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ON THE SOLUTION OF LAPLACE’S EQUATION
IN THE VICINITY OF TRIPLE JUNCTIONS

JEREMY HOSKINS AND MANAS RACHH

We characterize the behavior of solutions to systems of boundary integral equations associated with
Laplace transmission problems in composite media consisting of regions with polygonal boundaries. In
particular we consider triple junctions, i.e., points at which three distinct media meet. We show that,
under suitable conditions, solutions to the boundary integral equations in the vicinity of a triple junction
are well-approximated by linear combinations of functions of the form ¢, where ¢ is the distance of the
point from the junction and the powers § depend only on the material properties of the media and the
angles at which their boundaries meet. Moreover, we use this analysis to design efficient discretizations
of boundary integral equations for Laplace transmission problems in regions with triple junctions and
demonstrate the accuracy and efficiency of this algorithm with a number of examples.

1. Introduction

Composite media, i.e., media consisting of multiple materials in close proximity or contact, are both
ubiquitous in nature and fascinating in applications since their macroscopic properties can be substantially
different than those of their components. One property of particular interest is the electrostatic response
of composite media, typically the electric potential in the medium which is produced by an externally
applied time-independent electric field. In such situations one often assumes that the associated electric
potential satisfies Laplace’s equation in the interior of each medium and that along each edge where two
media meet one prescribes the jump in the normal derivative of the potential. Typically the potentials in
these jump relations appear multiplied by coefficients depending on the electric permittivity. This leads
to a collection of coupled partial differential equations (PDEs). In addition to classical electrostatics
problems, the same equations also arise in, among other things, percolation theory, homogenization theory,
and the study of field enhancements in vacuum insulators; see, for example, [Lee 2008; Fredkin and
Mayergoyz 2003; Milton 2002; Tully et al. 2007; Tuncer et al. 2002; Fel et al. 2000; Ovchinnikov 2004].

Using classical potential theory this set of partial differential equations (PDEs) can be reduced to
a system of second-kind boundary integral equations (BIEs). In particular, the solution to the PDE in
each region is represented as a linear combination of a single-layer and a double-layer potential on the
boundary of each subregion. If the edges of the media are smooth then the corresponding kernels in the
integral equation are as well. Near corners, however, the solutions to both the differential equations and
the integral equations can develop singularities.

Analytically, the behavior of solutions to both the PDEs and BIEs has been the subject of extensive
analysis; see, for example [Craster and Obnosov 2004; Keller 1987; Helsing 1991; Chung et al. 2005;
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Schéchter 1998; Berggren et al. 2001; Techaumnat et al. 2002; Afanas’ev et al. 2004; Greengard and Lee
2012; Claeys et al. 2015]. In particular, the existence and uniqueness of solutions in an 1>-sense is well
known, under certain natural assumptions on the material properties [Claeys et al. 2017; McLean 2000].
Moreover, the asymptotic form of the singularities in the vicinity of a junction has been determined for
the solutions of both the PDE and its corresponding BIE [Chung et al. 2005; Schichter 1998; Craster and
Obnosov 2004; Milton et al. 1981; Helsing 2011].

Computationally the singular nature of the solutions poses significant challenges for many existing
numerical methods for solving both the PDEs and BIEs. Typical approaches involve introducing many
additional degrees of freedom near the junctions which can impede the speed of the solver and impose
prohibitive limits on the size and complexity of geometries which can be considered. Recursive compressed
inverse preconditioning (RCIP) is one way of circumventing the difficulty introduced by the presence of
junctions in the BIE formulation [Helsing 2013]. In this approach, the extra degrees of freedom introduced
by the refinement near the junctions are eliminated from the linear system. Moreover, the compression
and refinement are performed concomitantly for multiple junctions in parallel. This approach gives an
algorithm which scales linearly in the number of degrees of freedom added to resolve the singularities
near the junction. The resulting linear system has essentially the same number of degrees of freedom as it
would if the junctions were absent.

In this paper we restrict our attention to the case of triple junctions, extending the existing analysis by
showing that under suitable restrictions the solution to the BIEs can be well-approximated in the vicinity
of a triple junction by a linear combination of %/, where ¢ is the distance from the triple junction and the
B;’s are a countable collection of real numbers defined implicitly by an equation depending only on the
angles at which the interfaces meet and the material properties of the corresponding media. This analysis
enables the construction of an efficient computational algorithm for solving Laplace’s equation in regions
with multiple junctions. In particular, using this representation we construct an accurate and efficient
quadrature scheme for the BIE which requires no refinement near the junction. The properties of this
discretization are illustrated with a number of numerical examples.

This paper is organized as follows. In Section 2 we state the boundary value problem for the Laplace
triple junction transmission problem, summarize relevant properties of layer potentials, and describe the
reduction of the boundary value problem to a system of boundary integral equations. In Section 3 we
present the main theoretical results of this work, the proofs of which are given in Appendices A and B. In
Section 4 we discuss two conjectures extending the results of Section 3 based on extensive numerical
evidence. In Section 5, we describe a Nystrom discretization which exploits explicit knowledge of the
structure of solutions to the integral equations in the vicinity of triple junctions, and in Section 6 we
demonstrate its effectiveness of numerical solvers. Finally, in Section 7 we summarize the results and
outline directions for future research.

2. Boundary value problem

Consider a composite medium consisting of a set of n polygonal domains €2y, ..., €2, (see Figure 1)
with boundaries consisting of m edges I'y, ..., [',, and k vertices vy, ..., vx. For a given edge I'; let L;
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Figure 1. Example of a composite region.

denote its length, n; its normal, £(i), (i) the polygons to the left and right, respectively, and let ; be an
arc length parametrization of I';. Finally we denote the union of the regions 2, ..., 2, by Q and denote
the complement of 2 by 2.

Given positive constants iy, ..., U, and vy, ..., v, we consider the boundary value problem

Au; =0 xe;,i=0,1,2,...,n,

We@iyUeiy — Mriyriy = fin x €y, i=1,...,m,

oy 0U (i . (D)
Ve() 8ni~l) — Vr(i) 8::) =g, xely,i=1,...,m,
Jim (- log(rug(r) —uo(r)) =0,
r|—0o0
where f; and g; are analytic functionson I';, i =1, ..., m, and £(i), (i) denote the regions on the left

and right with respect to the normal of edge T';.

Remark 2.1. In this work we assume that all the normals ny,...,n, to I'y,..., ', are positively
oriented with respect to the parametrization y;(¢) of the edge I';. Specifically, if I'; is a line segment
between vertices vy, vy, and y;(¢) : [0, L;] — I'; is a parametrization of I';, given by

v
yi(t) = v +1—0, (2)
v, — vl
then the normal on edge IT'; is given by
L
n; = (vr Ug) (3)

o, —vell”

where for a point x = (x, x3) € R2, we have x*+ = (x2, —x).

Remark 2.2. The existence and uniqueness of solutions to (1) is a classical result [McLean 2000].

Remark 2.3. In this paper we assume that no more than three edges meet at each vertex. Similar analysis
holds for domains with higher-order junctions and will be published at a later date.

Remark 2.4. Here we assume that uq, ..., u,, and vy, ..., v, are positive constants. In principle the
analysis presented here extends to the case where the constants are negative or complex provided the
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constants (u;v; +u;v;)/(u;v; — piv;) across each edge are outside the closure of the essential spectrum
of the double-layer potential defined on the boundary, and the underlying differential equation admits a
unique solution. Note that for nonnegative coefficients this is always true, since these constants are all of
magnitude greater than 1, and the spectral radius of the double-layer potential is bounded by 1.

2A. Layer potentials. Before reducing the boundary value problem (1) to a boundary integral equation
we first introduce the layer potential operators and summarize their relevant properties.

Definition 2.5. Given a density o defined on I';, i =1, ..., m, the single-layer potential is defined by
1
Sr,-[o*](y)=——/ log [|lx — yllo(x) d Sy, 4)
2 I;

and the double-layer potential is defined via the formula
1 n(x)-(y—x)
Dr,[o](y) = —/ ——— 50 (x)d5. ®)
27 Jr,  lx—yll

Remark 2.6. In light of the previous definition, evidently the adjoint of the double-layer potential is
given by the formula

« 1 n(y)-(x—y)
D [o1(y) = ~— f POV XV ey ds, ©)
2 Jr, llx—yll
Definition 2.7. For x € I' we define the kernel K (x, y) by
1 nx)-(y—x)
K(x,y) LS b (7)

S fx -yl
The following theorems describe the limiting values of the single- and double-layer potential on the

boundary ;.

