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Numerical nonlinear algebra is applied to maximum likelihood estimation for Gaussian models defined
by linear constraints on the covariance matrix. We examine the generic case as well as special models
(e.g., Toeplitz, sparse, trees) that are of interest in statistics. We study the maximum likelihood degree and
its dual analogue, and we introduce a new software package LinearCovarianceModels.jl for solving
the score equations. All local maxima can thus be computed reliably. In addition we identify several
scenarios for which the estimator is a rational function.

1. Introduction

In many statistical applications, the covariance matrix 6 has a special structure. A natural setting is that
one imposes linear constraints on 6 or its inverse 6−1. Here we study models for Gaussians whose
covariance matrix 6 lies in a given linear space. Such linear Gaussian covariance models were introduced
by 1]. He was motivated by the Toeplitz structure of 6 in time series analysis. Recent applications of
such models include repeated time series, longitudinal data, and a range of engineering problems [26].
Other occurrences are Brownian motion tree models [29], as well as pairwise independence models,
where some entries of 6 are set to zero.

The literature on estimating a covariance matrix is extremely rich. Its development has been particularly
dynamic in high-dimensional statistics under a sparsity assumption on 6 or its inverse; see [12] for an
overview. Although the sample covariance matrix is known to have poor statistical properties, for many
Gaussian models the maximum likelihood estimator (MLE) remains an important reference point.

Maximum likelihood estimation for linear covariance models is a nonlinear algebraic optimization
problem over a spectrahedral cone, namely the convex cone of positive definite matrices 6 that satisfy the
linear constraints of interest. The objective function is not convex and can have multiple local maxima.
Yet, if the sample size is large relative to the dimension, then the problem is essentially convex. This
was shown in [32]. In general, however, the MLE problem is poorly understood, and there is a need for
accurate methods that reliably identify all local maxima.

Nonlinear algebra furnishes such a method, namely solving the score equations [30, §7.1] using
numerical homotopy continuation [27]. This is guaranteed to find all critical points of the likelihood
function and hence all local maxima. A key step is the knowledge of the maximum likelihood degree
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(ML degree). This is the number of complex critical points. The ML degree of a linear covariance model
is an invariant of a linear space of symmetric matrices which is of interest in its own right.

Our presentation is organized as follows. In Section 2 we introduce various models to be studied,
ranging from generic linear equations to colored graph models. In Section 3 we discuss the maximum
likelihood estimator as well as the dual maximum likelihood estimator. Starting from [30, Proposition
7.1.10], we derive a convenient form of the score equations. The natural point of entry for an algebraic
geometer is the study of generic linear constraints. This is our topic in Section 4. We compute a range of
ML degrees, and we compare them to the dual degrees in [28, §2.2].

In Section 5 we present our software LinearCovarianceModels.jl [31]. This is written in Julia
and is easy to use. It computes the ML degree and the dual ML degree for a given subspace L, and it
determines all complex critical points for a given sample covariance matrix S. Among these, it identifies
the real and positive definite solutions, and it then selects those that are local maxima. The package rests
on the software HomotopyContinuation.jl of 2].

Section 6 discusses instances where the likelihood function has multiple local maxima. This is meant
to underscore the strength of our approach. We then turn to models where the maximum is unique and
the MLE is a rational function. In Section 7 we examine Brownian motion tree models. Here the linear
constraints are determined by a rooted phylogenetic tree. We study the ML degree and dual ML degree.
We show that the latter equals one for binary trees, and we derive the explicit rational formula for their
MLE. A census of these degrees is found in Table 5.

2. Models

Let Sn be the
(n+1

2

)
-dimensional real vector space of n×n symmetric matrices 6 = (σi j ). The subset Sn

+

of positive definite matrices is a full-dimensional open convex cone. Consider any linear subspace L of Sn

whose intersection with Sn
+

is nonempty. Then Sn
+
∩L is a relatively open convex cone. In optimization,

where one uses the closure, this is known as a spectrahedral cone. In statistics, the intersection Sn
+
∩L

is a linear covariance model. These are the models we study in this paper. In what follows we discuss
various families of linear spaces L that are of interest to us.

Generic linear constraints. Fix a positive integer m ≤
(n+1

2

)
, and suppose that L is a generic linear

subspace of Sn . Here “generic” is meant in the sense of algebraic geometry; i.e., L is a point in the
Grassmannian that lies outside a certain algebraic hypersurface. This hypersurface has measure zero,
so a random subspace will be generic with probability one. For a geometer, it is natural to begin with
the generic case, since its complexity controls the complexity of any special family of linear spaces. In
particular, the ML degree for a generic L depends only on m and n, and this furnishes an upper bound
for the ML degree of the special families below.

Diagonal covariance matrices. Here we take m ≤ n, and we assume that L is a linear space that consists
of diagonal matrices. Restricting to covariance matrices that are diagonal is natural when modeling
independent Gaussians. We use the term generic diagonal model when L is a generic point in the
(n−m)m-dimensional Grassmannian of m-dimensional subspaces inside the diagonal n× n matrices.
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Brownian motion tree models. A tree is a connected graph with no cycles. A rooted tree is obtained
by fixing a vertex, called the root, and directing all edges away from the root. Fix a rooted tree T with
n leaves. Every vertex v of T defines a clade, namely the set of leaves that are descendants of v. For
the Brownian motion tree model on T , the space L is spanned by the rank-one matrices eAeT

A , where
eA ∈ {0, 1}n is the indicator vector of A. Hence, if C is the set of all clades of T , then

6 =
∑
A∈C

θAeAeT
A, where θA are model parameters. (1)

The linear equations for the subspace L are σi j = σkl whenever the least common ancestors lca(i, j) and
lca(k, l) agree in the tree T . Assuming θA ≥ 0, the union of the models for all trees T is characterized by
the ultrametric condition σi j ≥min{σik, σ jk} ≥ 0. Matrices of this form also play an important role in
hierarchical clustering [15, §14.3.12], phylogenetics [13], and random walks on graphs [9].

Maximum likelihood estimation for this class of models is generally complicated, but recently there
has been progress [16; 29] on exploiting the nice structure of the matrices 6 above. In Section 7 we study
computational aspects of the MLE and, more importantly, provide a significant advance by considering
the dual MLE.

