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Long monochromatic paths and cycles
in 2-edge-colored multipartite graphs

József Balogh, Alexandr Kostochka, Mikhail Lavrov and Xujun Liu

We solve four similar problems: for every fixed s and large n, we describe all values of n1, . . . , ns such
that for every 2-edge-coloring of the complete s-partite graph Kn1,...,ns there exists a monochromatic
(i) cycle C2n with 2n vertices, (ii) cycle C≥2n with at least 2n vertices, (iii) path P2n with 2n vertices, and
(iv) path P2n+1 with 2n+ 1 vertices.

This implies a generalization for large n of the conjecture by Gyárfás, Ruszinkó, Sárközy and Sze-
merédi that for every 2-edge-coloring of the complete 3-partite graph Kn,n,n there is a monochromatic
path P2n+1. An important tool is our recent stability theorem on monochromatic connected matchings.

1. Introduction

A connected matching in a graph G is a matching whose edges are all in the same component of G. By
Mn we will always denote a connected matching with n edges and by Pn the path with n vertices. Also
by Cn we denote the cycle with n vertices, and by C≥n a cycle of length at least n.

For graphs G0, . . . ,Gk we write G0 7→ (G1, . . . ,Gk) if for every k-coloring of the edges of G0, for
some i ∈ [k] there is a copy of Gi with all edges of color i . The Ramsey number R(G1, . . . ,Gk) is the
minimum N such that KN 7→ (G1, . . . ,Gk), and Rk(G)= R(G1, . . . ,Gk), where G1 = · · · = Gk = G.

Gerencsér and Gyárfás [1967] proved that the n-vertex path Pn satisfies R2(Pn)=
⌊ 1

2(3n− 2)
⌋

. They
actually proved a stronger result:

Theorem 1 [Gerencsér and Gyárfás 1967]. For any two positive integers k ≥ `, R(Pk, P`)= k−1+
⌊1

2`
⌋

.

Many significant results bounding Rk(Pn) for k ≥ 3 and Rk(Cn) for even n were proved in [Benevides
et al. 2012; Benevides and Skokan 2009; Bondy and Erdős 1973; DeBiasio and Krueger 2018; DeBiasio
et al. 2020; Faudree and Schelp 1974; Figaj and Łuczak 2007; 2018; Gyárfás et al. 2007a; Knierim and
Su 2019; Łuczak 1999; Łuczak et al. 2012; Sárközy 2016]. Many proofs used the Szemerédi Regularity
Lemma [1978] and a number of them used the idea of connected matchings in regular partitions due to
[Łuczak 1999].

Ramsey-type problems when the host graphs are not complete but complete bipartite were studied
by Gyárfás and Lehel [1973], Faudree and Schelp [1975], DeBiasio, Gyárfás, Krueger, Ruszinkó, and
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Sárközy [Gyárfás et al. 2007a], DeBiasio and Krueger [2018], Bucić, Letzter, and Sudakov [Bucić et al.
2019a; 2019b], and Zhang, Sun, and Wu [Zhang et al. 2013], and when the host graphs are complete 3-
partite by Gyárfás, Ruszinkó, Sárközy, and Szemerédi [Gyárfás et al. 2007b]. The main result in [Faudree
and Schelp 1975] and [Gyárfás and Lehel 1973] was:

Theorem 2 [Faudree and Schelp 1975; Gyárfás and Lehel 1973]. For every positive integer n, Kn,n 7→

(P2dn/2e, P2dn/2e). Furthermore, Kn,n 6 7→ (P2dn/2e+1, P2dn/2e+1).

DeBiasio and Krueger [2018] extended the result from paths P2dn/2e to cycles of length at least 2
⌊ 1

2 n
⌋

for large n.
The main result in [Gyárfás et al. 2007b] was:

Theorem 3 [Gyárfás et al. 2007b]. For every positive integer n, Kn,n,n 7→ (P2n−o(n), P2n−o(n)).

The following exact bound was also conjectured:

Conjecture 4 [Gyárfás et al. 2007b]. For every positive integer n, Kn,n,n 7→ (P2n+1, P2n+1).

The goal of this paper is to prove for large n Conjecture 4 and similar exact bounds for paths P2n

(parity matters here) and cycles C2n . We do it in a more general setting: for multipartite graphs with
possibly different part sizes. In the next section, we discuss extremal examples, define some notions and
state our main results. In Section 3, we describe our tools. In Sections 4–8, we prove the main part,
namely, the result for even cycles C2n . In Sections 9–11 we use the main result to derive similar results
for cycles C≥2n and paths P2n and P2n+1.

2. Examples and results

For a graph G and disjoint sets A, B⊂ V (G), by G[A] we denote the subgraph of G induced by A, and by
G[A, B] the bipartite subgraph of G with parts A and B formed by all edges of G connecting A with B.

Our edge-colorings always will be with red (color 1) and blue (color 2).
We consider necessary restrictions on n1 ≥ n2 ≥ · · · ≥ ns providing that each 2-edge-coloring of

Kn1,n2,...,ns contains (a) a monochromatic path P2n , (b) a monochromatic path P2n+1, (c) a monochromatic
cycle C2n and (d) a monochromatic cycle C≥2n . Each condition we add is motivated by an example
showing that the condition is necessary.

First, recall that each of P2n, P2n+1, C2n , and C≥2n contains a connected matching Mn . Thus a graph
with no Mn also contains neither P2n nor P2n+1 nor C≥2n .

2.1. Example with no monochromatic Mn: too few vertices. Let G = K3n−2. Clearly, G ⊇ Kn1,n2,...,ns

for each n1, . . . , ns with n1+ · · ·+ ns = 3n− 2. Partition V (G) into sets U1 and U2 with |U1| = 2n− 1
and |U2| = n − 1. Color the edges of G[U1,U2] with red and the rest of the edges with blue. Since
neither K2n−1 nor Kn−1,2n−1 contains Mn , we conclude G 6 7→ (Mn,Mn); see Figure 1.

To rule out this example, we add the condition

N := n1+ · · ·+ ns ≥ 3n− 1. (1)
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|U1| = 2n−1

|U2| = n−1

Figure 1. Section 2.1.

|U1| = n1

|U2| = n−1 |U3| = n−1

Figure 2. Section 2.2.

2.2. Example with no monochromatic Mn: too few vertices outside V1. Choose any n1 and let N =
n1+ 2n− 2. Let G be obtained from KN by deleting the edges inside a vertex subset U1 with |U1| = n1.
Graph G contains every Kn1,n2,...,ns with n2+· · ·+ns = 2n−2. Partition V (G)−U1 into sets U2 and U3

with |U2| = |U3| = n−1. Color all edges incident with U2 red, and the remaining edges of G blue. Since
the red and blue subgraphs of G have vertex covers of size n− 1 (namely, U2 and U3), neither of them
contains Mn . Thus G 6 7→ (Mn,Mn); see Figure 2.

To rule out this example, we add the condition

N − n1 = n2+ · · ·+ ns ≥ 2n− 1. (2)

2.3. Example with no red Mn and no blue P2n+1: too few vertices. Let G = K3n−1. Partition V (G)
into sets U1 and U2 with |U1| = 2n and |U2| = n−1. Color the edges of G[U1,U2] red and the rest of the
edges blue. Since the red subgraph of G has vertex cover U2 with |U2| = n− 1, it does not contain Mn .
Since each component of the blue subgraph of G has fewer than 2n+1 vertices, it does not contain P2n+1.

Therefore
R(P2n, P2n+1)≥ R(Mn, P2n+1)≥ 3n,

which yields for P2n+1 the following strengthening of (1):

for P2n+1, N ≥ 3n. (3)
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|V1| = 2n−2

|V2| = 2n−2

V4 = {y}

V3 = {x}

|V ′′2 | = n−1|V ′2| = n−1

|V ′′1 | = n−1|V ′1| = n−1

Figure 3. Section 2.4.

2.4. Example with no monochromatic C≥2n when N − n1 − n2 ≤ 2. This example, and all the ones
that follow, show that additional restrictions are necessary when G is bipartite or close to bipartite.

Let G = Kn1,...,ns satisfy (1) and (2) with N − n1 − n2 ≤ 2 such that n1 ≤ 2n − 2. Then also n2 ≤

2n− 2, so G ⊆ K2n−2,2n−2,1,1. Thus we assume G = K2n−2,2n−2,1,1, with V1 = {v1, . . . , v2n−2}, V2 =

{u1, . . . , u2n−2}, V3 = {x}, and V4 = {y}. Let V ′1 = {v1, . . . , vn−1}, V ′′1 = V1− V ′1, V ′2 = {u1, . . . , un−1},
V ′′2 = V2− V ′2. Color the edges in G[V ′1, V ′2], G[V ′′1 , V ′′2 ] and in G[V3, V1 ∪ V2 ∪ V4] red, and all other
edges blue. Then the red graph G1 has cut vertex x , and the components of G1− x have sizes 2n− 2,
2n− 2, and 1, so G1 has no C≥2n . Similarly, G2 contains no C≥2n; see Figure 3.

To rule out this example, we add the condition

for C≥2n , if N − n1− n2 ≤ 2, then n1 ≥ 2n− 1. (4)

2.5. Example with no monochromatic C≥2n when N − n1− n2 ≤ 1. Let G = Kn1,...,ns satisfy (1), (2)
and (4) with N − n1− n2 ≤ 1 such that N + n1 ≤ 6n− 3. Since by (4), n1 ≥ 2n− 1, we get N − n1 ≤

(6n − 3)− 2(2n − 1) = 2n − 1, but (2) implies N − n1 ≥ 2n − 1; therefore both inequalities are tight
and N − n1 = n1 = 2n− 1. Hence G ⊆ K2n−1,2n−2,1, which is a subgraph of the graph K2n−2,2n−2,1,1

considered in Section 2.4.
This example is not ruled out by (4), so we add the condition

for C≥2n , if N − n1− n2 ≤ 1, then n1+ N ≥ 6n− 2. (5)

2.6. Example with no monochromatic P2n+1 when G is bipartite. Suppose n3 = 0 and n1 ≤ 2n. Then
n2 ≤ 2n as well, so G ⊆ K2n,2n . Thus we assume G = K2n,2n with V1 = {v1, . . . , v2n} and V2 =

{u1, . . . , u2n}. Let V ′1 = {v1, . . . , vn}, V ′′1 = V1−V ′1, V ′2 = {u1, . . . , un}, V ′′2 = V2−V ′2. Color the edges
in G(V ′1, V ′2) and G(V ′′1 , V ′′2 ) red, and all other edges blue. Then each component in the red graph and
each component in the blue graph has 2n vertices and thus does not contain P2n+1; see Figure 4.

To rule out this example, we add the condition

for P2n+1, if n3 = 0, then n1 ≥ 2n+ 1. (6)
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|V1| = 2n

|V2| = 2n
|V ′′2 | = n|V ′2| = n

|V ′′1 | = n|V ′1| = n

Figure 4. Section 2.5.

2.7. Example with no monochromatic C2n when N − n1 − n2 ≤ 2. Let G = Kn1,...,ns satisfy (1), (2)
and (4) with N −n1−n2 = 2 such that N ≤ 4n−2. By (4), N −n1 ≤ 2n−1. Now (2) implies N −n1 =

2n− 1= n1. Hence G ⊆ K2n−1,2n−3,1,1. Thus we assume G = K2n−1,2n−3,1,1 with V1={v1, . . . ,v2n−1},
V2= {u1, . . . ,u2n−3}, V3 = {x}, and V4 = {y}. Define A= {v2,v3, . . . ,vn}, B = {vn+1,vn+2, . . . ,v2n−1},
C ={u1,u2, . . . ,un−1}, and D={un,un+1, . . . ,u2n−3}. We assign the colors to the edges of G as follows:

(1) G[A,C] and G[B, D] are complete bipartite red graphs.

(2) G[A, D] and G[B,C] are complete bipartite blue graphs.

(3) v1 has all blue edges to V2.

(4) x has all red edges to V1 ∪ V2 ∪ {y}.

(5) y has all red edges to B ∪ D ∪ {x} and all blue edges to A∪C ∪ {v1}.

We claim that G has no monochromatic cycle of length 2n. Indeed, consider first the red graph G1.
The graph G1− x has three components: (a) A∪C of size 2n− 2, (b) {v1} of size 1, and (c) B ∪ D∪{y}
of size 2n− 2. Thus G has no red cycle of length 2n since the largest block of G1 has order 2n− 1.

Consider now the blue graph G2. We ignore x since it is isolated. Suppose G2 contains a 2n-cycle F.
Since v1 is a cut vertex of G2− {y} with the components of G2− {y, v1} of order 2n− 3 and 2n− 2,
F contains y.

If we delete from G2 all edges in G2[{y},C], then both blocks in the remaining blue graph will be
of order 2n− 1; thus F contains an edge from y to C , say yz. Furthermore, if yz is the only edge in F
connecting y to C , then all other edges in F belong to the bipartite graph H =G2[A∪B∪{v1}, D∪{y}∪C].
But this bipartite graph H cannot have a path of odd length 2n− 1 between the vertices y and z in the
same part.

Thus, F has to use two edges from y to C , say yz1 and yz2. Then the problem is reduced to finding a
blue path from z1 to z2 of length 2n−2 in G2[C, B∪{v1}]. However, it is impossible because |C | = n−1
and the longest path from z1 to z2 in G2[C, B ∪ {v1}] has 2n− 3 vertices.

Note that this example has cycles of length greater than 2n− 1, but all such cycles are odd.
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To rule out this example, we add the condition

for C2n , if N − n1− n2 ≤ 2, then N ≥ 4n− 1. (7)

2.8. Results. Our key result is that for large n, the necessary conditions (1), (2) and (7) for the presence
in a 2-edge-colored Kn1,...,ns of a monochromatic C2n together are also sufficient for this.

Theorem 5. Let s ≥ 2 and n be sufficiently large. Let n1 ≥ · · · ≥ ns and N = n1 + · · · + ns sat-
isfy (1), (2) and (7). Then for each 2-edge-coloring f of the complete s-partite graph Kn1,...,ns , there
exists a monochromatic cycle C2n .

Based on Theorem 5, we derive our other results. The first of them is on cycles of length at least 2n
(it extends a result of [DeBiasio and Krueger 2018]). Recall that (7) is not necessary for the existence of
a monochromatic C≥2n , but (1), (2), (4) and (5) are.

Theorem 6. Let s ≥ 2 and n be sufficiently large. Let n1 ≥ · · · ≥ ns and N = n1 + · · · + ns sat-
isfy (1), (2), (4) and (5). Then for each 2-edge-coloring f of the complete s-partite graph Kn1,...,ns , there
exists a monochromatic cycle C≥2n .

The results for paths of even and odd lengths are somewhat different. The first of them shows that for
large n, the necessary conditions (1) and (2) for the presence in a 2-edge-colored Kn1,...,ns of a monochro-
matic connected matching Mn together are sufficient for the presence of the monochromatic path P2n .

Theorem 7. Let s≥2 and n be sufficiently large. Let n1≥· · ·≥ns and N =n1+· · ·+ns satisfy (1) and (2).
Then for each 2-edge-coloring f of the complete s-partite graph Kn1,...,ns , there exists a monochromatic
path P2n .

Our last result implies Conjecture 4:

Theorem 8. Let s ≥ 2 and n be sufficiently large. Let n1 ≥ · · · ≥ ns and N = n1 + · · · + ns sat-
isfy (2), (3) and (6). Then for each 2-edge-coloring f of the complete s-partite graph Kn1,...,ns , there
exists a monochromatic path P2n+1.

In the next section, we describe our main tools: the Szemerédi Regularity Lemma, connected match-
ings, and theorems on the existence of Hamiltonian cycles in dense graphs. In Section 4 we set up and
describe the structure of the proof of Theorem 5, and in the next four sections we present this proof. In
the last three sections we prove Theorems 6, 7 and 8.

3. Tools

As in many recent papers on Ramsey numbers of paths (see [Benevides et al. 2012; Benevides and
Skokan 2009; DeBiasio and Krueger 2018; Figaj and Łuczak 2007; Gyárfás et al. 2007a; Knierim and
Su 2019; Łuczak et al. 2012; Sárközy 2016]), our proof heavily uses the Szemerédi Regularity Lemma
[1978] and the idea of connected matchings in regular partitions of reduced graphs due to [Łuczak 1999].

3.1. Regularity. We say that a pair (V1, V2) of two disjoint vertex sets V1, V2⊆ V (G) is (ε,G)-regular if∣∣∣∣ |E(X, Y )|
|X ||Y |

−
|E(V1, V2)|

|V1||V2|

∣∣∣∣< ε
for all X ⊆ V1 and Y ⊆ V2 with |X |> ε|V1| and |Y |> ε|V2|.
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We use a 2-color version of the Regularity Lemma, following Gyárfás, Ruszinkó, Sárközy, and Sze-
merédi [Gyárfás et al. 2007a].

Lemma 9 (2-color version of the Szemerédi Regularity Lemma). For every ε > 0 and integer m > 0,
there are positive integers M and n0 such that for n ≥ n0 the following holds. For all graphs G1 and G2

with V (G1) = V (G2) = V , |V | = n, there is a partition of V into L + 1 disjoint classes (clusters)
(V0, V1, V2, . . . , VL) such that

• m ≤ L ≤ M,

• |V1| = |V2| = · · · = |VL |,

• |V0|< εn,

• Apart from at most ε
(L

2

)
exceptional pairs, the pairs {Vi , Vj } are (ε,Gq)-regular for q = 1 and 2.

Additionally, if G1 ∪G2 is a multipartite graph with partition V = V ∗1 ∪ V ∗2 ∪ · · · ∪ V ∗s , with s < 6,
we can guarantee that each of the clusters V1, V2, . . . , VL is contained entirely in a single part of this
partition.

To do so, for a given ε > 0, we begin by arbitrarily partitioning each V ∗i into parts V ∗i,1, V ∗i,2, . . . ,
each of size

⌊ 1
10εn

⌋
, with a part V ∗i,0 of size at most 1

10εn left over. This is an equitable partition of
V −

⋃k
i=1 V ∗i,0, a set of at least

(
1− 9

10ε
)
n vertices. The Regularity Lemma allows us to refine any

equitable partition into one that satisfies the conclusions of Lemma 9. Working with the subgraphs of
G1 and G2 excluding the vertices in

⋃k
i=1 V ∗i,0, take such a refinement with parameters 1

9ε and m, then
add

⋃k
i=1 V ∗i,0 to its exceptional cluster V0. The resulting exceptional cluster still has size at most εn, so

we have obtained a partition satisfying the conditions of Lemma 9 in which each of V1, V2, . . . , VL is
entirely contained in one of V ∗1 , V ∗2 , . . . , V ∗k .

3.2. Connected matchings. Let α′(G) denote the size of a largest matching and α′
∗
(G) denote the size

of a largest connected matching in G. Let α(G) denote the independence number and β(G) denote the
size of a smallest vertex cover in G.

Łuczak [1999] was the first to use the fact that the existence of large connected matchings in the
reduced graph of a regular partition of a large graph G implies the existence of long paths and cycles
in G. A flavor of it is illustrated by the following fact.

Lemma 10 [Łuczak et al. 2012, Lemma 8; Knierim and Su 2019, Lemma 1]. Let a real number c > 0
and a positive integer k be given. If for every ε > 0 there exists a δ > 0 and an n0 such that for every
even n > n0 and each graph G with v(G) > (1+ ε)cn and e(G) ≥ (1− δ)

(
v(G)

2

)
each k-edge-coloring

of G has a monochromatic connected matching Mn/2, then for large N, we have Rk(CN )≤ (c+ o(1))N
(and hence Rk(PN )≤ (c+ o(1))N ).