Theorem 2.8. Suppose that x is a point in the interior of the segment I";. Suppose the point x approaches
a point xy along a path such that

—1l4a< yi(ty) <1—a (8)

e U
llx — xoll

for some a > 0. If (x — xo) - n; <0, we will refer to this limit as x — x , and if (x — xo) -n; > 0, we will

refer to this limit as x — x0+.
Then
lim_Sr, [o](x) = S, [0](xo), ©)
x—>x0
Tim, e 1) = pv. P [o1xo) 252, (10)
lim_n; - V55, [1(6) = p.v. Df, [p1(x) £ 25 an

’
X=X, 2

where p.v. refers to the fact that the principal value of the integral should be taken.
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Moreover, both the limits

lim n;-VDr,[p](x) (12)

x—>x0

exist and are equal.

Remark 2.9. In the following we will suppress the p.v. from expressions involving layer potentials
evaluated at a point on the boundary. Unless otherwise stated, in such cases the principal value should
always be taken.

2B. Integral representation. In classical potential theory the boundary value problem (1) is reduced to

a boundary integral equation for a new collection of unknowns p;, o; € L%(T;), i =1,...,m,related to
u;: Q2 — R, i=1,...,n,in the following manner:
m m
1 1
ui®) = — e, [pj1@) + 3 " Dr)lojlx). x e (13)
= =
We note that by construction u; is harmonic in €2;, i =0, 1, ..., n. Enforcing the jump conditions across
the edges and applying Theorem 2.8 yields the following system of integral equations for the unknown
densities p; and o; fori =1, ..., m:
Vs — A D e Ve V(i) fi
—lo,- + Hr@)Vei) — He@)Vr@) Dr,[o¢] = 0Gi)VrG) Ji ’ (14)
Kr@yVea) + Re@ Vri) =y Mr(i)Ve) + Hei) Vri)
m
VP — g V(s TIPS
—l/O' + Mr@)Vei) — He@)Vr @) ,DFZ (o] = — He@yHri)8i ' (15)
Mr(i)Vee) + Mei) Vr() =1 Moy Veay + ey Vr i)

We note that the preceding representation has several advantages. Firstly, the kernels of integral
equations (14) and (15) are smooth except at the vertices. In particular, the weakly singular terms arising
from the single-layer potential and the hypersingular terms arising from the derivative of the double-layer
potential are absent. Secondly, the equations for the single-layer density p and the double-layer density o
are completely decoupled and can be analyzed separately. Moreover, (15) is the adjoint of (14) and hence
the structure of solutions to (15) can be inferred from the behavior of solutions to (14).

Remark 2.10. The above representation also appears in [Helsing 2011] and is related to the work
in [Greengard and Lee 2012]. It has been shown in [Claeys et al. 2017] that the boundary integral
equations (14) and (15) are well-posed for f;, g; € L2[T;].

2C. The single-vertex problem. The following lemma reduces the problem of analyzing the behavior of
the densities p and o in the vicinity of a triple junction with locally analytic data to the analysis of an
integral equation on a set of three intersecting line segments.

Lemma 2.11. Let o, p satisfy the boundary integral equation (14) and (15), respectively. Consider three
edges I';, I'j, and 'y meeting at a vertex v,. If x,, denotes the coordinates of the vertex v,, then there
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RER))

Fo3)

Figure 2. Geometry near a triple junction.

exists an r > 0 such that
/ K(x,y)o(x)dSy and / K(y,x)p(x)dSy (16)
F\Br(xp) l—‘\Br(xp)

are analytic functions of y for all y € B,(x,). Here B,(x)) denotes the ball of radius r centered at x .

Remark 2.12. We note that by choosing r sufficiently small we can assume that the intersection of all
three-edges with B, (x ) are of length r. Moreover, since Laplace’s equation is invariant under scalings,
the subproblem associated with the corner can be mapped to an integral equation on three intersecting
edges of unit length.

In light of the preceding remark, in the remainder of this paper we restrict our attention to the geometry
shown in Figure 2.
The following notation will be used in our analysis of triple junctions.

Remark 2.13. Suppose that I'y ;) and I'(¢ vy are two (possibly identical) edges of a triple junction in
which all edges are of length 1. For (£, m) and (¢/, m’) in {(1,2), (2,3), (3, 1)} and ¢ € (0, 1) let

Deemysem[01(®) =p.v. Dy [0 (17)

(eans(ey 01O =P DE TP1]p (18)

m’)

for any o, p € L2(I'3,1) UT(1.2)UT(2.3)). Note that if (¢, m) = (¢, m’) then both quantities are identically
zero for any o and p. If (£, m) # (£/, m’) then the principal value is not required.

Finally, in the following we will also denote the restrictions of o and p to an edge I'(¢ ) by o, ) and
Oe.m), respectively.

3. Main results

In this section we state several theorems which characterize the behavior of the solutions o, p to (14)
and (15) for the single-vertex problem with piecewise smooth boundary data f and g. Before doing so
we first introduce some convenient notation. To that end, let I'(j 2), I'2,3) and I'(3 1) be three edges of
unit length meeting at a vertex as in Figure 2. Let 61, 6>, and 63 be the angles at which they meet and
suppose that 0 < 61, 6, 63 < 27 are real numbers summing to 2. Let €2; denote the region bordered by
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I'3,1y and I'(1,2), €2 denote the region bordered by I'(q 2) and I'(2 3y, and 23 denote the region bordered
by I'(2.3) and I'(3 1. Finally, let u; and v; be the parameters corresponding to €2;, i =1, 2, 3, and define
the constants d(]yg), d(2,3) and d(3,]) by

H1v2 — M2V _ M2V3— U3 M3V — UV3

, dozy=—"—"—"—, dan=—-—""". (19)
Hiv2 + Uavg @ U2V3 + 43V G.h U3V + U1v3

dao =
Remark 3.1. We note the following properties of d(3 1), d(1,2), d2,3) which, for notational convenience,
we will denote by a, b, and c, respectively. Firstly, since u;, v; are positive real numbers, it follows that
a,b,ce (—1,1). Secondly, a simple calculation shows that c = —(a + b) /(1 + ab). Thus, at each triple
junction, there are two parameters (a, b) which encapsulate the relevant information regarding material
properties at that junction. For the rest of the paper, in a slight abuse of notation, we will refer to (a, b)

as the material parameters.

Next we define several quantities which will be used in the statement of the main results. Let J denote
the set of indices {(1,2), (2,3), 3, D}and X =1%(I"(.2) ®L*(T2.3)) ®L*(T'3.1y). Let Kgir : X — X and
Kneu : X — X denote the bounded operators in (14) and (15) respectively. For any operator A : X — X,
h € X, and (i, j) € J, we denote the restriction of A[h] to the edge I'(; ;) by A[h], ;). For example,
given h(t) = [h,2)(t), ha,3 (1), ha, @] € X, and (i, j) € J,

KaielRi.j) = —3ha.j) +da.j) Z De.my: i, jylhe.m]s (20
(t.meJg
where the operators D¢, ), i, j) are defined in (17).
We are interested in the following two problems:

(1) For what collection of h € X are Kgi:[h] and Kpey[h] piecewise smooth functions on each of the
edges ', jy, (i, j) € T?

(2) Given h jy € Py, a polynomial of degree at most N, construct an explicit basis for ICd_ir1 [A] and
K111

neu

In Section 3A, we address these questions for Kgir, while in Section 3B we present analogous results
for Kpyeu.

3A. Analysis of Kqir. Suppose that k(t) = [h1.2)(t), h2.3)(1)., /’l(3’1)(l‘)]T = vt?, where ¢ denotes the
distance along the edge I'(; ;) from the triple junction, and v € R* and B € R are constants.

In the following theorem, we derive necessary conditions on B, v such that Kgi:[h], j) is a smooth
function on each edge I'; j), (i, j) € J.

