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A COMBINATORIAL IDENTITY FOR THE
JACOBIAN OF t-SHIFTED INVARIANTS

OKSANA YAKIMOVA

Let g be a simple Lie algebra. There are classical formulas for the Jacobians
of the generating invariants of the Weyl group of g and of the images under
the Harish-Chandra projection of the generators of the centre Z(g)⊂U(g).
We present a modification of these formulas related to Takiff Lie algebras.

Introduction

Let g be a simple complex Lie algebra, and h ⊂ g be a Cartan subalgebra. Fix
a triangular decomposition g = n− ⊕ h⊕ n+. Let 1 ⊂ h∗ be the corresponding
root system with 1+ ⊂1 being the subset of positive roots. Set n = rk g= dim h.
Define ρ = 1

2

∑
α∈1+ α. For α ∈ 1+, let { fα, hα, eα} ⊂ g be an sl2-triple with

eα ∈ gα. Let W =W (g, h) be the Weyl group of g.
In a basis {h1, . . . , hn} for h, the Jacobian J of P1, . . . , Pn ∈ S(h)∼= C[h∗] is a

polynomial with the following property:

d P1 ∧ d P2 ∧ · · · ∧ d Pn = Jdh1 ∧ · · · ∧ dhn.

Up to the sign, J is independent of the order of the elements Pi ; up to a nonzero
scalar, J is independent of the choice of a basis for h. We set

J ({Pi })= J (P1, . . . , Pn)= J .

Suppose {P̂1, . . . , P̂n}⊂S(h)W is a set of homogeneous generating invariants. Then

J ({P̂i })=
∏
α∈1+

hα under a suitable normalisation of the elements P̂i

by a classical argument, which is presented, for example, in [Humphreys 1990,
Section 3.13].

Set di := deg P̂i . Let U(g) =
⋃
∞

d=0 Ud(g) be the canonical filtration on the
enveloping algebra U(g), let Z(g) stand for the centre of U(g). Then Z(g) has a
set {Pi | 16 i 6 n} of algebraically independent generators such that Pi ∈ Udi (g).
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Let Pi ∈ S(h) ∼= C[h∗] be the image of Pi under the Harish-Chandra projection.
Define P̂i ∈ C[h∗] by P̂i (x) = Pi (x − ρ) for x ∈ h∗. Then P̂i ∈ S(h)W; see, e.g.,
[Dixmier 1974, Section 7.4], and

J ({Pi })=
∏
α∈1+

(hα + ρ(hα)) under a suitable normalisation of the elements Pi .

For any complex Lie algebra l, let$:S(l)→U(l) be the canonical symmetrisation
map. Let S(l)l denote the ring of symmetric l-invariants. Since$ is an isomorphism
of l-modules, it provides an isomorphism of vector spaces S(l)l ∼= Z(l).

Suppose next that Pi =$(Hi ) is the symmetrisation of Hi and that Hi ∈ S(g)g

is a homogeneous generator of degree di . Let T : g→ g[t] be the C-linear map
sending each x ∈ g to xt . Here g[t] is the current algebra associated with g, where
[ξ ta, ηtb

] = [ξ, η]ta+b for ξ, η ∈ g, a, b ∈ Z>0. The map T extends uniquely to
the commutative algebras homomorphism

T : S(g)→ S(g[t]).

Set H [1]i = T (Hi ) and P [1]i =$(H
[1]
i ). Here P [1]i ∈ U(tg[t]).

The triangular decomposition of g extends to g[t] as g[t] = n−[t]⊕h[t]⊕n+[t].
Let P [1]i ∈ S(th[t]) be the image of P [1]i under the Harish-Chandra projection. For
h j ∈ h, let Dh j be the unique derivation of S(th[t]) such that

Dh j (ytk)= ktk−1∂h j y

if k > 1 and y ∈ h. We define the Jacobian J ({P [1]i })= J (P [1]1 , . . . , P [1]n ) by

J ({P [1]i })= det(Dh j P [1]i )|t=1.

Note that J ({P [1]i }) ∈ S(h).

