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KNAPP–STEIN DIMENSION THEOREM FOR
FINITE CENTRAL COVERING GROUPS

CAIHUA LUO

It is folklore that the Knapp–Stein dimension theorem should be extended
word by word to general covering groups. But we note that such a proof
does not exist in the literature. For completeness, we provide a proof of the
classical Knapp–Stein dimension theorem for finite central covering groups.
As an example, we obtain the R-group structure for M p2n based on Gan
and Savin’s work on the local theta correspondence for (M p2n, SO2n+1).

1. Introduction

Let G be a connected reductive group defined over a nonarchimedean local field F.
By abuse of notation, we also write G for G(F), and denote by G̃ the associated
finite central covering group of G(F) by µn , i.e.,

1→ µn→ G̃ p
−→ G(F)→ 1.

Representation-theoretically, one of the fundamental problems is to understand the
classification of irreducible admissible representations of G. Notably, we have the
diagram

5s.c(G)
(iii)
⊂ 5d.s(G)

(ii)
⊂ 5temp(G)

(i)
⊂5(G).

Here 5(G), 5temp(G), 5d.s(G) and 5s.c(G) stand for the set of isomorphism
classes of irreducible admissible representations, tempered representations, discrete
series and supercuspidal representations of G, respectively. Recall that

• (i) is the Langlands classification [1989]. The covering case is established by
Ban and Jantzen [2013],

• (ii) is the Knapp–Zuckerman classification [1982]. The covering case follows
from [Waldspurger 2003, Proposition III.4.1] (see [Li 2012]).

• (iii) is the Moeglin–Tadić classification for classical groups [2002]. The
covering case is unknown so far.
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Note that in (ii), as the normalized induced representation is unitary, we may
investigate its finer structure, i.e., the so-called R-group theory (see [Knapp and
Stein 1971; 1980; Silberger 1978]). Indeed, the R-group theory not only determines
the decomposition of induced representations, but also plays an essential role in the
endoscopy theory. In view of this, it is necessary to extend the R-group theory to
covering groups. This is exactly what we will do in the paper.

In what follows, we give a rough outline of the main results. Exact definitions
and notation are given in the body of the paper. For a standard parabolic P =
M N ⊂G and σ ∈5d.s(M), we denote by I G

P (σ ) the associated normalized induced
representation of G, and by W (M) the relative Weyl group of M in G. Let W (σ ) :=

{ω ∈W (M) :ω.σ = σ }. Fix a section of W (M) in Kgood which is a special compact
open subgroup of G. For simplicity, we use the same letter w for the fixed lifting of
w ∈W (M) if no confusion arises. For ω ∈W (σ ), we may define an unnormalized
intertwining operator γ (ω)= A(ω)◦M(ω, σ ) on I G

P (σ ) as in Lemma 2.2, and then
define W 0(σ ) := {ω ∈ W (σ ) : A(ω) ◦M(ω, σ ) is a scalar}. It is well known that
W 0(σ ) is a normal subgroup of W (σ ), and the following exact sequence splits:

1→W 0(σ )→W (σ )→ R(σ )→ 1.

Main Theorem (Theorem 2.4). Modifying the above notation for G̃, we have

dim EndG̃(I
G̃
P̃
(σ̃ ))= |R(σ̃ )|.

Classically, Knapp and Stein [1971; 1980] established the dimension theorem
for tempered induced representations of semisimple Lie groups and later Silberger
[1978] extended the Knapp–Stein dimension theorem to p-adic reductive groups.
Notice that the strategies to prove the Knapp–Stein dimension theorem in [Silberger
1978] are as follows.

(i) The Harish-Chandra commuting algebra theorem; that is, EndG(I G
P (σ )) =

Span{γ (ω) : ω ∈W (σ )}.

(ii) EndG(I G
P (σ ))= Span{γ (ω) : ω ∈ R(σ )}.

(iii) The multiplicity of a given exponent in the tempered Jacquet module Jω
P
(I G

P (σ ))

is no greater than the cardinality of W 0(σ ). This in turn implies that

dim EndG(I G
P (σ ))= [W (σ ) :W 0(σ )] = |R(σ )|.

So basically, we adapt the same argument as in [Silberger 1978] to extend the
Knapp–Stein dimension theorem for finite central covering groups. But instead of
showing the multiplicity of a given exponent is bounded by W 0(σ ) in the weak
Jacquet module Jω

P
(I G

P (σ )), we follow D. Ban’s argument [2004] to directly show
the linear independence property of these γ (ω) with ω ∈ R(σ ). Herein, we should
mention that the Knapp–Stein dimension theorem for finite central covering groups
has been announced by Wen-Wei Li [2012] and D. Szpruch [2013].
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2. Knapp–Stein dimension theorem

2A. Notation and conventions. In this section, we first recall some necessary
definitions and properties in [Waldspurger 2003; Li 2012] for our purpose.

Recall that F is a nonarchimedean field, G is a connected reductive group defined
over F, and G̃ is the associated finite central covering group of G(F) by µn , i.e.,

1→ µn→ G̃ p
−→ G(F)→ 1.

Fix a maximal split torus T of G and the associated minimal parabolic subgroup
P0 = M0 N0 with the Levi subgroup M0 containing T. Denote by WG(T ) :=
NG(T )/CG(T ) the Weyl group of G with respect to T, and by8=8(G, T ) the set
of relative roots of T in G. The choice of P0 determines the set of relative simple
roots 1 and the set of relative positive roots 8+ ⊂8. If α ∈8+, we write α > 0.