Theorem 3.2. Let Agir(a, b, B) € R3*3 denote the matrix given by
-Adir (a’ ba ﬁ)
sin (7 B) bsin B(wr — 6,) —bsin (T —6))

= | (a+b)/(1 +ab)sin (T —0;) sin (7 B) —(a+b)/(1+ab)sinB(x—63)]|. (21
asintfB(1 —6)) —asinmB(1 —63) sin (7 B)
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Suppose that B is a positive real number such that det Aqir(d(3,1), d(1,2), B) = 0 and that v is a null vector
of Adgir(d3,1),d1,2), B). Let h(t) = vtP, 0 <t < 1. Then Kaiclh] i,y is an analytic function of t, for
0 <t <1, oneachofthe edges I'; j), (i, j) € J.

The above theorem guarantees that for appropriately chosen densities k € X, the potential KCg;;[R] is
an analytic function on each of the edges.

We now consider the construction of a basis for ICd_ir1 [k], when h(; jy € Py, (i, j) € J, for some N > 0.

In order to prove this result, we require a collection of 8, v satisfying the conditions of Theorem 3.2.
The following lemma states the existence of a countable collection of 8, v which are analytic on a subset
of (—1, 2.

Lemma 3.3. Suppose that 6, 65, 03 are irrational numbers summing to 2w, and (a, b) € (—1, 1)2. Then
there exists a countable collection of open subsets of (—1, 1)?, denoted by S;. j» as well as a corresponding
set of functions B; ;- S;j — R, i =0,1,2,..., j=0,1,2, such that det Agi:(a, b, B; ;) = 0 for all
(a,b) € S; ;. The corresponding null vectors v; ; : S; j — R3 of Adgir(a, b, B, ;) are also analytic functions.
Finally, for any N > 0, we have |ﬂ?/=0 ﬂ?zo Si,j| > 0.

In the following theorem, we present the main result of this section, which gives a basis for IC(;rl [A].

Theorem 3.4. Consider the same geometry as in Figure 2, where 61, 6,, and 03 sum to 2w and 0, /7,
0r/m, and 03 /7 are irrational. Let B; , v; j, Si j,i =0,1,2,..., j=0,1,2, be as defined in Lemma 3.3,
and for any positive integer N, let Sy denote the region of common analyticity of B; j, v; j, i.e., Sy =
ﬂlN:O ﬂ?:o Si,j. Finally, suppose that hl(‘[.’j), i, j)ed, k=0,1,2,...N, are real constants, and define
ha.j by

N
hi (@)=Y _hi; 15, (22)
k=0

0 <t <1. Then there exists an open region Sy CSyC (—1, D)2 with |§N| > 0 such that the following
holds. For all (a, b) € §N, there exist constants p; j, i1 =0,1,...N, j=0,1,2, such that

Gl,z(l) N 2
o=|o3) [ =)D pijvijtP (23)
03,1(7) i=0 j=0
satisfies
max_|hq.j) — Kailo 1.l < CeVH (24)
(. )ed

for 0 <t < 1, where C is a constant.

3B. Analysis of Kneu. Suppose that h(t) = [h(1.2)(t), h2.3)(t), ha.1) ()17 = wtP~!, where ¢ denotes the
distance on the edge I'(; ;) from the triple junction, and w € R? and B are constants. In the following
theorem, we discuss necessary conditions on 8, w guaranteeing that Kpeu[/];, ) is a smooth function on
each edge I'; ), (i, j) € J.
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Theorem 3.5. Let Aneu(a, b, B) € R3*3 denote the matrix given by

sin (7 8) —bsin B(mr—6) bsin B(r—6,)
Apeu(a, b, B) = | —(a+b)/(14ab) sin B(w —6,) sin (7t 8) (a+b)/(1+ab)sinB(mr—03) | . (25)
—asinB(mr—6;) asint(1—63) sin (7 8)

Suppose that B is a positive real number such that det Apeu(d3,1y, d1,2), B) = 0 and let w denote a
corresponding null vector of Aneu(d3,1y, d12), B). Let h = w1, 0 <t < 1. Then Kneulhli,j) is an
analytic function of t, for 0 <t < 1, on each of the edges I'; j), (i, j) € J.

Before proceeding a few remarks are in order.

Remark 3.6. We note that det Agi;:(a, b, B) = det Apeu(a, b, B). Thus, the existence of 8, w which satisfy
the conditions of Theorem 3.5 is guaranteed by Lemma 3.3.

Remark 3.7. For a given g, if there exists a v € R3 such that Ky [vt#] is piecewise smooth then there
also exists a vector w € R such that Kyeu[wt?~1] is also a smooth function. However, the requirement
that wrf~le X implies that, for KCpey, only 8’s which satisfy g > % are admissible.

For Kgir, note that By ; =0 for j =0, 1, 2 (see the proof of Lemma 3.3 contained in Appendix A.1).
These densities are essential for the proof of Theorem 3.4, since these are the only basis functions for
which the projection of their image under Cg;; onto the constant functions are nonzero.

However, since By, ; # % the densities wo_;##07~! are excluded from the representation for the solution
to the equation Kpey[o] = h. Note that, unlike Kgir[v; ;%7 ], Kpeulw; ;#7711 i =1,2,..., j=0,1,2,
have a nonzero projection onto the constants (see Lemma B.2).

The following theorem is a converse of Theorem 3.5 under suitable restrictions.

Theorem 3.8. Consider the same geometry as in Figure 2, where 01, 65, and 03 are irrational numbers
summing to 2. Let B; j, w; ;, S;;j, i =0,1,2,..., j =0,1,2, be as defined in Lemma 3.3. Let T, ;
denote the open subset of (—1, 1)> on which Bi,j and w; ; are analytic and B; ; > % For any positive
integer N, let S7" denote the region of common analyticity of B; j, w; j; i.e., Sy = lN:ng m§:0 T; ;.
Finally, suppose that h](‘i’j), (i,j)€J, k=0,1,2,...N,are real constants, and define h jy by

N
hi gy (8) =Dkt~ (26)
k=0

O<t<l.
Then there exists an open region :S’}:,eu C S C (=1, 1) with |§R,e“| > 0 such that the following holds.
For all (a, b) € §“e“, there exist constants p; j, i =1,2,...N+1, j=0,1,2, such that

01,2() N+1 2
o=|o023(t) | = Z Zpi,jwi,jtﬂi'j_] (27)
03.1(1) i=1 j=0
satisfies
max |k, j) — Kneuloli jy| < CtV ! (28)
i, )eg

for0 <t < 1, where C is a constant.
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4. Conjectures

There are four independent parameters that completely describe the triple junction problem, any two
out of the three angles {61, 62, 65}, and any two of the parameters {d(; 2), d2.3), d3,1)} = {b. ¢, a}. Let
Y C R* denote the subset of R* associated with the four free parameters that completely describe any
triple junction given by

Y ={(1,02,a,b):0<601,00 <2m, 01 +6<2m, —1<a,b<1}. (29)

When 61, 6,, are irrational multiples of 7, and (a, b) are in the neighborhoods of a =0, b =0, and ¢ =0,
Theorems 3.4 and 3.8 construct an explicit basis of nonsmooth functions for the solutions of Kgi:[o] = h
and K,eu[o] = h and show that this basis maps onto the space of boundary data given by piecewise
polynomials on each of the edges meeting at the triple junction. However, extensive numerical studies
suggest that both of these results can be improved significantly. In particular, we believe that this analysis
extends to all (01, 6, a, b) € Y, except for a set of measure zero. Moreover, on the measure-zero set where
this basis is not sufficient, we expect the solution to have additional logarithmic singularities; including
functions of the form 77 log (t)v should be sufficient to fix the deficiency of the basis. We expect the
analysis to be similar in spirit to the analysis carried out for the solution of Dirichlet and Neumann
problems for Laplace’s equations on vicinity of corners; see [Serkh and Rokhlin 2016; Serkh 2019].

In this section, we present a few open questions for further extending Theorems 3.4 and 3.8, and
present numerical evidence to support these conjectures.

4A. Existence of B;, j. The solutions B; ;, i =0,1,2,..., j =0,1,2, are constructed as the im-
plicit solutions of det Agi:(a, b, B) = 0 (recall that det Agi-(a, b, B) = det Aneu(a, b, B)). Note that
det Agir(a, b, B) =sin (wB) -a(a, b, c; B), where « is as defined in (52). From this, it follows that §; o =1
always satisfies det Agir(a, b, B) = 0 for all 6, 6, and that By ; = O results in three linearly independent
basis functions of the form t#v since Aqgir(a, b, 0) = 0.