Covariance graph models. We consider models L that arise from imposing zero restrictions on entries
of 6. This was studied in [5; 10]. This is similar to Gaussian graphical models where zero restrictions
are placed on the inverse 6−1. We encode the sparsity structure with a graph whose edges correspond
to nonzero off-diagonal entries of 6. Zero entries in 6 correspond to pairwise marginal independences.
These arise in statistical modeling in the context of causal inference [8]. Models with zero restrictions on
the covariance matrix are known as covariance graph models. Maximum likelihood in these Gaussian
models can be carried out using iterative conditional fitting [5; 10], which is implemented in the ggm
package in R [22].

Toeplitz matrices. Suppose X = (X1, . . . , Xn) follows the autoregressive model of order 1, that is,
X t = ρX t−1+εt , where ρ ∈R and εt ∼ N (0, σ ) for some σ . Assume that the εt are mutually uncorrelated.
Then cov(X t , X t−k)= ρ

k , and hence 6 is a Toeplitz matrix. More generally, covariance matrices from
stationary time series are Toeplitz. Multichannel and multidimensional processes have covariance matrices
of block Toeplitz form [3; 24]. Similarly, if X follows the moving average process of order q, then
cov(X t , X t−k) = γk if k ≤ q and is zero otherwise; see, for example, [14, §3.3]. Thus, in time series
analysis, we encounter matrices like

γ0 γ1 γ2 γ3 γ4

γ1 γ0 γ1 γ2 γ3

γ2 γ1 γ0 γ1 γ2

γ3 γ2 γ1 γ0 γ1

γ4 γ3 γ2 γ1 γ0

 or


γ0 γ1 0 0 0
γ1 γ0 γ1 0 0
0 γ1 γ0 γ1 0
0 0 γ1 γ0 γ1

0 0 0 γ1 γ0

 . (2)

We found that the ML degree for such models is surprisingly low. This means that nonlinear algebra can
reliably estimate Toeplitz matrices that are fairly large.
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Figure 1. A covariance graph model with edge symmetries and the rooted tree for the
corresponding Brownian motion tree model.

Colored covariance graph models. A generalization of covariance graph models is obtained by following
[17], which introduces graphical models with vertex and edge symmetries. Models of this type also
generalize the Toeplitz matrices and the Brownian motion tree models. Following the standard convention,
we use the same colors for edges or vertices when the corresponding entries of 6 are equal. The black
color is considered neutral and encodes no restrictions.

The Brownian motion tree model corresponds to a colored model over the complete graph, where edge
symmetries are encoded by the tree; see Figure 1. Also, both matrices in (2) represent covariance graph
models with edge and vertex symmetries.

3. Maximum likelihood estimator and its dual

Now that we have seen motivating examples, we formally define the MLE problem for a linear covariance
model L. Suppose we observe a random sample X (1), . . . , X (N ) in Rn from Nn(0, 6). The sample
covariance matrix is S = (1/N )

∑N
i=1 X (i)X (i)T . The matrix S is positive semidefinite. Our aim is to

maximize the function

`(6)= log det6−1
− tr(S6−1) subject to 6 ∈ L. (3)

Following [30, Proposition 7.1.10], this equals the log-likelihood function times N/2.
We fix the standard inner product 〈A, B〉 = tr(AB) on the space Sn of symmetric matrices. The

orthogonal complement L⊥ to a subspace L⊂ Sn is defined as usual.

Proposition 3.1. Finding all the critical points of the log-likelihood function `(6) amounts to solving the
following system of linear and quadratic equations in 2 ·

(n+1
2

)
unknowns:

6 ∈ L, K6 = In, K SK − K ∈ L⊥. (4)

Proof. The matrix 6 is a critical point ` if and only if, for every U ∈ L, the derivative of ` at 6 in the
direction U vanishes. This directional derivative equals

− tr(6−1U )+ tr(S6−1U6−1).
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This formula follows by multivariate calculus from two facts: (i) the derivative of the matrix mapping
6 7→6−1 is the linear transformation U 7→6−1U6−1; (ii) the derivative of the function 6 7→ log det6
is the linear functional U 7→ tr(6−1U ).

Using the identity K =6−1, vanishing of the directional derivative is equivalent to

−〈K ,U 〉+ 〈K SK ,U 〉 = 0.

The condition 〈K SK − K ,U 〉 = 0 for all U ∈ L is equivalent to K SK − K ∈ L⊥. �

Example 3.2 (3× 3 Toeplitz matrices). Let L be the space of Toeplitz matrices

6 =

γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

 .
This space has dimension 3 in S3

' R6. Fix a sample covariance matrix S = (si j ) with real entries. We
need to solve the system (4). This consists of 3+ 9+ 3= 15 equations in 6+ 6= 12 unknowns, namely
the entries of the covariance matrix 6 = (σi j ) and its inverse K = (ki j ). The condition 6 ∈L gives three
linear polynomials

σ11− σ33, σ12− σ23, σ22− σ33.

The condition K6 = I3 translates into nine bilinear polynomials

σ11k11+ σ12k12+ σ13k13− 1, σ12k11+ σ22k12+ σ23k13, σ13k11+ σ23k12+ σ33k13,

σ11k12+ σ12k22+ σ13k23, σ12k12+ σ22k22+ σ23k23− 1, σ13k12+ σ23k22+ σ33k23,

σ11k13+ σ12k23+ σ13k33, σ12k13+ σ22k23+ σ23k33, σ13k13+ σ23k23+ σ33k33− 1.

Finally, the condition K SK − K ∈ L⊥ translates into three quadratic polynomials

k2
11s11+ k2

12s11+ k2
13s11+ 2k11k12s12+ 2k12k22s12+ 2k13k23s12+ 2k11k13s13

+ 2k12k23s13+ 2k13k33s13+ k2
12s22+ k2

22s22+ k2
23s22+ 2k12k13s23+ 2k22k23s23

+ 2k23k33s23+ k2
13s33+ k2

23s33+ k2
33s33− k11− k22− k33,

k23s13+ k12k33s13+ k12k22s22+ k22k23s22+ k13k22s23+ k12k23s23

+ k2
23s23+ k22k33s23+ k13k23s33+ k23k33s33− k12− k23,

k11k13s11+k12k13s12+k11k23s12+k2
13s13+k11k33s13+k12k23s22+k13k23s23+k12k33s23+k13k33s33−k13.

