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We study the “higher algebra” of spectral Mackey functors, which the first named
author introduced in Part I of this paper. In particular, armed with our new the-
ory of symmetric promonoidal∞-categories and a suitable generalization of the
second named author’s Day convolution, we endow the∞-category of Mackey
functors with a well-behaved symmetric monoidal structure. This makes it pos-
sible to speak of spectral Green functors for any operad O . We also answer a
question of Mathew, proving that the algebraic K-theory of group actions is lax
symmetric monoidal. We also show that the algebraic K-theory of derived stacks
provides an example. Finally, we give a very short, new proof of the equivariant
Barratt–Priddy–Quillen theorem, which states that the algebraic K-theory of the
category of finite G-sets is simply the G-equivariant sphere spectrum.
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Introduction and summary

This paper is part of an effort to give a complete description of the structures
available on the algebraic K -theory of varieties and schemes (and even of various
derived stacks) with all their concomitant functorialities and homotopy coherences.

So suppose X a scheme (quasicompact and quasiseparated). The derived tensor
product ⊗L on perfect complexes on X defines a symmetric monoidal structure on
the derived category Dperf

X of perfect complexes on X . With a little more effort, one
can lift this structure to a symmetric monoidal structure on the stable∞-category
of perfect complexes on X . This suffices to get a product on algebraic K -theory

⊗: K (X)∧ K (X) K (X)

that is associative and commutative up to coherent homotopy. Thus, K (X) has not
only the structure of a connective spectrum, but also the structure of a connective
E∞ ring spectrum. This is an exceedingly rich structure: not only do the homotopy
groups K∗(X) form a graded commutative ring, but these homotopy groups also
support (in a functorial way) a tremendous amount of structure involving intricate
higher homotopy operations called Toda brackets. Still more information (in the
form of Dyer–Lashof operations) can be found on the Fp-cohomology of K (X).

Now for any morphism f : Y X of schemes, the derived functor

L f ? : Dqcoh
X Dqcoh

Y

on the category of complexes with quasicoherent cohomology preserves perfect
complexes, and the resulting functor L f ? : Dperf

X Dperf
Y induces a morphism

f ? : K (X) K (Y )

on the algebraic K -theory. The functor L f ? is compatible with the derived tensor
product, in the sense that for any perfect complexes E and F on X , there is a
natural equivalence

L f ?(E ⊗L F)' (L f ?E)⊗L (L f ?F).

Again this can be lifted to the level of stable∞-categories, whence the induced
morphism f ? on K -theory turns out to be a morphism of connective E∞ ring
spectra. This implies that the induced homomorphism on homotopy groups

f ? : K∗(X) K∗(Y )

is a homomorphism of graded commutative rings, and it must respect all the higher
homotopy operations on K∗(X) as well.

One can fit all the functors L f ? together to get a presheaf U Dperf
U on the big

site of all schemes. This can even be viewed as a presheaf of stable∞-categories,
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which suffices to give us a presheaf of connective spectra U K (U ). Since the
morphisms f ? are morphisms of connective E∞ ring spectra, we can regard this
as presheaf of E∞ ring spectra.

If one wanted, one might “externalize” the product on K -theory in the following
manner. For any two schemes X and Y over a base scheme S, one may define an
external tensor product

�L
: Dperf

X × Dperf
Y Dperf

X×SY

by the assignment (E, F) (L pr?1 E)⊗L (L pr?2 F). Note that we have natural
equivalences

(L f ?E)�L (Lg?F)' L( f × g)?(E �L F).

If we lift this to the level of stable ∞-categories, this gives rise to an external
pairing

� : K (X)∧ K (Y ) K (X ×S Y ),

which is natural (contravariantly) in X and Y . The E∞ product on K (X) can now
be obtained by pulling back this external pairing along the diagonal map:

K (X)∧ K (X) K (X ×S X) K (X).

A morphism of schemes f : Y X may induce morphisms in the covariant
direction as well. The pushforward R f? : Dqcoh

Y Dqcoh
X generally will not pre-

serve perfect complexes. If, however, f is flat and proper, then for any perfect
complex E , the complex R f?E is perfect. Thus in this case R f? restricts to a
functor R f? : Dperf

Y Dperf
X , and after lifting this to the stable∞-categories, we

find an induced morphism

f? : K (Y ) K (X)

on the algebraic K -theory. One thus obtains a covariant functor U K (U ), but
only with respect to flat and proper morphisms. Observe, however, that since the
functors R f? do not commute with the derived tensor product, this functor is not
valued in ring spectra.

Nevertheless, if f : Y X is proper and flat, we do have an algebraic structure
preserved by R f?. Observe that one may regard K (Y ) as a module over the E∞
ring spectrum K (X) via f ?. For any perfect complexes E on Y and F on X , one
has a canonical equivalence

(R f?E)⊗L F ' R f?(E ⊗L L f ?F)



100 CLARK BARWICK, SAUL GLASMAN AND JAY SHAH

of perfect complexes; this is the usual projection formula [20, Exp. III, Pr. 3.7]. At
the level of K -theory, this translates to the observation that the morphism

f? : K (Y ) K (X)

is a morphism of connective K (X)-modules. The induced map on homotopy
groups

f? : K∗(Y ) K∗(X)

is therefore a homomorphism of K∗(X)-modules.
Note that the external tensor product �L is actually perfectly compatible with

the pushforwards, in the sense that one has natural equivalences

(R f?E)�L (Rg?F)' R( f × g)?(E �L F),

so on K -theory the external product � : K (X)∧ K (Y ) K (X ×S Y ) is natural
(covariantly) in X and Y for flat and proper morphisms.

Last, but certainly not least, there is a compatibility between the morphisms f ?

and the morphisms g?, which results from the base change theorem for complexes
[20, Exp. IV, Pr. 3.1.0]. Suppose that

Y ′ Y

X ′ X

g

f f

g

is a pullback square of schemes in which the horizontal maps g are flat and proper.
Then the canonical morphism

L f ?Rg? Rg?L f ?

is an objectwise equivalence of functors Dperf
X ′ Dperf

Y . This translates to the
condition that there is a canonical homotopy

f ?g? ' g? f ? : K (X ′) K (Y )

of morphisms of K (X)-modules. In fact, this compatibility between the pullbacks
and the pushforwards, combined with the compatibility between f? and the external
tensor product, allows us to deduce the projection formula.

Let us summarize the structure we’ve found on the assignment U K (U ):

• For every scheme X , we have an E∞ ring spectrum K (X). Moreover, for any
two schemes X and Y over a base S, one has an external pairing

� : K (X)∧ K (Y ) K (X ×S Y ).
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• For every morphism f : Y X , we have a pullback morphism

f ? : K (X) K (Y ),

which is compatible with the external pairings and thus also with the E∞ product.

• For every flat and proper morphism f : Y X , we have a pushforward mor-
phism

f? : K (Y ) K (X),

which is compatible with the external pairings and thus (in light of the next
condition) also with the K (X)-module structure.

• For any pullback square
Y ′ Y

X ′ X

g

f f

g

in which the horizontal maps g are flat and proper, we have a canonical homotopy

f ?g? ' g? f ? : K (X ′) K (Y ).

of morphisms of K (X)-modules.

In this paper, we will demonstrate that these structures, along with all of their
homotopy coherences, are neatly packaged in a spectral Green functor on the cat-
egory of schemes.

This structure is the origin of both the Gal(E/F)-equivariant E∞ ring spectrum
structure on the algebraic K -theory of a Galois extension E ⊃ F and the cyclotomic
structure on the p-typical curves on a smooth Fp-scheme. For the former, see 9.7,
and for the latter, see the forthcoming paper [5].

In order to describe all the structure we see here, we study the “higher algebra”
(in the sense of Lurie’s book [18], for example) of spectral Mackey functors, which
we introduced in Part I of this paper [3]. The ∞-category of spectral Mackey
functors turns out to admit all the same well-behaved structures as the∞-category
of spectra itself. In particular, the∞-category of Mackey functors admits a well-
behaved symmetric monoidal structure. This, combined with Saul Glasman’s con-
volution for ∞-categories [10], makes it possible to speak of E1 algebras, E∞
algebras, or indeed O-algebras for any operad O in this context; these are called
O-Green functors.

We use this framework to provide a very simple answer to a question posed
to us by Akhil Mathew, in which we demonstrate that the functor that assigns to
any ∞-category with an action of a finite group G its equivariant algebraic K -
theory is lax symmetric monoidal. We also show that the algebraic K -theory of



102 CLARK BARWICK, SAUL GLASMAN AND JAY SHAH

derived stacks with its transfer maps as described above offers an example of an
E∞ Green functor. We also use this theory to give a new proof of the equivariant
Barratt–Priddy–Quillen theorem, which states that the algebraic K -theory of the
category of finite G-sets is simply the G-equivariant sphere spectrum. (In fact, we
will generalize this result dramatically.)

Warning. Let us emphasize that E∞-Green functors for a finite group G are not
equivalent to algebras in G-equivariant spectra structured by the equivariant linear
isometries operad on a complete G-universe. To describe the latter in line with the
discussion here — and to find such structures on algebraic K -theory spectra — it is
necessary to develop elements of the theory of G-∞-categories. This we do in the
forthcoming joint paper [6].

1. ∞-anti-operads and symmetric promonoidal ∞-categories

One of the many complications that arises when one combines an ∞-category
and its opposite in the way we have in our construction of the effective Burnside
∞-category [3, Df. 3.6] is that our constructions are extremely intolerant of asym-
metries in basic definitions. This complication rears its head the moment we want
to contemplate the symmetric monoidal structure on the Burnside∞-category. In
effect, the description of a symmetric monoidal∞-categories given in [18, Ch. 4]
forces one to specify the data of maps out of various tensor products in a suitably
compatible fashion. Thus symmetric monoidal categories are there identified as
certain∞-operads. But since we are also working with opposites of symmetric
monoidal∞-categories, we will come face-to-face with circumstances in which we
must identify the data of maps into various tensor products in a suitably compati-
ble fashion. We will call the resulting opposites of∞-operads∞-anti-operads.1

Awkward as this may seem, it cannot be avoided.

1.1. Notation. Let 3(F) denote the following ordinary category. The objects will
be finite sets, and a morphism J I will be a map J I+; one composes
ψ : K J+ with φ : J I+ by forming the composite

K
ψ

J+
φ+

I++
µ

I+,

where µ : I++ I+ is the map that simply identifies the two added points. (Of
course 3(F) is equivalent to the category F∗ of pointed finite sets, but we prefer to
think of the objects of 3(F) as unpointed. This is the natural perspective on this
category from the theory of operator categories [4].)

1We do not know a standard name for this structure. In a previous verion of this paper, CB called
these “cooperads,” but this conflicts with better-known terminology.
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1.2. Definition. (1.2.1) An∞-anti-operad is an inner fibration

p : O⊗ N3(F)op

whose opposite
pop
: (O⊗)op N3(F)

is an∞-operad.

(1.2.2) If p : O⊗ N3(F)op is an∞-anti-operad, then an edge of O⊗ will be
said to be inert if it is cartesian over an edge of N3(F)op that corresponds
to an inert map in 3(F), that is, a map φ : J I+ such that the induced
map φ−1(I ) I is a bijection [18, Df. 2.1.1.8], [4, Df. 8.1].

(1.2.3) A cartesian fibration
q : X⊗ O⊗

will be said to exhibit X⊗ as an O⊗-monoidal∞-category just in case the
cocartesian fibration

qop
: (X⊗)op (O⊗)op

exhibits (X⊗)op as an (O⊗)op-monoidal ∞-category in the sense of [18,
Df. 2.1.2.13]. When O⊗ = N3(F)op, we will say that q exhibits X⊗ as a
symmetric monoidal∞-category.

(1.2.4) A morphism f : O⊗ P⊗ of∞-anti-operads is a morphism over N3(F)op

that carries inert edges to inert edges. If O⊗ and P⊗ are symmetric mon-
oidal∞-categories, then f is a symmetric monoidal functor if it carries
all cartesian edges to cartesian edges.

1.3. Example. Suppose C an∞-category. We define the cartesian∞-anti-operad
as

p : C× := ((Cop)t)op N3(F)op,

where the notation (·)t refers to the cocartesian∞-operad [18, Cnstr. 2.4.3.1]. If
C is an∞-category that admits all products, then the functor p exhibits C× as a
symmetric monoidal∞-category [18, Rk. 2.4.3.4].