Theorem 1. Under a suitable normalisation of the elements Hi , we have the identity

J ({P [1]i })=
∏
α∈1+

(hα + ρ(hα)+ 1).

Our proof of Theorem 1 interprets the zero set of J ({P [1]i }) in terms of the Takiff
Lie algebra q= g[u]/(u2) and then uses the extremal projector associated with g;
see Section 2A for the definition.

Takiff [1971, Corollary 11.3] proved that S(q)q is a polynomial ring whose Krull
dimension equals 2 rk g. This has started a serious investigation of these Lie algebras
and their generalisations [Chari and Greenstein 2009; 2011; Khare and Ridenour
2012; Greenstein and Mazorchuk 2017], see also [Panyushev and Yakimova 2020]
and references therein. Verma modules and an analogue of the Harish-Chandra
homomorphism for q were defined and studied in [Geoffriau 1995; Wilson 2011].
We remark that q-modules appearing in this paper are essentially different.
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1. Several combinatorial formulas

Keep the notation of the introduction. In particular, Hi ∈ S(g)g stands for a
homogeneous generator of degree di , Pi is the image of Pi = $(Hi ) under the
Harish-Chandra projection, P̂i ∈ S(h)W is the (−ρ)-shift of Pi , i.e., P̂i (x) =
Pi (x−ρ) for x ∈ h∗, and P [1]i is the image of $(T (Hi )) under the Harish-Chandra
projection related to g[t]. Also let P◦i be the highest degree component of Pi . Then
P◦i = Hi |h. By the Chevalley restriction theorem, the polynomials P◦i with 16 i 6 n
generate S(h)W. It is clear that J ({P◦i })= J ({P̂i }). Let a choice of H1, . . . , Hn be
such that J ({P◦i })=

∏
α∈1+ hα.

Lemma 1.1. The highest degree component of J ({P [1]i }) is equal to
∏
α∈1+ hα.

Proof. The highest degree component of P [1]i is T (P◦i ) ∈ S(ht). Each monomial
of T (P◦i ) is of the form (x1t) · · · (xdi t) with x j ∈ h for each j. By the construction,
Dh j T (P

◦

i )|t=1 = ∂h j P◦i . The result follows. �

In order to prove the next lemma, we need a well-known equality, namely∏n
i=1 di = |W |.

Lemma 1.2. For the constant term of the Jacobian J ({P [1]i }), we have the formula
J ({P [1]i })(0)=

∏
α∈1+(ρ(hα)+ 1).

Proof. Clearly P [1]i |t=1 = Pi . Since Hi is a homogeneous polynomial of degree di ,
the linear in h part of P [1]i has degree di in t . It follows that

J ({P [1]i })(0)=
( n∏

i=1

di

)
J ({Pi })(0)= |W |

∏
α∈1+

ρ(hα).

We complete the proof with a formula of Kostant which states

(1-1)
∏
α∈1+

ρ(hα)+ 1
ρ(hα)

= |W∨| = |W |. �

Remark 1.3. The Kostant formula (1-1) is a particular case of another combinatorial
statement. Let W (t)=

∑
w∈W t l(w) be the Poincaré polynomial of W. Then

W∨(t)=
∏
α∈1+

t (ρ,α
∨)+1
− 1

t (ρ,α∨)− 1
;

see equation (34) in [Humphreys 1990, Section 3.20]. Since ρ(hα) = (ρ, α∨),
evaluating at t = 1 one gets exactly (1-1).

Example 1.4. Take g= sl2 with the usual basis {e, h, f }, where [h, e] = 2e. Then
H = H1 = 2e f + 1

2 h2, H [1] = 2(et)( f t)+ 1
2(ht)2, and

P [1] =$(H [1])= (et)( f t)+ ( f t)(et)+ 1
2(ht)2 = 1

2(ht)2+ ht2
+ 2( f t)(et).
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Therefore P [1] = P [1]1 =
1
2(ht)2+ ht2. Computing the partial derivative and evalu-

ating at t = 1, we obtain J ({P [1]})= h+ 2= h+ ρ(h)+ 1.

