
Pacific
Journal of
Mathematics

STABILITY OF THE POSITIVE MASS THEOREM
FOR AXISYMMETRIC MANIFOLDS

EDWARD T. BRYDEN

Volume 305 No. 1 March 2020



PACIFIC JOURNAL OF MATHEMATICS
Vol. 305, No. 1, 2020

dx.doi.org/10.2140/pjm.2020.305.89

STABILITY OF THE POSITIVE MASS THEOREM
FOR AXISYMMETRIC MANIFOLDS

EDWARD T. BRYDEN

Away from the central axis, we prove the stability of the positive mass theo-
rem in the W 1, p sense for asymptotically flat axisymmetric manifolds with
nonnegative scalar curvature satisfying some additional technical assump-
tions. We also derive estimates for the volumes of regions, the areas of ax-
isymmetric surfaces, and the distances between points within the manifolds.
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1. Introduction

Based on the formulation of general relativity, our physical intuition leads us to
expect a close relationship between the ADM mass of an asymptotically flat Rie-
mannian manifold and its geometry. Recall that the ADM mass of an asymptotically
flat Riemannian manifold is defined to be

(1-1) m = lim
R→∞

1
16π

∫
SR

(gi j, j − g j j,i )ν
i .

In their celebrated positive mass theorem, Schoen and Yau [1979] proved that if an
asymptotically flat manifold has nonnegative scalar curvature, then the ADM mass
is nonnegative. They also proved the following rigidity theorem:

(1-2) m = 0=⇒ M is isometric to Euclidean space.
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It is natural to ask whether stability also holds; if M has small ADM mass, is M
close to Euclidean space? Lee and Sormani [2014] have shown that M need not be
smoothly, nor even C0, close to Euclidean space even in the spherically symmetric
setting; there could be increasingly deep thin gravity wells at the center. They
conjectured that M is close to Euclidean space in the Sormani–Wenger intrinsic flat
(SWIF) sense [Huang et al. 2017; Lee and Sormani 2014]. Proving it will require a
method for picking appropriate subregions geometrically and a way to show that
these regions converge in the SWIF metric to a subset of Euclidean space.

Lee and Sormani [2014] studied stability in the rotationally symmetric setting.
They showed that tubular neighborhoods of fixed radius D about coordinate spheres
of fixed area A converge to the Euclidean tubular neighborhood of radius D about
a sphere of area A. Earlier, Lee [2009] had proven convergence to Euclidean space
outside a compact set in the conformally flat setting. Assuming strong conditions on
sectional curvature, Corvino [2005] has proven that an asymptotically flat manifold
with nonnegative scalar curvature and small ADM mass must be diffeomorphic
to R3. Finster, Bray and Kath have papers bounding the L2 norm of the curvature
[Bray and Finster 2002; Finster and Kath 2002]. After the Lee–Sormani paper,
LeFloch and Sormani [2015] proved that metric tensors converge in the H 1

loc sense
in the rotationally symmetric setting. Huang, Lee, and Sormani [Huang et al. 2017]
proved SWIF convergence in the graph setting and Sormani and Stavrov Allen
[2019] proved it in the geometrostatic setting. Allen [2018] proved L2 convergence
in regions where the inverse mean curvature flow is smooth.

Here, we will study the question of stability in the presence of axisymmetry.
The class of axisymmetric metrics is both flexible enough to model a range of
physically interesting phenomena and restricted enough that we have powerful tools
at hand that are not available in the most general setting. Recall that the coordinate
expression for an axisymmetric metric in cylindrical coordinates is

(1-3) g = e2α−2u(dρ2
+ dz2)+ ρ2e−2u(dφ+ B dρ+ A dz)2,

where all the functions involved depend only on ρ and z. The killing field associated
with the axisymmetry of g is ∂

∂φ
.

Since we will be studying large families of asymptotically flat metrics, it is
natural to require that the family satisfy some type of uniform falloff condition.

Definition 1.1. Let M be a family of axisymmetric metrics. Suppose we can
parametrize M by the functions α, u, A, and B in cylindrical coordinates (1-3).
If there exist constants C and R0 such that if g is a metric in M, then for all√
ρ2+ z2 = r ≥ R0 we have

(1-4)–(1-7) |∂ I u|≤ C
r1+|I | , |∂

Iα|≤
C

r1+|I | , |∂
I A|≤ C

r1+|I | , |∂
I B|≤ C

r1+|I | ,
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then we shall call M uniformly asymptotically flat outside of radius R0

Chruściel [2008] shows that if (M, g) is a simply connected axisymmetric
manifold which is asymptotically flat, then there are cylindrical coordinates (ρ, z, φ)
in which g takes the form (1-3). In fact, Chruściel’s construction works for simply
connected axisymmetric manifolds with multiple asymptotically flat ends. In this
case, the additional “points at infinity” will be points removed from the z-axis at
which the coordinate function u will blow up. If the metric g is assumed to be
without conical singularities and smooth, then on the z-axis we will have

(1-8) α =
∂α

∂ρ
=
∂u
∂ρ
= 0,

away from the points of infinity removed from the z-axis. Chruściel’s construction
also works for axisymmetric manifolds with boundary, where the boundary has
the same killing field as does the rest of the manifold. One must perform a fill-in
so that the resulting manifold will have empty boundary [Chruściel 2008], then
construction proceeds as in the boundaryless case. However, generally this fill-in
will be unphysical. Thus, it is desirable to remove from consideration all points that
were filled in out of technical necessity. To accomplish this, one may observe that
the form of (1-3) is unchanged by a conformal transformation of the coordinates ρ
and z. This allows us to construct cylindrical coordinates for which the boundary of
the manifold lies on the axis of symmetry. However, the blow up of the functions
α and u at the boundary is much more severe than at points representing other
asymptotically flat ends. The effect this has on the analysis of these manifolds is
discussed more in Section 2 and Appendix A.

Suppose that g has the standard asymptotically flat falloff rate:

(1-9) |∂ I (g− δR3)| ≤
C

r1+|I | ,

where δR3 is the Euclidean metric. In general, the asymptotic falloff of the functions
α, u, A, and B will not be as strong as the those given in Definition 1.1. However,
we may make an additional assumption on the growth of the killing field of g in
the asymptotic limit which will imply that the functions α, u, A, and B do have the
same falloff as in Definition 1.1. Although, the author does not know if making
such an assumption uniform over a family of axisymmetric metrics will yield a
uniformly asymptotically flat family of axisymmetric metrics. This indicates that
there are many families of metrics satisfying the requirements of Definition 1.1,
although we do not have a geometric method for picking them out.

In Chruściel’s construction of cylindrical coordinates, the coordinate functions ρ
and z are both solutions to a PDE determined by the metric g. Specifically, if we
let η denote the killing field generating the axisymmetry of g and let q denote the
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metric on the orbit space induced by g, then both ρ and z solve

(1-10) 1qω =1gω−
1

2|η|2g
〈∇ω,∇|η|2g〉g = 0.

In fact, ρ and z are uniquely determined up to conformal maps in the plane. In
[Gibbons and Holzegel 2006, Section 2], it is noted that if we insist on mapping the
axis of symmetry to itself and preserving asymptotic flatness, then ρ is completely
fixed. In addition, we can see that z is unique up to translation. This uniqueness
justifies our choice to parametrize families of axisymmetric metrics as we did in
Definition 1.1

A major obstacle to proving the stability of the positive mass theorem, perhaps
the principal one, is that the ADM mass cannot control regions within outermost
minimizing surfaces. Classic examples depicting why the Penrose inequality de-
pends on the area of an outermost minimizing surface demonstrate this phenomenon.
One way to overcome this difficulty, which was applied in the work of Bray and
Finster [2002], Finster and Kath [2002], Huang, Lee, and Sormani [2017], and
Allen [2018], is to impose conditions which constrain the location, or prevent
the existence, of an outermost minimal surface. We shall follow this approach in
making the following definition.

Definition 1.2. Let M be a family of axisymmetric metrics and let η denote the
killing field generating their axisymmetry. Suppose that for each metric g ∈M we
have the following inequality

(1-11)
|η|g

|∇ρ|g
(ρ0, z)≥ ρ0.

Then we shall call M a family of area enlarging metrics at ρ0. If the inequality
holds for each ρ0, then we shall simply call the family area enlarging.

Uniqueness of solutions to (1-10) implies that the above is a condition imposed
on the family M and has significance beyond a coordinate condition. However, it is
useful to express the above in terms of cylindrical coordinates. In coordinates the
condition reads

(1-12) (α− 2u)(ρ0, z)≥ 0.

In the appendices we show that the Schwarzschild solution is area enlarging.
Suppose that M satisfies condition (1-11) for all ρ0. Let δR3 denote the back-

ground Euclidean metric given in the cylindrical coordinates (ρ, z, φ). Then in
Proposition 5.1 we show that

(1-13) Areag(6)≥ Areaδ
R3 (6)
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for axisymmetric surfaces 6. Together with the Penrose inequality, the above
area inequality works to constrain the location of outermost minimal surfaces. In
Corollary 5.2 we show that if 6 is an axisymmetric outermost minimal surface
which is also a sphere, then

(1-14) 6 ⊂ ρ−1(
[0, 2
√

2m)
)
,

where m is the ADM mass of the metric under consideration.
As in prior work on stability, we must judiciously decide which regions we will

study. In view of the above discussion, the regions

(1-15) �̃ρ1
ρ0
(σ )=

{
ρ0+ σ ≤ ρ ≤ ρ1, |z| ≤

ρ1
2

}
×[0, 2π),

for some fixed ρ0 and σ ≥ 0, are natural choices. If σ is identically zero, then
we shall write �̃ρ1

ρ0 . Since we mainly work in the orbit space, we shall often
only consider the image of �̃ρ1

ρ0(σ ) under the projection map, which is simply the
rectangle

(1-16) �ρ1
ρ0
(σ )=

{
ρ0+ σ ≤ ρ ≤ ρ1, |z| ≤

ρ1
2

}
.

If σ is taken to be zero, then we shall write �ρ1
ρ0 .

Instead of the area enlarging assumption (1-11), we will at first work with another
requirement.

Definition 1.3. Let M be a family of axisymmetric metrics. Suppose that for each
metric g ∈M we have the inequality

(1-17)
∂

∂ρ

(
1
ρ

|η|g

|∇ρ|g

)
≤ 0

on the set {ρ = ρ0}. Then we shall call the family radially monotone at ρ0. If M is
radially monotone at each ρ0, then we will simply call M radially monotone.

This too is a geometric condition on a family of axisymmetric metrics. In
Proposition B.3 we show that if g is an axisymmetric metric, and ρ is the solution
to (1-10), then g is radially monotone if and only if the level sets of the function ρ
form a sub-inverse-mean-curvature flow.

The radial monotonicity condition has a useful expression in cylindrical coordi-
nates:

(1-18) ∂(α−2u)
∂ρ

≤ 0.

In this form, a similar inequality to the above can be found in Section 3.2 of
[Chruściel and Nguyen 2011].

One could wonder if there is any relationship between the area enlarging condition
and the radial monotonicity condition. Pointwise, there is no such relationship.
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However, if radial monotonicity holds everywhere, then the area enlarging condi-
tion must also hold everywhere, see Proposition B.4. Thus, radial monotonicity
everywhere also constrains the location of minimal surfaces, as in (1-14).

In Appendix B we will show that the Kerr–Newman and axisymmetric ge-
ometrostatic metrics satisfy radial monotonicity and the area enlarging condition,
respectively. In fact, the Kerr–Newman metrics satisfy radially monotonicity strictly,
so that small perturbations of the Kerr–Newman metrics are also radially monotone.
The same is true for small perturbations of axisymmetric geometrostatic metrics with
regards to the area enlarging condition. However, there is an important difference
between the geometric static case and the Kerr–Newman metrics: although there is
a minimal surface in the geometric static case, the initial data is extended past this
surface “into the black hole,” while the explicit form of the Kerr–Newman metric
that we use is given only outside of the minimal surface, and the minimal surface is
located on the axis of symmetry. As discussed later, this changes the mass formula,
though it does not change how we use the mass formula. Until Appendix A, we
will assume all of our manifolds have empty boundary, but may have multiple
asymptotically flat ends.

We now state the stability of the positive mass theorem in the W 1,p sense.

Theorem 1.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose that M is radially monotone at ρ0 and that for each metric in
M, we have

(1-19) A = B = 0.

For every ρ1 >max{ρ0, R0}, ε > 0, σ > 0, and 1≤ p < 2 there exists a δ > 0 such
that if the ADM mass of g ∈M is less than δ, then

(1-20) ‖g− δR3‖W 1,p(�̃
ρ1
ρ0 (σ ))

< ε,

and

(1-21) ‖q − δR2‖W 1,p(�
ρ1
ρ0 (σ ))

< ε,

where δR3 denotes the Euclidean metric in cylindrical coordinates, δR2 denotes the
Euclidean metric in the (ρ, z) plane, and q denotes the orbit metric of g in the
(ρ, z) plane. �̃ρ1

ρ0(σ ) denotes the cylinder given in (1-15) and �ρ1
ρ0(σ ) denotes its

orbit space.

Remark 1.5. Although we are restricting our attention to metrics with no boundary,
we are still allowing the possibility of multiple asymptotically flat ends. Thus, there
may be closed embedded minimal surfaces in our metric. This shows, once again,
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how we are using the radial monotonicity condition to handle the presence of these
minimal surfaces.

The assumption that the functions A and B vanish is very likely unnecessary,
however it does simplify the analysis considerably. That the exponent p is required
to be less than two is natural to the problem at hand. Suppose we were able
to prove an analogous result for p > 2. Then, we would be able to apply the
Sobolev embedding theorem to conclude that the convergence was actually C0

convergence. However, as mentioned before, see [Lee and Sormani 2014], there
are counterexamples to C0 stability.

It is not yet known if W 1,p convergence implies SWIF convergence. However,
in the course of proving W 1,p stability, we obtain similar estimates to those Huang,
Lee, and Sormani [Huang et al. 2017] use to prove the stability of the positive mass
theorem in the SWIF metric for graphical manifolds. Let M be a family of three
dimensional asymptotically flat graphical manifolds in R4 and let Cr0 denote the
infinite cylinder with base a ball of radius r0 about the origin in R3

⊂ R4. Huang,
Lee, and Sormani studied the regions �r0 ⊂ M ∈M defined by

(1-22) �r0 := M ∩Cr0,

for some appropriately large r0. Additionally, they assume a uniform diameter
bound on the �r0 . They then show that as the ADM mass approaches zero, the
regions �r0 converge in the SWIF metric to a three dimensional Euclidean ball
in R4,

(1-23) B(0, r0)×{0}.

Their proof follows from three assertions. First, they showed that the volumes of
the �r0 converge to the volume of B(0, r0). Second, they showed that the area
of ∂�r0 approaches the area of ∂B(0, r0). Finally, they showed that ∂�r0 ∩ ∂Cr0

Lipschitz converges to ∂B(0, r0)×{0}.
We are able to establish volume convergence for the cylinders �̃ρ1

ρ0(σ ) defined as
in (1-15).

Theorem 1.6. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. For any constants ε > 0,
σ > 0, and ρ1 >max{ρ0, R0}, there exists a δ > 0 such that if g ∈M and

(1-24) m(g) < δ,

then

(1-25) |�| + ε ≥ volg(�)≥ |�| − ε
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for any region � such that

(1-26) �⊂ �̃ρ1
ρ0
(σ ).

We are also able to establish control over areas inside our designated regions.

Theorem 1.7. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. For any fixed axisym-
metric surface 6, constant ε > 0, and constant ρ1 > max{ρ0, R0}, there exists a
δ > 0 such that if m(g) < δ, then

(1-27) |6 ∩ �̃ρ1
ρ0
(σ )| + ε ≥ Areag(6 ∩ �̃

ρ1
ρ0
(σ ))≥ |6 ∩ �̃ρ1

ρ0
(σ )| − ε.

We obtain an estimate on distances between certain points in �̃ρ1
ρ0(σ ) which can

be used to give an upper bound on the diameter of �̃ρ1
ρ0(σ ).

Theorem 1.8. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose M is also radially monotone at ρ0. Additionally, assume that
A = B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given ε > 0, σ > 0, and ρ1 >max{ρ0, R0}. There exists a constant
δ > 0 such that if m(g)≤ δ and x and y are any points such that the Euclidean line
segment connecting them lies in �ρ1

ρ0(σ )×{φ0} for any φ0, then

(1-28) dg(x, y)≤ d(x, y)+ ε.

For more general pairs of points x and y in �̃ρ1
ρ0 we have a pointwise estimate

on their distance to each other.

Theorem 1.9. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. Additionally, assume
that A= B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given ε > 0 and σ > 0 and points x and y such that the Euclidean
line segment connecting them lies in �̃ρ1

ρ0(σ ). There exists a constant δ > 0 such
that if m(g)≤ δ, then

(1-29) dg(x, y)≤ d(x, y)+ ε.

Finally, we are able to establish uniform convergence at large distances from the
origin.

Theorem 1.10. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
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radius R0. Suppose that M is radially monotone and that for all g ∈M we have

(1-30) A = B = 0.

Let R1 > R0 and let A(R0, R1) denote the coordinate spherical annulus centered
at the origin. For any given 0 < β < 1 and ε > 0 there exists a δ > 0 such that if
g ∈M and

(1-31) m(g) < δ,

then

(1-32) ‖g− δR3‖C0,β (A(R0,R1)) < ε.

These theorems are proven in Section 5 after we prove a series of lemmas
estimating various terms in the coordinate system. All of the above theorems hold if
we assume the area enlarging condition (1-11) instead of radial monotonicity (1-17).
The only change is that in addition to assuming (1-11), we must assume that our
family of manifolds satisfies a stronger uniform asymptotic falloff than the one
given in Definition 1.1.

Definition 1.11. Let M be an uniformly asymptotically flat family of metrics.
Suppose that in addition to the uniform asymptotic falloff (Definition 1.1), we have
some uniform τ > 0 such that

(1-33) |α| ≤
C

r1+τ .