The remaining B; ;, i=1,2, ..., j=1, 2, are constructed in the following manner. «(a, b, c; B) simpli-
fies significantly along a =0, b =0, and ¢ =0, and the existence of B; ; which satisfy det Agi-(a, b, B) =0
is guaranteed based on the explicit construction detailed in [Hoskins 2018]. The construction then uses
the implicit function theorem to extend the existence of B; ; to a subset of (a, b) € (—1, 1)2. The implicit
function theorem is a local result and only guarantees existence in local neighborhoods of the initial
points. However, extensive numerical evidence suggests that the B; ; are well-defined and analytic for all
(a,b) € (—1,1)*> and all 6}, 6. In Figure 3, we plot a few of these functions to illustrate this result.

Conjecture 4.1. There exists a countable collection of B; ;, i = 1,2,..., j = 1,2, which satisfy
a(a, b, c; Bi j) =0. Moreover, these B; ; are analytic functions of 61, 02, a, and b for all (8, 6>, a, b) €Y.

An alternate strategy for proving this result is by making the following observation. For fixed 61, 6>,
consider the curve y,, : (m, m + 1) — R? defined by

Ym(B) == (sin B(r — 62), sin B(r — 63), sin B( — 61)), (30)

1
sin (7 B)
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Figure 3. Plots for S(a, b) which satisfy det Agi:(a, b, B) = 0 at a triple junction with
angles 0 =1//2, 6, = //3, with B(0, 0) =4 for the figure on the left, and 8(0, 0) =10
for figure on the right. In both of the figures, the solid black lines indicate sections of the
conjectured measure-zero set S defined in Conjecture 4.2.

o
=)

where m is an integer. This defines a curve in R? for which |y,,| — oo for each m. Then consider the
family of hyperboloids parametrized by (a, b) given by

b(a+b)x2_ aa+b) ,

H(x,y,z;a,b):=— T ab Txap +abz? +1=0. €2))

It follows immediately that the solutions to «(a, b, c; B) = 0 can be characterized geometrically as points
in the intersection of the hyperboloid H (x, y, z; a, b) with the curve y,,.

4B. Completeness of the singular basis. Having identified the B; ; and the corresponding null vectors v; ;
for Agir and w; ; for Apey, the second part of the proof shows that every set of boundary data which
is a polynomial of degree less than or equal to N on each of the edges has a solution to the integral
equations (14) and (15) in the v;, jtﬂ"vf' basis for Kgi and w;, jtﬂ"vf' ~1 for Kpew which agrees with the
boundary data with error O (+V*1).

This part of the proof relies on constructing an explicit mapping from the coefficients of the density o
in the v;, jtﬁi’f to the coefficients of Taylor expansions for Cgi:[o]. Then, alonga =0, b =0, or c =0,
based on the results in [Hoskins 2018], we show that this mapping is invertible along these edges. It then
follows from the continuity of determinants that the mapping is invertible for open neighborhoods of
the line segments a =0, b = 0, ¢ = 0. This implies that in the basis v;, jtﬂi«/ there exists a o such that
|Kaic[lo] — k| < OV 1) for all boundary data f in the space of polynomials with degree less than or
equal to N.

While we prove this result for an open neighborhood (a, b) of the line segments a =0, b =0, ¢ =0,
when the angles 61, 6, are irrational multiples of 7, we expect the bases to have this property for all
(61, 62, a, b) € Y except for a measure-zero set. Moreover, this measure-zero set is the set of (61, 62, a, b)
for which the multiplicity of B; ; as a repeated root of det Agi;(a, b, B;, ;) = 0 is not the same as the
dimension of the null space of Agi;(a, b, B; ;).
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Conjecture 4.2. Suppose that Conjecture 4.1 holds; i.e., B; j : Y — R are analytic functions. Suppose

further that h'(‘l.’j), (i,j)ed, k=0,1,2,...N, are real constants, and suppose that

N
hi (@) =Y _hi; 15, (32)
k=0

0 <t < 1. Then there exists a measure-zero set S such that for all (61, 62, a, b) € Y \ S the following result
holds. There exist constants p; j, i =0,1,...N, j=0,1,2, such that

01,2(1‘) N 2
o= [ =D pijvijth (33)
03,1(1) i=0 j=0
satisfies
max_|h j) — Kailo]g. )| < CtV ! (34)
i, ))ed

for 0 <t < 1, where C is a constant.

In Figure 3, we plot sections of the zero measure set on which Conjecture 4.2 does not hold.

5. Discretization of (14) and (15)

In this section we discuss a numerical method for solving (14) and (15) for the unknown densities o, p
which exploits the analysis of their behavior in the vicinity of triple junctions. There are two general
approaches for discretizing these integral equations: Galerkin methods, in which the densities p and o are
represented directly in terms of appropriate basis functions, and Nystrom methods, where the solution is
represented in terms of its values at specially chosen discretization nodes. In this paper, we use a Nystrom
discretization for solving (14), though we note that the expansions in Theorems 3.4 and 3.8 can also be
used to construct efficient Galerkin discretizations.

In [Bremer et al. 2010], the authors developed a Nystrom discretization for resolving the singular
behavior of solutions to integral equations in the vicinity of corners. In this approach, the authors obtain a
basis of solutions to the integral equation in the vicinity of the corner by solving a small number of local
problems. Based on these families of solutions, discretization nodes capable of interpolating the span of
these solutions, coupled with quadratures for handling far-field interactions (inner products of the basis of
solutions with smooth functions), and special quadratures for handling near interactions (for resolving the
near-singular behavior of the kernel in the vicinity of the corner) are developed. This approach was later
specialized for the solution of Laplace’s equation on polygonal domains to obtain universal discretization
nodes, and quadrature rules [Bremer and Rokhlin 2010].

Recent advances in the analysis of integral equations for Laplace’s equation have provided analytic
representations of solutions to integral equations in the vicinity of the corners [Serkh and Rokhlin 2016;
Serkh 2019], obviating the need for obtaining the span of solutions in the vicinity of corners through
numerical means. Based on the approach above, these analytical results have been exploited to construct
universal discretization and quadratures for solutions in vicinity of corners [Hoskins et al. 2017]. Below
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we briefly discuss the construction of the Nystrom discretization in [Hoskins et al. 2017]. Let F denote
the family of functions

F={t? forall e {0}U[4,50], 0 <t <1}. (35)

Then there exist ¢; € [0, 1], w; > 0, an orthogonal basis ¢ (1), j=1,2,..., kap =36, and a kap X kap
matrix V whose condition number is O (1), with the following features. For any f € F, there exists c¢;

such that
kas

‘f(t) = i)

j=1

<é&. (36)
12[0,1]

Let f; = f(t;) /w; denote the samples of the function at the discretization nodes scaled by the square
root of the quadrature weights. The matrix V maps f; to its coefficients c; in the ¢; basis. Finally the
weights w; are such that

<e. (37)

1 kap 1 kaB
'f fydi =" fiwy| = ‘/ f@dt =Y ftpw,

0 = 0 o
Specialized quadrature rules for handling the near-singular interaction between corner panels which
meet at the same vertex are also constructed. The Dirichlet problem for Laplace’s equation can then be
discretized using panels with scaled Gauss—Legendre nodes for panels which are away from corners, and
using scaled nodes ¢; for panels at corners.

In the vicinity of triple junctions, the behavior of the solution o of (14) can be represented to high-order
as a linear combination of functions in F. Thus the discretization for the Dirichlet problem discussed above
can be used to obtain a Nystrom discretization for (14). Unfortunately, the same is not true when solving
(15), since the singular behavior of p is not contained in the span of F. In particular, the leading-order
singularity in p is of the form ¢#, where 8 € (—%, 0). The nature of the singularity of p is similar to the
singular behavior of solutions to integral equations corresponding to the Neumann problem on polygonal
domains.

