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THANGAVELU GEETHA, AMRITANSHU PRASAD AND SHRADDHA SRIVASTAVA

We introduce the alternating Schur algebra ASF(n, d) as the commutant
of the action of the alternating group Ad on the d-fold tensor power of an
n-dimensional F-vector space. When F has characteristic different from 2,
we give a basis of ASF(n, d) in terms of bipartite graphs, and a graphical
interpretation of the structure constants. We introduce the abstract Koszul
duality functor on modules for the even part of any Z/2Z-graded algebra.
The algebra ASF(n, d) is Z/2Z-graded, having the classical Schur algebra
SF(n, d) as its even part. This leads to an approach to Koszul duality for
SF(n, d)-modules that is amenable to combinatorial methods. We charac-
terize the category of ASF(n, d)-modules in terms of SF(n, d)-modules and
their Koszul duals. We use the graphical basis of ASF(n, d) to study the
dependence of the behavior of derived Koszul duality on n and d.

1. Introduction

1A. Schur–Weyl duality and its variants. Frobenius [1900] determined the irre-
ducible characters of the symmetric group Sd over C, the field of complex num-
bers. Building on this, Schur classified the irreducible polynomial representations
of GLn(C) and computed their characters in his PhD thesis [Schur 1901]. The
group GLn(C) acts on the factors of (Cn)⊗d, while Sd permutes the tensor factors.
Schur [1927] used these commuting actions to reprove the results of his dissertation.
Following Weyl’s expositions of this method [Weyl 1931; Weyl 1939], it is known
as Schur–Weyl duality.

Over the years, several variants of Schur–Weyl duality have emerged. Shrinking
GLn(C) to the orthogonal group On(C), Brauer [1937] obtained the duality between
Brauer algebras Brd(n) and On(C). Motivated by the Potts model in statistical
mechanics, Jones [1994] and Martin [1991] further shrunk On(C) down to Sn ,
obtaining the partition algebras Pd(n). Bloss [2005] reduced Sn to An to obtain an
algebra APd(n)which coincides with the partition algebra when n≥2d+2. We take
the smallest possible step in the opposite direction: we reveal what takes the place
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Fn⊗d

?? this article Ad

∪ ∩

GLn(F) Schur–Weyl Sd

∪ ∩

On(F) Brauer Brd(n)
∪ ∩

Sn Martin and Jones Pd(n)
∪ ∩

An Bloss APd(n)

Table 1. Dualities arising from tensor space.

of the polynomial representations of GLn(C) when the action of the symmetric
group Sd is restricted to the alternating group Ad . The situation is summarized
in Table 1. The significance of this investigation lies in its connection with the
Koszul duality functor on the category of homogeneous polynomial representations
of GLn(C) of degree d .

1B. Schur algebras for the alternating group. Motivated by Green [2007, Theo-
rem 2.6c], define the Schur algebra as

SF (n, d)= EndSd ((F
n)⊗d)

for any field F, and positive integers n and d. When F is infinite, then SF (n, d)-
modules are the same as homogeneous polynomial representations of GLn(F) of
degree d (see [Green 2007, Section 2.4] and [Prasad 2015, Section 6.2]). Define the
alternating Schur algebra ASF (n, d) by replacing Sd by Ad in the definition above:

ASF (n, d)= EndAd ((F
n)⊗d).

When F has characteristic different from 2, this algebra has a decomposition (see
Lemma 2.1)

(1) ASF (n, d)= SF (n, d)⊕S−F (n, d)

as a Z/2Z-graded algebra. Here S−F (n, d)=HomSd ((F
n)⊗d , (Fn)⊗d

⊗sgn), where
sgn is used to denote the sign character of Sd . The subspace S−F (n, d) is an
(SF (n,d),SF (n,d))-bimodule.

When n2 < d, then S−F (n, d) = 0, and ASF (n, d) = SF (n, d), as observed by
Regev [2002, Theorem 1]. But when n2

≥ d , S−F (n, d) 6= 0, and in Lemma 2.2, we
note that S−F (n, d) is a full tilting left SF (n, d)-module as studied by Donkin [1993,
Section 3].
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1C. Bases and structure constants. Schur [1927] gave a combinatorial description
of a basis and the corresponding structure constants of the Schur algebra (see also
[Green 2007, Section 2.3]). By indexing Schur’s basis of SF (n, d) by bipartite
multigraphs with n+ n vertices and d edges, Méndez [2001] (see also [Geetha and
Prasad 2014]) gave a graphic interpretation of the structure constants. We describe a
basis of S−F (n, d) in terms of bipartite simple graphs in Theorem 2.24. So from the
decomposition (1), a basis of ASF (n, d) is obtained. A graphic interpretation of the
structure constants of ASF (n, d) is given in Theorems 2.14 and 2.25. This will be
used to derive properties of ASF (n, d), its bimodule S−F (n, d), and Koszul duality.

1D. Koszul duality and modules. The term Koszul duality is used for several con-
structions which interchange the roles of exterior and symmetric powers.

The earliest notion of Koszul duality was introduced by Priddy [1970]. It applies
to pre-Koszul algebras, which are also called quadratic algebras. A pre-Koszul
algebra is a quotient of a tensor algebra

T (V )=
⊕
n≥0

⊗
nV

by a two-sided ideal I that is generated in degree two. Its Koszul dual is the algebra

T (V ∗)/(I ∩ (V ⊗ V ))⊥;

the quotient of the dual tensor algebra by the annihilator in degree two of I. In this
setting the Koszul dual of the symmetric algebra of V is the exterior algebra of V ∗.

Bernstein, Gelfand, and Gelfand [Bernstein et al. 1978, Theorem 3] introduced
an equivalence between the bounded derived categories of graded modules over
symmetric and exterior algebras, which was called the Koszul duality functor by
Beilinson, Ginsburg, and Schectman [Beilinson et al. 1988].

Friedlander and Suslin [1997] introduced the category of strict polynomial func-
tors of degree d as the representations of the Schur category of degree d , for each
nonnegative integer d (see Section 4A). The category of strict polynomial functors
of degree d unifies the categories of homogeneous polynomial representations of
GLn(F) of degree d across all n. Standard examples of strict polynomial functors
of degree d are the d-th tensor power functor ⊗d, the d-th symmetric power functor
Symd, and the d-th exterior power functor ∧d. Evaluating a strict polynomial functor
of degree d at Fn gives an SF (n, d)-module for each n. Friedlander and Suslin
showed that this evaluation functor is an equivalence of categories when n ≥ d.
Chałupnik [2008] and Touzé [2014] used the term Koszul duality to refer to a
functor on the category of strict polynomial functors of degree d which takes the
Schur functor associated to the partition λ of d to the Weyl functor associated with
the partition λ′ conjugate to λ. Krause [2013] discovered an internal tensor product
on the category of strict polynomial functors of fixed degree d . Given such a tensor
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product it was then natural for him to define Koszul duality in this category as the
tensor product with ∧d. This definition is different from the Koszul duality functors
defined earlier by Chałupnik and Touzé. Those coincide with a duality defined
by Ringel [1991] using tilting modules for quasihereditary algebras. This tilting
module was described by Donkin [1993] in the case of Schur algebras.

We introduce the term abstract Koszul duality to refer to a very simple functor
which makes sense for any Z/2Z-graded algebra AS= S⊕S−. The abstract Koszul
dual of an S-module V is defined as

D(V )= S−⊗S V .

The multiplication operation on AS gives rise to an (S, S)-bimodule homomorphism
φ : S−⊗S S−→ S and hence a natural transformation from D ◦ D to the identity
functor on the category of S-modules. We prove (Theorem 3.4) that the category of
AS-modules is the same as the category of pairs (M, θM) where M is an S-module
and θM : D(M)→ M is compatible with φ in the sense of (16).

In Section 4, we specialize to the case ASF (n, d)=SF (n, d)⊕S−F (n, d) to obtain
a Koszul duality functor D on the category of SF (n, d)-modules. In Theorem 4.5,
we show that the evaluation at Fn of the Koszul duality functor of Krause is naturally
isomorphic to our Koszul duality functor when n ≥ d. In this sense, our abstract
Koszul duality functor on Schur algebras coincides with Krause’s Koszul duality.