The zero set of these 15 polynomials in 12 unknowns consists of three points (6̂, K̂ ). We present a
concrete instance with multiple local solutions:

S =

 4/5 −9/5 −1/25
−9/5 79/16 25/24
−1/25 25/24 17/16

≈
 0.8000 −1.8000 −0.0400
−1.8000 4.9375 1.0417
−0.0400 1.0417 1.0625

 . (5)
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For this sample covariance matrix all three critical points are real and positive definite. The three Toeplitz
matrices that solve the score equations for this S are:

γ̂0 γ̂1 γ̂2 log-likelihood value

2.52783 −0.215929 −1.45229 −5.35 global maximum
2.39038 −0.286009 0.949965 −5.41 local maximum
2.28596 −0.256394 0.422321 −5.42 saddle point

So, even in this tiny example, our optimization problem has multiple local maxima in the cone S3
+

. A
numerical study of this phenomenon will be presented in Section 6.

In this paper we also consider the dual maximum likelihood estimator as a more computationally
efficient alternative. Dual estimation is based on the maximization of a dual likelihood function. In the
Gaussian case this is motivated by interchanging the role of the parameter matrix 6 and the empirical
covariance matrix S. The Kullback–Leibler divergence of two Gaussian distributions N (0, 60) and
N (0, 61) on Rn is equal to

KL(60, 61)=
1
2

(
tr(6−1

1 60)− n+ log
det61

det60

)
.

Computing the MLE is equivalent to minimizing KL(60, 61) with respect to 61 with 60 = S. On
the other hand, the dual MLE is obtained by minimizing KL(60, 61) with respect to 60 with 61 = S.
Equivalently, we set W = S−1 and maximize

`∨(6)= log det6− tr(W6).

The idea of utilizing the “wrong” Kullback–Leibler distance is ubiquitous in variational inference and
is central for mean field approximation and related methods. The idea of using this estimation method for
Gaussian linear covariance models is very natural. It results in a unique maximum, since 6 7→ `∨(6) is
a convex function on the positive definite cone Sn

+
. See [6] and also [5, §3.2; 18, §4].

The following algebraic formulation is the analogue to Proposition 3.1.

Proposition 3.3. Finding all the critical points of the dual log-likelihood function `∨ amounts to solving
the following system of equations in 2 ·

(n+1
2

)
unknowns:

6 ∈ L, K6 = In, K −W ∈ L⊥. (6)

Proof. After switching the roles of K and 6, and of W and S, our problem becomes MLE for linear
concentration models. Equation (6) is found in [28, (10)]. �

The next result lists properties of the dual MLE that are important for statistics.

Proposition 3.4. The dual maximum likelihood estimator of a Gaussian linear covariance model is
consistent, asymptotically normal, and first-order efficient.

Proof. See Theorems 3.1 and 3.2 in [6]. �
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First-order efficiency means that the asymptotic variance of the properly normalized dual MLE is
optimal, that is, it equals the asymptotic variance of the MLE.

In this paper, we focus on algebraic structures, and we note the following important distinction between
our two estimators. The MLE requires the quadratic equations K SK − K ∈ L⊥ in (4), whereas the dual
MLE requires the linear equations K −W ∈L⊥ in (6). The latter are easier to solve than the former, and
they give far fewer solutions. This is quantified by the tables for the ML degrees in the next sections.

We are particularly interested in models whose dual ML estimator (q6, qK ) can be written as an explicit
expression in the sample covariance matrix S. We identify such scenarios in Sections 6 and 7. Here is a
first example to illustrate this point.

Example 3.5. We revisit the Toeplitz model in Example 3.2. For the dual MLE, the three quadratic
polynomials in K are now replaced by three linear polynomials

k11+ k22+ k33−w11−w22−w33, k12+ k23−w12−w23, k13−w13.

The wi j are the entries of the inverse sample covariance matrix W = S−1. The new system has two
solutions, and we can write the σ̌i j and ǩi j in terms of the wi j (or the si j ) using the familiar formula for
solving quadratic equations in one variable. Specifically, for the covariance matrix S in (5) we find that
the dual MLE is given by

[γ̌0, γ̌1, γ̌2] = [0.203557267562,−0.189349961613, 0.1963649733282]

=
[ 1284368265268038839512

12363704694314904961417 +
52
√

561647777654592987689702150027364667081
12363704694314904961417 ,

−
5817390611804320873051

61818523471574524807085 −
655679934637

√
561647777654592987689702150027364667081

163146905524715599705244729886305 ,

1990451408446510673691859
22254668449766828930550600 +

264990063915733
√

561647777654592987689702150027364667081
58732885988897615893888102759069800

]
.

Needless to say, nonlinear algebra goes much beyond the quadratic formula. In what follows we shall
employ state-of-the-art methods for solving polynomial equations.

4. General linear constraints

The maximum likelihood degree of a linear covariance model L is, by definition, the number of complex
solutions to the likelihood equations (4) for generic data S. This is abbreviated ML degree [30, §7.1]. To
compute the ML degree, take S to be a random symmetric n× n matrix and count all complex critical
points of the likelihood function `(6) for 6 ∈ L. Equivalently, the ML degree of the model L is the
number of complex solutions (6, K ) to the polynomial equations in (4).

We also consider the complex critical points of the dual likelihood function `∨(6). Their number, for
a generic matrix S ∈ Sn , is the dual ML degree of L. It coincides with the number of complex solutions
(6, K ) to the polynomial equations in (6).

Our ML degrees can be computed symbolically in a computer algebra system that rests on Gröbner
bases. However, this approach is limited to small instances. To get further, we use the methods from
numerical nonlinear algebra described in Section 5.
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m n
2 3 4 5 6

2 1 3 5 7 9
3 1 7 19 37 61
4 7 45 135 299
5 3 71 361 1121
6 1 81 753 3395
7 63 1245 8513
8 29 1625 17867
9 7 1661 31601

10 1 1323 47343
11 801 60177
12 347 64731
13 97 58561
14 15 44131
15 1 27329
16 13627
17 5341
18 1511
19 289
20 31
21 1

m n
2 3 4 5 6

2 1 2 3 4 5
3 1 4 9 16 25
4 4 17 44 90
5 2 21 86 240
6 1 21 137 528
7 17 188 1016
8 9 212 1696
9 3 188 2396

10 1 137 2886
11 86 3054
12 44 2886
13 16 2396
14 4 1696
15 1 1016
16 528
17 240
18 90
19 25
20 5
21 1

Table 1. ML degrees and dual ML degrees for generic models.

Here we focus on a generic m-dimensional linear subspace L of Sn . In practice this means that a basis
for L is chosen by sampling m matrices at random from Sn .

Proposition 4.1. The ML degree and the dual ML degree of a generic subspace L of dimension m in Sn

depends only on m and n. It is independent of the particular choice of L. For small parameter values,
these ML degrees are listed in Table 1.

