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We analyse the functional J (u)= ‖∇u‖∞ defined on Lipschitz functions with homogeneous Dirichlet
boundary conditions. Our analysis is performed directly on the functional without the need to approximate
with smooth p-norms. We prove that its ground states coincide with multiples of the distance function
to the boundary of the domain. Furthermore, we compute the L2-subdifferential of J and characterize
the distance function as the unique nonnegative eigenfunction of the subdifferential operator. We also
study properties of general eigenfunctions, in particular their nodal sets. Furthermore, we prove that
the distance function can be computed as the asymptotic profile of the gradient flow of J and construct
analytic solutions of fast marching type. In addition, we give a geometric characterization of the extreme
points of the unit ball of J.

Finally, we transfer many of these results to a discrete version of the functional defined on a finite
weighted graph. Here, we analyze properties of distance functions on graphs and their gradients. The
main difference between the continuum and discrete setting is that the distance function is not the unique
nonnegative eigenfunction on a graph.
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1. Introduction

1A. Eigenvalue problems associated to Rayleigh quotients. Eigenvalue problems are a very old tool in
mathematics with a long list of theoretical and practical applications. In particular, nonlinear eigenvalue
problems have become increasingly popular in the last decades due to their challenging mathematical
properties and their wide range of theoretical and practical applications. A special class of nonlinear
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eigenvalue problems are those which arise from a variational principle, like the minimization of a Rayleigh
quotient

J (u)
H(u)

→min, (1-1)

where J and H typically are convex functionals which share the same homogeneity. In this abstract
setting the eigenvalue problem is often defined by

λ∂H(u)∩ ∂ J (u) 6=∅, (1-2)

where λ= J (u)/H(u) denotes the eigenvalue and ∂ stands for the subdifferential. For smooth J and H this
is exactly the condition for being a critical point of the Rayleigh quotient. Elements actually minimizing
the Rayleigh quotient, and thus having the lowest possible eigenvalue, are referred to as ground states.
Obviously, due to the homogeneity of J and H ground states are invariant under multiplication with a
scalar. By choosing

J (u)=
∫
�

|∇u|p dx, H(u)=
∫
�

|u|p dx, (1-3)

one obtains the eigenvalue problem of the p-Laplacian

λ|u|p−2u =− div(|∇u|p−2
∇u), (1-4)

which has to be complemented with suitable boundary conditions, and is a very well-studied nonlinear
eigenvalue problem; see, for instance, [Binding et al. 2006; Kawohl and Lindqvist 2006; Barles 1988; Lê
2006; Kawohl and Novaga 2008]. Interesting but challenging limit cases are p→ 1 and p→∞ since in
these cases functionals J and H are nonsmooth and not strictly convex. In particular, this means that
there can exist linearly independent ground states. For more details about the 1-Laplacian eigenvalue
problem we refer to [Kawohl and Schuricht 2007]; explicit solutions can be found in [Bellettini et al.
2005; Alter et al. 2005]. The infinity-Laplacian eigenvalue equation takes the form

0=


min(|∇u| − λu,−1∞u), u > 0,
−1∞u, u = 0,
max(−|∇u| − λu,−1∞u), u < 0,

(1-5)

which has to be understood in the viscosity sense. Typically, the problem is complemented with homoge-
neous Dirichlet conditions. We refer to [Juutinen et al. 1999; 2001; Yu 2007] for more details. Positive
solutions of (1-5) on a domain � are called infinity ground states and indeed they minimize the Rayleigh
quotient

u 7→
‖∇u‖∞
‖u‖∞

(1-6)

among all functions u ∈ W 1,∞(�) that vanish on the boundary ∂�. However, minimizers of (1-6) are
far from being unique up to scalar multiplication. In particular, the distance function x 7→ dist(x, ∂�)
is always a minimizer of (1-6) but not necessarily a solution of (1-5). Furthermore, solutions of (1-5)
are not unique [Hynd et al. 2013]. The infinity-Laplacian eigenvalue problem falls under the scope of
L∞-variational problems, which have been an active field of research, with the main contributions being
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due to Aronsson [2004]. One big challenge with these problems is that the involved subdifferentials lie in
a space of measures and not in a function space.

1B. Structure of regularizers. From an application point of view, eigenvalue problems of the form (1-2)
are interesting since they allow one to study the structural properties of the functional J, if it is interpreted
as regularization functional. For instance, in the case of J : H→ R∪ {∞} being defined on a Hilbert
space H, and H( · ) = ‖ · ‖H coinciding with its norm, it holds that eigenfunctions f are precisely the
separated variable solutions to the gradient flow{

u′(t)+ ∂ J (u(t)) 3 0,
u(0)= f.

(1-7)

In this case the solution of (1-7) has the form u(t)=a(t) f , where function a(t) depends on the homogeneity
of J ; see [Bungert and Burger 2020; Bungert et al. 2019a; Burger et al. 2016a; Cohen and Gilboa 2020].
If J is one-homogeneous and f is an eigenfunction, then this separated variable solution also solves the
variational regularization problem

1
2‖u− f ‖2H+ t J (u). (1-8)

Recent results for general homogeneous functionals [Bungert and Burger 2020; Bungert et al. 2019a]
showed that also for general data f , the gradient flow (1-7) behaves like a separated variable solution asymp-
totically. Under some conditions it was shown that asymptotic profiles of (1-7) are eigenfunctions, meaning

lim
t→∞

u(t)
‖u(t)‖H

= w, lim
t→∞

J (u(t))
‖u(t)‖H

= λ, λw ∈ ∂ J (w). (1-9)

Subsuming these results, one can say that eigenfunctions to some extent describe which structures are
preserved by regularization methods like (1-7) or (1-8). For example, in the case of J being the total
variation, it is well known that a large class of eigenfunctions are given by so-called calibrable sets
[Alter et al. 2005], which provides an explanation of the staircasing effect in total variation regularization
[Burger and Osher 2013]. Furthermore, the study of regularizers through their eigenfunction has sparked
applications in image processing, as for instance in [Gilboa 2014; Benning et al. 2017].