Our description of the structure constants of ASF (n, d) allows us to give a
direct combinatorial proof of the well-known fact that, when n ≥ d and when
the characteristic of F is 0 or greater than d, then abstract Koszul duality is an
equivalence (Theorem 4.2).

Krause [2013] showed that the derived Koszul duality functor is an autoequiv-
alence of the unbounded derived category of strict polynomial functors. Since the
evaluation functor is an equivalence, this implies that derived Koszul duality is an
autoequivalence at the level of the unbounded derived category of SF (n, d)-modules
when n ≥ d . However, this does not address the case where n < d . Using our com-
binatorial methods, we show that derived Koszul duality is not an equivalence when
n<d (Theorem 4.9). This proof uses a criterion of Happel [1987] for a tensor functor
to be a derived equivalence. In the context of derived Koszul duality, this criterion re-
quires that the canonical algebra homomorphism SF (n, d)→ EndSF (n,d)(S

−

F (n, d))
is an isomorphism. Donkin [1993, Proposition 3.7] proved this for n ≥ d. For the
case when the characteristic of F is not 2 we give a combinatorial proof of Donkin’s
result, and also show that it fails when n < d (Theorem 4.7). Figure 1 on page 181
describes the behavior of Koszul duality for all values of the parameters n and d .

We conclude this paper by discussing a possible application of our techniques to
Bloss’s alternating partition algebra, and a diagrammatic interpretation of the Schur
category (Section 5).
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2. The alternating Schur algebra

Let F be a field of characteristic different from 2, and n and d be positive integers.
The symmetric group Sd acts on the tensor space (Fn)⊗d by permuting the tensor
factors. The Schur algebra can be defined as

SF (n, d) := EndSd ((F
n)⊗d).

By restricting the action of Sd to the alternating group Ad , define the alternating
Schur algebra as

ASF (n, d) := EndAd ((F
n)⊗d).

Clearly, SF (n, d) is a subalgebra of ASF (n, d).

Lemma 2.1. For any representations V and W of Sd ,

(2) HomAd (V,W )= HomSd (V,W )⊕HomSd (V,W ⊗ sgn).

Here W ⊗ sgn denotes the twist of W by the sign character sgn : Sd → {±1}.

Define

(3) S−F (n, d) := HomSd ((F
n)⊗d , (Fn)⊗d

⊗ sgn).

Lemma 2.1 gives a Z/2Z-grading of ASF (n, d) in the sense of Bourbaki [1974,
Chapter III, Section 3.1]:

(4) ASF (n, d)= SF (n, d)⊕S−F (n, d).

The summand S−F (n, d) is an (SF (n, d),SF (n, d))-bimodule. Recall that a weak
composition of d with n parts is a vector λ= (λ1, . . . , λn) of nonnegative integers
summing to d . Let 3(n, d) denote the set of weak compositions of d with n parts.
For each λ= (λ1, . . . , λn) ∈3(n, d), define

∧
λFn
=∧

λ1 Fn
⊗ · · ·⊗∧

λn Fn,

where, for a nonnegative integer s, ∧s Fn is the s-th exterior power of Fn. As a
left SF (n, d)-module,

(5) S−F (n, d)=
⊕

λ∈3(n,d)

∧
λFn.

For each partition λ of d with at most n parts, let 1(λ) denote the SF (n, d)-
module known as the Weyl module with highest weight λ as in [Donkin 1993,
Section 1]. A tilting module is an SF (n, d)-module V such that both V and its
dual V ∗ have filtrations by the Weyl modules 1(λ). Ringel [1991] showed that,
for every such λ, there exists an indecomposable tilting module M(λ) with unique
highest weight λ. A full tilting module is a tilting module that contains M(λ) as
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a direct summand for every partition λ of d with at most n parts [Donkin 1993,
Section 3]. By Donkin [1993, Lemma 3.4], (5) implies:

Lemma 2.2. The left module S−F (n, d) is a full tilting module of SF (n, d).

2A. Twisted permutation representations. Let X be a finite set on which a group G
acts on the right (henceforth called a G-set). The space F[X ] of F-valued functions
on X may be regarded as a representation of G:

(6) ρX (g) f (x)= f (x · g) for x ∈ X, g ∈ G, and f ∈ F[X ].

Let χ be a multiplicative character G→F∗. We may twist the representation (6) by χ :

(7) ρ
χ

X (g) f (x)= χ(g) f (x · g).

Denote the representation space of this twisted action as F[X ]⊗χ .
Suppose that X and Y are finite G-sets. Given a function κ : X × Y → F, the

integral operator ξκ : F[Y ] → F[X ] associated to κ is defined as

(8) ξκ f (x)=
∑
y∈Y

κ(x, y) f (y) for f ∈ F[Y ].

The function κ is known as the integral kernel of ξκ .
If Z is another finite G-set, κ ′ : X × Y → F and κ ′′ : Y × Z→ F are functions.

Then,
ξκ ′ ◦ ξκ ′′ = ξκ ′∗κ ′′,

where κ ′ ∗ κ ′′ : X × Z→ F is the convolution product

(9) κ ′ ∗ κ ′′(x, z)=
∑
y∈Y

κ ′(x, y)κ ′′(y, z).

We have (see [Prasad 2015, Section 4.2]):

Theorem 2.3. For any finite G-spaces X and Y, and any multiplicative character
χ : G→ F∗,

(10) HomG(F[Y ], F[X ]⊗χ)

= {ξκ | κ : X × Y → F such that κ(x · g, y · g)= χ(g)κ(x, y)}.

The identity (10) implies that

dim HomG(F[Y ], F[X ]⊗χ)≤ |(X × Y )/G|,

with equality holding if χ is the trivial character. However, if g ∈ G, and (x, y) ∈
X × Y are such that (x · g, y · g)= (x, y), then if ξκ ∈ HomG(F[Y ], F[X ]⊗χ),

κ(x, y)= κ(x · g, y · g)= χ(g)κ(x, y),

so that either χ(g)= 1 or κ vanishes on the G-orbit of (x, y).
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For each element x ∈ X, let Gx = {g ∈ G | g · x = x} be the stabilizer of x in G.

Definition 2.4 (transverse pair). A pair (x, y) ∈ X×Y is said to be transverse with
respect to χ if Gx ∩G y ⊂ kerχ . If (x, y) is a transverse pair with respect to χ , we
write x t y.

If (x, y) is a transverse pair, then

κ(x · g, y · g) := χ(g)κ(x, y)

is a well-defined nonzero function on the G-orbit of (x, y). Let

X t Y = {(x, y) ∈ X × Y | x t y}.

Then X t Y is stable under the diagonal action of G on X × Y. We have (see
[Prasad 2015, Theorem 4.2.3]):

Theorem 2.5. Let X and Y be finite G-sets, and χ : G→ F∗ be a multiplicative
character. For each orbit O ∈ (X t Y )/G, choose a base point (xO , yO) ∈ O.
Define

κO(x, y)=
{
χ(g) if x = xO · g and y = yO · g for some g ∈ G,
0 otherwise.

For simplicity, write ξO for ξκO . Then the set

{ξO | O ∈ (X t Y )/G}

is a basis for HomG(F[Y ], F[X ]⊗χ). Consequently,

dim HomG(F[Y ], F[X ]⊗χ)= |(X t Y )/G)|.

In the special case where χ is the trivial character, we get:

Corollary 2.6. Let X and Y be finite G-sets. For each orbit O in (X×Y )/G define

κO(x, y)=
{

1 if (x, y) ∈ O,
0 otherwise.

Write ξO = ξκO . Then the set

{ξO | O ∈ (X × Y )/G}

is a basis for HomG(F[Y ], F[X ]). Consequently,

dim HomG(F[Y ], F[X ])= |(X × Y )/G|.

Given a function κ : X × Y → F, define

κ∗(y, x)= κ(x, y) for x ∈ X, y ∈ Y .

The following is easy to see:

Lemma 2.7. For any G-set X, the map ξκ 7→ ξκ∗ is an anti-involution on the algebra
EndG(F[X ]).
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2B. Structure constants of the Schur algebra. We recall the combinatorial inter-
pretation of structure constants of the Schur algebra from [Geetha and Prasad 2014].
Let [n] = {1, . . . , n} and

I (n, d)= {i := (i1, . . . , id) | is ∈ [n]}.

An element w ∈ Sd acts on I (n, d) by permuting the coordinates:

(i1, . . . , id) ·w = (iw(1), . . . , iw(d)).

