

*Pacific  
Journal of  
Mathematics*

**A COMBINATORIAL IDENTITY FOR THE  
JACOBIAN OF  $t$ -SHIFTED INVARIANTS**

OKSANA YAKIMOVA



## A COMBINATORIAL IDENTITY FOR THE JACOBIAN OF $t$ -SHIFTED INVARIANTS

OKSANA YAKIMOVA

Let  $\mathfrak{g}$  be a simple Lie algebra. There are classical formulas for the Jacobians of the generating invariants of the Weyl group of  $\mathfrak{g}$  and of the images under the Harish-Chandra projection of the generators of the centre  $\mathcal{Z}(\mathfrak{g}) \subset \mathcal{U}(\mathfrak{g})$ . We present a modification of these formulas related to Takiff Lie algebras.

### Introduction

Let  $\mathfrak{g}$  be a simple complex Lie algebra, and  $\mathfrak{h} \subset \mathfrak{g}$  be a Cartan subalgebra. Fix a triangular decomposition  $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ . Let  $\Delta \subset \mathfrak{h}^*$  be the corresponding root system with  $\Delta^+ \subset \Delta$  being the subset of positive roots. Set  $n = \text{rk } \mathfrak{g} = \dim \mathfrak{h}$ . Define  $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$ . For  $\alpha \in \Delta^+$ , let  $\{f_\alpha, h_\alpha, e_\alpha\} \subset \mathfrak{g}$  be an  $\mathfrak{sl}_2$ -triple with  $e_\alpha \in \mathfrak{g}_\alpha$ . Let  $W = W(\mathfrak{g}, \mathfrak{h})$  be the Weyl group of  $\mathfrak{g}$ .

In a basis  $\{h_1, \dots, h_n\}$  for  $\mathfrak{h}$ , the Jacobian  $\mathbf{J}$  of  $P_1, \dots, P_n \in \mathcal{S}(\mathfrak{h}) \cong \mathbb{C}[\mathfrak{h}^*]$  is a polynomial with the following property:

$$dP_1 \wedge dP_2 \wedge \dots \wedge dP_n = \mathbf{J} dh_1 \wedge \dots \wedge dh_n.$$

Up to the sign,  $\mathbf{J}$  is independent of the order of the elements  $P_i$ ; up to a nonzero scalar,  $\mathbf{J}$  is independent of the choice of a basis for  $\mathfrak{h}$ . We set

$$J(\{P_i\}) = J(P_1, \dots, P_n) = \mathbf{J}.$$

Suppose  $\{\hat{P}_1, \dots, \hat{P}_n\} \subset \mathcal{S}(\mathfrak{h})^W$  is a set of homogeneous generating invariants. Then

$$J(\{\hat{P}_i\}) = \prod_{\alpha \in \Delta^+} h_\alpha \text{ under a suitable normalisation of the elements } \hat{P}_i$$

by a classical argument, which is presented, for example, in [Humphreys 1990, Section 3.13].

Set  $d_i := \deg \hat{P}_i$ . Let  $\mathcal{U}(\mathfrak{g}) = \bigcup_{d=0}^{\infty} \mathcal{U}_d(\mathfrak{g})$  be the canonical filtration on the enveloping algebra  $\mathcal{U}(\mathfrak{g})$ , let  $\mathcal{Z}(\mathfrak{g})$  stand for the centre of  $\mathcal{U}(\mathfrak{g})$ . Then  $\mathcal{Z}(\mathfrak{g})$  has a set  $\{\mathcal{P}_i \mid 1 \leq i \leq n\}$  of algebraically independent generators such that  $\mathcal{P}_i \in \mathcal{U}_{d_i}(\mathfrak{g})$ .

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — project numbers 330450448, 404144169.

*MSC2010:* primary 17B20, 17B35, 17B70; secondary 22E47.

*Keywords:* Takiff Lie algebras, symmetric invariants, Jacobian, Harish-Chandra projection.

Let  $P_i \in \mathcal{S}(\mathfrak{h}) \cong \mathbb{C}[\mathfrak{h}^*]$  be the image of  $\mathcal{P}_i$  under the Harish-Chandra projection. Define  $\hat{P}_i \in \mathbb{C}[\mathfrak{h}^*]$  by  $\hat{P}_i(x) = P_i(x - \rho)$  for  $x \in \mathfrak{h}^*$ . Then  $\hat{P}_i \in \mathcal{S}(\mathfrak{h})^W$ ; see, e.g., [Dixmier 1974, Section 7.4], and

$$J(\{P_i\}) = \prod_{\alpha \in \Delta^+} (h_\alpha + \rho(h_\alpha)) \text{ under a suitable normalisation of the elements } \mathcal{P}_i.$$

For any complex Lie algebra  $\mathfrak{l}$ , let  $\varpi: \mathcal{S}(\mathfrak{l}) \rightarrow \mathcal{U}(\mathfrak{l})$  be the canonical symmetrisation map. Let  $\mathcal{S}(\mathfrak{l})^{\mathfrak{l}}$  denote the ring of symmetric  $\mathfrak{l}$ -invariants. Since  $\varpi$  is an isomorphism of  $\mathfrak{l}$ -modules, it provides an isomorphism of vector spaces  $\mathcal{S}(\mathfrak{l})^{\mathfrak{l}} \cong \mathcal{Z}(\mathfrak{l})$ .

