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It is folklore that the Knapp—Stein dimension theorem should be extended
word by word to general covering groups. But we note that such a proof
does not exist in the literature. For completeness, we provide a proof of the
classical Knapp—Stein dimension theorem for finite central covering groups.
As an example, we obtain the R-group structure for Mp,, based on Gan
and Savin’s work on the local theta correspondence for (M p,, SO2z,+1).

1. Introduction

Let G be a connected reductive group defined over a nonarchimedean local field F.
By abuse of notation, we also write G for G(F'), and denote by G the associated
finite central covering group of G(F') by u,, i.e.,

1> u,— G- G(F)—> 1.

Representation-theoretically, one of the fundamental problems is to understand the
classification of irreducible admissible representations of G. Notably, we have the
diagram
(iid) (i) ®
[5.c(G) C Has(G) C Iiemp(G) C IT(G).
Here I1(G), Iemp(G), Ius(G) and I (G) stand for the set of isomorphism

classes of irreducible admissible representations, tempered representations, discrete
series and supercuspidal representations of G, respectively. Recall that

« (i) is the Langlands classification [1989]. The covering case is established by
Ban and Jantzen [2013],

« (ii) is the Knapp—Zuckerman classification [1982]. The covering case follows
from [Waldspurger 2003, Proposition I11.4.1] (see [Li 2012]).

e (iii) is the Moeglin—Tadi¢ classification for classical groups [2002]. The

covering case is unknown so far.
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Note that in (ii), as the normalized induced representation is unitary, we may
investigate its finer structure, i.e., the so-called R-group theory (see [Knapp and
Stein 1971; 1980; Silberger 1978]). Indeed, the R-group theory not only determines
the decomposition of induced representations, but also plays an essential role in the
endoscopy theory. In view of this, it is necessary to extend the R-group theory to
covering groups. This is exactly what we will do in the paper.

In what follows, we give a rough outline of the main results. Exact definitions
and notation are given in the body of the paper. For a standard parabolic P =
MN C G and o € I1; (M), we denote by Ig (o) the associated normalized induced
representation of G, and by W (M) the relative Weyl group of M in G. Let W (o) :=
{we W(M):w.c =o}. Fix a section of W(M) in Kg04 Which is a special compact
open subgroup of G. For simplicity, we use the same letter w for the fixed lifting of
w € W(M) if no confusion arises. For @ € W (o), we may define an unnormalized
intertwining operator y (w) = A(w) o M (w, o) on I}? (0) as in Lemma 2.2, and then
define Wo(o) := {w € W(o) : A(w) o M(w, o) is a scalar}. It is well known that
W9(o) is a normal subgroup of W (o), and the following exact sequence splits:

1 - W%0) = W(o)— R(o) — 1.
Main Theorem (Theorem 2.4). Modifying the above notation for G, we have
dimEndg (1§ (&) = |R(@)|.

Classically, Knapp and Stein [1971; 1980] established the dimension theorem
for tempered induced representations of semisimple Lie groups and later Silberger
[1978] extended the Knapp—Stein dimension theorem to p-adic reductive groups.
Notice that the strategies to prove the Knapp—Stein dimension theorem in [Silberger
1978] are as follows.

(i) The Harish-Chandra commuting algebra theorem; that is, EndG(Ig (0)) =
Span{y (w) : ® € W(0)}.

(ii) Endg (IS (0)) = Span{y (w) : w € R(0)}.

(iii) The multiplicity of a given exponent in the tempered Jacquet module J %’ 04 g (o))
is no greater than the cardinality of W(c). This in turn implies that

dim Endg (15 (0)) = [W (o) : WO(0)] = |R(0)|.

So basically, we adapt the same argument as in [Silberger 1978] to extend the
Knapp-Stein dimension theorem for finite central covering groups. But instead of
showing the multiplicity of a given exponent is bounded by W%(o) in the weak
Jacquet module J;B(Ig (0)), we follow D. Ban’s argument [2004] to directly show
the linear independence property of these y (w) with w € R(o). Herein, we should
mention that the Knapp—Stein dimension theorem for finite central covering groups
has been announced by Wen-Wei Li [2012] and D. Szpruch [2013].
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2. Knapp-Stein dimension theorem

2A. Notation and conventions. In this section, we first recall some necessary
definitions and properties in [Waldspurger 2003; Li 2012] for our purpose.