Recall that (15) is the adjoint of (14). Thus, formally, one could use the transpose of the Nystrom
discretization of (14) to solve (15). Specifically, if p = {p; }9’:1 are the unknown values of p at the
discretization nodes, and g = {g j}ﬂ.vzl denote the samples of the boundary data for (15) at the discretization
nodes, then we solve the linear system

M'p=3, (38)

where M is the matrix corresponding to Nystrom discretization of (14). The solution p is a high-order
accurate weak solution for the density p which can be used to evaluate the solution to (15) accurately
away from the corner panels of the boundary I". This weak solution can be further refined to obtain
accurate approximations of the potentials in the vicinity of corner panels through solving a sequence of
small linear systems for updating the solution p; in the vicinity of the corner panels. This procedure is
discussed in detail in [Hoskins and Rachh 2020].
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Figure 4. Discretization of geometry along with material parameters w;, v; (left), the
panels at corners/triple junctions are indicated in red; exact solution u ; in the domains
(center), and log,, of the absolute error in the solution (right). The geometry consists of
7 vertices, 8 edges, 3 regions, and is discretized with 768 points. In order for the solution
of the linear system to converge to a residual of 10~'%, GMRES required 35 iterations
for (14) and 48 iterations for (15).

6. Numerical examples

We illustrate the performance of the algorithm with several numerical examples. In each of the problems let
¢ denote the exterior domain and £2;, i =1, 2, ... N,, denote the interior regions. Letc; s, k=1,2,...10,
denote points outside of the region 2; for j = 1,2,... N,. The results in Sections 6B and 6C have
been computed using dense linear algebra routines, while the results in Sections 6A and 6D have been
computed using GMRES where the matrix vector product computation has been accelerated using fast
multipole methods [Greengard and Rokhlin 1986].

6A. Accuracy. In order to demonstrate the accuracy of our method we solve the PDE with boundary data
corresponding to known harmonic functions using our discretization of the integral equation formulation.
We set u(x) = Z,ﬁl log |x —cj | and set u = 0 for x € 9. We then compute the boundary data

ey i dur iy
an "8
and solve for o, p. Given the discrete solution for o, p, we compare the computed solution and plot the

error in the computed at targets in the interior of each of the regions. In Figures 4 and 5, we demonstrate
the results for two sample geometries.

fi = meiyiey — Mriylriys & = MeG) (39)

Remark 6.1. Note that we do not use special quadratures for handling near boundary targets which is
responsible for the loss of accuracy close to the boundary. For panels away from the corner, the potential
at near boundary targets can be computed accurately using several standard methods such as quadrature
by expansion, or product quadrature; see [Klockner et al. 2013; Helsing and Ojala 2008b; Barnett et al.
2015]. In order to evaluate the solution at points lying close to a corner panel, a different approach
is required. A detailed description of a computationally efficient algorithm for evaluating the solution
accurately arbitrarily close to a corner is presented in [Hoskins and Rachh 2020].
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Figure 5. Discretization of geometry along with material parameters u;, v; (left), the
panels at corners/triple junctions are indicated in red; exact solution u; in the domains
(center), and log,, of the absolute error in the solution (right). The geometry consists
of 20 vertices, 24 edges, 5 regions, and is discretized with 1952 points. In order for
the solution of the linear system to converge to a residual of 10~!%, GMRES required
22 iterations for (14) and 28 iterations for (15).

6B. Condition number dependence on p, v. In this section, we discuss the dependence of the condition
number of the discretized linear systems as a function of the material parameters of the regions. Recall
that the condition number of a linear system A, which we denote by x(A), is the ratio of the largest
singular value spax to the smallest singular value sy, i.€., K (A) = Smax/Smin- As discussed in Section 3,
for fixed angles the integral equation and the analytical behavior of integral equations (14) and (15) are
solely a function of d(1 2, d(2,3), d(3,1) defined in (19). Furthermore, d(; ») can be expressed in terms of
d@3,1y, d2,3) which are contained in the interval (—1, 1). As before, let a =d3,1) and b = d» 3). Since the
discrete linear system corresponding to (15) is the adjoint of the linear system corresponding to (14), it
suffices to study the condition number for either linear system.

In Figure 6, we plot the condition number of the discretization of (14) as we vary (a, b) € (—1, 1)? by
holding the values of w in each of the regions to be fixed. In particular, we set u; = 0.37, u, = 0.81,
u3 =1, and v3 = 0.77. The constants v{, v, can then be defined in terms of (a, b) as

vl 1+a vsur 1 —b
V) = T -
us 1—a us 1+b

(40)

We note that the problem is well-behaved for almost all values of (a, b) and becomes ill-conditioned
as we approach the lines b = —1 and a = 1. This behavior is expected since the underlying physical
problem also has rank-deficiency along these limits since these values of the parameters correspond to
interior Neumann problems in regions 1 and 2 respectively.

6C. Condition number dependence on angles at the triple junction. In this section we discuss the
dependence of the condition number of the discretized linear systems as a function of the angles at the triple
junction. Let 61, 6,, 65, denote the angles at the triple junction; then 8; + 6> + 63 = 2m. The three angles
at any triple junction can be parametrized by 6, 6, in the simplex {(6;, 62) : 61 > 0,6, > 0,0, + 6, <27 }.
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Figure 6. Left: discretization of geometry and material parameters w, v as a function
of a, b. Right: condition number as a function of (a, b) with u; = 0.37, u, = 0.81,
w3 =1, and v3 =0.77.

Suppose that we split this simplex into four regions as shown in Figure 7. By symmetry it suffices to vary
the angles (61, 6) € (0, )?.

The physical problem as either of the angles approach 0 or 27 becomes increasingly ill-conditioned
due to close-to-touching interactions on the entire edge (not just near the corner). In order to avoid these
issues and to automate geometry generation as we vary the angles 61, 6>, we use two different types of
geometries for regions I and IV, which are shown in Figure 7.

Resolving the close-to-touching interactions has numerical consequences as well; due to the increased
number of quadrature nodes required as the angles tend to 0 in the universal quadrature rules. In order for
the universal quadrature rules to remain efficient, they are generated for the range (9;, 6;) € (%, 2w — %)
Regions with narrower angles should be handled on a case-by-case basis and regions with careful
discretization of the boundary should be coupled with special purpose quadrature rules which account for
the specific singular behavior of the solutions in the vicinity of triple junctions. In Figure 7, the top right
missing corner corresponds to 63 € (0, 7).

Referring to Figure 7, we observe that the condition number of the discrete linear systems varies mildly
as we vary the angles 61, 6>, with a maximum condition number of 2.8. The discontinuity in the plot is
explained by the different choice of geometries for regions I, IV.

6D. Application: polarization computation. In this section, we demonstrate the efficiency of our ap-
proach for computing polarization tensors for a perturbed hexagonal lattice with cavities. The polarization
computation corresponds to the following particular setup of the triple junction problem, w; = 1,
fi =0, v; = ¢;, where ¢; denotes the permittivity of the medium, and g1(x) = (g¢¢) — &-))n1(x)
or g2(x) = (&¢i) — &r(i))N2(x), where x = (x1,x2) € I';, n(x) = (n1(x), n2(x)), and &), &(;) are the
conductivities of the regions on either side of the edge I';. If u; is the solution corresponding to g; and
uy is the solution corresponding to g;, then the polarization tensor P is the 2 x 2 matrix given by

p_ |:fr x1-(0uy/on)ds frxz-(aul/an)dsi| .

~ Lfpx1- Qua/dn)ds [ xp- (uz/0n)ds “D
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Figure 7. Regions I-IV in (01, 6;) simplex (top left); condition number of discretized
linear system corresponding to (14) as a function of (61, 6,) (top right); sample domain
for (01, 62) in region I (bottom left); sample domain for (8, 6;) in region IV (bottom
right).

Note that in this particular setup, we only need to solve the problem corresponding to the operator Kyey,
as the solution o for Kyi;[o] = 01is 0 = 0. Let p;, po» denote the solutions of (15) corresponding to
boundary data g; and g, respectively. Using properties of the single-layer potential, the integrals of the
polarization tensor can be expressed in terms of p as

_[Jexi-prds Jpx2-prds
pP= . (42)
Jrxi-p2ds [rx2-p2ds

We compare the efficiency of our approach to RCIP, which to the best of our knowledge is the state-
of-the-art method for such problems. The geometry is generated using a regular hexagonal lattice inside
the unit square whose vertices are perturbed in a random direction by a tenth of the side length, and the
permittivity € is region i is given by 10, where c; is a uniform random number between [—1, 1]. The choice
of parameters for the problem setup is identical to the setup in Section 11 in [Helsing and Ojala 2008a].