Suppose next that  $\mathcal{P}_i = \varpi(H_i)$  is the symmetrisation of  $H_i$  and that  $H_i \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$  is a homogeneous generator of degree  $d_i$ . Let  $T: \mathfrak{g} \rightarrow \mathfrak{g}[t]$  be the  $\mathbb{C}$ -linear map sending each  $x \in \mathfrak{g}$  to  $xt$ . Here  $\mathfrak{g}[t]$  is the current algebra associated with  $\mathfrak{g}$ , where  $[\xi t^a, \eta t^b] = [\xi, \eta]t^{a+b}$  for  $\xi, \eta \in \mathfrak{g}$ ,  $a, b \in \mathbb{Z}_{\geq 0}$ . The map  $T$  extends uniquely to the commutative algebras homomorphism

$$T: \mathcal{S}(\mathfrak{g}) \rightarrow \mathcal{S}(\mathfrak{g}[t]).$$

Set  $H_i^{[1]} = T(H_i)$  and  $\mathcal{P}_i^{[1]} = \varpi(H_i^{[1]})$ . Here  $\mathcal{P}_i^{[1]} \in \mathcal{U}(t\mathfrak{g}[t])$ .

The triangular decomposition of  $\mathfrak{g}$  extends to  $\mathfrak{g}[t]$  as  $\mathfrak{g}[t] = \mathfrak{n}^-[t] \oplus \mathfrak{h}[t] \oplus \mathfrak{n}^+[t]$ . Let  $P_i^{[1]} \in \mathcal{S}(t\mathfrak{h}[t])$  be the image of  $\mathcal{P}_i^{[1]}$  under the Harish-Chandra projection. For  $h_j \in \mathfrak{h}$ , let  $D_{h_j}$  be the unique derivation of  $\mathcal{S}(t\mathfrak{h}[t])$  such that

$$D_{h_j}(yt^k) = kt^{k-1} \partial_{h_j} y$$

if  $k \geq 1$  and  $y \in \mathfrak{h}$ . We define the Jacobian  $J(\{P_i^{[1]}\}) = J(P_1^{[1]}, \dots, P_n^{[1]})$  by

$$J(\{P_i^{[1]}\}) = \det(D_{h_j} P_i^{[1]})|_{t=1}.$$

Note that  $J(\{P_i^{[1]}\}) \in \mathcal{S}(\mathfrak{h})$ .

**Theorem 1.** *Under a suitable normalisation of the elements  $H_i$ , we have the identity*

$$J(\{P_i^{[1]}\}) = \prod_{\alpha \in \Delta^+} (h_\alpha + \rho(h_\alpha) + 1).$$

Our proof of Theorem 1 interprets the zero set of  $J(\{P_i^{[1]}\})$  in terms of the *Takiff Lie algebra*  $\mathfrak{q} = \mathfrak{g}[u]/(u^2)$  and then uses the *extremal projector* associated with  $\mathfrak{g}$ ; see Section 2A for the definition.

Takiff [1971, Corollary 11.3] proved that  $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$  is a polynomial ring whose Krull dimension equals  $2 \operatorname{rk} \mathfrak{g}$ . This has started a serious investigation of these Lie algebras and their generalisations [Chari and Greenstein 2009; 2011; Khare and Ridenour 2012; Greenstein and Mazorchuk 2017], see also [Panyushev and Yakimova 2020] and references therein. Verma modules and an analogue of the Harish-Chandra homomorphism for  $\mathfrak{q}$  were defined and studied in [Geoffrion 1995; Wilson 2011]. We remark that  $\mathfrak{q}$ -modules appearing in this paper are essentially different.

## 1. Several combinatorial formulas

Keep the notation of the introduction. In particular,  $H_i \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$  stands for a homogeneous generator of degree  $d_i$ ,  $P_i$  is the image of  $\mathcal{P}_i = \varpi(H_i)$  under the Harish-Chandra projection,  $\hat{P}_i \in \mathcal{S}(\mathfrak{h})^W$  is the  $(-\rho)$ -shift of  $P_i$ , i.e.,  $\hat{P}_i(x) = P_i(x - \rho)$  for  $x \in \mathfrak{h}^*$ , and  $P_i^{[1]}$  is the image of  $\varpi(T(H_i))$  under the Harish-Chandra projection related to  $\mathfrak{g}[t]$ . Also let  $P_i^\circ$  be the highest degree component of  $P_i$ . Then  $P_i^\circ = H_i|_{\mathfrak{h}}$ . By the Chevalley restriction theorem, the polynomials  $P_i^\circ$  with  $1 \leq i \leq n$  generate  $\mathcal{S}(\mathfrak{h})^W$ . It is clear that  $J(\{P_i^\circ\}) = J(\{\hat{P}_i\})$ . Let a choice of  $H_1, \dots, H_n$  be such that  $J(\{P_i^\circ\}) = \prod_{\alpha \in \Delta^+} h_\alpha$ .

**Lemma 1.1.** *The highest degree component of  $J(\{P_i^{[1]}\})$  is equal to  $\prod_{\alpha \in \Delta^+} h_\alpha$ .*

*Proof.* The highest degree component of  $P_i^{[1]}$  is  $T(P_i^\circ) \in \mathcal{S}(\mathfrak{h}t)$ . Each monomial of  $T(P_i^\circ)$  is of the form  $(x_1 t) \cdots (x_{d_i} t)$  with  $x_j \in \mathfrak{h}$  for each  $j$ . By the construction,  $D_{h_j} T(P_i^\circ)|_{t=1} = \partial_{h_j} P_i^\circ$ . The result follows.  $\square$

In order to prove the next lemma, we need a well-known equality, namely  $\prod_{i=1}^n d_i = |W|$ .