For i = (i1, . . . , id) ∈ I (n, d), define

ei = ei1 ⊗ · · ·⊗ eid ,

where ei is the i-th coordinate vector in Fn. The vector space (Fn)⊗d has a basis

{ei | i ∈ I (n, d)}

and w ∈ Sd acts on a basis vector ei as follows:

w · ei = w · (ei1 ⊗ · · ·⊗ eid )= ei
w−1(1)
⊗ · · ·⊗ ei

w−1(d)
.

Let F[I (n, d)] denote the space of all F-valued functions on I (n, d). Mapping ei

to the indicator function of i ∈ I (n, d) defines an isomorphism of (Fn)⊗d onto
F[I (n, d)]. Thus (Fn)⊗d can be regarded as a permutation representation of Sd .

Let B(n, d) denote the set of all configurations of d distinguishable balls, num-
bered 1, . . . , d in n boxes, numbered 1, . . . , n. The symmetric group Sd acts on
such configurations by permuting the d balls. An element of B(n, d) is a set
partition

{1, . . . , d} = S1
∐
· · ·

∐
Sn,

where Si is the set of balls in the i-th box.

Lemma 2.8. Given i ∈ I (n, d), let b(i) denote the balls-in-boxes configuration in
B(n, d) where the i-th box contains the balls {s | is = i}. Then

b : I (n, d)→ B(n, d)

is an Sd -equivariant bijection of I (n, d) onto B(n, d).

By Corollary 2.6, a basis for SF (n, d) is indexed by orbits for the diagonal action
of Sd on B(n, d)× B(n, d).

Definition 2.9 (labelled bipartite multigraph). Let [n] = {1, . . . , n} (as before) and
[n′] = {1′, . . . , n′}. A labelling of a bipartite multigraph with vertex set [n′]

∐
[n]

and d edges is a function l : [d] → [n′]× [n] such that, for each (i ′, j) ∈ [n′]× [n],
the cardinality of l−1(i ′, j) is the number of edges joining i ′ and j. In other words,
labels are assigned to edges without distinguishing between edges joining the same
pair of vertices.
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Given a pair S= (S1, . . . , Sn) and T = (T1, . . . , Tn) in B(n, d), define a labelled
bipartite graph γS,T with multiple edges on the vertex set [n′]

∐
[n] as follows:

There are |S j ∩ Ti | edges between i ′ and j, labelled by the numbers of
the balls in S j ∩ Ti .

The bipartite multigraph is always drawn in two rows, with the vertices from
[n′] in the upper row and vertices from [n] in the lower row, numbered from left to
right. Since the vertices are always labelled in this manner, the vertex labels can be
omitted in the drawing.

Example 2.10. When S = ({1}, {2}, {3, 4, 5}) and T = ({1, 2, 3},∅, {4, 5}), the
associated labelled multigraph is

•

1 2 3

• •

45

• • •

Clearly, (S, T ) 7→ γS,T is a bijection from B(n, d)× B(n, d) onto the set of
labelled bipartite multigraphs with vertex set [n′]

∐
[n] and d edges. The symmetric

group Sd acts on B(n, d)× B(n, d) by permuting labels. Therefore the Sd orbits
in B(n, d)× B(n, d) are obtained by simply forgetting the labels, leaving only
the underlying bipartite multigraph. We write 0S,T for the bipartite multigraph
underlying γS,T . Such a graph can also be represented by its adjacency matrix
(whose (i, j)-th entry is the number of edges joining i ′ and j ), which is a matrix of
nonnegative integers that sum to d .

In view of Corollary 2.6, we recover a result of [Geetha and Prasad 2014; Méndez
2001]:

Theorem 2.11. Let M(n, d) denote the set of all bipartite multigraphs with ver-
tex set [n′]

∐
[n] and d edges. For each 0 ∈ M(n, d), define ξ0 ∈ SF (n, d) =

EndSd (F[B(n, d)]) by
ξ0 f (S)=

∑
{T |0S,T=0}

f (T ).

Then
{ξ0 | 0 ∈ M(n, d)}

is a basis for SF (n, d).

Remark 2.12. If (i, j) has image 0 under the composition I (n, d)2→ B(n, d)2→
M(n, d), then the basis element ξi, j of [Green 2007, Section 2.6] coincides with
the basis element ξ0 of Theorem 2.11.

The structure constants c00102
are defined by

ξ01ξ02 =

∑
0∈M(n,d)

c00102
ξ0.
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Definition 2.13. Let l, l1 and l2 be labellings of graphs 0, 01 and 02 in M(n, d),
respectively. We say that (l1, l2) is compatible with l if, for all s = 1, . . . , d , if we
write l1(s)= (i ′1, j1) and l2(s)= (i ′2, j2), then

(2.13.a) i ′2 = j1, and

(2.13.b) l(s)= (i ′1, j2).

We obtain yet another enumerative description of the structure constants of the
Schur algebra (see also [Green 2007, 2.3(b)] and [Geetha and Prasad 2014; Méndez
2001]).

Theorem 2.14. Let l be any labelling of 0. The structure constant c00′0′′ is the
number of pairs (l1, l2) of labellings of 01 and 02 that are compatible with l.

Before giving a proof, we illustrate the theorem with a few examples.

Example 2.15. Let w ∈ Sd be a permutation, and assume that n ≥ d. Let 0(w)
denote the bipartite graph where (i ′, j) is an edge if and only if 1 ≤ i ≤ d and
w(i)= j. Then, for all w1, w2 ∈ Sd , ξ0(w1)ξ0(w2) = ξ0(w1w2).

Example 2.16. Consider

01 =

• •

• •

02 =

• •

• •

To find c00102
, with

0 = 03 =

• •

• •

choose any labelling of 0, such as

•

123

•

4

• •

For this there are clearly three pairs of compatible labellings of 01 and 02, namely,
we can choose which of the first three balls ends up in the second box of the middle
row:

(11)

•

12 3

•

4

•

12

•

3 4

• •

•

13 2

•

4

•

13

•

2 4

• •

•

23 1

•

4

•

23

•

1 4

• •
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On the other hand, if

0 = 04 =

• •

• •

we may take the labelling

(12)

•

12
3

•

4

• •

For this labelling, the only compatible labellings of 01 and 02 are

•

12 3

•

4

•

12

•

4 3

• •

It turns out that for no other 0 ∈ 0(n, d) is it possible to find even one compatible
way of labelling 01 and 02, so we have

ξ01ξ02 = 3ξ03 + ξ04 .

Example 2.17. Let Fn,n denote the complete bipartite graph which has vertex set
[n′]

∐
[n], where every vertex in [n′] is connected to every vertex in [n]. Then the

coefficient of ξFn,n in ξFn,nξFn,n is the number of Latin squares of order n [OEIS,
Sequence A002860].

To see this, let l be any labelling of the edges of Fn,n . Given labellings l1 and l2

of Fn,n that are compatible with l, define the (i, j)-th entry of the Latin square
associated to (l1, l2) to be k if l−1(i ′, j)= l−1

2 (k ′, j)= l−1
1 (i ′, k). Remarkably, the

number of Latin squares of order n is known only for n = 1, . . . , 11.

Proof of Theorem 2.14. Given a labelling l of 0, define:

S j = ∪
n
i=1l−1(i ′, j) and Ui = ∪

n
j=1l−1(i ′, j).

Then S = (S1, . . . , Sn), and U = (U1, . . . ,Un) are elements of B(n, d), and by
construction 0S,U = 0. Now (9) implies that

(13) c00102
= #{T ∈ B(n, d) | 0S,T = 01 and 0T,U = 02}.

Given T ∈ B(n, d) contributing to the above count, define labellings l1 and l2 of 01

and 02 by:
l−1
1 (i ′, j)= S j ∩ Ti and l−1

2 (i ′, j)= T j ∩Ui .
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Then (l1, l2) is compatible with l. Conversely, for every pair (l1, l2) compatible
with l, take T = (T1, . . . , Tn) where

Tk =

n⋃
i ′=1

l−1
1 (i ′, k)=

n⋃
j=1

l−1
2 (k ′, j).