An object (I, X) of C× consists of a finite set I and a family {X i | i ∈ I }; a mor-
phism (φ, ω) : (I, X) (J, Y ) of C× consists of a map of finite sets φ : J I+
and a family of morphisms{

ω j : Xφ( j) Y j
∣∣ j ∈ φ−1(I )

}
of C . If C admits finite products, then the morphisms ω j determine and are deter-
mined by a family of morphisms{

ωJi
: X i

∏
j∈Ji

Y j

∣∣∣ i ∈ I
}
;
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here Ji denotes the fiber φ−1(i).
Observe that the cartesian∞-anti-operad is significantly simpler to define than

the cartesian∞-operad [18, Cnstr. 2.4.1.4]. Note also that (10)× = N3(F)op.

It is extremely useful to note that the condition that an∞-operad C⊗ be a sym-
metric monoidal∞-category can be broken into two conditions:

(1) The first of these is corepresentability [18, Df. 6.2.4.3]; this is the condition
that the functors MapξI

C⊗(x I , – ) : C Top be corepresentable, where ξI is the
unique active map I ∗ in 3(F). A compact expression of this is simply to
say (as Lurie does) that the inner fibration C⊗ N3(F) is locally cocartesian.

(2) The second condition is symmetric promonoidality. This can be expressed in
a number of ways. One may say that for any active map φ : J I of 3(F),
for any object x J ∈ C⊗J , and for any object z ∈ C , the natural map∫ yI∈C⊗I

MapξI
C⊗(yI , z)×MapφC⊗(x J , yI ) MapξJ

C⊗(x J , z)

is an equivalence; this is an operadic version of the condition expressed in [18,
Ex. 6.2.4.9]. Equivalently, C⊗ is a symmetric promonoidal∞-category if it
represents a commutative algebra object in the∞-category of∞-categories
and profunctors. In light of [18, B.3.3], we make the following definition.

1.4. Definition. We will say that an∞-operad C⊗ is symmetric promonoidal if
the structure map C⊗ N3(F) is a flat inner fibration [18, Df. B.3.8]. Similarly,
we will say that an∞-anti-operad C⊗ is symmetric promonoidal if the structure
map C⊗ N3(F)op is a flat inner fibration.

Our claim now is that the conjunction of these two conditions are equivalent to
the condition that C⊗ be a symmetric monoidal ∞-category. That is, we claim
that a symmetric monoidal∞-category is precisely a corepresentable symmetric
promonoidal∞-category. This follows immediately from this result:

1.5. Proposition. The following are equivalent for an inner fibration p : X S.

(1.5.1) The inner fibration p is flat and locally cocartesian.

(1.5.2) The inner fibration p is cocartesian.

Proof. The second condition implies the first by [18, Ex. B.3.11]. Let us show that
the first condition implies the second. By [15, Pr. 2.4.2.8], it suffices to consider the
case in which S=12, and to show that for any section of p given by a commutative
triangle

y

x z

f

h

g
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in which f and g are locally p-cocartesian, the edge h is locally p-cocartesian as
well.

In this case, by [15, Cor. 3.3.1.2], we can find a cocartesian fibration q : Y 12

along with an equivalence

φ : X ×12 32
1
∼ Y ×12 32

1

of cocartesian fibrations over32
1. Now since p is flat, the inclusion X ×12 32

1 X
is a categorical equivalence over 12. Consequently, we may lift to obtain a map
ψ : X Y over 12 extending φ. This map is a categorical equivalence since both
p and q are flat.

Now ψ( f ) = φ( f ) and ψ(g) = φ(g) are q-cocartesian, whence so is ψ(h).
The stability of relative colimits under categorical equivalences [15, Pr. 4.3.1.6], in
light of [15, Ex. 4.3.1.4], now implies that h is p-cocartesian. �

One reason to treasure symmetric promonoidal structures is the fact that, as we
shall now prove, they are precisely the structure needed on an∞-category C in
order for Fun(C, D) to admit a Day convolution symmetric monoidal structure.2

Indeed, in the context of ordinary categories this was the generality in which Day
himself constructed the Day convolution.

To explain, suppose first C⊗ a small symmetric monoidal∞-category, and sup-
pose D⊗ a symmetric monoidal∞-category such that D admits all colimits, and
the tensor product preserves colimits separately in each variable. In [10], Glasman
constructs a symmetric monoidal structure on the functor∞-category Fun(C, D)
which is the natural ∞-categorical generalization of Day’s convolution product.
As in Day’s construction, the convolution F ⊗G of two functors F,G : C D
in Glasman’s symmetric monoidal structure is given by the left Kan extension of
the composite

C ×C
(F,G)

D× D
⊗

D

along the tensor product ⊗: C ×C C .
In particular, for any finite set I , and for any I -tuple {Fi }i∈I of functors C D,

the value of the tensor product is given by the coend(⊗
i∈I

Fi

)
(x)'

∫ u I∈C⊗I
MapξI

C⊗(u I , x) ⊗
⊗
i∈I

Fi (ui ).

Equivalently, the Day convolution on Fun(C, D) is the essentially unique sym-
metric monoidal structure that enjoys the following criteria:

2We would like to acknowledge that Dylan Wilson has independently made this observation.
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• The tensor product

−⊗−: Fun(C, D)×Fun(C, D) Fun(C, D)

preserves colimits separately in each variable.

• The functor given by the composite

Cop
× D

j × id
Fun(C,Kan)× D m Fun(C, D)

is symmetric monoidal, where j denotes the Yoneda embedding, and m is the
functor corresponding to the composition

Fun(C,Kan) Fun(D×C, D×Kan) Fun(D×C, D)

in which the first functor is the obvious one, and the functor D×Kan D is
the tensor functor (X, K ) X ⊗ K of [15, §4.4.4].

Conveniently, we can extend Glasman’s Day convolution to situations in which
C⊗ is only symmetric promonoidal.

1.6. Proposition. Let C⊗ be a symmetric promonoidal∞-category and D⊗ a sym-
metric monoidal∞-category such that D admits all colimits and ⊗: D× D D
preserves colimits separately in each variable. Then Fun(C, D) admits a symmet-
ric monoidal structure such that the E∞-algebras therein are morphisms of ∞-
operads C⊗ D⊗.

Proof. The results of the first two sections of [10] hold when C⊗ is symmetric pro-
monoidal with only one change: in the proof of [10, Lm. 2.3], the reference to [15,
Pr. 3.3.1.3] should be replaced with a reference to [18, Pr. B.3.14]. Consequently,
our claim follows from [10, Prs. 2.11 and 2.12]. �

1.7. Once again, for any finite set I , and for any I -tuple {Fi }i∈I of functors C D,
the value of the tensor product is given by the coend(⊗

i∈I
Fi

)
(x)'

∫ u I∈C⊗I
MapξI

C⊗(u I , x) ⊗
⊗
i∈I

Fi (ui ).

2. The symmetric promonoidal structure on the effective
Burnside ∞-category

Suppose C a disjunctive ∞-category [3, Df. 4.2]. The product on C does not
induce the product on the effective Burnside∞-category Aeff(C). (Indeed, recall
that the effective Burnside∞-category admits direct sums, and these direct sums
are induced by the coproduct in C .) However, a product on C (if it exists) does
induce a symmetric monoidal structure on Aeff(C). The construction of the previous
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example is just what we need to describe this structure, and it will work for a broad
class of disjunctive triples — which we call cartesian – as well.

It turns out to be convenient to consider situations in which C does not actually
have products. In this case, the effective Burnside∞-category Aeff(C) admits not a
symmetric monoidal structure, but only a symmetric promonoidal structure, which
suffices to get the Day convolution on∞-categories of Mackey functors.

2.1. Notation. Suppose (C,C†,C†) a disjunctive triple [3, Df. 5.2]. We now
define a triple structure (C×, (C×)†, (C×)†) on C× in the following manner. A
morphism

(φ, ω) : (I, X) (J, Y )

of C× will be ingressive just in case φ is a bijection, and each morphism

ω j : Xφ( j) Y j

is ingressive. The morphism (φ, ω) will be egressive just in case each morphism

ω j : Xφ( j) Y j

is egressive (with no condition on φ).

2.2. Lemma. Suppose (C,C†,C†) a left complete ([3, Df. 10.2]) disjunctive triple.
Then the triple

(C×, (C×)†, (C×)†)

is adequate (in the sense of [3, Df. 5.2]).

Proof. We first check (5.2.1) of [3, Df. 5.2]. Suppose we have a diagram in C×

(J, Y )

(I, X) (K , Z).

(ψ,g)
(φ, f )

Let H+ be the pushout of the corresponding diagram of finite pointed sets

K+ I+

J+ H+.

φ+

∼=

ψ+ ψ ′+
φ′+

∼=

For every h ∈ H , let Wh be the iterated fiber product of the objects{
Y(φ′)−1(h)×Zk Xφ(k)

∣∣ k ∈ ψ−1(φ′)−1(h)
}
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over Y(φ′)−1(h), which exists in view of our assumption that (C,C†,C†) is a left
complete disjunctive triple. For every j ∈ J , let f ′j :Wφ′( j) Y j be the projection
morphism, which is ingressive in C ; these morphisms assemble into an ingressive
morphism (φ′, f ′) : (H,W ) (J, Y ) in C×. For every i ∈ I such that ψ ′(i) 6= +,
let g′i : Wψ ′(i) X i be the projection morphism, which is egressive in C ; these
morphisms assemble into an egressive morphism (ψ ′, g′) : (H,W ) (I, X) in
C×. Then we may complete the diagram in C× to a square

(H,W ) (J, Y )

(I, X) (K , Z).

(φ′, f ′)

(ψ ′,g′) (ψ,g)
(φ, f )

We leave the verification that this is indeed a pullback square in C× to the reader.
This checks (5.2.1), and the other condition (5.2.2) of [3, Df. 5.2] also follows
readily from our description of the pullback. �

In particular, for any left complete disjunctive triple (C,C†,C†), one may con-
sider the effective Burnside∞-category

Aeff(C×, (C×)†, (C×)†).

2.3. Example. Note in particular that

((10)×, ((1
0)×)†, ((1

0)×)
†)' (N3(F)op, ιN3(F)op,N3(F)op),

whence one proves easily that the inclusion

N3(F)' (((10)×)
†)op Aeff((10)×, ((1

0)×)†, ((1
0)×)

†)

is an equivalence.

We’ll use the following pair of results. They follow the same basic pattern as
[3, Lms. 11.4 and 11.5]; in particular, they too follow immediately from the first
author’s “omnibus theorem” [3, Th. 12.2].

2.4. Lemma. Suppose (C,C†,C†) a left complete disjunctive triple. Then the
natural functor

Aeff(C×, (C×)†, (C×)†) Aeff((10)×, ((1
0)×)†, ((1

0)×)
†)

is an inner fibration.

2.5. Lemma. Suppose (C,C†,C†) a left complete disjunctive triple. Then for any
object Y of C× lying over an object J ∈ (10)× and any inert morphism φ : I J
of N3(F), there exists a cocartesian edge Y X for the inner fibration

Aeff(C×, (C×)†, (C×)†) Aeff((10)×, ((1
0)×)†, ((1

0)×)
†)



SPECTRAL MACKEY FUNCTORS AND EQUIVARIANT ALGEBRAIC K-THEORY, II 109

lying over the image of φ under the equivalence of Ex. 2.3.

Now we can go about defining the symmetric promonoidal structure on the ef-
fective Burnside∞-category of a disjunctive triple.

2.6. Notation. For any left complete disjunctive triple (C,C†,C†), we define
Aeff(C,C†,C†)⊗ as the pullback

Aeff(C,C†,C†)⊗ := Aeff(C×, (C×)†, (C×)†)×Aeff((10)×,((10)×)†,((10)×)†) N3(F),

equipped with its canonical projection to N3(F). Note that because the inclusion

N3(F) Aeff((10)×, (1
0)×,†, (1

0)
†
×)

is an equivalence, it follows that the projection functor

Aeff(C,C†,C†)⊗ Aeff(C×, (C×)†, (C×)†)

is actually an equivalence.

