1™ = Hyiee) < KIe"™ = i o)
We may now use Theorem 1.4 to conclude that

(5-35) ld(x, y) =l (y)l <€

for small enough ADM mass. (]
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Very similarly, we can prove a pointwise upper bound on d,(x, y) for more
general x and y in Q).

Theorem 1.9. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ry. Suppose also that M is radially monotone at py. Additionally, assume
that A = B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given € > 0 and o > 0 and points x and y such that the Euclidean
line segment connecting them lies in ﬁg(‘) (0). There exists a constant § > 0 such

that if m(g) <6, then
(1-29) de(x,y) <d(x,y)+e.

Proof. As before, let y be the Euclidean line connecting x to y. Then we have that
(5-36)

40 2 N2 N2 2 2 N2
1l (Viy) — 1] 5/0 \x/e @0 (Y2 + (v)P) + vge 2 (vg)? — 1] dt.

Let

(537) 7 = a—u /__‘r_ /i 4 —u,,
- =e )/p )/Z aZ e y¢ .

Using the reverse triangle inequality, we observe that

(5-38) NZI =1 =1ZI=IY'11=1Z=Y'l,

where we are working with the Euclidean metric in cylindrical coordinates. Thus,
we may estimate the above integral by

d(x,y)
39 | V™ — D2 () + DD+ € = D2y () dr.

Using the triangle inequality and the bounds

(5-40) )7+ T <1,
and
(5-41) vyl <1,
we see that the above is bounded in turn by
d(x,y) d(x,y)
(5-42) /0 e @Y — 1] dt + /0 le™Y — 1| dt.

Let 7 be the projection of y to the (p, z) plane. y lies in the boundary of a region 2.
Since u and & don’t depend on ¢, we see thatuoy =uoy andaoy =aoy. We
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can now use the trace theorem, and then apply Theorem 1.4 as we did before to
show that for ADM mass small enough, we have

d(x,y) _ d(x,y) 5
(5-43) / le©@=°7 _ 1| dt + f le 7“7 — 1] dt <e. O
0 0

Proof of Theorem 1.10. We restate the theorem.

Theorem 1.10. Let MM be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ro. Suppose that M is radially monotone and that for all g € M we have

(1-30) A=B=0.

Let Ry > Ry and let A(Ry, Ry) denote the coordinate spherical annulus centered
at the origin. For any given 0 < 8 < 1 and € > 0 there exists a § > 0 such that if
g € M and

(1-31) m(g) <,
then
(1-32) g — O3 llcosacro.r)) < €-

Proof. Since we have assumed that A = B = 0, the proof will be established if we
can show that

(5-44) €272 — 1l concacry Ry < €
and
(5-45) le™" = 1llcosaro, k) < €

for small enough ADM mass. The above inequalities will follow if we can show
that

(5-46) lloe = ull co.pacry. ki) < €
and
(5-47) lullcosacr,.r) <€

for small enough ADM mass, where € depends on € above. Using the triangle
inequality, we see that it is sufficient to bound the C%# norms of u and « — 2u.
These bounds are the content of Lemma 5.3 and Lemma 5.7 below, respectively. [

Lemma 5.3. Suppose M is a collection of axisymmetric metrics with nonnegative
scalar curvature and empty boundary which is uniformly asymptotically flat outside
a ball of radius Ry. Let u be the function appearing in the axisymmetric coordinate
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representation of g. Let Ry be greater than Ry and A(Rg, Ry) be the spherical
annulus centered at the origin. For € > 0 and 0 < By < 1 there exists a § > 0 such
that if g € M and

(5-48) m(g) <8,
then
(5-49) lullcoscacro.ry) <€

Proof. Since we are working in the asymptotically flat regime, we have uniform
upper bounds on the C'(A(Ry, R1)) norms of the metric functions. From Lemma 3.1
we may bound the WLY2(A(Ry, R1)) norm of u. We now interpolate between these
two estimates to bound the W!¢ norm of u for arbitrarily large ¢. Specifically, we
write

R N L LIl G
A(Ro,Ry) A(Ro,Ry) A(Ro,R1)

We may do the same for the derivatives of u. In the end, we get the following
bounds:

2 _
(5-51) lally < ol lu) 252/
and

2 _
(5-52) IVull, < IVully I Vu) 5.

By assumption ||#||oo + [|[Vu]lco < C. Furthermore, by Lemma 3.1, we know
lullwi2a(r,.ryy) < € for sufficiently small m. Thus, we obtain the estimate

(5-53) lullwrg < C'3482/4,

We may now choose g large enough and appeal to the Sobolev embedding theorem
to get C%#0 bounds on u for By < 1. U

Remark 5.4. It is important to note that we didn’t use the hypothesis of radial
monotonicity in the above. We only need radial monotonicity to control o — 2u.