Recall that F' is a nonarchimedean field, G is a connected reductive group defined
over F, and G is the associated finite central covering group of G(F) by 1, i.e.,

1> u,— G- G(F) > 1.

Fix a maximal split torus 7" of G and the associated minimal parabolic subgroup
Py = MoNy with the Levi subgroup My containing 7. Denote by Wg(T) :=
Ng(T)/Cq(T) the Weyl group of G with respect to T, and by ® = ®(G, T') the set
of relative roots of T in G. The choice of Py determines the set of relative simple
roots A and the set of relative positive roots ®1 C ®. If o € ®T, we write a > 0.

As is well known, the standard parabolic subgroups of G are uniquely determined
by a subset ® of A. For such a subset ® C A, let Pg = MgNg be the associated
standard parabolic subgroup of G with Levi subgroup Mg D My, and W (Mg) :=
Ng(M)/M be the relative Weyl group with respect to Mg in G. Let Ty, be the
split component of the center of Mg, and X (Mg) r := Homp_gp(Me, Gy,) be the
group of all F-rational characters of Mg. Denote ay, := Hom(X (Me)r, R) =
Hom(X (T, ) F. R). Recall that in [Luo 2017] we have defined the Harish-Chandra
hom~0m0rphism I:I Vo :~A7I® — ay, by Ifl Me © P, and A;I(l) = Ker(H M@)~ Denote
X(Mg) ::Hom(M@/M(l), C*). As X(Mg) = X(Mg), we may attach a complex
algebraic variety structure on X (1\71@) via the surjective homomorphism

a o =X(Mo)r X C - x(Mo)
z

given by x ® s — |x (-)|°. Notice that Ker(¢) is of the form 27i/(logg)L with L a
lattice in X (Mg) r ®7 Q; it does make sense to define the notion of real part Re(x)
of x € X(Mg). Denote Im X(M@) =Im X (M) ={x € X(Mp) : Re(x) =0}.

Fix the canonical section of unipotent elements in G to G as in [Meeglin and
Waldspurger 1995, Appendix I] or [Li 2014, Proposition 2.2.1]. By abuse of notation,
for a unipotent subgroup N C G, we also write N for its canonical section in G. Fora
standard parabolic subgroup P = M N of G, let P = M N be the preimage of P in G.
Denote by H(M ) (resp. Iy, Htemp(ﬁ;[ )) the set of isomorphism classes of genuine
irreducible admissible (resp. discrete series, tempered) representations of M. Notice
that the complex torus X (M) acts naturally on TT1(M) by (x, &) — & ® x, where
x € X(M) and 6 € TI(M). The induced action of Im X (M) preserves I1,(M). For
an orbit O in HQ(M ) under the action of Im(X (M )), we may chose a base point
0 € O, and then furnish the orbit with O a C* variety structure via the isomorphism

Im X (M) / Staby,, y iz, (6) <> O: x —> & ® .
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Here Staby, v ) (0) is a finite group. Analogously, we may attach a complex
algebraic variety structure on an orbit O¢ for the action of X (M ) on H(M ). In
this case, we may talk about C°, regular and rational functions on O¢. For a
genuine discrete series representation & € I1,(M), we define the action of W (M)
on & € I1,(M) and a parabolic subgroup P = M N by
w.6 (1) =& (W~ mw)

and w.P = wPw~! for 0 € G a representative of w € W(M) and any /m € M.
We set W(6) :={w e W(M) : w.6 =6}. In order to introduce the Knapp—Stein
dimension theorem for finite central covering groups, we would like to summarize

some necessary definitions and the associated properties in [Waldspurger 2003; Li
2012; Ban and Jantzen 2013] which are rather standard and will be needed later on.