Then we shall call M strongly uniformly asymptotically flat.

In the future we would like to prove the Lee–Sormani stability conjecture that
regions outside outermost minimizing surfaces converge in the SWIF sense to
regions in Euclidean space. Our volume, area, and distance controls should be
useful towards such a proof. Here we used an extra condition (1-11) to constrain, a
priori, the location of outer most minimal surfaces. Another approach would be
to actually locate outermost minimal surfaces without any assumption. This was
done easily in [Lee and Sormani 2014] thanks to spherical symmetry and was a
huge challenge in the work of Sormani and Stavrov Allen [2019]. Locating the
outermost minimal surfaces in an axisymmetric manifold is of independent interest
and would be worthy of a paper on its own.

2. Background information

The ADM mass is calculated by taking a limit of integrals over the boundaries of
increasingly large coordinate balls. Thus, it is unclear how the ADM mass should
control the geometry inside of these balls. In fact, arbitrary local perturbations of a
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metric would not change its ADM mass. However, if we restrict our attention to
metrics with nonnegative scalar curvature, then we are no longer entirely free in
our choice of local perturbation. This restores our hope that the ADM mass can
control geometry.

In an attempt to relate ADM mass and the interior geometry, it is natural to make
use of the divergence theorem,

(2-1) m(g)= lim
R→∞

1
16π

∫
∂BR

(gi j, j − g j j,i )ν
i
= lim

R→∞

1
16π

∫
BR

div(gi j, j − g j j,i ),

to get an integral over the interior. For now, we are ignoring the question of which
metric we should use to take the divergence. Intuitively, we think of scalar curvature
as a local energy density. As such, we would like to relate the divergence term to
the scalar curvature. Ideally, the nonnegativity of the scalar curvature should give
control over the integral of the divergence term. This approach can be successfully
carried out in the case of axisymmetric metrics. Furthermore, Witten [1981] used
a more sophisticated version of this idea to prove the positive mass theorem for
manifolds with spinors.

In cylindrical coordinates for axisymmetric metrics we have the following formula
for the scalar curvature [Brill 1959]:

(2-2) Rg = 4e2(u−α)
[
1R3

(
u− 1

2α
)
−

1
2 |∇u|2δ +

1
2ρ
∂α

∂ρ
−
ρ2e−2α

8

(
∂B
∂z
−
∂A
∂ρ

)2]
.

Here we can see that the scalar curvature is indeed closely related to a divergence,
namely 1R3

(
u− α

2

)
. This observation leads to a very useful formula for the mass

of an axisymmetric metric, including those with multiple asymptotically flat ends
[Brill 1959; Chruściel 2008]:

(2-3) m(g)=

1
16π

∫
R3

[
e−2(u−α)

[
Rg+

ρ2e−4α+2u

2

(
∂B
∂z
−
∂A
∂ρ

)2]
+2|∇u|2δ

]
ρ dρ dz dφ.

If there are multiple asymptotically flat ends, which will be points on the z-axis,
then the function u will blow up at these points. In fact, we see that u is roughly
the logarithm of the distance to these points in the Euclidean background metric.
Since we are integrating over R3, one may use polar integration to be convinced
that (2-3) is finite. For details of the case in which there are multiple asymptotically
flat ends, see [Chruściel 2008, Theorems 2.9 and 3.3].

Since all other terms are explicitly nonnegative, if we assume that R≥ 0, then the
ADM mass immediately gives control over the gradient of u. In an asymptotically
flat metric, u must be arbitrarily small on large coordinate spheres. It is therefore
reasonable to suppose that we can use the fundamental theorem of calculus to
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control u everywhere in the manifold. In order to make this precise, we will use
the following representation formula to express u in terms of its gradient and its
value on large coordinate spheres.

Suppose � is a compact region on which the divergence theorem holds and let 0
be the fundamental solution for the Laplacian. Assume further that u is a function
which is differentiable on CL(�). Then we have

(2-4) u(x)=−
∫
∂�

u(y)〈∇0(x, y), n〉 dy+
∫
�

〈∇u(y),∇0(x, y)〉 dy.

In order to see this, we follow the calculations appearing as 2.15 in [Gilbarg and
Trudinger 1998], except we use the divergence theorem on the vector field Z defined
by

(2-5) Z = u(y)∇0(x, y).

Since we should not expect to have any physically relevant information inside
of a minimal surface, it is reasonable to exclude from consideration all parts of
a manifold lying within the outermost minimal surface. As such, it is desirable
to include manifolds with minimal surface boundary in our analysis. In fact, we
will choose coordinates for which the boundary of the manifold is taken to lie
on the axis of symmetry: the boundary will consist of disjoint rods lying on the
z-axis. The function u will still blow up logarithmically, but now as the logarithm
of the distance to a rod on the axis. Integrating using cylinders should convince
one that (2-3) should no longer be finite. In modifying the mass formula to suit
manifolds with boundary, we pick up boundary terms which complicate our analysis
[Chruściel 2008; Khuri et al. 2019]. In the case of a connected boundary, see [Khuri
et al. 2019, Equations (2.10)–(2.12)], the mass formula becomes

(2-6) m(g)= 1
16π

∫
R3

2|∇ū|2+e2(u−α)Rg dx+ 1
4

∫ m0

−m0

ᾱ(0, z)−2ū(0, z) dz+m0,

where ū and ᾱ are appropriate regularizations of u and α, respectively. This formula
has a lot in common with the boundaryless case (2-3), however, to the best of the
author’s knowledge, it has not been demonstrated that

(2-7) 1
4

∫ m0

−m0

ᾱ(0, z)− 2ū(0, z) dz+m0 ≥ 0,

nor even a lower bound established in general. Thus, it is no longer clear that mass
controls the right hand side of (2-6). If (2-7) holds, then Sobolev stability, and all
of the related theorems, are still valid in the nonempty connected boundary case, as
will be detailed in Appendix A. For now, we will assume that we are in the case of
an empty boundary.
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The ease with which we can obtain estimates for u is encouraging, however there
is one more hurdle. If we want to use mass to control the metric (1-3), then we
must be able to turn our estimates for u into estimates for eu . Luckily, we may
use the well known Moser–Trudinger inequality [Gilbarg and Trudinger 1998] to
accomplish this.

In view of the coordinate expression for an axisymmetric metric (1-3), we know
that if we can control eα−2u as well as eu , then we have achieved good control over
the metric. Although it is less clear, it is possible to use the mass formula (2-3)
and the scalar curvature equation (2-2) to show that the ADM mass controls the
W 1,p norm of α−2u. The process is similar to what we do to estimate u. However,
we use Green’s representation formula, instead of (2-4), to express α − 2u as a
boundary term plus an integral of its derivatives. We recall Green’s representation
formula now.

Let � be a compact region on which the divergence theorem holds and let 0 be
the fundamental solution of the Laplacian. Suppose that ω is a twice differentiable
function on CL(�). Then we have the following representation of ω:

(2-8) ω(x)=
∫
∂�

[
ω(y)

∂0(x, y)
∂ν

−0(x, y)
∂ω(y)
∂ν

]
dy+

∫
�

0(x, y)1ω(y) dy.

This result appears in [Gilbarg and Trudinger 1998] as Equation 2.16.
With W 1,p estimates for α − 2u in hand, we might hope to use the Moser–

Trudinger inequality to get estimates for eα−2u . Unfortunately, the Moser–Trudinger
inequality doesn’t apply in this case. Luckily, because of axisymmetry, we are
essentially working in two dimensions. This gives us extra control that does not
exist in higher dimensions. In this setting we are able to prove a result similar to
the Moser–Trudinger inequality, which allows us to turn W 1,p estimates for α− 2u
into W 1,p estimates for eα−2u .

In using (2-4) and (2-8) to control the W 1,p norms of u and α− 2u, we rely on
estimates of the Riesz potential. Recall that the Riesz potential of a function f over
a region �, denoted (Vµ f )(x), is defined as

(2-9) (Vµ f )(x)=
∫
�

|x − y|n(µ−1) f (y) dy,

for µ ∈ (0, 1]. Let 0≤ δ = δ(p, q)= q−1
− p−1 <µ and let ωn denote the volume

of the unit n dimensional ball. The following inequality appears as Lemma 7.12 in
[Gilbarg and Trudinger 1998]:

(2-10) ‖(Vµ f )‖p ≤

(
1− δ
µ− δ

)1−δ

ω1−µ
n |�|µ−δ‖ f ‖q ,

where � is some open region in Rn with compact closure and f is in Lq(�).
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3. Sobolev estimates for u and eu

In this section we will see in greater detail the steps needed to estimate the W 1,p

norm of eu using the mass formula (2-3). Our end goal is to produce estimates over
the regions �ρ1

ρ0(σ ), see (1-16). In fact, we are always able to take σ to be zero. To
simplify notation, such rectangles will be denoted by �ρ1

ρ0 .
To start, the ADM mass only explicitly bounds the L2(R3) norm of ∇u. The

following lemma demonstrates that this is enough to get W 1,2(Br0) control over u
for a ball of fixed radius r0 about the origin in R3.

Lemma 3.1. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0, and let Br0 be the ball of radius r0 about the origin. For any ε > 0 there
exists a δ > 0 such that if g ∈M and

(3-1) m(g) < δ,

then

(3-2) ‖u‖W 1,2(Br0 )
< ε.

Proof. We note once again that control over ‖∇u‖L2(Br0 )
is an immediate con-

sequence of the mass formula and the nonnegative scalar curvature assumption.
In the calculations that follow we will denote the volume of a three dimensional
unit ball by ω3. First, we look at some very large coordinate ball B(0, r1) with
r1 >max{r0, R0}. If we let 0 be the fundamental solution for the Laplacian, then
using (2-4) we may express u as

(3-3) u(x)=−
∫
∂B(0,r1)

u(y)〈∇0(x, y), n〉 dy+
∫

B(0,r1)

〈∇u(y),∇0(x, y)〉 dy

Taking the absolute value of both sides and using the triangle inequality on the
right-hand side shows us that

(3-4) |u(x)| ≤
∫
∂B(0,r1)

|u(y)|
3ω3|x − y|2

dy+
∫

B(0,r1)

|∇u(y)|
3ω3|x − y|2

dy.

We now integrate |u|2 over B(0, r0) and use the well known inequality

(3-5) (a+ b)2 ≤ 2(a2
+ b2) for a, b ∈ R

to obtain

(3-6)
∫

B(0,r0)

|u(x)|2 dx

≤ 2
∫

B(0,r0)

(∫
∂B(0,r1)

|u(y)|
3ω3|x − y|2

dy
)2

+

(∫
B(0,r1)

|∇u(y)|
3ω3|x − y|2

dy
)2

dx .
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To bound the second integral on the right hand side we make use of the mass
formula (2-3) and the Riesz potential estimate (2-10) with µ= 1

3 and q = p = 2 to
get

(3-7)
∫

B(0,r1)

(∫
B(0,r1)

|∇u(y)|
3ω3|x − y|2

dy
)2

dx ≤ 8πr2
1 m.

Using uniform asymptotic flatness (Definition 1.1), we estimate the first integral on
the right as follows:

(3-8)
∫

B(0,r0)

(∫
∂B(0,r1)

|u(y)|
3ω3|x − y|2

dy
)2

≤
1

9ω2
3

∫
B(0,r0)

(∫
∂B(0,r1)

C
|x − y|2

1
r1

dy
)2

≤
ω3r3

0 C2r4
1

(r1− r0)4r2
1
.

Substituting the above two inequalities into (3-6), we obtain

(3-9)
∫

B(0,r0)

|u(x)|2 dx ≤ 2
[

C2ω3r3
0r4

1

(r1− r0)4r2
1
+ 8πr2

1 m
]

If we let r1 grow arbitrarily large, then the first term on the right will become
arbitrarily small. We may counter any growth in the second term on the right by
choosing the mass to be small enough. �

The next step is to estimate eu . In order to do that we will apply the Moser–
Trudinger inequality to u. Let us now recall the exact statement of the Moser–
Trudinger inequality. Let �⊂ Rn and ω ∈W 1,n

0 (�). Then there exists constants c1

and c2 depending only on n, such that

(3-10)
∫
�

exp
((

|ω|

c1‖∇ω‖n

)n/(n−1))
≤ c2|�|.

This inequality appears as Theorem 7.15 in [Gilbarg and Trudinger 1998]. Lemma 3.1
gives W 1,2 control over u, so if we want to apply the Moser–Trudinger inequality,
we will have to work over two dimensional domains. Luckily, we have the following
almost trivial corollary to Lemma 3.1.

Corollary 3.2. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Let �ρ1

ρ0 denote the region

(3-11)
{
ρ0 ≤ ρ ≤ ρ1, |z| ≤

ρ1

2

}
.
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For every ε > 0, ρ0 > 0 and ρ1 > ρ0 there exists a δ > 0 such that if the ADM mass
of g ∈M is less than δ, then

(3-12) ‖u‖W 1,2(�
ρ1
ρ0 )
< ε.

Proof. Consider the region �̃ρ1
ρ0 =�

ρ1
ρ0 ×[0, 2π). Choose r0 large enough that

(3-13) �̃ρ1
ρ0
⊂ Br0 .

In �ρ1
ρ0 we know that ρ0 ≤ ρ. Thus, we may observe that

(3-14)
∫
�
ρ1
ρ0

u2
+ |∇u|2 dρ dz ≤ 1

2πρ0

∫
�̃
ρ1
ρ0

[u2
+ |∇u|2]ρ dρ dz dφ

≤
1

2πρ0
‖u‖2W 1,2(Br0 )

.

Now we may apply Lemma 3.1. �

We’re now in a position to estimate the W 1,p norm of eu . For the L p norm of
eu the proof is an almost direct application of the Moser–Trudinger inequality. To
estimate the L p norm of ∇eu

= eu
∇u, we use Hölder’s inequality to analyze each

term separately For the eu term we will once again apply the Moser–Trudinger
inequality. To estimate ∇u we will rely on Corollary 3.2.

Lemma 3.3. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically outside of ra-
dius R0. Let �ρ1

ρ0 denote the region
{
(ρ, z) | ρ0 ≤ ρ ≤ ρ1, |z| ≤

ρ1
2

}
. For every

ρ1 > ρ0 > 0, ε > 0 and p < 2 there exists a δ > 0 such that if the ADM mass of
g ∈M is less than δ, then

(3-15) ‖e|u|− 1‖W 1,p(�
ρ1
ρ0 )
< ε.

Proof. Since g is smooth, u is bounded and has bounded derivatives in �ρ1
ρ0 , though

we have not made any assumption on what these bounds might be. Thus, e|u| is
Lipschitz, and so

(3-16)
∫
�
ρ1
ρ0

|∇(e|u|− 1)|p =
∫
�
ρ1
ρ0

|∇e|u||p =
∫
�
ρ1
ρ0

ep|u|
|∇u|p.

Now, we let r = 2
p and r ′ be the conjugate exponent to r . After applying Hölder’s

inequality with r , we get

(3-17)
∫
�
ρ1
ρ0

ep|u|
|∇u|p ≤

(∫
�
ρ1
ρ0

er ′ p|u|
)1/r ′(∫

�
ρ1
ρ0

|∇u|2
)p/2

.

Let D(0, r0) denote the two dimensional disk centered about the origin with ra-
dius r0. Choose r0 so that �ρ1

ρ0 ⊂ D(0, r0). We may extend u to a function ū in
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W 1,2
0 (D(0, r0)); see Theorem 4.7 in [Evans and Gariepy 2015]. We may choose

the extension ū such that

(3-18) ‖ū‖W 1,2
0 (D(0,r0))

≤ K‖u‖W 1,2(�
ρ1
ρ0 )
,

where the constant K is independent of the function u. A quick application of the
Cauchy–Schwarz inequality gives us the estimate

(3-19) r ′ p|ū| ≤ 1
4(r
′ pc1||∇ū||2)2+

(
|ū|

c1||∇ū||2

)2

,

where c1 is the constant appearing in (3-10). We may now use the Moser–Trudinger
inequality (3-10) to see that

(3-20)
(∫

�
ρ1
ρ0

er ′ p|u|
)1/r ′

≤

(∫
D(0,r0)

er ′ p|ū|
)1/r ′

≤ exp
( 1

4r ′(pc1||∇ū||2)2
)
(c2|D(0, r0)|)

1/r ′ .

When written entirely in terms of u, the above inequality becomes

(3-21)
(∫

�
ρ1
ρ0

er ′ p|u|
)1/r ′

≤ exp
[r ′

4
(
K pc1||u||W 1,2(�

ρ1
ρ0 )

)2
]
(c2|D(0, r0)|)

1/r ′ .

Combining this with Corollary 3.2 gives

(3-22)
∫
�
ρ1
ρ0

|∇e|u||p ≤ exp
[r ′

4
(
K pc1||u||W 1,2(�

ρ1
ρ0 )

)2
]
(c2|D(0, r0)|)

1/r ′
(4m
ρ0

)p/2

Now that we have successfully estimated ∇(e|u| − 1), we turn to estimating
e|u|− 1. We use the expansion of e|u| to get that

(3-23)
∫
�
ρ1
ρ0

|e|u|− 1|p =
∫
�
ρ1
ρ0

( ∞∑
1

|u|k

k!

)p

Factoring out |u| and over estimating the rest shows that the right hand side is
bounded above by

(3-24)
∫
�
ρ1
ρ0

|u|pep|u|

Now, we let r = 2
p and apply Hölder’s inequality to get

(3-25)
∫
�
ρ1
ρ0

|u|pep|u|
≤

(∫
�
ρ1
ρ0

|u|2
)p/2(∫

�
ρ1
ρ0

er ′ p|u|
)1/r ′

Finally, we may once again apply Corollary 3.2 and (3-21) to obtain the result. �
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4. Sobolev estimates for α− 2u and eα−2u

We must now concentrate on estimating α− 2u and eα−2u . We will try to imitate
as closely as possible the steps which let us successfully estimate u and eu . First,
we obtain W 1,p estimates for α− 2u from the mass formula (2-3). Unfortunately,
even at this early stage, the process is notably harder than it was for u.