2. Takiff Lie algebras and branching

Theorem 1 can be interpreted as a statement in representation theory of Takiff Lie
algebras

q= gngab ∼= g[u]/(u2).

The first factor, the nonabelian copy of g, acts on gab
= gu as a subalgebra of gl(g).

Therefore there is the canonical embedding q⊂ gl(g)ngab. Set `= dim g+ 1. In
its turn, gl(g)ngab can be realised as a subalgebra of gl(g⊕C)∼= gl`(C). The Lie
algebra gl`(C) is equipped with the standard triangular decomposition. Let b` ⊂
gl`(C) be the corresponding positive Borel. Recall that we have chosen a triangular
decomposition g= n−⊕h⊕n+. Set b= h⊕n+, b− = h⊕n−. We fix an embedding
gl(g)ngab

⊂ gl(g⊕C) such that b−ngab lies in the opposite Borel b−` and b⊂ b`.
Let ψ :S(g)→S(q) be a derivation defined uniquely by ψ(ξ)= ξu for any ξ ∈ g.

Set Ri =$(ψ(Hi )). The elements R1, . . . ,Rn ∈ U(q) are not necessarily central.
If we assume that d1= 2, then R1 ∈Z(q). However, since both maps, ψ and$ , are
homomorphisms of g-modules, each Ri commutes with g. Note that the elements Ri

have degree 1 in gu. They are crucial for further considerations and our next goal
is to relate them to P [1]i ∈ U(tg[t]).

The map ψ is also well defined for the tensor algebra of g, but not for U(g),
because of the following obstacle:

ψ(ξ1ξ2−ξ2ξ1)= (ξ1u)ξ2+ ξ1(ξ2u)− (ξ2u)ξ1− ξ2(ξ1u)

= [ξ1u, ξ2] + [ξ1, ξ2u] = 2[ξ1, ξ2]u 6= [ξ1, ξ2]u.

The remedy is to pass to the current algebras g[t] and q[t].

Lemma 2.1. There is a well-defined C-linear map T : U(tg[t])→ U(q[t]) such that

• T (ξ tk)= k(ξu)tk−1 for each ξ ∈ g,

• T (ab)= T (a)b+ aT (b) for all a, b ∈ U(tg[t]), i.e., T is a derivation.

Proof. Take ξ, η ∈ g and k,m > 1. Then

T (ξ tkηtm
− ηtmξ tk)

= k(ξu)tk−1ηtm
+mξ tk(ηu)tm−1

−m(ηu)tm−1ξ tk
− kηtm(ξu)tk−1

= k[ξu, η]tk−1+m
+m[ξ, ηu]tk+m−1

= (k+m)([ξ, η]u)tk+m−1
= T ([ξ, η]tk+m). �

For a monomial ξ = ξ1 · · · ξd with ξi ∈ g, we have T ◦$◦T (ξ)|t=1 =$◦ψ(ξ).
Hence, by the construction, Ri = T (P [1]i )|t=1.
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A word of caution: in U(b−)(n+u) and similar expressions, (n+u) stands for
the subspace n+u ⊂ gab and not for an ideal generated by n+u. The same applies
to (bu), (gu), etc.

Lemma 2.2. Let M(λ) = U(b−` )vλ with λ ∈ C` be a Verma module of gl(g⊕C).
Set µ = λ|h. There exists a nontrivial linear combination R=

∑
ciRi such that

Rvλ ∈ n−U(b−)(n+u)vλ if and only if J ({P [1]i })(µ)= 0.

Proof. We have
P [1]i ∈ P [1]i + n−[t]U(g[t])n+[t].

Accordingly, Ri = T (P [1]i )|t=1+X , where X is the image of the second summand
of P [1]i . Let X = x1 · · · xr be a monomial appearing in X . If xr ∈ n

+, then Xvλ = 0.
Assume that Xvλ 6= 0. Then necessarily xr ∈ n

+u and x1, . . . , xr−1 ∈ g. If xi ∈ n
+

for some i 6 (r−1), then we replace X by x1 · · · xi−1[xi , xi+1, . . . , xr ]. Note that
here [xi , xr ] ∈ n

+u. Applying this procedure as often as possible one replaces X
by an element of U(b−)(n+u) without altering Xvλ. Since X is an invariant of h,
the new element lies in n−U(b−)(n+u). Summing up,

(2-1) Rivλ ∈ T (P [1]i )|t=1vλ+ n−U(b−)(n+u)vλ.