2.7. Remark. Suppose (C,C†,C†) a left complete disjunctive triple. The objects
of the total∞-category Aeff(C,C†,C†)⊗ are pairs (I, X I ) consisting of a finite set
I and an I -tuple X I = (X i )i∈I of objects of C . A morphism

(J, YJ ) (I, X I )

of Aeff(C,C†,C†)⊗ can be thought of as a morphism φ : J I of 3(F) and a
collection of diagrams

Uφ( j)

Y j Xφ( j)

∣∣∣∣∣∣∣ j ∈ φ−1(I )


such that for any j ∈ J , the morphism Uφ( j) Xφ( j) is ingressive, and the mor-
phism

Uφ( j) Y j

is egressive.
Composition is then defined by pullback; that is, a 2-simplex

(K , Z K ) (J, YJ ) (I, X I )

consists of morphisms ψ : K J and φ : J I of 3(F) along with a collection
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of diagrams

Wφ(ψ(k))

Vψ(k) Uφ(ψ(k))

Zk Yψ(k) Xφ(ψ(k))

∣∣∣∣∣∣∣∣∣∣∣∣∣
k ∈ (φψ)−1(I )


in which the square in the middle exhibits each Wi (for i ∈ I ) as the iterated fiber
product over Ui of the set of objects {V j ×Y j Ui | j ∈ Ji }.

In particular, Aeff(C,C†,C†)⊗
{1} may be identified with the effective Burnside

∞-category Aeff(C,C†,C†) itself, and for any finite set I , the inert morphisms
ρi
: I {i} together induce an equivalence

Aeff(C,C†,C†)⊗I
∼
∏
i∈I

Aeff(C,C†,C†)⊗
{i}.

For the proofs of the next few results it is convenient to introduce some notation.

2.8. Notation. Suppose (C,C†,C†) a triple, suppose A and B are two sets, and
suppose S : A t B C a functor. Then let

C ′/{Sx ; Sy}x∈A,y∈B
⊆ C/{Sz}z∈AtB

denote the full subcategory spanned by those objects such that the morphisms to
the objects Sx are egressive and the morphisms to the objects Sy are ingressive. In
particular, note that

MapAeff(C,C†,C†)⊗((J, YJ ), (∗, X))' ιC ′/{Y j ; X} j∈J
.

We have almost proven the following.

2.9. Proposition. For any left complete disjunctive triple (C,C†,C†), the inner
fibration

Aeff(C,C†,C†)⊗ N3(F)

is an∞-operad.

Proof. Following Rk. 2.7, it only remains to show that given an edge α : I J
in N3(F) and objects (I, X), (J, Y ) in Aeff(C,C†,C†)⊗, the cocartesian edges

(∗, Y j )

(J, Y ) (∗, Y j ),
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over the inert edges ρ j
: J ∗ induce an equivalence

MapαAeff(C,C†,C†)⊗
((I, X), (J, Y ))

∏
j∈J

Mapρ
j
◦α

Aeff(C,C†,C†)⊗
((I, X), (∗, Y j )).

But this is indeed true, since the map identifies the left-hand side as∏
j∈J

ιC ′/{X i ; Y j }i∈α−1( j)
. �

We now show that the∞-operad Aeff(C,C†,C†)⊗ is symmetric promonoidal.

2.10. Proposition. Suppose (C,C†,C†) a left complete disjunctive triple. Then
the∞-operad

p : Aeff(C,C†,C†)⊗ N3(F)

is symmetric promonoidal; that is, p is a flat inner fibration.

In preparation for the proof, we digress briefly to give the following proposition,
which is useful for studying the interaction of the over and undercategory functors
with homotopy colimit diagrams.

2.11. Proposition. Suppose C an ∞-category, and let sSet/C be endowed with
the model structure created by the forgetful functor to sSet equipped with the Joyal
model structure. Then we have a Quillen adjunction

C( – )/ : sSet/C (sSet/C)
op
:C/( – )

between the over and undercategory functors.

Proof. The displayed functors are indeed adjoint to each other, since for objects
φ : X C and ψ : Y C we have natural isomorphisms

Hom/C(X,Cψ/)∼= Hom(XtY )/(X ? Y,C)∼= Hom/C(Y,C/φ).

To check that this adjunction is a Quillen adjunction, we check that C( – )/ preserves
cofibrations and trivial cofibrations. Let τ : φ φ′ be a map in sSet/C , and let
f = d2(τ ) : X X ′. If f is a monomorphism, by [15, 2.1.2.1] we have that
Cφ′/ Cφ/ is a left fibration, hence by [15, 2.4.6.5] a categorical fibration. If
f is a monomorphism and a categorical equivalence, by [15, 4.1.1.9] and [15,

4.1.1.1(4)] f is right anodyne, hence by [15, 2.1.2.5] Cφ′/ Cφ/ is a trivial Kan
fibration. �
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2.11.1. Corollary. Let C be an∞-category and suppose given a morphism f :
x y in C and a diagram

K L C

K t10 L t10

φ p

φ′ p′

of simplicial sets where φ′ = φ t id and p′|10 selects y. Then we have a homotopy
pullback square of∞-categories

{x}×C C/p C/p′

{x}×C C/p◦φ C/p′◦φ′

F

G

where the vertical functors are given by change of diagram and the horizontal
functors are to be defined.

Proof. Define the functor F as follows: the datum of an n-simplex

1n
{x}×C C/p

consists of a map α : 1n ? L C which restricts to p on L and to the constant
map to x on 1n , and we use this to define 1n ? (L t10) C to be the unique
map which restricts to α on 1n ? L and to

1n ?10 11 f C

on 1n ?10; this gives the n-simplex of C/p′ . The definition of G is analogous. The
square in question then fits into a rectangle

{x}×C C/p C/p′ C/p

{x}×C C/p◦φ C/p′◦φ′ C/p◦φ

F

G

where the long horizontal functors are given as the inclusion of the fiber over x
and the functors in the righthand square are given by change of diagram. By Prp.
2.11 and left properness of the Joyal model structure, the righthand square is a
homotopy pullback square. The vertical functor C/p C/p◦φ is a right fibration,
so the outermost square is a homotopy pullback square. The conclusion follows.

�
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Proof of Prp. 2.10. Suppose σ : 12 N3(F) a 2-simplex given by a diagram

J

I K .

α

γ

β

Suppose

(K ,W )

(I, X) (K , Z),

an edge γ̃ of
6 := Aeff(C,C†,C†)⊗×N3(F),σ 1

2

lifting γ , where we display γ̃ as a span in C×. Let

E :=6(I,X)/ /(K ,Z)×N3(F) {J }

be the∞-category of factorizations of γ̃ through 6J . Observe that an n-simplex
of E is a cartesian functor Õ(1n+2)op (C×, (C×)†, (C×)†) satisfying certain
conditions. Here, Õ( – ) denotes the twisted arrow∞-category [3, Ntn. 2.3], and
we use the definition of the effective Burnside∞-category as a simplicial set [3,
Df. 3.6].3

To demonstrate that the inner fibration p is flat, we need to show that E is weakly
contractible. To do this, we

(1) identify a full subcategory E ′ ⊂ E ,

(2) show that E ′ is a colocalization of E , i.e., that the inclusion functor admits a
right adjoint, and

(3) demonstrate that E ′ contains a terminal object.

The subcategory E ′ is the full subcategory spanned by those objects

(K ,W )

(J, Y01) (K , Y12)

(I, X) (J, Y ) (K , Z)

(2.11.1)

of E such that the morphisms (J, Y ) (J, Y01), and thus also (K ,W ) (K , Y12),

3Beware that our convention on the direction of morphisms in Õ( – ) is opposite to that of Lurie
in [18, §5.2.1]: for us, twisted arrows are covariant in the target and contravariant in the source.
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are equivalences; this is point (1). Informally, the right adjoint R to the inclusion
E ′ ⊂ E is the functor that carries (2.11.1) to the object

(K ,W )

(J, Y01) (K ,W )

(I, X) (J, Y01) (K , Z).

To show that this indeed defines a right adjoint, we use the criterion of (the dual of)
[15, Pr. 5.2.7.4(3)]. We must therefore construct a functor ε : E ×11 E such
that ε|(E×{0}) is the functor R we have informally described and ε|(E×{1}) is the
identity functor. Speaking again informally, ε carries the object τ ∈ E represented
by the diagram (2.11.1) to the morphism ετ : R(τ ) τ represented by the diagram

(K ,W )

(J, Y01) (K ,W )

(J, Y01) (J, Y01) (K , Y12)

(I, X) (J, Y01) (J, Y ) (K , Z).

Once we’ve given a precise description of this ε, it will be immediate that for any
object τ ′ ∈ E , both R(ετ ′) and εR(τ ′) are equivalences, so the conditions of [15, Pr.
5.2.7.4(3)] are satisfied, confirming point (2).

The construction of the desired functor ε : E ×11 E is as follows: given
nonnegative integers k ≤ n, let fn,k : Õ(1

n+3) Õ(1n+2) be the unique functor
which on objects is given by

fn,k(i j) :=


0 j if i ≤ k+ 1 and j ≤ k+ 1;
0( j − 1) if i ≤ k+ 1 and j > k+ 1;
(i − 1)( j − 1) if i > k+ 1.

Then for every n-simplex ν : 1n E corresponding to a functor

ν : Õ(1n+2)op C×,
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define ε(ν) : 1n
×11 E to be the unique functor which sends the nondegenerate

(n+ 1)-simplex

(0, 0) · · · (0, k) (1, k) · · · (1, n)

to the (n+ 1)-simplex 1n+1 E corresponding to the functor

ν ◦ f op
nk : Õ(1

n+3)op C×.

It is easy (albeit tedious) to verify that the functors ε(ν) define the desired functor
ε : E ×11 E . This thus completes the proof of point (2).

We now set about proving point (3) — the existence of a terminal object of E ′.
For this, we will need to use the map of pointed finite sets β : J K that came as
part of our initial data. We then define (J,W ) ∈ C× from our given object (K ,W )

as:

W j :=

{
Wβ( j) if β( j) 6= ∗;
∅ if β( j)= ∗.

There is an obvious factorization of (K ,W ) (I, X) through (J,W ), and we
define the object ω ∈ E ′ as

(K ,W )

(J,W ) (K ,W )

(I, X) (J,W ) (K , Z)

To prove point (3), we set about showing that ω is terminal in E ′. Let τ ∈ E ′ be
any object represented by the diagram

(K ,W )

(J, Y01) (K , Y12)

(I, X) (J, Y ) (K , Z)

in which (J, Y ) (J, Y01) and therefore also (K ,W ) (K , Y12) are equiv-
alences. To show that MapE ′(τ, ω) is contractible, let us also view τ and ω as
morphisms in 6(I,X)/ in order to write down the following homotopy pullback
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square

MapE ′(τ, ω) Map6(I,X)/(d2(τ ), d2(ω))

10 Map6(I,X)/(d2(τ ), γ̃ ).

ω∗

τ

The terms on the right-hand side are in turn given as homotopy pullbacks

Map6(I,X)/(d2(τ ), d2(ω)) Map6((J, Y ), (J,W ))

10 Map6((I, X), (J,W )),

d2(τ )
∗

d2(ω)

and

Map6(I,X)/(d2(τ ), γ̃ ) Map6((J, Y ), (K , Z))

10 Map6((I, X), (K , Z)).

d2(τ )
∗

γ̃

In light of the equivalence (J, Y01) ∼ (J, Y ), we obtain equivalences

Map6((J, Y ), (J,W ))'
∏
j∈J

ιC ′
/{(Y01) j ; W j }

;

Map6((I, X), (J,W ))'
∏
j∈J

ιC ′
/{X i ; W j }i∈α−1( j)

.