We discretize the geometry with 3 panels on each edge of roughly equal size, and the reference solution
is computed using 5 panels on each edge. The geometry contains 10688 vertices, 15855 edges, and 5189
regions. There are 1395240 degrees of freedom for the coarse discretization (approximately 88 degrees
of freedom per edge) and 1902600 degrees of freedom for the reference solution. These discretizations
required 131 iterations for GMRES to converge to a relative residual of 107!, and the absolute error in



464 JEREMY HOSKINS AND MANAS RACHH

10.0 0
-1
-2
1.0
-3
-4
0.1 -3

Figure 8. Material parameters v; for each of the regions (left), exact solution u; in
the domains (center), and log;, of the absolute error in the solution (right). The
geometry consists of 10688 vertices, 15855 edges, 5189 regions, and is discretized
with 1395240 points. In order for the solution of the linear system to converge to a
residual of 107'%, GMRES required 138 iterations for (14), and 130 iterations for (15)
in the accuracy tests, and 131 and 130 iterations (for g;, and g, respectively) for (15)
in computing the polarization tensors.

=25

-5.0

-7.5

-10.0

-12.5

-15.0

the polarization tensor when compared to the reference solution is 5.1 x 107! In comparison, RCIP
using approximately 71 degrees of freedom per edge in a hexagonal lattice with 5293 inclusions obtained
an accuracy of 2 x 10™!# in computing the 2, 2 entry of the polarization matrix and required 105 GMRES
iterations to converge.

The polarization tensor for this configuration, correct to 13 significant digits, is given by

_ | —0.038291586646 —0.004056508957 43)
~ | —0.004056508957  0.045585776453 |

In Figure 8, we plot the material parameters v;, an analytical solution generated using a process similar to
the one described in Section 6A, and the error in the computed solution using our discretization.

Remark 6.2. We note that the performance of our approach is close to current state of the art methods
such as RCIP [Helsing 2013]. In our examples, further improvements in speed can be achieved using
additional compression techniques to reduce the degrees of freedom in the resulting linear system [Bremer
et al. 2015; Greengard et al. 2009].

7. Concluding remarks and future work

In this paper we analyze the systems of boundary integral equations which arise when solving the Laplace
transmission problem in composite media consisting of regions with polygonal boundaries. Our discussion
is focused on the particular case of composite media with triple junctions (points at which three distinct
media meet), though our analysis extends to higher-order junctions in a natural way.

We show that under some restrictions the solutions to the boundary integral equations corresponding
to a triple junction are well-approximated by a linear combination of powers t#/, where ¢ denotes the
distance from the corner along the edge, and the 8;, j = 1,2, ..., form a countable collection of real
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numbers obtained by solving a certain equation depending only on the material properties of the media
and the angles at which the interfaces meet.

In addition to the theoretical interest of the result, our analysis also enables an easy construction of near-
optimal discretizations for triple junctions. In particular, RCIP, which is the leading method for solving
electrostatic problems on multiple junction interfaces, requires approximately 71 discretization nodes
per edge to compute solutions to near machine precision accuracy, whereas our proposed discretization
achieves an accuracy of 5 x 107! using roughly 88 discretization nodes per edge. Finally, we illustrate
the properties of this discretization with a number of numerical examples.

The results of this paper admit a number of natural extensions and generalizations. Firstly, the analysis
outlined in this paper extends almost immediately to junctions involving greater numbers of media.
However, the construction of an efficient Nystrom discretization of higher-order junctions requires special
care since the solutions to corresponding integral equations are not [ functions on the boundary; in fact the
solutions are known to be IL! functions on the boundary [Helsing 2011]. Secondly, with a small modification
a similar analysis should be possible for boundary integral equations arising from triple junction problems
for other partial differential equations such as the Helmholtz equation, Maxwell’s equations, and the
biharmonic equation. This line of inquiry is being vigorously pursued and will be reported at a later date.

Finally, a similar approach will also work for generating discretizations of triple junctions in three
dimensions. This is particularly valuable since geometric singularities in three-dimensions can often
result in prohibitively large linear systems. Accurate discretization with few degrees of freedom would
greatly improve the size and complexity of systems which could be simulated.

Appendix A. Analysis of /Cg;,

First we present the proof of Theorem 3.2. In order to do so, we require the following technical lemma
which describes the double-layer potential defined on a straight line segment with density s# at an arbitrary
point near the boundary. Here s is the distance along the segment.

Lemma A.1. Suppose that I is an edge of unit length oriented along an angle 6, parametrized by
s(cos (@), sin(0)), 0 < s < 1. Suppose that x = t(cos (6 + 6y), sin (0 4 6p)) (see Figure 9) where
0<t<1,andx &T. Suppose that o (s) = sP for 0 < s < 1, where B > 0. If B is not an integer, then

o0

_sin(B(@—00) g, 1 sin (k6p)
Prlol) == Gnp) | T 2x ; p—k 49
If B = m is an integer, then
_ (r —6p) cos (mb) ,, B sin (m6o) ,, i >, sin (ko)
Drlo](x) = = t S "log () + ; — (45)
k#m

In the following lemma, we compute the potential Kgi;[v¢#], in the vicinity of a triple junction with
angles 6, 6», 65, and material parameters d = (d(1,2), d(2,3). d(3,1)), Where v € R3 and B are constants
(see Figure 2).
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Figure 9. Illustrative figure for geometry in Lemma A.1.

Lemma A.2. Consider the geometry setup of the single vertex problem presented in Section 3. For a
constant vector v € R>, suppose that the density on the edges is of the form

01,2
o= |03 |= vtﬂ. (46)
03,1
If B is not an integer, then
1 =1
Kairlo] = —=——Adair(ds.1, di 2, B)vtP ——Cd, kv, 47
o) = — 5o Adn(da i, Bv +k§ﬂ—’< d, kyv (47)
where Agir is defined in (21) and
1 0 —d(l,z) sin (k@z) d(l’z) sin (k@])
C(d, k) = 2— d(2,3) sin (k@g) 0 —d(2’3) sin (k93) . (48)
b4 . .
—d(3,1) sin (k@l) d(3,1) sin (k93) 0

If B = m is an integer, then

(—D™ m — 1 m
Kairlo'] = = Adgic(ds 1, d1.o, m)ot" log (1) + Y ———C(d, kyot"* + Caiag(d, m)ve™,  (49)
Em
where
Cdiag(d» m)
1 /4 d(1,2) (7w — 62) cos (mby) —d(1,2)(w — 01) cos (mb)
= —5— | —dey(r —62) cos (mb) m d2.3)(m —63) cos (m63) | . (50)
d(371)(7'[ — 91) COS (m91) —d(3,1)(7'[ — (93) CcoS (m93) b3

Proof. The result follows from repeated application of Lemma A.1 for computing D n).¢, )0, j)- U

The proof of Theorem 3.2 then follows immediately from Lemma A.2.

We now turn our attention to the proof of Lemma 3.3, which provides a construction of 3, v satisfying
the conditions of Theorem 3.2. In order to do that, we first observe that if one of a, b, or c is 0, then the
expression of det Ag;; simplifies significantly, and there exists an explicit construction of B satisfying
det Agir(a, b, B) =0. Recall that we interchangeably use the following variables for the material properties:
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(a,b,c)=1(ds,1,d1,dr3). Having established the existence of analytic 8, v on a 1-dimensional manifold
which is a subset (a, b) € (—1, 1)2, we now analytically continue these values of f, v to carve out the
open region S on which 8, v can be analytically extended. This proof is discussed in Appendix A.1.