Then T contributes to the count in (13). �

Example 2.18. In Example 2.16, the three compatible pairs of labels in (11) cor-
respond to taking T as ({1, 2}, {3, 4}), ({1, 3}, {2, 4}), and ({2, 3}, {1, 4}), respec-
tively, and the compatible pair of labels in (12) corresponds to T = ({1, 2}, {3, 4}).

2C. A basis for S−
F(n, d). By Theorem 2.5, a basis of S−F (n, d) is indexed by

orbits in B(n, d) t B(n, d)/Sd . Here t denotes transversality with respect to the
sign character sgn : Sn→ {±1} (see Definition 2.4).

Lemma 2.19. A pair (S, T )∈ B(n, d)2 lies in B(n, d)t B(n, d) if and only if γS,T

is a simple bipartite graph.

Proof. Let S = (S1, . . . , Sn) and T = (T1, . . . , Tn). If γS,T is not simple, then
there exist indices i and j such that S j ∩ Ti contains at least two elements, say
k and l. The transposition (kl) ∈ Sd stabilizes (S, T ) but has sgn((kl)) = −1, so
(S, T ) /∈ B(n, d) t B(n, d).

However, if γS,T is simple, then the simultaneous stabilizer of S and T in Sd is
trivial, so (S, T ) ∈ B(n, d) t B(n, d). �

In order to specify a basis for S−F (n, d) using Theorem 2.5, we need to choose a
base point for each Sd -orbit in B(n, d) t B(n, d). We do this using Definition 2.20.

Definition 2.20 (standard labelling of a bipartite simple graph). Given a bipartite
simple graph 0 with vertex set [n′]

∐
[n], label each edge by its index when the

edges (i ′, j) are arranged in increasing lexicographic order, with priority given to
the upper index, i.e., (i ′, j) < (r ′, s) if either i ′ < r ′ or i ′ = r ′ and j < s.

Example 2.21. Take

0 =

• • •

• • •

The edges, written in lexicographic order, are

(1′, 2), (2′, 1), (2′, 2), (3′, 2).

Therefore the standard labelling is

•

1
•

2
3

•

4

• • •



SCHUR ALGEBRAS FOR THE ALTERNATING GROUP AND KOSZUL DUALITY 165

Definition 2.22 (sign of a labelling of a bipartite simple graph). Let l0 denote the
standard labelling of a simple bipartite graph 0 on [n′]

∐
[n]. Let l : [d]→ [n′]×[n]

be a labelling of 0 (see Definition 2.9). The sign ε(0, l) of l is the sign of the
permutation on [d] which takes l0(i) to l(i) for each i .

Example 2.23. For the graph from Example 2.21, the labellings

l1 =

•

4
•

2
3

•

1

• • •

and l2 =

•

1
•

3
4

•

2

• • •

give rise to permutations 4231 and 1342 respectively, so that ε(0, l1) = −1, and
ε(0, l2)=+1.

Recall, from Section 2B, that γS,T is a labelled bipartite graph associated to
(S, T ) ∈ B(n, d)× B(n, d), whose underlying unlabelled graph is denoted by 0S,T .
Let lS,T : [d] → [n] × [n′] denote the labelling of γS,T , and write ε(γS,T ) for
ε(0S,T , lS,T ).

Theorem 2.24. Let N (n, d) denote the set of all bipartite simple graphs with
vertex set [n′]

∐
[n] and d edges. For each 0 ∈ N (n, d), define ζ0 ∈ S−F (n, d) =

HomSd (F[B(n, d)], F[B(n, d)]⊗ sgn) by

ζ0 f (S)=
∑

{T |0S,T=0}

ε(γS,T ) f (T ).

The set
{ζ0 | 0 ∈ N (n, d)}

forms a basis of S−F (n, d).

Proof. Recall that we choose the pair (S0, T0) corresponding to the standard labelling
l0 of 0 as the base point of the orbit associated to 0. A pair (S, T ) is in the orbit
of (S0, T0) if and only if 0S,T = 0. And the sign of the permutation w ∈ Sd such
that S = S0.w and T = T0.w is the sign of the labelled bipartite graph γS,T . So the
integral kernel κ0 of the operator ζ0 is

κ0(S, T )=

{
ε(γS,T ) if 0S,T = 0,

0 otherwise.

So the theorem follows from Theorem 2.5. �

Theorem 2.14 tells us how to multiply two elements of the subalgebra SF (n, d) of
ASF (n, d). The remaining structure constants are given by the following theorem.

Theorem 2.25. The remaining structure constants are given as follows:
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(2.25.a) Given 01 ∈ M(n, d) and 02 ∈ N (n, d),

ξ01ζ02 =

∑
0∈N (n,d)

c00102
ζ0,

where
c00102

=

∑
l1,l2

ε(02, l2),

and the sum runs over all labellings l1 and l2 of 01 and 02, respectively,
that are compatible with the standard labelling l of 0.

(2.25.b) Given 01 ∈ N (n, d) and 02 ∈ M(n, d),

ζ01ξ02 =

∑
0∈N (n,d)

c00102
ζ0,

where
c00102

=

∑
l1,l2

ε(01, l1),

and the sum runs over all labellings l1 and l2 of 01 and 02, respectively,
that are compatible with the standard labelling l of 0.

(2.25.c) Given 01 ∈ N (n, d) and 02 ∈ N (n, d),

ζ01ζ02 =

∑
0∈M(n,d)

c00102
ξ0,

where
c00102

=

∑
l1,l2

ε(01, l1)ε(02, l2),

and the sum runs over all labellings l1 and l2 of 01 and 02, respectively,
that are compatible with a fixed labelling l of 0.

Proof. Given a labelling l of 0, construct S and U in B(n, d) as in the proof of
Theorem 2.14. Define κ02 : B(n, d)× B(n, d)→ F by

κ02(T,U )= ε(γT,U ).

Then ζ02 is the integral operator ξκ02
, as in (8). Then, by (9), the structure constant

in (2.25.a) of the theorem is given by

c00102
=

∑
T

ζ02(T,U ),

where the sum runs over all T ∈ B(n, d) such that 0S,T = 01 and 0T,U = 02.
Defining labellings l1 and l2 of 01 and 02 as in the proof of Theorem 2.14, we find
that ζ02(T,U )= ε(02, l2), proving (2.25.a). The proofs of the remaining assertions
are similar. �
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Definition 2.26. Given 0 ∈ M(n, d)t N (n, d), we define 0∗ to be the horizontal
reflection of 0, i.e., i ′ is connected to j in 0∗ if and only if j ′ is connected to i
in 0. The operation ∗ on the set M(n, d)t N (n, d) is an involution.

Lemma 2.27. For every 0 ∈ N (n, d), let l0 denote its standard labelling. Let
l∗0 denote the labelling of 0∗ given by l∗0(i

′, j) = l0( j ′, i). Then the linear map
ASF (n, d)→ ASF (n, d) defined by

ξ0 7→ ξ0∗ for 0 ∈ M(n, d),

ζ0 7→ ε(0∗, l∗0)ζ0∗ for 0 ∈ N (n, d)

is an anti-involution of ASF (n, d).

Remark 2.28. The above involution, when restricted to the Schur algebra, is the
same as the one described by Green [2007, Section 2.7].

Proof. We show that the linear map in Lemma 2.27 is the same as the anti-involution
in Lemma 2.7 with X = B(n, d) and G = Ad .

For 0 ∈ M(n, d), ξ0 is the integral operator with kernel

κ0(S, T )=
{

1 if 0S,T = 0,

0 otherwise.

Since 0T,S = 0
∗

S,T, κ∗0 = κ0∗ .
For 0 ∈ N (n, d), ζ0 is the integral operator with kernel

κ0(S, T )=
{
ε(γS,T ) if 0S,T = 0,

0 otherwise.

Thus, if γS,T = (0, l0), then γT,S = (0
∗, l∗0). Therefore,

κ0∗(T, S)= ε(γT,S)

= ε(0∗, l∗0)κ0(S, T ).

So the kernels κ0∗ and ε(0∗, l∗0)κ
∗

0 coincide at (T, S), and hence on its entire Sd-
orbit in B(n, d). �

We illustrate the above results with an example that will be used in the proof of
Lemma 4.1.

Example 2.29. Recall that 3(n, d) denotes the set of all weak compositions of d
with at most n parts. For λ ∈ 3(n, d) with n ≥ d, let 0λ ∈ N (n, d) denote the
bipartite graph where i ′ is connected to j if

λ1+ · · ·+ λi ′−1 < j ≤ λ1+ · · ·+ λi ′ .

