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SATOSHI KONDO AND SEIDAI YASUDA

Let A be the coordinate ring of a projective smooth curve over a finite field
minus a closed point. For a nontrivial ideal I C A, Drinfeld defined the
notion of structure of level 7 on a Drinfeld module.

We extend this to that of level N, where N is a finitely generated torsion
A-module. The case where N = (I"1/A)¢, where d is the rank of the Drin-
feld module, coincides with the structure of level I. The moduli functor is
representable by a regular affine scheme.

The automorphism group Aut,4 (N) acts on the moduli space. Our theo-
rem gives a class of subgroups for which the quotient of the moduli scheme
is regular. Examples include generalizations of I'y and of I';. We also show
that parabolic subgroups appearing in the definition of Hecke correspon-
dences are such subgroups.

1. Introduction

1.1. Main Theorem and applications. We first recall the usual setup for Drinfeld
modules. Let C be a smooth projective geometrically irreducible curve over the
finite field [, of ¢ elements. Let F' denote the function field of C. Fix a closed
point oo of C. Let A = I'(C \ {00}, O¢) be the coordinate ring of the affine
[F,-scheme C \ {oo}.

In this article, we define the structure of level N on a Drinfeld module, general-
izing the structure of level I of Drinfeld (also known as the full level I structure).
This may also be regarded as a generalization of the I";-structure.

Let us denote by M4, = M‘I{, 4 the functor that associates an A-scheme S to the
set of isomorphism classes of Drinfeld modules over S with structure of level N. (We
will also mention Mf{,’ y for an open subscheme U of Spec A.) The representability
by an affine scheme and its regularity of the moduli functor when |Supp N| > 2 can
be proved in a manner similar to that of the full level case. See Proposition 4.2.1.

Note that the automorphism group Auty (N) of N as an A-module acts on N,
hence on the set of level structures, and thereby on the moduli space. We define
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admissible subgroups of Aut4 (V) and denote by Sy the set of admissible subgroups.
Our main theorem in a rough form is as follows. See Theorem 6.1.1 for a more
general statement.

Theorem 1.1.1. Let N be a torsion A-module, generated by at most d elements.
Let N = N| @& N; be a direct sum decomposition such that Ny # 0, N, # 0, and
Supp N1 N Supp N> = &. Let H € Sy, be an admissible subgroup, regarded as a
subgroup of Auts(N). Then the quotient Mjlv /H is regular.

Recall that moduli of elliptic curves with I'g or '} structures, usually denoted
Yo(N) or Y| (N) for some integer N, are quotients of the full level moduli Y (N)
by certain groups defined in terms of congruences modulo N. Our admissible
subgroups include function field analogue of such groups.

The quotients of interest to us are those appearing in the definition of Hecke
correspondences. Let Y L x 2 ybea diagram of schemes where Y is smooth
over a base field and f is a finite surjective morphism. Recall that this gives rise
to a finite correspondence; see [Mazza et al. 2006, p. 3]. A typical example of a
Hecke correspondence is the finite correspondence corresponding to the diagram
above where X is a quotient by some parabolic subgroup of a full level moduli
and Y is a full level moduli. (See [Laumon 1996, p. 14] for Hecke correspondences
in general over F'; see Section 6.3 for examples.) A finite correspondence acts on
higher Chow groups [Mazza et al. 2006, p. 142, Theorem 17.21] and the action
corresponding to a Hecke correspondence is called Hecke operator.

Our theorem may make the computation of the Hecke operator easier in the
following sense. Our regularity theorem implies that X is regular (smooth over
the base field) and the maps f, g are finite flat. In this case, the action of the
finite correspondence is given as the composition of the pullback by g and the
pushforward by f.

In a future paper, we will construct certain elements in the higher Chow groups
of Drinfeld modular schemes over A, extending, in a sense, our elements [Kondo
and Yasuda 2012] in rational algebraic K -theory of Drinfeld modular schemes away
from level. We show that they are (again) norm compatible (we say that they form
an Euler system), that is, we express the pushforward of the elements in terms of
Hecke actions relating to local L-factors. The computation uses Theorem 1.1.1 in a
way described in the previous paragraph.

1.2. Outline of proof. An outline of the proof of regularity of quotients of moduli
of elliptic curves is given by Katz and Mazur [1985, Theorem 7.5.1, p.201]. We
follow their outline except that we need one additional ingredient, namely, Dickson’s
theorem [1911] from modular invariant theory.

Let us briefly recall the outline. To prove the regularity of the quotient, one first
proves the regularity at the points away from the level. The regularity in this case is
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the consequence of the fact that the quotient map becomes étale. Now, to prove the
regularity at a point y on the bad fiber, we look at the point x lying above y. To the
point x, there corresponds a Drinfeld module (with level N structure), and in turn a
formal O-module. It happens that the regularity at y depends only on the height of
the formal O-module. Since the singular locus is closed, and there are points of arbi-
trary height near the (most) supersingular point (we prove its existence in Section 7),
we are reduced to the case where the formal @O-module has maximal height.

To show the regularity of the ring of invariants in the supersingular case, the two
tools we use are Proposition 7.5.2 of [Katz and Mazur 1985] (Proposition 8.9.1
below) and Dickson’s theorem (Theorem 8.12.1).

Note that a typical type of group encountered by Katz and Mazur are subgroups
of GL,(Z/NZ) for some integer N, and the essential ones are those contained in
some Borel subgroup. In this case, successive applications of their Proposition 7.5.2
proves the regularity of the quotient. A typical type in our case is a parabolic
subgroup of GL;(A/I) for some ideal I with d > 2. In this case, using their
Proposition 7.5.2 successively, we are reduced to the computation of invariants
by the Levi subgroups, each of which is GLy (k) for some finite field ¥ and some
positive integer d’. This last case is the subject of modular invariant theory, where
Dickson’s theorem is the most basic theorem.

1.3. Organization. The paper is organized as follows. We start with Section 2
on formal O-modules, much like in the original paper by Drinfeld [1974]. We
introduce structure of level N for formal @O-modules and construct the universal
deformation explicitly. This will be useful in the proof of theorem. Section 3 is
on divisible @-modules with structure of level N. In Section 4, we define Drinfeld
modules with structure of level N and show, using the results of Sections 2 and 3,
that the moduli are regular. In Section 5, we define a set of subgroups of Auts(N),
which we call admissible. The definition is formulated so that the proof of our
theorem can be given using Proposition 8.9.1 and Dickson’s theorem. We give some
examples. In Section 6, we give a statement of our main theorem (Theorem 6.1.1)
and its applications. Hecke operators are discussed in this section. In Section 7,
we prove the existence of a supersingular point on the moduli. This is logically
independent of other sections. Section 8§ is devoted to the proof of our main result.