Proof. The independence rests on general results in algebraic geometry [27, Corollary A.14.2], to the
effect that the system (4) (resp. (6)) can be considered as a system parametrized by the coordinates of
L and S (resp. W ). The ML degree will be the same for all specializations to R that remain outside a
certain discriminant hypersurface. Table 1 and further values are computed rapidly using the software
described in Section 5. �

The dual ML degree was already studied by 28, §2]. Our table on the right is in fact found in their
paper. The symmetry along its columns is proved in [28, Theorem 2.3]. It states that the dual ML degree
for dimension m coincides with the dual ML degree for codimension m − 1. This is derived from the
equations (6) by an appropriate homogenization. Namely, the middle equation is clearly symmetric under
switching the roles of K and 6, and the linear equations on the left and on the right in (6) can also be
interchanged under this switch.
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It was conjectured in [28, §2] that, for fixed m, the dual ML degree is a polynomial of degree m− 1 in
the matrix size n. This is easy to see for m ≤ 3. The polynomials for m = 4 and m = 5 were also derived
in [28, §2].

The situation is similar but more complicated for the ML degree. First of all, the symmetry along
columns no longer holds as seen on the left in Table 1. This is explained by the fact that the linear equation
K −W ∈ L⊥ is now replaced by the quadratic equation K SK − K ∈ L⊥. However, the polynomiality
along the rows of Table 1 seems to persist. For m = 2 the ML degree equals 2n− 3, as shown recently by
Coons, Marigliano, and Ruddy [7]. For m ≥ 3 we propose the following conjecture.

Conjecture 4.2. The ML degree of a linear covariance model of dimension m is a polynomial of degree
m − 1 in the ambient dimension n. For m = 3 this ML degree equals 3n2

− 9n + 7, and for m = 4 it
equals 11

3 n3
− 18n2

+
85
3 n− 15.

We now come to diagonal linear covariance models. For these models, L is a linear subspace of
dimension m inside the space Rn of diagonal n× n matrices. We wish to determine the ML degree and
dual ML degree when L is generic in Rn .

In the diagonal case, the score equations simplify as follows. Both the covariance matrix and the
concentration matrix are diagonal. We eliminate the entries of 6 by setting K = diag(k1, . . . , kn) and
6 = diag(k−1

1 , . . . , k−1
n ). We also write s1, . . . , sn for the diagonal entries of the sample covariance

matrix S and wi = s−1
i for their reciprocals. Finally, let L−1 denote the reciprocal linear space of L, i.e.,

the variety obtained as the closure of the set of coordinatewise reciprocals of vectors in L∩ (R∗)n .

Proposition 4.3. Let L ⊂ Rn be a linear space, viewed as a Gaussian covariance model of diagonal
matrices. The score equations for the likelihood in (4) and the dual likelihood in (6) can be written as
systems of n equations in n unknowns:

(k1, . . . , kn) ∈ L−1 and (s1k2
1 − k1, s2k2

2 − k2, . . . , snk2
n − kn) ∈ L⊥, (4′)

(k1, . . . , kn) ∈ L−1 and (k1−w1, k2−w2, . . . , kn −wn) ∈ L⊥. (6′)

The number of complex solutions to (6′) for generic L of dimension m equals
(n−1

m−1

)
.

Proof. The translation of (4) and (6) to (4′) and (6′) is straightforward. The equations (6′) represent a
general linear section of the reciprocal linear space L−1. Proudfoot and Speyer showed that the degree
of L−1 equals the Möbius invariant of the underlying matroid. We refer to [19] for a recent study. This
Möbius invariant equals

(n−1
m−1

)
in the generic case, when the matroid is uniform. �

It would be desirable to express the number of complex solutions to (4′) as a matroid invariant, and
thereby explain the entries on the left side of Table 2. As before, the m-th row gives the values of a
polynomial of degree m − 1. For instance, for m = 3 we find 2n2

− 8n + 7, and for m = 4 we find
4
3 n3
− 10n2

+
68
3 n− 15.
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m n
3 4 5 6 7

2 3 5 7 9 11
3 1 7 17 31 49
4 1 15 49 111
5 1 31 129
6 1 63
7 1

m n
3 4 5 6 7

2 2 3 4 5 6
3 1 3 6 10 15
4 1 4 10 21
5 1 5 21
6 1 15
7 1

Table 2. ML degrees and dual ML degrees for generic diagonal models.

5. Numerical nonlinear algebra

Linear algebra is the foundation of scientific computing and applied mathematics. Nonlinear algebra
[23] is a generalization where linear systems are replaced by nonlinear equations and inequalities. At the
heart of this lies algebraic geometry, but there are links to many other branches, such as combinatorics,
algebraic topology, commutative algebra, convex and discrete geometry, tensors and multilinear algebra,
number theory, and representation theory. Nonlinear algebra is not simply a rebranding of algebraic
geometry. It highlights that the focus is on computation and applications, and the theoretical needs that
this requires results in a new perspective.

We refer to numerical nonlinear algebra as the branch of nonlinear algebra which is concerned with
the efficient numerical solution of polynomial equations and inequalities. In the existing literature, this
is referred to as numerical algebraic geometry. In the following we discuss the numerical solution of
polynomial equations, and we describe the techniques used for deriving the computational results in this
paper.

One of our main contributions is the Julia package LinearCovarianceModels.jl for estimating
linear covariance models [31]. Given L, our package computes the ML degree and the dual ML degree.
For any S, it finds all critical points and selects those that are local maxima. The following example
explains how this is done.

Example 5.1. We use the package to verify Example 3.2:

julia> using LinearCovarianceModels
julia> 6 = toeplitz(3)
3-dimensional LCModel:
θ1 θ2 θ3

θ2 θ1 θ2

θ3 θ2 θ1

We compute the ML degree of the family 6 by computing all solutions for a generic instance. The pair
of solutions and generic instance is called an ML degree witness:

julia> W = ml_degree_witness(6)
MLDegreeWitness:
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◦ ML degree → 3
◦ model dimension → 3
◦ dual → false

By default, the computation of the ML degree witness relies on a heuristic stopping criterion. We can
numerically verify the correctness by using a trace test [21]:

julia> verify(W)
Compute additional witnesses for completeness...
Found 10 additional witnesses
Compute trace...
Norm of trace: 2.6521474798326718e-12
true

We now input the specific sample covariance matrix in (5), and we compute all critical points of this
MLE problem using the ML degree witness from the previous step:

julia> S = [4/5 -9/5 -1/25; -9/5 79/16 25/24; -1/25 25/24 17/16];
julia> critical_points(W, S)
3-element Array{Tuple{Array{Float64,1},Float64,Symbol},1}:

([2.39038, -0.286009, 0.949965], -5.421751313919751, :local_maximum)
([2.52783, -0.215929, -1.45229], -5.346601549034418, :global_maximum)
([2.28596, -0.256394, 0.422321], -5.424161999175718, :saddle_point)

If only the global maximum is of interest then this can also be computed directly:

julia> mle(W, S)
3-element Array{Float64,1}:

2.527832268219689
-0.21592947057775033
-1.4522862659134732

By default only positive definite solutions are reported. To list all critical points we run the command
with an additional option:

julia> critical_points(W, S, only_positive_definite=false)

In this case, since the ML degree is 3, we are not getting more solutions.