As is well known, the standard parabolic subgroups of G are uniquely determined
by a subset 2 of 1. For such a subset 2⊂1, let P2 = M2N2 be the associated
standard parabolic subgroup of G with Levi subgroup M2 ⊃ M0, and W (M2) :=

NG(M)/M be the relative Weyl group with respect to M2 in G. Let TM2
be the

split component of the center of M2, and X (M2)F := HomF−grp(M2,Gm) be the
group of all F-rational characters of M2. Denote aM2

:= Hom(X (M2)F ,R) =

Hom(X (TM2
)F ,R). Recall that in [Luo 2017] we have defined the Harish-Chandra

homomorphism HM̃2
: M̃2→ aM2

by HM2
◦ p, and M̃1

2 := Ker(HM̃2
). Denote

X (M̃2) :=Hom(M̃2/M̃1
2,C×). As X (M̃2)= X (M2), we may attach a complex

algebraic variety structure on X (M̃2) via the surjective homomorphism

a∗
M̃2,C
:= X (M2)F

⊗
Z

C
ι
−→ X (M2)

given by χ⊗ s 7→ |χ( · )|s. Notice that Ker(ι) is of the form 2π i/(log q)L with L a
lattice in X (M2)F ⊗Z Q; it does make sense to define the notion of real part Re(χ)
of χ ∈ X (M2). Denote Im X (M̃2) := Im X (M2)= {χ ∈ X (M2) : Re(χ)= 0}.

Fix the canonical section of unipotent elements in G to G̃ as in [Mœglin and
Waldspurger 1995, Appendix I] or [Li 2014, Proposition 2.2.1]. By abuse of notation,
for a unipotent subgroup N ⊂G, we also write N for its canonical section in G̃. For a
standard parabolic subgroup P =M N of G, let P̃ = M̃ N be the preimage of P in G̃.
Denote by 5(M̃) (resp. 52, 5temp(M̃)) the set of isomorphism classes of genuine
irreducible admissible (resp. discrete series, tempered) representations of M̃ . Notice
that the complex torus X (M̃) acts naturally on 5(M̃) by (χ, σ̃ ) 7→ σ̃ ⊗χ , where
χ ∈ X (M̃) and σ̃ ∈5(M̃). The induced action of Im X (M̃) preserves 52(M̃). For
an orbit O in 52(M̃) under the action of Im(X (M̃)), we may chose a base point
σ̃ ∈O, and then furnish the orbit with O a C∞ variety structure via the isomorphism

Im X (M̃)/StabIm X (M̃)(σ̃ )−→
∼ O : χ 7→ σ̃ ⊗χ.
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Here StabIm X (M̃)(σ̃ ) is a finite group. Analogously, we may attach a complex
algebraic variety structure on an orbit OC for the action of X (M̃) on 5(M̃). In
this case, we may talk about C∞, regular and rational functions on OC. For a
genuine discrete series representation σ̃ ∈52(M̃), we define the action of W (M)
on σ̃ ∈52(M̃) and a parabolic subgroup P̃ = M̃ N by

w.σ̃ (m̃) := σ̃ (w̃−1m̃w̃)

and w.P̃ = w̃ P̃w̃−1 for w̃ ∈ G̃ a representative of w ∈ W (M) and any m̃ ∈ M̃ .
We set W (σ̃ ) := {ω ∈ W (M) : w̃.σ̃ = σ̃ }. In order to introduce the Knapp–Stein
dimension theorem for finite central covering groups, we would like to summarize
some necessary definitions and the associated properties in [Waldspurger 2003; Li
2012; Ban and Jantzen 2013] which are rather standard and will be needed later on.

Bruhat decomposition. (see [Ban and Jantzen 2013, Lemma 2.6]): For 2 ⊂ 1,
we attach a parabolic subgroup P2 = M2N2 of G and the associated P̃2 = M̃2N
of G̃. Denote
P2W P2 :=WM2

(T )\WG(T )/WM2
(T )={ω ∈WG(T ) :ω−1.2⊂8+, ω.2⊂8+}.

Then we have the following decomposition of G̃:

G̃ =
⊔

ω∈P2W P2

P̃2ω̃ P̃2,

where ω̃ is an arbitrary lifting of ω in G̃.

Bernstein–Zelevinsky geometric lemma (see [Ban and Jantzen 2013, Proposition 3.3]
or [Waldspurger 2003, Section I.3]). Let P = MU and Q = LV be standard
parabolic subgroups of G. For σ̃ ∈5(M̃), we have, in the Grothendieck group,

JQ̃ ◦ I G̃
P̃
(σ̃ )=

∑
ω∈Q W P

I L̃
L̃∩ω̃.P̃

◦ ω̃ ◦ JM̃∩ω̃−1.Q̃(σ̃ ).

Here JQ̃ stands for the normalized Jacquet functor with respect to Q̃, and I G̃
P̃

for the
normalized induced representation with respect to P̃ . In particular, for σ̃ ∈52(M̃),
the geometric lemma gives rise to

dim EndG̃(I
G̃
P̃
(σ̃ ))≤ |W (M)|.