We will try to produce similar uniform estimates for o« — 2u. However, as before,
the process is harder. Whereas for u we started off with Wli)’cp (R3) control, for
’cp (IR%L) control. Even worse, the estimates we were able to
prove become weaker as we approach the axis {p = 0}, see Corollary 4.5. In order
to work our way around this conundrum, we must use the extra factor of p present

in integrating over By in R? to control the bad behavior seen in Corollary 4.5.

o — 2u we only have WIL
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Lemma 5.5. Let f be a measurable function on le. Suppose for each t we have
the estimate

€
(5-54) Lar=g

for some € > 0 and q > 0. Suppose o > q. Then, there exists a constant, denoted
C(o, q), depending only on o and q such that

(559) | i< ceae

Proof. Let t, =27"py and let 2, , , be the following rectangle:
(5-56) i = {1 < p < tar, 1212 51},

From the monotone convergence theorem we see that

5-57 o = o = 71 £].
(5-57) /Q%pm /Q%p|f| ;/ﬁ K

nstp—1
We now make the estimate
6 o— —_ —
(5-58) / I <10 =27 0oy e,
Q 1,

Inity—1 n

This gives a convergent series so long as o > ¢g. In total, we have the estimate
(5-59) [ i <o 0
QO.to

We now make use of the above lemma to control the W!:! norm of & — 2u over
the ball of radius R about the origin in R>.

Lemma 5.6. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius Ro. Suppose that M is also a radially monotone family of metrics. For any R
and € > O there exists a § > 0 such that if g € M and

(5-60) m(g) <4,
then
(5-61) ||0(—2u||W1,1(BR) < €.

Proof. Let Dg be the two dimensional half disk of radius R about the origin. Then

(5-62) |a—2u|=27t/ ola —2ul.
Br Dg
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For some p > 0, to be specified later, we rewrite the above quantity as
(5-63) f o Fp T o — 2ul.
Dg

Let 1 < g < 2 and ¢’ be conjugate exponents. We apply Holder’s inequality to the
above to get

AV 1/q
(5-64) (/ p ) (/ p(1+u)q la — 2u|t1> )
DR DR

Choose p small enough that
(5-65) ug < 1.

We may pick large p; enough that Dg C Qg'. From Corollary 4.5 and Lemma 5.5,
we see that for some constant C(u, g, R),

(5-66) [ pla=2u = CGu.g. moe
Dpr
if m is chosen small enough. The same argument can be made for
(5-67) / pIV (o —2u)|. O
Dg

We now make an estimate on the uniform norm of o — 2u similar to Lemma 5.3.

Lemma 5.7. Suppose M is a collection of axisymmetric metrics with nonnegative
scalar curvature and empty boundary which is uniformly asymptotically flat outside
a ball of radius Ry. Let Ry be greater than Ry and A(Ry, R1) be the spherical
annulus centered at the origin. For € > 0 and 0 < B < 1 there exists a § > 0 such
that if g € M and

(5-68) m(g) <4,
then
(5-69) lloe = 2ullco.s(acry. Ry)) < €-

Proof. We imitate the proof of Lemma 5.3. As before, we write

(5-70) / | —2u|? < ||a—2u||go_1/ lo — 2u].
A(Ro,Ry) A(Ro,R1)
We also have

(5-71) f V(e —2u)|9 < ||V (e —2u) || 4! / IV (e —2u)|.
A(Ro,R1) A(Ro,R1)
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By the asymptotic flatness assumption, we know that
(5-72) llor = 2ulloo + I(@ = 2u) oo = C

For some C depending only on the uniform falloff in Definition 1.1. Thus, for any ex-
ponent g we can use Lemma 5.6 to control the Sobolev norm |[a — 2ul| w14 (a(ry. r,))
by the ADM mass. Using the Sobolev embedding theorem, we see that

!
(5-73) o — 2u||cop < Clla — zu“vé?,l(A(Ro,Rl))’

where 8 =1— %, the constant C depends only on the uniform falloff in Definition 1.1,
the region A(Rp, R;), and g. Now we can use Lemma 5.6 to control the uniform
norm « — 2u on A(Ry, Ry). O

6. Area enlarging case

We now show that all the theorems stated hold when we assume our family of uni-
formly asymptotically flat metrics is area enlarging and strongly uniformly asymp-
totically flat, instead of radially monotone. The only steps required are to prove a
lemma analogous to Lemma 4.4 and a proposition analogous to Proposition 4.2.
The main difference between the radially monotone case and the area enlarging one
is in the choice of function for Green’s representation formula. Instead of working
with Hy(x, y), we will use Hp(x, y) (4-2). We also focus on slightly different
rectangles,

L
(6-1) b, ={e.0:m=p=p 12125}

We now prove the first key lemma for the area enlarging and strongly uniformly
asymptotically flat case.

Lemma 6.1. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius Ro. Suppose also that M is area enlarging at py. For any p1 > po,
L > 0, and € > 0 there exists a § > 0 such that if

(6-2) m(g) <4,

then

(6-3) / |l —2u| < e.
QL | N{p=po}

POPL

Proof. Observe that if L > L, then

(6-4) / i |a—2u|2/ loe — 2u].
QL N{p=po} 3%, N{p=po}
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In order to take advantage of asymptotically flat conditions given in Definition 1.1
it we will often consider L sufficiently larger than max{L, Rp}. We will then use
the above inequality to relate any estimates we obtain back to our original situation.
Similarly, we will look at p; > max{p, Ro}.