Al. Existence of B, v satisfying Theorem 3.2. The determinant of the matrix Ay (a, b, B) is given by
det Agir(a, b, B) =sin (wB) a(a, b, c; B), (51)

where ¢ = —(a + b)/(1 + ab), and
ala, b, c; B) = sin? (7 B) + be sin® (B(r — 62)) +acsin® (B(r — 63)) +absin® (B(r —6)).  (52)

Given the formula above, for all (a, b) € (—1, 1)*> when 8 =m > 0 is an integer, det Agi:(a, b, ) =0.
When m # 0, the matrix Agj; has rank 2, since the matrix is similar to an antisymmetric matrix and is not
identically zero. The null vector v of Agi:(a, b, m) is given by v,, = [sin (m63), sin (m6), sin (mo)]";
i.e., the pair (m, v,,) always satisfies (21). When g =0, Agi:(a, b, ) = 0 and hence for any v € R3, the
pair B, v satisfies (21). Based on this observation we set

Bmo=m, Vo= [sin(mb3),sin (mb), sin(mo)1", Sno= (-1, 1)

Boo=0, woo=1I1,0,0]", So.0 = (=1, 1)?, 53
Bio=0, wv10=10,1,0]", So.1 = (—1,1)%,
Bro=0, v0=10,01]", Soo = (=1, 1)%.

We now turn our attention to constructing the remaining f; ;, the corresponding vectors v; ;, and
their regions of analyticity S; ;, i = 1,2,..., j = 1,2. From (51), the remaining values of S, ;
as a function of the material parameters (a, b) are defined implicitly via the roots of the equation
a(a, b, c(a,b); Bi j(a, b)) =0, where c = —(a + b)/(1 +ab) and « is defined in (52).

It turns out that the implicit solutions S(a, b) of «(a, b, c(a, b); B(a, b)) =0, are known when a =0,
b =0, or c = 0. This gives us an initial value for defining g; ; in order to apply the implicit function
theorem, and extend it to a region containing the segments a = 0, b = 0, or ¢ = 0. Given this strategy, let
Ri,...,Re C (—1,1) x (—1, 1) be defined as follows (see Figure 10):

Ry ={(x,0):x > 0}, (54)
Ry ={(—x,0):x > 0}, (55)
R; ={(0,x) :x > 0}, (56)
Ry ={(0, —x) : x > 0}, (57)
Rs ={(—x,x):x >0}, (58)
Re ={(x, —x) : x > 0}. (59)

In the following, we will consider only the segment R;, and construct an open region Sl{ ;C (=1, 1)?
which contains Ry on which we define a family of functions B; j(a, D) : Sl.{ i~ R, j = 1,2, which
satisfy the conditions of Lemma 3.3. Analogous results hold for the open sets containing the remaining
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1,-1) (1,1)

-L-1 “ 1,-D

Figure 10. Illustration of the edge segments R;, i = 1,2, ...6, and a typical region of
analyticity of B; ; denoted by Sl.{ j

segments Ry, R3, ... Re with almost identical proofs. The region of analyticity for §; ; is then given by

Si.j = Uiz SE;-
Definition A.3. For (¢,0) e Ryandi =1,2... let B; 1(a, 0) be the solution to the equation
sin (7 B;,1) = —asin (B;1(w — 63)) (60)
such that
lim B; 1(a,0) =1i. (61)
a—0
Similarly, fori =1, 2, ... let 8;2(a, 0) be the solution to the equation
sin (77B;,2) = a sin (B 2(w — 63)) (62)
such that
lim B; 2(a, 0) =1i. (63)
a—0
The existence of B; ; fori =1,2,... and j = 1, 2 satisfying these conditions is guaranteed by the

following Lemma A.4, proved in [Hoskins 2018].

Lemma A.4. Suppose that § € R, 0 < |8] < 1, and 6 € (0, 27) and 0 /7 is irrational. Consider the

equations
sin(rz) = 8 sin(z(w — 0)).

Then there exist a countable collection of functions zii ), i=1,2,...,suchthat
(1) sin’(mz;"(8)) = 8% sin*(z"(8)(r — 0)) forall § € [0, 1],and i = 1,2, ...,
(2) the functions zijE are analytic in (0, 1),

(3) lims—o 2" (8) =1,

4) zH(8) > i and z; (8) <i forall § € (0, 1).
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The following lemma extends the domain of definition of the functions g; ;, j = 1, 2, to some open
subset Si1 j containing R;.

Lemma A.5. Suppose 6y, 6, and 03 are positive numbers summing to 2, and 01 /7, 0, /7, and 63 /7 are
irrational numbers. Suppose that B; j are defined as above fori =1,2,... and j =1,2. Fora € (0, 1),
the function B; j satisfies

a(a,0, —a; B ;) =0. (64)

Moreover, there exists a unique extension of B; j to an analytic function of (a, b) on an open neighborhood
Ri C S}, C (=1, 1)* which satisfies

a(a, b, c(a,b); Bi.j) =0. (65)
Proof. We begin by observing that, for j =1, 2, ; ; satisfies

a(a,0,—a; B j) = —a’sin*(B; ; (m—63))+sin*(7p; ;) =0,

dor ) . (66)
ﬁ(a’ 0, —a; Bi,j) =2(—(w—63)a’sin(B;,j (r —03)) cos(B;, ; (T —63))+7 sin(zB;, ;) cos(mB;. ;).
Upon multiplication by
g(a; B) = (m —63)a” sin(B( — 63)) cos(B(r — 03)) + 7 sin(B) cos(B)
and using (66) we get
gla; B j)g—/‘;‘<a, 0. —a; Bi.j) = =2sin’ (@i ;) (1° — a*(r — 63)> — (° — (w — 63)°) sin” (7w, ;).

which does not vanish for all @ > 0. Thus by the implicit function theorem, there exists an analytic extension
of B; ; to a neighborhood (a, b) € Ry C Sil,j C (=1, 1) which satisfies a(a, b, c¢(a, b); Bi.j) =0. Il

The following theorem establishes the analyticity of the null vectors of Agi:(a, b; B) in a neighborhood
of R when ,3 = ,Bi,j.

Theorem A.6. Foreach j=1,2,andi =1,2, ..., the matrix Agi(a, b, B; ;) defined in (21) has a null
vector v; j whose entries are analytic functions of (a, b) on Sl.{ j

Proof. Since B; ; is such that the matrix Agi:(a, b, B;, ;) is singular, it has a null vector v; ;. Moreover,
as long as (a, b) # (0,0) and B; ; is not an integer, the matrix Ag;, has rank at least 2. Thus 0 is an
eigenvalue of Agir(a, b, B;, j(a, b)) with multiplicity 1 for all (a, b) € Sil, IE Since the entries of the matrix
Agir are analytic functions of (a, b), we conclude that the entries of v; ; are analytic on Sl.l. U

Finally, each Sl{" i is an open subset containing the segments R¥, k=1,2,...6. Then Sij= U,f:l S{f i
is an open subset of (—1, 1)? containing | JS_, Ry. Thus, for any finite N, |, ﬂ?zo Si.j| > 0.
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A2. Completeness of density basis. Recall that for any §, v which satisfy the conditions of Theorem 3.2,
and o = vtP, the potential ICgi:[o] corresponding to any of these densities is an analytic function. In
order to show that the potential corresponding to a particular collection of g8, v span all polynomials of a
fixed degree on all the three edges meeting at the triple junction, we explicitly write down the linear map
from the coefficients of the density in the v¢# basis to the coefficients of Taylor series of the potentials
on each of the edges using Lemma A.2. We then observe that this mapping is invertible along the line
segments corresponding to a =0, b =0, or ¢ = 0, and since the mapping is an analytic function of the
parameters (a, b), it must also be invertible in an open region containing the segments a =0, b =0 or
¢ = 0. This part of the proof is discussed in this section.

For any integer N > 0, let §N, denote the common region of analyticity of 8; j,v; ;, j =0,1,2,
i=0,1,2...N;ie., Sy = U,?:l Slli,, where Slli, = ﬂlN:O ﬂ?zo Sfj. By construction, R; C SZJ;, for all N.
We now prove the result Theorem 3.4 in one of the components of Sy, say S}V. The proof for the other
components follows in a similar manner.