Then we have
ζ0λζ0∗λ = λ1! · · · λn!ξ00

λ
,
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where 00
λ ∈ M(n, d) is the bipartite multigraph where i ′ is connected to i by λi

edges. For example,

0∗(2,1) =

• • •

• • •

and 0(2,1) =

• • •

• • •

For a labelling

l1 =

•

a b

•

c

•

• • •

of 0∗(2,1) only the labelling

l2 =

•

a

•

b

•

c

• • •

of 0(2,1), and the labelling

l =

•

ab

•

c

•

• • •

of 00
(2,1) are such that (l1, l2) are compatible with l. Moreover, ε(0∗(2,1), l1) =

ε(0(2,1), l2). Interchanging the labels a and b in l1 and l2, respectively, gives
another pair of labels compatible with l, so that ζ0λζ0∗λ = 2ξ00

λ
.

The remaining results in this section help us understand the structure of S−F (n, d)
as an SF (n, d)-module. Some of them will play an important role in understanding
Koszul duality (Section 4).

The notion of standard labelling (Definition 2.20) of graphs in N (n, d) can be
extended to graphs in M(n, d) as follows: when an edge (i ′, j) occurs with multi-
plicity m, it is simply listed m times when the edges are arranged in lexicographic
order with priority given to the upper index. Example 2.10 is the standard labelling
of its underlying graph.

Definition 2.30. For n ≥ d , define the following simple bipartite graphs associated
to 0 ∈ M(n, d):

(2.30.a) Let D(0) ∈ N (n, d) be the graph with edges (i ′, s) for every edge (i ′, j)
with label s under the standard labelling of 0.

(2.30.b) Let U (0) ∈ N (n, d) be the graph with edges (s ′, j) for every edge (i ′, j)
with label s under the standard labelling of 0.
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Example 2.31. Let n = 5, d = 5, and 0 (with its standard labelling) be given by

•

1 2

•

3

•

45

• •

• • • • •

Then

D(0)=

•

1 2

•

3

•

4 5

• •

• • • • •

and

U (0)=

•

1

•

2

•

3

•

4
•

5

• • • • •

The significance of the elements U (0) and D(0), for 0 ∈ M(n, d), is elaborated
in the following lemmas.

Lemma 2.32. Let n ≥ d and 0 ∈ N (n, d). Then ζ0 = ξU (0)ζ0λ0
ξD(0), where λ0 =

(1d , 0n−d) ∈ 3(n, d). Consequently, S−F (n, d) is a cyclic (SF (n, d),SF (n, d))-
bimodule.

Proof. This can be done in two steps. Firstly, ζ0λ0
ξD(0) = ζD(0), and secondly

ξU (0)ζD(0) = ζ0. We indicate the proof of the second identity (the first is similar):
Let l0, l1, and l2 be the standard labellings of 0, U (0) and D(0), respectively. The
labellings (l1, l2) of D(0) and U (0) are the only ones that are compatible with l0.
This is because, for the edge (i ′, j) of 0 labelled s, s is the unique vertex such
that i ′ is connected to s in D(0) and s ′ is connected to j in U (0). The identity
now follows from (2.25.a). �

Similarly, we get Lemma 2.33:

Lemma 2.33. For n ≥ d and 0 ∈ N (n, d), we have ζ0 = ζU (0)ξD(0) and ζ0 =
ξU (0)ζD(0).

Corollary 2.34. As a left SF (n, d)-module, S−F (n, d) is generated by

{ζ0∗λ | λ ∈3(n, d)},

and as a right SF (n, d)-module, it is generated by {ζ0λ | λ ∈3(n, d)}. Here 0λ is
the graph associated to λ in Example 2.29.

Proof. For any 0 ∈ M(n, d), D(0) is of the form 0∗λ for some λ ∈3(n, d), so the
statement for left modules follows from the second identity in Lemma 2.33. The
statement for right modules follows by applying Lemma 2.27 to the first identity in
Lemma 2.33. �
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Lemma 2.35. Let n ≥ d and 0 ∈ M(n, d). Then, for 0′ ∈ M(n, d), the structure
constant of ζU (0) in the product ξ0′ζD(0)∗ is δ0′,0.

Proof. The edge (i ′, j) with label s in the standard labelling of 0 gives rise to
an edge (s ′, j) with standard label s in U (0). The graph D(0)∗ has only one
edge originating at s ′, namely (s ′, i). Therefore, for any compatible pair (l1, l2) of
labellings of D(0)∗ and 0′, this edge must have label s. Thus 0′ must have an edge
(i ′, j) labelled s. In other words, 0′ = 0 and l2 is its standard labelling. �

3. Abstract Koszul duality

3A. The algebra. Recall [Bourbaki 1974, Chapter III, Section 3.1] that a Z/2Z
grading on a ring AS is a decomposition AS= S⊕S− into additive subgroups such
that S is a subring, S− is closed under left and right multiplication by elements of S,
and for any α, β ∈ S−, αβ ∈ S. This Z/2Z-grading gives rise to

(a) an (S,S)-bimodule structure on S−,

(b) and an (S,S)-bimodule homomorphism φ : S−⊗S S−→ S (induced by the
S-balanced bilinear map (α, β) 7→ αβ for α, β ∈ S−).

Example 3.1. We may take AS=ASF (n, d)=EndAd ((F
n)⊗d) and S=SF (n, d)=

EndSd ((F
n)⊗d), for any field F with characteristic different from 2.

3B. Modules. Let M be an AS-module. The AS-module structure can be viewed
as a linear map:

AS⊗Z M = (S⊕S−)⊗Z M = (S⊗Z M)⊕ (S−⊗Z M)→ M.

So M is an S-module, and restriction of the module action AS⊗Z M → M to
S−⊗Z M induces an S-module homomorphism

(14) θM : S−⊗S M→ M.

Furthermore, this homomorphism θM has the property that the diagram

(15)

S−⊗S S−⊗S M
φ⊗idM //

idS−⊗θM
��

S⊗S M

S−⊗S M
θM

// M

commutes.

Definition 3.2. Given an (S,S)-bimodule S− and an (S,S)-bimodule homomor-
phism φ : S− ⊗S S− → S, for an S-module N, an S-module homomorphism



SCHUR ALGEBRAS FOR THE ALTERNATING GROUP AND KOSZUL DUALITY 171

θ : S−⊗S N → N is said to be compatible with φ if the diagram

(16)

S−⊗S S−⊗S N
φ⊗idN //

idS−⊗θ

��

S⊗S N

S−⊗S N
θ

// N

commutes.

3C. Duality. Let AS=S⊕S−be as before. Define a functor D :S-Mod→S-Mod by

D(M)= S−⊗S M,

for every S-module M. Given S-modules M and N, and an S-module homomor-
phism f : M→ N, let D( f ) = idS− ⊗ f : D(M)→ D(N ). We call the resulting
functor D : S-Mod→ S-Mod an abstract Koszul duality functor. In Section 4 it
will be shown that, in the setting of Example 3.1 (the alternating Schur algebra),
abstract Koszul duality is essentially the Koszul duality functor of Krause [2013].

The commutative diagram (16), defining the compatibility of θ with φ, can be
rewritten in terms of abstract Koszul duality as

(17)
D2(N )

φ⊗idN //

D(θ)
��

N

D(N )
θ

77

Definition 3.3. Given an (S,S)-bimodule S− and an (S,S)-bimodule homomor-
phism φ : S−⊗S S−→ S, let (S, φ)-Mod denote the category whose objects are
pairs (N , θ), where N is an S-module, and θ : D(N )→ N is compatible with φ.
A morphism (N , θ)→ (N ′, θ ′) is an S-module homomorphism f : N → N ′ such
that the diagram

D(N )
θ //

D( f )
��

N

f
��

D(N ′)
θ ′ // N ′

commutes.

Theorem 3.4. Given an AS-module M, let θM be as in (14). Then M 7→ (M, θM)

is an isomorphism of categories AS-Mod→ (S, φ)-Mod.