In our attempt to estimate the W 1,2 norm of u we used a representation formula
to express u in terms of its values on a large sphere and its gradient in a large
ball. Then we used the asymptotic falloff and the mass formula to control these
quantities, respectively. This was a relatively simple process because ‖∇u‖ is a
term in the mass formula. However, the gradient of α− 2u does not appear directly
in the mass formula. Rather, it is the Laplacian of α−2u which appears in the mass
formula by way of the scalar curvature equation. We will see the precise nature
of this relationship in the following lemmas. For now, the important point is that
instead of using (2-4) to express α−2u, we should use Green’s representation (2-8).
It is widely known that one may replace the fundamental solution 0 in (2-8) with
a function G(x, y), the Green’s function of the domain, which vanishes on the
boundary of the domain. This choice simplifies Green’s representation formula
significantly. Unfortunately, the explicit formula for G(x, y) can be complicated
depending on the domain. Thus, although our representation formula has been
simplified, it is difficult to estimate G(x, y). Luckily, we are working over very
simple domains, namely the rectangles �ρ1

ρ0 . Therefore, a compromise is possible.
We may simplify the representation formula for any one side of the rectangle.
Specifically, we may choose a “Green’s” function which vanishes, or whose normal
derivative vanishes, on one side of the rectangle. Since we have the least amount of
a priori knowledge about the metric near the axis of symmetry, we will choose to
simplify our representation formula on the side nearest the axis of symmetry.

For the rectangle �ρ1
ρ0 , let x̄ denote the reflection of the point x about the vertical

line {ρ = ρ0}. We can define the following two functions

(4-1) HN (x, y)= 1
2π

log(|x − y|)+ 1
2π

log(|x̄ − y|)

and

(4-2) HD(x, y)= 1
2π

log(|x − y|)− 1
2π

log(|x̄ − y|).

A quick check shows that we may replace 0 by either HN or HD in (2-8). Further-
more, a calculation shows that

(4-3)
∂HN (x, y)

∂ν

∣∣∣
∂�

ρ1
ρ0∩{ρ=ρ0}

= 0
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and

(4-4) HD(x, y)|∂�ρ1
ρ0∩{ρ=ρ0}

= 0.

Since we will be integrating against the functions HN and HD in what follows, and
since HN and HD are sums of functions of the form log(|x − y|), it will be useful
in what follows to have an L p estimate for log(|x − y|) over bounded regions.

Lemma 4.1. Let � be a bounded region in R2 and let

(4-5) r0 =max{diam(�), 1}.

Then for y ∈ cl(�) we have

(4-6)
∫
�

|log(|x − y|)|k dx ≤
πk!
2k + 2π(r0− 1)r0 log(r0)

k

for positive integers k.

Proof. We observe that

(4-7)
∫
�

|log(|x − y|)|k dx ≤
∫

B(y,r0)

|log(|x − y|)|k dx

=

∫ 1

0
(−1)k2πr log(r)k dr +

∫ r0

1
2πr log(r)k dr

The second term on the right has the simple estimate

(4-8) 2π(r0− 1)r0 log(r0)
k .

To estimate the first term, one must carry out the integration. By induction, we have
the following result.

(4-9)
∫ 1

0
(−1)k2πr log(r)kdr =

πk!
2k . �

With all of this in mind, we begin the process of estimating the W 1,p norm of
α− 2u.

Proposition 4.2. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose in addition that M is radially monotone at ρ0. For every ρ1>ρ0,
ε > 0 and 1≤ p < 2 there exists a δ > 0 such that if the ADM mass of g ∈M is less
than δ, then

(4-10) ‖α− 2u‖W 1,p(�
ρ1
ρ0 )
< ε
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Applying Green’s representation formula to α− 2u over the domain �ρ1
ρ0 gives

us

(4-11) (α− 2u)(x)=
∫
∂�

ρ1
ρ0

[
(α− 2u)

∂HN (x, y)
∂ν

− HN (x, y)
∂(α− 2u)

∂ν

]
dy

+

∫
�
ρ1
ρ0

HN (x, y)1(α− 2u) dy.

The above representation breaks our problem into two pieces. First we must estimate
1(α− 2u) over �ρ1

ρ0 and then we must estimate α− 2u on the boundary of �ρ1
ρ0 .

The necessary estimates are the content of the following two lemmas.

Lemma 4.3. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. If g is a metric in M and

(4-12) m(g)≤ m,

then

(4-13) ‖1(2u−α)‖L1(�
ρ1
ρ0 )
≤

4m
ρ0
+

4
√
ρ1m
ρ0

for any ρ1 > ρ0 > 0.

Proof. We must relate 1(α − 2u) to the mass formula. First, we recall that the
scalar curvature equation is

(4-14) Rg = 4e2(u−α)
[
1R3

(
u− 1

2α
)
−

1
2 |∇u|2δ+

1
2ρ
∂α

∂ρ
−
ρ2e−2α

8

(
∂B
∂z
−
∂A
∂ρ

)2]
,

where we have written 1R3 to emphasize the fact that it is the three dimensional
Laplacian which appears, and not the two dimensional Laplacian 1. However, if
we remember that all of the functions involved don’t depend on φ, then we can see
that

(4-15) 1R3

(
u− α

2

)
=1

(
u− α

2

)
+

1
2ρ
∂(2u−α)

∂ρ
.

By plugging the above into the scalar curvature equation, we get

(4-16) Rg = 4e2(u−α)
[
1
(
u− 1

2α
)
−

1
2 |∇u|2δ +

1
ρ

∂u
∂ρ
−
ρ2e−2α

8

(
∂B
∂z
−
∂A
∂ρ

)2]
.
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We now solve the scalar curvature equation for 1(α− 2u) and integrate in order to
arrive at

(4-17)
∫
�
ρ1
ρ0

|1(α− 2u)| dρ dz

≤

∫
�
ρ1
ρ0

e2(α−u)

2
Rg + |∇u|2δ +

2
ρ

∣∣∣∣∂u
∂ρ

∣∣∣∣+ ρ2e−2α

4

(
∂B
∂z
−
∂A
∂ρ

)2

dρ dz.

Now, since we are integrating over a region in which ρ ≥ ρ0, we have from the
mass formula (2-3) that

(4-18)
∫
�
ρ1
ρ0

e2(α−u)

2
Rg + |∇u|2δ +

ρ2e−2α

4

(
∂B
∂z
−
∂A
∂ρ

)2

dρ dz ≤ 4m
ρ0
.

To estimate the final term on the right hand side of (4-17) requires only a little
more work. Namely, if we apply Hölder’s inequality to

(4-19)
∫
�
ρ1
ρ0

2
ρ

∣∣∣∣∂u
∂ρ

∣∣∣∣ dρ dz

and make the simple estimate
∣∣ ∂u
∂ρ

∣∣≤ |∇u|δ, then we obtain

(4-20)
∫
�
ρ1
ρ0

2
ρ

∣∣∣∣∂u
∂ρ

∣∣∣∣ dρ dz ≤
(∫

�
ρ1
ρ0

4
ρ2

)1/2(∫
�
ρ1
ρ0

|∇u|2δ dρ dz
)1/2

.

Using the mass formula once more, we see that

(4-21)
(∫

�
ρ1
ρ0

4
ρ2

)1/2(∫
�
ρ1
ρ0

|∇u|2δ dρ dz
)1/2

≤
4
√
ρ1m
ρ0

.

Putting each of these estimates together gives the desired result. �

We now want to estimate boundary terms on ∂�ρ1
ρ0 . Due to the asymptotic falloff

conditions (Definition 1.1), it is relatively straight forward to estimate terms on
(∂�

ρ1
ρ0)−{ρ = ρ0}. It is more difficult to estimate terms on (∂�ρ1

ρ0
)∩ {ρ = ρ0}.

Lemma 4.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Assume that M is also radially monotone at ρ0. For ρ1 >max{ρ0, R0},
if g ∈M and

(4-22) m(g)≤ m,

then

(4-23)
∫
(∂�

ρ1
ρ0 )∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)
∂ν

∣∣∣∣≤ 4m
ρ0
+

4
√
ρ1m
ρ0

+
6πC
ρ1

,

where the constant C is the one appearing in Definition 1.1.
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Proof. It is an easy observation that

(4-24)
∂

∂ν

∣∣∣
∂�

ρ1
ρ0∩{ρ=ρ0}

=−
∂

∂ρ
.

If we write the radial monotonicity condition entirely in terms of coordinate func-
tions, then we may see that for g ∈M

(4-25)
∂(α− 2u)

∂ρ
(ρ0, z)≤ 0.

Thus, we observe that

(4-26)
∫
∂�

ρ1
ρ0∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)
∂ν

∣∣∣∣=− ∫ ρ1/2

−ρ1/2

∂(α− 2u)
∂ρ

(ρ, z) dz.

A quick application of Stokes’ Theorem over the region

(4-27)
{
ρ0 ≤ ρ, |z| ≤

ρ1
2

}
gives

(4-28)
∫ ρ1/2

−ρ1/2

∂(α− 2u)
∂ρ

=−

∫
{ρ0≤ρ, |z|≤ρ1/2}

1(α− 2u) dρ dz+
∫
{ρ≥ρ0, |z|=ρ1/2}

∂(α− 2u)
∂z

.

We may estimate the second integral on the right by plugging in the asymptotic
estimates (Definition 1.1). The result is the following inequality

(4-29)
∣∣∣∣∫
{ρ≥ρ0, |z|=ρ1/2}

∂(α− 2u)
∂z

∣∣∣∣≤ ∫
{ρ≥ρ0, |z|=ρ1/2}

3C
|(ρ, z)|2

dρ.

We may see by a straightforward integration that

(4-30)
∣∣∣∣∫
{ρ≥ρ0, |z|=ρ1/2}

∂(α− 2u)
∂z

∣∣∣∣≤ 6πC
ρ1

.

The last piece of the puzzle is the term

(4-31)
∣∣∣∣∫
{ρ0≤ρ, |z|≤ρ1/2}

1(α− 2u) dρ dz
∣∣∣∣≤ ∫

{ρ0≤ρ, |z|≤ρ1/2}
|1(α− 2u)| dρ dz.

We now use the proof of Lemma 4.3 to bound this term. Putting everything together,
we get

(4-32)
∫
∂�

ρ1
ρ0∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)
∂ν

∣∣∣∣≤ 4m
ρ0
+

4
√
ρ1m
ρ0

+
6πC
ρ1

. �

We have the necessary estimates to obtain W 1,p control over α− 2u.
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Proof of Proposition 4.2. Consider �ρ̃1
ρ0 for some ρ̃1 ≥ R0. We also choose ρ̃1 to be

much larger than ρ1. As before, we let

(4-33) HN (x, y)= 1
2π

log(|x − y|)+ 1
2π

log(|x̄ − y|),

where x̄ is the reflection of x about the line {ρ = ρ0}. Recall that Green’s represen-
tation gives us the following formula for α− 2u:

(4-34) (α− 2u)(x)=
∫
∂�

ρ̃1
ρ0

(α− 2u)(y)
∂HN

∂ν
(x, y)− HN (x, y)

∂(α− 2u)
∂ν

(y) dy

+

∫
�
ρ̃1
ρ0

HN (x, y)1(α− 2u)(y) dy.

We will imitate the estimates that we made for u in Corollary 3.2. Namely, we see
that

(4-35)
∫
�
ρ1
ρ0

|(α− 2u)(x)|p dx

is bounded above by

(4-36) C(p)
∫
�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0

∣∣∣∣HN
∂(α− 2u)

∂ν

∣∣∣∣+ ∣∣∣∣(α− 2u)
∂HN

∂ν

∣∣∣∣ dy
)p

+

(∫
�
ρ̃1
ρ0

|HN1(α− 2u)| dy
)p

dx,

for some constant C(p) depending only on p. We estimate each of the three terms
above in turn. For the first two terms, we will break ∂�ρ̃1

ρ0 into

(4-37) ∂�ρ̃1
ρ0
−{ρ = ρ0}

and

(4-38) (∂�ρ̃1
ρ0
)∩ {ρ = ρ0}.

Let’s start with (4-37). For this piece of the boundary we can use the uniform
asymptotically flat condition to obtain the required estimates. First, notice that for
x in �ρ1

ρ0 and y in (4-37) we have

(4-39) |HN (x, y)| ≤
log
(
2 diam(�ρ̃1

ρ0)
)

π
≤

log(2
√

2ρ̃1)

π
,

since ρ̃1 is much larger than ρ0. From the asymptotic falloff given in Definition 1.1,
we see that for y in (4-37)

(4-40)
∣∣∣∣∂(α− 2u)

∂ν
(y)
∣∣∣∣≤ 3C

ρ̃2
1
.
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Thus, we may see that

(4-41)
∫
�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0−{ρ=ρ0}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν
(y)
∣∣∣∣ dy

)p

dx

≤

∫
�
ρ1
ρ0

(
9 log(2

√
2ρ̃1)C

πρ̃1

)p

dx

≤ ρ2
1

(
3 log(2

√
2ρ̃1)C

ρ̃1

)p

.

The other term has a similar estimate:

(4-42)
∫
�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0−{ρ=ρ0}

∣∣∣∣(α− 2u)
∂HN

∂ν

∣∣∣∣ dy
)p

dx ≤ ρ2
1

(
6C

ρ̃1− ρ1

)p

.

Using the two estimates above, we see that

(4-43)
∫
�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0−{ρ=ρ0}

∣∣∣∣HN
∂(α− 2u)

∂ν

∣∣∣∣+ ∣∣∣∣(α− 2u)
∂HN

∂ν

∣∣∣∣ dy
)p

≤ C(p)
(
ρ2

1

(
3 log(2

√
2ρ̃1)C

ρ̃1

)p

+ ρ2
1

(
6C

ρ̃1− ρ1

)p)
.

We can now move to the inner piece of the boundary, (4-38). We will further
divide ∂�ρ̃1

ρ0 ∩ {ρ = ρ0} into

(4-44) ∂�ρ̃1
ρ0
∩ {ρ = ρ0, |z| ≤ ρ1}

and

(4-45) ∂�ρ̃1
ρ0
∩ {ρ = ρ0, |z| ≥ ρ1}.

We now estimate

(4-46)
(∫

�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0∩{ρ=ρ0, |z|≤ρ1}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν

∣∣∣∣ dy
)p

dx
)1/p

.

Here we apply Minkowski’s inequality for integrals [Folland 1999] to bound the
above by

(4-47)
∫
∂�

ρ̃1
ρ0∩{ρ=ρ0, |z|≤ρ1}

(∫
�
ρ1
ρ0

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν

∣∣∣∣p

dx
)1/p

dy.

We may rewrite this expression as

(4-48)
∫
∂�

ρ̃1
ρ0∩{ρ=ρ0, |z|≤ρ1}

∣∣∣∣∂(α− 2u)
∂ν

∣∣∣∣(∫
�
ρ1
ρ0

|HN (x, y)|p dx
)1/p

dy.
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In view of Lemma 4.4, we must estimate the L P norm of HN (x, y) as a function
of x over �ρ1

ρ0 for each y in

(4-49) ∂�ρ̃1
ρ0
∩ {ρ = ρ0, |z| ≤ ρ1}.

We see that the points x and y are both contained in �2ρ1
ρ0 , Which has diameter

2
√

2ρ1. Let

(4-50) F(x)= x̄ .

Since F is an isometry, if we apply the change of variable formula to F and note
that y = ȳ for y in {ρ = ρ0}, then we may see that for any q, we have

(4-51)
∫
�

2ρ1
ρ0

|log(|x̄ − y|)|q dx =
∫

F(�
2ρ1
ρ0 )

|log(|x − y|)|q dx .

Thus, we may use (4-6) to see that

(4-52)
∫
�
ρ1
ρ0

|HN (x, y)| dx ≤
∫
�

2ρ1
ρ0

|HN (x, y)| ≤ 1
2 + 16ρ2

1 log(2
√

2ρ1),

and

(4-53)
(∫

�
ρ1
ρ0

|HN (x, y)|2 dx
)1/2

≤

(∫
�

2ρ1
ρ0

|HN (x, y)|2 dx
)1/2

≤
1

2π

√
2π + 64πρ2

1 log(2
√

2ρ1)
2.

We do a simple interpolation between the above two estimates to get

(4-54)
(∫

�
ρ1
ρ0

|HN (x, y)|p dx
)1/p

≤
( 1

2+16ρ2
1 log(2

√
2ρ1)

)(2−p)/p

×

( 1
2π

√
2π+64πρ2

1 log(2
√

2ρ1)
2
)(2p−2)/p

,

We now combine the above with Lemma 4.4 to bound (4-48) by

(4-55)
[ 1

2 + 16ρ2
1 log(2

√
2ρ1)

](2−p)/p
[ 1

2π

√
2π + 64πρ2

1 log(2
√

2ρ1)2
](2p−2)/p

×

(
4m
ρ0
+

4
√
ρ̃1m
ρ0

+
6πC
ρ̃1

)
The term

(4-56)
(∫

�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0∩{ρ=ρ0, |z|≥ρ1}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν

∣∣∣∣ dy
)p

dx
)1/p
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is much easier to estimate. In fact, for x in �ρ1
ρ0 and y in ∂�ρ̃1

ρ0 ∩{ρ = ρ0, |z| ≥ ρ1},
we have

(4-57) |HN (x, y)| ≤ 1
π

max
{∣∣∣log

(
ρ1
2

)∣∣∣, |log(2
√

2ρ̃1)|
}
.

Once again, combining the above with Lemma 4.4 bounds (4-56) by

(4-58)
(ρ1)

2/p

π
max

{∣∣∣log(ρ1
2
)

∣∣∣, |log(2
√

2ρ̃1)|
}(4m

ρ0
+

4
√
ρ̃1m
ρ0

+
6πC
ρ̃1

)
.

The final piece of the puzzle is the estimate of

(4-59)
∫
�
ρ1
ρ0

(∫
�
ρ̃1
ρ0

∣∣HN (x, y)1(α− 2u)(y)
∣∣ dy

)p

dx .