2. Formal ©-modules with structure of level P

Let p C A be a nonzero prime ideal. Let Ay, be the ring of integers of the local
field F, at . We fix a uniformizer w € A, Let A denote the ring of integers of
the maximal unramified extension and Aur denote the completion. Let O = Ay,

2.1. Deﬁmnons Let C be the category of complete local Aur -algebras with residue
field k () := Aur / (), where the morphisms are local Aur algebra homomorphisms.
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Let R € C and let (F, f) be a formal O-module (see [Drinfeld 1974, p. 563]) over R.
Let P be a finitely generated torsion O-module.

Definition 2.1.1. A structure of level P on (F, f) is a morphism of O-modules
¥ P — mg,

where mz C R is the maximal ideal endowed with the O-module structure given
by (F, f), such that the power series f; is divisible by

[] &-v@).

aeKerm:P—P
Let (G, g) be a formal O-module over « (o) with (the unique) structure of level N.

Definition 2.1.2. A deformation of (G, g) is a formal O-module (F, f) over R,
for some R € C, with structure of level P such that (F, ) modmg is isomorphic
to (G, g).

Let Dp = Dy p denote the functor that associates R € C with the set of isomor-
phism classes of deformations over R of (G, g).

2.2. Universal deformation space of formal O-modules over k (p). The follow-
ing is due to Lubin and Tate, and Drinfeld, and the details are given in [Hopkins
and Gross 1994].

Let d > 1. We define a formal O-module Fd over the rlng Ollt, ..., ti—1]]
of formal power series as follows. As a formal group, Fd = G The action of
a€k(p)COon Fyis given by the power series f,(X) = aX, and the action of 7
is given by the power series

fe(X) =X +06X% 4ty X9+ X9,

Set Fy; = fd ®0l(t1,..ta11] k(). Then Fy is a formal O-module of height d
over « (g¢). By [Drinfeld 1974, Proposition 1.6, p. 566], any formal O-module over
k (¢) of height d is isomorphic to Fd@((p)/c(go).

Proposition 2.2.1 (Lubin-Tate, Drinfeld, Gross—Hopkins). The formal O-module
Fd@@[[n,...,zd,l]]A;f[[fl, ..., tg_1]] is the universal deformation ode@((p)K(go).

Proof. This is [Hopkins and Gross 1994, p. 45, Proposition 12.10]. U

2.3. Universal deformation space of formal O-module over k () of level P. We
need the description of the universal deformation ring Dp of Fd@((@)/c(p) of
level P. Set Do = O[[¢4, - .., ts—1]] by abuse of notation.

Proposition 2.3.1. Let {e;}1<i<r C P be a minimal set of generators of P as O-
module. If r > d, then the functor D p is representable by an empty scheme. Suppose
that r < d. Then the functor Dp is representable by a regular Dy-algebra. We let,
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by abuse of notation, Dp denote the representing ring. Then the images of the e;’s
in Dp by the universal level structure and t;’s forr <i <d — 1 form a regular
system of parameters.

This statement follows essentially from the proof of the full level case treated in
[Drinfeld 1974]. As we want to use the description of the ring Dp, we give some
details below.

Proof. It suffices to treat the case P=A/p" - - - DA /" withr <d, n; <---<n,
and ¢; =IEA/[Q”" CPforl<i<rwithl <n; <---<n,. We construct the
rings Dp by induction on the exponent (i.e., the n,) of P.
Suppose the exponent is 1. Then P = (A/g)" for some 1 <r <d. In this case,
the claim holds true with Dp = L, of [Drinfeld 1974, Lemma on p. 572].
Suppose the claim holds true for k < n,. Write

P=Alp" @ - DA/ " DA/ D - DA/P
withl <n; <---<n, <k. Set
P=Alp"® DA/ " DA/ '@ - @A/

By inductive hypothesis, D p- is representable, and a regular system of parameters
is given by the images of ey, ..., e, €541, . . . , €, via the universal level structure
and t,, ..., t_1.

Now, set

Dp = Dp[0s11, ..., 011/ (fz(Os11) =V (es41), ..., f2(0r) — Y (er)),

where ¥ is the universal level structure of level P’. Then the claim holds true. [

3. Divisible @-modules with structure of level P

3.1. Let R € C. We refer to [Drinfeld 1974, p. 574 C)] for the definition of a
divisible O-module over R. Let (F, f) be a divisible O-module over R. The
number j is defined by F/Fo. = Spf R x (I/©)/ where K is the field of fractions
of O. Let h denote the height (assumed to be finite) of the reduction of Fi,.

Definition 3.1.1. A structure of level P on a divisible O-module (F, f) is an
O-module homomorphism

¢ : P — Homsys g (Spf R, F)

such that there is a submodule P; C P, the restriction of ¢ to which is a struc-
ture of level P; on the formal O-module Fj,, and such that the induced map
P/Py — F/Fj is an injection.
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3.2. Let (G, g) be a divisible O-module over « () with structure of level P such
that Gy, has height 4 and G/ G = (K/©). The deformation of (G, g) is defined.

Proposition 3.2.1. The functor that sends R € C to the set of deformations of level P
of the divisible module (G, g) over R is represented by the ring

E(ng) g DPI[[d17 e »d]]]v

where Py is the submodule that appears in the level P structure of (G, g).

Proof. The proof is almost identical to that of [Drinfeld 1974, Proposition 4.5,
p.- 574]; hence omitted. U

4. Regularity of moduli of level N

4.1. Let S be an A-scheme. Let E — S be a Drinfeld module over S. Let N be a
torsion A-module.

Definition 4.1.1. A structure of level N on E is a homomorphism of A-modules
Y : N — Homg schemes (S, £) such that, for any element a € A, the Cartier divisor

> YW
xeKera:N—N
of E is a closed subscheme of E[a] = Ker(a : E — E).

4.1.2. Let I C A be a nonzero ideal and d be the rank of E. Then the case where
N = (I7'/A)¢ is the structure of level I as defined by Drinfeld [1974].

4.1.3. Let N be a nonzero finitely generated torsion A-module. For a nonzero prime
ideal p of A, let Ny, denote the p-primary part so that N = @, N, is the primary
decomposition. Let y : N — Hom(S, E) be a map and let ¥, : N, — Hom(S, E)
be the restriction for each nonzero prime ideal gp. Then  is a structure of level N
if and only if each v, is a structure of level Ni;.

4.2. Let U C Spec A be an open subscheme. Let M?{,’U denote the functor
(U-scheme) — (Set)

that sends a U-scheme S to the set of isomorphism classes of Drinfeld modules of

rank d over S with structure of level N.

Proposition 4.2.1. Let N be a nonzero finitely generated torsion A-module.

(1) Suppose |Supp N| > 2. Let U C Spec A be an open subscheme. Then the
functor Mﬁlv,U is representable by a regular affine U -scheme.