**Lemma 1.2.** *For the constant term of the Jacobian  $J(\{P_i^{[1]}\})$ , we have the formula  $J(\{P_i^{[1]}\})(0) = \prod_{\alpha \in \Delta^+} (\rho(h_\alpha) + 1)$ .*

*Proof.* Clearly  $P_i^{[1]}|_{t=1} = P_i$ . Since  $H_i$  is a homogeneous polynomial of degree  $d_i$ , the linear in  $\mathfrak{h}$  part of  $P_i^{[1]}$  has degree  $d_i$  in  $t$ . It follows that

$$J(\{P_i^{[1]}\})(0) = \left( \prod_{i=1}^n d_i \right) J(\{P_i\})(0) = |W| \prod_{\alpha \in \Delta^+} \rho(h_\alpha).$$

We complete the proof with a formula of Kostant which states

$$(1-1) \quad \prod_{\alpha \in \Delta^+} \frac{\rho(h_\alpha) + 1}{\rho(h_\alpha)} = |W^\vee| = |W|. \quad \square$$

**Remark 1.3.** The Kostant formula (1-1) is a particular case of another combinatorial statement. Let  $W(t) = \sum_{w \in W} t^{l(w)}$  be the Poincaré polynomial of  $W$ . Then

$$W^\vee(t) = \prod_{\alpha \in \Delta^+} \frac{t^{(\rho, \alpha^\vee) + 1} - 1}{t^{(\rho, \alpha^\vee)} - 1};$$

see equation (34) in [Humphreys 1990, Section 3.20]. Since  $\rho(h_\alpha) = (\rho, \alpha^\vee)$ , evaluating at  $t = 1$  one gets exactly (1-1).

**Example 1.4.** Take  $\mathfrak{g} = \mathfrak{sl}_2$  with the usual basis  $\{e, h, f\}$ , where  $[h, e] = 2e$ . Then  $H = H_1 = 2ef + \frac{1}{2}h^2$ ,  $H^{[1]} = 2(et)(ft) + \frac{1}{2}(ht)^2$ , and

$$\mathcal{P}^{[1]} = \varpi(H^{[1]}) = (et)(ft) + (ft)(et) + \frac{1}{2}(ht)^2 = \frac{1}{2}(ht)^2 + ht^2 + 2(ft)(et).$$

Therefore  $P^{[1]} = P_1^{[1]} = \frac{1}{2}(ht)^2 + ht^2$ . Computing the partial derivative and evaluating at  $t = 1$ , we obtain  $J(\{P^{[1]}\}) = h + 2 = h + \rho(h) + 1$ .

## 2. Takiff Lie algebras and branching

Theorem 1 can be interpreted as a statement in representation theory of Takiff Lie algebras

$$\mathfrak{q} = \mathfrak{g} \ltimes \mathfrak{g}^{\text{ab}} \cong \mathfrak{g}[u]/(u^2).$$

The first factor, the nonabelian copy of  $\mathfrak{g}$ , acts on  $\mathfrak{g}^{\text{ab}} = \mathfrak{g}u$  as a subalgebra of  $\mathfrak{gl}(\mathfrak{g})$ . Therefore there is the canonical embedding  $\mathfrak{q} \subset \mathfrak{gl}(\mathfrak{g}) \ltimes \mathfrak{g}^{\text{ab}}$ . Set  $\ell = \dim \mathfrak{g} + 1$ . In its turn,  $\mathfrak{gl}(\mathfrak{g}) \ltimes \mathfrak{g}^{\text{ab}}$  can be realised as a subalgebra of  $\mathfrak{gl}(\mathfrak{g} \oplus \mathbb{C}) \cong \mathfrak{gl}_\ell(\mathbb{C})$ . The Lie algebra  $\mathfrak{gl}_\ell(\mathbb{C})$  is equipped with the standard triangular decomposition. Let  $\mathfrak{b}_\ell \subset \mathfrak{gl}_\ell(\mathbb{C})$  be the corresponding positive Borel. Recall that we have chosen a triangular decomposition  $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ . Set  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$ ,  $\mathfrak{b}^- = \mathfrak{h} \oplus \mathfrak{n}^-$ . We fix an embedding  $\mathfrak{gl}(\mathfrak{g}) \ltimes \mathfrak{g}^{\text{ab}} \subset \mathfrak{gl}(\mathfrak{g} \oplus \mathbb{C})$  such that  $\mathfrak{b}^- \ltimes \mathfrak{g}^{\text{ab}}$  lies in the opposite Borel  $\mathfrak{b}_\ell^-$  and  $\mathfrak{b} \subset \mathfrak{b}_\ell$ .

Let  $\psi: \mathcal{S}(\mathfrak{g}) \rightarrow \mathcal{S}(\mathfrak{q})$  be a derivation defined uniquely by  $\psi(\xi) = \xi u$  for any  $\xi \in \mathfrak{g}$ . Set  $\mathcal{R}_i = \varpi(\psi(H_i))$ . The elements  $\mathcal{R}_1, \dots, \mathcal{R}_n \in \mathcal{U}(\mathfrak{q})$  are not necessarily central. If we assume that  $d_1 = 2$ , then  $\mathcal{R}_1 \in \mathcal{Z}(\mathfrak{q})$ . However, since both maps,  $\psi$  and  $\varpi$ , are homomorphisms of  $\mathfrak{g}$ -modules, each  $\mathcal{R}_i$  commutes with  $\mathfrak{g}$ . Note that the elements  $\mathcal{R}_i$  have degree 1 in  $gu$ . They are crucial for further considerations and our next goal is to relate them to  $\mathcal{P}_i^{[1]} \in \mathcal{U}(t\mathfrak{g}[t])$ .