Intertwining operator. Fix two semistandard parabolic subgroups P1 = MU1 and
P2 = MU2 of G, and (σ̃ , V ) ∈5(M̃). Under some continuation on OC 3 σ̃ (see
[Waldspurger 2003; Li 2012]), we may define an intertwining operator JP̃2|P̃1

(σ̃ ) as

I G̃
P̃1
(σ̃ )

JP̃2|P̃1
(σ̃ )

−−−−→ I G̃
P̃2
(σ̃ ) : f (g̃) 7→ JP̃2|P̃1

(σ̃ )( f )(g̃)=
∫

U1∩U2\U2

f (ug̃) du.

For later use, we mention the following properties of JP̃2|P̃1
in [Waldspurger 2003,

Section IV.3]:
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• (Plancherel measure) For σ̃ ∈ 5(M̃), and a semistandard parabolic P = M N
of G, denote by P = M N the unique opposite parabolic subgroup of P in G. By
the generic irreducibility property of Ind(σ̃ ) (see [Renard 2010, Section VI.8.5]),
we may define

jP̃(σ̃ ) := J
P̃| ¯̃P
(σ̃ )J ¯̃P|P̃(σ̃ )

as a scalar which does not depend on P ⊃ M, and denoted by j (σ̃ ). For simplicity,
for σ̃ ∈52(M̃), we define the Plancherel measure attached to σ̃ asµG̃(σ̃ ) := j (σ̃ )−1.
Then we have

– µG̃(σ̃ )≥ 0;

– µG̃(σ̃ ) =
∏
α µ

M̃α (σ̃ ), where α runs over all the reduced roots of TM , up to
sign.

– µG̃(ω̃.σ̃ )= µG̃(σ̃ ), where ω ∈WG(T ).

– µG̃(σ̃ )= µG̃( ˇ̃σ). Here ˇ̃σ is the contragredient of σ̃ .

• (associativity) For Pi = MUi , i = 1, 2, 3,

JP̃3|P̃2
(σ̃ ) · JP̃2|P̃1

(σ̃ )=

(∏
jα(σ̃ )

)
JP̃3|P̃1

(σ̃ ),

where the product is taken over 8red(P1)∩8red(P3)∩8red(P2). In particular, for
ω ∈W (M),

JP̃|ω̃.P̃(σ̃ )Jω̃.P̃|P̃(σ̃ )=
∏

α∈8red(P)∩8red(ω.P)

jα(σ̃ ),

where jα(σ̃ ) is the j-constant with respect to (M, σ̃ ) with Mα in place of G.

Harish-Chandra c-function. Recall that for (σ̃ , V ) ∈OC ⊂5(M̃), we denote by
( ˇ̃σ, V̌ ) the contragredient representation of (σ̃ , V ). For a semistandard parabolic
subgroup P = MU of G, we define

L(σ̃ , P̃) := I G̃
P̃
(V )⊗ I G̃

P̃
(V̌ ) ↪→ End(I G̃

P̃
(V )),

and the matrix coefficient map

E G̃
P̃
: L(σ̃ , P̃)→ C∞(G̃) : ν⊗ ν̌ 7→ 〈π̃(g̃)ν, ν̌〉,

where π̃ = I G̃
P̃
(σ̃ ). For ω ∈W (M), we define the Harish-Chandra c-function as

cP̃|P̃(ω, σ̃ ) : L(σ̃ , P̃) λ(ω)
−−→ L(ω̃.σ̃ , ω̃.P̃)

JP̃|ω̃.P̃ (ω̃.σ̃ )⊗J ¯̃P|ω̃.P̃ (ω̃.σ̃ )
−−−−−−−−−−−−−→ L(ω̃.σ̃ , P̃);

here λ(ω) : φ( · ) 7→ φ(ω̃−1
· ), and ω̃ ∈ K̃good where Kgood is a special compact

open subgroup of G which is in good position with respect to M0. Furthermore,
we define

0cP̃|P̃(ω, σ̃ ) := cP̃|P̃(1, ω̃.σ̃ )
−1cP̃|P̃(ω, σ̃ ) ∈ HomG̃×G̃(L(σ̃ , P̃), L(ω̃.σ̃ , P̃)).
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Note that these operators 0cP̃|P̃(ω, σ̃ ) for ω ∈W (σ̃ ) have the following properties
(see [Waldspurger 2003, Section V.3] or [Li 2012, Section 2.5]).

• (regularity) They are regular on O and unitary operators.

• (associativity) For ω1, ω2 ∈ W (M), σ̃ ∈ O ⊂ 52(M̃) and Pi = MUi with
i = 1, 2, 3, based on the associativity of JP̃ ′|P̃ , we have the equality

0cP̃3|P̃2
(ω1, ω̃2.σ̃ )

0cP̃2|P̃1
(ω2, σ̃ )=

0cP̃3|P̃1
(ω1ω2, σ̃ ).