We use the following property of (ε,G)-regular pairs:

Lemma 11 [Gyárfás et al. 2007a, Lemma 3]. For every δ > 0 there exist ε > 0 and t0 such that the
following holds. Let G be a bipartite graph with bipartition (V1, V2) such that |V1| = |V2| = t ≥ t0, and
let the pair (V1, V2) be (ε,G)-regular. Moreover, assume that degG(v) > δt for all v ∈ V (G).

Then for every pair of vertices v1 ∈ V1, v2 ∈ V2, the graph G contains a Hamiltonian path with
endpoints v1 and v2.
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Since we are aiming at an exact bound, we need a stability version of a result similar to Lemma 10.
To state it, we need some definitions.

Definition 12. For ε > 0, an N -vertex s-partite graph G with parts V1, . . . , Vs of sizes n1≥ n2≥ · · · ≥ ns ,
and a 2-edge-coloring E = E1 ∪ E2 is (n, s, ε)-suitable if the conditions

N = n1+ · · ·+ ns ≥ 3n− 1, (S1)

n2+ n3+ · · ·+ ns ≥ 2n− 1 (S2)

hold, and if Ṽi is the set of vertices in Vi of degree at most N − εn− ni and Ṽ =
⋃s

i=1 Ṽi , then

|Ṽ | = |Ṽ1| + · · · + |Ṽs |< εn. (S3)

We do not require E1 ∩ E2 =∅; an edge can have one or both colors. We write Gi = G[Ei ] for i = 1, 2.

Our stability theorem gives a partition of the vertices of near-extremal graphs called a (λ, i, j)-bad
partition. There are two types of bad partitions.

Definition 13. For i ∈ {1, 2}, λ > 0, and an (n, s, ε)-suitable graph G, a partition V (G)=W1 ∪W2 of
V (G) is (λ, i, 1)-bad if the following hold:

(i) (1− λ)n ≤ |W2| ≤ (1+ λ)n1.

(ii) |E(Gi [W1,W2])| ≤ λn2.

(iii) |E(G3−i [W1])| ≤ λn2.

Definition 14. For i ∈ {1, 2}, λ > 0, and an (n, s, ε)-suitable graph G, a partition V (G)= Vj ∪U1 ∪U2,
j ∈ [s], of V (G) is (λ, i, 2)-bad if the following hold:

(i) |E(Gi [Vj ,U1])| ≤ λn2.

(ii) |E(G3−i [Vj ,U2])| ≤ λn2.

(iii) n j = |Vj | ≥ (1− λ)n.

(iv) (1− λ)n ≤ |U1| ≤ (1+ λ)n.

(v) (1− λ)n ≤ |U2| ≤ (1+ λ)n.

Our stability theorem is:

Theorem 15 [Balogh et al. 2019, Theorem 9]. Let 0< ε < 10−3γ < 10−6, n ≥ s ≥ 2, and n > 100/γ .
Let G be an (n, s, ε)-suitable graph. If max{α′

∗
(G1), α

′
∗
(G2)} ≤ n(1+ γ ), then for some i ∈ [2] and

j ∈ [2], V (G) has a (68γ, i, j)-bad partition.

3.3. Theorems on Hamiltonian cycles in bipartite graphs.

Theorem 16 ([Chvátal 1972]; see also [Berge 1976, Corollary 5 in Chapter 10]). Let H be a 2n-vertex
bipartite graph with vertices u1, u2, . . . , un on one side and v1, v2, . . . , vn on the other such that d(u1)≤

· · · ≤ d(un) and d(v1)≤ · · · ≤ d(vn).
If dH (ui )≤ i < n implies dH (vn−i )≥ n− i + 1, then H is Hamiltonian.
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Theorem 17 [Berge 1976]. Let H be a 2m-vertex bipartite graph with vertices u1, u2, . . . , um on one
side and v1, v2, . . . , vm on the other such that d(u1)≤ · · · ≤ d(um) and d(v1)≤ · · · ≤ d(vm). Suppose that
for the smallest two indices i and j such that d(ui )≤ i+1 and d(vj )≤ j+1, we have d(ui )+d(vj )≥m+2.

Then H is Hamiltonian biconnected: for every i and j , there is a Hamiltonian path with endpoints ui

and vj .

Theorem 18 ([Las Vergnas 1970]; see also [Berge 1976, Theorem 11 on page 214]). Let H be a 2n-
vertex bipartite graph with vertices u1, u2, . . . , un on one side and v1, v2, . . . , vn on the other such that
d(u1)≤ · · · ≤ d(un) and d(v1)≤ · · · ≤ d(vn). Let q be an integer, 0≤ q ≤ n− 1.

If , whenever uivj /∈ E(H), d(ui )≤ i + q, and d(vj )≤ j + q , we have

d(ui )+ d(vj )≥ n+ q + 1,

then each set of q edges that form vertex-disjoint paths is contained in a Hamiltonian cycle of G.

3.4. Using the tools. Our strategy to prove Theorem 5 is: We first apply a 2-colored version of the
Regularity Lemma to G to obtain a reduced graph Gr. If Gr has a large monochromatic connected
matching then we find a long monochromatic cycle using Lemma 10. If Gr does not have a large
monochromatic connected matching, then we use Theorem 15 to obtain a bad partition of Gr. We then
transfer the bad partition of Gr to a bad partition of G and work with this partition. In some important
cases, theorems on Hamiltonian cycles help to find a monochromatic cycle C2n in G.

4. Setup of the proof of Theorem 5

Formally, we need to prove the theorem for every N -vertex complete s-partite graph G with parts
(V ∗1 , V ∗2 , . . . , V ∗s ) such that the numbers ni = |V ∗i | satisfy n1 ≥ n2 ≥ · · · ≥ ns and the three conditions

N = n1+ · · ·+ ns ≥ 3n− 1, (S1′)

N − n1 = n2+ · · ·+ ns ≥ 2n− 1, (S2′)

if N − n1− n2 ≤ 2, then N ≥ 4n− 1. (S3′)

For a given large n, we consider a possible counterexample with the minimum N + s. In view of this,
it is enough to consider the lists (n1, . . . , ns) satisfying (S1′), (S2′) and (S3′) such that:

(a) For each 1 ≤ i ≤ s, if ni > ni+1, then the list (n1, . . . , ni−1, ni − 1, ni+1, . . . , ns) does not satisfy
some of (S1′), (S2′) and (S3′).

(b) If s ≥ 4, then the list (n1, . . . , ns−2, ns−1+ ns) (possibly with the entries rearranged into a nonin-
creasing order) does not satisfy some of (S1′), (S2′) and (S3′).

Case 1: N − n1 − n2 ≥ 3 and N > 3n − 1. Then (S3′) holds by default. If n1 > n2, then the
list (n1 − 1, n2, n3, . . . , ns) still satisfies the conditions (S1′), (S2′) and (S3′), a contradiction to (a).
Hence n1 = n2. Choose the maximum i such that n1 = ni . If N − n1 > 2n − 1, consider the list
(n1, . . . , ni−1, ni − 1, ni+1, . . . , ns). In this case (S1′) and (S2′) still are satisfied for this list; so by (a),
(S3′) fails for it. As we assumed N − n1− n2 ≥ 3, we must have i ≥ 3 and N − n1− n2 = 3 for (S3′) to
fail for this list; this further implies n1 = ni ≤ 3, so N = n1+ n2+ 3≤ 9, a contradiction. Thus in this
case N − n1 = 2n− 1. Therefore, n1 = N − (N − n1) ≥ 3n− (2n− 1) = n+ 1 and hence n2 ≥ n+ 1,
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so N − n1 − n2 ≤ (2n − 1)− (n + 1) = n − 2. Then the list (n1, n1, N − 2n1) satisfies (S1′)–(S3′).
Summarizing, we get

if N − n1− n2 ≥ 3 and N > 3n− 1, then s = 3, n2+ n3 = 2n− 1, and n1 = n2. (8)

Case 2: N − n1 − n2 ≥ 3 and N = 3n − 1. Again (S3′) holds by default. By (S2′), n1 ≤ n; hence
N−n1−n2≥n−1. If s≥4 and ns−1+ns≤n, then let L be the list obtained from (n1, . . . , ns) by replacing
the two entries ns−1 and ns with ns−1+ ns and then possibly rearrange the entries into nonincreasing
order. By construction, L satisfies (S1′)–(S3′), a contradiction to (b). Hence ns−1 + ns ≥ n + 1. We
also have ns−1 + ns ≥ n + 1 if s = 3, since in this case ns−1 + ns = N − n1 ≥ 2n − 1. If s ≥ 6, then
N ≥ 3(ns−1+ ns)≥ 3n+ 3, contradicting N = 3n− 1. Thus

if N − n1− n2 ≥ 3 and N = 3n− 1, then n1 ≤ n, s ≤ 5, ns−1+ ns ≥ n+ 1. (9)

Case 3: N − n1− n2 ≤ 2. Then N ≤ 2n1+ 2, so by (S3′), 2n1+ 2≥ N ≥ 4n− 1, implying n1 ≥ 2n− 1.
If n1 ≥ 2n, then (S2′) implies G ⊇ K2n,2n−1. If n1 = 2n − 1, then by (S3′), N − n1 ≥ 2n, so again
G ⊇ K2n,2n−1. Thus we can assume that

if N − n1− n2 ≤ 2, then G = K2n,2n−1. (10)

As we have seen,
in each of Cases 1, 2 and 3 we have s ≤ 5. (11)

Fix an arbitrary 2-edge-coloring E(G)= E1∪E2 of G. For i ∈ [2] and v ∈ V (G), let Gi := (V (G), Ei )

and di (v) denote the degree of v in Gi .

5. Regularity

5.1. Applying the 2-colored version of the Regularity Lemma. We first choose parameter α so that
0 < α < 10−10 and then choose ε such that ε < 10−20 and 0 < 106ε < α so that the pair

( 1
2α, 3ε

)
satisfies the relation of (δ, ε) in Lemma 11 with 1

2α playing the role of δ. Here, ε is the parameter for
the Regularity Lemma, and α is our cutoff for the edge density at which we give an edge of the reduced
graph a color.

We apply Lemma 9 to obtain a partition (V0, V1, . . . , VL) of V (G), with each of V1, V2, . . . , VL

contained entirely in one of V ∗1 , V ∗2 , . . . , V ∗k . Define the k-partite reduced graph Gr as follows:

• The vertices of Gr are vi for i = 1, 2, . . . , L . A k-partition (V ′1, V ′2, . . . , V ′k) of V (Gr ) is induced
by the k-partition of G, and reordered if necessary so that |V ′1| ≥ |V

′

2| ≥ · · · ≥ |V
′

k |.

• There is an edge between vi and vj if and only if vi and vj are in different parts of the k-partition
and the pair {Vi , Vj } is (ε,Gq)-regular for both q = 1 and q = 2.

• The reduced graph Gr is missing at most ε
(L

2

)
edges between distinct pairs {V ′i , V ′j }.

• We give Gr a 2-edge-multicoloring: two graphs (Gr
1,Gr

2) whose union includes every edge of Gr,
but are not necessarily edge-disjoint. We add edge vivj ∈ E(Gr ) to Gr

q if Gq contains at least
α|Vi ||Vj | of the edges between Vi and Vj . Since G = G1 ∪G2 contains all |Vi ||Vj | edges between
Vi and Vj , each edge of Gr is added to either Gr

1 or Gr
2, and possibly to both.
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Let t = |V1| = |V2| = · · · = |VL |, `i = |V ′i | for i = 1, . . . , k, and ` := (n− εN )/t ; since N ≤ 4n− 1,
we have `t ≥ (1− 5ε)n.

Because |V0| ≤ εN, we have (1− ε)N ≤ Lt ≤ N and ni − εN ≤ `i t ≤ ni . Therefore:

• Lt ≥ (1− ε)N ≥ 3n− 1− εN = 3(`t + εN )− 1− εN ≥ 3`t − 1+ 2εn, which means L ≥ 3`− 1.

• Lt ≤ N ≤ 4n− 1= 4(`t + εN )− 1≤ 5`t , which means L ≤ 5`.

• Lt − `1t ≥ N − n1 − εN ≥ 2n − 1− εN ≥ 2(`t + εN )− 1− εN ≥ 2`t − 1+ εN, which means
L − `1 ≥ 2`− 1.

Recall that Gr is missing at most ε
(L

2

)
≤ ε 1

2 L2 < 16εL2 edges between distinct pairs {V ′i , V ′j }. Since
the number of Vi ’s missing at least 4

√
ε` edges is less than 4

√
ε`, we know Gr is (`, k, 4

√
ε)-suitable.

We apply Theorem 15 to the graph Gr with γ such that 10−6 > γ > 1000α and γ > 4000
√
ε. Then we

conclude that either Gr has a monochromatic connected matching of size (1+ γ )`, or else V (G) has a
(68γ, i, j)-bad partition for some i ∈ [2] and j ∈ [2].

5.2. Handling a large connected matching in the reduced graph. For every edge vivj ∈ Gr
1, the corre-

sponding pair (Vi , Vj ) is (ε,G1)-regular and contains at least αt2 edges of G1. Let X i j ⊆ Vi be the set
of all vertices of Vi with fewer than 1

2αt edges of G1 to Vj , and let Yi j ⊆ Vj be the set of all vertices of
Vj with fewer than 1

2αt edges of G1 to Vi . Note we have Yi j = X j i but we keep using the notation Yi j

for emphasizing they are in different parts. Then
|E(X i j , Vj )|

|X i j ||Vj |
≤
α

2
,

so |X i j | ≤ εt to avoid violating (ε,G1)-regularity; similarly, |Yi j | ≤ εt . Call vertices of Vi ∪ Vj which
are not in X i j ∪ Yi j typical for the pair (Vi , Vj ) (or for the edge vivj of G1).

Let M be a connected matching in Gr
1 of size (1+ γ )`. Give the edges in M an arbitrary cyclic

ordering.
If vi1vj1 and vi2vj2 are edges of M which are consecutive in the ordering, we shall find a path P( j1, i2)

in G1 joining a vertex of Vj1 \Yi1 j1 to a vertex of Vi2 \ X i2 j2 . To do so, we begin by finding a path Pr from
vj1 to vi2 in Gr

1, then find a realization of that path in G1. Pick a starting point of P( j1, i2) typical both
for the edge vi1vj1 and for the first edge of Pr. Next, choose the path greedily, making sure to satisfy the
following conditions:

• Choose a neighbor of the previous vertex chosen which is typical for the next edge of Pr (or for
vi2 j2 when we reach the end of Pr ).

• Choose a vertex which has not been chosen for any previous paths.

As we construct P( j1, i2), the last vertex we have chosen is always typical for the edge of Pr we are about
to realize; therefore we have at least 1

2αt options for its neighbors. At most εt of them are eliminated
because they are not typical for the next edge, and at most L2 are eliminated because they have been
chosen for previous paths. Since L is upper bounded by M which is independent of n, and ε < 10−6α,
we can always choose such a vertex.

Moreover, we may choose the paths such that their total length has the same parity as |M|. If the
component of Gr

1 containing M is not bipartite, then each path can be chosen to have any parity we
like. If the component of Gr

1 containing M is bipartite, then this condition is satisfied automatically:
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if we join the paths of Pr we chose by the edges of M, we get a closed walk, which must have
even length.

Once all these paths are chosen, we combine them into a long even cycle in G1. For each edge vivj in
the matching M, we have vertices x ∈ Vi and y ∈ Vj , both typical for (Vi , Vj ), which are the endpoints
of two paths we have constructed. We show that we can find a path from x to y using only edges of G1

between Vi and Vj of any odd length between t − 1 and (1− 3ε)2t − 1.
To do so, we choose any X ⊆ Vi with |X | ≥ 1

2 t that contains x and at least 1
2αt neighbors of y;

similarly, we choose Y ⊆ Vj with |Y | = |X | that contains y and at least 1
2αt neighbors of x . If we want

the path to have length 2Ct−1, where C ∈
[ 1

2 , 1−3ε
]
, we begin by choosing X and Y of size (C+3ε)t .

The pair (X, Y ) is (2ε,G1)-regular with density at least α− ε, so there are at most 2ε vertices in each of
X and Y which have fewer than 1

2αt neighbors on the other side; by our construction of X and Y, x and
y are not among them.

Let X ′ ⊆ X and Y ′ ⊆ Y be the subsets obtained by deleting these low-degree vertices, leaving at least
(C+ε)t vertices on each side, and then deleting enough vertices from each part to make |X ′| = |Y ′| =Ct .
The pair (X ′, Y ′) is (3ε,G1)-regular, and all vertices have minimum degree at least (α − 3ε)t , so by
Lemma 11, there is a path from x to y using all vertices of X ′ and Y ′, which has the desired length 2Ct−1.

If we use C=1−3ε for each edge vivj in the matching M, then the cycle contains at least 2(1−3ε)t ver-
tices for each edge of M, even ignoring the paths we constructed between them, while |M| ≥ (1+10ε)`;
therefore the total length is at least

2(1− 3ε)(1+ 10ε)`t ≥ 2(1− 3ε)(1+ 10ε)(1− 5ε)n ≥ (1+ ε)2n.

If we use C = 1
2 each edge vivj , then the cycle contains only t vertices for each edge of M, giving

approximately half as many edges. Up to parity, we are free to choose any length in this range, and
therefore it is possible to construct a path in G1 of length exactly 2n.

5.3. Handling a bad partition of the reduced graph. We will show in Sections 6 and 7 how to find a
long monochromatic cycle in a bad partition of G. In this subsection, we show that a bad partition of Gr

corresponds to a bad partition of G.

(1) If X ⊆ V (Gr ) has size C`, then the corresponding set of vertices in G is
⋃
vi∈X Vi . It has size C`t ,

which is in the range [(1− 5ε)Cn,Cn].

(2) If |EGr
i
(X)| ≤ λ`2, then each of those λ`2 edges of Gr

i corresponds to at most t2 edges of Gi for
λ`2t2

≤ λn2 edges.
Additionally, edges not in Gr

i may appear in Gi ; across all of Gi there are at most αt2
(L

2

)
≤

1
2αN 2

≤ 10αn2 edges that occur in this way.
Moreover, edges from at most ε

(L
2

)
exceptional pairs may appear in Gi , contributing at most

10εn2 edges in total by the same calculation.
To summarize, there are at most (λ+ 10α+ 10ε)n2 edges in Gi corresponding to EGr

i
(X). A

similar argument applies to a bound on |EGr
i
(X, Y )| for X, Y ⊆ V (Gr ).

(3) There are fewer than εN ≤ 5εn vertices from the exceptional part V0, which can generally be
assigned to any part of any bad partition without changing the approximate structure.
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Thus, for 10−3 >λ> 1000α > 109ε > 0, if Gr has a (λ, i, 1)-bad partition (i ∈ [2]) V (Gr )=W r
1 ∪W r

2 ,
then G has a corresponding (2λ, i, 1)-bad partition with:

(0) W1 :=
(⋃

vi∈W r
1

Vi
)
∪ V0 and W2 :=

⋃
vi∈W r

2
Vi .

(i) (1− 2λ)n ≤ (1− λ)(1− 5ε)n ≤ (1− λ)`t ≤ |W2| ≤ (1+ λ)`1t ≤ (1+ λ)n1.

(ii) |E(Gi [W1,W2])| ≤ (λ+ 10α+ 10ε+ 5ε)n2
≤ 2λn2.

(iii) |E(G3−i [W1])| ≤
(
λ+ 10α+ 10ε+ 5ε+ 25

2 ε
2
)
n2
≤ 2λn2.