Proof. Given an object (N , θ) in (S, φ)-Mod, the compatibility of θ with φ allows
the S-module structure on N to be extended to an AS-module structure. This
constructs the inverse of the functor in the theorem. �
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Given an S-module N, the morphism φ : S−⊗S S−→ S gives rise to a natural
transformation η : D2

→ idS-Mod, defined as the composition

(18)
D2(N )

φ⊗idN //

ηN
((

S⊗S N

N

Theorem 3.5. Let AS, S, S− and φ be as in Section 3A. The following are equiva-
lent:

(3.5.a) The map φ : S−⊗S S−→ S is an isomorphism.

(3.5.b) The natural transformation η : D2
→ idS-Mod is a natural isomorphism.

(3.5.c) For every object (N , θ) in (S, φ)-Mod, θ :S−⊗S N→ N is an isomorphism
of S-modules.

Proof. To see that (3.5.a) implies (3.5.b), observe from the diagram (18) that if φ
is an isomorphism, then ηN is an isomorphism for every N. It follows that η is a
natural isomorphism. For the converse, taking N = S, the commutativity of (18)
shows that φ is an isomorphism.

To see that (3.5.a) implies (3.5.c), note that the commutativity of (16) implies
that, if φ is an isomorphism, then θ is an epimorphism, and idS− ⊗ θ is a monomor-
phism. Since tensoring is a right-exact functor, it follows that idS− ⊗ θ is also an
epimorphism, and hence an isomorphism. Since φ⊗ idN is also an isomorphism,
the inverse of θ can be constructed by reversing the arrows in (16). For the converse,
just take N = S in (3.5.c). �

3D. Abstract Ringel duality. Let S− be an (S,S)-bimodule. Denote the left S-
module S− by SS−. For a left S-module M, the homomorphism space HomS(SS−,M)
inherits the structure of a left S-module from the right S-module structure on S−.
Motivated by [Ringel 1991, Section 6], we call the functor

HomS(SS−,−) : S-Mod→ S-Mod

the abstract Ringel duality functor on S-Mod. It is clear that the abstract Koszul
duality functor is the left adjoint of the abstract Ringel duality functor.

3E. Abstract simple modules. In general, it is not clear how simple AS-modules
can be classified using simple S-modules and Koszul duality. In this section, we
give some results in this direction. These are enough to give a complete solution in
the semisimple case.

Let M be a simple S-module. We consider the following cases:
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3E1. DM is isomorphic to M. If ηM : D2 M→ M is zero, then (M, 0) (where 0
is the zero map from DM→ M) is the unique φ-compatible morphism. Otherwise,
any nonzero morphism θ : DM→ M is an isomorphism. Schur’s lemma implies
that θ ◦ Dθ = aηM for some a ∈ (EndS M)∗ (the multiplicative group of nonzero
elements in the division algebra EndS M). If a has a square root in (EndS M)∗,
then θ can be normalized to make it a φ-compatible morphism. Moreover, after
normalization, ±θ are two φ-compatible morphisms, leading to two nonisomorphic
AS-modules. Also, in this case, (M,±θ) are simple, because their restrictions to S
are simple. On the other hand, if a does not have a square root in EndS(M), then
there is no simple AS-module whose restriction to S is isomorphic to M.

3E2. DM = 0. In this case (M, 0) is the unique AS-module whose restriction to S
is isomorphic to M.

3E3. DM is simple, but not isomorphic to M, ηM 6= 0. Let M̃ = DM ⊕M. We
have DM̃ = D2 M ⊕ DM. Any morphism θ : DM̃→ M̃ can be written in matrix
form as

θ =

(
X Y
Z W

)
,

where X : D2 M → DM, Y : DM → DM, Z : D2 M → M, and W : DM → M.
By Schur’s lemma, W = 0. The compatibility of θ with φ becomes(

X Y
Z 0

)(
DX DY
DZ 0

)
=

(
ηDM 0

0 ηM

)
.

Multiplying out the left-hand side gives(
X DX + Y DZ X DY

Z DX Z DY

)
=

(
ηDM 0

0 ηM

)
.

Since ηM 6= 0, DY 6= 0, and so Y 6= 0. Since DM is simple, by Schur’s lemma,
Y is invertible. Since D is a functor, DY is also invertible. Hence, equality of top
right entries implies that X = 0. Moreover, Z = ηM DY−1. In other words, θ is of
the form

θY =

(
0 Y

ηM DY−1 0

)
.

Lemma 3.6. For all Y, Y ′ ∈ (EndS M)∗, HomAS((M̃, θY ), (M̃, θY ′)) is nonzero,
and EndAS(M̃, θY ) is a division ring.

Proof. Any AS-module morphism (M̃, θy)→ (M̃, θy′) can be written in matrix
form as (

X 0
0 W

)
, where X ∈ EndS DM and W ∈ EndS M,
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and must satisfy(
X 0
0 W

)(
0 Y

ηM DY−1 0

)
=

(
0 Y ′

ηM DY ′−1 0

)(
DX 0
0 DW

)
.

We get XY = Y ′DW and WηM DY−1
= ηM DY ′−1 DX. Taking W = idM and

X = Y ′Y−1 gives a nonzero element of HomAS((M̃, θY ), (M̃, θY ′)). When Y = Y ′,
then we have X = Y DW Y−1, so that X is nonzero (and hence invertible) if and only
if W is. It follows that every nonzero element of EndAS(M̃, θY ) is invertible. �

Lemma 3.7. Let M be an S-module. Then the AS-module AS⊗S M is isomorphic
to (DM ⊕M, θ), where θ is given by the matrix

θ =

(
0 idDM

ηM 0

)
.

Proof. Note that

AS⊗S M = (S−⊗S M)⊕ (S⊗S M)= DM ⊕M.

The map θ comes from the action of S− on this AS-module, which gives ηM :

D2 M→ M on the first summand, and idDM : DM→ DM on the second. �

Theorem 3.8. The AS-module (DM ⊕ M, θY ) defined above is isomorphic to
AS⊗S M for every Y ∈ (EndS DM)∗. Consequently, whenever M and DM are
simple, nonisomorphic S-modules, and ηM 6=0, then AS⊗S M is, up to isomorphism,
the unique simple AS-module whose restriction to S contains M.

Proof. To see that AS ⊗S M = DM ⊕ M is simple, note that its only proper
nontrivial S-submodules are M and DM. But M is not AS-invariant because S−

maps M onto DM. Also, DM is not AS-invariant, because S− maps DM onto
D2 M. Since ηM 6= 0, D2 M cannot be contained in DM. The theorem now follows
from Lemma 3.6. �

3E4. The case where φ is an isomorphism. When φ : S− ⊗S S− → S is an iso-
morphism, the preceding results, using Theorem 3.5, can be summarized in the
following form:

Theorem 3.9. Suppose that AS is endowed with a Z/2Z-grading AS = S⊕ S−,
and φ : S−⊗S S−→ S (as defined in Section 3A) is an isomorphism. Let M be a
simple S-module. Then:

(3.9.a) Suppose there exists an isomorphism θ : DM→ M. Then θ can be scaled to
become compatible with φ. There exist at most two isomorphism classes of
simple AS-modules (M,±θ) whose restrictions to S are isomorphic to M.
If (EndS M)∗ is a 2-divisible group, then these two classes always exist.
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(3.9.b) Otherwise, up to isomorphism, AS⊗S M is the unique simple AS-module
whose restriction to S contains M as a submodule. Also, AS⊗S M and
AS⊗S DM are isomorphic as AS-modules.

Corollary 3.10. Suppose F is an algebraically closed field of characteristic dif-
ferent from 2. Let AS = S⊕ S− be a Z/2Z-graded F-algebra. A complete set of
isomorphism classes of simple AS-modules is given by

(3.10.c) (M,±θ) (defined in Section 3E1), as M runs over isomorphism classes of
simple S-modules such that DM is isomorphic to M,

(3.10.d) AS⊗S M, as M runs over isomorphism classes of all unordered pairs
{M,M ′} of nonisomorphic mutually dual simple S-modules.

4. Koszul duality for modules over Schur algebra

In this section, let S denote the Schur algebra SF (n, d), and let S− denote the
(S, S)-bimodule S−F (n, d). We now use our combinatorial methods from Section 2
to determine when abstract Koszul duality is an equivalence.

Lemma 4.1. When the characteristic of F is 0 or greater than d, and n ≥ d, the
map φ : S−⊗S S−→ S is an isomorphism.