Plancherel formula (see [Li 2012, Section 2.6]). Let C(G̃) be the Schwartz–Harish-
Chandra function space of G̃, and C∞(O, P̃) the space of C∞-functions on O,
i.e., ψ[O, P] : σ̃ → ψ[O, P]σ̃ ∈ L(σ̃ , P̃), such that it is compatible with the
isomorphism class of σ̃ . Denote by 2 the set of pairs (O, P = MU ), where P
is a semistandard parabolic subgroup of G and O ⊂ 52(M̃) an orbit under the
action of Im X (M̃). Let C∞(2) :=

⊕
(O,P)∈2 C∞(O, P̃), and write an element

ψ ∈C∞(2) in the form of ψ = (ψ[O, P])O,P . We set C∞(2)inv to be the subspace
of C∞(2) consisting of the elements ψ such that

ψ[ω̃.O, P ′]ω̃.σ̃ = 0cP̃ ′|P̃(ω, σ̃ )ψ[O, P]σ̃ ,

for all (O, P)∈2 and all P ′. For f ∈C(G̃), we define a map ι :C(G̃)→C∞(2)inv as

f 7→ (ψ f [O, P] : σ̃ 7→ d(σ̃ )I G̃
P̃
(σ̃ )( f̌ ))O,P ,

where d(σ̃ ) is the formal degree of σ̃ , and f̌ (g̃)= f (g̃−1). In rough terms, given
both C(G̃) and C∞(2)inv the natural direct limit topology with respect to open com-
pact subgroups, the Plancherel formula says that ι is an isomorphism of topological
spaces, and the associated inverse map κ is given by

ψ 7→
∑

(O,P)∈2

γ (G|M)|WM(T )| |WG(T )|−1
|P(M)|−1 fψ[O,P],

where P(M) is the set of all parabolic subgroups P = MU with Levi group M,

γ (G|M)=
∫

U
δP(m p(ū))dū and fψ[O,P](g̃)=

∫
O
µG̃(σ̃ )(E G̃

P̃
ψ[O, P]σ̃ )(g̃)dσ̃ .

2B. Knapp–Stein dimension theorem. Now we are ready to prove the Knapp–
Stein dimension theorem for finite central covering groups.

For (σ̃ , V ) ∈ O ⊂52(M̃), and ω ∈ W (σ̃ ), denote by A(ω) the unique isomor-
phism, up to scalars of | · | = 1, between ω̃.σ̃ and σ̃ , and extend A(ω) to be an
isomorphism between I G̃

P̃
(ω̃.σ̃ ) and I G̃

P̃
(σ̃ ). Note that

A(ω) ◦ 0cP̃|P̃(ω, σ̃ ) ∈ EndG̃×G̃(L(σ̃ , P̃))

is regular on O and unitary. Note that the G̃×G̃-equivalent space EndG̃×G̃(L(σ̃ , P̃))
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is finite-dimensional. Applying the Skolem–Noether theorem, based on the asso-
ciativity property of 0cP̃|P̃(ω, σ̃ ), we define a projective unitary representation
ω 7→ γ (ω) of W (σ̃ ) on the underling vector space of the induced representation
I G̃

P̃
(σ̃ ), such that A(ω) ◦ 0cP̃|P̃(ω, σ̃ )= Ad(γ (ω)) on L(σ̃ , P̃) ↪→ End(I G̃

P̃
(V )).

Notice that the adjoint γ (ω)∗ of γ (ω) exists and equals γ (ω−1) up to a scalar. So
the vector space 0 := Span{γ (ω) : ω ∈W (σ̃ )} is a selfadjoint algebra, and hence
semisimple. Before turning to the Harish-Chandra commuting algebra theorem, we
first discuss the explicit form of γ (ω). Denote8(σ̃ ) := {α ∈8red(P) :µMα (σ̃ )= 0};
then W 0(σ̃ ) := 〈Sα :α∈8(σ̃ )〉⊂W (σ̃ ), where Sα is the simple reflection associated
to α (see [Waldspurger 2003, Proposition IV.2.2]).

Lemma 2.1. Indeed, 8(σ̃ ) is a subroot system, which in turn says that W 0(σ̃ ) is a
normal subgroup of W (σ̃ ).

Proof. For the convenience of the reader, we include the argument in [Harish-
Chandra 1976, Section 40] as follows. Notice that this is equivalent to showing
8(σ̃ ) is stable under the action of W (σ̃ ), i.e., ω.α ∈ 8(σ̃ ) for α ∈ 8(σ̃ ) and
ω ∈W (σ̃ ). The upshot is for λ ∈ Im a∗M,C, and α ∈8red(P),

µM̃α (σ̃ ⊗ λ) > 0 unless 〈α, λ〉 = 0.

Take P = MU, and let α1, . . . , αr be all the distinct elements in 8(σ̃ ). Assume
α= α1. Let j be the unique index such that ω.α=±α j . Fix λ ∈ Im a∗M,C, such that

〈α, λ〉 = 0 and 〈αi , λ〉 6= 0, 2≤ i ≤ r.

This impliesµM̃α (σ̃⊗λ)=µM̃α (σ̃ )=0. ThusµG̃(σ̃⊗λ)=
∏

1≤i≤rµ
M̃αi (σ̃⊗λ)=0.

Note ω̃.σ̃ = σ̃ , so 0= µG̃(σ̃ ⊗ λ)= µG̃(ω̃.σ̃ ⊗ω.λ)= µG̃(σ̃ ⊗ω.λ). This implies
µM̃αi (σ̃ ⊗ω.λ)= 0 for some i . But it is clear that 〈αi , ω.λ〉 6= 0 unless i = j, which
is to say 0= µM̃α j (σ̃ ⊗ω.λ)= µ

M̃α j (σ̃ ), whence α j ∈8(σ̃ ). �

In view of this, we may define the R-group

R(σ̃ ) :=W (σ̃ )/W 0(σ̃ )= {ω ∈W (σ̃ ) : ω.1(σ̃ )=1(σ̃ )},

where 1(σ̃ ) is the set of simple roots in 8(σ̃ ).