If Gr has a (λ, i, 2)-bad partition (i ∈ [2]) V (Gr )= V ′j ∪U r
1 ∪U r

2 then G has a corresponding (2λ, i, 2)-
bad partition with:

(0) U1 :=
⋃
vi∈U r

1
Vi ∪ (V0− V ∗j ) and U2 :=

⋃
vi∈U r

2
Vi .

(i) |E(Gi [V ∗j ,U1])| ≤ (λ+ 10α+ 10ε+ 5ε)n2
≤ 2λn2.

(ii) |E(G3−i [Vj ,U2])| ≤ (λ+ 10α+ 10ε+ 5ε)n2
≤ 2λn2.

(iii) n j = |V ∗j | ≥ `j t ≥ (1− λ)`t ≥ (1− λ)(1− 5ε)n ≥ (1− 2λ)n.

(iv) (1+ 2λ)n ≥ (1+λ)n+ 5εn ≥ (1+λ)`t + 5εn ≥ |U1| ≥ (1−λ)`t ≥ (1−λ)(1− 5ε)n ≥ (1− 2λ)n.

(v) (1+ λ)n ≥ (1+ λ)`t ≥ |U2| ≥ (1− λ)`t ≥ (1− λ)(1− 5ε)n ≥ (1− 2λ)n.

Therefore, a (68γ, i, j)-bad partition of Gr corresponds to a (136γ, i, j)-bad partition of G for some
i ∈ [2] and j ∈ [2]. In the next three sections we show how to find a monochromatic cycle of length
exactly 2n when G has a (λ, i, j)-bad partition for some i ∈ [2] and j ∈ [2], where λ= 136γ .

6. Dealing with (λ, i, 1)-bad partitions when N − n1− n2 ≥ 3

6.1. Setup. Without loss of generality, let i = 1. Recall that dk(v) is the degree of v in Gk , where k ∈ [2].
We assume that for some λ < 0.01, there is a partition V (G)=W1 ∪W2 such that

(1− λ)n ≤ |W2| ≤ (1+ λ)n1, (12)

|E(G1[W1,W2])| ≤ λn2, (13)

|E(G2[W1])| ≤ λn2. (14)

If G has at least four parts then n1 ≤ n by (8) and (9). If G is tripartite, then we could have n1 much
larger than n, but in this section, we will assume n1 <

5
3 n. The alternative, that G is tripartite and n1 ≥

5
3 n,

is handled in Section 6.2.
We know that |W1| ≥ N − (1+ λ)n1 ≥ 2n− 1− λn1 ≥ (2− 5λ)n since n1 ≤ 2n. For any vertex x ,

fewer than 5
3 n vertices of W1 can be in the same part Vi of G as x , so at least

( 1
3 − 5λ

)
n > 1

4 n are in
other parts of G. In other words, we have d(x,W1)≥

1
4 n for all x ∈ V (G).

We call a vertex x ∈ V (G) W1-typical if d1(x,W1) ≥
3
4 d(x,W1), and W2-typical if d1(x,W1) <

3
4 d(x,W1).

If x is W1-typical, then d1(x,W1)≥
3
4 ·

1
4 n = 3

16 n. Since∑
x∈W2

d1(x,W1)= |E(G1[W1,W2])| ≤ λn2,



68 JÓZSEF BALOGH, ALEXANDR KOSTOCHKA, MIKHAIL LAVROV AND XUJUN LIU

the number of W1-typical vertices in W2 is at most

λn2

3
16 n

< 6λn.

Similarly, if x is W2-typical, then d2(x,W1)≥
1
4 ·

1
4 n = 1

16 n. Since∑
x∈W1

d2(x,W1)= 2|E(G2[W1])| ≤ 2λn2,

the number of W2-typical vertices in W1 is at most

2λn2

1
16 n
= 32λn.

Let W ′1 be the set of all W1-typical vertices and W ′2 be the set of all W2-typical vertices. The partition
(W ′1,W ′2) is almost exactly the same as the partition (W1,W2): at most 40λn vertices have been moved
from one part to the other part to obtain (W ′1,W ′2) from (W1,W2). Therefore, if x ∈ W ′1, we still have
d1(x,W ′1) ≥

3
4 d(x,W1)− 40λn, and if x ∈ W ′2, we still have d1(x,W ′1) <

3
4 d(x,W1)+ 40λn. In either

case, we still have d(x,W ′1)≥
1
4 n− 40λn for all x .

Moreover, W ′1 and W ′2 still satisfy similar conditions to W1 and W2:

(1) (1− 41λ)n ≤ |W ′2| ≤ (1+ λ)n1+ 40λn ≤ (1+ 81λ)n1 (since n1 ≥
1
2 n in all cases).

(2) |E(G1[W ′1,W ′2])| ≤ λn2
+ N · (40λn)≤ 161λn2, since we move at most 40λn vertices with degree

less than N.

(3) |E(G2[W ′1])| ≤ λn2
+ N · (6λn)≤ 25λn2, since we move at most 6λn vertices with degree less than

N into W ′1.

For convenience, let δ = 200λ, which is at least as large as all multiples of λ used above.
Our goal is to find a cycle of length 2n in either G1 or G2. We decide which type of cycle we will

attempt to find based on the relative sizes of W ′1 and W ′2.
Suppose that |W ′1| ≥ 2n and, moreover, |W ′1 \Vi | ≥ n for all i . In this case, we find a cycle of length 2n

in G1; this is done in Section 6.3.
Otherwise, we must have |W ′2|≥n: either |W ′1|≤2n−1 and |W ′2|=N−|W ′1|≥n, or else |W ′1\Vi |≤n−1

for some i , and

|W ′2| ≥ |W
′

2 \ Vi | = |V \ Vi | − |W ′1 \ Vi | ≥ (N − ni )− (n− 1)≥ (2n− 1)− (n− 1)= n.

In this case, we find a cycle of length 2n in G2; this is done in Section 6.4.
We use the following lemma to pick out “well-behaved” vertices in W ′1 and W ′2. For example, we

commonly apply it to G2[W ′1] or to G1[W ′1,W ′2].

Lemma 19. Let H be an n-vertex graph with at most εn2 edges for some ε > 0 and let S ⊆ V (H). If
S′ ⊆ S is any subset that excludes the k vertices of S with the highest degree, then every v ∈ S′ satisfies
dH (v) < 2εn2/k.

Additionally, when H is bipartite, and S is entirely contained in one part of H, every v ∈ S′ satisfies
dH (v) < εn2/k.
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Proof. In the first case, if we have dH (v) ≥ 2εn2/k for any v ∈ S′, then we also have dH (v) ≥ d for
the k vertices of S with the highest degree, which we excluded from S′. The sum of degrees of these
k+ 1 vertices exceeds 2εn2, so it is greater than twice the number of edges in H, a contradiction.

In the second case, if we have dH (v) ≥ εn2/k for any v ∈ S′, the same sum of degrees exceeds εn2.
But since the vertices of S are all on one side of the bipartition of H, this sum of degrees cannot be
greater than the number of edges in H, which is again a contradiction. �

6.2. The nearly bipartite subcase. In this subsection, we assume that G is tripartite with n1≥
5
3 n. Recall

that when G is tripartite we have n1 = n2 and n1+ n3 = n2+ n3 = 2n− 1, and that throughout Section 6
we assume N − n1− n2 ≥ 3, or in this case that n3 ≥ 3.

Case 1: |W1 ∩ Vi | ≥ (1+ 10λ)n for i = 1 or i = 2. We assume i = 1; the proof for the case i = 2 is the
same. In this case, let X be an n-vertex subset of V1 ∩W1 avoiding the 5λn vertices of V1 ∩W1 with the
most edges of G2 to W1 \ V1 and the 5λn vertices of V1 ∩W1 with the most edges of G1 to W2 \ V1.

For any vertex v ∈ X , we have

d2(v,W1 \ V1)≤
λn2

5λn
=

n
5

and d1(v,W2 \ V1)≤
n
5

by Lemma 19.
We partition V2 ∪ V3 into sets Y1 and Y2 by the following procedure:

(1) The 2λn vertices of W1 \V1 with the most edges of G2 to X are set aside, and the remaining vertices
of W1 \ V1 are assigned to Y1.

By Lemma 19, any vertex v assigned to Y1 in this step has d2(v, X)≤ 1
2 n.

(2) The 2λn vertices of W2 \V1 with the most edges of G1 to X are set aside, and the remaining vertices
of W2 \ V1 are assigned to Y2.

By Lemma 19, any vertex v assigned to Y2 in this step has d1(v, X)≤ 1
2 n.

(3) Each remaining vertex v is assigned to Y1 if d1(v, X) ≥ 1
2 n and to Y2 otherwise (in which case

d2(v, X)≥ 1
2 n).

Since |V2 ∪ V3| = 2n − 1, we must have |Y1| ≥ n or |Y2| ≥ n. Let Y ′j be an n-vertex subset of Yj ,
where j ∈ [2] and |Yj | ≥ n. We apply Theorem 16 to find a Hamiltonian cycle in the bipartite graph
H = G j [X, Y ′j ].

The minimum H -degree in X is 4
5 n−2λn, since each v ∈ X had at most 1

5 n edges to Wj \V1 which were
not in G j , and at most 2λn vertices of Y ′j did not come from Wj \ V1 originally. The minimum H -degree
in Y ′j is 1

2 n, so the condition of Theorem 16 is satisfied: whenever dH (ui ) ≤ i , we have i ≥
( 4

5 − 2λ
)
n,

so dH (vn−i )≥
1
2 n ≥

( 1
5 + 2λ

)
n+ 1.

Case 2: |Vi ∩W1| < (1+ 10λ)n for i = 1 and i = 2. By (12), we must have |W1| ≥ N − (1+ λ)n1 =

2n−1−λn1> 2n−3λn. Since n1= n2≥
5
3 n and n2+n3= 2n−1, fewer than 1

3 n vertices of W1 are in V3,
so at least

( 5
3−3λ

)
n of them are in V1∪V2; therefore |W1∩V1|>

( 2
3−13λ

)
n and |W1∩V2|>

( 2
3−13λ

)
n.

Because 2n > n1 = n2 ≥
5
3 n, we have

( 2
3 − 10λ

)
n < |Vi ∩W2|<

( 4
3 + 13λ

)
n for i = 1, 2, as well.

Next, we choose subsets X i j ⊆ Vi ∩Wj with |X11| = |X21| = |X12| = |X22| =
1
2 n + 10. To choose

X11 and X21, avoid the 1
20 n vertices with the most edges in G1 to W2 and the 1

20 n vertices with the most
edges in G2 to W1, so that each chosen vertex has at most 20λn edges of each kind by Lemma 19. To
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choose X12 and X22, avoid the 1
10 n vertices with the most edges in G1 to W1, so that each chosen vertex

has at most 10λn such edges by Lemma 19.
First, we observe that if H is any of the graphs G1[X11, X21], G2[X12, X21], or G2[X11, X22], then

given any vertices v,w in H, we can find a (v,w)-path in H on m vertices, provided that n− 10≤ m ≤
n+ 10 (this is not optimal, but it is more than we need) and that the parity of m is correct.

To do so, we apply Theorem 18. If v and w are on the same side of H, add a vertex x to the other
side adjacent to all vertices in the side containing v and w; if not, add an edge vw. Then take a subgraph
containing

⌈ 1
2 m
⌉

vertices from each side, making sure to include v,w and if applicable x . In this
subgraph, the minimum degree is at least

⌈ 1
2 m
⌉
−20λn, so we can use Theorem 18 to find a Hamiltonian

cycle in this graph containing either the edge vw or the edges vx and xw. Deleting the vertex x or the
edge vw, whichever applies, creates a (v,w)-path in H of the correct length.

Suppose that G2[X12, X22] contains a matching M = {u1u2, v1v2} of size 2, where u1, v1 ∈ X12 and
u2, v2 ∈ X22. In that case, we can find a (u1, v1)-path P in G2[X12, X21] on 2

⌈ 1
2 n
⌉
+ 1 vertices and a

(u2, v2)-path Q in G2[X11, X22] on 2
⌊ 1

2 n
⌋
− 1 vertices by the previous observation. Joining the paths P

and Q using the edges of the matching M, we find a cycle of length 2n in G2.
Now we assume G2[X12, X22] does not contain a matching of size 2. If the size of a maximum

matching in this graph is 1, then there is a vertex cover of size 1 since G2[X12, X22] is bipartite. We
delete this vertex cover from X12 or X22 (it depends on where this vertex cover is). Having changed X12

and X22 in this way, G1[X12, X22] is a complete bipartite graph, so it also has the property that any two
vertices in it can be joined by a path on m vertices, provided that n− 10≤m ≤ n+ 10 and that the parity
of m is correct.

Note that there are at least three vertices in V3.
We say that a vertex v ∈ V3

• is j -adjacent to a set S if it has at least two edges in G j to S,

• S-connects G j if it is j-adjacent to both X11 and X12, or if it is j-adjacent to both X21 and X22

(“S-connects” because it is j-adjacent to two sets in the same part of V1 or V2),

• C-connects G1 if it is 1-adjacent to both X11 and X22, or if it is 1-adjacent to both X12 and X21

(“C-connects” because the j-adjacency crosses from V1 to V2),

• C-connects G2 if it is 2-adjacent to both X11 and X21, or if it is 2-adjacent to both X12 and X22,

• folds into G1 if it is 1-adjacent to both X11 and X21, or if it is 1-adjacent to both X12 and X22,

• folds into G2 if it is 2-adjacent to both X11 and X22, or if it is 2-adjacent to both X12 and X21.

Some comments on these definitions: first, a vertex that is j-adjacent to at least three of X11, X12,
X21, X22 is guaranteed to both S-connect and C-connect G j . Second, a vertex that is j-adjacent to only
two of X11, X12, X21, X22 for each value of j may S-connect both G1 and G2, or C-connect G1 and fold
into G2, or C-connect G2 and fold into G1. In particular, each vertex either S-connects or C-connects
some G j .

If there are two vertices in V3 that both S-connect G j , or both C-connect G j , then we can find a cycle
of length 2n in G j . The cases are all symmetric; without loss of generality, suppose v,w ∈ V3 both
S-connect G1. We can find a path P in G1[X11, X21] on 2

⌈ 1
2 n
⌉
− 1 vertices that starts at a G1-neighbor

of v and ends at a G1-neighbor of w, and a path Q in G1[X12, X22] on 2
⌊ 1

2 n
⌋
− 1 vertices that starts at
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a G1-neighbor of v and ends at a G1-neighbor of w. Joining P and Q via v at one endpoint and via w
on the other creates a cycle of length 2n in G1.

If we cannot find two vertices as in the previous paragraph, then the best we can do is to find, for
some j , a vertex v ∈ V3 that S-connects G j and another vertex w ∈ V3 that C-connects G j . Since v does
not C-connect G j , it must also S-connect G3− j .

There is at least one more vertex x ∈ V3. By assumption, it does not S-connect G3− j and neither
S-connects nor C-connects G j , so it must fold into G j (and C-connect G3− j ).

Without loss of generality, suppose that j = 1 and x has a G1-neighbor in both X11 and X21. We add
an artificial edge ex between a pair of such neighbors of x .

As before, we can find a path P in G1[X11, X21] joining a neighbor of v to a different neighbor of w;
we add the requirement that it uses the edge ex , which is still possible by Theorem 18. We can also find
a path Q in G1[X12, X22] joining a neighbor of v to a different neighbor of w. Since v S-connects G1

and w C-connects G1, one of these paths will have even length and the other will have odd length, but
we can choose them to have 2n− 3 vertices total.

Now join the paths P and Q using the vertices v and w, then replace the artificial edge ex by two
edges to x from its endpoints. The result is a cycle of length 2n in G1.

6.3. Finding a cycle in G1. In this subsection, we are considering a 2-edge-colored graph G and a
partition W ′1 ∪W ′2 of V (G) satisfying the following properties:

(1) G is a complete s-partite graph with parts V1, V2, . . . , Vs of sizes n1, n2, . . . , ns , with s ≥ 3 and
n1+ · · ·+ ns ≤ 4n.

(2) (1− δ)n ≤ |W ′2| ≤ (1+ δ)n1.

(3) |E(G1[W ′1,W ′2])| ≤ δn
2 and |E(G2[W ′1])| ≤ δn

2.

(4) If x ∈W ′1, then d1(x,W ′1)≥
3
4 d(x,W1)− δn.

(5) |W ′1| ≥ 2n and |W ′1 \Vi | ≥ n for all i . (This is the assumption that leads to this subsection as opposed
to Section 6.4.)

We can deduce a further degree condition that holds for all vertices x ∈W ′1:

(6) By properties (1) and (2), |W ′1| = |V (G)|−|W
′

2| ≤ 4n− (1−δ)n = (3+δ)n, so d(x,W ′1)≤ (3+δ)n.
By property (4), we have d2(x,W1)≤

1
4(3+ δ)n+ δn ≤

( 3
4 + 2δ

)
n.

To find a cycle of length 2n in G1, we will choose two disjoint sets X, Y ⊆ W ′1 of size n, then apply
Theorem 16 to find a Hamiltonian cycle in H = G1[X, Y ].

Let a, b ∈ {1, 2, . . . , s} be such that Va ∩W ′1 is the largest part of G1[W ′1] and Vb ∩W ′1 is the second-
largest part of G1[W ′1]. To define X and Y, we begin by assigning Va ∩W ′1 to X and Vb ∩W ′1 to Y. If
either of these exceeds n vertices, we choose n of the vertices arbitrarily.

Continue by assigning the parts Vi ∩W ′1 to either X or Y arbitrarily for as long as this does not make
|X | or |Y | exceed n. Once this is no longer possible, then:

• If there are still at least two parts Vi ∩W ′1 left unassigned, then each of them must have more than
max{n − |X |, n − |Y |} vertices. Therefore we can add vertices from one of them to X to make
|X | = n (if necessary), and add vertices from the other to Y to make |Y | = n (if necessary).
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• If there is only one part of G1[W ′1] left unassigned, call it Vsplit ∩W ′1. We assign n− |X | vertices of
Vsplit ∩W ′1 to X and n− |Y | other vertices of Vsplit ∩W ′1 to Y.

• If there are no parts left unassigned, then we must have |X | = |Y | = n.

We must show that we do not run out of vertices in either of the last two cases. If |Va ∩W ′1| ≤ n, then we
do not run out because |W ′1| ≥ 2n (by property (5)) and all vertices in W ′1 \ Vsplit are assigned to either
X or Y, so either Vsplit ∩W ′1 must contain enough vertices to fill X and Y or X and Y are already full. If
|Va ∩W ′1|> n, then we do not run out because |W ′1 \ Va| ≥ n (again, by property (5)), and after Va ∩W ′1
is assigned, all vertices of W ′1 are added to Y until it is full.

The most difficult case for us is the one in which some part Vsplit∩W ′1 is divided between X and Y. To
handle all cases at once, we assume this happens; if necessary, we choose some part Vi ∩W ′1 (i 6= a, b)
to be a degenerate instance of Vsplit which is entirely in X or Y.

Let nx = |Vsplit ∩ X | and ny = |Vsplit ∩Y |. We assigned the largest part of G[W ′1] to X and the second-
largest to Y ; therefore X and Y both contain at least nx + ny vertices not in Vsplit. Since |X | = |Y | = n,
we must have nx + (nx + ny) ≤ n and ny + (nx + ny) ≤ n; therefore nx + ny ≤

2
3 n, while individually

nx ≤
1
2 n and ny ≤

1
2 n.