The map  $\psi$  is also well defined for the tensor algebra of  $\mathfrak{g}$ , but not for  $\mathcal{U}(\mathfrak{g})$ , because of the following obstacle:

$$\begin{aligned} \psi(\xi_1 \xi_2 - \xi_2 \xi_1) &= (\xi_1 u) \xi_2 + \xi_1 (\xi_2 u) - (\xi_2 u) \xi_1 - \xi_2 (\xi_1 u) \\ &= [\xi_1 u, \xi_2] + [\xi_1, \xi_2 u] = 2[\xi_1, \xi_2]u \neq [\xi_1, \xi_2]u. \end{aligned}$$

The remedy is to pass to the current algebras  $\mathfrak{g}[t]$  and  $\mathfrak{q}[t]$ .

**Lemma 2.1.** *There is a well-defined  $\mathbb{C}$ -linear map  $\mathcal{T}: \mathcal{U}(t\mathfrak{g}[t]) \rightarrow \mathcal{U}(\mathfrak{q}[t])$  such that*

- $\mathcal{T}(\xi t^k) = k(\xi u)t^{k-1}$  for each  $\xi \in \mathfrak{g}$ ,
- $\mathcal{T}(ab) = \mathcal{T}(a)b + a\mathcal{T}(b)$  for all  $a, b \in \mathcal{U}(t\mathfrak{g}[t])$ , i.e.,  $\mathcal{T}$  is a derivation.

*Proof.* Take  $\xi, \eta \in \mathfrak{g}$  and  $k, m \geq 1$ . Then

$$\begin{aligned} \mathcal{T}(\xi t^k \eta t^m - \eta t^m \xi t^k) &= k(\xi u)t^{k-1} \eta t^m + m\xi t^k (\eta u)t^{m-1} - m(\eta u)t^{m-1} \xi t^k - k\eta t^m (\xi u)t^{k-1} \\ &= k[\xi u, \eta]t^{k-1+m} + m[\xi, \eta u]t^{k+m-1} \\ &= (k+m)([\xi, \eta]u)t^{k+m-1} = \mathcal{T}([\xi, \eta]t^{k+m}). \end{aligned} \quad \square$$

For a monomial  $\xi = \xi_1 \cdots \xi_d$  with  $\xi_i \in \mathfrak{g}$ , we have  $\mathcal{T} \circ \varpi \circ T(\xi)|_{t=1} = \varpi \circ \psi(\xi)$ . Hence, by the construction,  $\mathcal{R}_i = \mathcal{T}(\mathcal{P}_i^{[1]})|_{t=1}$ .

A word of caution: in  $\mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)$  and similar expressions,  $(\mathfrak{n}^+u)$  stands for the subspace  $\mathfrak{n}^+u \subset \mathfrak{g}^{\text{ab}}$  and *not* for an ideal generated by  $\mathfrak{n}^+u$ . The same applies to  $(\mathfrak{b}u)$ ,  $(\mathfrak{g}u)$ , etc.

**Lemma 2.2.** *Let  $M(\lambda) = \mathcal{U}(\mathfrak{b}_\ell^-)v_\lambda$  with  $\lambda \in \mathbb{C}^\ell$  be a Verma module of  $\mathfrak{gl}(\mathfrak{g} \oplus \mathbb{C})$ . Set  $\mu = \lambda|_{\mathfrak{h}}$ . There exists a nontrivial linear combination  $\mathcal{R} = \sum c_i \mathcal{R}_i$  such that  $\mathcal{R}v_\lambda \in \mathfrak{n}^- \mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)v_\lambda$  if and only if  $J(\{P_i^{[1]}\})(\mu) = 0$ .*

*Proof.* We have

$$\mathcal{P}_i^{[1]} \in P_i^{[1]} + \mathfrak{n}^-[t]\mathcal{U}(\mathfrak{g}[t])\mathfrak{n}^+[t].$$

Accordingly,  $\mathcal{R}_i = \mathcal{T}(P_i^{[1]})|_{t=1} + \mathcal{X}$ , where  $\mathcal{X}$  is the image of the second summand of  $\mathcal{P}_i^{[1]}$ . Let  $X = x_1 \cdots x_r$  be a monomial appearing in  $\mathcal{X}$ . If  $x_r \in \mathfrak{n}^+$ , then  $Xv_\lambda = 0$ . Assume that  $Xv_\lambda \neq 0$ . Then necessarily  $x_r \in \mathfrak{n}^+u$  and  $x_1, \dots, x_{r-1} \in \mathfrak{g}$ . If  $x_i \in \mathfrak{n}^+$  for some  $i \leq (r-1)$ , then we replace  $X$  by  $x_1 \cdots x_{i-1}[x_i, x_{i+1}, \dots, x_r]$ . Note that here  $[x_i, x_r] \in \mathfrak{n}^+u$ . Applying this procedure as often as possible one replaces  $X$  by an element of  $\mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)$  without altering  $Xv_\lambda$ . Since  $X$  is an invariant of  $\mathfrak{h}$ , the new element lies in  $\mathfrak{n}^- \mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)$ . Summing up,

$$(2-1) \quad \mathcal{R}_i v_\lambda \in \mathcal{T}(P_i^{[1]})|_{t=1} v_\lambda + \mathfrak{n}^- \mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)v_\lambda.$$

Further

$$\mathcal{T}(P_i^{[1]})|_{t=1} = \sum_{j=1}^n (D_{h_j} P_i^{[1]})|_{t=1} h_j u,$$

where  $D_{h_j}$  are the same as in the introduction. Recall that they have been used in order to define  $J(\{P_i^{[1]}\})$ . Hence  $J(\{P_i^{[1]}\})(\mu) = 0$  if and only if there is a nonzero vector  $\bar{c} = (c_1, \dots, c_n)$  such that  $\mathcal{A}(\mu) = \sum c_i \mathcal{T}(P_i^{[1]})|_{t=1, \mu} = 0$ . This shows that if  $J(\{P_i^{[1]}\})(\mu) = 0$ , then  $\mathcal{R}v_\lambda \in \mathfrak{n}^- \mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)v_\lambda$ .