In the rest of this section we explain the mathematics behind our software, and how it applies to our
MLE problems. A textbook introduction to the numerical solution of polynomial systems by homotopy
continuation methods is [27].

Suppose we are given m polynomials f1, . . . , fm in n unknowns x1, . . . , xn with complex coefficients,
where m ≥ n. We are interested in computing all isolated complex solutions of the system f1(x) =
· · · = fm(x)= 0. These solutions comprise the zero-dimensional components of the variety V (F) where
F = ( f1, . . . , fm).



42 BERND STURMFELS, SASCHA TIMME AND PIOTR ZWIERNIK

The general idea of homotopy continuation is as follows. Assume we have another system G =
(g1, . . . , gm) of polynomials for which we know some or all of its solutions. Suppose there is a homotopy
H(x, t) with H(x, 0) = G(x) and H(x, 1) = F(x) with the property that, for every x∗ ∈ V (G), there
exists a smooth path x : [0, 1)→ Cn with x(0)= x∗ and H(x(t), t)= 0 for all t ∈ [0, 1). Then we can
track each point in V (G) to a point in V (F). This is done by solving the Davidenko differential equation

∂H
∂x
(x(t), t) · ẋ(t)+

∂H
∂t
(x(t), t)= 0

with initial condition x(0)= x∗. Using a predictor-corrector scheme for numerical path tracking, both
the local and global error can be controlled. Methods called endgames are used to handle divergent paths
and singular solutions [27, Chapter 10].

Here is a general framework for start systems and homotopies. Embed F in a family of polynomial
systems FQ , continuously parametrized by a convex open set Q ⊂ Ck . We have F = Fq ∈FQ for some
q ∈ Q. Outside a Zariski closed set 1⊂ Q, every system in FQ has the same number of solutions. If
p ∈ Q \1, then Fp is such a generic instance of the family FQ , and the following is a suitable homotopy
[25]:

H(x, t)= F(1−t)p+tq(x). (7)

Now, to compute V (Fq), it suffices to find all solutions of a generic instance Fp and then track these
along the homotopy (7). Obtaining all solutions of a generic instance can be a challenge, but this has to
be done only once! That is the offline phase. Tracking from a generic to a specific instance of interest is
the online phase.

A key point in applying this method is the choice of the family FQ . For MLE problems in statistics, it
is natural to choose Q as the space of data or instances. In our scenario, Q is Sn , or a complex version
thereof. We shall discuss this below.

First, we explain the monodromy method for an arbitrary family FQ . Suppose the general instance
has d solutions, and that we are given one start pair (x0, p0). This means that x0 is a solution to the
instance Fp0 . Consider the incidence variety

Y := {(x, p) ∈ Cn
× Q | Fp(x)= 0}.

Let π be the projection from Cn
× Q onto the second factor. For q ∈ Q \1, the fiber π−1(q) has exactly

d points. A loop in Q \1 based at q has d lifts to Y . Associating a point in the fiber to the endpoint of
the corresponding lift gives a permutation in Sd . This defines an action of the fundamental group of Q \1
on the fiber π−1(q). The monodromy group of our family is the image of the fundamental group in Sd .

The monodromy method fills the fiber π−1(p0) by exploiting the monodromy group. For this, the start
solution x0 is numerically tracked along a loop in Q \1, yielding a solution x1 at the end. If x1 6= x0,
then x1 is also tracked along the same loop, possibly again yielding a new solution. This is done until no
more solutions are found. Then, all solutions are tracked along a new loop, where the process is repeated.
This process is stopped by use of a trace test. For a detailed description of the monodromy method and
the trace test, see [4; 21]. To get this off the ground, one needs a start pair (x0, p0). This can often be
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found by inverting the problem. Instead of finding a solution x0 to a given p0, we start with x0 and look
for p0 such that Fp0(x0)= 0.

We now explain how this works for the score equations (4) of our MLE problem. First pick a random
matrix 60 in the subspace L. We next compute K0 by inverting 60. Finally we need to find a symmetric
matrix S0 such that K0S0K0− K0 ∈ L⊥. Note that this is a linear system of equations and hence directly
solvable. In this manner, we easily find a start pair (x0, p0) by setting p0 = S0 and x0 = (60, K0).

The number d of solutions to a generic instance is the ML degree of our model. A priori knowledge
of d is useful because it serves as a stopping criterion in the monodromy method. This is one reason for
focusing on the ML degree in this paper.

6. Local maxima versus rational MLE

The theme of this paper is maximum likelihood inference for linear covariance models. We developed
some numerical nonlinear algebra for this problem, and we offer a software package [31]. From the
applications perspective, this is motivated by the fact that the likelihood function is nonconvex. It can
have multiple local maxima. A concrete instance for 3× 3 Toeplitz matrices was shown in Example 3.2.

In this section we undertake a more systematic experimental study of local maxima. Our aim is to
answer the following question: there is the theoretical possibility that `(6) has many local maxima, but
can we also observe this in practice?

To address this question, we explored a range of linear covariance models L. For each model, we
conducted the following experiment. We repeatedly generated sample covariance matrices S ∈ Sn

+
. This

was done as follows. We first sample a matrix X ∈ Rn×n by picking each entry independently from a
normal distribution with mean zero and variance one. And then we set S := X X T /n. This is equivalent
to sampling nS ∈ Sn

+
from the standard Wishart distribution with n degrees of freedom.