Here we may use Minkowski’s inequality for integrals once more to see that the
above is bounded by

(4-60)
(∫

�
ρ̃1
ρ0

|1(α− 2u)(y)|
(∫

�
ρ1
ρ0

|HN (x, y)|p dx
)1/p

dy
)p

.

Thus, we may bound (4-59) by

(4-61)
(∫

�
ρ̃1
ρ0

|1(α− 2u)(y)|
(∫

�
ρ̃1
ρ0∪F(�

ρ̃1
ρ0 )

|HN (x, y)|p dx
)1/p

dy
)p

.

Again, using the change of variable formula and (4-6), we bound (4-59) by

(4-62)

([1
2+16ρ̃2

1 log(2
√

2ρ̃1)
](2−p)/p

[ 1
2π

√
2π + 64πρ̃2

1 log(2
√

2ρ̃1)
2
](2p−2)/p

×
4m+ 4

√
ρ̃1m

ρ0

)p

.

Putting everything above together shows that

(4-63)
∫
�
ρ1
ρ0

|α− 2u|p ≤ C(p)2(4-43)+C(p)3
(
(4-55)p

+ (4-58)p)
+C(p)(4-62).

Thus, for any ε > 0 and ρ1 > ρ0 we can pick an appropriate ρ̃1 and ADM mass m
so that

(4-64) ‖α− 2u‖L p(�
ρ1
ρ0 )
<
ε

2
.
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We can get similar estimates for ∇(α− 2u) by differentiating the representation
formula:

(4-65) ∇(α− 2u)(x)=
∫
∂�

ρ̃1
ρ0

(α− 2u)∇x
∂HN

∂ν
−∇x HN (x, y)

∂(α− 2u)
∂ν

+

∫
�
ρ̃1
ρ0

(∇x HN )1(α− 2u).

We see that

(4-66)
∫
�
ρ1
ρ0

|∇(α− 2u)|p

≤ C(p)
∫
�
ρ1
ρ0

(∫
∂�

ρ̃1
ρ0

∣∣∣∣∂(α− 2u)
∂ν

∇x HN

∣∣∣∣+ ∣∣∣∣(α− 2u)∇x
∂HN

∂ν

∣∣∣∣)p

+

(∫
�
ρ̃1
ρ0

|∇x HN | |1(α− 2u)|
)p

.

As before, we will break ∂�ρ̃1
ρ0 into (4-37) and (4-38). We start with (4-37). A

quick calculation shows that

(4-67) |∇x HN | ≤
1

2π

( 1
|x−y|

+
1
|x̄−y|

)
and

(4-68)
∣∣∣∣∇x

∂HN

∂ν

∣∣∣∣≤ 3
2π

( 1
|x−y|2

+
1

|x̄−y|2
)
.

Estimating the integral over (4-37) now proceeds as before.
As a first step in estimating the integral over (4-38), we note that

(4-69) ∇x
∂HN

∂ν

∣∣∣
{ρ=ρ0}

= 0.

Next, we again break (4-38) into (4-44) and (4-45). For both pieces we proceed
much as we did before. On (4-44) it is crucial that p < 2, since it is only then that
the integral

(4-70)
∫
�
ρ1
ρ0

|∇x HN |
p

is bounded for all y in (4-44). For (4-45), the necessary changes in the argument
are straightforward.

Finally, to estimate

(4-71)
∫
�
ρ1
ρ0

(∫
�
ρ̃1
ρ0

|(∇x HN )1(α− 2u)|
)p

≤

∫
�
ρ̃1
ρ0

(∫
�
ρ̃1
ρ0

|(∇x HN )1(α− 2u)|
)p
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we may use the Riesz potential estimates (2-10) with the appropriate choice of
constants. Thus, for ρ̃1 chosen large enough and m chosen small enough, we may
conclude that

(4-72) ‖α− 2u‖W 1,p(�
ρ1
ρ0 )
< ε. �

In the course of proving Proposition 4.2 we actually proved a little more. For
future convenience, we record this result as the following corollary.

Corollary 4.5. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. For any ρ1 > ρ0, ε > 0,
and 1≤ p < 2 there exists a δ > 0 such that if g ∈M and

(4-73) m(g) < δ,

then

(4-74)
∫
�
ρ1
ρ0

|α− 2u|p ≤
ε

ρ
p
0

and

(4-75)
∫
�
ρ1
ρ0

|∇(α− 2u)|p ≤
ε

ρ
p
0
.

Having successfully estimated the W 1,p norm of α− 2u, we must now turn to
estimating the W 1,p norm of eα−2u . As was noted earlier, control over the W 1,p

norm of α − 2u for 1 ≤ p < 2 falls short of what we need to apply the Moser–
Trudinger inequality to α−2u. It is thus not immediately clear how to turn estimates
for α− 2u into estimates for eα−2u . Luckily, the special nature of the fundamental
solution to the Laplacian in two dimensions allows us to prove a Moser–Trudinger
like inequality which we can use on α− 2u.

Lemma 4.6. Let � be a bounded domain in the plane on which the divergence
theorem holds and let 0 be the fundamental solution for the Laplacian. Suppose we
haveψ ∈C2(�)∩C1(�) and1ψ ∈ L1(�). Let�σ denote={x ∈� :d(x, ∂�)≥σ }
and let r0 =max{1, diam(�)}. Then we have the estimate:

(4-76)
∫
�σ

e|ψ | ≤
(
|�σ | +

π‖1ψ‖1

4π −‖1ψ‖1
+ 2π(r0− 1)r0[r

‖1ψ‖1/2π
0 − 1]

)
× sup

x∈�σ
exp

(∫
∂�

∣∣∣∣ψ(y)∂0∂ν (x, y)
∣∣∣∣+ ∣∣∣∣0(x, y)

∂ψ

∂ν
(y)
∣∣∣∣ dy

)
Proof. From Green’s representation we have

(4-77) ψ(x)=
∫
∂�

ψ(y)
∂0

∂ν
(x, y)−0(x, y)

∂ψ

∂ν
(y) dy+

∫
�

0(x, y)1ψ(y) dy



116 EDWARD T. BRYDEN

Using the representation formula to rewrite
∫
�ε

e|ψ |, we obtain

(4-78)
∫
�σ

e|ψ(x)| dx ≤
∫
�σ

exp
[∫

∂�

∣∣∣∣ψ(y)∂0∂ν (x, y)−0(x, y)
∂ψ

∂ν
(y)
∣∣∣∣ dy

]
× exp

[∫
�

∣∣0(x, y)1ψ(y)
∣∣ dy

]
dx

We bound the first term on the right pointwise by its supremum over �σ . Then we
may take it outside of the integrand.

(4-79)
∫
�σ

e|ψ(x)| dx ≤ sup
x∈�σ

exp
[∫

∂�

∣∣∣∣ψ(y)∂0∂ν (x, y)
∣∣∣∣+ ∣∣∣∣0(x, y)

∂ψ

∂ν
(y)
∣∣∣∣ dy

]
×

∫
�σ

exp
[∫

�

∣∣0(x, y)1ψ(y)
∣∣ dy

]
dx

We may now concentrate on estimating

(4-80)
∫
�σ

exp
[∫

�

∣∣0(x, y)1ψ(y)
∣∣ dy

]
The strategy is to expand the above integral using the Taylor series for the exponential
function and then bound each term appearing in the expansion:

(4-81)
∫
�σ

(
e
∫
�
|0(x,y)1(α−2u)(y)| dy) dx =

∞∑
k=0

∫
�σ

(∫
�
|0(x, y)1ψ(y)| dy

)k

k!
dx .

First, recall that the fundamental solution of the Laplacian in two dimensions is
given by

(4-82) 1
2π

log|x − y|

Second, after observing that�σ ⊂�, and pulling constants out, we get the inequality

(4-83)
∫
�σ

∣∣∫
�
0(x − y)1ψ(y) dy

∣∣k
k!

≤
1

k!(2π)k

∫
�

(∫
�

|1ψ(y)| |log(|x − y|)| dy
)k

dx

We apply Jensen’s inequality to the integral on the right to obtain

(4-84) 1
(2π)kk!

∫
�

(∫
�

|log(|x − y|)| |1ψ(y)| dy
)k

dx

≤
‖1ψ‖k−1

1

(2π)kk!

∫
�

∫
�

|log(|x − y|)|k |1ψ(y)| dy dx

We now use Tonelli’s theorem to switch the order of integration to get

(4-85)
∫
�

∫
�

|log(|x − y|)|k |1ψ(y)| dy dx =
∫
�

|1ψ(y)|
∫
�

|log(|x − y|)|k dx dy
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Putting (4-6), (4-85), and (4-84) together gives

(4-86) 1
k!

∫
�

∣∣∣∣∫
�

1
2π

log(|x − y|)1ψ(y) dy
∣∣∣∣k dx

≤
‖1ψ‖k1

(2π)kk!

(
πk!
2k + 2π(r0− 1)r0 log(r0)

k
)

After a quick application of the monotone convergence theorem to the summation
over k from k = 1 to infinity of (4-83) we get

(4-87)
∫
�σ

e|
∫
�
0(x,y)1ψ(y)dy| dx

≤ |�σ | +
π‖1ψ‖1

4π −‖1ψ‖1
+ (r0− 1)r0

[
exp

(
log(r0)‖1ψ‖1

2π

)
− 1

]
. �

We have the following corollary, which is the actual inequality we will use.

Corollary 4.7. Supposeψ∈C2(�
ρ1
ρ0)∩C1(cl(�ρ1

ρ0)) and let r0=max{1, diam(�ρ1
ρ0)}.

Then

(4-88)
∫
(�

ρ1
ρ0 )σ

e|ψ |

is bounded above by

(4-89) eC(σ,ρ1)‖1ψ‖1

(
|(�ρ1

ρ0
)σ | +

π‖1ψ‖1

4π −‖1ψ‖1
+ r2

0 [r
‖1ψ‖1/2π
0 − 1]

)
× sup

x∈(�
ρ1
ρ0 )σ

exp
(∫

∂�

∣∣∣∣ψ(y)∂HN

∂ν

∣∣∣∣+ ∣∣∣∣HN
∂ψ

∂ν
(y)
∣∣∣∣ dy

)
,

where C(σ, ρ1)=
1

2π max{|log(σ )|, |log(2
√

2ρ1)|}.

Proof. If we replace 0 by HN in (4-77), then the right hand side of (4-79) becomes

(4-90) sup
x∈(�

ρ1
ρ0 )σ

exp
[∫

∂�
ρ1
ρ0

∣∣∣∣ψ(y)∂HN

∂ν

∣∣∣∣+ ∣∣∣∣HN
∂ψ

∂ν
(y)
∣∣∣∣ dy+

∫
�
ρ1
ρ0

|0(x̄, y)1ψ |
]

×

∫
(�

ρ1
ρ0 )σ

exp
[∫

�

|0(x, y)1ψ(y)| dy
]
.

We see that

(4-91) sup
x∈(�

ρ1
ρ0 )σ

∫
�
ρ1
ρ0

|0(x̄, y)1ψ | ≤ C(σ, ρ1)‖1ψ‖L1(�
ρ1
ρ0 )
.

The corollary now follows from Lemma 4.6. �

In order to apply Corollary 4.7 to α−2u, we need an L1 bound on1(α−2u) and
an uniform bound on the boundary. In Lemma 4.3 we established the necessary L1
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bound. Now, we will demonstrate the needed uniform control on the boundary. The
following result is very similar to Lemma 4.4, however, due to technical necessities,
the statement and proof are slightly different.

Lemma 4.8. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. Let �ρ1

ρ0 denote the
region

(4-92)
{
(ρ, z) | ρ0 ≤ ρ ≤ ρ1, |z| ≤

ρ1
2

}
,

and (�ρ1
ρ0)σ denote {x ∈�ρ1

ρ0 | d(x, ∂�
ρ1
ρ0) > σ }. Let ρ1 ≥ R0. If g ∈M and the ADM

mass of g is less than m, then

(4-93) sup
x∈(�

ρ1
ρ0 )σ

exp
(∫

∂�
ρ1
ρ0

∣∣∣∣HN (x, y)
∂(2u−α)

∂ν
(y)
∣∣∣∣+∣∣∣∣(2u−α)(y)

∂HN

∂ν
(x, y)

∣∣∣∣ dy
)

≤ exp[C(m, σ, ρ1, ρ0)]

where

(4-94) C(m, σ, ρ1, ρ0)=max
{
|log 2

√
2ρ1|, |log σ |

}(4m+4
√
ρ1m

πρ0
+

9C
ρ1

)
+

3C
σ
.

Proof. As we observed earlier, for three sides of the rectangle �ρ1
ρ0 , the necessary

estimates to control the left-hand side of (4-93) follow from the uniformly asymp-
totically flat condition. Let’s make this more precise. First, consider those pieces of
the rectangle parallel to the ρ-axis.

From the definition of uniform asymptotic flatness, we know that

(4-95)
∣∣∣∣∂(α− 2u)

∂ν
(y)
∣∣∣∣= ∣∣∣∣∂(α− 2u)

∂z
(y)
∣∣∣∣≤ 3C
|y|2

Analogously, we have

(4-96) |α− 2u| ≤ 3C
|y|
.

In fact, the same is true on the final edge, so the above estimates are true on all of
∂�

ρ1
ρ0 −{ρ = ρ0}.
Armed with these estimates, let’s take a look at the integral

(4-97)
∫
∂�

ρ1
ρ0−{ρ=ρ0}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν
(y)
∣∣∣∣+ ∣∣∣∣(α− 2u)(y)

∂HN

∂ν
(x, y)

∣∣∣∣ dy

Since the point x is at a distance of at least σ away from the boundary, we know
that

(4-98)
∂HN

∂ν
≤

1
σπ
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and

(4-99) |HN (x, y)| ≤ 1
π

max
{
| log(2

√
2ρ1)|, | log(σ )|

}
To start, we can bound

(4-100)
∫
∂�

ρ1
ρ0−{ρ=ρ0}

∣∣∣∣(α− 2u)(y)
∂HN

∂ν
(x, y)

∣∣∣∣ dy

from above by

(4-101)
∫
∂�

ρ1
ρ0−{ρ=ρ0}

3C
σπ |y|

dy ≤ 3C
σ
,

since |y| ≥ ρ1 for y in ∂�ρ1
ρ0 −{ρ = ρ0}. We now make a similar estimate for

(4-102)
∫
∂�

ρ1
ρ0−{ρ=ρ0}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν
(y)
∣∣∣∣ dy.

As we did before, we may bound this quantity from above by

(4-103)
∫
∂�

ρ1
ρ0−{ρ=ρ0}

3C
π |y|2

max
{
|log 2

√
2ρ1|, |log σ |

}
dy

≤
3C
ρ1

max
{
|log 2

√
2ρ1|, |log σ |

}
.

We need to estimate

(4-104)
∫
(∂�

ρ1
ρ0 )∩{ρ=ρ0}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν

∣∣∣∣
for x ∈ (�ρ1

ρ0)σ . Using (4-99) and Lemma 4.4 we get

(4-105)
∫
(∂�

ρ1
ρ0 )∩{ρ=ρ0}

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν

∣∣∣∣
≤

1
π

max
{
| log(2

√
2ρ1)|, | log(σ )|

}(4m
ρ0
+

4
√
ρ1m
ρ0

+
6πC
ρ1

)
.

Putting the estimates together gives

(4-106) sup
x∈(�

ρ1
ρ0 )σ

exp
(∫

∂�
ρ1
ρ0

∣∣∣∣HN (x, y)
∂(α− 2u)

∂ν
(y)
∣∣∣∣+ ∣∣∣∣(α− 2u)(y)

∂HN

∂ν
(x, y)

∣∣∣∣ dy
)

≤ C(m, σ, ρ1, ρ0). �

With all of the above estimates in hand, controlling the W 1,p norm of eα−2u is
relatively straightforward. The technical requirements of Corollary 4.7 force us to
consider regions �ρ1

ρ0(σ ) for positive σ , see (1-16).
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Lemma 4.9. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Let �ρ1

ρ0 denote the region
{
(ρ, z) | ρ0 ≤ ρ ≤ ρ1, |z| ≤

ρ1
2

}
. Suppose that

M is also radially monotone at ρ0. For every ρ1 >max{ρ0, R0}, ε > 0, σ > 0, and
1 ≤ p < 2 there exists a δ > 0 such that if the ADM mass of g ∈M is less than δ,
then

(4-107) ‖e|α−2u|
− 1‖W 1,p(�

ρ1
ρ0 (σ ))

< ε.

Proof. By assumption, α− 2u is bounded and has bounded derivatives, although
we make no assumption on what these bounds might be. Thus, we have that e|α−2u|

is Lipschitz. As in Lemma 3.3, we get

(4-108)
∫
�
ρ1
ρ0 (σ )

|∇e|α−2u|
− 1|p ≤

∫
�
ρ1
ρ0 (σ )

|∇(α− 2u)|pep|α−2u|.

Let r > 1 be such that r p < 2. Applying Hölder’s inequality to the above gives

(4-109)
(∫

�
ρ1
ρ0 (σ )

|∇(α− 2u)|r p
)1/r(∫

�
ρ1
ρ0 (σ )

er ′ p|α−2u|
)1/r ′

,

where r ′ is the conjugate exponent to r . In order to control the left hand side we
appeal to Proposition 4.2. In order to bound the right hand side we first note that

(4-110) �ρ1
ρ0
(σ )⊂ (�ρ1+σ

ρ0
)σ .

Thus

(4-111)
∫
�
ρ1
ρ0 (σ )

er ′ p|α−2u|
≤

∫
(�

ρ1+σ
ρ0 )σ

er ′ p|α−2u|.