If we write the area enlarging condition (1-11) in terms of the coordinate functions,
then we see that

(6-5) (@ —2u)(po, 2) = 0.

From this, it quickly follows that

(6-6) / |a—2u|=/ o —2u.
IR ﬂol’l N{p=po} 3950/)1 {p=p0}

In order to estimate the above, we once again take advantage of the fundamental
theorem of calculus to write

(6-7) i (¢ —2u)dz
QL - N{p=po}

P0h1 _ -
L2 3 D) L2
:/ / (“ ”)d dz+/~ (@ —2u)(p1, 2) dz.
00

—L)2 L/2

We may switch the order of integration for the integral on the right to get

L L2
(6-8) / p/ a(“ 2”’) dzdp.
po J-Lp2

As before (4-24), from Stokes’ theorem we get

i
(6-9) / G 2”)(p,z)dz

i
d(a —2u)

—/ Ae-wea- [
{p=s, |zI<L/2) {p<s,lal=L/2y OV

Taking the absolute value of the above and plugging it into (6-7) gives us the
estimate

L2
(6-10) /~ loe — 2u|
—L/2

pi
5/ (/ i |A(a—2u)|+/ ) ds)d,o
Po {p=<s, |z|=L/2} {p=<s,|z|=L/2}

in
+/ﬁ o — 2ul (51, 2) dz.
)

(e —2u)
0z

We now proceed to estimate the right hand side term by term.
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We start with the term

f1
(6-11) / / i
po J{p<s,|z|=L/2}

Using the asymptotic flatness condition, we estimate

d(a —2u)

dsdp.
0z sap

0 —2
(6-12) / e —2w) 4 < / T
{p<s, |zI=L/2} 9z {p<s, |z|=L/2} [(s, 2)]

Once more, a simple integration bounds the above by

6 C
(6-13) iy

L
Thus, we see that
o I —2 6mCp
(6-14) / / =2 o gp < O7EPL
po J{p<s,|zl=L/2} 0z L

We may bound

(6-15) /m (f ) |A(a—2u)|> dp
PO {p=<s, |z|=L/2}

by modifying Lemma 4.3 slightly to get

dm +4vV'L
(6-16) / |Ale —2u)| < HEEV M
{p<s,|zI=L/2} o

and then integrating. We see that

p1 _ -
(6-17) / (/ A~ 2u)|> dp < (4m +4+v Lm) 1Og(ﬂ)_
£0 {p=<s,|zl=L/2} £0

Finally, we must bound

L2
(6-18) / loe —2ul(p1, 2) dz.
L2
Oddly enough, this turns out to be the most delicate estimate, and the point where
we need our extra assumption on the asymptotic falloff of the function «. From
Lemma 5.3, we know that the C%# norm of u is controlled by m. Recalling (5-49),
we see that there is a constant € (01, m) such that

L2 _
(6-19) / lu(p1, z)|dz < Lé(m, py).
-L)2
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Again, looking at Lemma 5.3, we see that for fixed p;

(6-20) lim €(p1, m) =0.
m—0
From the extra assumption on the asymptotic falloff of «, we see that
L2 L2 C
(6-21) / la (o1, )l dz < / e dz = C(O (),
_ip —ip (o1, 2|

where C(7) is a constant depending only on 7. We may put all of this together to
see that

L2
(6-22) / loe —2u|dz

= ) 6xCp ~_ -
5(4m+4\/Lm)log(%)+ ”z‘” +LE(s, m)+C) (B
0

By choosing p; and L to be as large as necessary and choosing m to be as small as
necessary, we see that the above quantity can be made as small as we desire. [

The following corollary to Lemma 6.1 is analogous to Lemma 4.8.

Corollary 6.2. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius Ry. Suppose also that M is area enlarging at pg. Let

L
2, ={e.0lmzpzo =3} and (@F,)0={xeR, 140 020 > o).

Then form >0, o >0, L > Ry, and p1 > Ry there is a constant C(t, m, o, L, p1, po)
such that if g € M and the ADM mass of g is less than m, then

d(a—2
(6-23) sup  exp (/ Hp(x, y)u(y)‘ +
X€(Qb0))o 020y

ov

oH

(@ =200 D(x,y)‘dy)
V

<exp[C(zr,m, 0, L, p1, po)],

where T is the constant appearing in (1-33) and C(, T, m, o, L, py, po) is a constant
depending on t, m, o, L, p, and py.

Proof. Much of the proof remains the same as it was in the radially monotone case.
The only difference is that we need to estimate

(6-24) f loe — 2u],
Q% N{p=po}
instead of
o —2
(6-25) / da—2u))
09k, Nlp=po}| OV
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This we did in Lemma 6.1. O

We now estimate the W!” norm of o — 2u. Using the function Hp instead of
Hy complicates our estimate of |V (e — 2u) || Lr@L ) We resort to shrinking our
. . 0P1
region a bit.