Lemma 2.2. Keeping the same notation as above, for ω ∈W 0(σ̃ ), we have

0cP̃|P̃(ω, σ̃ )= id, i.e., γ (ω)= id .

On the other hand, for ω ∈ R(σ̃ ), we have

γ (ω)= A(ω) ◦ JP̃|ω̃.P̃(ω̃.σ̃ ) ◦ λ(ω),

where λ(ω) : I G̃
P̃
(σ̃ )−→∼ I G̃

ω̃.P̃
(ω̃.σ̃ ) is the canonical isomorphism given by φ(·) 7→

φ(ω̃−1
·).
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Proof. For the first part, by the associativity property of the Harish-Chandra c-
function 0cP̃|P̃ , it suffices to prove that 0cP̃|P̃(Sα, σ̃ ) = id for α ∈ 8(σ̃ ). Setting
Pα = P ∩Mα, the functoriality property of 0cP̃|P̃ says that

0cP̃|P̃(Sα, σ̃ )=
0cP̃α |P̃α (Sα, σ̃ )|L(σ̃ ,P̃).

On the other hand, applying Savin’s results on the maximal parabolic subgroup
case in [Savin 2017, Proposition 2], we then have

0cP̃|P̃(Sα, σ̃ )=
0cP̃α |P̃α (Sα, σ̃ )|L(σ̃ ,P̃) = id .

As for the second part, this results from the associativity of JP̃|ω̃.P̃( · ), i.e.,

JP̃|ω̃.P̃( · )Jω̃.P̃|P̃( · )=
∏

α∈8red(P)∩8red(ω.P)

jα( · ).

Notice that for α∈8red(P)∩8red(ω.P), µM̃α (ω̃.σ̃ )=µM̃α (σ̃ ) 6=0, so JP̃|ω̃.P̃(ω̃.σ̃ )

and Jω̃.P̃|P̃(ω̃. ˇ̃σ) are holomorphic at σ̃ , and hence invertible. In this case, based on
the general associativity property of JP̃2|P̃1

, we have

A(ω) ◦ 0cP̃|P̃(ω, σ̃ )= A(ω) ◦ JP̃|ω̃.P̃(ω̃.σ̃ ) ◦λ(ω)
⊗

A(ω) ◦ Jω̃.P̃|P̃(ω̃. ˇ̃σ) ◦λ(ω),

which in turn implies that
γ (ω)= A(ω) ◦ JP̃|ω̃.P̃(ω̃.σ̃ ) ◦ λ(ω). �

Remark. We note that [Savin 2017, Proposition 2] concerns unitary supercuspidal
representations, but the argument applies to discrete series as well based on the
following facts (see [Waldspurger 2003, Lemme III.3.1, Corollaire III.7.3]):

• HomG̃(I
G̃
P̃
σ̃ , I G̃

P̃
σ̃ )=HomM̃(J

ω

M̃
(I G̃

P̃
σ̃ ), σ̃ ), where Jω

M̃
stands for the tempered

part of the normalized Jacquet module JM̃ .

• Jω
M̃
(I G̃

P̃
σ̃ )=

∑
ω∈W (M) ω.σ̃ as virtual representations.

Note that A(ω) ◦ JP̃|ω̃.P̃(ω̃.σ̃ ) ◦λ(ω) is nothing but the well-known intertwining
operator A(ω) ◦M(ω, σ̃ ) which is defined by

I G̃
P̃
(σ̃ )

M(ω,σ̃ )
−−−−→ I G̃

P̃
(ω̃.σ̃ ) : f 7→

∫
U∩ω̃U ω̃−1\U

f (ω̃−1ug̃) du.

In the following lemma, we show the linear independence of {γ (ω) : ω ∈ R(σ̃ )}
adapting the argument in [Ban 2004].

Lemma 2.3. For ω ∈ R(σ̃ ), γ (ω) are linearly independent on I G̃
P̃
(σ̃ ).

Proof. For the convenience of the reader, we recall the argument in [Ban 2004,
Theorem 4.3] as follows. The upshot is to construct a function f ∈ I G̃

P̃
(σ̃ ) with the

following “separation” property for the nontrivial ω ∈W (M):

• f (1)= 0.
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• M(ω, σ̃ ) f (1) is absolutely convergent and nonzero.

• For any ω1 ∈W (M) with ω1 � ω, M(ω1, σ̃ ) f (1)= 0.

Such a function is constructed as follows. Fix a nonzero element ν in (σ̃ , V ). Let K
be a compact open subgroup of G splitting in G̃, such that δ1/2(k)k̃ν = ν for all
k ∈ K ∩ M̃ . In addition, we may assume K is invariant under conjugation by
ω ∈ W (M). Notice that P̃(U ∩ ω̃−1U ω̃ ∩ K ) is open in P̃(U ∩ ω̃−1U ω̃). Hence
we may choose a compact subgroup K0 ⊂ K which is invariant under conjugation
by ω ∈W (M), such that

K0 ∩ P̃(U ∩ ω̃−1U ω̃)⊂ P̃(U ∩ ω̃−1U ω̃∩ K ) and ω̃−1K0 ⊂ G̃ω−1,

where G̃ω−1 :=
⋃
ω′≥ω−1 P̃ω̃′ P̃ . Then we may define the “separation” function f as

f (g̃)=
{
δ1/2(m)σ̃ (m̃)ν if g̃ = m̃uω̃−1k ∈ P̃ω̃−1K0,

0 otherwise.