Under these equivalences the map d2(τ )
∗ is given by

∏
j∈J φ j , where

φ j : ιC ′/{(Y01) j ; W j }
ιC ′
/{X i ; W j }i∈α−1( j)

is defined by postcomposition by the maps (Y01) j X i (with i ∈ α−1( j)). Em-
ploying Corollary 2.11.1, we may factor the square in question into two homotopy
pullback squares:

Map6(I,X)/(d2(τ ), d2(ω)) Map
(C×)

†
id
((J,W ), (J,Y01))

∏
j∈J ιC

′

/{(Y01) j ;W j }

10 Map
(C×)

†
α
((J,W ), (I, X))

∏
j∈J ιC

′

/{X i ;W j }i∈α−1( j)
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Similarly, we factor the second square into two homotopy pullback squares:

Map6(I,X)/(d2(τ ), γ̃ ) Map
(C×)

†
β
((K ,W ), (J, Y01))

∏
k∈K

ιC ′/{(Y01) j ; Zk} j∈β−1(k)

10 Map
(C×)

†
γ
((K ,W ), (I, X))

∏
k∈K

ιC ′/{X i ; Zk}i∈γ−1(k)

The map ω∗ is then seen to be equivalent to the induced map between the fibers
of the horizontal maps in the following commutative square:

Map
(C×)

†
id
((J,W ), (J, Y01)) Map

(C×)
†
α
((J,W ), (I, X))

Map
(C×)

†
β
((K ,W ), (J, Y01)) Map

(C×)
†
γ
((K ,W ), (I, X)).

The left vertical map is the equivalence∏
j∈β−1(K )

MapC†(Wβ( j), (Y01) j ) ∼
∏
k∈K

∏
j∈β−1(k)

MapC†(Wk, (Y01) j ),

and the right vertical map is the equivalence∏
j∈β−1(K )

∏
i∈α−1( j)

MapC†(Wβ( j), X i ) ∼
∏
k∈K

∏
i∈γ−1(k)

MapC†(Wk, X i ),

so the square is in fact a homotopy pullback square and ω∗ is an equivalence. Hence,
the mapping space MapE ′(τ, ω) is contractible, as desired. This proves point (3),
and it completes the proof. �

If we want the symmetric promonoidal∞-category

Aeff(C,C†,C†)⊗ N3(F)

to be symmetric monoidal, we need a nontrivial condition on our disjunctive triple.

2.12. Definition. A disjunctive triple (C,C†,C†) will be said to be cartesian just
in case it enjoys the following properties:

(2.12.1) It is left complete.

(2.12.2) The underlying∞-category C admits finite products.

(2.12.3) For any object X ∈ C , the product functor

X ×−: C C
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preserves finite coproducts; that is, for any finite set I and any collection
{Ui | i ∈ I } of objects of C , the natural map∐

i∈I

(X ×Ui ) X ×

(∐
i∈I

Ui

)
is an equivalence.

(2.12.4) A morphism X
∏

j∈J Y j is egressive just in case each of the compo-
nents X Y j is so.

2.13. Example. Note that a disjunctive∞-category C that admits a teminal object,
when equipped with the maximal triple structure (in which every morphism is both
ingressive and egressive) is always cartesian. More generally, any disjunctive triple
that contains a terminal object 1 with the property that every morphism X 1 is
ingressive and egressive is cartesian.

2.14. Proposition. If (C,C†,C†) is a cartesian disjunctive triple, then the sym-
metric promonoidal∞-category

p : Aeff(C,C†,C†)⊗ N3(F)

is symmetric monoidal; that is, p is a cocartesian fibration.

Proof. Since p is flat, by Pr. 1.5 it suffices to verify that p is a locally cocartesian
fibration. Since p is an ∞-operad, by the dual of [15, Lm. 2.4.2.7] we reduce
to checking that for any active edge α : I J and any object (I, X) over I ,
there exists a locally p-cocartesian edge α̃ covering α. For each j ∈ J , let X̃ j =∏

i∈α−1( j) X i , and define α̃ to be

(J, X̃)

(I, X) (J, X̃),

where the morphism (J, X̃) (I,X) is defined using the projection maps X̃α(i) X i .
Then α̃ is a locally p-cocartesian edge if for all (J, Y ) ∈ Aeff(C,C†,C†)⊗J , the
induced map

α̃∗ : MapAeff(C,C†,C†)⊗J
((J, X̃), (J, Y )) MapAeff(C,C†,C†)⊗α

((I, X), (J, Y ))

is an equivalence. This map is in turn equivalent to the map∏
j∈J

φ j :
∏
j∈J

ιC ′
/
{∏

i∈α−1( j) X i ; Y j

} ∏
j∈J

ιC ′/{X i ; Y j }i∈α−1( j)
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where φ j is induced by postcomposition by the projection maps
∏

i∈α−1( j) X i X i .
Since (C,C†,C†) is a cartesian disjunctive triple, we have that the functor

(C†)/
∏

i∈α−1( j) X i (C†)/(X i ,i∈α−1( j))

is an equivalence. Hence in light of Prp. 2.11 we have a homotopy pullback square∏
j∈J ιC

′

/
{∏

i∈α−1( j) X i ; Y j

} ∏
j∈J ιC

′

/{X i ; Y j }i∈α−1( j)

(C†)/
∏

i∈α−1( j) X i (C†)/{X i }i∈α−1( j)

φ j

where the horizontal maps are equivalences. We deduce that the map α̃∗ is an
equivalence, as desired. �

2.15. When (C,C†,C†) is a right complete disjunctive triple, we may employ
duality and write

Aeff(C,C†,C†)⊗ := (Aeff(C,C†,C†)
⊗)op.

The functor Aeff(C,C†,C†)⊗ N3(F)op is then a symmetric promonoidal struc-
ture on the Burnside∞-category Aeff(C,C†,C†)

op
' Aeff(C,C†,C†).

2.16. Suppose (C,C†,C†) a cartesian disjunctive triple. Note that the formula∐
i∈I

(X ×Ui )' X ×
(∐

i∈I

Ui

)
implies immediately that the tensor product functor

⊗: Aeff(C,C†,C†)× Aeff(C,C†,C†) Aeff(C,C†,C†)

preserves direct sums separately in each variable.
More generally, suppose (C,C†,C†) a left complete disjunctive triple, suppose

I a finite set, and suppose {xi }i∈I a collection of objects of C , which we view,
by the standard abuse, as an object of Aeff(C,C†,C†)⊗I . Consider the 1-simplex
ξI : 1

1 N3(F), and denote by h{xi }i∈I the restriction of the functor

Aeff(C,C†,C†)⊗×N3(F)1
1 Kan

corepresented by {xi }i∈I to Aeff(C,C†,C†). Informally, this is the functor

MapξI
C⊗({xi }i∈I , – ).

Suppose j ∈ I , and suppose {yk x j }k∈K a family of morphisms that together
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exhibit x j as the coproduct
∐

k∈K yk . For each i ∈ I and k ∈ K , write

x ′i,k :=
{

yk if i = j;
xi if i 6= j.

Then the natural map

h{xi }i∈I
∏
k∈K

h{x
′

i,k}i∈I

is an equivalence.

2.17. For any disjunctive∞-category C that admits a terminal object, the duality
functor

D : Aeff(C)op ∼ Aeff(C)

of [3, Nt. 3.10] provides duals for the symmetric monoidal∞-category Aeff(C)⊗

[16, Df. 2.3.5]. More precisely, for any object X of Aeff(C), there exists an evalu-
ation morphism X ⊗ DX 1 given by the diagram

X

X × X 1,

1 !

and, dually, there exists a coevaluation morphism 1 DX ⊗ X given by the
diagram

X

1 X × X.

! 1

Since the square

X X × X

X × X X × X × X

1

1 1× id

id×1

is a pullback, it follows that the composite

X X ⊗ DX ⊗ X X

in Aeff(C) is homotopic to the identity. We conclude that Aeff(C)⊗ is a symmetric
monoidal∞-category with duals.

2.18. If (C,C†,C†) is a cartesian disjunctive triple, then in general it is not quite
the case that the symmetric monoidal∞-category Aeff(C,C†,C†)⊗ admits duals.
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We have an evaluation morphism X ⊗ DX 1 in Aeff(C,C†,C†) just in case
the diagonal 1 : X X × X of C is egressive, and the morphism ! : X 1 is
ingressive. We have a coevaluation morphism 1 DX ⊗ X in Aeff(C,C†,C†)

just in case 1 is ingressive and ! is egressive.

2.19. If (C,C†,C†) and (D, D†, D†) are left complete disjunctive triples, then it
is easy to see that a functor of disjunctive triples

f : (C,C†,C†) (D, D†, D†)

induces a functor of adequate triples

(C×, (C×)†, (C×)†) (D×, (D×)†, (D×)†)

and thus a morphism of∞-operads

Aeff( f )⊗ : Aeff(C,C†,C†)⊗ Aeff(D, D†, D†)⊗.

If, furthermore, (C,C†,C†) and (D, D†, D†) are cartesian and f preserves finite
products, then Aeff( f )⊗ is of course a symmetric monoidal functor.

3. Green functors

Andreas Dress [9] defined Green functors as Mackey functors equipped with cer-
tain pairings. Gaunce Lewis [13] noticed that these pairings made them commu-
tative monoids for the Day convolution tensor product on the category of Mackey
functors. By an old observation of Brian Day [8, Ex. 3.2.2], these are precisely
the lax symmetric monoidal additive functors on the effective Burnside category.
Thanks to recent work of Saul Glasman [10], this characterization of monoids for
the Day convolution holds in the∞-categorical context as well.

3.1. Definition. We shall say that a symmetric monoidal ∞-category E⊗ is ad-
ditive if the underlying∞-category E is additive, and the tensor product functor
⊗: E × E E preserves direct sums separately in each variable.

3.2. Definition. (3.2.1) Suppose (C,C†,C†) a left complete disjunctive triple and
E⊗ an additive symmetric monoidal ∞-category. Then a commutative
Green functor is a morphism of∞-operads

Aeff(C,C†,C†)⊗ E⊗

such that the underlying functor Aeff(C,C†,C†) E preserves direct
sums.

(3.2.2) More generally, if O⊗ is an ∞-operad, then an O⊗-Green functor is a
morphism of∞-operads

Aeff(C,C†,C†)⊗×N3(F) O⊗ E⊗×N3(F) O⊗
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over O⊗ such that for any object X of the underlying∞-category O , the
functor

Aeff(C,C†,C†)' (Aeff(C,C†,C†)⊗×N3(F) O⊗)X (E⊗×N3(F) O⊗)X ' E

preserves direct sums.

(3.2.3) Similarly, for any perfect operator category 8, we may define a 8-Green
functor as a morphism

Aeff(C,C†,C†)⊗×N3(F) N3(8) E⊗×N3(F) N3(8)

of∞-operads over8 such that the underlying functor Aeff(C,C†,C†) E
preserves direct sums.

3.3. Notation. Suppose (C,C†,C†) a left complete disjunctive triple, and suppose
E⊗ an additive symmetric monoidal∞-category. For any∞-operad O⊗, let us
write, employing the notation of [18, Df. 2.1.3.1]

GreenO⊗(C,C†,C†
; E⊗)⊂ AlgAeff(C,C†,C†)⊗×N3(F)O⊗ /O⊗(E

⊗
×N3(F) O⊗)

for the full subcategory spanned by the O⊗-Green functors.

3.4. Example. We define modules over an associative Green functor in this way.
Suppose (C,C†,C†) a left complete disjunctive triple, and suppose E⊗ an additive
symmetric monoidal∞-category. Then we may consider the∞-operad of [18, Df.
4.2.1.7], which we will denote LM⊗. The inclusion Ass⊗ LM⊗ induces a
functor

GreenLM⊗(C,C†,C†
; E⊗) GreenAss⊗(C,C†,C†

; E⊗).

An object A of the target may be called an associative Green functor, and an object
of the fiber of this functor over A may be called a left A-module. We write

Mod`A(C,C†,C†
; E⊗) :=GreenLM⊗(C,C†,C†

; E⊗)×GreenAss⊗ (C,C†,C†;E⊗) {A}

for the∞-category of left A-modules. When A is a commutative Green functor,
we will drop the superscript `.

The convolution of two Mackey functors will not in general be a Mackey func-
tor, but it can replaced with one by employing a localization (which we might as
well call Mackeyification). To prove that convolution followed by Mackeyification
defines a symmetric monoidal structure on the ∞-category of Mackey functors,
it is necessary to show that Mackeyification is compatible with the convolution
symmetric monoidal structure in the sense of Lurie [18, Df. 2.2.1.6, Ex. 2.2.1.7].