An alternative way to study structural properties of regularizers is through the extreme points of their
unit ball, where the extreme points of a convex set C in a vector space are given by

extr(C) := {u ∈ C : there do not exist v 6= w ∈ C, λ ∈ (0, 1) such that u = λv+ (1− λ)w}. (1-10)

So-called representer theorems study qualitative properties of solutions to the optimization problems

u∗ ∈ argmin
u∈X

J (u) : Au = f, (1-11a)

u∗ ∈ argmin
u∈X

F(Au)+ J (u), (1-11b)

where X is a Banach space and A : X →H is a linear operator mapping into a finite-dimensional Hilbert
space. The functionals J and F are convex regularization and data fitting functionals, respectively. Recent
results [Bredies and Carioni 2020; Boyer et al. 2019; Unser 2019] show that in this case there exists a
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minimizer u∗ of (1-11) which can essentially be expressed as finite linear combination of extreme points
in the unit ball of J, meaning

u∗ = n+
k∑

i=1

ci ui , (1-12)

where n ∈N (J ) denotes an element in the null-space of J, (ci ) are real numbers, and (ui )⊂ extr(BJ )

are extreme points of the unit ball BJ = {u ∈ X : J (u)≤ 1}. Typically, extreme points have interesting
geometric properties which they hand down to minimizers of (1-11). If J equals the total variation of
a function, for instance, extreme points are given by characteristic functions of so-called simple sets
[Bredies and Carioni 2020], which gives yet another explanation for the staircasing phenomenon.

1C. Set-up and outline of this paper. Let �⊂ Rn be an open and bounded domain and for 1≤ p ≤∞
we let ‖ · ‖p denote the Lebesgue p-norms of functions or vector fields. We define the function space

W 1,∞
0 (�) := {u ∈W 1,∞(�) : u = 0 on ∂�}, (1-13)

which consists of all Lipschitz continuous functions, vanishing on ∂�. In this paper we study the functional

J (u)=
{
‖∇u‖∞, u ∈W 1,∞

0 (�),

+∞, u ∈ L2(�) \W 1,∞
0 (�),

(1-14)

which coincides with the Lipschitz constant if u ∈W 1,∞
0 (�). We would like to understand its structure in

terms of eigenfunctions and extreme points.

Remark 1.1. Although the space W 1,∞(�) only coincides with the Lipschitz functions on � if � is
at least quasiconvex [Heinonen 2005], for the space W 1,∞

0 (�) this is always true. Furthermore, J (u)
equals the Lipschitz constant of u ∈W 1,∞

0 (�). This is due to the fact that functions in W 1,∞
0 (�) can be

extended by zero to lie in W 1,∞(Rn), which coincides with the space of all Lipschitz functions due to the
convexity of Rn.

Although J is defined on L2(�) and hence admits standard Hilbert space subdifferential calculus, it
comes with many of the challenges and properties of a pure L∞-variational problem. The associated
Rayleigh quotient is

u 7→
J (u)
‖u‖2

=
‖∇u‖∞
‖u‖2

(1-15)

and admits an easier treatment than the “pure” L∞ Rayleigh quotient (1-6) due to the presence of the
L2-norm in the denominator. In particular, (1-15) has essentially a unique minimizer, given by the distance
function to the boundary of the domain. Note that a similar functional has been studied in [Burger et al.
2016b] and a Rayleigh quotient of mixed L∞-L2-type was considered in [Barron and Jensen 2005].
While in the first work the analysis is limited to the one-dimensional case, and in the second work the
authors approximate the L∞-norm with smooth p-norms, our subdifferential techniques work in arbitrary
dimension and without approximation. The abstract eigenvalue problem (1-2) associated to J becomes

λ
u
‖u‖2

∈ ∂J (u). (1-16)
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Figure 1. Left: distance function to a point on a discretized manifold. Right: distance
function to the boundary of a grid graph.

We also consider a discrete variant of J defined on a finite weighted graph and transfer most of our
continuous results to the discrete setting. Naturally, due to the finite-dimensional character of graphs, the
proofs simplify a lot. However, the nonlocal nature of graphs makes the results interesting, nevertheless.
In particular, the ground state of this functional is also given by the distance function with respect to the
weighted graph distance. From an applied point of view, this interpretation as nonlinear eigenfunction
opens the doors for new computational methods for the distance function on graphs. Traditional approaches
to compute distance functions on graphs or grids typically rely on level set methods or schemes to solve
the eikonal equation |∇u| = 1; see for instance [Mémoli and Sapiro 2001; Desquesnes et al. 2010; 2013].
Although this paper is mainly of theoretical nature, in Figure 1 we show some distance functions on
graphs which were computed using asymptotic profiles of gradient flows in the sense of (1-9); see also
[Bungert et al. 2019a; 2019b; Bungert and Burger 2020] for theory and computational results for the
1-Laplacian on graphs, respectively.

This paper is organized as follows. In Section 2 we analyze spectral properties of the functional J. We
characterize ground states as distance functions and compute the L2-subdifferential of in Sections 2A
and 2B, respectively. Subsequently, in Section 2C we study the geometrical properties of eigenfunctions.
In particular, we prove that under a regularity condition, the nodal set of eigenfunctions has zero Lebesgue
measure. Next, in Section 3 we construct an explicit solution to the gradient flow and variational
regularization problem of J which converges to the distance function and possesses level sets that move
parallelly to the boundary of the domain. In Section 4 we give a characterization of the extreme points of
the unit ball, which gives intuition on the geometrical structure of optimization problems involving J. In
Section 5 we transfer most of these results to finite weighted graphs. We prove that ground states are
distance functions in Section 5A and study some properties of graph distance functions. In Section 5B
we finally collect the graph versions of our results from Sections 2 and 4, hereby skipping most of the
proofs since they are elementary, given the proofs in the continuous setting.