We first prove some bounds on d1(x, Y ) for x ∈ X (and, by symmetry, d1(y, X) for y ∈ Y ). If x /∈ Vsplit,
then d(x, Y )= n (since there are no vertices of Y in the same part of G as x), while d2(x,W ′1)≤

( 3
4+2δ

)
n

by property (6), so d1(x, Y ) ≥
( 1

4 − 2δ
)
n. If x ∈ Vsplit, then d(x,W ′1) = (n− nx)+ (n− ny), since all

vertices of W ′1 outside Vsplit have been assigned to either X or Y, so d2(x,W ′1)≤
1
4(2n− nx − ny)+ δn

by property (4). This leaves d1(x, Y )≥ 1
2 n− 3

4 ny − δn ≥
( 1

8 − δ
)
n.

If we exclude the 1
10 n vertices of X with the most edges to W ′1 in G2, then by Lemma 19, the remaining

vertices x ∈ X have d2(x,W ′1)≤ 20δn. If x /∈ Vsplit, this means d1(x, Y )≥ (1− 20δ)n, and if x ∈ Vsplit,
this means that d1(x, Y )≥ n− ny − 20δn.

Let H =G1[X, Y ], let u1, u2, . . . , un be the vertices of X ordered so that dH (u1)≤ · · · ≤ dH (un), and
let v1, v2, . . . , vn be the vertices of Y ordered so that dH (v1)≤ · · · ≤ dH (vn).

Suppose ui ∈ X satisfies dH (ui )≤ i < n. We have shown d1(x, Y )≥
( 1

8−δ
)
n, so among u1, u2, . . . , ui ,

there must be a vertex not among the 1
10 n vertices of X with the most edges to W ′1 in G2. For such a

vertex, d1(x, Y )≥ n−ny−20δn, so in particular dH (ui )≥ n−ny−20δn, which means i ≥ n−ny−20δn.
If we had dH (vn−i )≤n−i , then by repeating this argument for vertices in Y, we would have dH (vn−i )≥

n−nx−20δn, which would mean n− i ≥ n−nx−20δn. Adding this to the inequality on i , we would get
n ≥ 2n−nx−ny−40δn, which is impossible since nx+ny ≤

2
3 n. So we must have dH (vn−i )≥ n− i+1,

and by Theorem 16, H contains a Hamiltonian cycle. This gives a cycle of length 2n in G1.

6.4. Finding a cycle in G2. In this subsection, we are considering a 2-edge-colored graph G and a
partition W ′1 ∪W ′2 of V (G) satisfying the following properties:

(1) G is a complete s-partite graph with parts V1, V2, . . . , Vs of size n1, n2, . . . , ns , with s ≥ 3 and
n1+ · · ·+ ns ≤ 4n. Moreover, 5

3 n > n1 ≥ · · · ≥ ns ; we considered the case n1 ≥
5
3 n in Section 6.2.

(2) Either N −n1 > 2n−1 and |Vi | ≤ n for all i , or n1 = n2 ≥ n, s = 3, and N −n1 = N −n2 = 2n−1.

(3) |E(G1[W ′1,W ′2])| ≤ δn
2 and |E(G2[W ′1])| ≤ δn

2.

(4) If x ∈W ′2, then d(x,W ′1)≥
1
4 n− δn, and d2(x,W ′1)≥

1
4 d(x,W1)− δn.
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(5) n ≤ |W ′2| ≤ (1+ δ)n1. (The lower bound is the assumption that leads to this subsection as opposed
to Section 6.3.)

Let Bad consist of the
√
δn vertices of W ′2 that maximize d1(x,W ′1); let Good = W ′2 \ Bad. By

Lemma 19, d1(x,W ′1)≤
√
δn for all x ∈ Good.

Our strategy is to handle the vertices in Bad: first by finding short vertex-disjoint paths containing the
vertices in Bad, then by combining them into a single path. Finally, we extend this path to a cycle of
length 2n in G2[W ′1,W ′2].

6.4.1. Constructing paths containing each vertex of Bad. For every vertex x ∈ Bad, we find a four-edge
path P(x) in G2, which contains x , but begins and ends at a vertex of Good. We construct these paths
one at a time; for each vertex x , we must keep in mind that in each of W ′1 and W ′2, up to 2

√
δn vertices

may have been used for previously chosen paths.
This is not always possible; when it is not, we find a cycle of length 2n in another way.

Lemma 20. One of the following holds:

(1) G2 contains a collection {P(x) : x ∈ Bad} of vertex-disjoint paths of length 4 such that, for all
x ∈ Bad, P(x) begins and ends at a vertex of Good, and also contains x and two vertices in W ′1.

(2) G2 contains a cycle of length 2n.

Proof. We attempt to find the collection of vertex-disjoint paths, one vertex of Bad at a time.
By property (4) at the beginning of this section, even if x ∈ Bad, we have d(x,W ′1) ≥

( 1
4 − δ

)
n and

d2(x,W ′1) ≥
1
4 d(x,W ′1)− δn, so d2(x,W ′1) ≥

( 1
16 −

5
4δ
)
n. There is a part Vi with d2(x,W ′1 ∩ Vi ) ≥( 1

64 −
5

16δ
)
n.

First we consider the first case of property (2). That is, suppose N − n1 > 2n − 1; then we have
|Vi | = ni ≤ n1 ≤ n, so |W ′2 ∩ Vi | ≤

( 63
64 +

5
16δ
)
n. But |W ′2| ≥ n in total, so there must be another part

Vj with |W ′2 ∩ Vj | ≥
1
4

( 1
64 −

5
16δ
)
n. We can choose two vertices v,w ∈ Vj to use as the endpoints of

P(x): ruling out the vertices of Vj ∩ Bad (at most
√
δn) and previously used vertices of W ′2 in Vj (at

most 2
√
δn) we still have a number of choices linear in n.

Now we know not just the center vertex x of the path P(x) but also its two endpoints v and w. To
complete P(x), we must find a common neighbor of v and x , and another common neighbor of w and x .
This is possible, since there are at least

( 1
64 −

5
16δ
)
n neighbors of x in W ′1 ∩ Vi ; v and w have edges in

G2 to all but at most
√
δn of them, and we exclude at most 2

√
δn more that have been already used.

We call the method above of choosing the collection {P(x) : x ∈ Bad} the greedy strategy. As we have
seen, it always works in the first case of property (2); it remains to see when it works in the second case.
Now, we assume that G is tripartite, n1 = n2 ≥ n, and N − n1 = N − n2 = 2n− 1.

The greedy strategy continues to work if we can always choose the part Vj from which to pick the
endpoints of P(x). For this choice to always be possible, it is enough that at least two parts of G contain
3
√
δn vertices of W ′2: both of them will have vertices outside Bad not previously chosen for any path,

and one of them will not be the same as Vi .
If this does not occur, then one part Va of G contains all but 6

√
δn vertices of W ′2, and each of the

other two parts contains fewer than 3
√
δn vertices of W ′2. If Va contains fewer than 1

20 n vertices of W ′1,
then the greedy strategy still works: for any x ∈Bad, we have d2(x,W ′1)≥

( 1
16−

5
4δ
)
n> |Va∩W ′1|+2

√
δn,

so we can always choose a part of G other than Va to play the part of Vi . In this case, it does not matter
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that only Va contains many vertices of W ′2, because we only need to choose the endpoints of P(x) from
vertices in Va .

The greedy strategy fails in the remaining case: when Va contains all but 6
√
δn vertices of W ′2 and at

least 1
20 n vertices of W ′1. Then |Va|> n, so without loss of generality, Va = V2. In this case, we do not

try to find the paths P(x) and instead find a cycle of length 2n in G1 or G2 directly.
We have a lower bound on n1 = n2 = |V2|: it is |V2 ∩W ′1| + V2 ∩W ′2| ≥

(
1+ 1

20 − 6
√
δ
)
n. Since

|V1 ∩W ′2| ≤ 3
√
δn, we have |V1 ∩W ′1| ≥

( 21
20 − 9

√
δ
)
n > n.

Let Y1 be a subset of exactly n vertices of V1 ∩W ′1, chosen to avoid the
√
δn vertices of V1 ∩W ′1 with

largest degree in G1[W ′1,W ′2] and the
√
δn vertices of V1∩W ′1 with largest degree in G2[V1∩W ′1,W ′1\V1].

(This is possible since
( 21

20 − 11
√
δ
)
n > n as well.) In both cases, if a vertex x ∈ Y1 has degree d in the

corresponding graph, we get at least
√
δnd edges in either G1[W ′1,W ′2] or G2[W ′1] by looking at the

vertices we deleted; therefore
√
δnd ≤ δn2 and d ≤

√
δn.

Redistribute vertices of V2 ∪ V3 into two parts (X1, X2) as follows:

• All vertices of W ′1 \ V1, except the
√
δn vertices v maximizing d2(v, Y1), are put in X1. A vertex v

of this type is guaranteed to have d2(v, Y1)≤
√
δn.

• All vertices of W ′2 \V1, except the vertices in Bad, are put in X2. A vertex v of this type is guaranteed
to have d1(v, Y1)≤

√
δn.

• The remaining vertices, of which there are at most 2
√
δn, are assigned to X1 or X2 based on their

edges to Y1. If d1(v, Y1)≥
1
2 n, then v is put into X1; otherwise, d2(v, Y1)≥

1
2 n, and v is put into X2.

The sets X1, X2, Y1 satisfy the following properties. For any v ∈ X1 we have d1(v, Y1) ≥
1
2 n. For any

v ∈ X2 we have d2(v, Y1)≥
1
2 n. For any v ∈ Y1 we have d2(v, X1)≤ 4

√
δn, since d2(v,W ′1)≤

√
δn and

X1 contains at most 3
√
δn vertices of W ′2; similarly, for any v ∈ Y1 we have d1(v, X2)≤ 4

√
δn.

Since |X1| + |X2| = |V2 ∪ V3| = 2n− 1, either |X1| ≥ n or |X2| ≥ n.
If |X1| ≥ n, then we let X ′1 be a subset of exactly n vertices of X1, and find a cycle of length 2n in

H = G1[X ′1, Y1] by applying Theorem 16. The hypotheses of the theorem are satisfied by the minimum
degree conditions above: for u ∈ X ′1 we have dH (u)≥ 1

2 n, and for v ∈ Y1 we have dH (v)≥ (1− 4
√
δ)n.

Similarly, if |X2| ≥ n, we let X ′2 be a subset of exactly n vertices of X2 and find a cycle of length 2n
in H = G2[X ′2, Y1] by applying Theorem 16. The argument is the same as in the previous paragraph. �

6.4.2. Finding a cycle using Theorem 18. Applying Lemma 20, each of the
√
δn vertices x ∈ Bad is

the center of a length-4 path P(x). Let A be the 2
√
δn vertices of W ′1 in these paths and B be the

3
√
δn vertices of W ′2 in these paths (including the vertices in Bad). Additionally, let C be the set of

√
δn

vertices of W ′1 \ A with the most edges to W ′2 in G1; by Lemma 19, every x ∈ W ′1 \ (A ∪C) satisfies
d1(x,W ′2)≤

√
δn.

Next, we will construct a bipartite graph H by choosing subsets W ′′1 ⊆W ′1 \ (A∪C) of size n−2
√
δn,

and W ′′2 ⊆W ′2 \ B of size n− 3
√
δn; the edges of H are the edges of G2[W ′′1 ∪ A,W ′′2 ∪ B], except that

we artificially join every internal vertex of every path P(x) to every vertex on the other side of H. We
will apply Theorem 18 to find a Hamiltonian cycle in H containing all q = 4

√
δn edges belonging to the

paths P(x), after choosing W ′′1 and W ′′2 to make sure that the hypotheses of this theorem hold.
In terms of our future choice of (W ′′1 ,W ′′2 ), let ni, j = |Vi ∩W ′′j |. If u ∈ Vi ∩W ′′1 , then the degree of u

in H is at least n− ni,2−
√
δn: u has at most

√
δn edges to W ′′2 that are in G1, not G2, and its degree is
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further reduced by the ni,2 vertices of W ′′2 that are also in Vi . Similarly, if v ∈ Vi ∩W ′′2 , then the degree
of v in H is at least n− ni,1−

√
δn.

Let n∗,1 ≥ n∗∗,1 be the two largest values of ni,1 and let n∗,2 ≥ n∗∗,2 be the two largest values of ni,2.
As in the statement of Theorem 18 let u1, u2, . . . , un be the vertices of W ′′1 ∪ A and let v1, v2, . . . , vn be
the vertices of W ′′2 ∪ B, ordered by degree in H.

We begin with a lemma showing that some choices of (W ′′1 ,W ′′2 ) are guaranteed to satisfy the condi-
tions of Theorem 18:

Lemma 21. Theorem 18 can be applied, letting us find a cycle of length 2n in H, if we can choose W ′′1
and W ′′2 to satisfy the following two conditions:

(1) For each i , either ni,1+ ni,2 ≤ n− 10
√
δn, or ni,1 = 0.

(2) For either j = 1 or j = 2, at most one value of ni, j exceeds
( 1

2 − 10
√
δ
)
n.

Proof. Suppose that ui ∈W ′′1 ∪ A and d(ui )≤ i + q = i + 4
√
δn. The minimum H -degree of vertices in

W ′′1 ∪A is n−n∗,2−
√
δn, so we must have i ≥n−n∗,2−5

√
δn. By condition (1), at most n−n∗,2−10

√
δn

vertices in W ′′1 are in the same part as the largest part of W ′′2 ; at most 2
√
δn vertices are endpoints of

paths P(x), so together these make up at most n − n∗,2 − 8
√
δn < i vertices. Therefore some of the

vertices u1, . . . , ui are vertices of W ′′1 in a different part, and therefore d(ui )≥ n− n∗∗,2−
√
δn.

Similarly, suppose that vj ∈ W ′′2 ∪ B and d(vj ) ≤ j + q ≤ j + 4
√
δn. The minimum H -degree of

vertices in W ′′2 ∪ B is n − n∗,1 −
√
δn, so we must have j ≥ n − n∗,1 − 5

√
δn. By condition (1), at

most n − n∗,1 − 10
√
δn + |B| vertices in W ′′2 are in the same part as the largest part of W ′′1 , which is

fewer than j . Therefore some of the vertices v1, . . . , vj are vertices of W ′′2 in a different part, and hence
d(vj )≥ n− n∗∗,1−

√
δn.

In such a case, we have d(ui )+ d(vj ) ≥ 2n− n∗∗,1− n∗∗,2− 2
√
δn. We have n∗∗,1, n∗∗,2 ≤ 1

2 n, and
additionally by condition (2), n∗∗, j ≤

1
2 n− 10

√
δn for some j . Therefore d(ui )+ d(vj )≥ n+ 8

√
δn ≥

n+ 4
√
δn+ 1, and the hypothesis of Theorem 18 holds. �

It remains to choose W ′′1 and W ′′2 so that they satisfy the conditions of Lemma 21, or to deal separately
with the cases where this is impossible.

First, we consider the case in which all parts of G have size at most 5
4 n. (By property (2), this

automatically holds when G has more than three parts: if so, all parts of G have size at most n.) Choose
W ′′2 arbitrarily. W ′1 must contain at least N − (1+ δ)n1 ≥ N −n1− δn1 ≥ 2n−1−2δn vertices, of which
only 2

√
δn vertices have been used by paths and

√
δn more have been thrown away as C ; therefore we

have at least 2n− 1− 3
√
δn− 2δn choices for vertices in W ′′1 .

We set aside vertices of W ′1 which we forbid from being in W ′′1 . From each part, Vi , forbid either at
least |Vi | − (1− 10

√
δ)n vertices, or else all vertices of Vi ∩W ′1, whichever is smaller. This forbids at

most
( 1

4 + 10
√
δ
)
n vertices from each part, and at most 10

√
δn vertices in the case ni ≤ n. There are at

most two parts with ni > n, so we forbid at most
( 1

2 + 50
√
δ
)
n vertices. Now condition (1) of Lemma 21

will be satisfied no matter what: for each part i , we will either have ni,1+ ni,2 ≤ (1− 10
√
δ)n, or else

ni,1 = 0.
Next, we attempt to ensure that condition (2) of Lemma 21 holds. Call a part Vi of G W ′′1 -rich if, after

excluding the forbidden vertices, and vertices of A∪C , there are still at least 20
√
δn vertices of W ′1 left

in Vi ; call it W ′′1 -poor otherwise.
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If there are at least three W ′′1 -rich parts, then we can choose 20
√
δn vertices from each of them for W ′′1 ,

and complete the choice of W ′′1 arbitrarily. Condition (2) of Lemma 21 must now hold for j = 1: if we
had n∗,1 ≥

( 1
2 − 10

√
δ
)
n and n∗∗,1 ≥

( 1
2 − 10

√
δ
)
n, then together these two parts would contain all but

20
√
δn vertices of W ′′1 . This is impossible, since there is a third W ′′1 -rich part containing at least that

many vertices of W ′′1 .
If there are not at least three W ′′1 -rich parts, we give up on Lemma 21, and satisfy the conditions of

Theorem 18 by a different strategy.
If Vi is W ′′1 -poor, it must have many vertices of W ′′2 . More precisely, Vi has at least min{n, ni }−10

√
δn

vertices that we have not forbidden. Among these, there are up to 3
√
δn vertices which are in A ∪C ,

up to 3
√
δn vertices which are in B, and fewer than 20

√
δn vertices that can be added to W ′′1 , so the

remaining min{n, ni }− 36
√
δn vertices must be in W ′2 \ B.

Moreover, when G is tripartite, ni ≥
3
4 n− 1 for any part, so if a part is W ′′1 -poor, it contains at least

3
4 n − 36

√
δn − 1 vertices of W ′2 \ B. When G has more than three parts, at least two parts must be

W ′′1 -poor; any two parts Vi , Vj have ni + n j > n, so together, two W ′′1 -poor parts have at least n− 72
√
δn

vertices of W ′2 \ B. In either case, there are one or two W ′′1 -poor parts which together contain at least
2
3 n vertices of W ′2 \ B.

We change our choice of W ′′2 , if necessary, to include at least 2
3 n vertices from this W ′′1 -poor part

or parts; otherwise, the choice is still arbitrary. Meanwhile, we choose no vertices from these parts
from W ′′1 ; this rules out at most 40

√
δn vertices in addition to our previous restrictions. Completing the

choice of W ′′1 arbitrarily, we are left with a pair (W ′′1 ,W ′′2 ) that satisfies condition (1) of Lemma 21, but
possibly not condition (2).

From condition (1), we know that if vj ∈W ′′2 satisfies d(vj )≤ j+q , we have d(vj )≥ n−n∗∗,2−
√
δn≥

1
2 n −

√
δn. Additionally, we know that for any ui ∈ W ′′1 , d(ui ) ≥

2
3 n −

√
δn, since there are at least

2
3 n vertices of W ′′2 in a different part of G. Then d(ui )+ d(vj )≥

7
6 n− 2

√
δn ≥ n+ q + 1, satisfying the

hypothesis of Theorem 18.

Next, we consider the case where G has at most three parts and n1 >
5
4 n. By (9), N > 3n−1. Hence by

(8) we know that n1 = n2 and N − n1 = 2n− 1. The case of n1 ≥
5
3 n was handled in Section 6.2. Thus,

we may assume n1 <
5
3 n, so n3 = (2n− 1)− n2 >

1
3 n− 1.

Assume first that one of W ′1 \ (A∪C) or W ′2 \ B intersects each part of G in at least 20
√
δn vertices,

and the other has at least 30
√
δn vertices outside each part of G; we will consider departures from this

assumption later. This implies that for j = 1 or j = 2, we can choose 20
√
δn vertices from each part to

add to W ′′j , and match these by choosing 60
√
δn vertices to add to W ′′3− j with no more than 30

√
δn of

these from one part. (No Vi has more than 50
√
δn vertices chosen from it at this point.)