It is easy to see such an f is well defined and belongs to I G̃
P̃
(V ): If p̃1ω̃

−1k1 =

p̃2ω̃
−1k2, for p̃1, p̃2 ∈ P̃ and k1, k2 ∈ K0, we then have

p̃−1
2 p̃1 = ω̃

−1k2k−1
1 ω̃ ∈ K0,

which in turn implies that, as δ1/2(k)σ̃ (k)ν = ν for k ∈ K,

δ1/2( p̃1)σ̃ ( p̃1)ν = δ
1/2( p̃2)σ̃ ( p̃2)ν.

On the other hand, we have

supp( f )⊂ P̃ω̃−1K0 ⊂ G̃ω−1 :=

⋃
ω′≥ω−1

P̃ω̃′ P̃,

and supp( f )∩ P̃ =∅. Observe that

M(ω, σ̃ ) f (1)=
∫

U∩ω̃U ω̃−1\U
f (ω̃−1u) du

=

∫
U∩ω̃−1U ω̃

f (uω̃−1) du =
∫

P̃ K0∩U∩ω̃−1U ω̃
f (uω̃−1) du.

Notice that for u ∈U ∩ ω̃−1U ω̃∩ P̃ K0, we write u = p̃k0; then

p̃−1u = k0 ∈ K0 ∩ P̃(U ∩ ω̃−1U ω̃)⊂ P̃(U ∩ ω̃−1U ω̃∩ K ),

thus u ∈U ∩ ω̃−1U ω̃∩ K ⊂ K and p̃ ∈ K, therefore

f (uω̃−1)= f ( p̃K0ω̃
−1)= δ1/2( p̃)σ̃ ( p̃)ν = ν,

which in turn says that

M(ω, σ̃ ) f (1)=mes(U ∩ ω̃−1U ω̃∩ P K0)ν 6= 0.

The remaining vanishing statement is easy. �
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To finish the proof of Knapp–Stein dimension theorem for finite central covering
groups, it remains to prove Harish-Chandra commuting algebra theorem. For
simplicity, we state Harish-Chandra commuting algebra theorem and Knapp–Stein
dimension theorem together as follows.

Theorem 2.4. Keeping the same notation as before, we have

EndG̃(I
G̃
P̃
(σ̃ ))= Span{γ (ω) : ω ∈W (σ̃ )} = Span{γ (ω) : ω ∈ R(σ̃ )}.

Therefore, dim EndG̃(I
G̃
P̃
(σ̃ ))= |R(σ̃ )|.

Proof. This follows from the Plancherel formula stated in Section 2A using the
same argument as in [Silberger 1979, Theorem 5.5.3.2]. For the convenience of the
reader, we sketch the main ideas as follows. Denote

L0(σ̃ , P̃) := {φ ∈ L(σ̃ , P̃) : 0cP̃|P̃(ω, σ̃ )φ = φ for all ω ∈W (σ̃ )}.

Recall 0 = Span{γ (ω) : ω ∈W (σ̃ )} ⊂ EndG̃(I
G̃
P̃
(σ̃ )).

Step 1. The centralizer C L(σ̃ ,P)(0) of0 in L(σ̃ ,P) satisfies CL(σ̃ ,P)(0)= L0(σ̃ , P̃),
and L0(σ̃ , P̃)= I G̃

P̃
(σ̃ )(C(G̃)). The latter plays the key role which follows

from the Plancherel formula, i.e., the isomorphism

C(G̃)−→∼ C∞(2)inv.

Step 2. CL(σ̃ ,P)(I G̃
P̃
(σ̃ )(C(G̃)))= EndG̃(I

G̃
P̃
(σ̃ )). This follows from the definition.

Step 3. The Wedderburn double centralizer theorem says that

0 = CL(σ̃ ,P)(CL(σ̃ ,P)(0))= EndG̃(I
G̃
P̃
(σ̃ )).

In order to apply the Wedderburn double centralizer theorem, one has to
consider some finite-dimensional subspaces L(σ, P)K×K of L(σ, P) con-
sisting of K × K -invariant vectors, where K is an open-compact subgroup
of G which splits in G̃ and is small enough, as in [Silberger 1979].

To be precise, let K be a sufficiently small open-compact subgroup of G which
splits in G̃, then we have

EndG̃(I
G̃
P̃
(σ̃ ))= EndC(G̃)(I

G̃
P̃
(σ̃ ))= EndCK (G̃)(I

G̃
P̃
(σ̃ )K ),

where CK (G̃) is the subspace of double K -invariant functions in C(G̃), and I G̃
P̃
(σ̃ )K

is the subspace of K -invariant vectors in I G̃
P̃
(σ̃ ).