708 LEON BUNGERT, YURY KOROLEV AND MARTIN BURGER

We would like to conclude with a remark on how to read this paper. For those readers who are primarily
interested in graphs, it is possible to only read Section 5 since it is self-contained in its presentation.
Similarly, readers interested mainly in the continuous setting are welcome to only read Section 2 since
the results in the graph setting are somewhat similar.

2. Spectral properties

2A. Ground states. In this section we will investigate the ground states of J, i.e., minimizers of the
nonlinear Rayleigh quotient

u∗ ∈ argmin
u∈W 1,∞

0 (�)

J (u)
‖u‖2

. (2-1)

We prove that — up to multiplicative constants — they coincide with the distance function of the boundary
∂� of the domain which is defined as

d(x) := dist(x, ∂�) := inf
y∈∂�
|x − y|. (2-2)

Note that this in particular implies that ground states are unique up to scaling, which is often referred to
as simplicity. Indeed, our statement is slightly more general since it holds for minimizers of

u∗ ∈ argmin
u∈W 1,∞

0 (�)

J (u)
‖u‖p

, 1≤ p <∞, (2-3)

where (2-1) is a special case when choosing p = 2.

Theorem 2.1 (ground states are distance functions). All solutions u∗ to (2-3) are multiples of the distance
function to ∂�, given by (2-2).

Proof. By homogeneity, the solutions to (2-3) are given by multiples of the solutions to

û ∈ argmax{‖u‖p : J (u)= 1} = argmax{‖u‖p : |∇u| ≤ 1 a.e. in �, u|∂� = 0}.

From [Zagatti 2014] we infer that — up to global sign — û coincides with the unique viscosity solution of
the eikonal equation which is given by the distance function (2-2). �

Hence, we have characterized the distance function to the boundary of a set in Rn — whose properties are
well known and have been investigated for decades already — as solution to a nonlinear eigenvalue problem
associated to the nonlinear and multivalued operator ∂J. As already mentioned in the Introduction, it is
important to notice the difference between our model and infinity Laplacian ground states (see [Juutinen
et al. 1999; Barron et al. 2008] for an overview), which are defined as positive viscosity solutions to

min{|∇u| −3∞u,−1∞u} = 0, (2-4)

where 1∞ denotes the infinity Laplacian. Here, the eigenvalue 3∞ is given by

3∞ := min
u∈W 1,∞

0 (�)

‖∇u‖∞
‖u‖∞

=
1

maxx∈� dist(x, ∂�)
(2-5)
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and every infinity ground state realizes the minimum. However, also the distance function is a minimizer
but not an infinity ground state, in general [Juutinen et al. 2001], which means that there are minimizers
of (2-3) for p =∞ which are not multiples of the distance function.

2B. Subdifferential. In the following we would like to characterize the L2-subdifferential of the func-
tional J, which is given by

∂J (u)= {ζ ∈ L2(�) : 〈ζ, v〉 ≤ J (v) for all v ∈ L2(�), 〈ζ, u〉 = J (u)}, u ∈ L2(�), (2-6)

since J is absolutely one-homogeneous; see [Benning and Burger 2013; Burger et al. 2016a; 2019a;
Bungert and Burger 2020], for instance. Note that the L2-subdifferential of the functionals

Jp(u)= ‖∇u‖p, 1< p <∞, (2-7)

is single-valued for u ∈W 1,p
0 (�) \ {0} and given by

∂Jp(u)=−Jp(u)1−p1pu, (2-8)

where 1pu := div(|∇u|p−2
∇u) denotes the p-Laplacian. Hence, one could think that by sending p→∞

one obtains an expression for the subdifferential of J which involves the∞-Laplacian. This, however,
turns out not to be the case since the competing limits in (2-8) lead to a loss of regularity, as we will see
below.

To formulate the subdifferential we define the space

H(div;�) := {q ∈ L2(�) : div q ∈ L2(�)} (2-9)

of all L2-vector-fields whose distributional divergence is square-integrable. The space H(div;�) is a
Hilbert space when equipped with the inner product

〈q, r〉H(div;�) =

∫
�

[q · r + (div q)(div r)] dx . (2-10)

Remark 2.2. It is well known that vector fields in H(div;�) posses a normal trace and furthermore the
space C∞(�,Rn) of smooth vector fields is dense in H(div;�); see for instance [Girault and Raviart
1986, Chapter 1].

Using that W 1,∞
0 (�)⊂ H 1

0 (�) one obtains the following integration by parts formula, which we will
use throughout this work without further references.

Proposition 2.3 (integration by parts). Let q ∈ H(div;�) and u ∈W 1,∞
0 (�). Then it holds∫

�

−(div q)u dx =
∫
�

q · ∇u dx . (2-11)

The following closed subspace of H(div;�)— which consists of all gradient fields with L2-divergence —
will be of great importance:

G1
0(�) := {∇ϕ : ϕ ∈ H 1

0 (�), 1ϕ ∈ L2(�)}. (2-12)
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For details on this space, such as Helmholtz decompositions, we refer to [Auchmuty 2006]. Finally, we
also introduce the space of vector-valued Radon measures M(�,Rn), equipped with the total variation
norm ‖µ‖M(�,Rn) := |µ|(�), and the closed subspace

N (div;�) := {r ∈M(�,Rn) : div r = 0} (2-13)

of solenoidal measures. The divergence is understood in the distributional sense, meaning that∫
�

∇ϕ · dr = 0 for all r ∈N (div;�), ϕ ∈ C∞c (�). (2-14)

In order to characterize the subdifferential of J, it is useful to express the functional by duality as

J (u)= sup
{∫

�

−(div q) u dx : q ∈ C∞(�,Rn), ‖q‖1 ≤ 1
}
. (2-15)

Using this representation we obtain an integral characterization of the subdifferential ∂J as divergences
of sums of regular functions and divergence-free measures. The proof is similar to the characterization of
the subdifferential of the total variation in [Bredies and Holler 2016] and can be found in Appendix A.