Bruhat decomposition. (see [Ban and Jantzen 2013, Lemma 2.6]): For ® C A,
we attach a parabolic subgroup Pg = MgNg of G and the associated Pg = Mg N
of G. Denote

PowPo .= Wy, (T)\Ws(T)) Wi (T) ={we Ws(T): 0 '.O C ®F, 0.0 Cc DT}

Then we have the following decomposition of G:

G= || PoaPe.
wePowre

where @ is an arbitrary lifting of @ in G.

Bernstein—Zelevinsky geometric lemma (see [Ban and Jantzen 2013, Proposition 3.3]
or [Waldspurger 2003, Section 1.3]). Let P = MU and Q = LV be standard
parabolic subgroups of G. For 6 € I1(M), we have, in the Grothendieck group,

G
J50l15(5) = > Im 50@0Jjn1 56
welwr
Here J 5 stands for the normalized Jacquet functor with respect to Q,and I g for the
normahzed induced representation with respect to P. In particular, for & € IT,(M),
the geometric lemma gives rise to

dimEndg (1S (8)) < |[W (M)].

Intertwining operator. Fix two semistandard parabolic subgroups P; = MU, and
P, = MU, of G, and (6, V) € I1(M). Under some continuation on O¢c > & (see
[Waldspurger 2003; Li 2012]), we may define an intertwining operator Jj 5 (6) as

18 &) 20— L 1%) F@ > Tp,5 ) )@) = / f@)du.
U NU>\U>

For later use, we mention the following properties of J 5 in [Waldspurger 2003,
Section IV.3]:
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e (Plancherel measure) For ¢ € H(M ), and a semistandard parabolic P = M N
of G, denote by P = M N the unique opposite parabolic subgroup of P in G. By
the generic irreducibility property of Ind(¢) (see [Renard 2010, Section VI.8.5]),

we may define
Jp(@) =T 56) 5 5(6)

as a scalar which does not depend on P O M, and denoted by j (o). For simplicity,
for & € I, (M), we define the Plancherel measure attached to & as u¢ (&) := j ()L
Then we have

- néE) = 0;
- MG(&) =11, ,uMa (6), where « runs over all the reduced roots of Ty, up to
sign.

1%(@.6) = 1% (), where € Wg (T).

MG (6) = ué(é). Here & is the contragredient of &.

« (associativity) For P, = MU;, i =1,2,3,
Tp5,6) - T, 5,(6) = (H ja(a—)) Ji5,(0),

where the product is taken over @ q(P1) N Preq(P3) N ®ed(P>2). In particular, for
we W(M),

315,55 55 (6) = [1 Ja (&),

@€ Preg(P)NPreg (. P)

where j,(6) is the j-constant with respect to (M, 6) with M, in place of G.
I{arish—Chandm c-function. Recall that for (6, V) € O¢ C 1'[(]\7[ ), we denote by
(0, V) the contragredient representation of (¢, V). For a semistandard parabolic
subgroup P = MU of G, we define

L@, Py =1 (V)® I (V) <> End(IS(V)),
and the matrix coefficient map

ES:LG.P)— C®(G):v@i > (7@, V),

where 7 = II(;; (6). For w € W (M), we define the Harish-Chandra c-function as

o~ o (0.6)RJ = . (@.6) o~
CPIP(a) o0):L(o, P) o), L(w.o,w.P) i Pl.P L(w.o, P);

here A(@) : ¢(-) — ¢p(@ '), and @ € K good Where Kgqoq 18 a special compact
open subgroup of G which is in good position with respect to My. Furthermore,
we define

Ocpp(@,6) =cpp(l,0.6)  cpp(w,6) € Homg, 5(L(G, P), L(&.5, P)).
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Note that these operators ‘c p1p(@, o) for w € W(a) have the following properties
(see [Waldspurger 2003, Section V.3] or [Li 2012, Section 2.5]).