Lemma 6.3. Ler M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius Ry. Suppose also that M is area enlarging at py. For any p1 > po,
L,1<p<2,0>0,ande > 0thereisaé > 0 such that if g € M and

(6-26) m(g) <34,

then

(6-27) llor = 2ullwrr (s, o) < €

Here

(6-28) Qo ={reQ  :dx QL )=0}.

Proof. We may estimate the L” norm of « — 2u much as we did in Proposition 4.2.
We once again consider L > L and p; > pg. As before,

(6-29) loe —2u|?
L, )o
dHp d(a —2u)|\?
<C(p) @-2) 2| [y
(Q:%OPI)” Q/L70:51 dv av
p
+ (/  |HpA(x —2u)|> dx.
QL .
P01
On 89%0 P {p = po} we have the following bound on the boundary terms

24Cp, N 3CL +24C/5110g(2\/L2+,512)

nLIL—L| mp1lp1— pil wL? -
N 3CLlog(VL?+ p?)

~2
0}

(6-30)

Using the proof of Lemma 6.1 for terms on 89/%0'51 N{p = po}, we have the estimate

(6-31) % ((4m +4v/Lm) log(%> + 6”;‘)‘ FPE(. m)+ C(t)(ﬁl)_’).
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If we let 5; = L/, then we may see that we may pick L large enough and m small
enough to ensure

€
(6-32) llor = 2ull Lot o) < 5

If we differentiate Green’s representation formula with Hp we get
dHp d(a —2u)
(@ =2u)Vy| —— | = Vx(Hp(x, y)) ——F——dy
Ql av av

£0P1

(6-33) V(ot—2u)(x)=/

9

L R AT AR N

Q/’oﬁl

On 89%0/31 N{p = po} the above expression is particularly difficult to work with.

The issue is that we cannot integrate

OH 1
v [ Z2) ~ -
v lx — y|

for x near the boundary, and so we cannot complete the estimate of ||oc — 2u || yy1.»
in the same way we proved Proposition 4.2.

As we have done before, we take the absolute value of both sides and raise the
result to the power p and then integrate to see that

(6-34)

(6-35) i |V (o —2u)|?

L
@k )

is bounded above by

(6-36) C(p) / (f .
QL e \JIQL

POPL 0P

9H
(@ —2u)V, =2
ov

d(a —2u)

V.H
av x D

+

p
dy)

p
+(f |A(oz—2u)VxHD|dy) dx.
L

P01

We once again split the first term into the following two pieces:

i
(6-37) 982, 5, — {0 = po}
and

L —
(6-38) 382, 5 N{p = po}.

Both pieces are relatively easy to estimate. For the first piece the estimates are
similar to the above.
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As was noted earlier, the gradlent of Vx isn’t integrable over QL popy fOT Y In

BQ/L)M N{p = po}. However, Vx is much better behaved away from dQ~

We now attempt to estimate

POL1 "

b P
(6-39) / (/ o |(x— dy) dx.
(SZ% Pl) 8S250ﬁ1
As we did before, we split GQ/L:Oﬁl N{p = po} into
(6-40) 0%2L 5 N{o = po. Izl < L}
and
(6-41) 02,5, 0 {p = po. I2] > L}.

We start with the piece (6-40). We may use Minkowski’s integral inequality [Folland

1999] to see that
p 1/p
D dy) dx)

oo ([, (L
@k )0 \JoRL S N{p=po. I21=L)

POP1

is bounded above by

8HD p 1/p
(6-43) / ) | —2u|</ V—— dx> dy.
9QL ; Nlp=po, l2I=L) @, )01 OV
We now estimate
0Hp|?
(6-44) \% dx
QL , o v
fory in 92, ; N{p = po. Iz| < L}. Both 9Q2f 5 N{p = po. Iz| < Ly and (25,)0
are contained in Q%Lpl Thus, if we let rg be the diameter of Q2L bop1® then for all
ye 8950/01 N{p = po, |z| < L} we have
dHp|? P

645 [ wiel < | B S

@001 OV BO.ro\B(y,0) TP 1X = V[P

POPL

ro
=3”711_p2/ Cr=2Ptlar=C(p, L, p1,0).
o
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Thus, we may see that

p 1/p
(6-46) ( f ( / _ dy) dx)
QL g a2 {p=po, |z|<L}

POP1 1L70/51m
<Cp. L. pl,a)l/f’/ o — 2.

L _
anﬁlm{p—pO’ |z|<L}

oHp
(¢ —2u)V——=
av

Over (6-41) we have

(6-47) yhp|_ 12
ov |~ wL?
Thus, we have
9H p 1/p
(6-48) (/ (/_ m—zmv—£¢w>¢0
@t ), \JagL . nip=po, lzI>L} dv

POP1 POPL

12/)1 1/p
_ (12 _ (e —2u)|dy.
L aQLO N{p=po, |z|>L}

0P
For the last term in (6-36) we may use the Riesz potential estimate as we have done
before. Putting everything together gives us the result. ([

In fact, the steps required in the above proof give us a corollary analogous to
Corollary 4.5.