(2) Let Z C Supp N be a nonempty subset. Let U C Spec A\ Z be an open
subscheme. Then the functor Mjlv’ y is representable by a regular affine U -
scheme.
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Proof. The representability and regularity can be proved in a similar way to the case
of structure of level I as in the proof of [Drinfeld 1974, p. 576, Proposition 5.3]. [J

5. Admissible subgroups

The goal of this section is to define the set Sy of subgroups of Auty (N), which we
call admissible.

5.1. Let N be a finitely generated torsion A-module, generated by at most d
elements. Let N = @pespec A.p-0) Np be the primary decomposition of N. We
will define a set Sy, of subgroups of Auts(Ny,) (automorphisms as A-module) for
each gp. Set Sy = HpespecA,p#O) Sn, - This Sy is regarded as a set of subgroups
of Auts (N) in a natural manner.

From here on, we fix a nonzero prime ideal o of A and assume that N is a
g-primary torsion A-module generated by at most d elements.

5.1.1. Let us take an isomorphism N = A @ --- D A,, where | <r <d, A; =
A/, 1 <n;, 1 <i<r.

We use the following description of Hom4 (N, N) by matrices:

Homa (N, N) ={(¢i, j)1<i,j<r | 9i,j € Homa(A;, Aj)}.
We have canonically Homy4 (A;, Aj) = "/ /", where n; ; = max{0, n; —n;}.
Letm,-,j GZWithnl"j =mjj=n; for1 <i, j<r. Weset
Hm, ) = (@i j)1<ij<r | @) € Gij + ") /0" ]},

where §; ; is the Kronecker delta, and regard it as a subset of Homx (A;, A).
5.1.2. We consider the following condition for a subgroup H C Auts(N):
(a) H = H(ml._j) N Auty (N) for some mi j € Z with ni;<m;;<n;j.

Definition 5.1.3. We say that a subgroup H C Aut4 () is an admissible subgroup
if condition (a) is satisfied for some direct sum decomposition N = A; ®--- D A,,
where 1 <r <d,A; = A/p",1 <n;,1 <i <r. We denote by Sy the set of
admissible subgroups of Auts(N).

5.1.4. We introduce some more notation to investigate properties satisfied by ad-
missible subgroups. For an A-module B and an ideal / C A, we set

B[I] = ﬂKer[i B — B].
iel
We have w1l el
Nlpl=p""" /"' @ - D" /"

=k(E)@- D (p),
where k (p) = A/p.
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Let H = H(m, ;) N Auts(N) be an admissible subgroup for some direct sum de-
composition N=A|®---DA,,where | <r <d, A;i=A/p",1<n;,1<i<r. Set

K =Image[H C Auts(N) — Auta(N[p])],

where the arrow is the canonical map. Let S denote the set of pairs (i, j) of integers
with 1 <1i, j <r satisfying m; ; #n; —n;. Since the composite

" " — " /" = Homy (A, Aj) — Homa (4[], Aj[9])

is the zero map if and only if (7, j) € S, the group K is identified with the set of
invertible r x r matrices B with coefficients in A/g such that for any integers i, j
with 1 < i, j <r, the (i, j)-th entry of B — 1, is equal to zero when (i, j) € S.
Using that K is a group, one can check that § satisfies the following property:
if (i, j), (j,k) € Sthen (i,k) € S. Fori, j €{l,...,r}, letus write i ~ j if either
i=jor(@dj),(,i)eS). Itiseasy to see that ~ gives an equivalence relation
onthe set {1,...,r}. Fori € {1, ..., r}, the equivalence class of i will be denoted
by i. As is easily seen, this equivalence relation has the following property, which
we will use later: if i € {1, ..., r} satisfies (i,i) € S, then i is the singleton {i}.
Let us consider the quotient set {1, ..., r}/ ~ under this equivalence relation. For
i,je{l,...,r}, we write i < j if either i ~ j or (i, j) € S is satisfied. The
property of S mentioned above implies that this condition depends only on the
classes i, j of i, j, and the relation < gives a partial order on the set {1, ..., r}/ ~.
Let us choose a total order on {1, ..., r}/ ~ extending this partial order and write
{1,...,r}/~={Ry,..., Ry}, Ri<---<R,.Fors=1,...,u,letds denote the
cardinality of the subset Ry C {1, ..., r}. By permuting the elements 1, ..., r if
necessary, we may assume that Ry, ..., R, satisfy the following condition:

(b) Fors =1, ..., u, the set Ry is equal to the set of integers i satisfying
di+--+di1<i<d+---+ds.

Fori =0,...,u set F;, = @fl'+"'+d‘? ©" "1 /" C N[p]. This gives an increasing

i=1

filtration of N[g] as k (g¢)-vector space:
O=RCFH < - CF=Ngl

Let
PF. = {g c Aut,((m(N[p]) | g(Fl') =F; foralll <i < r.}

Then K has the following property:
(© KCP F,-

For 1 <i <u,let L; = Aut,(,)(F;/F;—1) and regard them as quotients of Pp,.
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Let R denote the set of integers s € {1, ..., u} such that any i, j € R; satisfy
(i, j) € S. Then K satisfies the following property:

(d) Image[K C Pr, — l_[ Li] = HLi’

1<i<u ieR

where [ [, Li is the trivial group if R = @.

5.2. Examples: Ty and T1. Let I C A be a nonzero ideal. Let d > 1. Let
N = (A/I)d. We consider the subgroup I'y (resp. I'1) of GL;(A/I) consisting of
elements (a;;)1<;, j<q sSuch that

(ad,l, ...,ad,d_l) = (0, ...,O)modl

(resp. (@g.15----a4,4) =(0,...,0,1)mod 7).
Then I'g and I"; belong to Sy .

5.3. Examples: parabolic subgroups. Let N = (A/D? Letd = (di,...,d,)
be a partition of d = d; + - -- + d,. There is an associated parabolic subgroup
Pq C GL;4(A/I). Then Py is admissible.

6. Main Theorem and its application

Let us state our main theorem and corollaries in this section. The proof will be
given in Section 8.

6.1. Theorem 6.1.1. Letd > 1. Let N be a torsion A-module generated by at
most d elements. Suppose N = N| @& N, for some nonzero N1 and N, such that
Supp N1 NSupp N, = @. Let U C Spec A be an open subscheme such that the pair
(N3, U) satisfies assumption (1) or (2) of Proposition 4.2.1. Let H C Auta(N) be
a subgroup that belongs to Sn,, which is regarded as a subgroup of Auty(N). Then
the quotient

My y/H

is regular.