« (regularity) They are regular on O and unitary operators.

e (associativity) For wj,w; € W(M), 6 € O C HQ(M) and P, = MU, with
i =1,2,3, based on the associativity of J 5 pr WE have the equality

0 AN v 0. -
Cﬁ3|ﬁ2(w1’w20) Cﬁ2|151(0)2, 0)— CP3|P1((,()10)2,O').

Plancherel formula (see [Li 2012, Section 2.6]). Let C (G) be the Schwartz—Harish-
Chandra function space of G, and C*(0O, 15) the space of C*°-functions on O,
ie., v[O,P]:6 — ¢[O, Pl; € L(o, f’), such that it is compatible with the
isomorphism class of 6. Denote by ® the set of pairs (O, P = MU), where P
is a semistandard parabolic subgroup of G and © C TI,(M) an orbit under the
action of Im X (M). Let C®(®) := @(O’PE@ C>(0, P), apd write an element
Y € C*°(®) in the form of ¥ = (Y [O, P])o,p. We set C*°(®)"™ to be the subspace
of C*°(®) consisting of the elements 1 such that

¥[@.0, P'los = "cpp(@, 6)YI0, Pls,
forall (O, P) e ® and all P’. For f € C(G), we define amap ¢: C(G) — C®(O) g5
f > Wgl0, P1:6 > d@)IE@E) (o.r.
where d~(6) is the formal degree of 6, and f(g) = f(g~"). In rough terms, given
both C(G) and C*°(®)™ the natural direct limit topology with respect to open com-

pact subgroups, the Plancherel formula says that ¢ is an isomorphism of topological
spaces, and the associated inverse map « is given by

Y Y p(GIMDWy (D) [Wa (D] PO fyio.p1,
(0,P)e®

where P(M) is the set of all parabolic subgroups P = MU with Levi group M,
yG) = [ Spm,@)dn and Fo,m@= | 1CGHEGHIO. PL)@) ds.
U o

2B. Knapp-Stein dimension theorem. Now we are ready to prove the Knapp—
Stein dimension theorem for finite central covering groups.

For (6, V) € O C [1,(M), and @ € W (&), denote by A(w) the unique isomor-
phism, up to scalars of |-| = 1, between ®.6 and &, and extend A(w) to be an
isomorphism between Ig (.6) and Ig (6). Note that

A(w)o cpp(w,6) € Endg, (LG, P))

isregular on O and unitary. Note that the G x é—equivalent space Endg, &(L(0, P))
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is finite-dimensional. Applying the Skolem—Noether theorem, based on the asso-
ciativity property of ’c p1p(@, 6), we define a projective unitary representation
w > y(w) of W(0o) on the underling vector space of the induced representation
IG(O’) such that A(w) o cPlP(a) 6) =Ad(y(w)) on L(o, P) o End(IG(V))
Notlce that the adjoint y (w)* of ¥ (w) exists and equals y (w™!) up to a scalar So
the vector space I' := Span{y (w) : w € W(6)} is a selfadjoint algebra, and hence
semisimple. Before turning to the Harish-Chandra commuting algebra theorem, we
first discuss the explicit form of ¥ (w). Denote ®(6) := {a € Preq(P) : uM=(5) =0};
then WO(6) := (S, :cx € ®(6)) C W(6), where S, is the simple reflection associated
to o (see [Waldspurger 2003, Proposition 1V.2.2]).

Lemma 2.1. Indeed, ®(G) is a subroot system, which in turn says that W°(6) is a
normal subgroup of W (&).

Proof. For the convenience of the reader, we include the argument in [Harish-
Chandra 1976, Section 40] as follows. Notice that this is equivalent to showing
®(6) is stable under the action of W(5), i.e., w.a € ®(d) for ¢ € ®(6) and
w € W(6). The upshot is for A € Im a*M’@, and o € Oq(P),

1Ma (5 @) > 0 unless (@, 1) = 0.

Take P = MU, and let «, ..., «, be all the distinct elements in ®(5). Assume
a = ay. Let j be the unique index such that w.a = +«;. Fix A € Im aj; ¢, such that

(@, %) =0 and (o, A)#0, 2<i<r.