Corollary 6.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius Ry. Suppose M is area enlarging as well. Forany L, p;, 1 <p <2,
and € > O there exist a § > 0 such that if g € M and

(6-49) m(g) <4,
then

1 P
(6-50) / |a—mw<ﬂﬁ%@—

Q/%()431 0
and
1 P
(6-51) / |vm—mmﬂgﬂﬁ¥@<
Qﬁoypl 0

Proof. The proofs of (6-50) and (6-51) are similar. We only prove (6-51). Observe
that

L+o
(6-52) o C (o 10))o-
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In particular, we see from the estimates in the above theorem that

(6-53) / V(e —2u))? < / V(e — 2u))?
QL

(QL-HT

20001 po(p1+o))"

is bounded above by
5 p
(6-54) C(p, L, p1, o)[(4m + 4V Lm) log(&) +D(m, L, p1, r)}

£0

4m +4Lm
0

where C(p, L, p1, 0) is a combination of the constants found in (6-46) and (6-48),

D(m, L, 01, T) is the remainder of (6-22), E(p, L, p1) comes from the Riesz po-

tential estimate, and F(p, L, p1) is the bound on the remaining boundary terms

estimated in (6-36). A simple calculation shows that for 1 < p < 2

~ p ~
+E(P,L,/51)( ) + F(p, L, p1),

(6-55) C(L,p1,0) <C(p)o~7,
since 2 —2p > —p. For p =1, we have
(6-56) C(L, p1,0) =C(L, p1)log(o).

If we plug the above into (6-54) with o = py, then we may see that choosing L and
o1 large enough, and choosing mass to be small enough gives the result. (]

We may now prove a theorem analogous to Proposition 4.2.

Lemma 6.5. Let M be an uniformly asymptotically flat family of metrics with
nonnegative scalar curvature and empty boundary. Suppose that M is area enlarging.
Let Q/L)opl denote the rectangle given by {(,0, Dlpo=<p=p1lzl %} and let
(Q;L;Opl)a denote {x € Q/L)om | d(x, 852/1;0/)1) >0} Forany 1 < p <2, o >0,
po > 0, and € > 0 there exists a § > 0 such that if g is in our collection of
uniformly asymptotically flat metrics, the ADM mass of g is less than §, and, in the

axisymmetric coordinate representation of g then
le—2u|
(6‘57) ”e 1||Wl,p((g2§0pl)a) <€

Proof. The proof follows the same line as in the radially monotone case, except
we use Lemma 6.3 instead of Proposition 4.2. It can be shown that Corollary 4.7
can be adapted to the function Hp. Thus, we also use Corollary 6.2 instead of
Lemma 4.8. ([

Now that we have analogues of all the estimates we made in the radially monotone
case, the proofs of Theorems 1.4, 1.6, 1.7, 1.8 and 1.10 follow almost exactly as
they did in the radially monotone case. The only theorem whose modification to the
area-enlarging case requires a little care is Theorem 1.10. Since Corollary 6.4 has a
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slightly different hypothesis than Corollary 4.5, we must show that the conclusion
of Lemma 5.5 holds with a slightly weaker hypothesis.

Lemma 6.6. Let f be a measurable function on Qé - Suppose for each t we have
the estimate

(6-58) [ = et

14

for some € >0, q >0, and q. Suppose o > q. Then, there exists a constant, denoted
C(o,q,q), depending only on o, q, and q such that

(6:59) [ o1 = coa e

Proof. As before, let t, =27"p; and let €2, , , be the following rectangle.

(6-60) pirr = [tn=p <t Iz = 5

From the monotone convergence theorem we see that

6-61 e = 21 fl.
(6-61) /Q%pm ;/Q 1]

In—1
We now make the estimate

ellog(t,)]4
q

n

(6-62) / Pl =1, =27p] 71279 "log(2~" p1)|e.

nstp—1

This gives a convergent series so long as o > ¢, where we have used thatoc —g =A >0
and

(6-63) lim ;27" |log(p127")*/* = 0.
n—oo

In total, we have the estimate
(6-64) / p°1f1 <C(o,q,q)e. O
QO,IO

Now we can show that Lemma 5.6 holds in the area-enlarging case and so
Theorem 1.10 also holds in the area-enlarging case.

Appendix A: The case of nonempty boundaries

Recall that it is physically desirable to explicitly include manifolds with minimal
surface boundary, since we shouldn’t expect to have any physical knowledge of
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the metric inside of a minimal surface. It is possible to deduce the following mass
formula for axisymmetric manifolds with connected boundary [Khuri et al. 2019]:

mo

(A-1) m(g):#/ 2|Vﬁ|2+e2(“_“)Rgdx+}1/ @(0, 2)—2i(0, z) dz+my,
R3

—mo

where o and u are regularizations of the coordinate functions « and u, respectively,
and mg is a positive constant determined uniquely by the metric g. Explicitly, the
functions o and u are given by

(A-2) U=u—ugp,
(A-3)

Qi

=a —op.

where o and u( are the coordinate functions associated to the Schwarzschild metric
of mass mq in Weyl coordinates, coordinates in which the minimal surface is given
by a rod of length 2m:

. (VT + e —mo)2 + Vo2 + @+ mo)?)’ — 4m?