For each of the generated sample covariance matrices S, we computed the real solutions of the likelihood
equations (4). From these, we identified the set of all local maxima in Sn , and we extracted its subset of
local maxima in the positive definite cone Sn

+
. We recorded the numbers of these local maxima. Moreover,

we kept track of the fraction of instances S for which there were multiple (positive define) local maxima.
In Table 3 we present our results for n = 5 and generic linear subspaces L.

m
2 3 4 5 6 7 8 9 10 11 12 13 14

ML degree 7 37 135 361 753 1245 1625 1661 1323 801 347 97 15
max 2 3 3 5 5 5 5 6 7 5 4 2 1
max pd 1 2 3 3 4 4 4 4 5 5 4 2 1
multiple 0.4% 5.8 13.8 31.2 37.2 39.0 40.6 37.4 32.0 20.4 13.8 3.0 0.0
multiple pd 0.0% 4.6 11.2 22.4 25.2 31.6 33.0 34.8 29.6 19.4 13.0 3.0 0.0

Table 3. Experiments for generic m-dimensional linear subspaces of S5.
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tree number
1 2 3 4 5 6 7 8 9 10 11

ML degree 37 37 81 31 27 31 31 27 13 17 17
max 3 3 4 3 3 3 4 3 3 3 3
max pd 3 2 3 3 3 3 2 2 3 3 3
multiple 21.2% 22.8 24.2 15.6 23.0 21.2 21.2 15.4 13.8 16.2 12.4
multiple pd 8.2% 9.4 14.0 10.0 15.8 13.0 12.2 8.8 13.8 16.2 12.4

Table 4. Experiments for eleven Brownian motion tree models with 5 leaves.

For each m between 2 and 14, we selected five generic linear subspaces L in the 15-dimensional
space S5. Each linear subspace L was constructed by choosing a basis of positive definite matrices. The
basis elements were constructed with the same sampling method as the sample covariance matrices. The
ML degree of this linear covariance model is the corresponding entry in the n = 5 column on the left in
Table 1. These degrees are repeated in the row named ML degree in Table 3.

For each model L, we generated 100 sample covariance matrices S, and we solved the likelihood
equations (4) using our software LinearCovarianceModels.jl. The row max denotes the largest
number of local maxima that was observed in these 100 experiments. The row multiple gives the fraction
of instances which resulted in two or more local maxima. These two numbers pertain to local maxima
in S5. The rows max pd and multiple pd are the analogues restricted to the positive definite cone S5

+
.

For an illustration, let us discuss the models of dimension m=7. These equations (4) have 1245 complex
solutions, but the number of real solutions is much smaller. Nevertheless, in two fifths of the instances
(39.0%) there were two or more local maxima in S5. In one third of the instances (31.6%) the same
happened S5

+
. The latter is the case of interest in statistics. One instance had four local maxima in S5

+
.

The second experiment we report concerns a combinatorially defined class of linear covariance models,
namely the Brownian motion tree models in (1). We consider eleven combinatorial types of trees with
5 leaves. For each model we perform the experiment described above, but we now used 500 sample
covariance matrices per model. Our results are presented in Table 4, in the same format as in Table 3.

The eleven trees are numbered by the order in which they appear in Table 5. For instance, tree 1 gives
the 7-dimensional model in S5

+
whose covariance matrices are

6 =


γ1 γ6 γ6 γ6 γ7

γ6 γ2 γ6 γ6 γ7

γ6 γ6 γ3 γ6 γ7

γ6 γ6 γ6 γ4 γ7

γ7 γ7 γ7 γ7 γ5

 .
This model has ML degree 37. Around eight percent of the instances led to multiple maxima among
positive definite matrices. Up to three such maxima were observed.

The results reported in Tables 3 and 4 show that the maximal number of local maxima increases with the
ML degree. But they do not increase as fast as one would expect from the growth of the ML degree. On the
other hand, the frequency of observing multiple local maxima seems to be roughly related to the ML degree.



ESTIMATING LINEAR COVARIANCE MODELS WITH NUMERICAL NONLINEAR ALGEBRA 45

n clades ML degree dual ML degree

5 {1, 2, 3, 4} 37 11
5 {1, 2} 37 11
5 {1, 2, 3} 81 16
5 {1, 2}, {3, 4, 5} 31 4
5 {1, 2}, {3, 4} 27 4
5 {1, 2, 3}, {1, 2, 3, 4} 31 4
5 {1, 2}, {1, 2, 3} 31 4
5 {1, 2}, {1, 2, 3, 4} 27 4
5 {1, 2}, {3, 4}, {1, 2, 3, 4} 13 1
5 {1, 2}, {3, 4}, {1, 2, 5} 17 1
5 {1, 2}, {1, 2, 3}, {1, 2, 3, 4} 17 1

6 {1, 2, 3, 4, 5} 95 26
6 {1, 2} 95 26
6 {1, 2, 3, 4} 259 44
6 {1, 2, 3} 259 44
6 {1, 2, 3}, {4, 5, 6} 221 16
6 {1, 2}, {3, 4, 5, 6} 101 11
6 {1, 2, 3, 4}, {1, 2, 3, 4, 5} 101 11
6 {1, 2}, {3, 4} 81 11
6 {1, 2}, {1, 2, 3} 101 11
6 {1, 2}, {3, 4, 5} 181 16
6 {1, 2}, {1, 2, 3, 4, 5} 81 11
6 {1, 2, 3}, {1, 2, 3, 4} 221 16
6 {1, 2, 3}, {1, 2, 3, 4, 5} 181 16
6 {1, 2}, {1, 2, 3, 4} 181 16
6 {1, 2}, {3, 4}, {5, 6} 63 4
6 {1, 2}, {3, 4}, {1, 2, 3, 4} 99 4
6 {1, 2}, {1, 2, 3}, {4, 5, 6} 115 4
6 {1, 2}, {3, 4, 5}, {3, 4, 5, 6} 115 4
6 {1, 2}, {3, 4, 5}, {1, 2, 3, 4, 5} 99 4
6 {1, 2}, {3, 4}, {1, 2, 5, 6} 83 4
6 {1, 2}, {3, 4}, {1, 2, 3, 4, 5} 63 4
6 {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 115 4
6 {1, 2}, {3, 4}, {1, 2, 5} 83 4
6 {1, 2}, {1, 2, 3}, {1, 2, 3, 4} 115 4
6 {1, 2}, {1, 2, 3}, {1, 2, 3, 4, 5} 83 4
6 {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 83 4
6 {1, 2}, {3, 4}, {5, 6}, {1, 2, 3, 4} 53 1
6 {1, 2}, {3, 4}, {1, 2, 5}, {3, 4, 6} 61 1
6 {1, 2}, {3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 53 1
6 {1, 2}, {3, 4}, {1, 2, 5}, {1, 2, 5, 6} 61 1
6 {1, 2}, {3, 4}, {1, 2, 5}, {1, 2, 3, 4, 5} 53 1
6 {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 61 1

Table 5. ML degrees and dual ML degrees for Brownian motion tree models with five
and six leaves. Binary trees are in bold.
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Here is an interesting observation to be made in Table 4. The last three trees, labeled 9, 10, and 11, are
the binary trees. These have the maximum dimension 2n− 2. For these models, every local maximum
in Sn is also in the positive definite cone Sn

+
. We also verified this for all binary trees with n = 6 leaves.