Denoting by 0K the restriction of the action of 0 to I G̃
P̃
(σ̃ )K, we have dim0K =

dim0. As 0 ⊂ L(σ̃ , P) is semisimple, thus

0K = CL(σ̃ ,P)K×K (CL(σ̃ ,P)K×K (0K ))= CL(σ̃ ,P)K×K (L0(σ̃ , P)K×K ).
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On the other hand, Harish-Chandra’s Plancherel formula implies that

L0(σ̃ , P)K×K
= I G̃

P̃
(σ̃ )(CK (G̃)),

which in turn implies that

0K = CL(σ̃ ,P)K×K (L0(σ̃ , P)K×K )

= CL(σ̃ ,P)K×K (I G̃
P̃
(σ̃ )(CK (G̃)))= EndCK (G̃)(I

G̃
P̃
(σ̃ )K ),

whence
0 = 0K = EndCK (G̃)(I

G̃
P̃
(σ̃ )K )= EndG̃(I

G̃
P̃
(σ̃ )). �

2C. An example: R-group for genuine unramified principal series. The decom-
position of tempered induced representation I G̃

P̃
(σ̃ ) is determined by our R(σ̃ )-

group, especially intertwining operators. Recall that the associativity property of
intertwining operators says that

JP̃3|P̃2
(σ̃ )JP̃2|P̃1

(σ̃ )=

(∏
jα(σ̃ )

)
JP̃3|P̃1

(σ̃ ).

We normalize those intertwining operators JP ′|P(σ̃ ) for covering groups by a factor
rP ′|P(σ̃ ) as done by Arthur for linear groups (please refer to [Li 2012] for the
details) so that our normalized intertwining operators

RP ′|P(σ̃ ) := rP ′|P(σ̃ )
−1 JP ′|P(σ̃ )

satisfy some natural properties, for example

R P̃3|P̃2
(σ̃ )R P̃2|P̃1

(σ̃ )= R P̃3|P̃1
(σ̃ ).

As in [Arthur 1993], we then define the normalized intertwining operators

R(w, σ̃ ) := A(w) ◦ λ(w) ◦ Rw−1.P|P(σ̃ ) : I
G̃
P̃
(σ̃ )→ I G̃

P̃
(σ̃ )

which satisfy

0 := Span{γ (w) : w ∈ R(σ̃ )} = Span{R(w, σ̃ )}.

On the other hand, the definition of A(w) ◦ λ(w) depends on the lift of w in K̃good.
For simplicity, we use the same letter w to be the fixed lifting of w ∈WG(T ) if no
confusion arises. In general, w→ R(w, σ̃ ) is not a homomorphism, but we have
the formula

R(w1w2, σ̃ )= ησ̃ (w1, w2)R(w1, σ̃ )R(w2, σ̃ ), w1, w2 ∈ R(σ̃ ),

where

ησ̃ (w1, w2)= A(w1w2) ◦ λ(w1w2) ◦ λ(w2)
−1
◦ A(w2)

−1
◦ λ(w1)

−1
◦ A(w1)

−1

is a 2-cocycle for R(σ̃ )with values in C×. Thus the image η̄σ̃ of ησ̃ in H 2(R(σ̃ ),C×)
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gives the obstruction of extending the representation σ̃ to the groups generated
by M̃ and {w̃ ∈ K̃good : w ∈ R(σ̃ )}.

As in [Arthur 1993, page 87], we deal with the problem by fixing a finite central
extension

1→ Z σ̃ → Rσ̃ → R(σ̃ )→ 1

over which ησ̃ splits. We then choose a function κσ̃ : Rσ̃→C× such that ησ̃ splits, i.e.,

ησ̃ (r1, r2)= κσ̃ (r1r2)κσ̃ (r2)
−1κσ̃ (r1)

−1, r1, r2 ∈ Rσ̃ ,

where ησ̃ is identified with its pullback to Rσ̃ × Rσ̃ . It follows that

κσ̃ (zr)= χσ̃ (z)κσ̃ (r), z ∈ Z σ̃ , r ∈ Rσ̃ ,

where χσ̃ is a character on the central subgroup Z σ̃ . We twist our intertwining
operators by κσ̃ , i.e.,

R(r, σ̃ ) := κσ̃ (r)−1 R(r, σ̃ ), r ∈ Rσ̃

which gives rise to a homomorphism of Rσ̃ to the group of unitary intertwining
operators for I G̃

P̃
(σ̃ ) satisfying

R(zr, σ̃ )= χσ̃ (z)−1 R(r, σ̃ ), z ∈ Z σ̃ , r ∈ Rσ̃ .

Therefore we obtain a representation R of Rσ̃×G̃ on the underling vector space Hσ̃

of I G̃
P̃
(σ̃ ), i.e.,

R(r, g) := R(r, σ̃ )I G̃
P̃
(σ̃ , g), r ∈ Rσ̃ , g ∈ G̃.

Thus our Knapp-Stein dimension theorem, i.e., Theorem 2.4, implies that

R =
⊕
ρ

ρ̌⊗πρ,

where ρ runs over the set 5(Rσ̃ )χσ̃ of irreducible representations of Rσ̃ with
Z σ̃ -central character χσ̃ , and ρ̌ is the contragredient representation of ρ, while
πρ ∈ J H(I G̃

P̃
(σ̃ )).

It is well known that such a 2-cocycle η̄σ̃ is trivial if 5(Rσ̃ )χσ̃ contains a one-
dimensional representation, thus giving:

Lemma 2.5 (D. Keys). Keep the notions as above. If the tempered induction I G̃
P̃
(σ̃ )

contains a constituent which is of multiplicity one, then the 2-cocycle η̄σ̃ is trivial.