We may apply Corollary 4.7 to the function r ′ p(α− 2u) and modify Lemma 4.8 as
necessary in order to see that

(4-112)
∫
(�

ρ1+σ
ρ0 )σ

er ′ p|α−2u|

is uniformly bounded for all m small enough. Thus, combining the two estimates
above shows that

(4-113) ‖∇e|α−2u|
‖L p(�

ρ1
ρ0 (σ ))

<
ε

2

for sufficiently small m. Similarly, for m small enough, we can show that

(4-114) ‖e|α−2u|
‖L p(�

ρ1
ρ0 (σ ))

<
ε

2
. �
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5. Proofs of the theorems

In this section we will apply the lemmas to prove the theorems stated in the
introduction. Most of the above lemmas analyzed functions over the rectangles �ρ1

ρ0 .
Now we move our focus to the cylindrical annuli

(5-1) �̃ρ1
ρ0
(σ )=�ρ1

ρ0
(σ )×[0, 2π),

see (1-15). Except for the final theorem, this change of focus doesn’t involve any
new difficulties.

Proof of Theorem 1.4: We first restate the theorem.

Theorem 1.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose that M is radially monotone at ρ0 and that for each metric in
M, we have

(1-19) A = B = 0.

For every ρ1 >max{ρ0, R0}, ε > 0, σ > 0, and 1≤ p < 2 there exists a δ > 0 such
that if the ADM mass of g ∈M is less than δ, then

(1-20) ‖g− δR3‖W 1,p(�̃
ρ1
ρ0 (σ ))

< ε,

and

(1-21) ‖q − δR2‖W 1,p(�
ρ1
ρ0 (σ ))

< ε,

where δR3 denotes the Euclidean metric in cylindrical coordinates, δR2 denotes the
Euclidean metric in the (ρ, z) plane, and q denotes the orbit metric of g in the
(ρ, z) plane. �̃ρ1

ρ0(σ ) denotes the cylinder given in (1-15) and �ρ1
ρ0(σ ) denotes its

orbit space.

Proof. Since we have assumed that A = B = 0, in order to show that g is W 1,p

close to δR3 for small ADM mass, we need only show that

(5-2) ‖ρ2e−2u
− ρ2
‖W 1,p(�̃

ρ1
ρ0 (σ ))

< ε

and

(5-3) ‖e2α−2u
− 1‖W 1,p(�̃

ρ1
ρ0 (σ ))

< ε

if the ADM mass is sufficiently small. For (5-2) this follows quickly from Lemma 3.3.
Demonstrating (5-3) is only a little more difficult.

As before, we see that

(5-4)
∫
�̃
ρ1
ρ0

|e2(α−u)
− 1|p ≤

∫
�̃
ρ1
ρ0

|2α− 2u|pe2p(α−u).
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After applying Hölder’s inequality to the above with some r > 1 such that r p < 2
we obtain

(5-5)
(∫

�̃
ρ1
ρ0

|2(α− u)|r p
)1/r(∫

�̃
ρ1
ρ0

e2pr ′(α−u)
)1/r ′

.

In order to estimate the above, we first observe that

(5-6) 2(α− u)= 2u+ 2(α− 2u).

We can now estimate the left hand term using the triangle inequality, Corollary 3.2,
and Proposition 4.2 for the exponent r p < 2. For the right hand side we have

(5-7)
∫
�̃
ρ1
ρ0

e2pr ′(α−u)
=

∫
�̃
ρ1
ρ0

e2pr ′ue2pr ′(α−2u).

After applying Hölder’s inequality, we may use Lemma 4.9 and Lemma 3.3 applied
to 2pr ′u and 2pr ′(α−2u), respectively, to bound the L p norm of e2α−2u . In fact, in
the same way, for any fixed q we can bound the Lq norm of e2α−2u for all m small
enough, depending on ρ1, ρ0, and q. For what follows, we pick q large enough,
depending on p. If we take the gradient of e2α−2u we get

(5-8) (e2α−2u)∇(2α− 2u)= e2α−2u(∇2u+ 2∇(α− 2u)).

We again use Hölder’s inequality, Lemma 3.3, Proposition 4.2 and Lemma 4.9
to control the L p norm of ∇e2α−2u . �

Proof of Theorem 1.6: Let us first restate the theorem:

Theorem 1.6. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. For any constants ε > 0,
σ > 0, and ρ1 >max{ρ0, R0}, there exists a δ > 0 such that if g ∈M and

(1-24) m(g) < δ,

then

(1-25) |�| + ε ≥ volg(�)≥ |�| − ε

for any region � such that

(1-26) �⊂ �̃ρ1
ρ0
(σ ).

Proof. A quick calculation shows that the volume form of g in cylindrical coordinates
is

(5-9) ρe2α−3u dρ dz dφ.
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Thus, we have that

(5-10) |volg(�)− |�|| =

∣∣∣∣∫
�

(e2α−3u
− 1)ρ dρ dz dφ

∣∣∣∣
≤

∫
�̃
ρ1
ρ0

|e2α−3u
− 1|ρ dρ dz dφ.

As we have done before, we can see that

(5-11)
∫
�̃
ρ1
ρ0

|e2α−3u
− 1|ρ dρ dz dφ ≤

∫
�̃
ρ1
ρ0

|2α− 3u|e|2α−3u|ρ dρ dz dφ.

We may now apply Hölder’s inequality to the above in order to see that

(5-12)
∫
�̃
ρ1
ρ0

|2α− 3u|e|2α−3u|
≤

(∫
�̃
ρ1
ρ0

|2α− 3u|p
)1/p(∫

�̃
ρ1
ρ0

ep′|2α−3u|
)1/p′

,

where p and p′ are conjugate exponents and 1≤ p < 2. We may use the triangle
inequality to make the estimate

(5-13)
(∫

�̃
ρ1
ρ0

|2α− 3u|p
)1/p

≤ ‖u‖W 1,p + 2‖α− 2u‖W 1,p .

We may combine Corollary 3.2 and Proposition 4.2 to control the above. For the
exponential term, we use the estimate

(5-14) ep′|2α−3u|
≤ ep′|u|e2p′|α−2u|

and Hölder’s inequality once more to see that

(5-15)
∫
�̃
ρ1
ρ0

ep′|2α−3u|
≤ (e2p′|u|)1/2

(∫
�̃
ρ1
ρ0

e4p′|α−2u|
)1/2

.

We now wish to apply Lemma 3.3 and 4.9 to the above to see that it is uniformly
bounded for m small enough, depending on ρ1, ρ0 and p. Combining the two
estimates finishes the proof. �

Proof of Theorem 1.7: Let us first restate the theorem.

Theorem 1.7. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. For any fixed axisym-
metric surface 6, constant ε > 0, and constant ρ1 > max{ρ0, R0}, there exists a
δ > 0 such that if m(g) < δ, then

(1-27) |6 ∩ �̃ρ1
ρ0
(σ )| + ε ≥ Areag(6 ∩ �̃

ρ1
ρ0
(σ ))≥ |6 ∩ �̃ρ1

ρ0
(σ )| − ε.
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Proof. Let s be a fixed curve in the (ρ, z) plane representing an axisymmetric
surface, which we will call 6. A calculation shows that the area form associated
with 6 is

(5-16) ρ ◦ s(t)e(α−2u)◦s
|ṡ|δ dt dφ.

Note that the Euclidean area form for 6 is

(5-17) ρ ◦ s(t)|ṡ|δ dt dφ.

From Lemma 4.9 we deduce that for any ε > 0

(5-18) ‖ρeα−2u
− ρ‖W 1,1(�

ρ1
ρ0 (σ ))

< ε,

if the ADM mass is small enough. Now, the curve segment s∩�ρ1
ρ0(σ ) is part of the

boundary of some region in �ρ1
ρ0(σ ). Thus, we may use the trace inequality [Evans

and Gariepy 2015] to conclude that

(5-19) ‖ρeα−2u
− ρ‖L1(s∩�

ρ1
ρ0 )
< ε.

This proves the theorem. �

If the family M is area enlarging everywhere, then we also have a stronger lower
bound on the area of axisymmetric surfaces than the one given above.

Proposition 5.1. Let g be an axisymmetric metric. Let (ρ, z, φ) be the cylindrical
coordinates for g, let δR3 be the flat metric in cylindrical coordinates, and let 6 be
a C1 axisymmetric surface. If g is area enlarging, then we have

(5-20) Areag(6)≥ Areaδ
R3 (6)

Proof. Let 6 be a C1 axisymmetric surface. Let s(t) be the C1 curve in the (ρ, z)
plane which, when revolved around the ρ-axis, gives 6. We get the following map

(5-21) (t, φ)→ (s(t), φ)

from I×[0, 2π) to6. Let Ag denote the area form of the surface with respect to the
metric induced by g, and let AδR3 denote the area form induced by the background
Euclidean metric. Then using (5-16) and (5-17) we see that

(5-22) Ag = eα−2u Aδ3
R
.

In coordinates, the area enlarging condition is equivalent to the nonnegativity of
α− 2u. Thus, we know that eα−2u is greater than 1. The result now follows. �

We may combine the well known Penrose Inequality with the above proposition
to constrain the location of outer most minimal surfaces.
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Corollary 5.2. Let M be a family of uniformly asymptotically flat metrics with
nonnegative scalar curvature. Suppose M is either radially monotone or area
enlarging. Let g be a metric in M and 6 be the outermost minimal surface. If 6 is
axisymmetric and topologically a sphere, and

(5-23) m(g)≤ m,

then

(5-24) 6 ⊂ ρ−1(
[0, 2
√

2m)
)
.

Proof. Let

(5-25) ρ0 =max{ρ : (ρ, z) ∈6},

let x0 be a point in 6 point at which ρ attains the maximum ρ0, and let [x0] denote
its orbit under the killing field. From the Penrose inequality, we know that

(5-26) m ≥

√
Areag(6)

16π
.

Since 6 is axisymmetric and topologically a sphere, it must be represented in the
(ρ, z) plane by a curve γ which intersects the axis of symmetry twice. In particular,
γ must emanate from the axis, then touch the point [x0] and then make its way
back to the axis. Let Dx0 denote the disk represented by a line connecting the axis
to the point [x0]. Since this disk has minimal Euclidean area among axisymmetric
surfaces with boundary [x0], we may conclude that

(5-27) Areaδ
R3 (6) > 2 Areaδ

R3 (Dx0)= 2πρ2
0 .

Thus, combining the Penrose inequality with the above and the area enlarging
inequality (5-20) gives

(5-28) m >
ρ0

2
√

2
. �

If the metric g in the above has positive scalar curvature, then it is a well known
result that the outermost minimal surface must be a sphere. The author does not
know if in an axisymmetric metric an outermost minimal surface must also be
axisymmetric, though it does seem plausible.

Proof of Theorems 1.8 and 1.9.

Theorem 1.8. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose M is also radially monotone at ρ0. Additionally, assume that
A = B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given ε > 0, σ > 0, and ρ1 >max{ρ0, R0}. There exists a constant
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δ > 0 such that if m(g)≤ δ and x and y are any points such that the Euclidean line
segment connecting them lies in �ρ1

ρ0(σ )×{φ0} for any φ0, then

(1-28) dg(x, y)≤ d(x, y)+ ε.

Proof. We use the extension theorem for Sobolev functions, appearing as Theo-
rem 4.7 in [Evans and Gariepy 2015]. Following the notation of [Evans and Gariepy
2015], if we let U =�ρ1

ρ0(6), V = 2�ρ1
ρ0(6), and p= 1, then we may see that there

is a constant K , depending on �ρ1
ρ0(σ ), and extensions of the functions eα−u

− 1,
also denoted eα−u

− 1, such that

(5-29) ‖eα−u
− 1‖W 1,1(R2) ≤ K‖eα−u

− 1‖W 1,1(�
ρ1
ρ0 (σ ))

.

In order to obtain an upper estimate for dg(x, y), it suffices to estimate the length
of one curve connecting the points x and y. Let γxy denote the Euclidean line in
�
ρ1
ρ0(σ )× {φ0} connecting x to y parametrized by Euclidean arc length In orbit

space

(5-30) γxy(t)= (γ ρxy(t), γ
z
xy(t)).

Every such curve lies on the boundary of a square of side length the diameter of
�
ρ1
ρ0(σ ). All such squares are rotations or translations of each other. Thus, there

exists a single constant C such that if � is a square with side length the diameter
of �ρ1

ρ0(σ ), then the trace inequality holds with constant C :

(5-31) ‖ω‖L1(∂�) ≤ C‖ω‖W 1,1(�).

Let lg(γ ) be the length of γ as measured in the metric g. Then we have

(5-32) lg(γ )=

∫ d(x,y)

0
e(α−u)◦γ (t) dt.

We now use the trace inequality [Evans and Gariepy 2015] to see that

(5-33) |d(x, y)− lg(γ )| ≤

∫ d(x,y)

0
|e(α−u)◦γ (t)

− 1| dt

≤

∫
∂�

|eα−u
− 1| ≤ C‖eα−u

− 1‖W 1,1(�),

where γ lies on the boundary of �. Furthermore, we have

(5-34) ‖eα−u
− 1‖W 1,1(�) ≤ ‖e

α−u
− 1‖W 1,1(R2) ≤ K‖eα−u

− 1‖W 1,1(�
ρ1
ρ0 (σ ))

.

We may now use Theorem 1.4 to conclude that

(5-35) |d(x, y)− lg(γ )|< ε

for small enough ADM mass. �
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Very similarly, we can prove a pointwise upper bound on dg(x, y) for more
general x and y in �̃ρ1

ρ0 .

Theorem 1.9. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose also that M is radially monotone at ρ0. Additionally, assume
that A= B = 0 in the coordinate representations of the metrics under consideration.
Suppose we are given ε > 0 and σ > 0 and points x and y such that the Euclidean
line segment connecting them lies in �̃ρ1

ρ0(σ ). There exists a constant δ > 0 such
that if m(g)≤ δ, then

(1-29) dg(x, y)≤ d(x, y)+ ε.

Proof. As before, let γ be the Euclidean line connecting x to y. Then we have that
(5-36)

|lg(γxy)− 1| ≤
∫ d(x,y)

0

∣∣√e2(α−u)◦γ ((γ ′ρ)
2
+ (γ ′z)

2)+ γ 2
ρ e−2u◦γ (γ ′φ)

2
− 1

∣∣ dt.

Let

(5-37) Z = eα−u
(
γ ′ρ
∂

∂ρ
+ γ ′z

∂

∂z

)
+ e−uγ ′φ

∂

∂φ
.

Using the reverse triangle inequality, we observe that

(5-38) ||Z | − 1| = ||Z | − |γ ′|| ≤ |Z − γ ′|,

where we are working with the Euclidean metric in cylindrical coordinates. Thus,
we may estimate the above integral by

(5-39)
∫ d(x,y)

0

√
(e(α−u)◦γ

− 1)2((γ ′ρ)
2
+ (γ ′z)

2)+ (e−u◦γ
− 1)2γ 2

ρ (γ
′

φ)
2 dt.

Using the triangle inequality and the bounds

(5-40) (γ̃ ′ρ)
2
+ (γ̃ ′z)

2
≤ 1,

and

(5-41) |γργ
′

φ| ≤ 1,

we see that the above is bounded in turn by

(5-42)
∫ d(x,y)

0
|e(α−u)◦γ

− 1| dt +
∫ d(x,y)

0
|e−u◦γ

− 1| dt.

Let γ̃ be the projection of γ to the (ρ, z) plane. γ̃ lies in the boundary of a region�.
Since u and α don’t depend on φ, we see that u ◦ γ = u ◦ γ̃ and α ◦ γ = α ◦ γ̃ . We
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can now use the trace theorem, and then apply Theorem 1.4 as we did before to
show that for ADM mass small enough, we have

(5-43)
∫ d(x,y)

0
|e(α−u)◦γ̃

− 1| dt +
∫ d(x,y)

0
|e−u◦γ̃

− 1| dt < ε. �

Proof of Theorem 1.10. We restate the theorem.

Theorem 1.10. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose that M is radially monotone and that for all g ∈M we have

(1-30) A = B = 0.

Let R1 > R0 and let A(R0, R1) denote the coordinate spherical annulus centered
at the origin. For any given 0 < β < 1 and ε > 0 there exists a δ > 0 such that if
g ∈M and

(1-31) m(g) < δ,

then

(1-32) ‖g− δR3‖C0,β (A(R0,R1)) < ε.

Proof. Since we have assumed that A = B = 0, the proof will be established if we
can show that

(5-44) ‖e2α−2u
− 1‖C0,β (A(R0,R1)) < ε

and

(5-45) ‖e−2u
− 1‖C0,β (A(R0,R1)) < ε

for small enough ADM mass. The above inequalities will follow if we can show
that

(5-46) ‖α− u‖C0,β (A(R0,R1)) < ε̃

and

(5-47) ‖u‖C0,β (A(R),R1) < ε̃

for small enough ADM mass, where ε̃ depends on ε above. Using the triangle
inequality, we see that it is sufficient to bound the C0,β norms of u and α − 2u.
These bounds are the content of Lemma 5.3 and Lemma 5.7 below, respectively. �

Lemma 5.3. Suppose M is a collection of axisymmetric metrics with nonnegative
scalar curvature and empty boundary which is uniformly asymptotically flat outside
a ball of radius R0. Let u be the function appearing in the axisymmetric coordinate
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representation of g. Let R1 be greater than R0 and A(R0, R1) be the spherical
annulus centered at the origin. For ε > 0 and 0< β0 < 1 there exists a δ > 0 such
that if g ∈M and

(5-48) m(g) < δ,

then

(5-49) ‖u‖C0,β (A(R0,R1)) < ε.

Proof. Since we are working in the asymptotically flat regime, we have uniform
upper bounds on the C1(A(R0, R1)) norms of the metric functions. From Lemma 3.1
we may bound the W 1,2(A(R0, R1)) norm of u. We now interpolate between these
two estimates to bound the W 1,q norm of u for arbitrarily large q . Specifically, we
write

(5-50)
∫

A(R0,R1)

uq
=

∫
A(R0,R1)

u2uq−2
≤ ‖u‖q−2

∞

∫
A(R0,R1)

u2

We may do the same for the derivatives of u. In the end, we get the following
bounds:

(5-51) ‖u‖q ≤ ‖u‖
2/q
2 ‖u‖

1−2/q
∞

and

(5-52) ‖∇u‖q ≤ ‖∇u‖2/q2 ‖∇u‖1−2/q
∞

.

