Vol. 5, No. 3, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 2379-1691 (e-only)
ISSN: 2379-1683 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
$C_2$-equivariant stable homotopy from real motivic stable homotopy

Mark Behrens and Jay Shah

Vol. 5 (2020), No. 3, 411–464

We give a method for computing the C2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C2-equivariant p-complete stable homotopy category as a localization of the p-complete cellular real motivic stable homotopy category.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

motivic homotopy groups, equivariant homotopy groups
Mathematical Subject Classification 2010
Primary: 14F42, 55N91, 55P91, 55Q91
Received: 12 September 2019
Revised: 26 March 2020
Accepted: 12 April 2020
Published: 28 July 2020
Mark Behrens
Department of Mathematics
University of Notre Dame
Notre Dame, IN
United States
Jay Shah
Department of Mathematics
University of Notre Dame
Notre Dame, IN
United States