This implies u ' (& @A) = i« (&) =0, Thus 12 (5 1) _1‘[1<l<,u i(G®A)=0.
the ®.6=6,500=pu’@G 1) = G(w 6 ®w.x) = u% (G @ w.A). This implies

Mo (6 @ w. A) 0 for some i. But it is clear that (¢;, w.A) # 0 unless i = j, which
is to say 0= 11" (6 @ w.2) = u™i (5), whence a; € ®(5). O

In view of this, we may define the R-group
R(E):=W(©B)/WP6)={we W(©E):w.AG) = AG)),
where A (o) is the set of simple roots in ().
Lemma 2.2. Keeping the same notation as above, for w € W°(), we have
Oc;,“;(a), 0)=id, ie., y(w) =
On the other hand, for w € R(7), we have
y(w)=A(w)o Jﬁ|5) p(@.0) o Mw),

where A(w) : IG(O’) = IG (a) 0) is the canonical isomorphism given by ¢ (-) —

p@ ).
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Proof. For the first part, by the associativity property of the Harish-Chandra c-
function 061;“5, it suffices to prove that OC,3|p(Sa, 6) =id for o € ® (7). Setting
P, = P N M, the functoriality property of ‘¢ p(p says that

0 =~ 0 =~
Cﬁ|13(Sou 0)= Cﬁa‘ﬁa (Se» O—)lL((}’ﬁ)-

On the other hand, applying Savin’s results on the maximal parabolic subgroup
case in [Savin 2017, Proposition 2], we then have

Ocﬁlﬁ(sav 6) = Ocﬁalﬁa(Sa’ &)|L(5,ﬁ) :1d

As for the second part, this results from the associativity of J Plo. p(), 1e,
Ipia.p () opp() = 1_[ Ja ().
O56"*‘1)1‘ed(P)ﬁq)red(ﬁ)
Notice that for & € Preq(P)NPreq(w. P), ,uMa (0.6)= ,uM“ (6)#0, s0 J;,M).;,(d).&)

and J B 5 (@.0) are holomorphic at &, and hence invertible. In this case, based on
the general associativity property of J Byl Ve have

A@)o e p(.5) = A) 0 Jp 5 5(@.5) 0 () R) A@) 0 I, 5 5(6.6) 0 M),

which in turn implies that
y(@) = A(w) o Jp; 5(@.5) 0 M). O

Remark. We note that [Savin 2017, Proposition 2] concerns unitary supercuspidal
representations, but the argument applies to discrete series as well based on the
following facts (see [Waldspurger 2003, Lemme II1.3.1, Corollaire I11.7.3]):

. Homé(lgc}, Ig&) = HomM(JA‘i;(Igc?), o), where JA‘;“I stands for the tempered
part of the normalized Jacquet module J ;.
. Jﬂ‘g’] (Ig&) =Y _wew(u) @-0 as virtual representations.
Note that A(w) o J Plo. p(@.0) o A(w) is nothing but the well-known intertwining
operator A(w) o M (w, &) which is defined by

16@G) 212 16@.6): f s (@ 'ug) du.

UnaoUod—"\U
In the following lemma, we show the linear independence of {y (w) : ® € R(5)}
adapting the argument in [Ban 2004].
Lemma 2.3. For w € R(6), y(w) are linearly independent on Ig (6).

Proof. For the convenience of the reader, we recall the argument in [Ban 2004,
Theorem 4.3] as follows. The upshot is to construct a function f € Ig (o) with the
following “separation” property for the nontrivial ® € W(M):

e f(1)=0.
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e M(w, o) f(1) is absolutely convergent and nonzero.
e For any w; € W(M) with w; #? o, M(w;,5)f(1)=0

Such a function is constructed as follows. Fix a nonzero element v in (6, V). Let K
be a compact open subgroup of G splitting in G, such that §'/2(k)kv = v for all
k € KN M. In addition, we may assume K is invariant under conjugation by
w € W(M). Notice that P(UN& 'UHNK) is open in P(UN&'U®). Hence
we may choose a compact subgroup Ko C K which is invariant under conjugation
by w € W(M), such that

KoNPWU NG 'Ue) c PWOUNG'USNK) and & 'Ky G, i,
where wal = Uw,zwq P& P. Then we may define the “separation” function f as

@ )—i 12m)é (myv  if § = mud 'k € P~ 'Ky,

otherwise.