By assumption ‖u‖∞ + ‖∇u‖∞ ≤ C . Furthermore, by Lemma 3.1, we know
‖u‖W 1,2(A(R0,R1)) < ε̃ for sufficiently small m. Thus, we obtain the estimate

(5-53) ‖u‖W 1,q ≤ C1−2/q ε̃2/q .

We may now choose q large enough and appeal to the Sobolev embedding theorem
to get C0,β0 bounds on u for β0 < 1. �

Remark 5.4. It is important to note that we didn’t use the hypothesis of radial
monotonicity in the above. We only need radial monotonicity to control α− 2u.

We will try to produce similar uniform estimates for α−2u. However, as before,
the process is harder. Whereas for u we started off with W 1,p

loc (R
3) control, for

α−2u we only have W 1,p
loc (R

2
+
) control. Even worse, the estimates we were able to

prove become weaker as we approach the axis {ρ = 0}, see Corollary 4.5. In order
to work our way around this conundrum, we must use the extra factor of ρ present
in integrating over BR in R3 to control the bad behavior seen in Corollary 4.5.
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Lemma 5.5. Let f be a measurable function on �ρ1
0 . Suppose for each t we have

the estimate

(5-54)
∫
�
ρ1
t

| f | ≤
ε

tq

for some ε > 0 and q > 0. Suppose σ > q. Then, there exists a constant, denoted
C(σ, q), depending only on σ and q such that

(5-55)
∫
�
ρ1
0

ρσ | f | ≤ C(σ, q)ε.

Proof. Let tn = 2−nρ1 and let �tn,tn−1 be the following rectangle:

(5-56) �tn,tn−1 =

{
tn < ρ ≤ tn−1, |z| ≤

ρ1
2

}
.

From the monotone convergence theorem we see that

(5-57)
∫
�
ρ1
ρ0

ρσ | f | =
∫
�0,t0

ρσ | f | =
∞∑
1

∫
�tn ,tn−1

ρσ | f |.

We now make the estimate

(5-58)
∫
�tn ,tn−1

ρσ | f | ≤ tσn−1
ε

tq
n
= 2σρσ−q

1 (2σ−q)−nε.

This gives a convergent series so long as σ > q. In total, we have the estimate

(5-59)

∫
�0,t0

ρσ | f |p ≤ C(σ, q)ε. �

We now make use of the above lemma to control the W 1,1 norm of α− 2u over
the ball of radius R about the origin in R3.

Lemma 5.6. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is uniformly asymptotically flat outside of
radius R0. Suppose that M is also a radially monotone family of metrics. For any R
and ε > 0 there exists a δ > 0 such that if g ∈M and

(5-60) m(g) < δ,

then

(5-61) ‖α− 2u‖W 1,1(BR) < ε.

Proof. Let DR be the two dimensional half disk of radius R about the origin. Then

(5-62)
∫

BR

|α− 2u| = 2π
∫

DR

ρ|α− 2u|.
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For some µ > 0, to be specified later, we rewrite the above quantity as

(5-63)
∫

DR

ρ−µρ1+µ
|α− 2u|.

Let 1< q < 2 and q ′ be conjugate exponents. We apply Hölder’s inequality to the
above to get

(5-64)
(∫

DR

ρ−µq ′
)1/q ′(∫

DR

ρ(1+µ)q |α− 2u|q
)1/q

.

Choose µ small enough that

(5-65) µq ′ < 1.

We may pick large ρ1 enough that DR ⊂�
ρ1
0 . From Corollary 4.5 and Lemma 5.5,

we see that for some constant C(µ, q, R),

(5-66)
∫

DR

ρ|α− 2u| ≤ C(µ, q, R)ε

if m is chosen small enough. The same argument can be made for

(5-67)
∫

DR

ρ|∇(α− 2u)|. �

We now make an estimate on the uniform norm of α− 2u similar to Lemma 5.3.

Lemma 5.7. Suppose M is a collection of axisymmetric metrics with nonnegative
scalar curvature and empty boundary which is uniformly asymptotically flat outside
a ball of radius R0. Let R1 be greater than R0 and A(R0, R1) be the spherical
annulus centered at the origin. For ε > 0 and 0< β < 1 there exists a δ > 0 such
that if g ∈M and

(5-68) m(g) < δ,

then

(5-69) ‖α− 2u‖C0,β (A(R0,R1)) < ε.

Proof. We imitate the proof of Lemma 5.3. As before, we write

(5-70)
∫

A(R0,R1)

|α− 2u|q ≤ ‖α− 2u‖q−1
∞

∫
A(R0,R1)

|α− 2u|.

We also have

(5-71)
∫

A(R0,R1)

|∇(α− 2u)|q ≤ ‖∇(α− 2u)‖q−1
∞

∫
A(R0,R1)

|∇(α− 2u)|.
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By the asymptotic flatness assumption, we know that

(5-72) ‖α− 2u‖∞+‖(α− 2u)‖∞ ≤ C

For some C depending only on the uniform falloff in Definition 1.1. Thus, for any ex-
ponent q we can use Lemma 5.6 to control the Sobolev norm ‖α− 2u‖W 1,q (A(R0,R1))

by the ADM mass. Using the Sobolev embedding theorem, we see that

(5-73) ‖α− 2u‖C0,β ≤ C‖α− 2u‖1/qW 1,1(A(R0,R1))
,

where β=1− 3
q , the constant C depends only on the uniform falloff in Definition 1.1,

the region A(R0, R1), and q. Now we can use Lemma 5.6 to control the uniform
norm α− 2u on A(R0, R1). �

6. Area enlarging case

We now show that all the theorems stated hold when we assume our family of uni-
formly asymptotically flat metrics is area enlarging and strongly uniformly asymp-
totically flat, instead of radially monotone. The only steps required are to prove a
lemma analogous to Lemma 4.4 and a proposition analogous to Proposition 4.2.
The main difference between the radially monotone case and the area enlarging one
is in the choice of function for Green’s representation formula. Instead of working
with HN (x, y), we will use HD(x, y) (4-2). We also focus on slightly different
rectangles,

(6-1) �L
ρ0ρ1
:=

{
(ρ, z) : ρ0 ≤ ρ ≤ ρ1, |z| ≤

L
2

}
.

We now prove the first key lemma for the area enlarging and strongly uniformly
asymptotically flat case.

Lemma 6.1. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius R0. Suppose also that M is area enlarging at ρ0. For any ρ1 > ρ0,
L > 0, and ε > 0 there exists a δ > 0 such that if

(6-2) m(g) < δ,

then

(6-3)
∫
∂�L

ρ0ρ1
∩{ρ=ρ0}

|α− 2u|< ε.

Proof. Observe that if L̃ > L , then

(6-4)
∫
∂�L̃

ρ0ρ1
∩{ρ=ρ0}

|α− 2u| ≥
∫
∂�L

ρ0ρ1
∩{ρ=ρ0}

|α− 2u|.



STABILITY OF THE POSITIVE MASS THEOREM FOR AXISYMMETRIC MANIFOLDS 133

In order to take advantage of asymptotically flat conditions given in Definition 1.1
it we will often consider L̃ sufficiently larger than max{L , R0}. We will then use
the above inequality to relate any estimates we obtain back to our original situation.
Similarly, we will look at ρ̃1 >max{ρ1, R0}.

If we write the area enlarging condition (1-11) in terms of the coordinate functions,
then we see that

(6-5) (α− 2u)(ρ0, z)≥ 0.

From this, it quickly follows that

(6-6)
∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0}

|α− 2u| =
∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0}

α− 2u.

In order to estimate the above, we once again take advantage of the fundamental
theorem of calculus to write

(6-7)
∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0}

(α− 2u) dz

=

∫ L̃/2

−L̃/2

∫ ρ̃1

ρ0

−
∂(α− 2u)

∂ρ
dρ dz+

∫ L̃/2

−L̃/2
(α− 2u)(ρ̃1, z) dz.

We may switch the order of integration for the integral on the right to get

(6-8)
∫ ρ̃1

ρ0

∫ L̃/2

−L̃/2
−
∂(α− 2u)

∂ρ
dz dρ.

As before (4-24), from Stokes’ theorem we get

(6-9)
∫ L̃/2

−L̃/2
−
∂(α− 2u)

∂ρ
(ρ, z) dz

=

∫
{ρ≤s, |z|≤L̃/2}

1(α− 2u)(s, z)−
∫
{ρ≤s, |z|=L̃/2}

∂(α− 2u)
∂ν

.

Taking the absolute value of the above and plugging it into (6-7) gives us the
estimate

(6-10)
∫ L̃/2

−L̃/2
|α− 2u|

≤

∫ ρ̃1

ρ0

(∫
{ρ≤s, |z|=L̃/2}

|1(α− 2u)| +
∫
{ρ≤s, |z|=L̃/2}

∣∣∣∣∂(α− 2u)
∂z

∣∣∣∣ ds
)

dρ

+

∫ L̃/2

−L̃/2
|α− 2u|(ρ̃1, z) dz.

We now proceed to estimate the right hand side term by term.
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We start with the term

(6-11)
∫ ρ̃1

ρ0

∫
{ρ≤s, |z|=L̃/2}

∣∣∣∣∂(α− 2u)
∂z

∣∣∣∣ ds dρ.

Using the asymptotic flatness condition, we estimate

(6-12)
∫
{ρ≤s, |z|=L̃/2}

∣∣∣∣∂(α− 2u)
∂z

∣∣∣∣ ds ≤
∫
{ρ≤s, |z|=L̃/2}

3C
|(s, z)|2

ds.

Once more, a simple integration bounds the above by

(6-13)
6πC

L̃
.

Thus, we see that

(6-14)
∫ ρ̃1

ρ0

∫
{ρ≤s, |z|=L̃/2}

∣∣∣∣∂(α− 2u)
∂z

∣∣∣∣ ds dρ ≤
6πC ρ̃1

L̃
.

We may bound

(6-15)
∫ ρ̃1

ρ0

(∫
{ρ≤s, |z|=L̃/2}

|1(α− 2u)|
)

dρ

by modifying Lemma 4.3 slightly to get

(6-16)
∫
{ρ≤s, |z|=L̃/2}

|1(α− 2u)| ≤
4m+ 4

√
L̃m

ρ

and then integrating. We see that

(6-17)
∫ ρ̃1

ρ0

(∫
{ρ≤s, |z|=L̃/2}

|1(α− 2u)|
)

dρ ≤ (4m+ 4
√

L̃m) log
(
ρ̃1

ρ0

)
.

Finally, we must bound

(6-18)
∫ L̃/2

−L̃/2
|α− 2u|(ρ̃1, z) dz.

Oddly enough, this turns out to be the most delicate estimate, and the point where
we need our extra assumption on the asymptotic falloff of the function α. From
Lemma 5.3, we know that the C0,β norm of u is controlled by m. Recalling (5-49),
we see that there is a constant ε̃(ρ̃1,m) such that

(6-19)
∫ L̃/2

−L̃/2
|u(ρ̃1, z)| dz ≤ L̃ ε̃(m, ρ̃1).
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Again, looking at Lemma 5.3, we see that for fixed ρ̃1

(6-20) lim
m→0

ε̃(ρ̃1,m)= 0.

From the extra assumption on the asymptotic falloff of α, we see that

(6-21)
∫ L̃/2

−L̃/2
|α(ρ̃1, z)| dz ≤

∫ L̃/2

−L̃/2

C
|(ρ̃1, z)|1+τ

dz ≤ C(τ )(ρ̃1)
−τ ,

where C(τ ) is a constant depending only on τ . We may put all of this together to
see that

(6-22)
∫ L̃/2

−L̃/2
|α− 2u| dz

≤ (4m+ 4
√

L̃m) log
(
ρ̃1

ρ0

)
+

6πC ρ̃1

L̃
+ L̃ ε̃(ρ̃1,m)+C(τ )(ρ̃1)

−τ .

By choosing ρ̃1 and L̃ to be as large as necessary and choosing m to be as small as
necessary, we see that the above quantity can be made as small as we desire. �

The following corollary to Lemma 6.1 is analogous to Lemma 4.8.

Corollary 6.2. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius R0. Suppose also that M is area enlarging at ρ0. Let

�L
ρ0ρ1
:=

{
(ρ, z)

∣∣ρ0≤ρ≤ρ1, |z|≤
L
2

}
, and (�L

ρ0ρ1
)σ :=

{
x ∈�L

ρ0ρ1
|d(x, ∂�ρ1

ρ0
)>σ

}
.

Then for m>0, σ >0, L> R0, and ρ1> R0 there is a constant C(τ,m, σ, L , ρ1, ρ0)

such that if g ∈M and the ADM mass of g is less than m, then

(6-23) sup
x∈(�L

ρ0ρ1 )σ

exp
(∫

∂�L
ρ0ρ1

∣∣∣∣HD(x, y)
∂(α− 2u)

∂ν
(y)
∣∣∣∣+ ∣∣∣∣(α− 2u)(y)

∂HD

∂ν
(x, y)

∣∣∣∣ dy
)

≤ exp
[
C(τ,m, σ, L , ρ1, ρ0)

]
,

where τ is the constant appearing in (1-33) and C(, τ,m, σ, L , ρ1, ρ0) is a constant
depending on τ , m, σ , L , ρ1, and ρ0.

Proof. Much of the proof remains the same as it was in the radially monotone case.
The only difference is that we need to estimate

(6-24)
∫
∂�L

ρ0ρ1
∩{ρ=ρ0}

|α− 2u|,

instead of

(6-25)
∫
∂�L

ρ0ρ1
∩{ρ=ρ0}

∣∣∣∣∂(α− 2u)
∂ν

∣∣∣∣.
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This we did in Lemma 6.1. �

We now estimate the W 1,p norm of α− 2u. Using the function HD instead of
HN complicates our estimate of ‖∇(α− 2u)‖L p(�L

ρ0ρ1
). We resort to shrinking our

region a bit.

Lemma 6.3. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius R0. Suppose also that M is area enlarging at ρ0. For any ρ1 > ρ0,
L , 1≤ p < 2, σ > 0, and ε > 0 there is a δ > 0 such that if g ∈M and

(6-26) m(g) < δ,

then

(6-27) ‖α− 2u‖W 1,p((�L
ρ0ρ1

)σ )
< ε.

Here

(6-28) (�L
ρ0ρ1

)σ :=
{

x ∈�L
ρ0ρ1
: d(x, ∂�L

ρ0ρ1
)≥ σ

}
.

Proof. We may estimate the L p norm of α− 2u much as we did in Proposition 4.2.
We once again consider L̃ > L and ρ̃1 > ρ0. As before,

(6-29)
∫
(�L

ρ0ρ1
)σ

|α− 2u|p

≤ C(p)
∫
(�L

ρ0ρ1
)σ

(∫
�L̃
ρ0 ρ̃1

∣∣∣∣(α− 2u)
∂HD

∂ν

∣∣∣∣+ ∣∣∣∣HD
∂(α− 2u)

∂ν

∣∣∣∣)p

+

(∫
�L̃
ρ0 ρ̃1

|HD1(α− 2u)|
)p

dx .

On ∂�L̃
ρ0ρ̃1
−{ρ = ρ0} we have the following bound on the boundary terms

(6-30)
24C ρ̃1

π L̃|L̃ − L|
+

3C L̃
πρ̃1|ρ̃1− ρ1|

+
24C ρ̃1 log

(
2
√

L̃2
+ ρ̃2

1

)
π L̃2

+
3C L̃ log

(√
L̃2
+ ρ̃2

1

)
πρ̃2

1
.

Using the proof of Lemma 6.1 for terms on ∂�L̃
ρ0ρ̃1
∩{ρ = ρ0}, we have the estimate

(6-31) 1
πσ

((
4m+ 4

√
L̃m

)
log
(
ρ̃1

ρ0

)
+

6πC ρ̃1

L̃
+ L̃ ε̃(ρ̃1,m)+C(τ )(ρ̃1)

−τ

)
.
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If we let ρ̃1 = L̃2/3, then we may see that we may pick L̃ large enough and m small
enough to ensure

(6-32) ‖α− 2u‖L p((�L
ρ0ρq )σ )

<
ε

2
.

If we differentiate Green’s representation formula with HD we get

(6-33) ∇(α−2u)(x)=
∫
∂�L̃

ρ0 ρ̃1

(α−2u)∇x

(
∂HD

∂ν

)
−∇x(HD(x, y))

∂(α− 2u)
∂ν

dy

+

∫
�L̃
ρ0 ρ̃1

∇x(HD(x, y))1(α− 2u) dy.

On ∂�L̃
ρ0ρ̃1
∩ {ρ = ρ0} the above expression is particularly difficult to work with.

The issue is that we cannot integrate

(6-34)
∣∣∣∣∇x

(
∂HD

∂ν

)∣∣∣∣∼ 1
|x − y|2

for x near the boundary, and so we cannot complete the estimate of ‖α− 2u‖W 1,p

in the same way we proved Proposition 4.2.
As we have done before, we take the absolute value of both sides and raise the

result to the power p and then integrate to see that

(6-35)
∫
(�L̃

ρ0 ρ̃1
)σ

|∇(α− 2u)|p

is bounded above by

(6-36) C(p)
∫
(�L

ρ0ρ1
)σ

(∫
∂�L̃

ρ0 ρ̃1

∣∣∣∣∂(α− 2u)
∂ν

∇x HD

∣∣∣∣+ ∣∣∣∣(α− 2u)∇x
∂HD

∂ν

∣∣∣∣ dy
)p

+

(∫
�L̃
ρ0 ρ̃1

∣∣1(α− 2u)∇x HD
∣∣ dy

)p

dx .

We once again split the first term into the following two pieces:

(6-37) ∂�L̃
ρ0ρ̃1
−{ρ = ρ0}

and

(6-38) ∂�L̃
ρ0ρ̃1
∩ {ρ = ρ0}.