(A-4) ) =51
4 p? + (2 =mo)*V p* + (2 +mo)’

' V24 (2 —mo)? + v p? + (2 +mo)*> — 2my

(A-5) up = 5 log .
V% + (2 —mo)? + v p? + (z +mo)? +2mg
Chrusciel and Nguyen [2011] have shown that the constant m is bounded by

(A-6) m(g) = mo.

given the hypothesis of the positive mass theorem. We have the following theorem:

Theorem A.1. Let M be a family of axisymmetric uniformly asymptotically flat
metrics with nonnegative scalar curvature. Suppose that M is either area enlarging,
with the corresponding stronger asymptotic falloff, or radially monotone. Addition-
ally, we allow any (M, g) in MM to have a connected minimal surface boundary. In
this case, we use the cylindrical coordinates for which the minimal surface is a rod
on the axis of symmetry of length 2m centered about the origin, and we assume
(M, g) satisfies the following inequality on its minimal surface boundary:

o
(A-7) %/ a —2i(0, z) dz +mo >0,

—mo
where o and u are as above. Then, for any € > 0 there exists a § > 0 such that if
(M, g) isin M and m(g) < 8, then
(A-8) llg — Ops ||W1,p(§§(1)(g)) <€
(A-9) g — dpe ||WLP(QI'Z(])(O')) < €.
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Remark A.2. It is important to note that in the case of a nonempty boundary, we
have had to specify the cylindrical coordinates for which the boundary is on the
axis. Then, the radial monotonicity and area-enlarging inequality are stated with
respect to these coordinates. These conditions are geometric, since in choosing
the boundary to be on the axis, we have removed any freedom in the choice of a
conformal transformation.

Proof. In Weyl coordinates, with the boundary of the manifold represented as a rod
on the axis, we see that for any fixed parameter pp > 0, we have that the functions
and ug, and their gradients, converge uniformly to zero on ,o_1 [pg, 00) as my — O.
It thus follows that on any compact set away from the axis, say €2, we have

(A-10) loollwi2@) — 0,
(A-11) luollwiz@y — 0,

as mg — 0. Finally, we recall that m > %mo [Chrusciel and Nguyen 2011]. We
now have all the ingredients necessary to extend the proofs of this paper to the case
of manifolds with boundary. Note that an analogue of Corollary 3.2 holds for u
by the mass formula (A-1) and (A-7). Thus, we may use the Cauchy—Schwartz
inequality to show that

2 2 i)
(A-12) ||u||W1‘2(Q/€(1)) < 2(|Iuo||W.,z(Qgé) + ||u||W.,z(Qg(n)))

is bounded by the mass. At this point, the rest of the proof is the same as in the
case of empty boundary. ([

As we see in the next section, the nonextreme Kerr—Newman metrics satisfy all
of the conditions in the above theorem strictly. Thus, small perturbations will also
satisfy these conditions.

Appendix B: Examples

Kerr—-Newman. In this section, we show that the Kerr—-Newman family of metrics
satisfy the radial monotone condition and the area enlarging condition, and (A-7).
This is done by a direct calculation. We take the familiar Brill-Lindquist coordi-
nates and transform them into cylindrical coordinates. Unfortunately, the simple
expression of the Kerr—-Newman metric in Brill-Lindquist coordinates becomes
rather complicated when it is written in cylindrical coordinates. The procedure itself
is uncomplicated, since there is an explicit map between these two coordinates. The
change of coordinates depends on the charge, angular momentum, and mass of the
Kerr—Newman metric. Once the map has been constructed, we use the expression
for the metric in Brill-Lindquist to write down the expression for the metric in
cylindrical coordinates.
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We now describe in detail the coordinate change from Brill-Lindquist coordinates
to cylindrical coordinates and write down the exact formula for the metric functions
u and «. It is convenient to introduce a third coordinate system between Brill—
Lindquist and cylindrical. We shall use the prolate-spheroidal coordinates. We
will first consider the map from prolate-spheroidal coordinates to Brill-Lindquist
coordinates, and then pull back the metric. Let a denote the angular momentum
parameter, let e denote the charge parameter, and let m denote the mass parameter,
then, in Brill-Lindquist coordinates, the Kerr metric takes the form

(B-1) g= % dr’ + o do* + Sirl;&[(r2 +a*)? —a*sin’(0)y (r)] do*
for

(B-2) y(r) =r? =2mr +a*+¢*

and

(B-3) o (r,0) =r?+a”cos*(0).

The map from prolate spheroidal coordinates (x, y, ¢) to Brill-Lindquist coordi-
nates (r, 6, ¢) is given by

(B-4) r=xym?—(a’+e?)+m
(B-5) 6 =cos™'(y)
It turns out that the parameter m( appearing in Appendix A is given by

(B-6) mo = +/m? — (a% + e?).

The map from cylindrical coordinates to prolate spheroidal is, unfortunately, less
simple.

VP +mo? + Vo2 + (= mo)?

(B-7)
2mo
(B-8) _VPE 4 @+ mo)? =/ p*+ (2 —my)?
' 2m0

One may observe that the minimal surface in the Kerr—Newman metric is a rod on
the p axis.