It is easy to see such an f is well defined and belongs to IG(V) If pro~ 'k =
Par~ ks, for Pi, P2 € P and ki, ky € K¢, we then have

Py pr=""koki'® € Ko,
which in turn implies that, as §'/2(k)é (k)v = v for k € K,
812 (p)& (pryv =8"2(p2)G (po)v.

On the other hand, we have

supp(f) C P&'KoC G, := | ] P&'P.
w'>w!

and supp(f) N P = @. Observe that
M) = [ £y du

UnaU& "\U

:/ f(ud)_l)du:/ fwa™Ydu.
Unao~'Ud PKoNUN®~ U

Notice that for u € UN& 'UdN PKy, we write u = pko; then
P lu=kye KoNPWU NG 'Ud) c PWUNG'UONK),
thusu e UN&'Ud®NK C K and p € K, therefore
fwad™) = f(pKod™) =8"2(p)& (p)v =,
which in turn says that
M(w,6)f(1)=mes(UN& 'UdN PKy)v #0.

The remaining vanishing statement is easy. (]
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To finish the proof of Knapp—Stein dimension theorem for finite central covering
groups, it remains to prove Harish-Chandra commuting algebra theorem. For
simplicity, we state Harish-Chandra commuting algebra theorem and Knapp—Stein
dimension theorem together as follows.

Theorem 2.4. Keeping the same notation as before, we have
Endé(lg((r)) = Span{y (®) : w € W (&)} = Span{y (w) : w € R(5)}.

Therefore, dim Endg (1 (5)) = |R(5)|.

Proof. This follows from the Plancherel formula stated in Section 2A using the
same argument as in [Silberger 1979, Theorem 5.5.3.2]. For the convenience of the
reader, we sketch the main ideas as follows. Denote

LG, P):={¢p € L(G, P): %cj p(w,5)p =¢ forall o € W(5)}.
Recall I' = Span{y () : @ € W(5)} C Endé(lg(é)).

Step 1. The centralizer C 1,5, py(I') of I"in L (0, P) satisfies Cr, py(I') = LG, f’),
and L6, P)=1 ](3; (6)(C(G)). The latter plays the key role which follows
from the Plancherel formula, i.e., the isomorphism

C(G) = C®(O)™.
Step 2. CL((}’P)(I}? (6)(C(G))) = Endg (Il(;; (6)). This follows from the definition.
Step 3. The Wedderburn double centralizer theorem says that

I'=CLe.p)(CLi.p)(T) =Endg(I5(5)).

In order to apply the Wedderburn double centralizer theorem, one has to
consider some finite-dimensional subspaces L (o, P)X*X of L(o, P) con-
sisting of K x K-invariant vectors, where K is an open-compact subgroup
of G which splits in G and is small enough, as in [Silberger 1979].

To be precise, let K be a sufficiently small open-compact subgroup of G which
splits in G, then we have

Endg (1S (&) = Endy g, (IS (6)) = End,, g, (IS (&)%),

where Cg (G) is the subspace of double K -invariant functions in C (G) and / G(O’)K
is the subspace of K-invariant vectors in / G(a)

Denoting by 'k the restriction of the actlon of "'to [ G(U)K we have dimI'g =
dimI". AsI" C L(d, P) is semisimple, thus

Tk = Cri. sk (Cr pykxx (Tk)) = Cp pyexx (LG, PYF<K).
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On the other hand, Harish-Chandra’s Plancherel formula implies that
LG, PYX*K = 19(3)(Ck (G)).
which in turn implies that
Tk = Cpr,pyrxx (LO(G, PYF*K)
= Cp. pyr (19(6)(Cx (G))) = End, 5, (IS (6)5).

whence - -
[=Tg= Ench(é)(Ig(&)K) = Endé(lg(&)). O

2C. An example: R-group for genuine unramified principal series. The decom-
position of tempered induced representation / g (6) is determined by our R(6)-
group, especially intertwining operators. Recall that the associativity property of
intertwining operators says that

T 515, 5, (6) = (H ja<5)> T35, ).