Suppose now that  $\mathcal{R}v_\lambda \in \mathfrak{n}^- \mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+u)v_\lambda \subset \mathcal{U}(\mathfrak{n}^-)(\mathfrak{n}^+u)v_\lambda$ . Then

$$\mathcal{A}(\mu)v_\lambda \in \mathcal{U}(\mathfrak{n}^-)(\mathfrak{n}^+u)v_\lambda.$$

We are working with a Verma module of  $\mathfrak{gl}_\ell(\mathbb{C})$ ; the subspaces  $\mathfrak{n}^+u$  and  $\mathfrak{h}u$  are contained in  $\mathfrak{n}_\ell^-$ , and  $\mathcal{A}(\mu) \in \mathfrak{h}u$ . Hence  $\mathcal{A}(\mu)$  must be an element of  $\mathcal{U}(\mathfrak{n}^-)(\mathfrak{n}^+u)$ . At the same time,  $\mathfrak{h}u \cap \mathfrak{n}^+u = 0$ . Therefore  $\sum_{i=1}^n c_i (D_{h_j} P_i^{[1]})|_{t=1, \mu} = 0$  for each  $j$  and thus  $J(\{P_i^{[1]}\})(\mu) = 0$ .  $\square$

For  $\gamma \in \mathfrak{h}^*$ , let  $M(\lambda|_{\mathfrak{q}})_\gamma$  be the corresponding weight subspace of  $\mathcal{U}(\mathfrak{q})v_\lambda \subset M(\lambda)$ . Since  $\mathfrak{h}u \subset \mathfrak{n}_\ell^-$ , either  $M(\lambda|_{\mathfrak{q}})_\gamma = 0$  or  $\dim M(\lambda|_{\mathfrak{q}})_\gamma = \infty$ . We also have  $(\mathfrak{h}u)v_\lambda \neq 0$ . Because of these facts, the  $\mathfrak{q}$ -modules  $M(\lambda)$  and  $\mathcal{U}(\mathfrak{q})v_\lambda$  do not fit in the framework of the highest weight theory developed in [Geoffrion 1995; Wilson 2011]. Nevertheless, they may have some nice features.

Lemma 2.2 relates  $J(\{P_i^{[1]}\})$  to a property of the branching  $\mathfrak{q} \downarrow \mathfrak{g}$  in a particular case of the  $\mathfrak{q}$ -module  $\mathcal{U}(\mathfrak{q})v_\lambda$ . In order to get a better understanding of this branching

problem, we employ a certain projector introduced by Asherova, Smirnov, and Tolstoy in [Asherova et al. 1971].

**2A. The extremal projector.** Recall that  $\{f_\alpha, h_\alpha, e_\alpha\} \subset \mathfrak{g}$  is the  $\mathfrak{sl}_2$ -triple corresponding to  $\alpha \in \Delta^+$ . Set  $N = |\Delta^+|$  and choose a numbering of positive roots,  $\alpha_1, \dots, \alpha_N$ . Define

$$p_\alpha = 1 + \sum_{k=1}^{\infty} f_\alpha^k e_\alpha^k \frac{(-1)^k}{k!(h_\alpha + \rho(h_\alpha) + 1) \cdots (h_\alpha + \rho(h_\alpha) + k)}.$$

Each  $p_\alpha$ , as well as any product of finitely many of them, is regarded as an element of the algebra of formal series of monomials

$$f_{\alpha_1}^{r_1} \cdots f_{\alpha_N}^{r_N} e_{\alpha_N}^{k_N} \cdots e_{\alpha_1}^{k_1} \text{ such that } (k_1 - r_1)\alpha_1 + \cdots + (k_N - r_N)\alpha_N = 0$$

with coefficients in the field of fractions of the commutative algebra  $\mathcal{U}(\mathfrak{h})$ . A total order on  $\Delta^+$  is said to be *normal* (or *convex*) if either  $\alpha < \alpha + \beta < \beta$  or  $\beta < \alpha + \beta < \alpha$  for each pair of positive roots  $\alpha, \beta$  such that  $\alpha + \beta \in \Delta$ . There is a bijection between the normal orders and the reduced decompositions of the longest element of  $W$ .

Choose now a normal order  $\alpha_1 < \alpha_2 < \cdots < \alpha_N$ , and define

$$p = p_{\alpha_1} \cdots p_{\alpha_N}$$

accordingly. The element  $p$  is known as the *extremal projector* [Asherova et al. 1971]. It is independent of the choice of a normal order and  $p^2 = p$ . For proofs and more details on this operator, see, e.g., [Molev 2007, Section 9.1]. Most importantly, it has the property that

$$(2-2) \quad e_\alpha p = p f_\alpha = 0$$

for each  $\alpha \in \Delta^+$ .