Then proceed by an iterative strategy. At each step, choose one vertex from W ′1 \ (A ∪C) not pre-
viously added to W ′′1 , and a vertex from W ′2 \ B not previously added to W ′′2 , so that these vertices are
in different parts of G. Then add them to W ′′1 and W ′′2 respectively. This step is always possible when
|W ′′1 ∪ A|, |W ′′2 ∪ B|< n: in this case, at least two parts still have unchosen vertices, since |V1|, |V2| ≥

5
4 n

but fewer than n vertices have been chosen. Additionally, choosing a pair of vertices, one from W ′1 and
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one from W ′2, is only impossible if W ′2 \ B has no more vertices, in which case W ′′2 has reached its desired
size.

Stop when |W ′′2 ∪ B| = n. When this happens, W ′′1 still needs
√
δn more vertices, and these can be

chosen arbitrarily.
This process guarantees that conditions (1) and (2) of Lemma 21 hold. Before we begin iterating, we

have chosen 60
√
δn vertices, but at most 50

√
δn from each part. After we begin iterating, we add at

most one vertex from each part at each step. Therefore in the end, ni,1+ ni,2 ≤ n− 10
√
δn for each i ,

satisfying condition (1). Moreover, for some j , we added at least 20
√
δn vertices from each part to W ′′j ,

ensuring that at most one value of ni, j can exceed
( 1

2 − 10
√
δ
)
n and satisfying condition (2).

Now we consider alternatives to our initial assumptions in this case. We cannot have W ′1 \ (A∪C) have
fewer than 30

√
δn vertices outside Vi for any i , since it contains at least 2n− 1− 4

√
δn− 2δn vertices,

and no Vi is larger than 5
3 n. But it is possible that one of V1 or V2 contains all but 30

√
δn vertices of

W ′2 \ B; without loss of generality, it is V1.
In this case, if |V1 ∩W ′2 \ B| > n, then let W ′′2 be any n-element subset of V1 ∩W ′2 \ B; otherwise,

let W ′′2 be any n-element subset of W ′2 \ B containing V1 ∩W ′2 \ B. The set V2 ∪ V3 has 2n− 1 vertices,
at most 30

√
δn+ |B| = 33

√
δn of which are in W ′2, so we can pick all n vertices of W ′′1 from V2 ∪ V3.

Choose at least 10
√
δn of them from V3 to satisfy condition (1) of Lemma 21 for i = 2. Condition (1)

also holds for i = 1 (since ni,1 = 0) and i = 3
(
since n3 <

3
4 n
)
; condition (2) holds for j = 2.

Finally, we also violate the assumptions at the beginning of this case when neither W ′1 \ (A∪C) nor
W ′2 \ B have at least 20

√
δn vertices from each part of G. It is impossible that both of them have at most

20
√
δn vertices from V3, so one of them has at most 20

√
δn vertices from one of V1 or V2.

If one of them (without loss of generality, V1) contains at most 20
√
δn vertices of W ′1 \ (A ∪C), it

must have at least n vertices of W ′2 \ B, since |V1| ≥
5
4 n, so choose all remaining vertices out of W ′′2 from

there. Outside V1, we have at least (2n− 1− 4
√
δn− 2δn)− 20

√
δn vertices of W ′1 \ (A ∪C), which

leaves at most 24
√
δn+ 2δn vertices we cannot choose for W ′′1 . Choose n vertices outside V1 for W ′′1 ,

including at least 10
√
δn vertices of V3. This satisfies condition (1) for i = 1 (since ni,1 = 0), i = 2 (since

ni,1 = 0 and ni,2 < n− 10
√
δn), and i = 3

(
since n3 <

3
4 n
)
; condition (2) holds for j = 2.

If one of V1 or V2 (without loss of generality, V1) contains at most 20
√
δn vertices of W ′2 \ B, choose

n− 30
√
δn vertices of W ′′1 from V1 (satisfying condition (1) for i = 1 and condition (2) by taking j = 1).

If V3 contains at least 30
√
δn vertices of W ′1 \ (A ∪ C), take the remaining vertices of W ′′1 from W3.

Otherwise, V3 contains at least 60
√
δn vertices of W ′2 \ B; choosing as many vertices as possible from

V1 ∪ V3 to add to W ′′2 , and the remaining vertices of W ′′1 arbitrarily, we end up choosing no more than
n − 10

√
δn vertices from V2. So condition (1) holds for i = 2 either because ni,1 = 0 or because

ni,1+ ni,2 ≤ n− 10
√
δn; condition (1) holds for i = 3 because n3 <

3
4 n.

7. Dealing with (λ, i, 2)-bad partitions when N − n1− n2 ≥ 3

A cherry is a path on three vertices. The center of a cherry is the vertex with degree 2.
Suppose N − n1− n2 ≥ 3. By (8)–(10), we have two cases:

(1) N > 3n− 1, s = 3, n2+ n3 = 2n− 1 and n1 = n2 (i.e., (8) holds), or

(2) N = 3n− 1, n1 ≤ n, s ≤ 5, and if s ≥ 4, then ns−1+ ns ≥ n+ 1 (i.e., (9) holds).
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7.1. The case when (8) holds. By (8), n1 = n2 > n, s = 3, and 0< n3 = 2n− 1− n2 < n.

Lemma 22. Let G = Kn1,n2,n3 with n1 = n2 and n2+ n3 = 2n− 1 be 2-edge-colored with a (λ, i, 2)-bad
partition. Then G has a monochromatic cycle of length 2n.

In this section, we prove Lemma 22, but postpone technical details of how the monochromatic cycles
are constructed in each of four cases; these details are given in Claims 23–26.

Proof of Lemma 22. Without loss of generality, let i = 2; we call color 1 red, color 2 blue, and use d1

(d2) to denote the red (blue) degree.
We begin by assuming that in the (λ, 2, 2)-bad partition (Vj ,U1,U2), j = 3. Later, in Section 7.1.5,

we discuss the modifications to the proof when j 6= 3.
Since (Vj ,U1,U2) is a 2-bad partition, we know the following conditions hold:

(i) |V3| ≥ (1− λ)n.

(ii) (1− λ)n ≤ |U1| ≤ (1+ λ)n.

(iii) (1− λ)n ≤ |U2| ≤ (1+ λ)n.

(iv) E(G2[V3,U1])≤ λn2.

(v) E(G1[V3,U2])≤ λn2.

If a vertex u1 in U1 has blue degree at least 1
2 n3 to V3 then we move u1 to U2. If a vertex u2 in U2 has

red degree at least 1
2 n3 to V3 then we move u2 to U1. Since there are at most 3λn vertices in U1 with

blue degree at least 1
2 n3 to V3 and there are at most 3λn vertices in U2 with red degree at least 1

2 n3 to V3,
we moved at most 3λn vertices out of U1 and U2 respectively and moved at most 3λn vertices into U1

and U2 respectively. Thus, we may assume |U1| ≥ |U2|, |U1| = n+ a1, |U2| = n+ a2, and a1 ≥ 0.
Note that (iv) and (v) change to:

(iv) |E(G2[V3,U1])| ≤ 4λn2.

(v) |E(G1[V3,U2])| ≤ 4λn2.

Let |V3| = n−a3, where a3 ≤ 10λn. Let B be the set of vertices in V3 with blue degree at least 0.9n to
U1 and |B| = b. Let R be the set of vertices in V3 with blue degree at most 0.05n to U1. By condition (iv),
we know

|B| ≤ 5λn and |R| ≥ n− a3− 80λn.

Let C be a maximum collection of vertex-disjoint red cherries with center in U2 and leaves in U1. If
there are at least m := a3+ b cherries in C , then we use them, together with the edges between U1 and
V3, to find a red cycle of length 2n; this is done in Claim 23.

Otherwise, we assume that |C | ≤ m− 1: there are at most m− 1 red cherries from U2 to U1. Every
vertex in U2− V (C) has red degree at most 2m− 1 to U1, since otherwise we have a larger collection of
red cherries.

When |U2| = n + a2 ≥ n − b, we can find a blue cycle using edges between U2 and V3, as well as
enough edges between U1 and B to make up for the size of U2 when |U2|< n. This is done in Claim 24.

Otherwise, we assume that |U2| ≤ n− b− 1; in other words,

a2 ≤−(b+ 1). (15)
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Our goal is now to use edges within U1 to find a monochromatic cycle. Without loss of generality, we
may assume that |U1 ∩ V1| ≥ |U1 ∩ V2|. We first argue that U1 ∩ V2 cannot be too small.

Earlier, we defined |U1| = n+a1, |U2| = n+a2, |V3| = n−a3. Since |V1|+|V3| = |V2|+|V3| = 2n−1
and U1 ∪U2 = V1 ∪ V2, we have

2n+ a1+ a2 = |V1| + |V2| = 4n− 2− 2|V3| = 2n+ 2a3− 2
or

a1+ a2 = 2a3− 2. (16)

Therefore
|U1 ∩ V2| ≥ |U1| − |V1| = |U1| −

1
2(|U1| + |U2|)= n+ a1− n− 1

2(a1+ a2)

=
1
2(a1− a2)= a3− a2− 1= (b+ a3)+ (−b− a2)− 1.

There are two possibilities for the vertices of U1 ∩ V2:

• There are at least m = b+ a3 vertices in U1 ∩ V2 which have red degree at least 0.1n to U1 ∩ V1. In
this case, we use Claim 25 to find a red cycle of length exactly 2n.

• There are at least m′ :=−b−a2 vertices in U1∩V2 which have blue degree at least |U1∩V1|−0.1n≥
0.4n to U1 ∩ V1. In this case, we use Claim 26 to find a blue cycle of length exactly 2n.

One of these must hold, since |U1 ∩ V2| ≥ m+m′− 1, while by (15), m′ =−b− a2 ≥ 1: therefore there
are either m vertices for Claim 25 or m′ vertices for Claim 26. In either case, we obtain a monochromatic
cycle of length exactly 2n, completing the proof. �

7.1.1. The case of many cherries: |C | ≥ m. Recall that C is a maximum collection of vertex-disjoint red
cherries with centers in U2 and leaves in U1; m = b+ a3, where b = |B| and a3 = n− |V3|.

Claim 23. If |C | ≥ m, then we have a red cycle of length exactly 2n.

Proof. We do the following steps. Let C ′ ⊆ C be a collection of m red cherries with centers in U2 and
leaves in U1. Let {u1, . . . , um} = V (C ′)∩U2 and {v1, . . . , v2m} = V (C ′)∩U1 such that each v2i−1uiv2i

is a cherry with center ui , where 1≤ i ≤ m.
To find a cycle of length 2n in G1 that contains the edges of C ′, we will apply Theorem 18 to an

appropriately chosen bipartite graph.
First, create an auxiliary graph G ′1 by starting with G1 and adding every edge between {u1, . . . , um}

and U1. This will help us to satisfy the degree conditions of Theorem 18; however, these artificial edges
will never be used by a cycle containing all the edges of C ′, since each of {u1, . . . , um} already has
degree 2 in C ′.

Second, let X = (V3− B)∪ {u1, u2, . . . , um} (a set of n vertices total) and let Y ⊆ U1 be any set of
size n such that {v1, . . . , v2m} ⊆ Y. We check that the hypotheses of Theorem 18 apply to G ′1[X, Y ].

Order vertices in X and Y separately by their degree from smallest to largest. Since vertices in Y
have red degree at least 1

2 n3 − b ≥ 0.4n to X and at most 100λn � 0.001n vertices in Y have blue
degree at least 0.04n to X , the smallest index k such that d1(yk)≤ k+ q satisfies d1(yk)≥ 0.95n. Since
vertices in X have blue degree at most 0.9n to U1, they have red degree at least n− 0.9n = 0.1n� 0.09n
to Y. The smallest index j such that d1(x j ) ≤ j + q satisfies d1(x j ) ≥ 0.09n. By Theorem 18 and
0.09n+ 0.95n� n+ q + 1, we can find a Hamiltonian cycle in G ′1[X, Y ] of length 2n containing the
edges of C ′, which is a cycle of length 2n in G1. �
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7.1.2. The case of large U2: |U2| ≥ n− b. Recall that |U2| = n+ a2, B is the set of vertices in V3 with
blue degree at least 0.9n to U1, and b = |B|.

Claim 24. If b ≥ −a2 (in other words, if |U2| = n + a2 ≥ n − b), then we have a blue cycle of size
exactly 2n.

Proof. Let c := |C |; let V (C) ∩U2 = {u1, . . . , uc} and V (C) ∩U1 = {v1, v2, . . . , v2c}. Let B2 be the
collection of vertices in V3− B with red degree at most 0.1n to U2. By condition (v),

q := |B2| ≥ n− a3− 40λn− b.

Since 2n1 = |U1| + |U2| = 2n+ a1+ a2, we know

|U2 ∩ V2| = n1− |U1 ∩ V2| ≥ n1−
1
2(n+ a1)= n+ 1

2(a1+ a2)−
1
2 n− 1

2a1 =
1
2(n+ a2)

and thus
|U2 ∩ V1| ≤ n+ a2−

1
2(n+ a2)=

1
2(n+ a2). (17)

Step 1: We first find a path to include 0.8n vertices in V3 and 0.8n vertices in U2 (all of U2 ∩ V1 and
V (C)) by Theorem 17.

Details: Since |B2| ≥ n− a3− 40λn− b, we take a set X ⊆ B2 such that |X | = 0.8n. By (17), we can
take a set Y ⊆U2 such that U2 ∩ V1 ⊆ Y, V (C)∩U2 ⊂ Y, and Y = 0.8n.

Now we consider G2[X, Y ] and we order vertices in X and Y separately by their degree from smallest
to largest. Since vertices in Y have blue degree at least 0.8n− 1

2 n3 > 0.2n to X , the smallest index k such
that d2(yk)≤ k+ 1 satisfies d2(yk)≥ 0.2n. Since vertices in X have red degree at most 0.1n to U2, they
have blue degree at least 0.8n− 0.1n = 0.7n to Y. The smallest index j such that d2(x j )≤ j + 1 satisfies
d2(x j )≥ 0.7n. By Theorem 17 and 0.7n+ 0.2n > 0.8n+ 2, we can find a Hamiltonian red path P ′1 from
x ∈ X to some vertex y ∈ Y − V1− V (C) in G2[X, Y ] of length 1.6n− 1.

Since x ∈ X ⊆ B2,
d2(x,U2− Y )≥ n+ a2− 0.8n− 0.1n > 0.05n.

We extend the path P ′1 to P1 of length 1.6n by adding a blue edge xy′ such that y′ ∈U2− Y.

Step 2: Use min{0,−a2} vertices in B to obtain a blue path. (We can skip this step if a2 ≥ 0.)

Details: Assume a2 < 0; since b ≥−a2, let Z := {z1, . . . , z|a2|} ⊆ B.
Since

|U1 ∩ V1| ≥
1
2(n+ a1)≥ |U1 ∩ V2|,

each vertex in B has blue degree at least 0.9n− |U1 ∩ V2| to U1 ∩ V1. Therefore,

0.9n− |U1 ∩ V2| ≥ 0.9n− (n+ a1− |U1 ∩ V1|)= |U1 ∩ V1| − a1− 0.1n ≥ 3
4 |U1 ∩ V1|.

We can find for each pair (zi , zi+1) a common neighbor ri ∈U1 ∩ V1− V (C), where 1≤ i ≤ |a2| − 1,
a blue neighbor r0 of z1, and a blue neighbor r|a2| of z|a2| such that r0, . . . , r|a2| are all distinct.

We obtain a blue path
P2 = r0z1r1 · · · ziri · · · z|a2|r|a2|

of length 2|a2|.
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Since y′ has at most one red neighbor to U1− V (C), at least one of {r0, r|a2|} is a blue neighbor of y′.
We may assume r|a2|y

′ is blue.

Step 3: Include the rest of vertices in U2 to U1.

Details: We proceed differently depending on whether a2 < 0 or a2 ≥ 0.

• If a2 < 0 then we do the following. Let K := (U2 − Y − {y′})∪ {y} = {y, f1, . . . , fk−1}. Note that
k = |K | = n + a2 − 0.8n = 0.2n + a2 and K ⊆ U2 ∩ V2 − V (C). Since each vertex in K has at most
one red neighbor to U1− V2− V (C)− {r0, r1, . . . , r|a2|}, we find for (y, f1) a blue common neighbor
h0 ∈U1− V2− V (C)−{r0, r1, . . . , r|a2|} and each pair ( fi , fi+1) a distinct blue common neighbor, hi ,
in U1− V2− V (C)−{r0, r1, . . . , r|a2|}, where 1≤ i ≤ k− 2. We obtain a blue path

P3 = yh0 f1 · · · fi hi fi+1 · · · fk−1

of length 2k− 2= 0.4n+ 2a2− 2.
We may assume fk−1r0 is blue since fk−1 has only one red neighbor to U1 ∩ V1− V (C) and there are

many choices when we choose r0 to connect with z1.
Finally, we connect P2 and P1 by adding the edge r|a2|y

′, glue the paths P1 and P3 at y, then add the
edge fk−1r0 to complete a blue cycle of length exactly

2|a2| + 1+ 1.6n+ 0.4n+ 2a2− 2+ 1= 2n.

• If a2 ≥ 0 then in the previous argument we take K = {y, y′, f1, . . . , fk−2} of size 0.2n+ 1 and find
common neighbors h0 for (y, f1), hi for ( fi , fi+1), where 1≤ i ≤ k− 3, and hk−2 for ( fk−2, y′).

In either case, we obtain a path

P3 = yh0 f1 · · · fi hi fi+1 · · · fk−2hk−2 y′

of length 2k − 2 = 0.4n. We glue P1 and P3 at y and y′ to obtain a blue cycle of length exactly
1.6n+ 0.4n = 2n. �

7.1.3. Handling many vertices in U1 ∩ V2 incident to red edges. We will find a red cycle. Note that the
size of U1 ∩ V2 is at least n+ a1− n1.

Claim 25. If there are at least m = b+ a3 vertices in U1 ∩ V2 of red degree at least 0.1n to U1 ∩ V1, then
we have a red cycle of length exactly 2n.

Proof. Let B ′ be the collection of vertices in U1 with blue degree at least 0.05n to V3. By (iv), we have

|B ′| ≤ 80λn.

Step 1: We first find a collection of red cherries C3 with center in U1 ∩ V2 and leaves in U1 ∩ V1− B ′ of
size b+ a3 =: m.

Details: Since there are at least m vertices in U1 ∩ V2 of red degree at least 0.1n to U1 ∩ V1 and
0.1n − 80λn � 2m, we can find a collection of red cherries C3 with centers in U1 ∩ V2 and leaves
in U1 ∩ V1− B ′ of size m. Let V (C3)∩ V2 = {u1, . . . , um} and V (C3)∩ V1 = {v1, . . . , v2m}.

Recall that R ⊆ V3 is the collection of vertices in V3 with blue degree at most 0.05n to U1.
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Step 2: Then by Hall’s theorem we find a matching M for V (C3)∩ V1 to R and then find a common
neighbor back to connect those vertices.

Details: Since {v2, . . . , v2m}∩ B ′ =∅, each of them has red degree at least n−a3−0.05n−80λn > 0.9n
to R. Thus, we can find a matching M for {v2, . . . , v2m} such that V (M)∩V3 = {w2, . . . , w2m} and each
viwi is a matching edge, where 2≤ i ≤ 2m.

Since V (M)∩ V3 ⊆ R, we can find for each pair (w2i , w2i+1) a common red neighbor gi ∈U1, where
1≤ i ≤ m− 1.