We normalize those intertwining operators Jp/p (o) for covering groups by a factor
rpp(0) as done by Arthur for linear groups (please refer to [Li 2012] for the
details) so that our normalized intertwining operators

Rpp(5) :=rp p(6) " Tpp(5)
satisfy some natural properties, for example
Rf’3|f~’2(&)R132|131 (@)= Rﬁ3|131 (@).
As in [Arthur 1993], we then define the normalized intertwining operators
R(w, ) = A(w) o r(w) o Ry1 pp(6): 15(&) N Ig(a—)
which satisfy
' := Span{y (w) : w € R(6)} = Span{R(w, 7)}.

On the other hand, the definition of A(w) o A(w) depends on the lift of w in K good-
For simplicity, we use the same letter w to be the fixed lifting of w € W5 (T) if no
confusion arises. In general, w — R(w, &) is not a homomorphism, but we have
the formula

R(wiwy, 0) = ng(wi, wa)R(wy, 6)R(wz,6), wy, w2 € R(0),
where

ns (W1, w2) = A(wiwy) o A(wiwa) o A(wz) ™ o A(wa) ™ oA (w) ! o A(wy) !

is a 2-cocycle for R(6) with values in C*. Thus the image 75 of 5 in H 2(R(6),CX)
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gives the obstruction of extending the representation ¢ to the groups generated
by M and {w € Kgooq : w € R(5)}.
As in [Arthur 1993, page 87], we deal with the problem by fixing a finite central

extension 3
1—-Zs; > R; > R(6)—>1

over which ;s splits. We then choose a function x5 : R;— C* such that 1z splits, i.e.,
NG (r1,r2) = k& (rr)ks (r) ks (r) ™", ri,r € Rs,
where 75 is identified with its pullback to Rz x Rs. It follows that
ks (zr) = x5 (ks (r), z€Zs, r€Rs,

where s is a character on the central subgroup Z;. We twist our intertwining
operators by «3, i.e.,

R(r,6):=xk5(r)"'R(r,5), reR;
which gives rise to a homomorphism of R to the group of unitary intertwining
operators for 1 g (o) satisfying
R(zr,6) = x5()"'R(r&), z€Zs, reRs.
Therefore we obtain a representation R of Rs x G on the underling vector space Hs
of 15(5), ie.,
R(r,8):=R(,5)I{(5,8), reRs, geG.

Thus our Knapp-Stein dimension theorem, i.e., Theorem 2.4, implies that
R=Dr o,
]

where p runs over the set IT1(R3) ; Oof irreducible representations of R; with
Zs-central character xs, and p is the contragredient representation of p, while
m, € JH(lg(ar)). ~

It is well known that such a 2-cocycle 75 is trivial if [T(R5),, contains a one-
dimensional representation, thus giving:

Lemma 2.5 (D. Keys). Keep the notions as above. If the tempered induction I}? (0)
contains a constituent which is of multiplicity one, then the 2-cocycle 1 is trivial.

Proof. Since Ig (o) contains a constituent which is of multiplicity one, the decom-
position
R= @ PR,
PEM(R5) 45

implies IT(R5),, contains a one-dimensional representation, so our claim holds. [J
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A typical example of such a situation is when / g (0) is an unramified genuine
unitary principal series, that is:

Corollary 2.6. Keep the notions as above. For genuine unramified unitary principal
series Ig (0), the representation R of Rz x G on the underling vector space Hg of

Ig (0) decomposes as
R= @ PR,.