Further
T (P [1]i )|t=1 =

n∑
j=1

(Dh j P [1]i )|t=1h j u,

where Dh j are the same as in the introduction. Recall that they have been used in
order to define J ({P [1]i }). Hence J ({P [1]i })(µ)= 0 if and only if there is a nonzero
vector c̄ = (c1, . . . , cn) such that A(µ)=

∑
ciT (P [1]i )|t=1,µ = 0. This shows that

if J ({P [1]i })(µ)= 0, then Rvλ ∈ n−U(b−)(n+u)vλ.
Suppose now that Rvλ ∈ n−U(b−)(n+u)vλ ⊂ U(n−)(n+u)vλ. Then

A(µ)vλ ∈ U(n−)(n+u)vλ.

We are working with a Verma module of gl`(C); the subspaces n+u and hu are
contained in n−` , and A(µ) ∈ hu. Hence A(µ) must be an element of U(n−)(n+u).
At the same time, hu ∩n+u = 0. Therefore

∑n
i=1 ci (Dh j P [1]i )|t=1,µ = 0 for each j

and thus J ({P [1]i })(µ)= 0. �

For γ ∈ h∗, let M(λ|q)γ be the corresponding weight subspace of U(q)vλ ⊂
M(λ). Since hu ⊂ n−` , either M(λ|q)γ = 0 or dim M(λ|q)γ =∞. We also have
(hu)vλ 6= 0. Because of these facts, the q-modules M(λ) and U(q)vλ do not fit in
the framework of the highest weight theory developed in [Geoffriau 1995; Wilson
2011]. Nevertheless, they may have some nice features.

Lemma 2.2 relates J ({P [1]i }) to a property of the branching q ↓ g in a particular
case of the q-module U(q)vλ. In order to get a better understanding of this branching
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problem, we employ a certain projector introduced by Asherova, Smirnov, and
Tolstoy in [Asherova et al. 1971].

2A. The extremal projector. Recall that { fα, hα, eα} ⊂ g is the sl2-triple corre-
sponding to α ∈ 1+. Set N = |1+| and choose a numbering of positive roots,
α1, . . . , αN . Define

pα = 1+
∞∑

k=1

f k
α ek
α

(−1)k

k!(hα + ρ(hα)+ 1) · · · (hα + ρ(hα)+ k)
.

Each pα , as well as any product of finitely many of them, is regarded as an element
of the algebra of formal series of monomials

f r1
α1
· · · f rN

αN
ekN
αN
· · · ek1

α1
such that (k1− r1)α1+ · · ·+ (kN − rN )αN = 0

with coefficients in the field of fractions of the commutative algebra U(h). A total
order on1+ is said to be normal (or convex) if either α<α+β <β or β <α+β <α
for each pair of positive roots α, β such that α+β ∈1. There is a bijection between
the normal orders and the reduced decompositions of the longest element of W.

Choose now a normal order α1 < α2 < · · ·< αN , and define

p = pα1 · · · pαN

accordingly. The element p is known as the extremal projector [Asherova et al.
1971]. It is independent of the choice of a normal order and p2

= p. For proofs and
more details on this operator, see, e.g., [Molev 2007, Section 9.1]. Most importantly,
it has the property that

(2-2) eα p = p fα = 0

for each α ∈1+.
The nilpotent radical n` ⊂ b` acts on M(λ) locally nilpotently. Recall that

n+ ⊂ n`. Let v ∈ M(λ) be an eigenvector of h of weight γ ∈ h∗. The element pv
is a finite sum of vectors q jv j , where q j ∈ QuotU(h)∼= C(h∗) and v j ∈ M(λ). If
all the appearing denominators are nonzero at γ , then pv is a well-defined vector
of M(λ) of the same weight γ .