This is interesting since the positive-definiteness constraint is the hardest to respect in an optimization
routine. It is tempting to conjecture that this persists for all binary trees with n ≥ 7.

There is another striking observation in Table 5. The dual ML degree for binary trees is always equal
to one. We shall prove in Theorem 7.3 that this holds for any n. This means that the dual MLE can be
expressed as a rational function in the data S. Hence there is only one local maximum, which is therefore
the global maximum.

We close this section with a few remarks on the important special case when the ML degree or the
dual ML degree is equal to one. This holds if and only if each entry of the estimated matrix 6̂ or q6 is a
rational function in the

(n+1
2

)
quantities si j .

Rationality of the MLE has received a lot of attention in the case of discrete random variables. See
[30, §7.1] for a textbook reference. If the MLE of a discrete model is rational, then its coordinates are
alternating products of linear forms in the data [30, Theorem 7.3.4]. This result due to Huh was refined in
[11, Theorem 1]. At present we have no idea what the analogue in the Gaussian case might look like.

Problem 6.1. Characterize all Gaussian models whose MLE is a rational function.

In addition to the binary trees in Theorem 7.3, statisticians are familiar with a number of situations
when the dual MLE is rational. The dual MLE is the MLE of a linear concentration model with the
sample covariance matrix S replaced by its inverse W . This is studied in [28] and in many other sources
on Gaussian graphical models and exponential families. The following result paraphrases [28, Theorem
4.3].

Proposition 6.2. If a linear covariance model L is given by zero restrictions on 6, then the dual ML
degree is equal to one if and only if the associated graph is chordal.

It would be interesting to extend this result to other combinatorial families, such as colored covariance
graph models [17], including structured Toeplitz matrices.

The following example illustrates Problem 6.1 and raises some further questions.

Example 6.3. We present a linear covariance model such that both the MLE and the dual MLE are
rational functions. Fix n ≥ 2 and let L be the hyperplane with equation σ12 = 0. By Proposition 6.2, the
dual ML degree of L is one. The model is dual to the decomposable undirected graphical model with
missing edge {1, 2}.

Following [20; 28], we obtain the rational formula for its dual MLE:

ǩ12 =W1,RW−1
R,RWR,2 and ǩi j = wi j for (i, j) 6= (1, 2). (8)

Here R = {3, . . . , n} and W· , · is our notation for submatrices of W = (wi j )= S−1.
The ML degree of the model L is also one. To see this, we note that L is the DAG model with edges

i→ j whenever i < j unless (i, j)= (1, 2). By [20, §5.4.1], the MLE of any Gaussian DAG model is
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rational. In our case, we find K̂ =W + A, where A is the n×n matrix which is zero apart from the upper
left 2× 2 block

A12,12 =

[
s−1

11 0
0 s−1

22

]
−

1
s11s22− s2

12

[
s22 −s12

−s12 s11

]
.

The entries in q6 = ( qK )−1 and 6̂ = (K̂ )−1 are rational functions in the data si j . But, unlike in the
discrete case of [11], here the rational functions are not products of linear forms. Problem 6.1 asks for an
understanding of its irreducible factors.

Example 6.3 raises many questions. First of all, can we characterize all linear spaces L with rational
formulas for their MLE, or their dual MLE, or both of them? Second, it would be interesting to study
arbitrary models L that are hyperplanes. Consider the entries for m =

(n+1
2

)
− 1 in Tables 1 and 3. We

know from [28, §2.2] that the dual ML degree equals n− 1. The ML degree seems to be 2n−1
− 1. In

all cases there seems to be only one local (and hence global) maximum. How could one prove these
observations? Finally, it is worthwhile to study the MLE when L⊥ is a generic symmetric matrix of rank
r . What is the ML degree in terms of r and n?

7. Brownian motion tree models

We now study the linear space LT associated with a rooted tree T with n leaves. The equations of LT are
σi j = σkl whenever lca(i, j)= lca(k, l). In the literature [13; 29] one assumes that the parameters θA in
(1) are nonnegative. Here, we relax this hypothesis: we allow all covariance matrices in the spectrahedron
LT ∩Sn

+
.

The ML degree and its dual do not depend on how the leaves of a tree are labeled but only on the
tree topology. For fixed n each tree topology is uniquely identified by the set of clades. Since the root
clade {1, . . . , n} and the leaf-clades {1}, . . . , {n} are part of every tree, they are omitted in our notation.
For example, if n = 5, then the tree {{1, 2}, {3, 4}, {3, 4, 5}} is the binary tree with four inner vertices
corresponding to the three nontrivial clades mentioned explicitly. This tree is depicted in Figure 1.

We computed the ML degree and the dual ML degree of LT for many trees T . In Table 5 we report
results for five and six leaves. We notice that the dual ML degree is exactly one for all binary trees. This
suggests that the dual MLE is a rational function. Our main result in this section (Theorem 7.3) says that
this is indeed true.

The equations (6) for the dual ML degree can be written as eT
A(K −W )eA = 0 for all clades A. Here

W = (wi j ) is given and K−1
∈ LT is unknown. We abbreviate

wA,B =
∑
i∈A

∑
j∈B

wi j = eT
AW eB . (9)

The same notation is used for general matrices. We present two examples with n = 4.

Example 7.1. Consider the tree with clades {1, 2}, {3, 4}, shown in [29, Figure 1]. The dual MLE qK
satisfies ǩi i = wi i for i = 1, 2, 3, 4, and ǩ12 = w12, ǩ34 = w34, and

ǩi j = w12,34
wi,12w j,34

w12,12w34,34
for i ∈ {1, 2} and j ∈ {3, 4}.
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Example 7.2. The tree with clades {1, 2}, {1, 2, 3} has ǩi i = wi i , ǩ12 = w12, and

ǩ13 = w12,3
w1,12

w12,12
, ǩ14 = w123,4

w1,12w12,123

w12,12w123,123
, ǩ23 = w12,3

w2,12

w12,12
,

ǩ24 = w123,4
w2,12w12,123

w12,12w123,123
, ǩ34 = w123,4

w123,3

w123,123
.

Both examples were computed in Mathematica using the description of the Brownian motion tree
model in terms of the inverse covariance matrix given in [29].