Proposition 2.4 (integral characterization of the subdifferential). For u ∈ L2(�) it holds

∂J (u)=
{
−divq : q = g+r, g ∈G1

0(�), r ∈N (div;�),
∫
�

−(divq)u dx =J (u), |q|(�)≤ 1
}
. (2-16)

Definition 2.5 (calibrations). Any measure q ∈M(�,Rn) such that − div q ∈ ∂J (u) is called calibration
of u.

Remark 2.6 (one space dimension). If �⊂R is an open interval then N (div;�) coincides with constant
functions. Hence, in this case calibrations q such that− div q=−q ′ ∈ ∂J (u) are always H(div)-functions
since the measure part is just a constant.

Having the integral characterization from Proposition 2.4 at hand, we are now interested in explicit
forms of calibrations q such that − div q ∈ ∂J (u). In the following we fix 0 6= u ∈W 1,∞

0 (�) and use the
notation

L := J (u) <∞. (2-17)

Furthermore, we define the subset of � where ∇u attains its maximal modulus as

�max := {x ∈� : |∇u(x)| = L}, (2-18)

a set being defined up to a Lebesgue null-set. If we assume for a moment that the calibration q is in
H(div;�), then integrating by parts in (2-16) according to Proposition 2.3 yields

J (u)=
∫
�

q · ∇u dx, (2-19)

which suggests that a possible calibration is given by

q(x) :=

{
∇u(x)

L
1
|�max|

, x ∈�max,

0, else.
(2-20)



STRUCTURAL ANALYSIS OF AN L -INFINITY VARIATIONAL PROBLEM 711

However, it is obvious from such a choice of q that div q /∈ L2(�), in general. As already mentioned, an
alternative attempt to characterize the subdifferential of J could be to send p to infinity in (2-8). However,
it is straightforward to see that one formally gets

Jp(u)1−p
|∇u|p−2

∇u→ q, p→∞,

where q is again given by (2-20). Hence, also this approach fails to describe the subdifferential of J.
Another difficulty comes through the set �max, given by (2-18), which cannot be expected to have any
regularity, as the following example shows.

Example 2.7 (structure of �max). In this example we would like to highlight that the structure of the
set �max defined in (2-18) can be highly degenerate. To this end let � = (0, 1) and F ⊂ � be the
middle-fourth, fat Smith–Volterra–Cantor set, which is a closed set with empty interior and positive
measure |F | = 1

2 . Furthermore, we set u(x)= dist(x, F). Then it is straightforward that �max =� \ F
is an open set and �max =�. In particular, the topological boundary ∂�max coincides with F and has
positive Lebesgue measure. Nevertheless, u has nonempty subdifferential, as we will see.

From (2-19) we can derive yet another regular calibration, given by

q(x)= f (x)∇u(x), (2-21)

where f (x)≥ 0, supp( f )⊂�max and ‖ f ‖1 = 1/L . Expanding div q yields

div q =∇ f · ∇u+ f1u, (2-22)

where1u denotes the distributional Laplacian of u. Hence in order to satisfy div q ∈ L2(�), the function f
has to be H 1(�) and satisfy f = 0, where 1u is singular. The following examples illustrate that this can
be achieved very frequently.

Example 2.8 (measure Laplacians). Let us assume that u ∈ W 1,∞
0 (�) is such that 1u is represented

by a finite Radon measure. In this case it holds that |1u| � Hn−1 according to [Chen et al. 2009,
Lemma 2.25]. Since f ∈ H 1(�) can be defined in the sense of traces on (n−1)-dimensional sets, one
can find a calibration of the form q = f∇u, where f vanishes on the support of 1u.

Example 2.9 (�max with nonempty interior). Let u ∈ W 1,∞
0 (�) such that �max has nonempty interior.

Then one can easily find a smooth nonnegative function f supported on some subset of �max with integral
1/L . In particular, q = f∇u will be a calibration.

An important property of calibrations of the form (2-21) with a suitable function f is that q is not a
measure but an H(div)-function in this case. In fact, having such regular calibrations is equivalent to
having the form (2-21) as the following proposition shows.

Proposition 2.10 (pointwise characterization of regular calibrations). Let 0 6= u ∈ dom(J ) and q ∈
H(div;�) with ‖q‖1 = 1. It holds that − div q ∈ ∂J (u) if and only if q = 0 almost everywhere in
� \�max, and q · ∇u = |q||∇u| almost everywhere in �.
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Proof. Let us show first that − div q ∈ ∂J (u) for q as above. Again we use the notation J (u)= L . Using
the assumptions we compute

L ≥
∫
�

q · ∇u dx =
∫
�

|q||∇u| dx =
∫
�max

|q||∇u| dx

= L
∫
�max

|q| dx = L .

Hence, equality holds and we infer∫
�

− div q u dx =
∫
�

q · ∇u dx = L ,

which shows − div q ∈ ∂J (u) according to (2-16).
Conversely, let us assume that we have − div q ∈ ∂J (u). First, we show that q = 0 holds a.e. in

� \�max. For any ε > 0 we define the measurable set

�ε := {x ∈� : |∇u(x)| ≤ L − ε}
and compute using (2-19):

L = J (u)=
∫
�

q · ∇u dx =
∫
�ε

q · ∇u dx +
∫
�\�ε

q · ∇u dx

≤ (L − ε)
∫
�ε

|q| dx + L
∫
�\�ε

|q| dx

= L − ε
∫
�ε

|q| dx .

This inequality implies that q = 0 a.e. on �ε and letting ε ↘ 0 we obtain from the continuity of the
Lebesgue measure on nested sets that q = 0 a.e. on � \�max.

Now we show that q is parallel to ∇u. To this end we redefine the set

�ε := {x ∈� : q(x) · ∇u(x)≤ (1− ε)|q(x)||∇u(x)|, |q(x)||∇u(x)| ≥ ε}

for ε > 0 and obtain with a computation similar to that above that

L ≤ L − ε
∫
�ε

|q||∇u| dx,

which implies

0=
∫
�ε

|q||∇u| dx ≥ |�ε|ε.