Remark 6.1.2. The following case is not covered by Theorem 6.1.1. Let N be a
torsion A-module generated by at most d elements such that Supp N = {g} for
some nonzero prime ideal . Let U C Spec A \ Supp N be an open subscheme. By
Proposition 4.2.1, the moduli /\/ljlv’U is representable. Take an admissible subgroup
H € Sy. Then Theorem 6.1.1 does not refer to the quotient M]dva /H. We think
our proof will work if there exists a nonzero A-submodule Ny C N such that Ny is
H-invariant. This assumption gives us a sequence ./\/ljlv v Mjlv y/H — My, of
moduli schemes which is similar to the one that appears in Section 8.4, which may
be a starting point. If there does not exist such an A-submodule, we do not know if
the quotient is regular.
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6.2. Let N{, N{', N> be torsion A-modules. Suppose N{ ® N, and N{ @ N, are
generated by at most d elements. Assume that Supp N; N Supp N, = @ and
Supp Ny N Supp N, = @. Let U C Spec A be an open subscheme such that the pair
(N3, U) satisfies assumption (1) or (2) of Proposition 4.2.1.

6.2.1. Suppose we are given a surjective morphism of A-modules f : N{ — Ny
We write f': N{ @ N> — N{ @ N, for the induced surjection. Consider the functor
that sends a Drinfeld module over a scheme S with structure of level N i @ N,,

E—S, v :N{®N,— Hom(S,E),
to that with level N{' @ N,
E/Y(N{®Ny) — S, v :N{®N,— Hom(S, E/Ker f'),
where ¥/ (x) = (y) mod Ker f’ for any lift y of x. We denote the induced morphism

d
my . MN@N g~ M YONy,U*

As the morphism is finite (cf. [Laumon 1996, p. 8, (1.4.2)]) and both target and
source are regular, we deduce that m ¢ is flat using [Altman and Kleiman 1970, V,
p. 95, 3.6].

Let H C Auts(N/) be a subgroup. Suppose H is admissible, i.e., H € Sy We
regard H as a subgroup of Auty (N| @ N>) by letting it act trivially on N. Let H
act on N/ trivially and assume that f’ is a H- equivariant map. Then the morphism
m s factors as Md’EBN v /\/ld N/ @N. y/H SUEN MCIi/”eaN U
Corollary 6.2.2. The morphism h is finite and flat.

Proof. The morphism m ¢ is finite. Now,
d d
M {@Nz,U/H%MN;/@Nz,U

is finite since /\/ld ,.uy 1s noetherian and my is finite. We know from Theorem
6.1.1 that M4, BN /H is regular. We use the fact [Altman and Kleiman 1970, V,
p. 95, 3.6] that a ﬁnlte morphism between regular schemes of the same dimension
is flat to conclude. (]

6.2.3. There is an analogous corollary for injections. Let N{, N{’, N2, and U be as
above. Suppose we are given an injective morphism f : N — N| of A-modules.
Let f': N/ @ N, — N{ @ N> be the induced map. Consider the functor that sends
a Drinfeld module over a scheme S with structure of level N| @ N,

E—S, v :N{®N,—> Hom(S,E),
to that with level N’ @ Na,
E—S, v :N/®N,— Hom(S, E),
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where v/’ is the restriction of . We let

. d d
rf . MN{@NZ,U — MN{/@NZ,U

denote the induced morphism of schemes.
Let H € Sy; be an admissible subgroup. Let H act on N, and N { trivially and
assume f': N/ @ N, — N{ @ N, is H-equivariant. Then the morphism r; factors

d d h d
as MN{GBNQ,U g MN;@Nz,U/H > M TON, U

Corollary 6.2.4. The morphism h is finite and flat.
Proof. The proof is analogous to the proof of Corollary 6.2.2; hence omitted. [

6.3. Application: Hecke operators on higher Chow groups. Using Corollaries
6.2.2 and 6.2.4 of the previous section, we obtain the following description of
Hecke operators on higher Chow groups of Drinfeld modular schemes over A.

6.3.1. Hecke operators as finite correspondences. Letd > 1. Let I C A be a
nonzero ideal. Let ¢ C A be a prime ideal which is prime to /. Take U to be an
open subscheme of Spec A \ Spec (A/I) if |[Supp A/I| =1 and U to be any open
subscheme of Spec A otherwise.

Set Nox = (A/p)*, Ny = (A/I) and Ny = No @ Ny for 0 < k <d. By
Proposition 4.2.1, the functors Mgl\h,k,U and M?\’z,U are representable by regular
schemes.

Let Gy = Auta(No ). Then G € Sy, . Regard Gy as a subgroup of Auta (N )
with the identity on the direct factor N5.

Let fx : Np = Nj be the canonical injection into the direct summand for each k.
As in Section 6.2.3, we obtain a morphism 7, : Mlli\h,k,U — Mf\,z’U which factors as

d d fi d
MNl,k»U —> MNl‘k,U/Gk —> MNZ,U'

We denote by 7, the second morphism.

Let g¢ : N1 x — N3 denote the canonical surjection onto the direct summand for
each k. As in Section 6.2.1, we obtain a morphism mg, : M?\ll,k,U — M?\&,U’ which
factors as

MYy MY G s M
Ny, U Ny, Ul Tk Ny, U*

Let us denote by my, the second morphism.

As we have seen in the proofs of Corollaries 6.2.4 and 6.2.2, without using
the main results of this article, we know that the morphisms m,, and ry are
finite. Therefore the diagram M?Vz,U e M(fv.,k,u/Gk L/ Mtzlvz,u defines a finite
correspondence in the sense used in [Mazza et al. 2006, p. 142, Theorem 17.21].
The action of this finite correspondence on the higher Chow group CH* (Mlzjvz, o %)
is denoted by T, x and we define this to be the k-th Hecke operator at .
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6.3.2. As an application of our theorem, we can express Hecke operators as com-
position of pullback and pushforward as follows. As seen in Corollaries 6.2.2
and 6.2.4, the morphisms 7, and m,, are finite and moreover flat. It follows that
the graphs of 7, and m,, are finite correspondences, and one can check that the
composition equals T}, . That is, we have

Tk = (Mg)s(Fr)* : CH* (MY, 1/, ¥) = CH*(MS, . %),

for each 0 <k <d, where upper star is the pullback and lower star is the pushforward.

7. Existence of supersingular points

In the proof of our main result, we use the fact that there exists a supersingular
point at any . The aim of this section is to give a proof of this fact.

7.1. Let I C A be a nonzero ideal such that |[Spec (A/I)| > 2. Let pp C A be a
nonzero prime ideal and let k () = A/p. Let M‘Ii, 4 denote the moduli functor of
full level I Drinfeld modules of rank d. The subscript A indicates that the moduli
is a functor from the category of A-scheme and it is representable by a scheme
because of the condition on 1. (We view it as a scheme.)

Lemma 7.1.1. We have M} ,(k(p)) # 2.