We now pull back the Kerr—Newman metric twice to obtain the formulas for the
functions u and « in cylindrical coordinates. The end results of this process are the
following formulas:

(1—yz)([<mox+m)2+a2]2—a2m3[1—yz][xz—ll)]

] _ 1
(B-9)  ulp,2) zlog[ p2([mox +m]2+a2y?)
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(mox + m)2 + a2y2

m(x2 — y?)

(B-10) a(p,z)=%log[ }-Iru(p,z)-

When written entirely in terms of (p, z), these two equations are very cumbersome.
Luckily, for the purpose of verifying the radial monotonicity condition and the
area enlarging condition, writing everything in terms of (p, z) turns out to be
unnecessary.

Proposition B.1. Nonextreme Kerr—Newman metrics are radially monotone in the
coordinates for which the minimal surface is a rod on the axis.

A straight forward calculation shows that

0 0 B )
— = xX——y—|.
o (p2+<z+mo)2)1/2<p2+(z—mo>2>1/2( ox oy

Thus, we see that

o —2u) K
(B-12) T—f(P,Z)(Xax yay)
X [(mox +m)* +a*]* — a’m3[1 — y*|[x? — 1]
x§10g< 4.0 2 2 >’
my(x= —1)(x= —y)

(B-11)

where f(p, z) is the nonnegative function appearing in front of the derivatives in
(B-11). Since f(p, z) is nonnegative, we may restrict our analysis to the second
term on the right. Taking the derivatives and collecting terms leaves us with
4mox (mox +m)[(mox +m)? +a*] —2a’m3x*(1 — y?)
[(mox +m)? + a2 — a?m{(1 — y2) (x2 — 1)
232 = 1) + (x> — %))
(x2 = D (x2 = y?)
[ 2612141(2)(x2 — l)y2 n 2)’2 ]
[(mox +m)? +a?? —a?md(1 —yH)(x2—1)  x2—y2]

(B-13)

The third term in brackets is nonnegative, so we must analyze the interplay of the
first two terms.

We expand
2x2((x2 = 1)+ (x2 = y?)
(B-19 (x2 = D(x2 —y?)
to
2x2 2x2
(B-15)

+ .
x2—1 x2—y2
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From the range of values that x and y can take, we may deduce that the denominators
of both fractions are smaller than x2. Thus, we have

2x2 2x2

B-16
( ) xz—l—{_xz—y2

> 4.

We now observe that
(B-17) [(mox —l—m)2 +a*7? —azm%(l —yz) (x2 —1) = (mox +m)4+a2(m0x +m)2.
As a consequence, we have that

Amox (mox +m)[(mox +m)* +a?] — 2a2m%x2(l — y2) -
[(mox +m)? + a2 —a?mi(1 — y)(x2 — 1) -

(B-18)

Putting everything together shows that
d(a —2u)
— <

(B-19) o

0.

Luckily, showing that Kerr—Newman metrics satisfy (A-7) follows quickly from
the above expressions for « and «. In fact, one may check that @ —2u is nonnegative
on the rod giving the minimal surface.

Proposition B.2. Let g be a nonextreme Kerr—Newman metric, and let & and u be
as described above. Then, we have that

(B-20) (¢ —2u)(0,z) =0,
for |z| < my. The inequality is strict, unless g is a Schwarzschild metric.

Proof. Once again, the proof consists of a calculation. Using the above expressions
for o and u coming from a Kerr—Newman metric, we see that

22200 22
(B-21) 51—21/_t=%log|:([m0x +m]°+a”) a my(l —y“)(x 1):|

mé(x—i— )4

In prolate spheroidal coordinates, the minimal surface rod is given by

{(x,y,¢) :x=1].
Thus, the above simplifies to
(Imo +m]* +a2>2]
B-22 1o .
( ) 2 g[ 16mg

Since m > mg and a > 0, it follows that the above is nonnegative, and only zero in
the case that the metric g is Schwarzschild. ([l
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It is interesting to explore some of the geometric meaning behind the condition
of radial monotonicity. In coordinates, radial monotonicity implies that

o(a—2

o —2w) _
ap

Recall from the proof of Proposition 5.1 that the coordinate function o —2u controls

the area of axisymmetric surfaces. Thus, it is reasonable to suppose that the radial

monotonicity condition is an assumption on the mean curvature of the level sets

of the function p, which is the solution to (1-10). It turns out that this is the case,
although in a slightly round about way.

(B-23) 0.

Proposition B.3. Suppose that g is an asymptotically flat axisymmetric metric and
p is the solution to (1-10) for g. The metric g is radially monotone if and only if the
level sets of p form a family of surfaces evolving by a sub-inverse-mean-curvature

Sflow.

Proof. Let n denote the killing field generating the axisymmetry of (M, g). We
start by observing that we may lift any function w on M/S! to a function on M,
which we also denote w. When considered as a function on M we have

(B-24) gVw,n) =0,

since we lifted w by transporting it along the flow lines of 1. Let g denote the orbit
metric of M/S'. Recall that

g(X,mg¥,n)

(B-25) g(X,Y)=g(X,Y)— >
Inlg

where X and Y are the images of X and Y under the projection map, respectively.
From the above, we may conclude that for any two functions w and & on M/S' we
have

(B-26) q(Vw,Vh)=g(Vw, Vh).