The nilpotent radical  $\mathfrak{n}_\ell \subset \mathfrak{b}_\ell$  acts on  $M(\lambda)$  locally nilpotently. Recall that  $\mathfrak{n}^+ \subset \mathfrak{n}_\ell$ . Let  $v \in M(\lambda)$  be an eigenvector of  $\mathfrak{h}$  of weight  $\gamma \in \mathfrak{h}^*$ . The element  $pv$  is a finite sum of vectors  $q_j v_j$ , where  $q_j \in \text{Quot } \mathcal{U}(\mathfrak{h}) \cong \mathbb{C}(\mathfrak{h}^*)$  and  $v_j \in M(\lambda)$ . If all the appearing denominators are nonzero at  $\gamma$ , then  $pv$  is a well-defined vector of  $M(\lambda)$  of the same weight  $\gamma$ .

### 3. Proof of Theorem 1

Let  $\lambda$ ,  $\mu$ , and  $M(\lambda)$  be as in Lemma 2.2. Keep in mind that  $\lambda$  and  $\mu$  are arbitrary elements of  $\mathbb{C}^\ell$  and  $\mathbb{C}^n$ . Since each  $\mathcal{R}_i$  commutes with  $\mathfrak{g}$ , each  $\mathcal{R}_i v_\lambda$  is a highest weight vector of  $\mathfrak{g}$ .

We use the extremal projector  $p$  associated with  $\mathfrak{g}$ . If  $p$  can be applied to a highest weight vector  $v$ , then  $pv = v$ . Suppose that  $p$  is defined at  $\mu$ . Then, in view of (2-1) and (2-2),

$$\mathcal{R}_i v_\lambda = p \mathcal{R}_i v_\lambda = p \mathcal{T}(P_i^{[1]})|_{t=1} v_\lambda.$$

Assume that  $J(\{P_i^{[1]}\})(\mu) = 0$ . Then there is a nontrivial linear combination  $\mathcal{R} = \sum c_i \mathcal{R}_i$  such that

$$\mathcal{R}v_\lambda \in \mathfrak{n}^- \mathcal{U}(\mathfrak{b}^-)(\mathfrak{n}^+ u)v_\lambda;$$

see Lemma 2.2. Here  $p\mathcal{R}v_\lambda = 0$  and hence  $\mathcal{R}v_\lambda = 0$  as well.

Since we are considering a Verma module of  $\mathfrak{gl}_\ell(\mathbb{C})$ , this implies that

$$\mathcal{R} \in \mathcal{U}(\mathfrak{gl}_\ell(\mathbb{C}))\mathfrak{b}_\ell \cap \mathcal{U}(\mathfrak{q}) = \mathcal{U}(\mathfrak{q})\mathfrak{b}.$$

Hence the symbol  $\text{gr}(\mathcal{R})$  of  $\mathcal{R}$  lies in the ideal of  $\mathcal{S}(\mathfrak{q})$  generated by  $\mathfrak{b}$ .

The decomposition  $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{b}$  defines a bigrading on  $\mathcal{S}(\mathfrak{g})$ . Let  $H_i^\bullet$  be the bihomogeneous component of  $H_i$  having the highest degree with respect to  $\mathfrak{n}^-$ . According to [Panyushev and Yakimova 2012, Section 3],  $H_i^\bullet \in \mathfrak{b}\mathcal{S}^{d_i-1}(\mathfrak{n}^-)$  and the polynomials  $H_1^\bullet, \dots, H_n^\bullet$  are algebraically independent. We have

$$\psi(H_i^\bullet) \in (\mathfrak{b}u)\mathcal{S}^{d_i-1}(\mathfrak{n}^-) \oplus \mathfrak{b}(\mathfrak{n}^- u)\mathcal{S}^{d_i-2}(\mathfrak{n}^-).$$

Write this as  $\psi(H_i^\bullet) \in H_{i,1} + \mathfrak{b}(\mathfrak{n}^- u)\mathcal{S}^{d_i-2}(\mathfrak{n}^-)$ . Then the polynomials  $H_{i,1}$  with  $1 \leq i \leq n$  are still algebraically independent. As can be easily seen,  $\psi(H_i) \in H_{i,1} + \mathfrak{b}\mathcal{S}(\mathfrak{q})$ .

Set  $d = \max_{i: c_i \neq 0} d_i$ . Then

$$\text{gr}(\mathcal{R}) = \sum_{i: d_i = d} c_i \psi(H_i)$$

and it lies in  $(\mathfrak{b}) \triangleleft \mathcal{S}(\mathfrak{q})$  if and only if  $\sum_{i: d_i = d} c_i H_{i,1} = 0$ . Since at least one  $c_i$  in this linear combination is nonzero, we get a contradiction. The following is settled: if  $p$  is defined at  $\mu$ , then  $J(\{P_i^{[1]}\})(\mu) \neq 0$ .

Now we know that the zero set of  $J(\{P_i^{[1]}\})$  lies in the union of hyperplanes  $h_\alpha + \rho(h_\alpha) = -k$  with  $k \geq 1$ . At the same time, this zero set is an affine subvariety of  $\mathbb{C}^n$  of codimension one. By Lemma 1.1, the highest degree component of  $J(\{P_i^{[1]}\})$  is equal to  $\prod_{\alpha \in \Delta^+} h_\alpha$ . Therefore the zero set of  $J(\{P_i^{[1]}\})$  is the union of  $N$  hyperplanes and  $J(\{P_i^{[1]}\})$  is the product of  $N$  linear factors of the form  $(h_\alpha + \rho(h_\alpha) + k_\alpha)$ . Moreover, each  $\alpha \in \Delta^+$  must appear in exactly one linear factor of  $J(\{P_i^{[1]}\})$ .