Recall that for v ∈ V we write de(v) for the set of leaves of T that are descendants of v. The following
theorem generalizes formulas in the above two examples. It is our main result in Section 7.

Theorem 7.3. Consider the model LT given by a rooted binary tree T with n leaves. The dual MLE
qK = (ǩi j ) satisfies ǩi i = wi,i for all i , and its off-diagonal entries are

ǩi j = wA,B

∏
u→v

wde(v),de(u)

wde(u),de(u)
for 1≤ i < j ≤ n. (10)

Here A, B are the clades of the two children of lca(i, j). The product is over all edges u→ v of T , except
for the two edges with u = lca(i, j), on the path from i to j in T .

Proof. Define pi j =−ki j for 1≤ i < j ≤ n and p0i =
∑n

j=1 ki j for 1≤ i ≤ n. By [29, Theorem 1.2], in the
new coordinates LT is a toric variety with a monomial parametrization p0i = 1/ti and pi j = tlca(i, j)/(ti t j ).
The condition 6 ∈ LT , K6 = In in (6) is therefore equivalent to requiring that the coordinates pi j , p0i

admit such a monomial parametrization.
The last condition, K −W ∈LT

⊥, in (6) means that kA,A =wA,A for every clade A of T . This can be
rewritten in the new coordinates as

(i)
∑

j 6=i pi j = wi,i for all 1≤ i ≤ n, and

(ii) pA,B =−wA,B for all inner vertices u of T , where A | B is the partition of clade(u)= A∪ B given
by the two children of u.

Now fix u with clade partition A | B as above, so u= lca(i, j) for all i ∈ A and j ∈ B. The parametrization
p0i = 1/ti and pi j = tlca(i, j)/(ti t j ) yields

pA,B = tu ·
∑
i∈A

1
ti
·

∑
j∈B

1
t j
= tu · p0,A · p0,B .

Using the equations in (ii), we obtain

tu =−
wA,B

p0,A p0,B
and hence pi j =−wA,B

p0i

p0,A

p0 j

p0,B
. (11)

We claim that the following identity holds for any clade A ⊆ [n]:

p0,A = w[n],[n]
∏
u→v

wde(v),de(u)

wde(u),de(u)
, (12)
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where the product is over all edges u→ v of T in the path from the root to the node with clade A. Note
that (11) and (12) imply (10) and so the theorem.

We now prove (12). Since p0,[n] = w[n],[n], the claim holds for A = [n]. Fix a clade A ⊂ [n] and
assume (12) for all clades A1 ⊂ · · · ⊂ Ak ⊂ Ak+1 = [n] strictly containing A0 = A. For each i = 0, . . . , k
denote

αi := wAk+1,Ak+1

wAk ,Ak+1

wAk+1,Ak+1

· · ·
wAi ,Ai+1

wAi+1,Ai+1

.

By the induction hypothesis p0,Ai = αi for all i = 1, . . . , k. Our goal is to prove that p0,A = α0. The
clades A1 \ A, . . . , Ak+1 \ Ak form a partition of A = [n] \ A. We have

p0,A = wA,A+ kA,A = wAA− pA,A1\A− pA,A2\A1 − · · ·− pA,Ak+1\Ak

= wA,A+wA,A1\A+

k∑
i=1

wAi ,Ai+1\Ai

p0A

p0,Ai

. (13)

Here the last equality follows because for every i ∈ A and every j ∈ Al+1 \ Al the vertex u = lca(i, j)
is the same. The clades of the children of u are Al and Al+1 \ Al . Therefore, using (11), we get
pA,Al+1\Al = wAl ,Al+1\Al p0,A/p0,Al . We rewrite (13) as

wA,A1 = p0,A

(
1−

k∑
i=1

wAi ,Ai+1 −wAi ,Ai

αi

)
. (14)

To simplify the bracketed expression, note that wAi ,Ai+1/αi = wAi+1,Ai+1/αi+1, and so

1−
k∑

i=1

wAi ,Ai+1 −wAi ,Ai

αi
= 1+

wA1,A1

α1
−
wAk ,Ak+1

αk
=
wA1,A1

α1
.

Plugging this back into (14) gives

p0,A = α1
wA,A1

wA1,A1

= α0.

This proves the correctness of (12).
We have shown that (6) implies the rational formula (10) for qK in terms of W . To argue that this is the

MLE, we need that W ∈ Sn
+

implies qK ∈ Sn
+

. For this, we use an analytic argument. Since W is positive
definite, the dual likelihood function has a unique maximum K =W over the whole cone Sn

+
. The model

LT ∩Sn
+

is a relatively closed subset of Sn
+

and so the dual likelihood restricted to this set attains its
maximum. The ML degree is equal to one and so there is at most one optimum in LT . We conclude there
is exactly one optimum in LT ∩Sn

+
and it is equal to qK . �

In our concluding example we compare the MLE and its dual in a special case.

Example 7.4. Fix the five-leaf tree in Figure 1, with clades {1, 2}, {3, 4}, {3, 4, 5}. For simplicity assume
that the data-generating distribution has all parameters θA in (1) equal to one. For each sample size
n = 50, 200, 500, 5000, we run 1000 iterations to obtain a simple Monte Carlo estimator of the mean
squared errors as measured by E‖6̂−6∗‖2 and E‖q6−6∗‖2, where 6∗ is the true covariance matrix and
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‖ · ‖ is a given matrix norm. To have a direct comparison between both estimators we also approximate
E‖6̂− q6‖2. We obtain the following numbers for the operator norm:

50 200 500 5000

approx. E‖6̂−6∗‖2 5.44 1.30 0.55 0.05
approx. E‖q6−6∗‖2 5.28 1.31 0.55 0.05
approx. E‖6̂− q6‖2 0.38 0.02 0.00 0.00

We see that the two estimators have essentially the same statistical performance. On average, they lie
very close to each other. The dual MLE, which is available in closed form, thus offers a very attractive
alternative to the MLE. Similar results were obtained for the Frobenius norm and the `∞-norm but they
are not reported here.

The estimates in the previous example were computed by evaluating the function in Theorem 7.3. We
stress that nonlinear algebra and our software [31] played an essential role in getting to this point. Namely,
with computations as described in Section 5, we created Table 5. After seeing that table, we conjectured
that the dual MLE for binary trees is one. This led us to find the rational formula. The expression (10) is
an alternating product of linear forms, reminiscent of [11, Theorem 1]. However, this structure does not
generalize, by Example 6.3, thus underscoring Problem 6.1.
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