Proof. Since I G̃
P̃
(σ̃ ) contains a constituent which is of multiplicity one, the decom-

position
R =

⊕
ρ∈5(Rσ̃ )χσ̃

ρ̌⊗πρ

implies 5(Rσ̃ )χσ̃ contains a one-dimensional representation, so our claim holds. �
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A typical example of such a situation is when I G̃
P̃
(σ̃ ) is an unramified genuine

unitary principal series, that is:

Corollary 2.6. Keep the notions as above. For genuine unramified unitary principal
series I G̃

P̃
(σ̃ ), the representation R of Rσ̃ × G̃ on the underling vector space Hσ̃ of

I G̃
P̃
(σ̃ ) decomposes as

R =
⊕

ρ∈5(Rσ̃ )

ρ̌⊗πρ .

In what follows, we would like to investigate R-groups for genuine unramified
unitary principal series of the tame Brylinski–Deligne n-fold covering group G̃ of
a split simply connected group G defined over the nonarchimedean local field F,
where tame means that n and p are coprime. Under this setting, those R-groups
are isomorphic to the associated R-groups of the incarnation split linear group Gn

which gives rise to the same Langlands dual group G̃∨; moreover Gn is an isogeny to
G ′ which has the same or dual root system of G depending on the cover (see [Savin
2004; Gan and Gao 2018; Weissman 2018]). Note that R-groups for G are well
known (see [Keys 1982]). So it reduces to investigating the relation of R-groups
under isogeny. Let p : G→ Gn be the isogeny map. Restricting to their maximal
torus gives p : T → Tn and p∗ :5(Tn)→5(T ), i.e., χn 7→ χ := χn ◦ p. Therefore
Wχn := {w ∈WG(T ) :w.χn =χn}<Wχ := {w ∈WG(T ) :w.χ =χ} as the map p is
WG(T )-equivalent. On the other hand, for χ ∈52(T ) and a root α ∈8 :=8(G, T ),
it is well known that the corank one Plancherel measure µα(χ) := µMα (χ) is equal
to 0 if and only if χα := χ ◦ Hα∨ = 1 (see [Winarsky 1978]), where Hα∨ is the
one-parameter subgroup given by α under Harish-Chandra homomorphism (see
[Waldspurger 2003]). A similar criterion holds for covering groups (please refer to
[Goldberg and Szpruch 2016] for the details). Note that χα = 1 says that (χn)α = 1,
which implies that Sα.χn = χn . In either PGL2 or SL2, such a corank one unitary
induction is always irreducible, thus µα(χn) = 0, i.e., W 0

χn
:= 〈Sα : µα(χn) = 0,

α ∈8(G, T )〉 =W 0
χ := 〈Sα : µα(χ)= 0, α ∈8(G, T )〉.

Lemma 2.7. Retain the notions as above. We have

Rχn :=Wχn/W 0
χn
G Rχ :=Wχ/W 0

χ .

Proof. This is equivalent to showing that Wχn G Wχ , i.e., for any w ∈ Wχ and
wn ∈Wχn , wn.(w.χn)= (w.χn). But w ∈Wχ implies that w.χn = χnχc for some
χc ∈ 52(Tn/p(T )). Note that any χc ∈ 52(Tn/p(T )) is WG(T )-invariant which
follows from the fact that Sα.y− y lies in the coroot lattice of T for any coroot y
of Tn and α ∈8(G, T ). Thus wn.(w.χn)= wn(χnχc)= wn.χnχc = (w.χn). �

It is also well known that R-groups for unitary unramified principal series of
adjoint groups are trivial (see [Li 1992, Corollary 2.6]). Thus the nontrivial R-
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groups for split semisimple groups which have not been discussed in [Keys 1982]
and [Goldberg 1994] are as follows:

Corollary 2.8 (Keys). G∨n = SL ι(C)/µm : R ' Z/dZ with d|m|ι.

2D. An example: R-group of M p2n. In what follows, we discuss some properties
of R-groups for Mp2n . Let us first introduce a simple fact. Recall that we have the
following decomposition of R̃×G acting on I G

P (σ ):

I G
P (σ )=

⊕
ρ∈5(R̃)χσ

ρ̌
⊗

πρ .

As an easy corollary, we have the following criterion on the abelian property of R.

Corollary 2.9. If 5χσ (R̃) consists of one-dimensional representations, then R '
R̃/Z is abelian.

Proof. This results from the following fact: For a finite group G and a subgroup
H < Z(G), fix a character χ of H, if as G-modules

(?) IndG
H (χ)=

|G/H |⊕
i=1

χi ;

then G/H is abelian.
Note that if χ is trivial, then this is quite obvious. As for χ nontrivial, we may

consider a new set of characters S := {χ−1
1 · χi : i = 1, . . . , |G/H |}. It is easy to

see χ−1
1 χi 6= χ

−1
1 χ j for i 6= j, and these are the characters of G which are trivial

on H, which in turn says

IndG
H (1)=

|G/H |⊕
i=1

χ−1
1 χi ,

whence (?) holds. �

In view of the above corollary, based on Gan and Savin’s work on local theta
correspondence [2012], we have:

Corollary 2.10. Keeping the notation as before, R(σ̃ ) is abelian, and

R(σ̃ )= R(2(σ̃ )).

Here (σ̃ ,2(σ̃ )) is a Howe duality pair under the local theta correspondence for
(Mp2n, SO2n+1).

Proof. The first part follows from the preservation of multiplicities in tempered
inductions under the local theta correspondence. The second part follows from the
preservation of Plancherel measures under the local theta correspondence. �

Remark. We recently learned that M. Hanzer [2019] had described the R-group
for Mp2n using the local theta correspondence.
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