Therefore, we obtained a path

P1 = v1u1v2w2g1w3v3u2v4w4 · · · v2m−1umv2mw2m

of length 6m− 3.

Step 3: We use Theorem 17 to get a path saturating all vertices left in V3− B− V (M).

Details: Let X = V3− B−{w2, . . . , w2m−1} and we know

|X | = n− a3− b− (2m− 2)= n− 3m+ 2.

Choose Y ⊆U1−{u1, . . . , um}− {v2, . . . , v2m}− {g1, . . . , gm−1} such that v1 ∈ Y. By (16),

a1 =−a2+ 2a3− 2≥ b+ 1+ a3+ a3− 2= m+ a3− 1≥ m (18)

and thus
n+ a1−m− (2m− 1)− (m− 1)≥ n− 3m+ 2.

Hence we can require |Y | = n− 3m+ 2.
Now we consider G1[X, Y ] and we order vertices in X and Y separately by their degree from smallest

to largest. Since vertices in U1 have red degree at least 1
2 n3 to V3, they have red degree at least 1

2 n3−

b− (2m− 2) > 0.4n to X .
By condition (iv), there are at most 80λn vertices in U1 with blue degree at least 0.05n to V3. Thus, at

least |Y |−80λn vertices in Y have red degree at least |X |−0.05n> 0.94n to X , the smallest index k such
that d1(yk, X)≤ k+ 1 satisfies d1(yk, X)≥ 0.94n− 1. Since vertices in X have blue degree at most 0.9n
to U1, they have red degree at least n+ a1−m− (2m− 1)− (m− 1)− 0.9n > 0.09n to Y. The smallest
index j such that d1(x j , Y )≤ j+1 satisfies d1(x j , Y )≥ 0.09n. By Theorem 17 and 0.09n+0.94n� n+2,
we can find a Hamiltonian red path P2 from v1 to w2m in G1[X, Y ] of length

2(n− 3m+ 2)− 1= 2n− 6m+ 3.

We glue P1 and P2 at v1 and w2m to obtain a red cycle of size exactly

6m− 3+ 2n− 6m+ 3= 2n. �

7.1.4. Handling many vertices in U1∩V2 incident to blue edges. In this case, there are many disjoint blue
cherries inside U1, and we will find a blue cycle. Recall that C is a collection of at most m− 1 cherries
with centers in U2 and leaves in U1, which is defined three paragraphs ahead of (15).

Claim 26. If there are at least −a2−b vertices in U1∩V2 of blue degree at least |U1∩V1|−0.1n ≥ 0.4n
to U1 ∩ V1, then we find a blue cycle of length exactly 2n.
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Proof. Step 1: We find m′ =−a2−b blue cherries with centers in U1∩V2 and leaves in U1∩V1. Possibly
avoiding bad vertices. Then find common neighbors in U2 ∩ V2 to connect those cherries.

Details: Since vertices in U2 ∩ V2 − V (C) have red degree at most 1 to U1 ∩ V1 − V (C), there are at
most |U2 ∩ V2| ≤ λn2 red edges between U2 ∩ V2− V (C) and U1 ∩ V1− V (C). Therefore, there are at
most 20λn vertices in U1 ∩ V1 − V (C) with red degree at least 0.05n to U2 ∩ V2 − V (C) and at least
|U1∩V1|−|V (C)∩U1|−20λn vertices in U1∩V1−V (C) with blue degree at least |U2∩V2|−|V (C)|−
0.05n > 3

4 |U2 ∩ V2| to U2 ∩ V2− V (C); we call those vertices B3.
Since there are m′ vertices in U1∩V2 of blue degree at least |U1∩V1|−0.1n−|V (C)|−20λn > 0.3n

to B3, we find m′ blue cherries, C4, with center in U1∩V2 and leaves in B3. Let V (C4)∩V2={u1, . . . , um′}

and V (C4)∩ V1 = {v1, . . . , v2m′}.
We can find for each pair (v2i , v2i+1) a common blue neighbor, wi , in U2∩V2−V (C), where 1≤ i ≤

m′−1. We also find for v1 a blue neighbor w0 and v2m′ a blue neighbor wm′ distinct from {w1, . . . , wm′−1}

and V (C).
We obtain a blue path

P1 = w0v1u1v2w1 · · · v2m′−1um′v2m′wm′

of length 4m′.

Step 2: We find for vertices in B common neighbors in U1 ∩ V1, avoiding vertices already used.

Details: Since
|U1 ∩ V1| ≥

1
2(n+ a1)≥ |U1 ∩ V2|, (19)

each vertex in B has blue degree at least 0.9n − 2m′ − |U1 ∩ V2| − |V (C) ∩U1| to U1 ∩ V1 − V (C).
Therefore,

0.9n− 2m′− |U1 ∩ V2| − |V (C)∩U1| ≥ 0.9n− 2m′− (n+ a1− |U1 ∩ V1|)− 2(m− 1)

= |U1 ∩ V1| − a1− 2m′− 0.1n− 2m+ 2≥ 3
4 |U1 ∩ V1|.

Let B = {z1, . . . , zb}. We can find for each pair (zi , zi+1) a common neighbor ri , where 1 ≤ i ≤
b− 1, a blue neighbor r0 of z1, and a blue neighbor rb of zb such that r0, . . . , rb are all distinct and in
U1 ∩ V1− V (C).

We obtain a blue path
P2 = r0z1r1 · · · ziri · · · zbrb

of length 2b.

Step 3: Take 0.9n vertices in V3 and 0.9n vertices in U2 including U2 ∩ V1 and V (C). Use Theorem 17
to find a path.

Details: Recall that B2 is the collection of vertices in V3 with red degree at most 0.1n to U2 and |B2| ≥

n− a3− 40λn− b. Since |B2| ≥ n− a3− 40λn− b, we take a set X ⊆ B2 such that |X | = 0.9n. By (19),
|U2∩V1| ≤ 0.6n and we can take a set Y ⊆U2−{w0, w1, . . . , wm′−1} such that U2∩V1 ⊆ Y, V (C)⊆ Y,
wm′ ∈ Y, and Y = 0.9n.

First we find a blue edge v′u′ with v′ ∈ X and u′ ∈ U2 − Y. Now we consider G2[X, Y ] and we
order vertices in X and Y separately by their degree from smallest to largest. Since vertices in Y have
blue degree at least 0.9n− 1

2 n3 > 0.3n to X , the smallest index k such that d2(yk, X) ≤ k+ 1 satisfies
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d2(yk, X)≥ 0.3n. Since vertices in X have red degree at most 0.1n to U2, they have blue degree at least
0.9n − 0.1n = 0.8n to Y. The smallest index j such that d2(x j , Y ) ≤ j + 1 satisfies d2(x j , Y ) ≥ 0.8n.
By Theorem 17 and 0.8n + 0.3n > 0.9n + 2, we can find a Hamiltonian blue path P ′3 from wm′ to v′

in G2[X, Y ] of length 1.8n− 1. We then extend the path P ′3 to P3 by adding the edge v′u′. Thus, the
path P3 has length 1.8n.

Step 4: Finally, the rest of the vertices in U2∩V2 have large blue degree to U1∩V1, and we find common
neighbors to include them.

Details: Let K := (U2− Y −{w0, w1, . . . , wm′−1})= {u′, f1, . . . , fk−1}. Note that k = |K | = n+ a2−

0.9n −m′ = 0.1n + a2 −m′ and K ⊆ U2 ∩ V2 − V (C). Since each vertex in K has at most one red
neighbor to U1 ∩ V1− V (C)−{v1, . . . , v2m′}− {r0, . . . , rb}, we find for (u′, f1) a distinct blue common
neighbor h0, and for each pair ( fi , fi+1) a distinct blue common neighbor, hi , in U1 ∩ V1 − V (C)−
{v1, . . . , v2m′}− {r0, . . . , rb}, where 1≤ i ≤ k− 2. We may assume that r0 fk−1 is blue (since fk−1 has
at most one red neighbor to U1 ∩ V1 and z1 has very large blue degree to U1 ∩ V1, if r0 fk−1 is not blue
then we choose r0 such that r0 fk−1 is blue).

We obtain a blue path
P4 = u′h0 f1 · · · fi hi fi+1 · · · hk−2 fk−1

of size 2k− 2= 0.2n+ 2a2− 2m′− 2.
Finally, we add the edge rbw0 to connect P2 and P1, glue P1 and P3 at wm′ , glue P3 and P4 at u′, and

add the edge r0 fk−1 to complete the cycle of length

1+ 4m′+ 2b+ 1.8n+ 0.2n+ 2a2− 2m′+ 1= 2n. �

7.1.5. Changes of the proof when j 6= 3. When j 6= 3, essentially the same proof works, with minor
modifications.

Without loss of generality, we assume j = 1. We use the same setup as in the case when j = 3 but
replace every place of V3 by V1 and n3 by n1.

Case 1: n1 ≥ n+ b.
Since n1 ≥ n+ b and |U1| ≥ n, we take a set of vertices X ⊆ V1− B of size n and a set of vertices

Y ⊆U1 of size n.
Now we consider G1[X, Y ] and we order vertices in X and Y separately by their degree from smallest

to largest. Since vertices in Y have red degree at least 0.5n1 to X and there are at most 80λn vertices with
blue degree at least 0.05n to V1, the smallest index k such that d1(yk, X)≤ k+ 1 satisfies d1(yk, X)≥
0.95n. Since vertices in X have blue degree at most 0.9n to U1, they have red degree at least 0.1n
to Y. The smallest index j such that d1(x j , Y ) ≤ j + 1 satisfies d1(x j , Y ) ≥ 0.1n. By Theorem 18 and
0.1n+ 0.95n� n+ 1, there is a Hamiltonian cycle in G1[X, Y ] of length 2n.

Case 2: n+ 1≤ n1 ≤ n+ b− 1.
We still assume n1 = n− a3 with a3 < 0. It is included in Case 1 by replacing n3 with n1, V3 with V1,

V1 with V2, and V2 with V3. Note that in this case we have

n+ a1+ n+ a2 = 2n− 1
and thus

a1+ a2 =−1. (20)
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Equation (17) changes to

|U2 ∩ V3| = n3− |U1 ∩ V3| ≥ 2n− 1− n+ a3−
1
2(n+ a1)=

1
2 n− 1+ a3−

1
2a1

and thus

|U2 ∩ V2| ≤ n+ a2−
( 1

2 n− 1+ a3−
1
2a1
)
=

1
2 n+ 1+ a2− a3+

1
2a1 =

1
2 n− a3−

1
2a1.

Moreover, by a3 < 0, the inequality a1 ≥ m in (18) still holds under the assumption a2 ≤−b− 1 since

a1 =−1− a2 ≥ b ≥ b+ a3 = m.

When choosing between Claims 25 and 26, we still have by (20)

|U1| − |V2| ≥ n+ a1− n+ a3 = a1+ a3 =−1− a2+ a3 = (b+ a3)+ (−b− a2)− 1

and therefore one of the two claims can still be applied.

7.2. The case when (9) holds.

7.2.1. Statement and setup of the main lemma. In this case, we have

n1+ n2+ · · ·+ ns = 3n− 1 (21)
and

n2+ · · ·+ ns ≥ 2n− 1. (22)

By (11), s ≤ 5. Our main lemma in this subsection is:

Lemma 27. Let G = Kn1,n2,...,ns satisfying (21) and (22) be 2-edge-colored with a (λ, i, 2)-bad partition.
Then G has a monochromatic cycle of length 2n.

Proof. Without loss of generality, let i = 2. By the definition of a (λ, i, 2)-bad partition, there is a j ∈ [s]
such that:

(i) n ≥ |Vj | ≥ (1− λ)n.

(ii) (1− λ)n ≤ |U1| ≤ (1+ λ)n.

(iii) (1− λ)n ≤ |U2| ≤ (1+ λ)n.

(iv) E(G2[Vj ,U1])≤ λn2.

(v) E(G1[Vj ,U2])≤ λn2.

Our plan is as follows. In this and the next three subsections we handle the case s = 4 and renumber
the parts so that j = 1 and n2 ≥ n3 ≥ n4. Later, in Section 7.2.5, we return to the original numbering of
the parts (n1 ≥ · · · ≥ ns) and describe modifications to the proof for s 6= 4.

Since (9) holds, we have ni ≤ n for all i ; we also know that n2 ≥ n3 ≥ n4, n1 = |Vj | ≥ (1− λ)n, and

|U1| + |U2| = n2+ n3+ n4 = 3n− 1− n1 ≤ 2n+ λn− 1,

so n2 ≥
1
3(n2+ n3+ n4)≥

2
3 n.

We move vertices as we did in the previous section so that for each u ∈U1 we have d1(u, V1)≥
1
2 n1 and

for each v ∈U2 we have d2(v, V1)≥
1
2 n1. Note that (iv) and (v) change to (iv) |E(G2[V1,U1])| ≤ 4λn2

and (v) |E(G1[V1,U2])| ≤ 4λn2.
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Let |U1| = n+a1, |U2| = n+a2, and |V1| = n−a3. Let B be the set of vertices in V1 with blue degree
at least 0.9n to U1, and let b := |B|. By condition (iv), we know b ≤ 5λn.

Let C be a maximum collection of vertex-disjoint red cherries with center in U2 and leaves in U1. If
there are at least m := a3+b cherries in C , then we use them, together with the edges between U1 and V1,
to find a red cycle of length 2n. This is done in exactly the same way as in Claim 23, except with V1

playing the role of V3.
Otherwise, we assume that c := |C | ≤ m− 1, which means every vertex in U2− V (C) has red degree

at most 2m− 1 to U1.
When |U2| = n+ a2 ≥ n− b, we can find a blue cycle in almost the same way as in Claim 24; the

updated proof is given in Claim 28.
Otherwise, we may assume that |U2| ≤ n− b− 1, in which case (15) holds.
As before, to proceed, we want to use edges within U1. Let k be such that |U1 ∩ Vk | is maximized.

This intersection is still at most |Vk | ≤ n, while |U1| = n+ a1, so |U1− Vk | ≥ a1.
Since

(n+ a1)+ (n+ a2)= |U1| + |U2| = 3n− 1− |V1| = 2n+ a3− 1,

we have a1+ a2 = a3− 1, and therefore

|U1− Vk | ≥ a3− a2− 1= (b+ a3)+ (−a2− b)− 1.

There are two possibilities:

• There are at least m = b+ a3 vertices in U1− Vk of red degree at least 0.1n to U1 ∩ Vk . In this case,
we will find a red cycle of length exactly 2n by Claim 29.

• There are at least m′ =−a2− b vertices in U1− Vk of blue degree at least |U1 ∩ Vk | − 0.1n ≥ 0.2n
to U1 ∩ Vk . In this case, we find a blue cycle of length exactly 2n by Claim 30.

One of these must hold, since |U1− Vk | ≥ m+m′− 1, while by (15), m′ ≥ 1; therefore there are either
m vertices for Claim 29 or m′ vertices for Claim 30. In either case, we obtain a monochromatic cycle of
length exactly 2n, completing the proof. �

7.2.2. The case of large U2: |U2| ≥ n− b.

Claim 28. If |U2| = n+ a2 ≥ n− b, then we have a blue cycle of size exactly 2n.

Proof. Since |U2| = n+ a2 ≥ n− 4λn, we know that the largest among U2 ∩ V2, U2 ∩ V3, U2 ∩ V4 has
size at least 0.33n. We assume |U2 ∩ Vp| is the largest and

|U2 ∩ Vp| ≥ 0.33n. (23)
By (23) and |Vp| ≤ n, we have

|U1 ∩ Vp| ≤ 0.67n

and there is a q ∈ {2, 3, 4}− {p} such that

|U1 ∩ Vq | ≥ 0.16n. (24)

Step 1: We first find a path to include say 0.8n vertices in V1 and 0.8n vertices in U2 (all of (V −Vp)∩U2

and V (C)) by Theorem 17.
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Details: The details are almost the same as in Step 2 of Claim 24 except every place of n3 is replaced
by n1, every place of V3 is replaced by V1, V1 is replaced by (V − Vp).

• If a2 ≥ 0, then we do not need Step 2 and go to Step 3 directly.

Step 2: Use |a2| vertices in B to obtain a blue path.

Details: Since b ≥ |a2|, let Z := {z1, . . . , z|a2|} ⊆ B.
By (24) and each vertex v in B having blue degree at least 0.9n� 1

2 |U1| to U1, we can find for each
pair (zi , zi+1) a blue common neighbor ri ∈ U1− V (C), where 1 ≤ i ≤ |a2| − 1, a blue neighbor r0 of
z1 such that r0 ∈ Vq ∩U1− V (C), and a blue neighbor r|a2| of z|a2| such that r|a2| ∈ Vq ∩U1− V (C) and
r0, . . . , r|a2| are all distinct.

Since y′ has at most one red neighbor to U1 − V (C), we choose r|a2| to be in U1 ∩ Vq − V (C) and
such that r|a2|y

′ is blue.
We obtain a blue path

P2 = r0z1r1 · · · ziri · · · z|a2|r|a2|

of length 2|a2|.

Step 3: Include the rest of vertices in U2 to U1 by Theorem 17.

Details: The details are almost the same as in Step 3 of Claim 24 except every place of V2 is replaced
by Vp. �

7.2.3. Handling many vertices in U1− Vk incident to red edges.

Claim 29. If there are at least m = b+a3 vertices in (V −Vk)∩U1 of red degree at least 0.1n to U1∩Vk ,
then we have a red cycle of length exactly 2n.

Proof. Let B ′ be the collection of vertices in U1 with blue degree at least 0.05n to V1. Since there are at
most 4λn2 blue edges between U1 and V1, we have

|B ′| ≤ 80λn.

Step 1: We first find a collection of red cherries C3 with center in U1∩(V −Vk) and leaves in U1∩Vk−B ′

of size m.

Details: The details are almost the same as in Step 1 of Claim 25 except we replace everywhere V2 by
V − Vk , V1 by Vk , and V3 by V1.

Step 2: By Hall’s theorem we find a matching M for V (C3)∩ Vk to R and then find a common neighbor
back to connect those vertices.

Details: The details are almost the same as in Step 2 of Claim 25 except we replace everywhere V3 by
V1 and n3 by n1.

Step 3: Use Theorem 17 to get a path saturating all vertices left in V1− B− V (M).

Details: Let X = V1− B − {w2, . . . , w2m−1} and we know |X | = n− a3− b− (2m− 2)= n− 3m+ 2.
We have a1 = a3− a2− 1= m− a2− b− 1≥ m, and therefore

n+ a1−m− (2m− 1)− (m− 1)= n+ a1− 4m+ 2≥ n− 3m+ 2.

We can take Y ⊆U1−{u1, . . . , um}−{v2, . . . , v2m}−{g1, . . . , gm−1} such that v1∈Y and |Y |=n−3m+2.
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The rest of details are almost the same as in Step 3 of Claim 25 except we replace everywhere V3

by V1 and n3 by n1. �

7.2.4. Handling many vertices in U1 − Vk incident to blue edges. In the case when many vertices in
U1− Vk are incident to blue edges, there are many disjoint blue cherries inside U1, and we find a blue
cycle.

Claim 30. If there are at least m′ =−a2− b vertices in U1− Vk of blue degree at least |U1 ∩ Vk | − 0.1n
to U1 ∩ Vk , then we have a blue cycle of length exactly 2n.

Proof. Since U1 ∩ Vk is the largest among U1 ∩ V2, V3 ∩U1, and V4 ∩U1, we know

|U1 ∩ Vk | ≥ 0.33n, |U2 ∩ Vk | ≤ 0.67n, and |U2− Vk | ≥ 0.32n. (25)

Step 1: We find m′ blue cherries from U1 ∩ (V − Vk) to U1 ∩ Vk , possibly avoiding bad vertices. Then
we find common neighbors in U2 to connect those cherries.