3. Proof of Theorem 1

Let λ, µ, and M(λ) be as in Lemma 2.2. Keep in mind that λ and µ are arbitrary
elements of C` and Cn. Since each Ri commutes with g, each Rivλ is a highest
weight vector of g.

We use the extremal projector p associated with g. If p can be applied to a
highest weight vector v, then pv= v. Suppose that p is defined at µ. Then, in view
of (2-1) and (2-2),

Rivλ = pRivλ = pT (P [1]i )|t=1vλ.
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Assume that J ({P [1]i })(µ) = 0. Then there is a nontrivial linear combination
R=

∑
ciRi such that

Rvλ ∈ n−U(b−)(n+u)vλ;

see Lemma 2.2. Here pRvλ = 0 and hence Rvλ = 0 as well.
Since we are considering a Verma module of gl`(C), this implies that

R ∈ U(gl`(C))b` ∩U(q)= U(q)b.

Hence the symbol gr(R) of R lies in the ideal of S(q) generated by b.
The decomposition g = n−⊕b defines a bigrading on S(g). Let H •

i be the
bihomogeneous component of Hi having the highest degree with respect to n−.
According to [Panyushev and Yakimova 2012, Section 3], H •

i ∈ bS
di−1(n−) and

the polynomials H •

1, . . . , H •

n are algebraically independent. We have

ψ(H •

i ) ∈ (bu)Sdi−1(n−)⊕ b(n−u)Sdi−2(n−).

Write this as ψ(H •

i ) ∈ Hi,1+ b(n−u)Sdi−2(n−). Then the polynomials Hi,1 with
1 6 i 6 n are still algebraically independent. As can be easily seen, ψ(Hi ) ∈

Hi,1+ bS(q).
Set d =maxi : ci 6=0 di . Then

gr(R)=
∑

i : di=d

ciψ(Hi )

and it lies in (b)CS(q) if and only if
∑

i : di=d ci Hi,1 = 0. Since at least one ci in
this linear combination is nonzero, we get a contradiction. The following is settled:
if p is defined at µ, then J ({P [1]i })(µ) 6= 0.

Now we know that the zero set of J ({P [1]i }) lies in the union of hyperplanes
hα+ρ(hα)=−k with k > 1. At the same time, this zero set is an affine subvariety
of Cn of codimension one. By Lemma 1.1, the highest degree component of
J ({P [1]i }) is equal to

∏
α∈1+ hα. Therefore the zero set of J ({P [1]i }) is the union

of N hyperplanes and J ({P [1]i }) is the product of N linear factors of the form
(hα+ρ(hα)+kα). Moreover, each α ∈1+ must appear in exactly one linear factor
of J ({P [1]i }).

By Lemma 1.2, J ({P [1]i })(0)=
∏
α∈1+(ρ(hα)+ 1). Hence we have∏

α∈1+

ρ(hα)+ kα
ρ(hα)+ 1

= 1.

Since ρ(hα), kα > 1, each kα is equal to 1. �

4. Conclusion

The elements Ri are rather natural g-invariants in U(q) of degree one in gu. Note that
because gu is an abelian ideal of q, there is no ambiguity in defining the degree in gu.
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The involvement of these elements in the branching rules q ↓ g remains unclear.
However, combining Lemma 2.2 with Theorem 1, we obtain the following statement.

Corollary 4.1. In the notation of Lemma 2.2, there is a nontrivial linear combina-
tion R=

∑
ciRi such that Rvλ ∈ n−U(q)vλ if and only if µ(hα)=−ρ(hα)−1 for

some α ∈1+. �

As the theory of finite-dimensional representations suggests, it is unusual for a
highest weight vector of g to belong to the image of n−. The proof of Theorem 1
shows that Rvλ 6= 0 for the linear combination of Corollary 4.1.

Remark 4.2. The subspace V[1] = (U(g)(gu))g ⊂ U(q) is a Z(g)-module. From a
well-known description of (g⊗S(g))g, one can deduce that V[1] is freely generated
by R1, . . . ,Rn as a Z(g)-module. There are other choices of generators in V[1] and
it is not clear, whether one can get nice formulas for the corresponding Jacobians.
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