Proof. Let F be the completion at oo of F. By [Drinfeld 1974, Corollary, p. 570],
there exists a Drinfeld module E of rank 1 over F3, where F3, is a separable closure
of Fso. As F3, is separably closed, the I-torsion points E[/] of E is isomorphic over
F3, to the constant A-module scheme A /1. A choice of an isomorphism gives a level
I structure, thus we see that M}’A(Fgo) # 0. Since M}’A X 4 F is an F-scheme and
F C Fy, it follows that M} ,(F) # @. Take a finite extension L/F such that
M} (L) # @. Take a place g, over p. Let L, denote the completion of L at gy .
We have M}’A(Lm) # O using the canonical map Spec Ly,, — Spec L. Then, by
[Drinfeld 1974, Proposition 7.1, p. 584], there exists a finite extension R of L,
such that M} 4 (k) # &, where « is the residue field of R. This proves the claim. []

7.2. Construction of a cover. Let C,00, A, F, Fs,, Co be as above. Let pp C A
be a nonzero prime ideal and « (p) = A/ .

We construct a covering C” of C of degree d as follows. Let f € F be a nonzero
element such that f has a zero of order 1 at each g and oco. (The existence of such
an f can be proved by, for example, using the Riemann—Roch theorem.)

Set F' = F[y]/(y?— f) and let C’ be the smooth projective curve whose function
field is F'. Let h : C' — C denote the canonical map corresponding to F C F’.
Then, by construction, # is totally ramified at g and oco. It follows that #~! (c0) and
h~!(p) are singletons. Let oo’ and g’ denote the fibers of oo and g respectively.
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Set A’ = H(C’ \ {o0’}, O¢r). Recall that (e.g., as in [Deligne and Husemoller
1987, p. 33, Remark 2.1]) we normalize the absolute values so that |a|,, = |A/(a)|
and |d|o = |A’/(a’)| for a € A and a’ € A’ respectively, where | - | denotes the
cardinality. In particular, we have |h4(a)|co = |a|g’o where hs : A — A’ is the map
induced by #.

7.3. A rank 1 Drinfeld module for (C’', o0’) and its formal module.

7.3.1. Let I’ C A’ be an (auxiliary) nonzero ideal such that [Supp A’/I’| > 2. Take a
nonzero prlme ideal ga C A’ By Lemma 7.1.1 for d = 1, we have MI, A (k(p') 2.
Take x' € M} i3 A,(K(p/ )) and let E’, denote the corresponding Drinfeld module
over K(p’) We write ¢, : A — End A'—gpseh (G, i5y) for the corresponding ring
homomorphism.

a,k ()

7.3.2. The universal deformation of E, is computed in [Drinfeld 1974 p 576,
Section 5C]. Let E, E’, denote the assomated divisible A’ A" -module, and E /! o 7 denote
the connected component containing zero (which is a formal Al ur—module) This is
isomorphic to the additive formal group with f(x) = x + X7l where 7' is a
uniformizer in A’ Hence the formal A;O A~ " _module associated with E ", is isomor-
phic to the addmve formal group with f,(x) = x/™'l’,

7.4. Using the ring homomorphism ¢,/, we construct a Drinfeld module (E, ¢) for
(C, 00) as follows. Using the map h4 : A — A’, we identify «(p) = « (). We
define a ring homomorphism ¢ as the composite
h ,
A4 A B EndA’ngSCh(Ga,Tp/)) — EndAngSCh(Ga,m)'
It can be checked that this defines a Drinfeld module (E, ¢) for (C, co) over k ().
The rank is d since deg(p(a)) = |¢(a)|o = |a|go for all nonzero a.

Proposition 7.4.1. There exists a supersingular Drinfeld module ( for (C, 00)) of
rank d over k ().

Proof. A candidate (E, ¢) was constructed above. It remains to show that E is
supersingular. Let us take for our uniformizer 7’ the generator y of F’ over F. Then
7 = (n")? = y? is a uniformizer in Ay We have

E[p] = E[p] = E[7] = E'v[7"].

Here, the superscript ~ denotes the associated formal module. The isogeny that has
the last term as the kernel is of degree |x |go. Since the isogeny that has E[g] as
the kernel is of degree | |go, it follows that E[p]'°° = E[g]. This implies that E
is supersingular. (]
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8. Proof of Main Theorem
8.1. Let the notation be as in Theorem 6.1.1.

8.2. One prime at a time. Let the setup be as in Theorem 6.1.1. Let N| =
Ny @---® Ny, be the primary decomposition of Ny. Let H = H,) x --- x Hy,
be the decomposition given by the definition of admissible subgroup. (In particular,
Hg €Sy, forl <i<r.)

Now, the quotient is expressed as the fiber product

d
Vol H =My avnul o X, o X, M ono/ Hy-

Lemma 8.2.1. Assume that Theorem 6.1.1 holds for each factor. Then Theorem
6.1.1 holds for the product.

Proof. Because the singular locus is closed, it suffices to show that Mj{, y/H is
regular at every closed point.

Observe that the i-th map Mjlvl,pi@ Ny v/ Hoy = M?{/z,U in the construction of
the product is étale when restricted to U \ {g;} for 1 <i <r.

Let x be a closed point of (the A-scheme) ./\/lj{,’U /H. If the image of x in Spec A
is not contained in {1, .. ., -}, then by the observation above, there exists an open
neighborhood of x such that M?\/,U /H — M?VZ’U is étale. By Proposition 4.2.1,
M?vz,u is regular. Hence M?\I,U /H is regular in the neighborhood of x.

If the image of x in Spec A is {g;} for some 1 < i < r, it follows from the
observation above that there exists an open neighborhood of x such that the i-th
projection map /\/l vu/H— Mmd Ni.g; ®N2.U /Hy, is étale. By assumption, the target is
regular. Hence Md v.u/H1is regular at x. (]

Hence it suffices to treat the case where N is g-torsion for some nonzero prime
ideal p. We assume from now that Ny = Ny , and H = H,;,| € Sy,.

8.3. Away from the prime . Let x be a closed point of ./\/l?\,’U /H. Take a closed
point y of Mj{,’ y thatis sent to x via the canonical quotient map Mj{,’ v ./\/l?\,’ y/H.
Let Uy, = U N (Spec A\ Supp N1) =U \ {g,)} Note that the restriction to Uy, (the
base change from U to Uy,) M¢ N.Uy, Mé N.Ux / H of the canonical quotient map
is étale. Therefore the regularity at x follows from the regularity at y, which in turn
follows from Proposition 4.2.1.

8.4. At the prime p; dependence on the height. We follow the outline given in
[Katz and Mazur 1985].

We use Section 6.2.1 with N{ = Ny, N/ =0, and f : N{ — N/ the zero map.
Then we obtain a morphism m  : /\/lj{,1 SN U M]dVZ,U' This morphism factors as

d d
MM@NZ v~ MNleBNz,U/H g MNZ U
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(Recall N =N; @& N,.) Letx € M?V’U/H(Tgo)), y € M?{,’U(rgo)) be a preimage
of x,and z € M?VZ’U(T@)) be the image of x.