Let p; = [pi.o, pi1, pi2)’, and suppose that

N 2
o(t)y=> "> pijvi it/ (67)

i=0 j=0
Then, using Lemma A.2, since f; ;, v; ; are such that Agi-(a, b, B; ;) - v; j =0, the potential corresponding

to this density on the boundary (I'(1 2), I'2,3), I'3,1)) is given by

u(l’z)(l) N N

1.3 () =Z(Z B;; -p,->|r|l'+0(|z|N“>, (68)

u(g,l)(t) i=0 “j=0

where B; ; are the 3 x 3 matrices given by

1 . 1 . 1 . e .
[,Bj,o—iC(d’l)v”O —ﬁj,1—ic(d’l)v1’l j,z—ic(d’l)vf’z] ifi #j,
Bi,j = [Cdiag(d,i)vj,o 'll—l'C(d’ l')l)j,l 'zl—iC(d’ i)vj,2:| ifi=j#0, (69)
J. j,
[ Caiag(d, v 0 ‘ Caiag(d, i)V ‘ Caiag(d, i)V, | ifi =j=0.

Let B denote the 3(N + 1) x 3(N + 1) matrix whose 3 x 3 blocks are given by B; ;, i, j =0,1,2,..., N.
Recall thaton R, C SL,, b =0, Bio =1, Bi1, satisfies sin (7w f; 1) = —a sin (B;,1(w — 63)), Bi 2 satisfies

sin (B 2) = asin(B;2(wr —63)), i =0,1,2..., and the corresponding vectors v; ;, i =0,1,2...,

j=0,1,2, are given by

sin (i03) 1

vio=—|sin(if) |, vi1=—7 . Vio=—0| 1], (70)

i | sin (i65) V2| V2|

where

ni = v/sin? (i6)) + sin? (i6,) + sin2 (i63). (71)
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Furthermore, the matrices C and Cyi,g defined in (48), and (50) respectively also simplify to

u 0 0 0
C = | sin (m0;) 0 —sin (m63) |, (72)
—sin (m6q) sin (m63) 0
1 b4 0 0
Ciiag = —z— | a(mw — 602) cos (mb,) b4 —a(mw —63) cos (mbs3) | . (73)
a(mwr —0p) cos (mB;) —a(mwr — 03) cos (m0Os) T

Let u(1,2),i, u2,3),i» 43,1, denote the coefficient of |t|’ in the Taylor expansions of u(1,2), 4(2,3), U@3,1)
respectively. Let P denote the permutation matrix whose action is given by

Po.o | D0.,0 ]
Po.1 P10
Po.2 :
P10 PN.,0
P Po,1
b2 P1’1
P = h (74)
PN.1
Po.2
P12
PN,0 .
PN.1
| PN.2 ] | PN.2 |
Then along R;, the matrix PBPT is demonstrated in Figure 11.
The matrices Dy, D, are diagonal and are given by
sin (63) m
sin (293) 1 n2
D= o Da=—3 - (15
sin (N — 1)63) nN-1
sin (N63) NN
The matrices C1, C, are Cauchy matrices whose entries are given by
C C 1 (76)
Li,j = ) 2,i,j = .
Y Ba— Y Bia—

Since we have assumed 6, /7, 6, /7, 03 /7, to be irrational, we note that n; > 0 and that sin (m83) # 0 for
all m # 0. Thus, the diagonal matrices D;, D, are invertible. Furthermore on (a, 0), neither of ;| or
Bi o take on integer values by Lemma A.4. Thus, the Cauchy matrices C;, C; are invertible.
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1. N i 2N +1)

1. ]-12

-1/2 0 q 0 :l

D chl q —D1C2 N

QN+ 1)

-q 0 -12 0 I

93 DICI qs D1C2 N

e N s N

Figure 11. Structure of the matrix PBPT.

Let T denote the bottom-right 2(N + 1) x 2(N + 1) block. Then from the structure of PBPT and the
fact that the diagonal matrix D D; is invertible, it is clear that B is invertible if and only if 7 is invertible.

Remark A.7. The matrix 7T is the mapping from the coefficients of the singular basis of solutions for
the transmission problem with angle w63 and material parameter a to the corresponding coefficients of
the Taylor expansion of the potential on the edges (2, 3), (3, 1). The invertibility of 7" follows from the
analysis in [Hoskins 2018]. We present the proof here in terms of the notation used in this paper.

Upon applying an appropriate permutation matrix P, to 7 from the right and the left, we note that

I ¢ 0 0
1

- - 0 0
pTPI =| "9 72 . 77
2 q q4 DICy —D1Cy 7

g g5 D1C1 D1

The matrix PZTPZT is invertible if and only if its bottom-right 2N x 2N corner is invertible. Let Iy
denote the N x N identity matrix; then the bottom right corner of P2TP2T factorizes as

D, 0 Iy —Iy|]|C; O
ol Tl ) ®
which is clearly invertible since the matrices D1, Cy, C; are invertible.
Finally, using all of these results, it follows that the matrix B is invertible for all (a, 0) = R;. Since all

of the quantities involved are analytic, on every compact subset of S\, we conclude that the matrix B is
invertible in an open neighborhood R; C Szlv cSs 11\, By construction |511v| > 0.
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Appendix B. Analysis of Cyey

All the proofs for the analysis of Ky, are similar to the corresponding proofs of gi;. We only present
the analogs of Lemmas A.1 and A.2.

In the following lemma we present the directional derivative of a single-layer potential defined on
straight line segment with density s? at an arbitrary point near the boundary. Here s is the distance along
the segment, at an arbitrary point near the boundary.

Lemma B.1. Suppose that T is an edge of unit length oriented along an angle w6, parametrized by
s(cos (A), sin (0)), 0 <s < 1. Suppose x =t(cos (0+8p), sin (0+6p)) and n = (— sin (0+6y), cos (6+6p))
(see Figure 9) where 0 <t < 1, and x & T. Suppose that o (s) = sP~! for0 <s < 1, where B > % If B is
not an integer, then

sin(B(r —60)) 4 1 = sin(kbp) ,_
VS n=———— _pt N kel 79
o)) m 2sin (7f) 2nk2:1: p—k 7
If B = m is an integer, then
—6 6 in (m6 1 o sin (k6
VSrlo] () -n = — T cos (m O)I’"_]—l-mtm_llog(t)——Zwtk_l. (80)
2 2 = m—k
k#m

In the following lemma, we compute the potential at a triple junction with angles 7 6;, 76,, w63, and
material parameters d = (d(1,2), d2,3), d3,1y) (see Figure 2).

Lemma B.2. Consider the geometry setup of the single vertex problem presented in Section 3. For a
constant vector v € R3, suppose that the density on the edges is of the form

01,2
o= |03 |= wtﬂ_l. (81)
031
If B is not an integer, then
=1
Kairlo] = —=————Aneu(ds.1, d1 2, Bwt? =Y ——C(d, Hywt* ", 82
o] = — 5o Aneu(da o, pw ];ﬁ_k d, bw (82)
where Apey is defined in (25), and C(d, k) is defined in (48). If B = m is an integer, then
(=n"

o0
1
Kneulo'] = Anca(ds,1, d o, mywe" log (=) | ——-C(d. kywr* ™" —Caiag(d, mywt" ™", (83)

k=1
k#m

2w
where Ciyg is defined in (50).

Proof. The result follows from repeated application of Lemma B.1 for computing Dzkl’ my:(i ) OG- U

The proof of Theorem 3.5 then follows immediately from Lemma B.2.
In the following lemma, we prove that 8; ;, S; ;, i =1,2,..., j =0, 1,2, defined in Appendix A.l
satisty B; j(a, b) > % for all (a, b) in an open subset T; ; C §; ;.
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Lemma B.3. Suppose that B; ;, S; j, i=1,2,..., j=0,1,2, are as defined in Appendix A.1. Then there
exists an open subset T; ; C S; j such that B; j(a, b) > % forall (a, b) € T; ;. Moreover for any N > 0,
N M=o 1Tl > 0.

Proof. Since B;o = i, the statement is trivially true with 7; ; = (=1, 1)2. Since B;, ji= zl.i((S, 6) on
a=0,b=0, or c =0, for appropriate parameters d, 6, we conclude that g; ; > %, ona=0,b=0,or
c=0,fori=1,2,..., j=1,2. Since B; ; are analytic on §; ;, there exists an open subset containing the
segments a =0, b =0, or ¢ =0, which we denote by T; ;, such that 8; ;(a, b) > % forall (a, b) € T; ;. Since
each T; ; is an open subset of (—1, 1)? containing U,?:l Ry, we conclude that |ﬂlN:J§1 ﬂ?zo T.;| >0. O
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