This is only possible if |�ε| = 0 and since the sets �ε are also nested we again infer from the continuity
of the Lebesgue measure that

0=
∣∣∣∣⋃
ε>0

�ε

∣∣∣∣= ∣∣{x ∈� : q(x) · ∇u(x) < |q(x)||∇u(x)|, |q(x)||∇u(x)|> 0
}∣∣

=
∣∣� \ {x ∈� : q(x) · ∇u(x)= |q(x)||∇u(x)|}

∣∣,
which shows that q and ∇u are parallel a.e. in �. �
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2C. Eigenfunctions. In this section we would like to study geometrical properties of eigenfunctions
associated to functional J, meaning functions u ∈W 1,∞

0 (�) that satisfy

λu ∈ ∂J (u) (2-23)

for some λ > 0. In particular, we study their nodal sets

N (u)= {x ∈� : u(x)= 0} (2-24)

and the set �max as defined in (2-18). To this end, for the first two statements we assume the regularity
condition that the eigenfunctions u under consideration possess a H(div)-calibration q , i.e.,

λu =− div q, q ∈ H(div;�), ‖q‖1 = 1, (2-25)

which makes Proposition 2.10 applicable. Remember that the existence of H(div)-calibrations is ensured
in many cases (see Remark 2.6, Examples 2.8, 2.9). Note that the nodal set N (u) is closed due to
continuity of u. There are only a few results in the literature which deal with nodal sets of p-Laplacian-
type eigenfunctions for p 6= 2. In particular, it is not even known whether they have nonempty interior.
Even if one assumes them to have empty interior, one can only prove lower bounds for their Hausdorff
measure, meaning that nodal sets can in principle be very irregular; see [Weih-Wadman 2019; Kawohl
and Horák 2017]. For the infinity-Laplacian there do not seem to be any results on the geometry of nodal
sets. Also in our slightly different scenario (2-25), where the operator is ∂J, we cannot fully answer the
question. However, we can show that N (u) has zero Lebesgue measure if the eigenfunction is sufficiently
regular. Furthermore, we prove that the interior of the nodal set coincides with the complement of �max,
which informally means that at each point an eigenfunction is either zero or it has maximal gradient.

Proposition 2.11. Let u satisfy (2-25). Then it holds that

� \�max = inn(N (u)). (2-26)

Furthermore, the set S := {x ∈�max : q(x)= 0} has empty interior.

Proof. To avoid trivialities we assume u 6= 0, which means λ> 0. We use the abbreviation �0 :=�\�max.
Since �0 is open, for any x0 ∈�0 there is r > 0 small enough such that Br (x0)⊂�0. Hence, it holds

λ

∫
Br (x0)

u2 dx =−
∫

Br (x0)

u div q dx =
∫

Br (x0)

q · ∇u dx −
∫
∂Br (x0)

u q · ν dHn−1(x)= 0,

since q = 0 a.e. in �\�max ⊃�0 according to Proposition 2.10. This implies u = 0 on Br (x0) and hence
Br (x0)⊂ inn(N (u)). Since x0 was arbitrary we obtain �0 ⊂ inn(N (u)). For the converse inclusion we
take x0 ∈ inn(N (u)) and r > 0 such that Br (x0)⊂ inn(N (u)). Then it holds u = 0 and ∇u = 0 on Br (x0),
which implies inn(N (u))⊂ inn(� \�max)=� \�max =�0.

For the second claim, we assume that there is x0 ∈ �max and r > 0 such that Br (x0) ⊂ S. Then u
cannot be constant on Br (x0) since otherwise |∇u| = 0 would hold on Br (x0) which contradicts being a
subset of S. Hence, using that

∫
Br (x0)

u(x)2 dx > 0 and doing precisely the same computation as above,
we obtain a contradiction. �
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Using this statement we can easily assert that the set �max has nonempty interior and hence cannot be
too degenerate.

Corollary 2.12. Let u satisfy (2-25). Then �max has nonempty interior.

Proof. From Proposition 2.11 we know that u = 0 on � \�max. If we assume that �max has empty
interior, this implies that �max = �max and hence u = 0 on � \�max. Now u is a continuous function
which implies that u = 0 on � \�max =�, which is a contradiction. �

Proposition 2.13 (nodal set of eigenfunctions with regularity). Let u satisfy (2-25) and assume that
{u 6= 0} has a Lipschitz boundary. Then it holds |N (u)| = 0.

Proof. If the nodal set has empty interior it holds N (u)= ∂{u 6= 0}, which means that |N (u)| = 0 since it
coincides with a Lipschitz boundary. Hence we just have to deal with the case that N (u) has nonempty
interior. We write λu =− div q with some calibration q ∈ H(div;�). Without loss of generality, let us
fix a point x0 in ∂{u > 0} ∩ N (u) and for ε > 0 we consider B+ε (x0) = Bε(x0)∩ {u > 0}. We choose
x0 and ε > 0 such that Bε(x0) ∩ {u < 0} = ∅. This is possible due to the continuity of u. From the
characterization of the subdifferential in Proposition 2.10 we know that q = 0 a.e. in N (u) and since
N (u) has nonempty interior, q has vanishing normal trace on ∂{u > 0} ∩ Bε(x0). This implies

0<
∫

B+ε (x0)

λu dx =−
∫

B+ε (x0)

div q dx =−
∫
∂Bε(x0)∩{u>0}

q · ν dx .

Now since q is parallel to ∇u for small enough ε > 0 it holds that q · ν ≥ 0, which is a contradiction.
Hence, N (u) has zero Lebesgue measure. �

Next we show that every nonnegative eigenfunction coincides with a ground state, i.e., is a multiple
of the distance function to ∂�. Note that this result does not require the regularity condition (2-25) but
follows from a simple comparison argument.

Proposition 2.14 (uniqueness of nonnegative eigenfunction). Any nonnegative eigenfunction u 6= 0 of ∂J,
satisfying λu ∈ ∂J (u), is a ground state.