Let O, be the local ring of MldVQ,U Xy Spec Ag at z and U, be the completion
of O,. By [Drinfeld 1974, p. 576 C], the ring U, is isomorphic to the deformation
ring of the formal O-module with level N, structure associated with the Drinfeld
module corresponding to the point z (see Proposition 3.2.1 for a description of the
corresponding divisible O-module and hence of the formal O-module). We note
that U, depends only on the height of the associated formal O-module.

Let us consider the following commutative diagram, where each of the squares
is cartesian:

d d d
Myy <—— Myy XM, SpecO; «—— My y XM, Spec U,

l ! l

M‘,iV,U/H <« M?V,U/H XM, Spec O, «—— M?V,U/H XM, Spec U,

l ! l

Mﬁlvz,U «— Spec O, «— Spec U.

‘We note that the bottom horizontal arrows are flat, hence all horizontal arrows are flat.
The regularity of M?\,’ y/H at the image of the morphism from Spec (« (¢)) cor-
responding to the k (¢)-valued point x is equivalent to the regularity of

d
My v/H XM%}U Spec U,

at the unique point over x because the morphism Spec U, — Mj{,z,U is regular.
It follows from [Katz and Mazur 1985, p. 217, Proposition A7.1.3 (1)] that

(Mﬁlv,U/H XMy SpecU;) = (M%,U XM, Spec U,)".

Notice that this scheme on the right depends only on the height of the associated for-
mal module corresponding to z. Thus the regularity at x depends only on the height.

Remark 8.4.1. We remark that the isomorphism above is an analogue of [Katz and
Mazur 1985, p. 194, Remark 7.1.4]. The idea for the argument above is also taken
from [loc. cit.]. The main difference is that we do not use relative moduli problems.

8.5. Reduction to supersingular case. The height h of the formal O-module cor-
responding to the point y ranges from 1 to d. (Note that this height is the same as
that corresponding to the point z.) We call the point y supersingular if the height
equals d. Note that in terms of f;; (see Section 2.2), h is the number such that
t1=---=tp—1=0and t, #0.
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Now since the supersingular locus is nonempty by Proposition 7.4.1 and closed,
and since there exists a point of arbitrary height near a supersingular point, it suffices
to treat the case h =d.

8.6. Reduction to the standard case. We now consider the case where the point y is
supersingular. The completion of the local ring at y is isomorphic to Dy, ; see [Drin-
feld 1974, p. 576]. The task is to show that the ring of H-invariants (Dy,)# is regular.
The aim of this subsection is to reduce to the case where N| = (A/p™)¢ for some n.

86.1. Let P = (p"/A) and Q = p " /A D --- D p /A for some | <
ni,...,nr <n, 1 <r <d. There is an inclusion Q C P induced by the inclusions
g " /A Cp~"/A C P where the first is the canonical one and the second is into
the i-th summand for 1 <i <r. Let us take an A-module L, whose gp-primary
component is zero, and an open subscheme U C Spec A, so that the pairs (Q® L, U)
and (P @ L, U) satisfy one of the assumptions in Proposition 4.2.1.

Let us write Q' = Q@ L and P’ = P & L. We then obtain a morphism Q' C P’
induced by the inclusion Q C P and the identity on L, and hence a morphism
r: M‘}J,,’U — M‘é,’U using Section 6.2.3.

Set Gpr,o ={g € Auts(P) | gQ' = Q', gl = idg'}. Then the morphism r
above factors as

My = M4 y/Gpo > MdQ’,U

Lemma 8.6.2. The morphism h is an isomorphism.

Proof. One can check directly that / is an isomorphism away from g (that is,
over U \ {p}).

Now, M%,,U /G pr o 1s normal, being a quotient of an affine regular scheme by
a finite group action. We also have that M‘é,’U is regular; hence normal. As they
agree away from ¢ and £ is finite, being the normalizations, they agree over U. [J

8.6.3. Recall that N is a g-torsion A-module which is generated by at most d
elements. Write Ny = A1 @® --- @D A,, where A; = A/p" for 1 <i <r with
some integer n; > 1. Let us choose an integer n > max; n;. Take an injection
A; — A/p" of A-modules fori =1,...,r. Set ﬁl (A/e™)". These injections
give an injection N — (A/p") — (A / gg")d N, where the second arrow is
the injection into the first » factors. For a subgroup H C Auty (N 1), let H denote
the subgroup {g € AutA(Nl) | g(N1) = Ny, gln, € H} of AutA(Nl) As is easily
seen, H is an admissible subgroup of AutA (N1) with respect to the direct sum
decomposition as above if and only if H is an admissible subgroup of Auty (N 1)
From this and Lemma 8.6.2, we see that it suffices to treat the case N; = (A /p™)%

8.7. Some subgroups of H. We now consider the case N| = (A/p")¢ for some
n > 1 in more detail. We will need certain subgroups of an admissible subgroup H
for the proof of Theorem 6.1.1. We label them below.
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8.7.1. To introduce subgroups of an admissible subgroup H C Auty(N;), we
introduce some more notation. Let ¢; = 1 € A/p" C (A/p™)? = N; where the
inclusion is into the i-th factor. We regard N; = (A/p")¢ as the set of row vectors,
on which Aut4 (N1) = GL;(A/$™)°P acts as the multiplication from the right.

Let R; j C A/p" be subsets for 1 <i, j <d. We use the notation {(R; ;)} to
denote the subset

{(ri,j) e My(A/") | 1ij €8 j+ R j for 1 <i, j <d}
of the set My(A/p") of d-by-d matrices, where §; ; is the Kronecker delta.

8.7.2. Let H be an admissible subgroup with respect to the standard direct sum
decomposition of Nj. We assume that the subsets Ry, ..., R, of {1, ..., d} intro-
duced in Section 5.1.4 satisfy condition (b)enumi. Then, by condition (a), there
exists (m; ;) € My(Z) with 0 < m; ; <n such that

H={(®")},

where 0 = p /" is the maximal ideal of A/p". Let K and L; (i =1, ..., u) be as
in Section 5.1 and set

J =Ker[H - K — ]_[ L:].
1<i<u
Let

m:.

, _{1 1fm,-,j=mj,,~=0,
Lj

m; j  otherwise.

Then we have J = {(@m;v-i)}.
Write J; j = §". Set J{, = J; jN§* for 0 <k <n,and J* = {(J))}. Set

ke
i,j

JEifi<l,
JE it > 1,
for 0 <! <d and Jk* :{(Ji]f}e)}. We have
J=J0=J0’d3...DJ0’O=J1=J1’d3...DJ1’O=J2
=J2 5. .o J0=p=...