Both pieces are relatively easy to estimate. For the first piece the estimates are
similar to the above.
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As was noted earlier, the gradient of ∇x
∂HD
∂ν

isn’t integrable over �L
ρ0ρ1

for y in
∂�L̃

ρ0ρ̃1
∩ {ρ = ρ0}. However, ∇x

∂HD
∂ν

is much better behaved away from ∂�L
ρ0ρ1

.
We now attempt to estimate

(6-39)
∫
(�L

ρ0ρ1
)σ

(∫
∂�L̃

ρ0 ρ̃1

∣∣∣∣(α− 2u)∇x
∂HD

∂ν

∣∣∣∣ dy
)p

dx .

As we did before, we split ∂�L̃
ρ0ρ̃1
∩ {ρ = ρ0} into

(6-40) ∂�L̃
ρ0ρ̃1
∩ {ρ = ρ0, |z| ≤ L}

and

(6-41) ∂�L̃
ρ0ρ̃1
∩ {ρ = ρ0, |z|> L}.

We start with the piece (6-40). We may use Minkowski’s integral inequality [Folland
1999] to see that

(6-42)
(∫

(�L
ρ0ρ1

)σ

(∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0, |z|≤L}

∣∣∣∣(α− 2u)∇
∂HD

∂ν

∣∣∣∣ dy
)p

dx
)1/p

is bounded above by

(6-43)
∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0, |z|≤L}

|α− 2u|
(∫

(�L
ρ0ρ1

)σ

∣∣∣∣∇ ∂HD

∂ν

∣∣∣∣p

dx
)1/p

dy.

We now estimate

(6-44)
∫
(�L

ρ0ρ1
)σ

∣∣∣∣∇ ∂HD

∂ν

∣∣∣∣p

dx

for y in ∂�L̃
ρ0ρ̃1
∩{ρ = ρ0, |z| ≤ L}. Both ∂�L̃

ρ0ρ̃1
∩{ρ = ρ0, |z| ≤ L} and (�L

ρ0ρ1
)σ

are contained in �2L
ρ0ρ1

. Thus, if we let r0 be the diameter of �2L
ρ0ρ1

, then for all
y ∈ ∂�L̃

ρ0ρ̃1
∩ {ρ = ρ0, |z| ≤ L} we have

(6-45)
∫
(�L

ρ0ρ1
)σ

∣∣∣∣∇x
∂HD

∂ν

∣∣∣∣p

≤

∫
B(y,r0)\B(y,σ )

3p

π p|x−y|2p dx

= 3pπ1−p2
∫ r0

σ

Cr−2p+1 dr = C(p, L , ρ1, σ ).
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Thus, we may see that

(6-46)
(∫

(�L
ρ0ρ1

)σ

(∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0, |z|≤L}

∣∣∣∣(α− 2u)∇
∂HD

∂ν

∣∣∣∣ dy
)p

dx
)1/p

≤ C(p, L , ρ1, σ )
1/p

∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0, |z|≤L}

|α− 2u|.

Over (6-41) we have

(6-47)
∣∣∣∣∇ HD

∂ν

∣∣∣∣≤ 12
πL2 .

Thus, we have

(6-48)
(∫

(�L
ρ0ρ1

)σ

(∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0, |z|>L}

∣∣∣∣(α− 2u)∇
∂HD

∂ν

∣∣∣∣ dy
)p

dx
)1/p

≤

(
12ρ1

L

)1/p∫
∂�L̃

ρ0 ρ̃1
∩{ρ=ρ0, |z|>L}

|(α− 2u)| dy.

For the last term in (6-36) we may use the Riesz potential estimate as we have done
before. Putting everything together gives us the result. �

In fact, the steps required in the above proof give us a corollary analogous to
Corollary 4.5.

Corollary 6.4. Let M be a family of axisymmetric metrics with nonnegative scalar
curvature and empty boundary which is strongly uniformly asymptotically flat
outside of radius R0. Suppose M is area enlarging as well. For any L , ρ1, 1≤ p<2,
and ε > 0 there exist a δ > 0 such that if g ∈M and

(6-49) m(g) < δ,

then

(6-50)
∫
�L
ρ0,ρ1

|α− 2u|p <
ε|log ρ0|

p

ρ
p
0

and

(6-51)
∫
�L
ρ0,ρ1

|∇(α− 2u)|p ≤
ε|log ρ0|

p

ρ
p
0

.

Proof. The proofs of (6-50) and (6-51) are similar. We only prove (6-51). Observe
that

(6-52) �L
2ρ0ρ1
⊂ (�L+σ

ρ0(ρ1+σ)
)σ .
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In particular, we see from the estimates in the above theorem that

(6-53)
∫
�L

2ρ0ρ1

|∇(α− 2u)|p ≤
∫
(�L+σ

ρ0(ρ1+σ)
)σ

|∇(α− 2u)|p

is bounded above by

(6-54) C(p, L , ρ1, σ )

[(
4m+ 4

√
L̃m

)
log
(
ρ̃1

ρ0

)
+ D(m, L̃, ρ̃1, τ )

]p

+ E(p, L̃, ρ̃1)

(
4m+ 4

√

L̃m
ρ0

)p

+ F(p, L̃, ρ̃1),

where C(p, L , ρ1, σ ) is a combination of the constants found in (6-46) and (6-48),
D(m, L̃, ρ̃1, τ ) is the remainder of (6-22), E(p, L̃, ρ̃1) comes from the Riesz po-
tential estimate, and F(p, L̃, ρ̃1) is the bound on the remaining boundary terms
estimated in (6-36). A simple calculation shows that for 1< p < 2

(6-55) C(L , ρ1, σ )≤ C(p)σ−p,

since 2− 2p >−p. For p = 1, we have

(6-56) C(L , ρ1, σ )≤ C(L , ρ1) log(σ ).

If we plug the above into (6-54) with σ = ρ0, then we may see that choosing L̃ and
ρ̃1 large enough, and choosing mass to be small enough gives the result. �

We may now prove a theorem analogous to Proposition 4.2.

Lemma 6.5. Let M be an uniformly asymptotically flat family of metrics with
nonnegative scalar curvature and empty boundary. Suppose that M is area enlarging.
Let �L

ρ0ρ1
denote the rectangle given by

{
(ρ, z) | ρ0 ≤ ρ ≤ ρ1, |z| ≤ L

2

}
and let

(�L
ρ0ρ1

)σ denote {x ∈ �L
ρ0ρ1
| d(x, ∂�L

ρ0ρ1
) > σ }. For any 1 ≤ p < 2, σ > 0,

ρ0 > 0, and ε > 0 there exists a δ > 0 such that if g is in our collection of
uniformly asymptotically flat metrics, the ADM mass of g is less than δ, and, in the
axisymmetric coordinate representation of g then

(6-57) ‖e|α−2u|
− 1‖W 1,p((�L

ρ0ρ1
)σ )
< ε.

Proof. The proof follows the same line as in the radially monotone case, except
we use Lemma 6.3 instead of Proposition 4.2. It can be shown that Corollary 4.7
can be adapted to the function HD. Thus, we also use Corollary 6.2 instead of
Lemma 4.8. �

Now that we have analogues of all the estimates we made in the radially monotone
case, the proofs of Theorems 1.4, 1.6, 1.7, 1.8 and 1.10 follow almost exactly as
they did in the radially monotone case. The only theorem whose modification to the
area-enlarging case requires a little care is Theorem 1.10. Since Corollary 6.4 has a
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slightly different hypothesis than Corollary 4.5, we must show that the conclusion
of Lemma 5.5 holds with a slightly weaker hypothesis.

Lemma 6.6. Let f be a measurable function on �L
0ρ1

. Suppose for each t we have
the estimate

(6-58)
∫
�
ρ1
t

| f | ≤
ε|log(t)|q̃

tq

for some ε > 0, q > 0, and q̃. Suppose σ > q. Then, there exists a constant, denoted
C(σ, q, q̃), depending only on σ , q, and q̃ such that

(6-59)
∫
�
ρ1
0

ρσ | f | ≤ C(σ, q, q̃)ε.

Proof. As before, let tn = 2−nρ1 and let �tn,tn−1 be the following rectangle.

(6-60) �tn,tn−1 =

{
tn ≤ ρ ≤ tn−1, |z| ≤

L
2

}
From the monotone convergence theorem we see that

(6-61)
∫
�0,t0

ρσ | f | =
∞∑
1

∫
�tn ,tn−1

ρσ | f |.

We now make the estimate

(6-62)
∫
�tn ,tn−1

ρσ | f | ≤ tσn−1
ε|log(tn)|q̃

tq
n

= 2qρ
σ−q
1 (2σ−q)−n

|log(2−nρ1)|
q̃ε.

This gives a convergent series so long as σ >q , where we have used that σ−q=λ>0
and

(6-63) lim
n→∞

ρ12−n
|log(ρ12−n)|2q̃/λ

= 0.

In total, we have the estimate

(6-64)

∫
�0,t0

ρσ | f | ≤ C(σ, q, q̃)ε. �

Now we can show that Lemma 5.6 holds in the area-enlarging case and so
Theorem 1.10 also holds in the area-enlarging case.

Appendix A: The case of nonempty boundaries

Recall that it is physically desirable to explicitly include manifolds with minimal
surface boundary, since we shouldn’t expect to have any physical knowledge of
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the metric inside of a minimal surface. It is possible to deduce the following mass
formula for axisymmetric manifolds with connected boundary [Khuri et al. 2019]:

(A-1) m(g)= 1
16π

∫
R3

2|∇ū|2+e2(u−α)Rg dx+ 1
4

∫ m0

−m0

ᾱ(0, z)−2ū(0, z) dz+m0,

where ᾱ and ū are regularizations of the coordinate functions α and u, respectively,
and m0 is a positive constant determined uniquely by the metric g. Explicitly, the
functions ᾱ and ū are given by

ū = u− u0,(A-2)

ᾱ = α−α0.(A-3)

where α0 and u0 are the coordinate functions associated to the Schwarzschild metric
of mass m0 in Weyl coordinates, coordinates in which the minimal surface is given
by a rod of length 2m0:

α0 =
1
2 log

[(√
ρ2
+ (z−m0)

2
+

√

ρ2
+ (z+m0)

2
)2
− 4m2

0

4
√

ρ2
+ (z−m0)

2
√

ρ2
+ (z+m0)

2

]
,(A-4)

u0 =
1
2 log

[√
ρ2
+ (z−m0)

2
+

√

ρ2
+ (z+m0)

2
− 2m0

√

ρ2
+ (z−m0)

2
+

√

ρ2
+ (z+m0)

2
+ 2m0

]
.(A-5)

Chruściel and Nguyen [2011] have shown that the constant m0 is bounded by

(A-6) m(g)≥ π
4

m0,

given the hypothesis of the positive mass theorem. We have the following theorem:

Theorem A.1. Let M be a family of axisymmetric uniformly asymptotically flat
metrics with nonnegative scalar curvature. Suppose that M is either area enlarging,
with the corresponding stronger asymptotic falloff , or radially monotone. Addition-
ally, we allow any (M, g) in M to have a connected minimal surface boundary. In
this case, we use the cylindrical coordinates for which the minimal surface is a rod
on the axis of symmetry of length 2m0 centered about the origin, and we assume
(M, g) satisfies the following inequality on its minimal surface boundary:

(A-7) 1
4

∫ m0

−m0

ᾱ− 2ū(0, z) dz+m0 ≥ 0,

where ᾱ and ū are as above. Then, for any ε > 0 there exists a δ > 0 such that if
(M, g) is in M and m(g) < δ, then

‖g− δR3‖W 1,p(�̃
ρ1
ρ0 (σ ))

< ε(A-8)

‖q − δR2‖W 1,p(�
ρ1
ρ0 (σ ))

< ε.(A-9)
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Remark A.2. It is important to note that in the case of a nonempty boundary, we
have had to specify the cylindrical coordinates for which the boundary is on the
axis. Then, the radial monotonicity and area-enlarging inequality are stated with
respect to these coordinates. These conditions are geometric, since in choosing
the boundary to be on the axis, we have removed any freedom in the choice of a
conformal transformation.

Proof. In Weyl coordinates, with the boundary of the manifold represented as a rod
on the axis, we see that for any fixed parameter ρ0> 0, we have that the functions α0

and u0, and their gradients, converge uniformly to zero on ρ−1
[ρ0,∞) as m0→ 0.

It thus follows that on any compact set away from the axis, say �, we have

‖α0‖W 1,2(�)→ 0,(A-10)

‖u0‖W 1,2(�)→ 0,(A-11)

as m0→ 0. Finally, we recall that m ≥ π
4 m0 [Chruściel and Nguyen 2011]. We

now have all the ingredients necessary to extend the proofs of this paper to the case
of manifolds with boundary. Note that an analogue of Corollary 3.2 holds for ū
by the mass formula (A-1) and (A-7). Thus, we may use the Cauchy–Schwartz
inequality to show that

(A-12) ‖u‖2
W 1,2(�

ρ1
ρ0 )
≤ 2

(
‖u0‖

2
W 1,2(�

ρ1
ρ0 )
+‖ū‖2

W 1,2(�
ρ1
ρ0 )

)
is bounded by the mass. At this point, the rest of the proof is the same as in the
case of empty boundary. �

As we see in the next section, the nonextreme Kerr–Newman metrics satisfy all
of the conditions in the above theorem strictly. Thus, small perturbations will also
satisfy these conditions.

Appendix B: Examples

Kerr–Newman. In this section, we show that the Kerr–Newman family of metrics
satisfy the radial monotone condition and the area enlarging condition, and (A-7).
This is done by a direct calculation. We take the familiar Brill–Lindquist coordi-
nates and transform them into cylindrical coordinates. Unfortunately, the simple
expression of the Kerr–Newman metric in Brill–Lindquist coordinates becomes
rather complicated when it is written in cylindrical coordinates. The procedure itself
is uncomplicated, since there is an explicit map between these two coordinates. The
change of coordinates depends on the charge, angular momentum, and mass of the
Kerr–Newman metric. Once the map has been constructed, we use the expression
for the metric in Brill–Lindquist to write down the expression for the metric in
cylindrical coordinates.
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We now describe in detail the coordinate change from Brill–Lindquist coordinates
to cylindrical coordinates and write down the exact formula for the metric functions
u and α. It is convenient to introduce a third coordinate system between Brill–
Lindquist and cylindrical. We shall use the prolate-spheroidal coordinates. We
will first consider the map from prolate-spheroidal coordinates to Brill–Lindquist
coordinates, and then pull back the metric. Let a denote the angular momentum
parameter, let e denote the charge parameter, and let m denote the mass parameter,
then, in Brill–Lindquist coordinates, the Kerr metric takes the form

(B-1) g = σ
γ

dr2
+ σ dθ2

+
sin2(θ)

σ

[
(r2
+ a2)2− a2 sin2(θ)γ (r)

]
dφ2

for

(B-2) γ (r)= r2
− 2mr + a2

+ e2

and

(B-3) σ(r, θ)= r2
+ a2 cos2(θ).

The map from prolate spheroidal coordinates (x, y, φ) to Brill–Lindquist coordi-
nates (r, θ, φ) is given by

r = x
√

m2− (a2+ e2)+m(B-4)

θ = cos−1(y)(B-5)

It turns out that the parameter m0 appearing in Appendix A is given by

(B-6) m0 =
√

m2− (a2+ e2).

The map from cylindrical coordinates to prolate spheroidal is, unfortunately, less
simple.

x =

√
ρ2+ (z+m0)2+

√
ρ2+ (z−m0)2

2m0
(B-7)

y =

√
ρ2+ (z+m0)2−

√
ρ2+ (z−m0)2

2m0
(B-8)

One may observe that the minimal surface in the Kerr–Newman metric is a rod on
the ρ axis.

We now pull back the Kerr–Newman metric twice to obtain the formulas for the
functions u and α in cylindrical coordinates. The end results of this process are the
following formulas:

(B-9) u(ρ, z)=− 1
2 log

[
(1−y2)

(
[(m0x+m)2+a2

]
2
−a2m2

0[1−y2
][x2
−1]

)
ρ2([m0x+m]2+a2 y2)

]
,
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(B-10) α(ρ, z)= 1
2 log

[
(m0x +m)2+ a2 y2

m2
0(x

2− y2)

]
+ u(ρ, z).

When written entirely in terms of (ρ, z), these two equations are very cumbersome.
Luckily, for the purpose of verifying the radial monotonicity condition and the
area enlarging condition, writing everything in terms of (ρ, z) turns out to be
unnecessary.

Proposition B.1. Nonextreme Kerr–Newman metrics are radially monotone in the
coordinates for which the minimal surface is a rod on the axis.

A straight forward calculation shows that

(B-11)
∂

∂ρ
=

ρ

(ρ2+ (z+m0)2)1/2(ρ2+ (z−m0)2)1/2

(
x
∂

∂x
− y

∂

∂y

)
.

Thus, we see that

(B-12)
∂(α− 2u)

∂ρ
= f (ρ, z)

(
x
∂

∂x
− y

∂

∂y

)
×

1
2 log

(
[(m0x +m)2+ a2

]
2
− a2m2

0[1− y2
][x2
− 1]

m4
0(x

2− 1)(x2− y2)

)
,

where f (ρ, z) is the nonnegative function appearing in front of the derivatives in
(B-11). Since f (ρ, z) is nonnegative, we may restrict our analysis to the second
term on the right. Taking the derivatives and collecting terms leaves us with

(B-13)
4m0x(m0x +m)[(m0x +m)2+ a2

] − 2a2m2
0x2(1− y2)

[(m0x +m)2+ a2]2− a2m2
0(1− y2)(x2− 1)

−
2x2((x2

− 1)+ (x2
− y2))

(x2− 1)(x2− y2)

−

[
2a2m2

0(x
2
− 1)y2

[(m0x +m)2+ a2]2− a2m2
0(1− y2)(x2− 1)

+
2y2

x2− y2

]
.

The third term in brackets is nonnegative, so we must analyze the interplay of the
first two terms.

We expand

(B-14)
2x2((x2

− 1)+ (x2
− y2))

(x2− 1)(x2− y2)

to

(B-15)
2x2

x2− 1
+

2x2

x2− y2 .
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From the range of values that x and y can take, we may deduce that the denominators
of both fractions are smaller than x2. Thus, we have

(B-16)
2x2

x2− 1
+

2x2

x2− y2 > 4.