Proof. Let us assume that we have a nonnegative eigenfunction u 6= 0 on � which is not a ground state.
We can normalize in such a way that J (u)= 1. Furthermore, we let d denote the distance function which
is the unique ground state with J (d)= 1 according to Theorem 2.1. Then from [Zagatti 2014] we know
that u ≤ d holds pointwise almost everywhere in �. Much as before we define the set

�ε := {x ∈� : d(x) > u(x)+ ε, u(x) > ε}.

Since u is an eigenfunction it holds λ〈u, v〉 ≤ J (v) for all v ∈ L2(�), where λ= 1/‖u‖22. Testing this
with v = d, using the definition of �ε and the fact that d ≥ u, we obtain

‖u‖22 ≥ 〈u, d〉 ≥
∫
�ε

u(x)(u(x)+ ε) dx +
∫
�\�ε

u(x)d(x) dx

≥

∫
�

u(x)2 dx + ε
∫
�ε

u(x) dx

≥ ‖u‖22+ ε
2
|�ε|,
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which tells us that |�ε| = 0. Letting ε tend to zero we infer as before that almost everywhere in � it
holds u = d or u = 0. Since, however both u and d are continuous functions and by assumption u 6= 0,
we find that u = d holds almost everywhere in �. �

Using this uniqueness of nonnegative eigenfunctions together with the results in [Bungert and Burger
2020] we obtain the result that the gradient flow of J asymptotically converges to the distance function.

Theorem 2.15 (asymptotic profiles). Let u(t) be the solution of the gradient flow (1-7) with respect to J
and datum f ≥ 0. Denote the finite extinction time of the flow by T. Then u(t)/‖u(t)‖2 converges strongly
in L2(�) to a multiple of the distance function as t ↗ T.

Proof. Since dom(J )=W 1,∞
0 (�) is compactly embedded in L2(�) we infer from [Bungert and Burger

2020, Theorem 2.5] that u(t)/‖u(t)‖2 has a subsequence which strongly converges to an eigenfunction.
Now [Bungert and Burger 2020, Theorem 2.6] implies that the whole sequence converges to a nonnegative
eigenfunction. From Proposition 2.14 and Theorem 2.1 we conclude that this eigenfunction has to be a
multiple of the distance function. �

Example 2.16 (distance function of the (n−1)-sphere). In this example we study the distance function d
of the (n−1)-sphere Sn−1 := {x ∈ Rn

: |x | = 1}, where we choose � = B1(0). We already know from
Theorem 2.1 that the distance function is an eigenfunction, i.e., λd =− div q, where λ= J (d)/‖d‖22 =
1/‖d‖22 and ‖q‖1 ≤ 1. Furthermore, since q is parallel to ∇u, we can write q as q = f∇u with f ≥ 0. In
the following we would like to examine the function f . We claim that in spherical coordinates it holds

f (r)= λ
(

r
n
−

r2

n+ 1

)
.

The radial component of the gradient of d(r) = 1− r is given by ∇r d = d ′(r) = −1 and there is no
angular component. Hence, we obtain that the radial component of the calibration vector field q = f∇d
is given by

qr (r)= λn

(
r2

n+ 1
−

r
n

)
,

which implies

− div( f (r)∇d(r))=−
1

rn−1

d
dr
(rn−1qr (r))

= λ
1

rn−1

d
dr

(
rn

n
−

rn+1

n+ 1

)
= λ(1− r)= λd(r).

Furthermore, it is straightforward to check that ‖q‖1 = 1. Note that the qualitative behavior of f changes
with the dimension n ∈N. In particular, f (r) attains its maximum for r = (n+1)/(2n), which tends to 1

2
as the dimension grows. Furthermore, f has roots at r = 0 and r = (n+ 1)/n, which tends to 1 from
above. Furthermore, the value of f (1) diverges.

Example 2.17 (a basis of one-dimensional eigenfunctions). In this example we construct a set of eigen-
functions on the interval �= [−1, 1] which constitutes a Riesz basis of L2(�). They disintegrate into
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−1 1

1

Figure 2. First four eigenfunctions with increasing number of oscillations

odd and even functions with respect to the center of the interval and can be constructed by simple gluing
principles. We start with the odd ones, which we denote by (vn)n∈N. Let�=

⋃2n
k=1�k be a decomposition

of � into 2n intervals of length 1/n such that �k ≤ �k+1 holds for all k = 1, . . . , 2n − 1. Letting dk

denote the distance function of �k we set

un|�k (x)= (−1)k+1dk(x).

Note that all functions un satisfy un(0)= 0 and u(−x)=−u(x). Furthermore, it is worth noting that the
functions (un) form an orthogonal set. This follows directly from the fact that un consists of equally many
positive and negative distance functions. The eigenvalues of un can be easily computed and are given by

R(un)=
1
‖un‖2

=

√
3
2 2n.

The even eigenfunctions (vn) are generated similarly. Here we divide the interval � into 2n − 1
intervals �k of length 2/(2n−1) such that �=

⋃2n−1
k=1 �k and �k ≤�k+1 holds for all k = 1, . . . , 2n−2.

Letting dk again denote the distance function of �k we set

vn|�k (x)= (−1)k+1dk(x).

All functions vn satisfy vn(−x)= vn(x) and, in particular, v1 coincides with the distance function of �
which is even and a ground state. Note that functions (vn) are not mutually orthogonal. Their eigenvalues
are given by

R(vn)=
1
‖vn‖2

=

√
3
2(2n− 1).

Figure 2 shows the first four eigenfunctions {v1, u1, v2, u2} sorted by eigenvalue. Note that — up to
the factor

√
3
2 — the eigenvalues of un and vn precisely count the numbers of peaks or oscillations.