The following is immediate from [3, Pr. 6.5].
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3.5. Lemma. Suppose (C,C†,C†) a disjunctive triple, and suppose E a pre-
sentable additive ∞-category. Then the ∞-category Mack(C,C†,C†

; E) is an
accessible localization of the∞-category Fun(Aeff(C,C†,C†), E).

3.6. Notation. Suppose (C,C†,C†) a disjunctive∞-category, and suppose E a
presentable additive ∞-category. Then write M for the left adjoint to the fully
faithful inclusion

Mack(C,C†,C†
; E) Fun(Aeff(C,C†,C†), E).

3.7. Lemma. Let (C,C†,C†) be a left complete disjunctive∞-category and E⊗

a presentable symmetric monoidal additive∞-category. Then the left adjoint M
constructed above is compatible (in the sense of [18, Df. 2.2.1.6]) with Glasman’s
Day convolution symmetric monoidal structure on Fun(Aeff(C,C†,C†), E).

Proof. For any collection of objects {si | i ∈ I } of C , let

h{si } : Aeff(C,C†,C†) Kan

be as in 2.16, and for any object x ∈ E , let

−⊗ x : Fun(Aeff(C,C†,C†),Kan) Fun(Aeff(C,C†,C†), E)

be the composition with the tensor product −⊗x : Kan E with spaces [15, §4.].
Thus objects of the form h{si }⊗x generate the∞-category Fun(Aeff(C,C†,C†), E)
under colimits. It is easy to see that for any functors f, g : Aeff(C,C†,C†) Kan
and any object x ∈ E , the map

( f × g)⊗ x ( f ⊗ x)⊕ (g⊗ x)

is an M-equivalence; furthermore, the class of M-equivalences is the strongly sat-
urated class generated by the canonical morphisms

hs⊕t
⊗ x (hs

⊗ x)⊕ (ht
⊗ x).

This tensor product and the Day convolution are compatible in the sense that there
are natural equivalences

(hs
⊗ x)⊗ (ht

⊗ y)' h{s,t}⊗ (x ⊗ y),

whence one obtains natural M-equivalences

((hs
⊗ x)⊕ (ht

⊗ x))⊗ (hu
⊗ y) ' ((hs

⊗ x)⊗ (hu
⊗ y))⊕ ((ht

⊗ x)⊗ (hu
⊗ y))

' (h{s,u}⊗ x⊗ y)⊕ (h{t,u}⊗ x⊗ y)

(h{s,u}×h{t,u})⊗ x⊗ y

' h{s⊕t,u}
⊗ x⊗ y

' hs⊕t
⊗ x⊗hu

⊗ y.
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Hence for any M-equivalence X Y and any object Z ∈ Fun(Aeff(C,C†,C†), E),
the morphism

X ⊗ Z Y ⊗ Z

is an M-equivalence. �

3.8. In particular, if (C,C†,C†) is a left complete disjunctive triple, and if E⊗

a presentable symmetric monoidal additive ∞-category, we obtain a symmetric
monoidal ∞-category Mack(C,C†,C†

; E)⊗, and, in light of [10], for any ∞-
operad O⊗, one obtains an equivalence

AlgO⊗(Mack(C,C†,C†
; E)⊗)'GreenO⊗(C,C†,C†

; E).

4. Green stabilization

Now let us address the issue of multiplicative structures on the Mackey stabiliza-
tion, as constructed in [3, §7]. In particular, we aim to show that if E is an∞-topos,
then the Mackey stabilization of a morphism of operads

Aeff(C,C†,C†)⊗ E×

naturally admits the structure of a Green functor

Aeff(C,C†,C†)⊗ Sp(E)⊗.

4.1. Definition. Suppose (C,C†,C†) a cartesian disjunctive triple, suppose E an
∞-topos, and suppose

f : Aeff(C,C†,C†)⊗ E× and F : Aeff(C,C†,C†)⊗ Sp(E)⊗

morphisms of∞-operads. Then a morphism of Aeff(C,C†,C†)⊗-algebras

η : f �∞ ◦ F

will be said to exhibit F as the Green stabilization of f if F is a Green functor,
and if, for any Green functor R : Aeff(C,C†,C†)⊗ Sp(E)⊗, the map

MapGreenE∞ (C,C†,C†;Sp(E)⊗)(F, R) MapAlgAeff(C,C†,C†)⊗ (E
×)( f, �∞ ◦ R)

induced by η is an equivalence.

The following result is essentially the same as [1, Pr. 2.1].

4.2. Proposition. Suppose (C,C†,C†) a cartesian disjunctive triple. There exists
a symmetric monoidal∞-category DA(C,C†,C†)⊗ and a fully faithful symmetric
monoidal functor

j⊗ : Aeff(C,C†,C†)⊗ DA(C,C†,C†)⊗
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with the following properties.

(4.2.1) The ∞-category DA(C,C†,C†) underlies DA(C,C†,C†)⊗, and the un-
derlying functor of j⊗ is the inclusion

j : Aeff(C,C†,C†) DA(C,C†,C†)

of [3, Nt. 7.2].

(4.2.2) For any symmetric monoidal∞-category E⊗ whose underlying∞-category
admits all sifted colimits such that the tensor product preserves sifted col-
imits separately in each variable, the induced functor

AlgDA(C,C†,C†)⊗(E
⊗) AlgAeff(C,C†,C†)⊗(E

⊗)

exhibits an equivalence from the full subcategory spanned by those mor-
phisms of∞-operads A whose underlying functor A : DA(C,C†,C†) E
preserves sifted colimits to the full subcategory spanned by those mor-
phisms of∞-operads B whose underlying functor B : Aeff(C,C†,C†) E
preserves filtered colimits.

(4.2.3) The tensor product functor

⊗: DA(C,C†,C†)×DA(C,C†,C†) DA(C,C†,C†)

preserves all colimits separately in each variable.

Proof. The only part that is not a consequence of [18, Pr. 4.8.1.10 and Var. 4.8.1.11]
is the assertion that the tensor product functor

⊗: DA(C,C†,C†)×DA(C,C†,C†) DA(C,C†,C†)

preserves direct sums separately in each variable. This assertion holds for objects
of the effective Burnside category Aeff(C,C†,C†) thanks to the universality of co-
products in C ; the general case follows by exhibiting any object of DA(C,C†,C†)

as a colimit of a sifted diagram of objects of Aeff(C,C†,C†) and using the fact that
both the tensor product and the direct sum commute with sifted colimits. �

In light of [1, Pr. 3.5] and [18, Pr. 6.2.4.14 and Th. 6.2.6.2], we now have the
following.

4.3. Proposition. Suppose (C,C†,C†) a disjunctive triple, suppose E an ∞-
topos, and suppose

f : Aeff(C,C†,C†)⊗ E×

a morphism of∞-operads. Then a Green stabilization of f exists. In particular,
the functor

�∞ ◦−: Green(C,C†,C†
;Sp(E)⊗) AlgAeff(C,C†,C†)⊗(E

×)
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admits a left adjoint that covers the left adjoint of the functor

�∞ ◦−: Mack(C,C†,C†
;Sp(E)) Fun(Aeff(C,C†,C†), E).

4.4. Example. Suppose (C,C†,C†) a cartesian disjunctive triple. Then the functor

Aeff(C,C†,C†) Kan

corepresented by the terminal object 1 of C is the unit for the Day convolution
symmetric monoidal structure of Glasman, and hence it is an E∞ algebra in an
essentially unique fashion. Thus we can consider its Green stabilization

S⊗ = S⊗
(C,C†,C†)

: Aeff(C,C†,C†)⊗ Sp⊗,

whose underlying Mackey functor is the Burnside Mackey functor S(C,C†,C†) of [3].
We call S⊗ the Burnside Green functor.

In a similar vein, we immediately have the following:

4.5. Proposition. For any cartesian disjunctive triple (C,C†,C†), the functor

Aeff(C,C†,C†)op Mack(C,C†,C†
;Sp)

given by the assignment X SX is naturally symmetric monoidal. That is, for
any two objects X, Y ∈ C , one has a canonical equivalence

SX
⊗SY

' SX×Y

4.5.1. Corollary. Suppose (C,C†,C†) a cartesian disjunctive triple. For any spec-
tral Mackey functor M thereon, write F(M, – ) for the right adjoint to the functor

−⊗M : Mack(C,C†,C†
;Sp) Mack(C,C†,C†

;Sp).

Then for any object X ∈ C , the Mackey functor F(SX ,M) is given by the assign-
ment

Y M(X × Y ).

The following is now immediate.

4.6. Proposition. Suppose (C,C†,C†) a cartesian disjunctive triple. The Burn-
side Mackey functor S(C,C†,C†) is the unit in the symmetric monoidal∞-category
Mack(C,C†,C†

;Sp)⊗. Consequently, the Burnside Green functor S⊗
(C,C†,C†)

is

the initial object in the∞-category GreenN3(F)(C,C†,C†
;Sp⊗), and the forgetful

functor
ModS⊗(C,C†,C†

;Sp⊗) ∼ Mack(C,C†,C†
;Sp)

is an equivalence.
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5. Duality

In this section, suppose C a disjunctive∞-category that admits a terminal object.
Since the functor X SX is symmetric monoidal, it follows immediately that
every representable Mackey functor SX is strongly dualizable, and

(SX )∨ ' SDX

5.1. Notation. For any associative spectral Green functor R and for any object
X ∈ C , denote by RX the left R-module R ⊗ SX , and denote by XR the right
R-module SX

⊗ R.
Of course for any left (respectively, right) R-module M , one has

Map(RX ,M)'�∞M(X) (resp., Map(XR,M)'�∞M(X) ).

5.2. Definition. For any associative spectral Green functor R on C , denote by
Perf `R the smallest stable subcategory of the∞-category Mod`R that contains the
left R-modules RX (for X ∈ C) and is closed under retracts. Similarly, denote by
Perf r

R the smallest stable subcategory of the∞-category Modr
R that contains the

right R-modules XR (for X ∈ C) and is closed under retracts.
The objects of Perf `R (respectively, Perf r

R) will be called perfect left (resp.,
right) modules over R.

Now we obtain the following, which is a straightforward analogue of [18, Pr.
7.2.5.2].

5.3. Proposition. For any associative spectral Green functor R, a left R-module
is compact just in case it is perfect.

Proof. For any X ∈ C , the functor corepresented by RX is the assignment M
�∞M(X), which preserves filtered colimits. Hence RX is compact, and thus any
perfect left R-module is compact.

Conversely, there is a fully faithful, colimit-preserving functor

F : Ind(Perf `R) ModR

induced by the inclusion Perf `R Mod`R . If this is not essentially surjective, there
exists a nonzero left R-module M such that for every R-module N in the essential
image of F , the group [N ,M] vanishes. In particular, for any integer n and any
object X ∈ C ,

πn M(X)∼= [RX
[n],M] ∼= 0,

whence M ' 0. �

The proof of the following is word-for-word identical to that of [18, Pr. 7.2.5.4].
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5.4. Proposition. For any associative spectral Green functor R on C , a left R-
module M is perfect just in case there exists a right R-module M∨ that is dual to
M in the sense that the functor

Map(S,M∨⊗R −) : Mod`R Kan

is the functor that M corepresents.

5.5. Example. Note that, in particular, for any object X ∈ C , one has

(RX )∨ ' DXR.

6. The Künneth spectral sequence

Let us note that the Künneth spectral sequence works in the Mackey functor context
more or less exactly as in the ordinary∞-category of spectra. To this end, let us
first discuss t-structures on∞-categories of spectral Mackey functors.

6.1. Proposition. Suppose (C,C†,C†) a disjunctive triple, and suppose A a stable
∞-category equipped with a t-structure (A≥0, A≤0). Then the two subcategories

Mack(C,C†,C†
; A)≥0 :=Mack(C,C†,C†

; A≥0)

and
Mack(C,C†,C†

; A)≤0 :=Mack(C,C†,C†
; A≤0)

define a t-structure on Mack(C,C†,C†
; A).

Proof. Consider the functor L : Mack(C,C†,C†
; A) Mack(C,C†,C†

; A)
given by composition with τ≤−1; it is clear that L is a localization functor. Further-
more, the essential image of L is the∞-category Mack(C,C†,C†

; A≤−1), which
is closed under extensions, since A≤−1 is. Now we apply [18, Pr. 1.2.1.16]. �

6.2. Note that if A a stable∞-category equipped with a t-structure (A≥0, A≤0),
then for any disjunctive triple (C,C†,C†), the heart of the induced t-structure on
Mack(C,C†,C†

; A) is given by

Mack(C,C†,C†
; A)♥ 'Mack(C,C†,C†

; A♥).