PEI(R3)

In what follows, we would like to investigate R-groups for genuine unramified
unitary principal series of the tame Brylinski—Deligne n-fold covering group G of
a split simply connected group G defined over the nonarchimedean local field F,
where tame means that n and p are coprime. Under this setting, those R-groups
are isomorphic to the associated R-groups of the incarnation split linear group G,
which gives rise to the same Langlands dual group GY; moreover G, is an isogeny to
G’ which has the same or dual root system of G depending on the cover (see [Savin
2004; Gan and Gao 2018; Weissman 2018]). Note that R-groups for G are well
known (see [Keys 1982]). So it reduces to investigating the relation of R-groups
under isogeny. Let p : G — G, be the isogeny map. Restricting to their maximal
torus gives p: T — T, and px*: I1(T,)) — [1(T), i.e., xn = X := Xn o p. Therefore
W, i={weWs(T):w.xn=xn} < Wy :={we Wg(T):w.x = x} as the map p is
W¢ (T)-equivalent. On the other hand, for x € [1,(T) and aroot € ® := (G, T),
it is well known that the corank one Plancherel measure iy (x) 1= u™e(x) is equal
to 0 if and only if x4 := x o Hyv = 1 (see [Winarsky 1978]), where H,v is the
one-parameter subgroup given by « under Harish-Chandra homomorphism (see
[Waldspurger 2003]). A similar criterion holds for covering groups (please refer to
[Goldberg and Szpruch 2016] for the details). Note that x, = 1 says that (x,)q = 1,
which implies that S.x, = x». In either PGL, or SL,, such a corank one unitary
induction is always irreducible, thus uq(x,) =0, i.e., Wgﬂ = (Sy : o (Xn) =0,
a € (G, T)) =W :=(S: pa(x) =0,a € ®(G, T)).

Lemma 2.7. Retain the notions as above. We have
Ry, =Wy, /W) <Ry := W, /W,

Proof. This is equivalent to showing that W, < W,, i.e., for any w € W, and
w, € Wy, wy.(w.x,) = (w.x,). But w € W, implies that w.x, = x, x. for some
xc € IIo(T,,/p(T)). Note that any y. € [1,(T,,/p(T)) is W (T)-invariant which
follows from the fact that S,.y — y lies in the coroot lattice of 7' for any coroot y
of T, and @ € ©(G, T). Thus wy,.(w.x,) = Wy (XnXe) = Wy XnXe = (W. xn). O

It is also well known that R-groups for unitary unramified principal series of
adjoint groups are trivial (see [Li 1992, Corollary 2.6]). Thus the nontrivial R-
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groups for split semisimple groups which have not been discussed in [Keys 1982]
and [Goldberg 1994] are as follows:

Corollary 2.8 (Keys). G,, = SL,(C)/um : R ~Z/dZ with d|m|t.

2D. An example: R-group of M p;,. In what follows, we discuss some properties
of R-groups for Mp,,. Let us first introduce a simple fact. Recall that we have the
following decomposition of R x G acting on Ig (0):

Ifoy= P sQm,.

PETI(R) 4,
As an easy corollary, we have the following criterion on the abelian property of R.

Corollary 2.9. If 1, (R) consists of one-dimensional representations, then R ~
R/Z is abelian.

Proof. This results from the following fact: For a finite group G and a subgroup
H < Z(G), fix a character x of H, if as G-modules

IG/H]|
() Ind; () = @ x;

i=1
then G/H is abelian.

Note that if x is trivial, then this is quite obvious. As for x nontrivial, we may

consider a new set of characters S := {)(1_1 -xiti=1,...,|G/H|}. Itis easy to
see X, ! Xi X| ! x;j for i # j, and these are the characters of G which are trivial

on H, which in turn says
|G/H|

Ind§ (D= P x ' %
i=1

whence (%) holds. O

In view of the above corollary, based on Gan and Savin’s work on local theta
correspondence [2012], we have:

Corollary 2.10. Keeping the notation as before, R(6) is abelian, and
R(6) = R(©(0)).

Here (6, ©(0)) is a Howe duality pair under the local theta correspondence for
(Mpan, SO2p41).

Proof. The first part follows from the preservation of multiplicities in tempered
inductions under the local theta correspondence. The second part follows from the
preservation of Plancherel measures under the local theta correspondence. (]

Remark. We recently learned that M. Hanzer [2019] had described the R-group
for Mp,, using the local theta correspondence.
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