The fact that {un, vn : n ∈ N} is a Riesz basis of L2(�) was proven in [Binding et al. 2006].
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3. Explicit solution of gradient flow and variational problem

We already know from Theorem 2.15 that the solution of the gradient flow (1-7) with respect to J
asymptotically behaves like the distance function of the domain. In the following, we prove that for
sufficiently regular domains and constant initialization, one can compute the solution of the gradient flow
analytically. In addition, this solution also solves the variational regularization problem (1-8) associated
to J. Notably, this solution exhibits an interesting behavior of its level sets, which is reminiscent of the fast
marching algorithm or other level set approaches; see [Sethian 1996; Sussman 1994]. Before we construct
these analytic solutions we start with some definitions regarding the kind of domains we consider.

Definition 3.1 (inner parallel body). Let �⊂ Rn be an open set and let d(x) := dist(x, ∂�) denote the
distance function to ∂�. Then

�τ := {x ∈� : d(x)≥ τ } (3-1)

is called the inner parallel body of � with distance τ > 0.

Definition 3.2 (perimeter bound for inner parallel body). We say that � admits a perimeter bound for its
inner parallel bodies if there are r̃ > 0 and 0< τ̃ ≤ r̃ such that

P(�τ )≥ P(�)
(

1−
τ

r̃

)n−1

for all 0≤ τ ≤ τ̃ . (3-2)

Example 3.3 (convex domains). According to [Larson 2016] convex domains �⊂ Rn always fulfill a
perimeter bound like (3-2) with r̃ = τ̃ = r , where r =maxx∈� dist(x, ∂�) denotes the in-radius of �. Fur-
thermore, if � is homothetic to its form body then (3-2) becomes an equality. This is the case, for instance,
if � is a ball or a polytope whose faces are tangential to the largest ball which can be inscribed in �.

Example 3.4 (L-shaped domain). Let us consider an L-shaped domain with equal width and height given
by L > 0 and thickness δ ∈ (0, L). For instance, one could set � := [0, L]2 \ [0, L − δ]2 ⊂ R2. We are
interested in whether � admits the perimeter bound (3-2). To this end we notice that the perimeter of �
is given by P(�)= 4L and the perimeter of �τ for 0≤ τ ≤min(L − δ, δ/2) can be computed as

P(�τ )= 2(L − 2τ)+ 2(δ− 2τ)+ 2(L − δ− τ)+ 1
4 2τπ

= 4L
(

1− τ
20−π

8L

)
= P(�)

(
1−

τ

r̃

)
,

where r̃ = 8L/(20−π). The number τ̃ is given by τ̃ =min(L − δ, δ/2) and satisfies τ̃ < r̃ . Hence, the
L-shape admits the perimeter bound (3-2).

Before we turn to the main theorem of this section, which constructs the explicit solution, we have to
study the properties of a geometric integral which will appear in the proof.

Lemma 3.5. Let � ⊂ Rn be a domain, d(x) := dist(x, ∂�) denote the distance function to ∂�, and
r :=maxx∈� d(x) the in-radius of �. Then for k ∈ N, we define the function

Ik(g) :=
∫
�\�rg

d(x)k dx, 0≤ g ≤ 1. (3-3)



718 LEON BUNGERT, YURY KOROLEV AND MARTIN BURGER

• For all k ∈ N it holds that Ik(0)= 0 and Ik is monotonously increasing and differentiable with

I ′k(g)= P(�rg)r k+1gk for all 0< g < 1. (3-4)

• If � admits the perimeter bound (3-2) for its inner parallel body, then the function I2 admits the
following estimate for all 0≤ g ≤ τ̃ /r :

I2(g)≥
r̃3 P(�)

n

{
2

(n+ 1)(n+ 2)

[
1−
(

1−
rg
r̃

)n+2]
−

2
n+ 1

(
1−

rg
r̃

)n+1 rg
r̃
−

(
rg
r̃

)2(
1−

rg
r̃

)n}
. (3-5)

Proof. It is trivial that Ik(0)= 0 and Ik is monotonously increasing. For showing (3-4) we let g̃ < g and
compute using the coarea formula

Ik(g)− Ik(g̃)=
∫

Sr g̃,rg

d(x)k dx =
∫ rg

r g̃
P(�t)tk dt.

Consequently, we obtain

I ′k(g)= lim
g̃→g

Ik(g)− Ik(g̃)
g− g̃

= r lim
g̃→g

1
rg− r g̃

∫ rg

r g̃
P(�t)tk dt = r P(�rg)(rg)k = P(�rg)r k+1gk .

To evaluate I2(g) we make use of the layer-cake formula, which states that the integral of a nonnegative
function h :�→ R can be computed as∫

�

h(x) dx =
∫
∞

0
|{x ∈� : h(x) > t}| dt. (3-6)

Let us first estimate the Lebesgue measure of the strip Ss,t :=�s \�t , where s < t . By using the coarea
formula and the perimeter bound (3-2) it holds, for 0≤ s ≤ t < τ̃ ,

|Ss,t | =

∫ t

s
P(�τ ) dτ ≥ P(�)

∫ t

s

(
1−

τ

r̃

)n−1

dτ =
r̃ P(�)

n

[(
1−

s
r̃

)n

−

(
1−

t
r̃

)n]
. (3-7)

Letting hg(x) := d(x)2χ�\�rg for 0≤ g ≤ τ̃ /r we infer from (3-6) and (3-7)

I2(g)=
∫
�

hg(x) dx

=

∫ (rg)2

0
|{x ∈� : t < hg(x) < (rg)2}| dt

=

∫ (rg)2

0
|S√t,rg| dt

≥
r̃ P(�)

n

∫ (rg)2

0

(
1−
√

t
r̃

)n

−

(
1−

rg
r̃

)n

dt

=
r̃3 P(�)

n

{
2

(n+ 1)(n+ 2)

[
1−

(
1−

rg
r̃

)n+2]
−

2
n+ 1

(
1−

rg
r̃

)n+1 rg
r̃
−

(
rg
r̃

)2(
1−

rg
r̃

)n}
,

where we used elementary integration for the last equality. This shows (3-5). �
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Theorem 3.6. Under the conditions of Lemma 3.5 there is t∗ > 0 such that the initial value problem{
g′(t)= g(t)2

I2(g(t))
, t > 0,

g(0)= 0,
(3-8)

where I2 is given by (3-3) for k = 2, has a solution for t ∈ [0, t∗]. Furthermore,

u(t, x)=

min
( 1

g(t)
d(x), r

)
, 0≤ t < t∗,

1
‖d‖22

(‖d‖22+ t∗− t)+d(x), t ≥ t∗,
(3-9)

solves the gradient flow (1-7) with respect to J and datum f ≡ r .