By Lemma 1.2,  $J(\{P_i^{[1]}\})(0) = \prod_{\alpha \in \Delta^+} (\rho(h_\alpha) + 1)$ . Hence we have

$$\prod_{\alpha \in \Delta^+} \frac{\rho(h_\alpha) + k_\alpha}{\rho(h_\alpha) + 1} = 1.$$

Since  $\rho(h_\alpha), k_\alpha \geq 1$ , each  $k_\alpha$  is equal to 1.  $\square$

#### 4. Conclusion

The elements  $\mathcal{R}_i$  are rather natural  $\mathfrak{g}$ -invariants in  $\mathcal{U}(\mathfrak{q})$  of degree one in  $\mathfrak{gu}$ . Note that because  $\mathfrak{gu}$  is an abelian ideal of  $\mathfrak{q}$ , there is no ambiguity in defining the degree in  $\mathfrak{gu}$ .

The involvement of these elements in the branching rules  $\mathfrak{q} \downarrow \mathfrak{g}$  remains unclear. However, combining Lemma 2.2 with Theorem 1, we obtain the following statement.

**Corollary 4.1.** *In the notation of Lemma 2.2, there is a nontrivial linear combination  $\mathcal{R} = \sum c_i \mathcal{R}_i$  such that  $\mathcal{R}v_\lambda \in \mathfrak{n}^- \mathcal{U}(\mathfrak{q})v_\lambda$  if and only if  $\mu(h_\alpha) = -\rho(h_\alpha) - 1$  for some  $\alpha \in \Delta^+$ .*  $\square$

As the theory of finite-dimensional representations suggests, it is unusual for a highest weight vector of  $\mathfrak{g}$  to belong to the image of  $\mathfrak{n}^-$ . The proof of Theorem 1 shows that  $\mathcal{R}v_\lambda \neq 0$  for the linear combination of Corollary 4.1.

**Remark 4.2.** The subspace  $\mathcal{V}[1] = (\mathcal{U}(\mathfrak{g})(\mathfrak{g}u))^\mathfrak{g} \subset \mathcal{U}(\mathfrak{q})$  is a  $\mathcal{Z}(\mathfrak{g})$ -module. From a well-known description of  $(\mathfrak{g} \otimes \mathcal{S}(\mathfrak{g}))^\mathfrak{g}$ , one can deduce that  $\mathcal{V}[1]$  is freely generated by  $\mathcal{R}_1, \dots, \mathcal{R}_n$  as a  $\mathcal{Z}(\mathfrak{g})$ -module. There are other choices of generators in  $\mathcal{V}[1]$  and it is not clear, whether one can get nice formulas for the corresponding Jacobians.

## References

- [Asherova et al. 1971] R. M. Asherova, Y. F. Smirnov, and V. N. Tolstoy, “Projection operators for simple Lie groups”, *Teoret. Mat. Fiz.* **8**:2 (1971), 255–271. In Russian; translated in *Theor. Math. Phys.* **8**:2 (1971), 813–825. MR Zbl
- [Chari and Greenstein 2009] V. Chari and J. Greenstein, “A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras”, *Adv. Math.* **220**:4 (2009), 1193–1221. MR Zbl
- [Chari and Greenstein 2011] V. Chari and J. Greenstein, “Minimal affinizations as projective objects”, *J. Geom. Phys.* **61**:3 (2011), 594–609. MR Zbl
- [Dixmier 1974] J. Dixmier, *Algèbres enveloppantes*, Cahiers Sci. **37**, Gauthier-Villars, Paris, 1974. MR Zbl
- [Geoffriau 1995] F. Geoffriau, “Homomorphisme de Harish-Chandra pour les algèbres de Takiff généralisées”, *J. Algebra* **171**:2 (1995), 444–456. MR Zbl
- [Greenstein and Mazorchuk 2017] J. Greenstein and V. Mazorchuk, “Koszul duality for semidirect products and generalized Takiff algebras”, *Algebr. Represent. Theory* **20**:3 (2017), 675–694. MR Zbl
- [Humphreys 1990] J. E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge Stud. Adv. Math. **29**, Cambridge Univ. Press, 1990. MR Zbl
- [Khare and Ridenour 2012] A. Khare and T. Ridenour, “Faces of weight polytopes and a generalization of a theorem of Vinberg”, *Algebr. Represent. Theory* **15**:3 (2012), 593–611. MR Zbl
- [Molev 2007] A. Molev, *Yangians and classical Lie algebras*, Math. Surv. Monogr. **143**, Amer. Math. Soc., Providence, RI, 2007. MR Zbl
- [Panyushev and Yakimova 2012] D. I. Panyushev and O. S. Yakimova, “A remarkable contraction of semisimple Lie algebras”, *Ann. Inst. Fourier (Grenoble)* **62**:6 (2012), 2053–2068. MR Zbl
- [Panyushev and Yakimova 2020] D. I. Panyushev and O. Yakimova, “Takiff algebras with polynomial rings of symmetric invariants”, *Transform. Groups* **25**:2 (2020), 609–624.
- [Takiff 1971] S. J. Takiff, “Rings of invariant polynomials for a class of Lie algebras”, *Trans. Amer. Math. Soc.* **160** (1971), 249–262. MR Zbl
- [Wilson 2011] B. J. Wilson, “Highest-weight theory for truncated current Lie algebras”, *J. Algebra* **336** (2011), 1–27. MR Zbl

Received December 7, 2018. Revised December 13, 2019.