Furthermore, it is clear that many properties of the t-structure on A are inherited
by the induced t-structure Mack(C,C†,C†

; A): in particular, one verifies easily
that the t-structure on Mack(C,C†,C†

; A) is left bounded, right bounded, left
complete, right complete, compatible with sequential colimits, compatible with
filtered colimits, or accessible if the t-structure on A is so.

6.3. Example. For any disjunctive triple (C,C†,C†), the∞-category

Mack(C,C†,C†
;Sp)
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admits an accessible t-structure that is both left and right complete whose heart
is the abelian category Mack(C,C†,C†

; NAb). Observe that the corepresentable
functors τ≤0SX are projective objects in the heart, and thus the heart has enough
projectives.

In particular, if G is a profinite group and if C is the disjunctive ∞-category
of finite G-sets, then the∞-category MackG of spectral Mackey functors for G
admits an accessible t-structure that is both left and right complete, in which the
heart Mack♥G is the nerve of the usual abelian category of Mackey functors for G.

6.4. Construction. Suppose A is a stable∞-category equipped with a t-structure.
Let (C,C†,C†) be a disjunctive triple and X : NZ Mack(C,C†,C†

; A) a fil-
tered Mackey functor with colimit X (+∞). Then we have the spectral sequence

E p,q
r := im

[
πp+q

(
X (p)

X (p− r)

)
πp+q

(
X (p+ r − 1)

X (p− 1)

)]
associated with X [18, Df. 1.2.2.9].

Note that this is a spectral sequence of A♥-valued Mackey functors. Since limits
and colimits of Mackey functors are defined objectwise, it follows that for any
object U ∈ Aeff(C,C†,C†), the value E p,q

r (U ) is the spectral sequence (in A♥)
associated with the filtered object X (U ) : NZ A.

6.5. In the setting of Cnstr. 6.4, assume that A admits all sequential colimits and
that the t-structure is compatible with these colimits. If X (n)' 0 for n� 0, then
the associated spectral sequence converges to a filtration on πp+q(X (+∞)) [18,
1.2.2.14]. That is:

• For any p and q , there is r� 0 such that the differential dr : E p,q
r E p−r,q+r−1

r

vanishes.

• For any p and q , there exist a discrete, exhaustive filtration

· · · ⊂ F−1
p+q ⊂ F0

p+q ⊂ F1
p+q ⊂ · · · ⊂ πp+q X (+∞)

and an isomorphism E p,q
∞
∼= F p

p+q/F p−1
p+q .

In more general circumstances, one can obtain a kind of “local convergence.”
Suppose again that A admits all sequential colimits, and that the t-structure is com-
patible with these colimits. Now suppose that for every object U ∈ Aeff(C,C†,C†),
there exists n�0 such that X (n)(U )'0. Then for every object U ∈ Aeff(C,C†,C†),
the spectral sequence E p,q

r (U ) converges to πp+q(X (+∞)(U )). In finitary cases
(e.g., when C is the disjunctive∞-category of finite G-sets for a finite group G),
there is no difference between the local convergence and the global convergence.

Better convergence results can be obtained when the filtered Mackey functor
is the skeletal filtration of a simplicial connective object Y∗ [18, Pr. 1.2.4.5]. In
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this case, we do not need to assume that the t-structure on A is compatible with
sequential colimits, the associated spectral sequence is a first-quadrant spectral
sequence, and it converges to a length p+ q filtration on πp+q |Y∗|.

Now, to construct the Künneth spectral sequence for Mackey functors, we can
follow very closely the arguments of Lurie [18, §7.2.1].

6.6. Lemma. Suppose (C,C†,C†) a disjunctive triple. Then the collection of
corepresentable Mackey functors {SX

| X ∈ Aeff(C,C†,C†)} is a set of compact
projective generators for Mack(C,C†,C†

;Sp≥0) in the sense of [15, Dfn. 5.5.2.3].

Proof. The corepresentable functors provide a set of compact projective generators
for the∞-category Fun×(Aeff(C,C†,C†),Kan) because this category is precisely
P6(Aeff(C,C†,C†)op). The functor

�∞ ◦−: Mack(C,C†,C†
;Sp≥0) Fun×(Aeff(C,C†,C†),Kan)

preserves sifted colimits and is conservative, since �∞ : Sp≥0 Kan preserves
sifted colimits by [18, 1.4.3.9] and is conservative, and the inclusion of both sides
into all functors preserves sifted colimits (we use that Kan is cartesian closed). We
conclude by applying [18, 4.7.4.18]. �

To set up the spectral sequence we need to impose the hypotheses of strong
dualizability on the SX . Because of this, we now work in the generality of C a
disjunctive∞-category which admits a terminal object.

Suppose

R : Aeff(C)⊗×N3(F) Ass⊗ Sp∧×N3(F) Ass⊗

an associative Green functor, suppose M a right R-module, and suppose N a left
R-module. There is a comparison map

Torπ∗R
0 (π∗M, π∗N ) π∗(M ⊗R N )

constructed as follows: given x ∈ πm M(U ) and y ∈ πn N (V ), choose representa-
tives 6m(UR) M and 6n(RV ) N and take their smash product to obtain a
map

6m+n(SU×V ) 6m+n(SU×V )⊗ R '6m(UR)⊗R 6
n(RV ) M ⊗R N

and thus an element x⊗ y ∈ πm+n(M⊗R N )(U×V ); this is suitably natural so that
it descends to a map out of the Day convolution tensor product π∗M ⊗π∗R π∗N to
π∗(M ⊗R N ). This map is not usually an isomorphism. Instead, we construct a
spectral sequence that converges to π∗(M ⊗R N ), in which this map appears as an
edge homomorphism.
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Let S denote the class of left R-modules of the form 6n RX for n ∈ Z and
X ∈ C . By [18, Pr. 7.2.1.4], there exists an S-free S-hypercovering P• N in
the (presentable) stable∞-category Mod`R .

6.7. Lemma. For any S-hypercovering P• N , we have that |P•| ' N.

Proof. Let S≥n be the subset of S on 6m
◦RX for m ≥ n. From our S-hypercovering

P• N , we obtain S≥n-hypercoverings τ≥n P• τ≥n N for every n ∈ Z. Since
the 6n SX , X ∈ C constitute a set of projective generators for Mack(C;Sp≥n) by
Lm. 6.6, we have that

∣∣τ≥n P•
∣∣' τ≥n N by the hypercompleteness of Kan. By the

right completeness of the t-structure, we deduce that |P•| ' N . �

By passing to the skeletal filtration of M ⊗R |P•|, we obtain a spectral sequence
{E p,q

r , dr }r≥1 that converges to πp+q(M ⊗R N ). The complex (E∗,q1 , d1) is the
normalized chain complex N∗(πq(M ⊗R P•)).

To proceed, we need to prove the following analogue of [18, Pr. 7.2.1.17].

6.8. Lemma. If P is a direct sum of objects in S, then the map

Torπ∗R
0 (π∗M, π∗P) π∗(M ⊗R P)

is an isomorphism.

Proof. Both sides commute with direct sums and shifts, so we reduce to the case
of P = RX . We claim first that for any spectral Mackey functor E,

π∗E ⊗ τ≤0SX ∼= π∗(E ⊗SX ).

Since τ≤0SY corepresents evaluation at Y for Ab-valued Mackey functors, and
τ≤0SX has dual τ≤0SDX , we have (π∗E⊗τ≤0SX )(Y )∼= (π∗E)(Y×DX). Similarly,
corepresentability and strong dualizability on the level of the Sp-valued Mackey
functors implies that π∗(E⊗SX )(Y )∼= (π∗E)(Y ×DX), so we conclude. Now we
apply this claim both for M and R to see that

π∗M ⊗π∗R π∗(RX )∼= π∗M ⊗π∗R (π∗R⊗ τ≤0SX )

∼= π∗M ⊗ τ≤0SX

∼= π∗(M ⊗SX )

∼= π∗(M ⊗R RX ).

We leave the identification of the specified map with this isomorphism to the reader.
�

We thus obtain an isomorphism

Torπ∗R
0 (π∗M, π∗P•)∼= π∗(M ⊗R P•).
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As P• is an S-free S-hypercovering of N , N∗(π∗P•) is a resolution of π∗N by
projective π∗R-modules. It follows that the E2 page is given by

E p,q
2
∼= Torπ∗R

p (π∗M, π∗N )q .

As in [18, Cor. 7.2.1.23], we have an immediate corollary.

6.8.1. Corollary. Suppose C , R, M , and N as above. Suppose that R, M , and N
are all connective. Then M ⊗R N is connective, and one has an isomorphism of
ordinary Mackey functors

π0(M ⊗R N )∼= π0 M ⊗π0 R π0 N .

6.9. Example. If C is the category of finite G-sets for G a finite group, then our
Künneth spectral sequence recovers that of Lewis and Mandell in [14]. We refer
the reader there to a more extensive discussion of this spectral sequence in that
particular case.

7. Symmetric monoidal Waldhausen bicartesian fibrations

In [2], we define an O⊗-monoidal Waldhausen∞-category for any∞-operad O⊗

as an O⊗-algebra in the symmetric monoidal∞-category Wald⊗
∞

. We give two
equivalent fibrational formulations of this notion.

7.1. Definition. Suppose O⊗ an ∞-operad. An O⊗-monoidal Waldhausen ∞-
category consists of a pair cocartesian fibration [2, Df. 3.8]

p⊗ : X⊗ O⊗

such that the following conditions obtain.

(7.1.1) The composite
X⊗ O⊗ N3(F)

exhibits X⊗ as an∞-operad.

(7.1.2) The fiber p : X O over ∗ ∈ N3(F) is a Waldhausen cocartesian fibra-
tion.

(7.1.3) For any finite set I and any choice of inert morphisms {ρi
: s si }i∈I

covering the inert morphisms I {i}, an edge η of X⊗s is ingressive if
and only if, for every i ∈ I , the edge (ρi )!(η) of Xsi is ingressive.

(7.1.4) For any finite set I , any morphism µ : s t of O⊗ covering the unique
active morphism I {ξ}, and any choice of inert morphisms {s si | i ∈
I } covering the inert morphisms I {i}, the functor of pairs

µ! :
∏
i∈I

Xsi ' X⊗s Xt
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is exact separately in each variable [1].

Dually, suppose O⊗ an∞-anti-operad. Then a O⊗-monoidal Waldhausen∞-
category is a pair cartesian fibration

p⊗ : X⊗ O⊗

such that the following conditions obtain.

(7.1.5) The composition

X⊗ O⊗ N3(F)op

exhibits X⊗ as an∞-anti-operad.

(7.1.6) The fiber p : X O over ∗ ∈N3(F)op is a Waldhausen cartesian fibration.

(7.1.7) For any finite set I and any choice of inert morphisms {πi : s si }i∈I

covering the inert morphisms I {i}, an edge η of X⊗s is ingressive if
and only if, for every i ∈ I , the edge π?i (η) of Xsi is ingressive.

(7.1.8) For any finite set I , any morphism µ : t s of O⊗ covering the opposite
of the unique active morphism I {ξ}, and any choice of inert morphisms
{si s}i∈I covering the inert morphisms I {i}, the functor of pairs

µ? :
∏
i∈I

Xsi ' X⊗,s Xt

is exact separately in each variable.

Employing [18, Ex. 2.4.2.4 and Pr. 2.4.2.5] and [1, Lm 1.4], one deduces the
following.

7.2. Proposition. Suppose O⊗ (respectively, O⊗) an∞-operad (resp., an∞-anti-
operad). Then the functor

O⊗ Cat∞ (resp., the functor (O⊗)op Cat∞ )

classifying an O⊗-monoidal Waldhausen∞-category (resp., an O⊗-monoidal Wald-
hausen∞-category) factors through an essentially unique morphism of∞-operads

O⊗ Wald⊗
∞

(resp., the functor (O⊗)op Wald⊗
∞

)

7.3. Definition. Now suppose (C,C†,C†) a left complete disjunctive triple. A
symmetric monoidal Waldhausen bicartesian fibration

p� : X� C×

over (C,C†,C†) is a functor of pairs X� (C×)[ with the following properties.