Note that
J¥ =Ker[J C GLy(A/p™) — GL4(A/9")],

where the arrow is the canonical map, and

JEE={h e J* | eph = €,, mod p*t! for € < m < d).
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8.7.3. It follows from this description that J¥*! is a normal subgroup of J* for
k > 0, and the quotient J"/J"Jrl is abelian for k > 1. Hence JX¢~! is a normal
subgroup of J k-t fork > 1,1 <1 < d. The situation is different for k = 0. However
a similar statement also holds for k = 0.

Lemma 8.7.4. Let 1 <{ <d. Then J%*~! is a normal subgroup of J** and the
quotient J%¢/ 7%= is abelian.

Proof. Tt suffices to prove that J%¢=!/J! is a normal subgroup of J/J' and the
quotient (J%¢/J1)/(J%¢=1/J1) is abelian.

By definition we have J! = Ker[H — K]. Hence the surjection H —» K
induces an isomorphism J/J! = Ker[K — [],,~, Li]. Via this isomorphism we
regard J/J! as a subgroup of K C Auty (N 1[&)])_:_GLd (k ($))°P. In particular each
g€ J/J1 is an element of GL;(x (g)) and acts on N;[p] = (p”*l/go")d, whose
elements we regard as row vectors, as the multiplication by g from the right. Note

that the submodule
Nilpl=e= €D 9"/
<i<d

of Ni[g] is stable under the action of J/J 1. 1t follows from the definition of
JO=1 that JO’Z_I/J1 is equal to the kernel of J/J1 — Auts(N1[g]s¢). This
in particular shows that J%¢~!/J! is a normal subgroup of J/J!. Let us fix an
element e € Ni[p]>¢\ N1[g]>¢+1- Let us consider the map f : JO’E/J1 — Nilplse
that sends g € J%¢/J! to eg — e € Ni[p]>¢. It is then easy to check that f is a
homomorphism of groups and the kernel of f is equal to J%¢~!/J1. This shows
that the quotient (J%¢/J1)/(J%¢~1/J1) is abelian and the proof is complete. [

8.7.5. Set QK¢ =gkt k=1 for k>0, 1 <I <d. We take the set of representatives
of Q% as follows. Let us choose a uniformizer 7 € A o and set

o k.l ke—1

Q’F"? _ {0} if g =0
Y et laexp)} it IS # T

Then the set { (Qk e)} is a subset of Jk¢ and is a complete set of representatives

for Q%*. Moreover the image of {(Q )} under the homomorphism J*¢ —
J& ) Tk is a subgroup of J&EH1/ gk+1]

8.8. Some additive polynomials.

8.8.1. We regard the gp-torsion A-module N; as an O-module. A-submodules are
regarded as O-submodules and vice versa.

Recall (see Section 2) that Dy, is the universal deformation ring of the formal
O-module Fd@),{(@)Tp) (see Definition 2.1.2 and Proposition 2.2.1) with maximal
height equipped with a structure of level Nj. The formal O-module is isomorphic
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as a formal group to @a, and we use f as in Section 2.2 to denote the O-structure.
The explicit description of Dy, is found in (the proof of) Proposition 2.3.1. We
regard elements of N as elements of mp,, C Dy, via the universal level structure

1leN1—>mDNl,

where Mmpy, is the maximal ideal of Dy,. (That is, we write n; to mean ¥ (n1).)

We regard elements of N as row vectors with coordinates in A/g". Then the
group GL;(A /™) acts on N; from the right, where the action of g € GL;(A /")
is given by the multiplication — - g : N — N; by g from the right. Let C be as in
Section 2. Let g € GL;(A/¢"). For a deformation (F, f) over some R € C with
structure Y g of level Ny, let giyyr denote the composite ¥ g o (— - g). Then gip
is another structure of level N;. By sending (F, f, ¥r) to (F, f, g¢¥r) for each
(F, f, ¥r), we obtain an automorphism of the universal deformation ring Dy,. We
denote this automorphism also by — - g. It is then straightforward to check that the
equality ¥ (x) - g = ¥ (xg) holds for any x € Nj.

8.8.2. Let us introduce some additive polynomials with coefficients in Dy, and list
some of the properties. Let M C N; = (A/p™)? be an A-submodule. We set

M) =[]« —a) e Dy,lxl.
aeM

As M is an abelian group, f¥ (x) is an additive polynomial, thatis ™ (x +y) =
fM(x) 4+ fM(y) holds where x and y are indeterminates.

Since «k(p) C A, = O, any M as above is a k(g)-vector space. Hence we
have fM(sx) = sfM(x) for any s € k(). It follows from the construction of
Fd given in Section 2.2 that the action of s € x(p) C O on mp,, asa formal
O-module is equal to the multiplication by s in the « (¢)-algebra Dy, . Hence we
have fM(sn) =sfM(n) for any s € k() and for any n € Nj.

Let y € Dy, and g € GL4(A/"). Then we have

Mo -g=rM"eo =[] ve—a.

aeMg
8.8.3. Now we look at the @O-module structure f of the universal deformation
(Dpny, f) (see Section 2.2).
For z € k (), we have f,(x) = zx.
Let n > m > 0. Then the power series (actually a polynomial in the case at hand)

frm(x) € Dy, [[x]]

giving the multiplication-by-7"" has as the set of roots the set of 7" -torsion points.
Thus we have

fan () = M (0),
where M = N [n™] C (A/p")? is the set of 7™ -torsion points.
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As the universal level structure v is an O-module homomorphism, we have
fa(ny) =an; fora € O and n| € N| (by abuse of notation, we write n for ¥ (n1)).
Using the additivity, we have fo « (1 +1}) = fozk (1) + fonk (n}) = ct¥ny +c¥n),
for0 <k <n, ny,n| € Ny, and ¢ € k().

8.9. A proposition of Katz and Mazur. We recall the following proposition, using
the notation in [Katz and Mazur 1985].

Proposition 8.9.1 [Katz and Mazur 1985, Proposition 7.5.2, p. 205]. Let A be a
complete noetherian local ring which is regular of dimension n and whose residue
field is perfect. Let G be a finite subgroup of Aut(A), such that every g € G acts
trivially on the residue field of A. Let (x1,...,x,—1,Yy) be a regular system of
parameters in A. Assume that for each g € G we have

. gxj)=x; fori=1,...,n—1,

2. g(y) =uymod (x1, ..., x,—1) for some unitu € A
Then

(i) A is free over A with basis 1,7y, y*, ..., (y)*6~1,
(ii) A© is a regular local ring of dimension n.

(iii) A regular system of parameters for AC is (x1, ..., Xn—1, N(y)), where N(y)
is the norm ]_[geG g(y). O
Lemma 8.9.2. In the setting of Proposition 8.9.1, assumption 2 follows from as-

sumption 1.