We have abused notation slightly in using V to denote both the gradient in (M /S, ¢)
and in (M, g).

It is a standard computation to see that the mean curvature of the level sets of p
is given by

. Vp
(B-27) H = dwg( )
IVplg

We expand out the right hand side to get

\Y% Vo, VIV
(B-28) divg< p ) __1 (Agp _ w)
IVplg IVpelg Vol
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We now use Equation (1-10) for p to rewrite the above as

1 (&(Vp,VinD g(Vp,VIVpl)) 1 ( Inl )
B-29) ( — = Vp,Vio .
( Vol In| IVp| A 21vpl

From axisymmetry, |V p| and |7| are functions on M/S'. In particular

|n] |n]
(B-30) g<Vp, V log ) = q(Vp, V log .
Vol Vol

Recalling the radial monotonicity condition (1-17) and noting that log is a monotone
increasing function, we see that

(B-31) q(Vp, Vlog<i)) <0,
pIVpl

since in the orbit space M/S' we have

2
Vp.
q

We may plug (B-29) and (B-27) into (B-31) to see that

a a

B-32 — ==
(B-32) o~ |9p

Inl
(B-33) 0> q<Vp, V10g<m)) —q(Vp,Vlogp)=|Vp|H—|Vp||Vlogp|.

Dividing both sides by |V p| and rearranging terms gives
(B-34) |Vlogp| > H.

The above equation is precisely the statement that the level sets of p give a sub-
inverse-mean-curvature flow. ([

It is relatively easy to see that if a metric is radially monotone everywhere, then
it must also be area enlarging everywhere. In particular, the following proposition
implies that Kerr—Newman metrics are area enlarging.

Proposition B.4. Let g be an asymptotically flat metric which is everywhere radially
monotone. Then g is everywhere area enlarging.

Proof. Since g is assumed to be globally radially monotone, we have

d(a —2u) <0

(B-35) o

As g is asymptotically flat, we know that

(B-36) Jim (@ —2u)(p, 2) =0
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for all z. Thus, using the fundamental theorem, we may see that

(B-37) 05—/ M(p,z)dp=((x—2u)(po,2)-
0 o

This is precisely the coordinate expression of the area enlarging condition. U

We now find several examples of metrics which are area enlarging and strongly
asymptotically flat.

Axisymmetric geometrostatic. Here we show that the axisymmetric geometrostatic
metrics are area-enlarging and strongly asymptotically flat. Recall that the general
form of a geometrostatic metric is

(B-38) (M, g) = (R\{x: ¥, (x¥)*8s),

where for positive numbers {g;}| and {b;}] we have

n a;
(B-39) x(x) =1+ ; T
and
(B-40) ()—1+Xn: bi

' VOSIT LT

If the points {x;} lie on a common line, then the resulting metric will be axisymmetric.
The axis of symmetry will be the line on which the x; lie. After a rotation, we may
suppose that the axis of symmetry is the z-axis. We may now see that the usual
Euclidean cylindrical coordinates are also cylindrical coordinates for (M, g). In
particular

(B-41) g = (x¥)’(dp* +d* + p*dg?).
A quick calculation shows that the coordinate function « vanishes and
(B-42) u=—log(xy).

Since both x and y are strictly larger than one, we see that u is negative. Since
a =0, it is clear that

(B-43) o—2u>0.

This is precisely the coordinate expression of the area-enlarging condition. That
(M, g) is also strongly asymptotically flat follows trivially from the fact that @ = 0.
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Conformal metrics. Here we show that asymptotically flat axisymmetric metrics
with nonnegative scalar curvature which are conformal to Euclidean space and have
an axisymmetric, minimal, and connected boundary, or an empty one, satisfy the
area enlarging condition and the strongly asymptotically flat condition.

Suppose (M, g) is as above. Then there is some constant m; [ChrusSciel and
Nguyen 2011] and function u such that

(B-44) (M, g) = (R*\ By, (0), e *8p3).
Written in cylindrical coordinates
(B-45) g =e (dp*+dz?) + pe M d¢?

Since 9 B,,, is a minimal surface, from the formula for mean curvature we see that
[Chrusciel and Nguyen 2011]

u 1

(B-46) =—.
avlaB,, — my

Since we have assumed that the scalar curvature is nonnegative, we may use the
scalar curvature formula (2-2) together with the Hopf lemma and the maximum
principle to conclude that

(B-47) sup u =supu.
BI‘O\BH‘II aBI‘O

Since we know from the fact that g is asymptotically flat that # vanishes at infinity,
we may conclude that

(B-48) u =<0,

and consequently (M, g) satisfies the area enlarging condition (1-11). In fact, if we
apply the strong maximum principle, we may see that

(B-49) u <0,

unless we are dealing with flat space. Since « vanishes identically, we see that
(M, g) is also strongly asymptotically flat.
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