OKSANA YAKIMOVA  
UNIVERSITÄT ZU KÖLN, MATHEMATISCHES INSTITUT  
KÖLN  
DEUTSCHLAND  
*Current address:*  
INSTITUT FÜR MATHEMATIK  
FRIEDRICH SCHILLER UNIVERSITÄT JENA  
JENA  
GERMANY  
[oksana.yakimova@uni-jena.de](mailto:oksana.yakimova@uni-jena.de)



# PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

[msp.org/pjm](http://msp.org/pjm)

## EDITORS

Don Blasius (Managing Editor)  
Department of Mathematics  
University of California  
Los Angeles, CA 90095-1555  
blasius@math.ucla.edu

Matthias Aschenbrenner  
Department of Mathematics  
University of California  
Los Angeles, CA 90095-1555  
matthias@math.ucla.edu

Daryl Cooper  
Department of Mathematics  
University of California  
Santa Barbara, CA 93106-3080  
cooper@math.ucsb.edu

Jiang-Hua Lu  
Department of Mathematics  
The University of Hong Kong  
Pokfulam Rd., Hong Kong  
jhu@maths.hku.hk

Paul Balmer  
Department of Mathematics  
University of California  
Los Angeles, CA 90095-1555  
balmer@math.ucla.edu

Wee Teck Gan  
Mathematics Department  
National University of Singapore  
Singapore 119076  
matgwt@nus.edu.sg

Sorin Popa  
Department of Mathematics  
University of California  
Los Angeles, CA 90095-1555  
popa@math.ucla.edu

Paul Yang  
Department of Mathematics  
Princeton University  
Princeton NJ 08544-1000  
yang@math.princeton.edu

Vyjayanthi Chari  
Department of Mathematics  
University of California  
Riverside, CA 92521-0135  
chari@math.ucr.edu

Kefeng Liu  
Department of Mathematics  
University of California  
Los Angeles, CA 90095-1555  
liu@math.ucla.edu

Jie Qing  
Department of Mathematics  
University of California  
Santa Cruz, CA 95064  
qing@cats.ucsc.edu

PRODUCTION  
Silvio Levy, Scientific Editor, [production@msp.org](mailto:production@msp.org)

## SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI  
CALIFORNIA INST. OF TECHNOLOGY  
INST. DE MATEMÁTICA PURA E APLICADA  
KEIO UNIVERSITY  
MATH. SCIENCES RESEARCH INSTITUTE  
NEW MEXICO STATE UNIV.  
OREGON STATE UNIV.

STANFORD UNIVERSITY  
UNIV. OF BRITISH COLUMBIA  
UNIV. OF CALIFORNIA, BERKELEY  
UNIV. OF CALIFORNIA, DAVIS  
UNIV. OF CALIFORNIA, LOS ANGELES  
UNIV. OF CALIFORNIA, RIVERSIDE  
UNIV. OF CALIFORNIA, SAN DIEGO  
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ  
UNIV. OF MONTANA  
UNIV. OF OREGON  
UNIV. OF SOUTHERN CALIFORNIA  
UNIV. OF UTAH  
UNIV. OF WASHINGTON  
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

---

See inside back cover or [msp.org/pjm](http://msp.org/pjm) for submission instructions.

---

The subscription price for 2020 is US \$520/year for the electronic version, and \$705/year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

---

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

---

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

 **mathematical sciences publishers**

nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

# PACIFIC JOURNAL OF MATHEMATICS

Volume 306    No. 1    May 2020

---

|                                                                                                                 |     |
|-----------------------------------------------------------------------------------------------------------------|-----|
| Tensor structure for Nori motives                                                                               | 1   |
| LUCA BARBIERI-VIALE, ANNETTE HUBER and MIKE PREST                                                               |     |
| On the Garden of Eden theorem for endomorphisms of symbolic algebraic varieties                                 | 31  |
| TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT and XUAN KIEN PHUNG                                             |     |
| Bergman kernels of elementary Reinhardt domains                                                                 | 67  |
| DEBRAJ CHAKRABARTI, AUSTIN KONKEL, MEERA MAINKAR and EVAN MILLER                                                |     |
| Central splitting of manifolds with no conjugate points                                                         | 95  |
| JAMES DIBBLE                                                                                                    |     |
| On the global Gan–Gross–Prasad conjecture for general spin groups                                               | 115 |
| MELISSA EMORY                                                                                                   |     |
| Schur algebras for the alternating group and Koszul duality                                                     | 153 |
| THANGAVELU GEETHA, AMRITANSHU PRASAD and SHRADDHA SRIVASTAVA                                                    |     |
| A positive mass theorem for manifolds with boundary                                                             | 185 |
| SVEN HIRSCH and PENGZI MIAO                                                                                     |     |
| Circle patterns on surfaces of finite topological type revisited                                                | 203 |
| YUE-PING JIANG, QIANGHUA LUO and ZE ZHOU                                                                        |     |
| On some conjectures of Heywood                                                                                  | 221 |
| DONG LI                                                                                                         |     |
| Knapp–Stein dimension theorem for finite central covering groups                                                | 265 |
| CAIHUA LUO                                                                                                      |     |
| Some classifications of biharmonic hypersurfaces with constant scalar curvature                                 | 281 |
| SHUN MAETA and YE-LIN OU                                                                                        |     |
| Surface diffusion flow of arbitrary codimension in space forms                                                  | 291 |
| DONG PU and HONGWEI XU                                                                                          |     |
| Nonvanishing square-integrable automorphic cohomology classes: the case $GL(2)$ over a central division algebra | 321 |
| JOACHIM SCHWERMER                                                                                               |     |
| Invariant Banach limits and applications to noncommutative geometry                                             | 357 |
| EVGENII SEMENOV, FEDOR SUKOCHEV, ALEXANDR USACHEV and DMITRIY ZANIN                                             |     |
| A combinatorial identity for the Jacobian of $t$ -shifted invariants                                            | 375 |
| OKSANA YAKIMOVA                                                                                                 |     |



0030-8730(202005)306:1;1-L