(7.3.1) The underlying functor p� : X� C× is an inner fibration.
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(7.3.2) For any egressive morphism (φ, ω) : (I, X) (J, Y ) of C× (in the sense
of Nt. 2.1) and for any object Q of the fiber (X�)(J,Y ), there exists a p�-
cartesian morphism P Q covering (φ, ω).

(7.3.3) The composition

X� C× N3(F)op

exhibits X� as an∞-anti-operad.

(7.3.4) The fiber p : X C over ∗ ∈ N3(F)op is a Waldhausen bicartesian fibra-
tion X C over (C,C†,C†).

7.4. This is a lot of data, so let’s unpack it a bit.
First, a symmetric monoidal Waldhausen bicartesian fibration

p� : X� C×

over (C,C†,C†) admits an underlying Waldhausen bicartesian fibration p : X C
over (C,C†,C†). This provides, for any object S ∈ C , a Waldhausen∞-category
XS , and for any morphism φ : S T of C , it provides an exact “pushforward”
functor φ! : XS XT whenever φ is ingressive and an exact “pullback” functor
φ? : XT XS whenever φ is egressive. These are compatible with composition,
and when φ is ingressive and (therefore) egressive, these two are adjoint.

There’s more structure here: for any finite set I and any I -tuple (Si )i∈I of objects
of C with product S, consider the cartesian edge

({ξ}, S) (I, SI )

of C× lying over the morphism {ξ} I of 3(F)op corresponding to the unique
active morphism I {ξ} of 3(F); it is of course egressive in X�. Hence there is
a functor

�
i∈I

:

∏
i∈I

XSi XS,

exact separately in each variable. If (φi : Si Ti )i∈I is an I -tuple of morphisms
of C with product φ : S T then the square

∏
i∈I XTi XT

∏
i∈I XSi XS

�i∈I

∏
i∈I φ

?
i φ?

�i∈I

commutes.
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When (C,C†,C†) is cartesian, this structure endows each fiber XS with a sym-
metric monoidal structure: indeed, for any finite set I , we may define⊗

i∈I

:=1∗ ◦�
i∈I

,

where 1 : S S I is the diagonal. One sees easily that the commutativity of the
square above implies that any functor φ? induced by a morphism φ : S T is sym-
metric monoidal in a natural way. Furthermore, a simple argument demonstrates
that the external product �i∈I can be recovered from the symmetric monoidal struc-
tures along with the pullback functors; for example, X � Y ' pr?1 X ⊗ pr?2 Y .

Now it follows from [18, Cor. 7.3.2.7] that if φ : S T is both ingressive and
egressive in C , then φ! extends to a lax symmetric monoidal functor X⊗S X⊗T .

7.5. Lemma. Suppose (C,C†,C†) a left complete disjunctive triple, and suppose

p� : X� C×

a symmetric monoidal Waldhausen bicartesian fibration over (C,C†,C†). Then
the inner fibration

p� : X� C×

is an adequate inner fibration [3, Df. 10.3] for the triple (C×, (C×)†, (C×)†) (Nt.
2.1).

Proof. The only condition of adequate inner fibrations that isn’t explicitly part
of the definition above is the assertion that for any ingressive morphism (φ, ω) :

(I, X) (J, Y ) of C× and for any object P of the fiber (X�)(I,X), there exists a
p�-cocartesian morphism P Q covering (φ, ω).

So suppose that (φ, ω) : (I, X) (J, Y ) is ingressive — i.e., that φ : J I is
a bijection and each morphism ωφ−1(i) : X i Yφ−1(i) is ingressive — and suppose
that P is an object of X� that lies over (I, X). Then under the equivalence

(X�)I '
∏
i∈I

X{i},

the object P corresponds to a family (Pi )i∈I of objects such that Pi lies over X i

for any i ∈ I . For each i ∈ I , select a p-cocartesian edge Pi Qφ−1(i) covering
ωφ−1(i). Now there is an essentially unique morphism P Q covering (φ, ω)
that corresponds under the equivalence above to the edges Pi Qφ−1(i), and it is
easy to see that it is p�-cocartesian. �

If (C,C†,C†) is a left complete disjunctive triple, and if p� : X� C× a
symmetric monoidal Waldhausen bicartesian fibration for (C,C†,C†), then our
goal is now to equip the unfurling of X with the structure of a Aeff(C)⊗-monoidal
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Waldhausen structure. It will then follow that the corresponding Mackey functor
is in fact a commutative Green functor.

7.6. Construction. Suppose (C,C†,C†) a left complete disjunctive triple, and
suppose

p� : X� C×

a symmetric monoidal Waldhausen bicartesian fibration over (C,C†,C†). Then
we define ϒ(X/(C,C†,C†))⊗ as the pullback

ϒ(X�/(C×, (C×)†, (C×)†))×Aeff(C×,(C×)†,(C×)†) Aeff(C,C†,C†)⊗.

The inner fibration [3, Lm. 11.4]

ϒ(X�/(C×, (C×)†, (C×)†)) Aeff(C×, (C×)†, (C×)†)

pulls back to an inner fibration

ϒ(p)⊗ : ϒ(X/(C,C†,C†))⊗ Aeff(C,C†,C†)⊗.

We call this the unfurling of the symmetric monoidal Waldhausen bicartesian fi-
bration p�.

7.7. Suppose, for simplicity, that (C,C†,C†) is cartesian. Unwinding the defini-
tions, one sees that the objects of ϒ(X/(C,C†,C†))⊗ are precisely the objects of
X�. These, in turn, can be thought of as triples (I, SI , PSI ) consiting of a finite set
I , an I -tuple SI := (Si )i∈I , and an object PSI of the fiber

(X⊗)SI '

∏
i∈I

XSi ,

which corresponds to an I -tuple (PSi )i∈I of objects of the various Waldhausen∞-
categories XSi . Now a morphism (J, TJ , QTJ ) (I, SI , PSI ) of the unfurling
ϒ(X/(C,C†,C†))⊗ can be thought of as the following data:

(7.7.1) a morphism φ : J I of 3(F);

(7.7.2) a collection of diagrams
Uφ( j)

T j Sφ( j)

τ j σφ( j)

∣∣∣∣∣∣∣ j ∈ φ−1(I )


of C such that for any j ∈ φ−1(I ), the morphism σ j : Uφ( j) Sφ( j) is
ingressive, and the morphism τ j : Uφ( j) T j is egressive; and
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(7.7.3) a collection of morphisms{
σφ( j),!τ

?
Ji

(
�
j∈Ji

QT j

)
PSi

∣∣∣∣ i ∈ I
}

in the various∞-categories XSi , where τJi is the edge ({i},Ui ) (Ji , TJi )

corresponding to the tuple (τ j ) j∈Ji .

7.8. Theorem. Suppose (C,C†,C†) a left complete disjunctive triple, and suppose

p� : X� C×

a symmetric monoidal Waldhausen bicartesian fibration over (C,C†,C†). The
functor ϒ(p)⊗ exhibits the∞-category ϒ(X/(C,C†,C†))⊗ as a Aeff(C,C†,C†)⊗-
monoidal Waldhausen∞-category.

Proof. We first observe that, in light of [3, Pr. 11.6] and Lm. 7.5, the functor ϒ(p)⊗

is a cocartesian fibration. Let us check that the composite cocartesian fibration

ϒ(X/(C,C†,C†))⊗ Aeff(C,C†,C†)⊗ N3(F)

exhibits ϒ(X/(C,C†,C†))⊗ as a symmetric monoidal∞-category.
To this end, it suffices to show that for any finite set I and any I -tuple SI :=

(Si )i∈I of objects of C , the functor∏
i∈I

χi,! : (X�)SI ' ϒ(X/(C,C†,C†))⊗SI

∏
i∈I

ϒ(X/(C,C†,C†))Si '

∏
i∈I

XSi

induced by the cocartesian edges covering the inert maps χi : I {i}+ is an
equivalence. But this morphism can be identified with∏

i∈I

(
id! ◦ id? ◦�

i∈{i}

)
:

∏
i∈I

XSi

∏
i∈I

XSi ,

which is homotopic to the identity.
Now for any finite set J , a morphism T S of Aeff(C,C†,C†)⊗ covering the

unique active morphism J {ξ} is represented by a collection of spans
U

T j S

φ j ψ

∣∣∣∣∣∣∣ j ∈ J

 .
The tensor product functor can therefore be written as

ψ! ◦φ
?
J ◦�

j∈J

:

∏
j∈J

XT j ' XT XS,

which is exact separately in each variable. �
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In light of Pr. 7.2, we have the following.

7.8.1. Corollary. Suppose (C,C†,C†) a cartesian disjunctive triple that is either
left complete or right complete, and suppose p� : X� C× a symmetric mon-
oidal Waldhausen bicartesian fibration over (C,C†,C†). Then the cocartesian
fibration ϒ(p)⊗ is classified by a Green functor

M⊗p : Aeff(C,C†,C†)⊗ Wald⊗
∞
.

8. Equivariant algebraic K -theory of group actions

In this section, we answer a question of Akhil Mathew. Namely, for any Waldhau-
sen∞-category C with an action of a finite group G, can one form an equivariant
algebraic K -theory spectrum KG(C) whose H -fixed point spectrum is the alge-
braic K -theory of the homotopy fixed point∞-category Ch H ? Furthermore, can
one do this in a lax symmetric monoidal fashion, so that if C is an algebra in
Waldhausen∞-categories over an∞-operad O⊗, then KG(C) is an algebra over
O⊗ in Mack(FG;Sp)? The answer to both of these questions is yes, and our
framework makes it an almost trivial matter to see how.

8.1. Construction. Suppose G a finite group. Let us denote by Ffree
G ⊂ FG the full

subcategory spanned by those finite G-sets upon which G acts freely. Observe that
Ffree

G is the finite-coproduct completion of BG; that is, it is the free ∞-category
with finite coproducts generated by BG. Consequently, Aeff(Ffree

G ) is the free semi-
additive∞-category generated by BG; that is, for any semiadditive∞-category
A, evaluation at G/e defines an equivalence

Mack(Ffree
G ; A) ∼ Fun(BG, A).

At the same time, the subcategory Ffree
G ⊂ FG is clearly closed under coproducts,

and since Ffree
G is a sieve in FG , it follows that it is stable under pullbacks and binary

products as well. Consequently, we obtain a fully faithful inclusion

Aeff(Ffree
G ) Aeff(FG).

We thus obtain, for any semiadditive∞-category A, a corresponding restriction
functor

Mack(FG; A) Mack(Ffree
G ; A).

If A is in addition presentable, then the restriction functor admits a right adjoint

BG : Fun(BG, A) Mack(FG; A),

given by right Kan extension. We shall call this the Borel functor, since it assigns
to any “naïve” G-object the corresponding Borel-equivariant object.
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Applying this when A =Wald∞ and applying algebraic K -theory, we obtain
the algebraic K -theory of group actions:

K ◦ BG : Fun(BG,Wald∞) Mack(FG;Sp).

8.2. Proposition. The algebraic K -theory of group actions extends naturally to a
lax symmetric monoidal functor

K⊗ ◦ B⊗G : Fun(BG,Wald∞)⊗ Mack(FG;Sp)⊗.

for the objectwise symmetric monoidal structure relative to the symmetric mon-
oidal structure on Wald∞ [1] and the additivized Day convolution on spectral
Mackey functors.

Proof. Since K⊗ is lax symmetric monoidal [1], it suffices to show that for any
presentable semiadditive symmetric monoidal∞-category E⊗, the Borel functor
BG extends to a symmetric monoidal functor

B⊗G : Fun(BG, E)⊗ 'Mack(Ffree
G ; E)⊗ Mack(FG; E)⊗.

This will follow directly from [18, 7.3.2.7], once one knows that the restriction
functor

Mack(FG; E) Fun(BG, E)

extends to a symmetric monoidal functor

Mack(FG; E)⊗ Mack(Ffree
G ; E)⊗ ' Fun(BG, E)⊗.

For this, observe that since Ffree
G ⊂ FG is stable under binary products, the inclusion

Aeff(Ffree
G ) Aeff(FG)

extends to a symmetric monoidal functor

Aeff(Ffree
G )⊗ Aeff(FG)

⊗.