Proof. Assumption 1 implies that the action of G on A induces the action of G on the
quotient ring A= A/(x1, ..., xp—1). Since xy, ..., x,—1, y form a regular system of
parameters, A is a discrete valuation ring and the image ¥ of y in A is a uniformizer
of A. Hence g(¥) is also a uniformizer and we have g(¥) = uy for some unit u of A.
Since any lift 7' € A of u is a unit in A, it follows that assumption 2 is satisfied. [

8.10. Fork>0and 1 <i <d, we let Jik denote the A-submodule
‘Iik = Ji]fl G- Ji’fd
of Ni. For 0 < /¢ <d, we set
IH=re el
Proposition 8.10.1. Letk > 0and 0 < ¢ <d.

1. The ring of invariants (Dy,)’ “is regular.

2. fJik’lZ (e;) for 1 <i <d form a regular system of parameters in (DNI)J“.
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Proof. We prove this inductively. The groups J%* are ordered by inclusion (both k
and £ run). For k large, J%* = {1}, so the claim holds true by Proposition 2.3.1.
Let 1 <£ <d. (The case £ =0 appears as the case £ = d.) Suppose the claim
holds true for J5¢~!. We prove the claim for J*.
We use Proposition 8.9.1 in the following manner. Recall that is a
normal subgroup of Jkf. We set G = TR TR and A = (Dy,)”"" so that
AS = (DNI)J We let y = fJe , n in Proposition 8.9.1 to be d, and

o xa) = 7 e, T )

(equality not as ideals but as tuples) where the ¢ means omission of the ¢-th
component.

Jkﬁl

Lemma 8.10.2. With notation as above, assumptions 1, 2 of Proposition 8.9.1 hold.

Proof. By Lemma 8.9.2, it suffices to prove that assumptlon 1 holds

By the inductive hypothesis, the elements f”i e € (Dy)"" " for1<i<d
form a regular system of parameters. Let i be an integer with 1 <i <d, i # £.
We show that f7/i’ ““(¢;) is fixed under the action of J*C.

Take g € Q¢ = Jkt/ Jk4=1 Take the representative g of g 1n {(Q )} Slnce
i #4, we have eig = ¢ and Jk -1 = J” Hence we have fjk (e,) = f “(ep)
and fJ (e,)g = fJ g(e,) Hence it sufﬁces to show J g = J.

Letx € Jl. . Let A;(x) denote the d-by-d matrix whose i-th row is x and the
rest is zero. Then we have I; + A; (x) € J&¢, where I; denotes the d-by-d identity
matrix. Observe that the i-th row of the product (I; + A;(x))g € J k.t g equal
to ¢; + xg. This shows x§ € J**. Since x € J** is arbitrary, we have J*‘ c J**
Since Jl.k’(Z is finite, we obtain the equality Jikjg =J- k€ as desired. ([

With Lemma 8.10.2 above, we apply Proposition 8.9.1 to our situation. This
completes the proof of Proposition 8.10.1. ([

8.11. Using Proposition 8.10.1 with k =0 and ¢ = d, we see that the ring of
invariants (Dy,)” is regular and that f”i 7 (e;) for 1 <i <d form a regular system
of parameters. As H/J = [];cx Lj, it remains to take the invariants under the
action of [[;.p L

Take g = (gc,d) € ]_[jeR L ;. We have

JER

JO.d J(),dg JO,d JO,zl
[ (ep)-g=f" S(epg) = f"" (epg) = f"" (gp1€1+ -+ &pa€a)
0,d 0,d
=" (gpae) +- -+ 7 (gp.aea)
JO,d JO’d
=gp1 [ (e)+---+gpafr (eq)

for 1 < b < d. This follows from the properties of additive polynomials collected
in Section 8.8.
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Letd,,...,d, be asin Section 5.1.4. Fors € {1,...,u},set Iy, ={di +---+
d371+17sd1++d5}
Lemma 8.11.1. Foranyi,i’ € I;, we have Jio’d = Ji(,)’d.
Proof. We use the equivalence relation ~ on the set {1, ..., d} that was introduced
in Section 5.1.4 (we are taking r there to be d here).

Since H is a group, it therefore follows that for j, j’, j” € {1, ..., d}, we have
mj —+ mj: > mj . This lmphes that, if _] ~ j/, then we have mij jn = mj jr.
Note that i ~i’. Hence m; j =m; j forany j € {1, ..., d}. This proves the claim. (]

Let us write x; = ffl-o'd (e;) for 1 <i <d. We identify DI{,I with k () [[x1, ..., xq]].
Consider the subring By = k (9)[x;licy, for s € R.

Lemma 8.11.2. The subring By is stable under the action of Ly and the action is
Kk (g)-linear.

Proof. This follows from the previous lemma and the computation of the action
of 1_[ jeR L j U

By Dickson’s theorem (Theorem 8.12.1), we have that Bl isa polynomial ring
k (9)[ filier, for some homogeneous polynomials f; in the x;’s. Hence we obtain
Kk(p)[x1,.. .,xd]nfeR Lj— k(@)L f1, ..., fa] for some homogeneous polynomials f;.

Lemma 8.11.3. We have k(9)[[x1, . .., xa ik X = k(D) f1, - . ., fall.

Proof. The inclusion of the right-hand side into the left-hand side is obvious.

Let y e rgo)[[xl, ey xd]]nieR Lj and write Yy =Y ;- i, Where each y; is a
homogeneous polynomial of degree i in the x’s. By definition, o € I1 jer Lj sends
a homogeneous polynomial to a homogeneous polynomial of the same degree.
Therefore, each y; belongs to « (p)[x1, ..., xd]nfek Li hence to k (@)[ f1, ..., fal.

Let g = ¢ []%, e k(@) fis-.., fa1 be a monomial, where ¢ € k() and
a; > 0 foreach 1 <i < d. Then g is homogeneous of degree 2?21 a; deg f;
in the x’s. Hence g appears as a summand of y,, only if m = Zle a; deg fi. In
particular, g appears only finitely many times. Therefore ) _,_, y; defines an element
of rga)[[fl, ..., fall. This gives the other inclusion. - O

Proof of Theorem 6.1.1. The theorem follows from Lemma 8.11.3. O

8.12. We recall Dickson’s theorem. Let V be a d-dimensional « (g)-vector space.
Taking a basis 1, ..., &g, we identify the symmetric algebra Sym, )V with the
polynomial ring k (¢)[c1, ..., ag]. Let G = GL(V). Let F be a field containing
k(). Then G acts on Flay, ..., a4] = SymK(K_,)(V) ®w(p) F.

Theorem 8.12.1 [Dickson 1911]. (see [Smith 1995, p. 239, Theorem 8.1.5]) The
ring of invariants Flay, ..., a1 is a polynomial ring F[Bi, ..., B4l for some
explicitly given homogeneous polynomials B, . .., Bq. ([l
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