Details: The details are almost the same as in Step 1 of Claim 26 until the following sentence except that
we replace everywhere V2 by V − Vk and V1 by Vk .

For all pairs (v2i , v2i+1) we can find distinct common blue neighbors, wi , in (V − Vk)∩U2− V (C),
where 1≤ i ≤ m′− 1.

By (25), there is an ` ∈ {2, 3, 4}− {k} such that

|V` ∩U2| ≥ 0.16n. (26)

We also find for v1 a blue neighbor w0 ∈ V`∩U2 and v2m′ a blue neighbor wm′ ∈ V`∩U2 distinct from
{w1, . . . , wm′−1} and V (C).

We obtain a blue path
P1 = w0v1u1v2w1 · · · v2m′−1um′v2m′wm′

of length 4m′.

Step 2: We find for vertices in B common neighbors in U1 ∩ Vk , avoiding vertices already used.

Details: By (25) and each vertex v in B having red degree at most 0.1n+ a1 to U1, v has at least

|U1 ∩ Vk | − 2m′− 0.1n− a1 > 0.6|U1 ∩ Vk − V (C)| (27)

edges to U1∩Vk−V (C). We can find for each pair (zi , zi+1) a common neighbor ri , where 1≤ i ≤ b−1,
a blue neighbor r0 of z1, and a blue neighbor rb of zb such that {r0, . . . , rb} ⊆ U1 ∩ Vk − V (C) are all
distinct and w0rb is blue.

We obtain a blue path
P2 = r0z1r1 · · · ziri · · · zbrb

of length 2b.

Step 3: Take 0.9n vertices in V1 and 0.9n vertices in U2 including (V − V`) ∩ U2 and V (C). Use
Theorem 17 to find a path.

Details: The details are almost the same as in Step 3 of Claim 26 except we replace everywhere V1 by
V − V`, V3 by V1, and n3 by n1.
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Step 4: Finally, the rest of vertices in U2 ∩ V` have large blue degree to (V − V`) ∩U1, and we find
common neighbors to include them.

Details: The details are almost the same as in Step 4 of Claim 26 except we replace everywhere V1 by
V − V`, V2 by V`, V3 by V1, and n3 by n1. �

7.2.5. Changes in the proof when s 6= 4. When s 6= 4, essentially the proof for s = 4 works, with minor
modifications.

Case 1: s = 3. Then n2+ n3 ≥ 2n− 1 implies n1 ≥ n2 ≥ n and therefore

n1 = n2 = n and n3 = n− 1.

This case is addressed in Lemma 22.

Case 2: s = 5. If j = 2, then since n4+ n5 > n, n1 ≥ n2 ≥ (1− λ)n, and n3 >
1
2 n, we have

N = n1+ n2+ n3+ n4+ n5 ≥ 2(1− λ)n+ 3
2 n > 3n,

which is not the case. By a similar argument, j /∈ {3, 4, 5}. Thus, we may assume j = 1.
The argument is almost the same as for s = 4. We only mention differences.
In our case, n4+ n5 > n implies

n1 ≥ n2 ≥ n3 ≥ n4 >
1
2 n; (28)

thus
n2+ n3 = 3n− 1− n1− n4− n5 < n+ λn− 1. (29)

By (28) and (29), we have

1
2 n− λn ≤ n5 ≤ n4 ≤ n3 ≤ n2 ≤

1
2 n+ λn. (30)

In Section 7.2.2, in (23) we now can only guarantee |U2 ∩ Vp| ≥ 0.24n instead of 0.33n. By (30), we
can find a q ∈ {2, 3, 4, 5}− {p} such that |U1 ∩ Vq | ≥ 0.16n.

In Section 7.2.4, in (25) we can now only guarantee the largest |U1 ∩ Vk | ≥ 0.24n. Equation (26) still
holds with ` ∈ {2, 3, 4, 5}− {k}. Everything else is the same.

8. Completion of the proof of Theorem 5

In the previous three sections, we proved Theorem 5 in the cases when N − n1− n2 ≥ 3. By (10), in
the case N − n1− n2 ≤ 2, it is sufficient to show that for every 2-edge-coloring of K2n,2n−1, there is a
monochromatic cycle of length exactly 2n. Thus, the next lemma completes the proof of Theorem 5.

Lemma 31. If n is sufficiently large, then for every 2-edge-coloring of K2n,2n−1, there is a monochro-
matic cycle of length exactly 2n.

Proof. Let G= K2n,2n−1. From Section 5, we know that if the reduced graph Gr has a connected matching
of size at least (1+ γ )n, then we can find a monochromatic cycle of length exactly 2n. Suppose Gr has
no connected matching of size (1+ γ )n and thus, by Section 5 again, G has a (λ, i, j)-bad partition for
some i ∈ [2] and j ∈ [2].

Without loss of generality, we assume i = 1 and discuss separately cases j = 1 and j = 2.
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Case 1: G has a (λ, 1, 1)-bad partition. By the setup in Section 6, we have a partition W1 ∪W2 of V (G)
such that

(i) (1− λ)n ≤ |W2| ≤ (1+ λ)n1 = (1+ λ) · 2n,

(ii) |E(G1[W1,W2])| ≤ λn2,

(iii) |E(G2[W1])| ≤ λn2.

We know |W1| = N − |W2| = 4n− 1− |W2|, so by condition (i),

(2− 3λ)n ≤ |W1| ≤ (3+ λ)n. (31)

For simplicity, let A := W1 ∩ V1, B := W2 ∩ V1, C := W1 ∩ V2, and D := W2 ∩ V2. Let A∗ be the
collection of vertices in A with less than 0.6|C | red edges to C , B∗ be the collection of vertices in B
with at least 0.6|C | red edges to C , C∗ be the collection of vertices in C with less than 0.6|A| red edges
to A, and D∗ be the collection of vertices in D with at least 0.6|A| red edges to A. Let A= (A− A∗)∪B∗,
B = (B− B∗)∪ A∗, C = (C −C∗)∪ D∗, and D = (D− D∗)∪C∗. By conditions (ii) and (iii),

|A∗| ≤
5

2|C |
λn2, |B∗| ≤

5
3|C |

λn2, |C∗| ≤
5

2|A|
λn2, and |D∗| ≤

5
3|A|

λn2.

Let λ′ = 10λ, W1 = A∪C , and W2 = B ∪ D.

Remark 32. Conditions (i)–(iii) still hold with λ′ replacing λ and every vertex in A has red degree at
least 0.59|C | to C , every vertex in B has blue degree at least 0.39|C | to C , every vertex in C has red
degree at least 0.59|A| to A, and every vertex in D has red degree at least 0.39|A| to A.

Case 1.1: |A| ≥ n and |C | ≥ n. Let X ⊆ A and Y ⊆ C such that |X | = |Y | = n. For each x ∈ X and
y ∈ Y, by |A|, |C | ≤ 2n and Remark 32,

d1(x, Y )≥ |Y | − 0.41|C | ≥ n− 0.82n = 0.18n and similarly d1(y, X)≥ |X | − 0.41|A| ≥ 0.18n.

By condition (iii), we know that the number of vertices in X with at least 0.95n edges to Y in G1 is at
least n− 20λ′n and the number of vertices in Y with at least 0.95n edges to X in G1 is at least n− 20λ′n.
Therefore, if we order vertices in X by their degrees in nondecreasing order, say the ordering follows from
d(x1)≤ · · · ≤ d(xn), then the smallest index i such that d(xi )≤ i +1 has the property that d(xi )≥ 0.95n.
Similarly, if we order vertices in Y by their degree in nondecreasing order, say the ordering follows from
d(y1)≤ · · · ≤ d(yn), then the smallest index j such that d(yj )≤ j+1 has the property that d(yj )≥ 0.95n.
Since d(xi )+ d(yj )� n+ 2, by Theorem 17, we know G1[X, Y ] is Hamiltonian biconnected and we
can find a cycle in G1 of length exactly 2n.

Remark 33. The same proof shows that there is a red cycle of length exactly min{|A|, |C |}.

Case 1.2: |A| ≤ (1− 30λ′)n. By (31) and |V1| = 2n,

|C | ≥ (1+ 27λ′)n and |B| ≥ (1+ 30λ′)n. (32)

By condition (ii), there are at most 20λ′n vertices in C with red degree at least 0.05n to B. Let C ′ be the
20λ′n vertices in C of largest red degree to B. Let Y be a subset of C −C ′ with size n. Similarly, let
B ′ be the 20λ′n vertices in B of largest red degree to C and we define X ⊆ B− B ′ of size n. We show
there is a blue cycle of length exactly 2n in G2[X, Y ].
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By the definitions of X and Y, we know that d2(x, Y ) ≥ 0.95n for x ∈ X and d2(y, X) ≥ 0.95n for
y ∈ Y. By an argument similar to the last paragraph of Case 1.1, we can find a blue cycle of length
exactly 2n in G2[X, Y ].

Case 1.3: |C | ≤ (1− 30λ′)n. We find a blue cycle by an argument similar to Case 1.2.

Case 1.4: |A| ≥ (1+ 30λ′)n and |D| ≥ n. By condition (iii), there are at most 20λ′n vertices in A of red
degree at least 0.05n to D. Let X ′ be the 20λ′n vertices in A of largest red degree to D.

By condition (ii), there are at most 20λ′n vertices in D of red degree at least 0.05n to A. Let R be
the 20λ′n vertices in D of largest red degree to A. Since d2(v, A)≥ 0.39|A|> 0.39n for each v ∈ R and
|R| = 20λ′n =:m, we can order vertices in R so that R = {r1, . . . , rm} and find for R a distinct collection
of blue cherries to A− X ′. We may assume the other ends of the cherries are S = {s1, . . . , s2m} so that
each s2i−1ri s2i is a cherry. Since S ⊆ A− X ′, each si has blue degree at least |D| − 0.05n to D and we
can find for each (s2i , s2i+1) a distinct common blue neighbor fi in D− R, where 1 ≤ i ≤ m − 1, and
thus form a blue path

P1 = s1r1s2 f1s3 · · · s2m

from s1 to s2m . We then extend the path P1 by finding a blue neighbor r0 of s1 in D− R distinct from
each vertex chosen in P1. Note now P1 has length 4m− 1 from r0 to s2m .

Let X⊆ (A−X ′−V (P1))∪{s2m} such that s2m ∈ X and |X |=n−2m+1. Let Y ⊆ (D−R−V (P1))∪{r0}

such that |Y | = n−2m+1. Since d2(y, X)≥ 0.9n for y ∈ Y and d2(x, Y )≥ 0.9n for x ∈ X , we claim that
G2[X, Y ] is Hamiltonian biconnected by an argument similar to the last paragraph of Case 1.2. Therefore,
we can find a blue path P2 of length 2n− 4m+ 1 from r0 to s2m .

Finally, we glue P1 and P2 at r0 and s2m to complete a blue cycle of length exactly 2n.

Case 1.5: |C | ≥ (1+ 30λ′)n and |B| ≥ n. It is similar to Case 1.4.

Case 1.6: |B| ≥ n and |D| ≥ n.

• If there is no blue edge in G[B, D], then G1[B, D] is a complete bipartite graph and thus we can find
a red cycle of length exactly 2n.

• If there is a blue matching of size 2 in G2[B, D], say the two matching edges are v1v2 and u1u2, where
v1, u1 ∈ V1 and v2, u2 ∈ V2, then by Cases 1.2 and 1.3, we know |A| ≥ (1−30λ′)n and |C | ≥ (1−30λ′)n.
By condition (ii), there are at most 20λ′n vertices in A such that the red degree to D is at least 0.05n and
there are at most 20λ′n vertices in D such that the red degree to A is at least 0.05n. Similarly, there are
at most 20λ′n vertices in C such that the red degree to B is at least 0.05n and there are at most 20λ′n
vertices in B such that the red degree to C is at least 0.05n.

Let A′ ⊆ A be the |A| − 20λ′n vertices with the largest blue degree to D, D′ ⊆ D be the |D| − 20λ′n
vertices with the largest blue degree to A, C ′ ⊆C be the |C |−20λ′n vertices with the largest blue degree
to B, and B ′ ⊆ B be the |B| − 20λ′n vertices with largest blue degree to C .

By condition (i) and |W2| = |B| + |D| ≥ 2n, we know |A| ≥ n− 2λ′n. Thus, by Remark 32,

d2(u2, A)≥ 0.39|A| ≥ 0.38n.

We find a blue neighbor w1 ∈ A′ of u2. Let A′′ ⊆ A such that w1 ∈ A′′ and |A′′| =
⌊ 1

2 n
⌋
. Let D′′ ⊆ D′

such that v2 ∈ D′′ and |D′′| =
⌊1

2 n
⌋
. By A′′ ⊂ A′ and D′′ ⊆ D′, d2(v, A′′)≥ 0.4n for every v ∈ D′′ and

d2(v, D′′)≥ 0.4n for every v ∈ A′′. Since 0.4n+ 0.4n > 0.5n+ 1, we can use Theorem 17 to find a blue
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path P1 of length 2
(⌊1

2 n
⌋
− 1

)
from v2 to w1 and then extend P1 by adding w1u2. Similarly, we can find

a blue path P2 with vertices in B ∪C from v1 to u1 of length exactly 2
(
d

1
2 n
⌉
− 1

)
.

Finally, we connect P1 and P2 by adding the edge v1v2 and u1u2 to form a blue cycle of length
exactly 2n.

Remark 34. The argument also works whenever all of A, B,C, D are of size in [n−100λ′, n+100λ′n].

• If the size of a maximum matching in G2[B, D] is exactly 1, then let v1v2 be a blue edge, and let
{v2} ⊆ D be a smallest vertex cover in G2[B, D] (the case {v1} is a smallest vertex cover has a similar
proof and is simpler). If we delete v2, then the remaining graph is a complete bipartite graph in G1. If
|D| ≥ n+1 then we can find a red cycle of length 2n in G1[B, D−{v2}]. Thus, we may assume |D| = n
and |C | = n− 1.

Let B ′′ ⊆ B such that |B ′′| = n. We find a blue cycle in G2[B ′′,C ∪ {v2}]. By condition (i) and
|W2| = |B| + |D| ≥ 2n, we know |C | ≥ n− 2λ′n. Thus, by Remark 32, for each v ∈ B ′′ we have

d2(v,C)≥ 0.39|C | ≥ 0.38n.

We also know that each vertex vc in C ∪ {v2} can have red degree at most 1 to B (so it has blue degree at
least n− 1 to B ′′) since otherwise with vertices in D−{v2} we can find a red cycle of length 2n. Since
n− 1+ 0.19n > n+ 1, we can use Theorem 17 to find a blue cycle of length exactly 2n.

Case 1.7: n+ 1≤ |A| ≤ (n+ 30λ′n) and n ≤ |D| ≤ n+ 30λ′n. By Remark 34, the size of a maximum
matching in G2[B, D] is at most 1. Let v1v2 ∈G2 such that v1 ∈ B and v2 ∈ D. We may also assume that
{v2} is a minimum vertex cover of G2[B, D] (the case {v1} is a smallest vertex cover has a similar proof
and is simpler). Let R ⊆ A be the set of vertices with red degree at least 0.8n to D. By condition (ii),
we know |R| ≤ 2λ′n.

We first show that |D| = n. Assume not, i.e., |D| ≥ n+ 1. Then |D−{v2}| ≥ n.
If |A − R| ≥ n, then we find a blue cycle of length 2n in G2[A − R, D]. To do so, take a subset

A′ ⊆ A− R of size n and D′ ⊆ D−{v2} of size n. By Remark 32, for every v ∈ D we have

d2(v,C)≥ 0.39|C | = 0.39(2n− |D|)≥ 0.38n.

Thus, d2(v, A′) ≥ for v ∈ D′. By the definition of A′, we know d2(v, D′) ≥ 0.2n for v ∈ A′. By
condition (ii), we also know there are at most 20λ′n vertices in A′ of red degree at least 0.05n to D and
thus if we order vertices in A′ and D′ in nondecreasing order respectively, say A′ = {u1, . . . , un} and
D′ = {w1, . . . , wn}, then the smallest index such that d2(ui )≤ i + 1 has d2(ui )≥ 0.95n and the smallest
index such that d2(wj )≤ j+1 has d2(u j )≥ 0.19n. Since 0.95n+0.19n > n+1, we can use Theorem 17
to find a blue cycle of length exactly 2n in G2[A′, D′].

If |A− R| ≤ n− 1, then we find a red cycle of length exactly 2n in G1[B ∪ R, D− {v2}]. To do so,
note that (1) |B ∪ R| = 2n−|A− R| ≥ n+ 1, (2) G1[B, D−{v2}] is a red complete bipartite graph, and
(3) each vertex in R has degree at least 0.8n to D−{v2}. We can use Theorem 17 to find a red cycle of
length exactly 2n, since this red graph is very dense and has both parts large enough.

Remark 35. The proof also shows we can find a monochromatic cycle when |A|∈ [n−100λ′n, n+100λ′n]
and n+ 1≤ |D| ≤ (1+ 100λ′)n.
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We assume |D| = n from now on. Since each vertex in R has red degree at least 0.8n to D, if there
are at least two vertices in R, say r1 and r2, then we find a red common neighbor w ∈ D for r1 and r2.
Note that by Remark 33, G1[A,C] is Hamiltonian-biconnected. Therefore, we can find a red cycle of
length exactly 2n from a path P1 from r1 to r2 of length 2n− 2 glued with the path P2 = r1wr2. The
only case remaining is |R| ≤ 1. Then we have |A− R| ≥ n and we find a blue cycle of length 2n by the
same argument as in two paragraphs ahead of this paragraph.

Remark 36. Note that the last sentence of the previous paragraph shows why we need |A| ≥ n+ 1.

The only uncovered case is:

Case 1.8: n ≤ |C | ≤ (1+ 30λ′)n and (1− 30λ′)n ≤ |A| ≤ n− 1. We define R to be vertices in C with
red degree at least 0.8n to B. By Remark 34, we may assume that the size of a maximum matching in
G2[B, D] is at most 1.

If |C− R| ≥ n, then we find a blue cycle of length exactly 2n in G2[B,C− R]. Thus, we may assume

|C − R| ≤ n− 1. (33)

• If there is no edge in G2[B, D], then G1[B, D] is a complete bipartite graph and we are done if
|D∪R| ≥ n. Thus, we may assume that |D∪R| ≤ n−1. Since |C−R|+|R|+|D| = 2n−1, |C−R| ≥ n
and we have a contradiction.

• If the size of a maximum matching in G2[B, D] is exactly 1, say v1v2 is such a matching with v1 ∈ B
and v2 ∈ D, then one of {v1} or {v2} is a minimum vertex cover of G2[B, D]. We may assume that {v2}

is a minimum vertex cover of G2[B, D], and the case when {v1} is a minimum vertex cover has a similar
proof and is simpler.

Since G1[B, D−{v2}] is a complete bipartite graph, we are done if |D| ≥ n+1. Thus, we may assume
|D| ≤ n. Moreover, if |D∪R−{v2}| ≥ n then we can find a red cycle of length 2n in G1[D∪R−{v2}, B];
hence we may assume

|D| + |R| − 1≤ n− 1.

But we also know that |D| + |R| + |C − R| = 2n− 1. Thus,

|C − R| ≥ n− 1,

and by (33) we know

|C − R| = n− 1 and |D ∪ R| = n.