It thus suffices to note that for any free finite G-set V , the subcategory

(Aeff(Ffree
G )× Aeff(Ffree

G ))×Aeff(Ffree
G )

Aeff(Ffree
G )/V

⊂ (Aeff(FG)× Aeff(FG))×Aeff(FG) Aeff(FG)/V

is cofinal. �
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9. Equivariant algebraic K -theory of derived stacks

In this section, we construct two symmetric monoidal Waldhausen bicartesian fibra-
tions that extend the following two Waldhausen bicartesian fibrations introduced
in [3, §D]:

• the Waldhausen bicartesian fibration

Perf op
×Shvflat DM DM

for the left complete disjunctive triple (DM,DMFP,DM) of spectral Deligne–
Mumford stacks, in which the ingressive morphisms are strongly proper mor-
phisms of finite Tor-amplitude, and all morphisms are egressive [3, Pr. D.18],
and

• the Waldhausen bicartesian fibration

Perf op Shvflat

for the left complete disjunctive triple (Shvflat,Shvflat,QP,Shvflat) of flat sheaves
in which the ingressive morphisms are the quasi-affine representable and perfect
morphisms, and all morphisms are egressive [3, Pr. D.21].

These will give algebraic K -theory the structure of a commutative Green functor
for these two triples.

9.1. To begin, we let

Mod⊗ QCoh⊗

CAlgcn
× N3(F) Shvop

flat× N3(F)

q p

be a pullback square in which q is the cocartesian fibration of [18, Th. 4.5.3.1],
and p is a cocartesian fibration classified by the right Kan extension of the functor
that classifies q. The objects of QCoh⊗ can be thought of as triples (X, I,MI )

consisting of a sheaf X : CAlgcn Kan(κ1) for the flat topology, a finite set I ,
and an I -tuple MI = {Mi }i∈I of quasicoherent modules M over X .

9.2. We may now pass to the cocartesian∞-operads to obtain a cocartesian fibra-
tion of∞-operads

pt : (QCoh⊗)t (Shvop
flat× N3(F))t ' (Shvflat,×)

op
×N3(F) N3(F)t.

Now N3(F)t N3(F) admits a section that carries any finite set I to the pair
(I, ∗I ), where ∗I = {∗}i∈I . Let us pull back pt along this section to obtain a
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cocartesian fibration of∞-operads

p�
: QCoh�

:= (QCoh⊗)t×N3(F)t N3(F) (Shvflat,×)
op.

9.3. Passing to opposites, we obtain a functor

(QCohop)� := (QCoh�)op Shvflat,×

which

• restricts to a symmetric monoidal Waldhausen bicartesian fibration

(QCohop)�×Shvflat,× DM× DM×

that extends the Waldhausen bicartesian fibration of [3, Pr. D.10] for the disjunc-
tive triple of spectral Deligne–Mumford stacks, in which the ingressive mor-
phisms are relatively scalloped, and all morphisms are egressive, and

• gives a symmetric monoidal Waldhausen bicartesian fibration

(QCohop)� Shvflat,×

that extends the Waldhausen bicartesian fibration of [3, Pr. D.13] for the disjunc-
tive triple of flat sheaves, in which the ingressive morphisms are quasi-affine
representable, and all morphisms are egressive.

9.4. At last, restricting to perfect modules, we obtain the desired symmetric mon-
oidal Waldhausen bicartesian fibrations

(Perf op)�×(Shvflat)× DM× DM×

for (DM,DMFP,DM) and

(Perf op)� (Shvflat)×

for (Shvflat,Shvflat,QP,Shvflat).

Now, passing to the unfurling, we obtain the following pair of results.

9.5. Proposition. The Mackey functor

MDM : Aeff(DM,DMFP,DM) Wald∞

of [3, Cor. D.18.1] admits a natural structure of a commutative Green functor
M⊗DM. In particular, the algebraic K -theory of spectral Deligne–Mumford stacks
is naturally a commutative spectral Green functor for (DM,DMFP,DM).

9.6. Proposition. The Mackey functor

MShvflat : Aeff(Shvflat,Shvflat,QP,Shvflat) Wald∞
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of [3, Cor. D.21.1] admits a natural structure of a commutative Green functor
M⊗Shvflat

. In particular, the algebraic K -theory of flat sheaves is naturally a com-
mutative spectral Green functor for (Shvflat,Shvflat,QP,Shvflat).

9.7. Construction. Suppose X a spectral Deligne–Mumford stack. As in [3, Nt.
D.23], we denote by FÉt(X) the subcategory of DM/X whose objects are finite
[17, Df. 3.2.4] and étale morphisms Y X and whose morphisms are finite and
étale morphisms over X . Observe that the fiber product −×X − endows FÉt(X)
with the structure of a cartesian disjunctive∞-category. We will abuse notation
and write Aeff(X)⊗ for the symmetric monoidal effective Burnside∞-category of
FÉt(X).

Now the inclusion

(FÉt(X),FÉt(X),FÉt(X)) (DM,DMFP,DM)

is clearly a morphism of cartesian disjunctive triples, whence one can restrict the
commutative Green functor M⊗DM above along the morphism of∞-operads

Aeff(X)⊗ Aeff(DM,DMFP,DM)⊗

to a commutative Green functor

MX : Aeff(X)⊗ Wald⊗
∞
.

Now if X is (say) a connected, noetherian scheme, then a choice of geometric
point x of X gives rise to an equivalence

Aeff(π ét
1 (X, x))⊗ ' Aeff(X)⊗.

Applying algebraic K -theory, we obtain a commutative spectral Green functor for
the étale fundamental group:

K⊗
π ét

1 (X,x)
(X) : Aeff(π ét

1 (X, x))⊗ Sp⊗.

This commutative Green functor deserves the handle Galois-equivariant algebraic
K -theory.

10. An equivariant Barratt–Priddy–Quillen theorem

10.1. Notation. In this section, suppose (C,C†,C†) a cartesian disjunctive triple.

10.2. Recollection. Recall [3, Df. 13.5] that R(C)⊂ Fun(12/1{0,2},C) is the full
subcategory spanned by those retract diagrams

S0 S1 S0;

such that the morphism S0 S1 is a summand inclusion. We endow R(C) with the
structure of a pair in the following manner. A morphism T S will be declared
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ingressive just in case T0 S0 is an equivalence, and T1 S1 is a summand
inclusion. Write p for the functor R(C) C given by evaluation at the vertex
0= 2:

[S0 S1 S0] S0.

Recall also that R(C,C†,C†) ⊂ R(C) is the full subcategory spanned by those
objects

S : 12/1{0,2} C

such that for any complement S′0 S1 of the summand inclusion S0 S1,

(10.2.1) the essentially unique morphism S′0 1 to the terminal object of C is
egressive, and

(10.2.2) the composite S′0 S1 S0 is ingressive.

We endow R(C,C†,C†) with the pair structure induced by R(C). We will abuse
notation by denoting the restriction of the functor p : R(C) C to the subcategory
R(C,C†,C†)⊂ R(C) again by p.

We proved in [3, Th. 13.11] that p is a Waldhausen bicartesian fibration over
(C,C†,C†).

10.3. Construction. Recall that an object of the∞-category R(C,C†,C†)× can
be described as pairs (I, X) consisting of a finite set I and a collection X ={X i | i ∈
I } of objects of R(C,C†,C†) indexed by the elements of I . Accordingly, a mor-
phism (I, X) (J, Y ) of R(C,C†,C†)× can be described as a map J I+ of
finite sets and a collectionX i

∏
j∈Ji

Y j

∣∣∣∣∣∣ i ∈ I


of morphisms of R(C,C†,C†).

We now define a subcategory R(C,C†,C†)� ⊂ R(C,C†,C†)× that contains
all the objects. A morphism (I, X) (J, Y ) of R(C,C†,C†)× is a morphism
of R(C,C†,C†)� if and only if, for every i ∈ I , every nonempty proper subset
Ki ⊂ Ji , and every choice of a complement Y ′j,0 Yj,1 of the summand inclusion
Yj,0 Yj,1, the square

∅ X i,1

∏
j∈Ki

Yj,0×
∏

j∈Ji\Ki
Y ′j,0

∏
j∈Ji

Yj,1,

in which ∅ is initial and the bottom morphism is the obvious summand inclusion,
is a pullback.
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Let us endow this ∞-category with a pair structure in the following manner.
We declare a morphism (I, X) (J, Y ) of R(C,C†,C†)� to be ingressive just
in case the map J I+ represents an isomorphism in 3(F), and, for every i ∈ I ,
the map X i Yφ(i) of R(C,C†,C†) is ingressive.

The following is now immediate.

10.4. Proposition. The functor

p� : R(C,C†,C†)� C×

given by evaluation at 0 = 2 in 12/1{0,2}exhibits R(C,C†,C†) as a symmetric
monoidal Waldhausen bicartesian fibration over (C,C†,C†).

10.5. Construction. Now we are in a position to apply the unfurling construction
of [3, §11] to the symmetric monoidal Waldhausen bicartesian fibration p� to
obtain an Aeff(C,C†,C†)⊗-monoidal Waldhausen∞-category (in the sense of [1])

ϒ(p)⊗ : ϒ(R(C,C†,C†)/(C,C†,C†))⊗ Aeff(C,C†,C†)⊗.

As we’ve demonstrated, ϒ(p)⊗ is classified by an E∞ Green functor

M⊗p : Aeff(C,C†,C†)⊗ Wald⊗
∞

whose underlying functor is the Mackey functor

Mp : Aeff(C,C†,C†) Wald∞

corresponding to the unfurling of the Waldhausen bicartesian fibration

R(C,C†,C†) C

over (C,C†,C†).

In [1], we demonstrated that algebraic K -theory lifts in a natural fashion to a
morphism of ∞-operads, whence we may contemplate the commutative Green
functor

K⊗ ◦M⊗p : Aeff(C,C†,C†)⊗ Sp⊗.

Observe that by [3, Th. 13.12], the underlying Mackey functor

S(C,C†,C†) :=K ◦Mp

of K⊗ ◦M⊗p is the spectral Burnside Mackey functor for (C,C†,C†), as defined
in [3, Df. 8.1]. In particular, it is unit for the symmetric monoidal ∞-category
Mack(C,C†,C†

;Sp), which of course admits an essentially unique E∞ structure.
Consequently, we deduce the following.

10.6. Theorem (Equivariant Barratt–Priddy–Quillen). The Green functor K⊗ ◦M⊗p
is the spectral Burnside Green functor S(C,C†,C†).
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Of course, this result directly implies the original Barratt–Priddy–Quillen Theo-
rem, which states that the algebraic K -theory of the ordinary Waldhausen category
F∗ of pointed finite sets (in which the cofibrations are the monomorphisms) is
the sphere spectrum S. Furthermore, the essentially unique E∞ structure on S is
induced by the smash product of pointed finite sets.

11. A brief epilogue about the theorems of Guillou–May

Suppose G a finite group. Write OrthSpG for the underlying∞-category of the
relative category of orthogonal G-spectra. The equivariant Barratt–Priddy–Quillen
Theorem of Guillou–May [11] provides a similar description in OrthSpG of certain
mapping spectra. Note that this is not a priori related to Th. 10.6 when C =
FG . Nevertheless, a suitable comparison theorem (which of course Guillou–May
provide in [12]) offers an implication.

On the other hand, the proof of our result here, combined with work from
our forthcoming book [7], will allow us to reprove, using entirely different meth-
ods, the comparison result of Guillou–May. Indeed, if we can extend the functor
6∞
+
: FG OrthSpG to a suitable functor Aeff(FG) OrthSpG , then the equi-

variant Barratt–Priddy–Quillen Theorem above and the Schwede–Shipley theorem
[19] together will imply the result of Guillou–May [12] providing the equivalence

SpG
'OrthSpG .

It is, however, difficult to construct the desired functor Aeff(FG) OrthSpG
directly, as this involves nontrivial homotopy coherence problems. To surmount
this obstacle, we supply a universal property for Aeff(FG) in [7] using techniques of
“G-equivariant”∞-category theory. This will provide us with the desired functor,
and we will easily deduce the desired equivalence as a corollary.
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