We now observe that

(B-17) [(m0x+m)2+a2
]
2
−a2m2

0(1−y2)(x2
−1)≥ (m0x+m)4+a2(m0x+m)2.

As a consequence, we have that

(B-18)
4m0x(m0x +m)[(m0x +m)2+ a2

] − 2a2m2
0x2(1− y2)

[(m0x +m)2+ a2]2− a2m2
0(1− y2)(x2− 1)

≤ 4.

Putting everything together shows that

(B-19)
∂(α− 2u)

∂ρ
< 0.

Luckily, showing that Kerr–Newman metrics satisfy (A-7) follows quickly from
the above expressions for u and α. In fact, one may check that ᾱ−2ū is nonnegative
on the rod giving the minimal surface.

Proposition B.2. Let g be a nonextreme Kerr–Newman metric, and let ᾱ and ū be
as described above. Then, we have that

(B-20) (ᾱ− 2ū)(0, z)≥ 0,

for |z| ≤ m0. The inequality is strict, unless g is a Schwarzschild metric.

Proof. Once again, the proof consists of a calculation. Using the above expressions
for α and u coming from a Kerr–Newman metric, we see that

(B-21) ᾱ− 2ū = 1
2 log

[
([m0x +m]2+ a2)2− a2m2

0(1− y2)(x2
− 1)

m4
0(x + 1)4

]
.

In prolate spheroidal coordinates, the minimal surface rod is given by

{(x, y, φ) : x = 1}.

Thus, the above simplifies to

(B-22) 1
2 log

[
([m0+m]2+ a2)2

16m4
0

]
.

Since m ≥ m0 and a ≥ 0, it follows that the above is nonnegative, and only zero in
the case that the metric g is Schwarzschild. �
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It is interesting to explore some of the geometric meaning behind the condition
of radial monotonicity. In coordinates, radial monotonicity implies that

(B-23)
∂(α− 2u)

∂ρ
≤ 0.

Recall from the proof of Proposition 5.1 that the coordinate function α−2u controls
the area of axisymmetric surfaces. Thus, it is reasonable to suppose that the radial
monotonicity condition is an assumption on the mean curvature of the level sets
of the function ρ, which is the solution to (1-10). It turns out that this is the case,
although in a slightly round about way.

Proposition B.3. Suppose that g is an asymptotically flat axisymmetric metric and
ρ is the solution to (1-10) for g. The metric g is radially monotone if and only if the
level sets of ρ form a family of surfaces evolving by a sub-inverse-mean-curvature
flow.

Proof. Let η denote the killing field generating the axisymmetry of (M, g). We
start by observing that we may lift any function ω on M/S1 to a function on M ,
which we also denote ω. When considered as a function on M we have

(B-24) g(∇ω, η)= 0,

since we lifted ω by transporting it along the flow lines of η. Let q denote the orbit
metric of M/S1. Recall that

(B-25) q(X, Y )= g(X , Y )−
g(X , η)g(Y , η)

|η|2g
,

where X and Y are the images of X and Y under the projection map, respectively.
From the above, we may conclude that for any two functions ω and h on M/S1 we
have

(B-26) q(∇ω,∇h)= g(∇ω,∇h).

We have abused notation slightly in using∇ to denote both the gradient in (M/S1, q)
and in (M, g).

It is a standard computation to see that the mean curvature of the level sets of ρ
is given by

(B-27) H = divg

(
∇ρ

|∇ρ|g

)
.

We expand out the right hand side to get

(B-28) divg

(
∇ρ

|∇ρ|g

)
=

1
|∇ρ|g

(
1gρ−

g(∇ρ,∇|∇ρ|)
|∇ρ|

)
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We now use Equation (1-10) for ρ to rewrite the above as

(B-29) 1
|∇ρ|

(
g(∇ρ,∇|η|)
|η|

−
g(∇ρ,∇|∇ρ|)
|∇ρ|

)
=

1
|∇ρ|

g
(
∇ρ,∇ log

|η|

|∇ρ|

)
.

From axisymmetry, |∇ρ| and |η| are functions on M/S1. In particular

(B-30) g
(
∇ρ,∇ log

|η|

|∇ρ|

)
= q

(
∇ρ,∇ log

|η|

|∇ρ|

)
.

Recalling the radial monotonicity condition (1-17) and noting that log is a monotone
increasing function, we see that

(B-31) q
(
∇ρ,∇ log

(
|η|

ρ|∇ρ|

))
≤ 0,

since in the orbit space M/S1 we have

(B-32)
∂

∂ρ
=

∣∣∣∣ ∂∂ρ
∣∣∣∣2
q
∇ρ.

We may plug (B-29) and (B-27) into (B-31) to see that

(B-33) 0≥ q
(
∇ρ,∇ log

(
|η|

|∇ρ|

))
−q(∇ρ,∇ log ρ)= |∇ρ|H−|∇ρ||∇ log ρ|.

Dividing both sides by |∇ρ| and rearranging terms gives

(B-34) |∇ log ρ| ≥ H.

The above equation is precisely the statement that the level sets of ρ give a sub-
inverse-mean-curvature flow. �

It is relatively easy to see that if a metric is radially monotone everywhere, then
it must also be area enlarging everywhere. In particular, the following proposition
implies that Kerr–Newman metrics are area enlarging.

Proposition B.4. Let g be an asymptotically flat metric which is everywhere radially
monotone. Then g is everywhere area enlarging.

Proof. Since g is assumed to be globally radially monotone, we have

(B-35)
∂(α− 2u)

∂ρ
≤ 0.

As g is asymptotically flat, we know that

(B-36) lim
ρ→∞

(α− 2u)(ρ, z)= 0
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for all z. Thus, using the fundamental theorem, we may see that

(B-37) 0≤−
∫
∞

ρ0

∂(α− 2u)
∂ρ

(ρ, z) dρ = (α− 2u)(ρ0, z).

This is precisely the coordinate expression of the area enlarging condition. �

We now find several examples of metrics which are area enlarging and strongly
asymptotically flat.

Axisymmetric geometrostatic. Here we show that the axisymmetric geometrostatic
metrics are area-enlarging and strongly asymptotically flat. Recall that the general
form of a geometrostatic metric is

(B-38) (M, g)=
(
R3
\{xi }

n
1, (χψ)

2δR3
)
,

where for positive numbers {ai }
n
1 and {bi }

n
1 we have

(B-39) χ(x)= 1+
n∑

i=1

ai

|x − xi |

and

(B-40) ψ(x)= 1+
n∑

i=1

bi

|x − xi |
.

If the points {xi } lie on a common line, then the resulting metric will be axisymmetric.
The axis of symmetry will be the line on which the xi lie. After a rotation, we may
suppose that the axis of symmetry is the z-axis. We may now see that the usual
Euclidean cylindrical coordinates are also cylindrical coordinates for (M, g). In
particular

(B-41) g = (χψ)2(dρ2
+ dz2

+ ρ2dφ2).

A quick calculation shows that the coordinate function α vanishes and

(B-42) u =− log(χψ).

Since both χ and ψ are strictly larger than one, we see that u is negative. Since
α = 0, it is clear that

(B-43) α− 2u ≥ 0.

This is precisely the coordinate expression of the area-enlarging condition. That
(M, g) is also strongly asymptotically flat follows trivially from the fact that α = 0.
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Conformal metrics. Here we show that asymptotically flat axisymmetric metrics
with nonnegative scalar curvature which are conformal to Euclidean space and have
an axisymmetric, minimal, and connected boundary, or an empty one, satisfy the
area enlarging condition and the strongly asymptotically flat condition.

Suppose (M, g) is as above. Then there is some constant m1 [Chruściel and
Nguyen 2011] and function u such that

(B-44) (M, g)=
(
R3
\Bm1(0), e−2uδR3

)
.

Written in cylindrical coordinates

(B-45) g = e−2u(dρ2
+ dz2)+ ρ2e−2u dφ2

Since ∂Bm1 is a minimal surface, from the formula for mean curvature we see that
[Chruściel and Nguyen 2011]

(B-46)
∂u
∂ν

∣∣∣
∂Bm1

=
1

m1
.

Since we have assumed that the scalar curvature is nonnegative, we may use the
scalar curvature formula (2-2) together with the Hopf lemma and the maximum
principle to conclude that

(B-47) sup
Br0\Bm1

u = sup
∂Br0

u.

Since we know from the fact that g is asymptotically flat that u vanishes at infinity,
we may conclude that

(B-48) u ≤ 0,

and consequently (M, g) satisfies the area enlarging condition (1-11). In fact, if we
apply the strong maximum principle, we may see that

(B-49) u < 0,

unless we are dealing with flat space. Since α vanishes identically, we see that
(M, g) is also strongly asymptotically flat.
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[Chruściel and Nguyen 2011] P. T. Chruściel and L. Nguyen, “A lower bound for the mass of
axisymmetric connected black hole data sets”, Classical Quantum Gravity 28:12 (2011), art. id.
125001, 19 pp. MR Zbl

[Corvino 2005] J. Corvino, “A note on asymptotically flat metrics on R3 which are scalar-flat and
admit minimal spheres”, Proc. Amer. Math. Soc. 133:12 (2005), 3669–3678. MR Zbl

[Evans and Gariepy 2015] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of
functions, Revised ed., CRC Press, Boca Raton, FL, 2015. MR Zbl

[Finster and Kath 2002] F. Finster and I. Kath, “Curvature estimates in asymptotically flat manifolds
of positive scalar curvature”, Comm. Anal. Geom. 10:5 (2002), 1017–1031. MR Zbl

[Folland 1999] G. B. Folland, Real analysis: modern techniques and their applications, 2nd ed.,
Wiley, New York, 1999. MR Zbl

[Gibbons and Holzegel 2006] G. W. Gibbons and G. Holzegel, “The positive mass and isoperimetric
inequalities for axisymmetric black holes in four and five dimensions”, Classical Quantum Gravity
23:22 (2006), 6459–6478. MR Zbl

[Gilbarg and Trudinger 1998] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of
second order, 2nd ed., Grundlehren der mathematischen Wissenschaften 224, Springer, 1998. MR
Zbl

[Huang et al. 2017] L.-H. Huang, D. A. Lee, and C. Sormani, “Intrinsic flat stability of the positive
mass theorem for graphical hypersurfaces of Euclidean space”, J. Reine Angew. Math. 727 (2017),
269–299. MR Zbl

[Khuri et al. 2019] M. Khuri, B. Sokolowsky, and G. Weinstein, “A Penrose-type inequality with
angular momentum and charge for axisymmetric initial data”, Gen. Relativity Gravitation 51:9
(2019), art. id. 118, 23 pp. MR Zbl

[Lee 2009] D. A. Lee, “On the near-equality case of the positive mass theorem”, Duke Math. J. 148:1
(2009), 63–80. MR Zbl

[Lee and Sormani 2014] D. A. Lee and C. Sormani, “Stability of the positive mass theorem for
rotationally symmetric Riemannian manifolds”, J. Reine Angew. Math. 686 (2014), 187–220. MR
Zbl

[LeFloch and Sormani 2015] P. G. LeFloch and C. Sormani, “The nonlinear stability of rotationally
symmetric spaces with low regularity”, J. Funct. Anal. 268:7 (2015), 2005–2065. MR Zbl

[Schoen and Yau 1979] R. Schoen and S. T. Yau, “On the proof of the positive mass conjecture in
general relativity”, Comm. Math. Phys. 65:1 (1979), 45–76. MR Zbl

http://dx.doi.org/10.1007/s00023-017-0641-7
http://msp.org/idx/mr/3775157
http://msp.org/idx/zbl/1409.53034
http://dx.doi.org/10.4310/CAG.2002.v10.n2.a3
http://msp.org/idx/mr/1900753
http://msp.org/idx/zbl/1030.53041
http://dx.doi.org/10.1016/0003-4916(59)90055-7
http://dx.doi.org/10.1016/0003-4916(59)90055-7
http://msp.org/idx/mr/108340
http://dx.doi.org/10.1016/j.aop.2007.12.010
http://dx.doi.org/10.1016/j.aop.2007.12.010
http://msp.org/idx/mr/2454698
http://msp.org/idx/zbl/1151.83008
http://dx.doi.org/10.1088/0264-9381/28/12/125001
http://dx.doi.org/10.1088/0264-9381/28/12/125001
http://msp.org/idx/mr/2822554
http://msp.org/idx/zbl/1219.83035
http://dx.doi.org/10.1090/S0002-9939-05-07926-8
http://dx.doi.org/10.1090/S0002-9939-05-07926-8
http://msp.org/idx/mr/2163606
http://msp.org/idx/zbl/1080.53060
http://msp.org/idx/mr/3409135
http://msp.org/idx/zbl/1310.28001
http://dx.doi.org/10.4310/CAG.2002.v10.n5.a6
http://dx.doi.org/10.4310/CAG.2002.v10.n5.a6
http://msp.org/idx/mr/1957661
http://msp.org/idx/zbl/1041.53027
http://msp.org/idx/mr/1681462
http://msp.org/idx/zbl/0924.28001
http://dx.doi.org/10.1088/0264-9381/23/22/022
http://dx.doi.org/10.1088/0264-9381/23/22/022
http://msp.org/idx/mr/2272015
http://msp.org/idx/zbl/1111.83029
http://msp.org/idx/mr/1814364
http://msp.org/idx/zbl/1042.35002
http://dx.doi.org/10.1515/crelle-2015-0051
http://dx.doi.org/10.1515/crelle-2015-0051
http://msp.org/idx/mr/3652253
http://msp.org/idx/zbl/1368.53028
http://dx.doi.org/10.1007/s10714-019-2600-8
http://dx.doi.org/10.1007/s10714-019-2600-8
http://msp.org/idx/mr/4010612
http://msp.org/idx/zbl/07119051
http://dx.doi.org/10.1215/00127094-2009-021
http://msp.org/idx/mr/2515100
http://msp.org/idx/zbl/1168.53018
http://dx.doi.org/10.1515/crelle-2012-0094
http://dx.doi.org/10.1515/crelle-2012-0094
http://msp.org/idx/mr/3176604
http://msp.org/idx/zbl/1291.53048
http://dx.doi.org/10.1016/j.jfa.2014.12.012
http://dx.doi.org/10.1016/j.jfa.2014.12.012
http://msp.org/idx/mr/3315585
http://msp.org/idx/zbl/1316.53058
http://dx.doi.org/10.1007/BF01940959
http://dx.doi.org/10.1007/BF01940959
http://msp.org/idx/mr/526976
http://msp.org/idx/zbl/0405.53045


152 EDWARD T. BRYDEN

[Sormani and Stavrov Allen 2019] C. Sormani and I. Stavrov Allen, “Geometrostatic manifolds of
small ADM mass”, Comm. Pure Appl. Math. 72:6 (2019), 1243–1287. MR Zbl

[Witten 1981] E. Witten, “A new proof of the positive energy theorem”, Comm. Math. Phys. 80:3
(1981), 381–402. MR Zbl

Received June 20, 2018. Revised June 28, 2019.

EDWARD T. BRYDEN

DEPARTMENT OF MATHEMATICS

STONY BROOK UNIVERSITY

STONY BROOK, NY
UNITED STATES

Current address:
TUEBINGEN UNIVERSITY

TUEBINGEN

GERMANY

ebryden@math.sunysb.edu

http://dx.doi.org/10.1002/cpa.21807
http://dx.doi.org/10.1002/cpa.21807
http://msp.org/idx/mr/3948557
http://msp.org/idx/zbl/1417.53072
http://dx.doi.org/10.1007/BF01208277
http://msp.org/idx/mr/626707
http://msp.org/idx/zbl/1051.83532
mailto:ebryden@math.sunysb.edu


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2020 is US $520/year for the electronic version, and $705/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2020 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 305 No. 1 March 2020

1The Poincaré homology sphere, lens space surgeries, and some knots with tunnel
number two

KENNETH L. BAKER

29Fusion systems of blocks of finite groups over arbitrary fields
ROBERT BOLTJE, ÇISIL KARAGÜZEL and DENIZ YILMAZ

43Torsion points and Galois representations on CM elliptic curves
ABBEY BOURDON and PETE L. CLARK

89Stability of the positive mass theorem for axisymmetric manifolds
EDWARD T. BRYDEN

153Index estimates for free boundary constant mean curvature surfaces
MARCOS P. CAVALCANTE and DARLAN F. DE OLIVEIRA

165A criterion for modules over Gorenstein local rings to have rational Poincaré series
ANJAN GUPTA

189Generalized Cartan matrices arising from new derivation Lie algebras of isolated
hypersurface singularities

NAVEED HUSSAIN, STEPHEN S.-T. YAU and HUAIQING ZUO

219On the commutativity of coset pressure
BING LI and WEN-CHIAO CHENG

229Signature invariants related to the unknotting number
CHARLES LIVINGSTON

251The global well-posedness and scattering for the 5-dimensional defocusing conformal
invariant NLW with radial initial data in a critical Besov space

CHANGXING MIAO, JIANWEI YANG and TENGFEI ZHAO

291Liouville-type theorems for weighted p-harmonic 1-forms and weighted p-harmonic
maps

KEOMKYO SEO and GABJIN YUN

311Remarks on the Hölder-continuity of solutions to parabolic equations with conic
singularities

YUANQI WANG

329Deformation of Milnor algebras
ZHENJIAN WANG

339Preservation of log-Sobolev inequalities under some Hamiltonian flows
BO XIA

353Ground state solutions of polyharmonic equations with potentials of positive low
bound

CAIFENG ZHANG, JUNGANG LI and LU CHEN

Pacific
JournalofM

athem
atics

2020
Vol.305,N

o.1


	1. Introduction
	2. Background information
	3. Sobolev estimates for u and eu
	4. Sobolev estimates for -2u and e-2u
	5. Proofs of the theorems
	6. Area enlarging case
	Appendix A. The case of nonempty boundaries
	Appendix B. Examples
	Acknowledgments
	References
	
	