If v2 has at least two red edges to B then we can find a red cycle in G1[B, D ∪ R] by first considering
the two edges incident with v2. Thus, v2 has at most one red edge to B and thus has at least |B| − 1 blue
edges to B. We can find a blue cycle in G2[(C − R)∪ {v2}, B].

Case 2: G has a (λ, 1, 2)-bad partition. This case is covered in Case 1 in Section 7.1.5 (with the same
proof). �
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9. Proof of Theorem 6 on monochromatic C≥2n

For large n, we need to prove the theorem for every N -vertex complete s-partite graph G with parts
(V ∗1 , V ∗2 , . . . , V ∗s ) such that the numbers ni = |V ∗i | satisfy n1 ≥ n2 ≥ · · · ≥ ns and conditions (1), (2), (4)
and (5).

Consider a possible counterexample G with 2-edge-coloring f and minimum N + s. If N−n1−n2≥3,
then restriction (7) does not apply, so by Theorem 5, G has a monochromatic C2n , a contradiction. If
N − n1− n2 ≤ 2 and (7) holds, then again by Theorem 5, G has a monochromatic C2n . Hence we need
to consider only the case that N − n1− n2 ≤ 2, all (1), (2), (4) and (5) hold, but (7) does not hold. In
particular, n1 ≥ 2n− 1, but N ≤ 4n− 2. This means N − n1 ≤ (4n− 2)− (2n− 1)= 2n− 1, so by (2),
N = 4n− 2 and n1 = 2n− 1. If N − n1− n2 ≤ 1, this does not satisfy (5). Thus N − n1− n2 = 2, and
hence G ⊇ K2n−1,2n−3,2. Therefore, the following lemma implies Theorem 6.

Lemma 37. If n is sufficiently large, then for every 2-edge-coloring of K2n−1,2n−3,2, there is a monochro-
matic cycle of length at least 2n.

Proof. The set-up of the proof is similar to the proof of Lemma 31. We only show the differences.
Let V3 = {u1, u2}. Define V ′1 = V1 and V ′2 = V2 ∪ V3. We first consider G[V ′1, V ′2] and then use the

fact that V ′2 = V2 ∪ V3. Note that we have |V ′1| = |V
′

2| = 2n− 1.
By the proof in Lemma 31, we narrow the uncovered cases to (1) |A| = n−1 and n≤ |C | ≤ (1+30λ′)n

and (2) n ≤ |A| ≤ (1+ 30λ′)n and |C | = n− 1.

Case 1: |A| = n− 1 and n ≤ |C | ≤ (1+ 30λ′)n.
Then we know |B| = n and (1− 30λ′)n− 1 ≤ |D| ≤ n− 1. By Remark 34, we know the size of a

maximum matching, α′, in G2[B, D] is at most 1. Let R be the set of vertices in C with at least 0.8n red
neighbors in B. By condition (ii), |R| ≤ 2λ′n.

Claim 38. If |C − R| ≥ n then we find a blue cycle of length 2n in G2[B,C − R].

Proof. We pick C ′ ⊆ C − R of size n. We know:

(1) By Remark 32 and the definition of R, each vertex in B has blue degree at least 0.38n to C ′ and each
vertex in C ′ has blue degree at least 0.2n to B.

(2) By condition (ii), all but at most 20λ′n vertices in B have red degree at most 0.05n to C ′ and all but
at most 20λ′n vertices in C have red degree at most 0.05n to B.

(3) If we order vertices in C ′ and B in nondecreasing order by their degree in G2[C ′, B] respectively,
then the smallest index with d(xi )≤ i+1 and the smallest index with d(yj )≤ j+1 satisfy d(xi )≥ 0.95n
and d(yj )≥ 0.95n.

Since 0.95n+ 0.95n > n+ 1, we can use Theorem 17 to show G2[C ′, B] is Hamiltonian biconnected
and thus we can find a cycle by fixing an edge e first and then find a Hamiltonian path in G2[C ′, B]
without e, which is still Hamiltonian biconnected. �

Remark 39. Similarly to Claim 38, we can show:

(1) For any two vertices c1 ∈ C, a1 ∈ A, graph G1[A,C] has a red path of length 2n− 3 from c1 to a1.

(2) For any two vertices c1, c2 ∈ C , graph G1[A,C] has a red path of length 2n− 2 from c1 to c2.

(3) For any two vertices b1, b2 ∈ B, graph G2[B,C − R] has a blue path of length 2n− 2 from b1 to b2.
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(4) For any two vertices c1 ∈ C − R, b1 ∈ B, graph G2[B,C − R] has a blue path of length 2n− 3 from
c1 to b1.

Therefore, we may assume

|C − R| ≤ n− 1 and thus |D ∪ R| ≥ n. (34)

If |R| ≥ 2, say r1, r2 ∈ R, then we find a common neighbor rb ∈ B for them. By Remark 39, we can
find a red path P1 of length 2n− 2 in G1[C, A] and then extend P1 to a red cycle of length 2n by adding
r1rbr2. Thus, we may assume

|C − R| = n− 1, |R| = 1 and |D| = n− 1. (35)

Let R = {r}. If α′ = 0, then G1[B, D] is a complete bipartite graph. We can find a red cycle of
length 2n in G1[B, D ∪ R] by first fixing two neighbors in B for r .

If α′ = 1, say v1v2 is a maximum matching in G2[B, D], where v1 ∈ B and v2 ∈ D. If {v2} is a
minimum vertex cover, then v2 has at most one red edge to B since otherwise we find a red cycle by (35)
in G1[D ∪ R, B] by first fixing two neighbors in B for v2. Thus, we may assume v2 has at least |B| − 1
blue edges to B and thus we can find a blue cycle in G2[(C − R)∪ {v2}, B] by Remark 39.

We may assume {v1} is a minimum vertex cover. Note that v1 has at most one red edge to D since
otherwise we find a red cycle in G1[B, D ∪ R] by first fixing two red neighbors for v1. For the same
reason, each vertex in A has at most one red edge to D. We use vertices in V3 to find a monochromatic
cycle.

If there is a red edge from D to C − R, say u1 y1 with u1 ∈ D and y1 ∈ C , then we find a red cycle of
length at least 2n. To do so, by Remark 39, we first find a red path P1 from y1 to r of length 2n− 2 in
G1[A,C]. Since r has at least 0.8n red neighbors in B and G1[B − {v1}, D] is complete bipartite, we
find for r and u1 a red common neighbor in B − {v1}, say rb. Finally, we extend P1 to a red cycle of
length 2n+ 1 by adding the red path rrbu1 y1. Since at least one of u1 and u2 are not in R, say u1 /∈ R,
we may assume there is a blue edge u1 y1 from C − R to D with u1 ∈ C − R and y1 ∈ D.

We find a blue cycle of length at least 2n by using u1. To do so, by Remark 32, each vertex in D has
blue degree at least 0.38n to A∪{v1} and each vertex in C− R has blue degree at least 0.2n−1 to B. We
first fix a blue neighbor z1 of y1 with z1 ∈ A and then find a common blue neighbor, say y2 ∈ D−{y1},
for v1 and z1. We can find a blue path P1 of length 2n− 3 from u1 to v1 in G2[C − R, B] by Remark 39
and then extend P1 by adding the path v1 y2z1 y1u1 to obtain a blue cycle of length 2n+ 1.

Case 2: n ≤ |A| ≤ (1+ 30λ′)n and |C | = n− 1. It is symmetric to Case 1 until we use vertices in V3.
Thus, we may assume the maximum size of a matching in G2[B, D] is 1, v1v2 is one maximum matching
and {v2} is a minimum vertex cover and every vertex in C ∪ {v2} has blue degree at least |B| − 1 to B.
Moreover, we may define R ⊆ A similarly to Case 1; i.e., R is the collection of vertices in A with at
least 0.8n red degrees to D, and assume

|A− R| = n− 1, |R| = 1 and |B| = n− 1. (36)

Let R = {r}. If there is a red edge from C to D−{v2}, say u1 y1 with u1 ∈ C and y1 ∈ D, then we can
find a red cycle of length at least 2n. To do so, we first find a red path P1 of length 2n− 3 from u1 to r
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by Remark 39. Then we find a red neighbor rd of r in D−{v2, y1} and a common red neighbor rb of rd

and y1 in B. We extend the path P1 to a red cycle of length 2n+1 by adding the red path rrdrb y1u1 to P1.
Then we may assume there is a blue edge from C to D−{v2}, say u1 y1 with u1 ∈C and y1 ∈ D−{v2}.

We first find a blue path of length 2n− 2 from y1 to v2 in G2[A− R, D] by Remark 39 and then find
a common blue neighbor y ∈ B for v2 and u1. Finally, we add the path y1u1 yv2 to P1 to obtain a blue
cycle of length 2n+ 1. �

10. Proof of Theorem 7 on monochromatic P2n

10.1. A useful lemma. If G contains a monochromatic C2n , then it certainly contains a monochro-
matic P2n . So suppose G = Kn1,...,ns does not have a monochromatic C2n . The lemma below is very
helpful here and in the next section.

Lemma 40. Let s ≥ 3 and n be sufficiently large. Let n1 ≥ · · · ≥ ns and N = n1+ · · · + ns satisfy (1)
and (2). Suppose that for some 2-edge-coloring f of the complete s-partite graph G = Kn1,...,ns , there
are no monochromatic cycles C2n . Then G contains a monochromatic P2n+1.

Proof. By Theorem 5, if (1) and (2) hold but G does not have a monochromatic C2n , then (7) fails. In
particular, N − n1 − n2 ≤ 2. Since s ≥ 3, N − n1 − n2 ≥ 1. We may assume s = 3: if s > 3, then
N − n1− n2 ≤ 2 yields s = 4 and n3 = n4 = 1. In this case, deleting the edges between V3 and V4 and
combining them into one part (of size 2) only makes the case harder.

We use condition (7) to find a monochromatic C2n only in the nearly-bipartite subcase of Section 6:
in Section 6.2. Therefore, if there is no monochromatic C2n , but (1) and (2) hold, we have a graph G
that falls under this subcase.

In this case, we have found disjoint subsets X11, X12 ⊆ V1 and X21, X22 ⊆ V2 with |X11| = |X21| =

|X12| = |X22| =
1
2 n + 10 satisfying the following property: if H is any of the graphs G1[X11, X21],

G1[X12, X22], G2[X12, X21], or G2[X11, X22], then given any vertices v,w in H, we can find a (v,w)-
path in H on m vertices, provided that n− 10≤ m ≤ n+ 10 and that the parity of m is correct.

Now let x ∈ V3 be an arbitrary vertex (since we know that 1≤ n3 ≤ 2). Without loss of generality, we
may assume that x has an edge in G1 to X11. If x also has an edge in G1 to X12 ∪ X22, then we obtain a
long path in G1 as follows:

• Let P1 be a path in G1[X11, X21] of length at least n starting from a neighbor of x in X11.

• Let P2 be a path in G1[X12, X22] of length at least n starting from a neighbor of x .

• Use x to join P1 and P2 into a path.

Otherwise, all edges of x to X12 ∪ X22 are in G2; in particular, x has a neighbor in G2 in both X12

and X22. We obtain a long path in G2 in a similar way:

• Let P1 be a path in G2[X12, X21] of length at least n starting from a neighbor of x in X12.

• Let P2 be a path in G2[X11, X22] of length at least n starting from a neighbor of x in X22.

• Use x to join P1 and P2 into a path.

In either case, G contains a monochromatic P2n+1. �
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10.2. Completion of the proof of Theorem 7. As observed above, if G has a monochromatic C2n , then
we are done. Otherwise, by Theorem 5 and Lemma 40, G is bipartite. In this case, (2) yields n2 ≥ 2n−1.
Hence n1 ≥ 2n− 1, and G ⊇ K2n−1,2n−1. In this case, Theorem 2 yields the result. �

11. Proof of Theorem 8 on monochromatic P2n+1

11.1. Setup of the proof. For large n, we need to prove the theorem for each complete s-partite graph
G = Kn1,...,ns such that the numbers ni satisfy n1 ≥ n2 ≥ · · · ≥ ns and the three conditions

N = n1+ · · ·+ ns ≥ 3n, (T1′)

N − n1 = n2+ · · ·+ ns ≥ 2n− 1, (T2′)

if s = 2, then n1 ≥ 2n+ 1. (T3′)

For a given large n, we consider a possible counterexample with the minimum N + s. In view of this,
it is enough to consider the lists (n1, · · · , ns) satisfying (T1′), (T2′) and (T3′) such that:

(a) For each 1 ≤ j ≤ s, if ni > ni+1, then the list (n1, . . . , ni−1, ni − 1, ni+1, . . . , ns) does not satisfy
some of (T1′), (T2′) and (T3′).

(b) If s ≥ 4, then the list (n1, . . . , ns−2, ns−1+ ns) (possibly with the entries rearranged into a nonin-
creasing order) does not satisfy some of (T1′), (T2′) and (T3′).

Case 1: s ≥ 3 and N > 3n. Then (T3′) holds by default. If n1 > n2, then the list (n1− 1, n2, n3, . . . , ns)

still satisfies the conditions (T1′), (T2′) and (T3′), a contradiction to (a). Hence n1 = n2. Choose the
maximum i such that n1 = ni . If N − n1 > 2n− 1, consider the list (n1, . . . , ni−1, ni − 1, ni+1, . . . , ns).
In this case (T1′) and (T2′) still are satisfied; so by (a), (T3′) fails. But this means s = 3 and n1 = ni = 1,
so N ≤ 3, a contradiction. Thus in this case N − n1 = 2n − 1. Therefore, n1 = N − (N − n1) ≥

3n+ 1− (2n− 1)= n+ 2 and hence n2 ≥ n+ 2, so N − n1− n2 ≤ (2n− 1)− (n+ 2)= n− 3. Then the
list (n1, n1, N − 2n1) satisfies (T1′)–(T3′). Summarizing, we get

if s ≥ 3 and N > 3n, then s = 3, n2+ n3 = 2n− 1 and n1 = n2 ≥ n+ 2. (37)

Case 2: s ≥ 3 and N = 3n. Again (T3′) holds by default. By (T2′), n1 ≤ n+1; hence N−n1−n2 ≥ n−2.
If s ≥ 4 and ns−1+ ns ≤ n+ 1, then let L be the list obtained from (n1, . . . , ns) by replacing the two
entries ns−1 and ns with ns−1+ ns and then possibly rearrange the entries into nonincreasing order. By
construction, L satisfies (T1′)–(T3′), a contradiction to (b). Hence ns−1 + ns ≥ n + 2. If s ≥ 6, then
N ≥ 3(ns−1+ ns)≥ 3n+ 6, contradicting N = 3n. Thus

if s ≥ 3 and N = 3n, then s ≤ 5 and if s ≥ 4, then ns−1+ ns ≥ n+ 2. (38)

Case 3: s = 2. Then by (T3′), n1 ≥ 2n+ 1 and by (T2′), n2 ≥ 2n− 1. Thus G ⊇ K2n+1,2n−1, and we can
assume that

if s = 2, then G = K2n+1,2n−1. (39)

As we have seen, always s ≤ 5.
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11.2. Completion of the proof. Suppose G satisfies (37)–(39), and f is a 2-edge-coloring G such that
there is no monochromatic P2n+1.

If G has no monochromatic C2n , then by Lemma 40, G is bipartite. So by (39), G = K2n+1,2n−1. But
by Lemma 31, K2n,2n−1 7→ (C2n,C2n). Therefore, below we assume that the 2-edge-coloring f of G is
such that G contains a red cycle C with 2n vertices (i.e., G1 contains C).

Let V ′ = V (C) and V ′′ = V (G)− V ′. Similarly, for j = 1, . . . , s, let V ′j = Vj ∩C and V ′′j = Vj − V ′j .
If some red edge e connects V ′ with V ′′, then C + e contains a red P2n+1, so below we assume that

all the edges in G[V ′, V ′′] are blue, i.e., G2[V ′, V ′′] = G[V ′, V ′′]. (40)

Case 1: s = 2. Then |V ′1| = |V
′

2| = n. By (39), |V ′′1 | = n+ 1. By (40), G2[V ′′1 , V ′2] = Kn+1,n , but Kn+1,n

contains P2n+1.

Case 2: s ≥ 3 and n1 ≥ n. If V1 ⊇ V ′′, then (since |V ′′| ≥ n by (38))

G2[V ′′, V (G)− V1] = G[V ′′, V (G)− V1] = Kn,N−n1 ⊇ Kn,2n−1 ⊇ P2n+1.

Because C is a cycle of length 2n and V ′1 is an independent set, |V ′1| ≤ n. In particular, since s ≥ 3,

there are distinct 2≤ j1, j2 ≤ s such that there are vertices v1 ∈ V ′j1 and v2 ∈ V ′′j2 .

If |V ′′1 | ≥ n, then G2[V ′′1 , V ′−V ′1] is a complete bipartite graph with parts of size at least n, so it contains
a path P with 2n vertices, starting from v1. Adding to it edge v1v2, we get a blue P2n+1.

Suppose now |V ′′1 | ≤ n− 1. Then the complete bipartite graph G2[V ′′1 , V ′− V ′1] has a path Q1 with
2|V ′′1 | + 1 vertices starting from v1 and ending in V ′− V1. Also since n1 ≥ n and |V ′′| ≥ n, the complete
bipartite graph G[V ′1, V ′′− V1] contains Kn−|V ′′1 |,n−|V

′′

1 |
and hence contains a path Q2 with 2(n− |V ′′1 |)

vertices starting from v2. Then connecting Q1 with Q2 by the edge v1v2 we create a P2n+1.

Case 3: s ≥ 3 and n1 ≤ n− 1. In this case, N/n1 > 3, so s ≥ 4. Then (37)–(39) imply that N = 3n and
4≤ s ≤ 5. In particular,

N − ni ≥ 3n− (n− 1)= 2n+ 1 for every 1≤ i ≤ s. (41)

Relabel the Vi ’s so that |V ′′1 | ≥ · · · ≥ |V
′′
s |. Let s ′ be the largest i such that V ′′i 6= ∅. We construct a

path Q with 2n+ 1 vertices greedily in two stages.

Stage 1: For i = 1, . . . , s ′− 1, find a vertex wi ∈ V ′− Vi − Vi+1 so that all s ′− 1 of them are distinct.
We can do it because V ′′i and V ′′i+1 are nonempty, so

|V ′i ∪ V ′i+1| ≤ (ni − 1)+ (ni+1− 1)≤ 2n− 4= |V ′| − 4.

At least four choices for each of the s ′− 1≤ 4 vertices wi allow us to choose them all distinct. Then we
choose w0 ∈ V ′− V1 and ws′ ∈ V ′− Vs′ so that all w0, . . . , ws′ are distinct.

Stage 2: For i = 0, . . . , s ′− 1 we find a (wi , wi+1)-path Qi such that (i) V (Qi )∩V ′′ = V ′′i+1, and (ii) all
paths Q0, . . . , Qs′−1 are internally disjoint.

If we succeed, then
⋃s′−1

i=0 Qi is a path that we are seeking.
Suppose we are constructing Qi and V ′′i+1 = {u1, . . . , uq}. We start Qi by the edge wi u1. Then on

Step j for j = 1, . . . , q , do as follows.
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If j = q , then add edge uqwi+1 and finish Qi . Otherwise, find a vertex z j ∈ V ′− Vi+1 not yet used in
any Qi ′ , then add to Qi edges u j z j and z j u j+1, and then go to Step j + 1. We can find this z j because
by (41), |V −Vi | ≥ 2n+1, at most n−2 of these vertices are in V ′′, and at most n vertices of all paths Qi ′

are already chosen in V ′. Since we always can choose z j , our greedy procedure constructs Qi , and all
Qi together form the promised path Q. �
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