Proof. For each λ ∈3(n, d), let 00
λ ∈ M(n, d) be the bipartite multigraph with λi

edges from i ′ to i (and no other edges), as in Example 2.29. Then

(19) idS =
∑

λ∈3(n,d)

ξ00
λ
.

Therefore by Example 2.29,

(20) idS =
∑

λ∈3(n,d)

1
λ1! · · · λn!

ζ0λζ
∗

0λ
.

Therefore the image of φ, which is a two-sided ideal of S, contains the identity
element, and therefore is all of S.

The injectivity of φ can be proved using a dimension count. Let N d (resp., Nd )
denote the graphs in N (n, d) with upper (resp., lower) degree sequence (1d , 0n−d).
Let 0(w) ∈ N (n, d) be as in Example 2.15. For 0 ∈ N d, define 0 ·w ∈ N d by
ξ0ξ0(w)= ξ0·w. Similarly, for 0∈ Nd , definew·0∈ Nd by ξ0(w)ξ0= ξw·0 . Consider
the equivalence relation on N d

× Nd where (0, 0′)∼ (0 ·w−1, w ·0′) for w ∈ Sd .
Let N d

×Sd Nd denote the set of equivalence classes.
Now, given (0′, 0′′)∈ N d

×Nd , define 0=8(0′, 0′′)∈M(n, d) to be the graph
for which the number of edges joining (i ′, j) is the number of indices 1 ≤ k ≤ n
such that (i ′, k) is an edge of 0′′ and (k ′, j) is an edge of 0′. This map induces an
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injective function 8 : N d
×Sd Nd → M(n, d). Moreover, 0 =8(U (0), D(0)), so

8 : N d
×Sd Nd → M(n, d) is a bijection.

The elements ζ0′ ⊗ ζ0′′ as 0′ and 0′′ run over N (n, d), span S−⊗S S−. We have

ζ0 ⊗ ζ0′ = ζU (0)ξD(0)⊗ ξU (0′)ζD(0′) (from Lemma 2.33)

= ζU (0)⊗ ξD(0)ξU (0′)ζD(0′).

Now U (0) ∈ N d and ξD(0)ξU (0′)ζD(0′) lies in the span of ζ0′′′ , for 0′′′ ∈ Nd . There-
fore ζ0′ ⊗ ζ0′′ span S−⊗S S− as (0′, 0′′) ∈ N d

× Nd . Moreover, ζ0′·w⊗ ζw−1·0′′ =

ζ0′ ⊗ ζ0′′ , so dim S−⊗S S− ≤ |N d
×Sd Nd | = |M(n, d)|. �

Now, using Theorem 3.5 we have established a direct combinatorial proof of the
following theorem:

Theorem 4.2. For a field F of characteristic 0 or greater than d, and n ≥ d, the
Koszul duality functor D : S-Mod→ S-Mod is an equivalence of categories.

4A. Strict polynomial functor. Friedlander and Suslin [1997] introduced strict
polynomial functors in order to establish the finite generation of the full cohomology
ring of a finite group scheme. They also showed that the strict polynomial functors
of degree d unify modules over the Schur algebras SF (n, d) across all n. In this
section, we briefly recall the definition of strict polynomial functors and some useful
functors on the category of strict polynomial functors.

Following [Krause 2013; van der Kallen 2015], define the Schur category (also
known as the divided power category) 0d

F as the category whose objects are finite-
dimensional vector spaces over F. For objects V and W, the morphism space is

Hom0d
F
(V,W ) := HomSd (V

⊗d ,W⊗d).

The category Rep 0d
F of strict polynomial functors is the functor category

Func(0d
F , F-Mod).

Thus it is an abelian, complete, and cocomplete category.

Example 4.3. Let V and W be objects of 0d
F . Some examples of strict polynomial

functors are:

(4.3.a) The d-th tensor power functor ⊗d
: 0d

F → F-Mod. On objects, ⊗d(V )=
V⊗d . On the morphism space, the map

HomSd (V
⊗d ,W⊗d)→ HomSd (V

⊗d ,W⊗d)

is the identity map.
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(4.3.b) The d-th divided power functor 0d
: 0d

F → F-Mod. On objects 0d(V )=
(V⊗d)Sd and on the morphism space, the map

Hom0d
F
(V,W )→ HomSd ((V

⊗d)Sd , (W⊗d)Sd )

is given by the restriction.

(4.3.c) Similarly, the d-th exterior power functor ∧d
: 0d

F → F-Mod and the d-
th symmetric power functor Symd

: 0d
F → F-Mod are strict polynomial

functors of degree d .

(4.3.d) Let U be an object in 0d
F . Then define hU : 0

d
F → F-Mod as follows:

hU (W )= Hom0d
F
(U,W )= HomSd (U

⊗d ,W⊗d).

The functor hU ∈ Rep 0d
F is called a representable functor. The functor

h :U 7→ hU is the contravariant Yoneda embedding.

(4.3.e) For any object U of 0d
F and any X ∈ Rep 0d

F , we define a functor XU
:

0d
F → F-Mod by

(21) XU (W )= X (HomF (U,W )).

When X = 0d, XU
= hU .

Given a strict polynomial functor X, X (Fn) inherits the structure of an SF (n, d)-
module. For every nonnegative integer n, we have the evaluation functor evn :

Rep 0d
F → SF (n, d)-Mod as

evn(X)= X (Fn) for X ∈ Rep 0d
F .

Theorem 4.4 [Friedlander and Suslin 1997, Theorem 3.2]. The functor evn :

Rep 0d
F → SF (n, d)-Mod is an equivalence of categories whenever n ≥ d.

4B. Koszul duality of strict polynomial functors: Krause [2013] defined an inter-
nal tensor product (⊗) on the category of strict polynomial functors of a fixed
degree d . Kulkarni, Srivastava, and Subrahmanyam [Kulkarni et al. 2018], and in-
dependently, Aquilino and Reischuk [2017] showed that this internal tensor product,
via the Schur functor, is related to the Kronecker tensor product of representations
of the symmetric group Sd . Krause used this internal tensor product to introduce
Koszul duality as the functor (∧d

⊗−) : Rep 0d
F → Rep 0d

F . We can think about
this functor as follows: for the representable functor hV ∈ Rep 0d

F , we have, using
the notation of (21),

(22) ∧
d
⊗ hV =∧

d,V .
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For arbitrary X ∈ Rep 0d
F , following [Krause 2013], we exploit a theorem of Mac

Lane [1998, III.7, Theorem 1], namely:

(23) X = colim
hV→X

hV .

Using this we have

(24) ∧
d
⊗ X = colim

hV→X
∧

d
⊗ hV = colim

hV→X
∧

d,V .

In the following theorem, we relate the abstract Koszul duality of Schur algebra
with the Koszul duality of strict polynomial functors.

Theorem 4.5. Consider the functors

(S−⊗S evn(−)):Rep 0d
F → S-Mod,

evn(∧
d
⊗−):Rep 0d

F → S-Mod.

Then there exists a natural transformation

η : (S−⊗S evn(−))→ evn(∧
d
⊗−),

which is an isomorphism when n ≥ d.

Proof. Let X = hV . Then,

evn(∧
d
⊗ hV )= evn(∧

d,V ) (by (22))

=∧
d,V (Fn)

=∧
d HomF (V, Fn) (by (21))

' HomSd (V
⊗d , (Fn)⊗d

⊗ sgn).

On the other hand,

S−⊗S evn(hV )= S−⊗S hV (Fn)

= HomSd ((F
n)⊗d , (Fn)⊗d

⊗ sgn)⊗S HomSd (V
⊗d , (Fn)⊗d).

Using these identifications, ηhV (g1⊗ g2)= g1 ◦ g2, for g1 ∈ S− and g2 ∈ evn(hV ),
defines an S-linear map

(25) ηhV : S
−
⊗S evn(hV )→ evn(∧

d
⊗ hV ).

For arbitrary X ∈ Rep 0d
F , we construct ηX using (23):

ηX = colim
hV→X

ηhV .

