Vol. 2, No. 3, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN (electronic): 2578-5885
ISSN (print): 2578-5893
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Mean-field model for the junction of two quasi-1-dimensional quantum Coulomb systems

Ling-Ling Cao

Vol. 2 (2020), No. 3, 533–580

Junctions appear naturally when one studies surface states or transport properties of quasi-1-dimensional materials such as carbon nanotubes, polymers and quantum wires. These materials can be seen as 1-dimensional systems embedded in the 3-dimensional space. We first establish a mean-field description of reduced Hartree–Fock-type for a 1-dimensional periodic system in the 3-dimensional space (a quasi-1-dimensional system), the unit cell of which is unbounded. With mild summability condition, we next show that a quasi-1-dimensional quantum system in its ground state can be described by a mean-field Hamiltonian. We also prove that the Fermi level of this system is always negative. A junction system is described by two different infinitely extended quasi-1-dimensional systems occupying separate half-spaces in three dimensions, where coulombic electron-electron interactions are taken into account and without any assumption on the commensurability of the periods. We prove the existence of the ground state for a junction system, the ground state is a spectral projector of a mean-field Hamiltonian, and the ground state density is unique.

PDF Access Denied

However, your active subscription may be available on Project Euclid at

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

mean field, junction, quasi-1-dimensional, quantum Coulomb system
Mathematical Subject Classification 2010
Primary: 49S05, 58E99
Received: 24 April 2019
Revised: 26 March 2020
Accepted: 10 May 2020
Published: 17 November 2020
Ling-Ling Cao
Université Paris-Est Marne-la-Vallée, CERMICS (ENPC)