From the Yoneda lemma [Mac Lane 1998, page 59], every morphism hV →

hW between the representable functors is of the form h f for a unique morphism
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f ∈ HomFd
F
(W, V ). The following diagram commutes:

S−⊗S evn(hV )
ηhV //

idS−⊗evn(h f )

��

evn(∧
d
⊗ hV )

evn(id∧d ⊗ h f )

��
S−⊗S evn(hW )

ηW // evn(∧
d
⊗ hV )

Taking colimits then gives the naturality of η.
If n ≥ d, hFn is a small projective generator of Rep 0d

F , i.e., every object
has a presentation by hFn (see [Krause 2013]). Note that the map ηhFn (25) is
surjective because ηhFn ( f ⊗idS)= f for f ∈S− and hence an isomorphism because
evn(∧

d
⊗ hFn ) is isomorphic to S−. By the construction of ηX , this implies that

each ηX is an isomorphism for X ∈ Rep 0d
F . �

4C. Derived abstract Koszul duality. For a finite-dimensional associative alge-
bra A, let D(A-Mod) be the unbounded derived category of A-Mod. For an (A, A)-
bimodule M, the functor (M ⊗A−) is a right exact functor so the total left derived
functor (M⊗L

A−) :D(A-Mod)→D(A-Mod) exists. From Happel [1987], we recall
necessary and sufficient conditions for the functor (M ⊗L

A−) to be an equivalence
of categories.

For each x ∈ A, let ψx ∈ EndA(MA) be defined by

ψx(y)= xy.

Taking x to ψx gives rise to a homomorphism of algebras:

(26) ψ : A→ EndA(MA).

Theorem 4.6 [Happel 1987]. For a finite-dimensional algebra A and an (A, A)-
bimodule M, the functor (M⊗L

A−) :D(A-Mod)→D(A-Mod) is an equivalence of
categories if and only if :

(4.6.a) The module MA admits a finite resolution by finitely generated projective
right modules over A.

(4.6.b) The canonical map ψ : A→ EndA(MA) is an isomorphism, and for i ≥ 1,
ExtiA(M,M)= 0.

(4.6.c) There exists an exact sequence consisting of right A-modules:

0→ A→ M1→ · · · → Ml→ 0,

where for 1≤ i ≤ l, Mi is a direct summand of finite direct sum of copies
of M.

Theorem 4.7. Let A= S and M be the (S, S)-bimodule S−. Then the map ψ in (26)
is an isomorphism if and only if n ≥ d.
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Remark 4.8. When n ≥ d , it is known that ψ is an isomorphism, even for q-Schur
algebras (see Donkin [1998, page 82]).

Proof. Suppose n < d . Consider the labelled bipartite multigraph

01 =

•

12···d

• · · · •

• • · · · •

Let 02 ∈ N (n, d). Since 02 is a simple bipartite graph, any labelling of 02 which
satisfies Definition 2.13(a) requires d balls to place into d distinct boxes out of n.
This is not possible as n < d. Thus we get ξ01ζ02 = 0. Since ζ0 for 0 ∈ N (n, d)
forms a basis of S− we get that ξ01 is in the kernel of ψ , and so ψ is not injective.

For the converse, suppose n ≥ d. That the map ψ is an isomorphism is known
from [Donkin 1993, Proposition 3.7], but we give a combinatorial proof here. For
θ ∈ EndS(S−S ), we denote the coefficient of ζ01 in θ(ζ02) by 〈θ(ζ02), ζ01〉.

To see that ψ is injective, note that any element of S is of the form s =∑
0∈M(n,d) α0ξ0. Now ψ(s)= 0 if and only if∑

0∈M(n,d)

α0ξ0ζ0′ = 0,

for every0′∈N (n, d). Fix01∈M(n, d) and let0′=D(01)
∗. Then by Lemma 2.35,

α01 =

〈 ∑
0∈M(n,d)

α0ξ0ζD(01)∗, ζU (01)

〉
.

Thus α01 = 0.
To see thatψ is surjective, we will show that dimF EndS(S−S )≤|M(n, d)|. Firstly,

by Lemma 2.33, S−S is generated by G = {ζ0 | 0 ∈ N d
}. Recall that N d denotes

the set of graphs in N (n, d) with upper degree sequence (1d , 0n−d). Therefore
any θ ∈ EndS(S−S ) is determined by its values on this set. Since θ is an S-module
homomorphism, θ(ζ0) again lies in the span of G. Therefore θ is completely
determined by the values

{〈θ(ζ0), ζ0′〉 | 0,0
′
∈ N d
}.

Moreover, for any w ∈ Sd ,

〈θ(ζ0), ζ0′〉 = 〈θ(ζ0·w), ζ0′·w〉.

Therefore dimF EndS(S−S )≤ |(N
d
× N d)/Sd | = |M(n, d)|. �

Theorem 4.9. Let F be any field of characteristic different from 2. The functor

(27) (S−⊗L
S −) : D(S-Mod)→ D(S-Mod)

is an equivalence of categories if and only if n ≥ d.
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D is an equivalence

D is neither zero nor an equivalence

Figure 1. Dependence of derived Koszul duality on n and d.

Proof. If n≥ d then from Theorem 4.5, S−⊗S evn(−) is isomorphic to evn(∧
d
⊗−).

Since the functor evn is exact, the total left derived functors of S− ⊗S evn(−)

and evn(∧
d
⊗−) are isomorphic to S−⊗L

S evn(−) and evn(∧
d
⊗

L
−), respectively.

From [Krause 2013, Theorem 4.9], (∧d
⊗

L
−) is an equivalence. From Theorem 4.4

evn(−) is an equivalence. Therefore S−⊗L
S evn(−) is an equivalence. So evn(−)

being an equivalence forces (S−⊗L
S −) to be an equivalence.

For the converse, suppose (S−⊗L
S −) is an equivalence. Then from Theorem 4.6

the map ψ : S→ EndS(S−) is an isomorphism. Theorem 4.7 now implies n ≥ d . �

The behavior of derived Koszul duality for different values of n and d is summa-
rized in Figure 1.

5. Concluding remarks

5A. Toward alternating partition algebras. The centralizer algebra EndSn((F
n)⊗d)

is a quotient of the partition algebra Pd(n) of [Jones 1994] and [Martin 1991]. Fur-
ther restricting the action of Sn to the alternating group An , we get the alternating
partition algebra APd(n) = EndAn ((F

n)⊗d), which from the isomorphism (2)
decomposes as follows:

(28) EndAn ((F
n)⊗d)= EndSn ((F

n)⊗d)⊕HomSn ((F
n)⊗d , (Fn)⊗d

⊗ sgn)

Letting P−d (n)=HomSn ((F
n)⊗d, (Fn)⊗d

⊗sgn), P−d (n) becomes a (Pd(n), Pd(n))-
bimdoule by inflation. Bloss [2005] showed P−d (n) is nonzero if and only if



182 THANGAVELU GEETHA, AMRITANSHU PRASAD AND SHRADDHA SRIVASTAVA

n < 2d + 2. So we get an abstract Koszul duality

(P−d (n)⊗Pd (n)−)

on the category of modules over the partition algebra Pd(n) when n< 2d+2. Many
of the ideas and techniques in this article can be used to study bases, structure
constants, and abstract Koszul duality for partition algebras. For F = C, the
dimensions of simple modules of APd(n) are given combinatorially by Benkart,
Halverson, and Harman; see [Benkart et al. 2017].

5B. A diagrammatic interpretation of the Schur category. The following is one
possible way to define the notion of a diagram category in the spirit of [Martin
2008].

Definition 5.1 (diagram category). A category C is called a diagram category if
there exists a sequence {Vn}n≥0 of objects which constitute a skeleton of C, and for
each pair (m, n) of nonnegative integers, a class of “diagrams” M(m, n), a basis

Bm,n = {ξ0 | 0 ∈ M(m, n)}

of HomC(Vn, Vm), and a combinatorial rule for computing the structure constants
c00′0′′ that are defined by

ξ0′ ◦ ξ0′′ =
∑
0

c00′0′′ξ0

for 0′ ∈ M(l,m), 0′′ ∈ M(m, n) and 0 ∈ M(l, n).

Remark 5.2. In the examples discussed by Martin [2008], given diagrams 0′

and 0′′, there can exist more than one diagram 0 such that c00′0′′ > 0. This is not a
requirement in the above definition.

Consider the Schur category 0d
F defined in Section 4A. Take Vn = Fn. Define

Md(m, n) to be the set of all bipartite multigraphs with vertex set [n′]
∐
[m] with d

edges. Mimicking the discussion in Section 2B, one may endow the Schur category
with the structure of a diagram category in the sense of Definition 5.1.
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