Proof. Note that since d is an eigenfunction of ∂J, it is known that the dynamics for t ≥ t∗ will linearly
shrink the eigenfunction until extinction; see [Bungert et al. 2019a; Burger et al. 2016a], for instance.
Hence, we will focus on the initial dynamics and first show that the initial value problem (3-9) has a
solution g(t) which persists long enough such that g(t∗)= 1 for some t∗ > 0. Afterwards, we will show
that (3-9) solves the gradient flow.

Step 1: First we study the fine behavior of the lower bound in (3-5) as g↘ 0. To this end, one notes that
the derivative of the right-hand side in (3-5) with respect to g is given by

C
(

rg
r̃

)2(
1−

rg
r̃

)n−1

with a positive constant C = C(n, �) > 0, which by L’Hôpital’s rule shows that

lim inf
g↘0

I2(g)
g3 > 0.

In particular, for the ODE g′(t)= g(t)2/I2(g(t)) this implies that for small times t > 0 the right-hand
side is dominated by 1/g(t). The fact that the problem

φ′(t)=
1
φ(t)

, φ(0)= 0,

has a solution (namely φ(t)=
√

2t) implies existence of a solution to (3-8) for small times. Analogously,
due to the fact that I2(g) is bounded from above by the value I2(1) according to Lemma 3.5, the right-hand
side in (3-8) is bounded from below by g(t)2/I2(1). Hence, if we fix t0 > 0 in the existence interval of g,
it holds for all t ≥ t0 in the existence interval that g(t)≥ φ(t − t0), where φ solves

φ′(t)=
φ(t)2

I2(1)
, φ(0)= g(t0) > 0.

This problem has the blow-up solution

φ(t)=
g(t0)I2(1)

I2(1)− g(t0)t

and hence we infer the existence of t∗ > 0 such that g(t∗)= 1.



720 LEON BUNGERT, YURY KOROLEV AND MARTIN BURGER

Step 2: It remains to be shown that (3-9) solves the gradient flow. Obviously, it holds u(0, x)= r = f (x)
for all x ∈� since g(0)= 0. Furthermore, we can compute that

∂t u(t, x)=−
1
2

g′(t)
g(t)2

d(x)[1− sgn(d(x)− rg(t))],

which yields that for all 0< t < t∗ we have

〈−∂t u(t), u(t)〉 =
g′(t)
g(t)3

∫
�\�rg(t)

d(x)2 dx︸ ︷︷ ︸
=:I2(g(t))

=
1

g(t)
= J (u(t)),

using that g solves (3-8). Hence, we have shown 〈−∂t u(t), u(t)〉 = J (u(t)) and it remains to be shown
that 〈−∂t u(t), v〉 ≤ J (v) holds for all v ∈W 1,∞

0 (�). We compute using that g(t) solves (3-8):

〈−∂t u(t), v〉 =
g′(t)
g(t)2

∫
�\�rg(t)

d(x)v(x) dx =
1

I2(g(t))

∫
�\�rg(t)

d(x)v(x) dx .

For any x ∈ � we choose y = yx ∈ ∂� such that |x − yx | = miny∈∂� |x − y| = d(x). Then using the
Lipschitz continuity of v (see Remark 1.1) and v(yx)= 0, we obtain

|v(x)| = |v(x)− v(xy)| ≤ J (v)d(x).

Putting things together we can finish the proof by calculating

〈−∂t u(t), v〉 ≤
1

I2(g(t))

∫
�\�rg(t)

d(x)|v(x)| dx ≤
J (v)

I2(g(t))

∫
�\�rg(t)

d(x)2 dx = J (v),

which yields that −∂t u(t) ∈ ∂J (u(t)). �

Corollary 3.7 (motion of level sets). Under the conditions of Theorem 3.6 the level sets

0c(t)= {x ∈� : u(x)= c}

of u(t) at level c ≥ 0 and time 0≤ t ≤ t∗ are given by

0c(t)= {x ∈� : d(x)= cg(t)}, 0≤ c < r, (3-10a)

0r (t)= {x ∈� : d(x)≥ rg(t)}. (3-10b)

This means that the level sets are inner parallel sets of ∂� moving with a velocity that is proportional to
both the level and function g′(t)≈ 1/

√
t for small t .

Remark 3.8 (comparison to level set methods). A traditional way to compute distance functions was
proposed in [Sussman 1994] and uses the PDE{

u(0, x)= f (x), x ∈ Rn,

∂t u(t, x)+ sgn( f (x))(|∇u(t, x)| − 1)= 0, (t, x) ∈ (0,∞)×Rn,
(3-11)
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where the initial datum f fulfills f > 0 in �, f < 0 in Rn
\�, and f = 0 in ∂�. The steady state of

this equation solves the eikonal equation |∇u| = 1 and coincides with the signed distance function of �.
Similarly, in [Lee et al. 2017] the authors use the PDE

∂t u(t, x)+ |∇u(t, x)| = 0 (3-12)

for a redistancing procedure that converges to the signed distance function as well. It is straightforward
to see that points x(t) in the level sets of the solutions of (3-11) move with the velocity

ẋ(t)= sgn( f (x(t)))
|∇u(t, x(t))| − 1
|∇u(t, x(t))|

∇u(t, x(t))
|∇u(t, x(t))|

. (3-13)

In particular, for regions where the gradient is very steep the level sets of (3-11) move with unit velocity
whereas the level sets (3-10) of our gradient flow solution move with velocity ≈ 1/

√
t for small times.

Example 3.9 (one-dimensional interval). Let us consider the gradient flow (1-7) with datum f := 1 on
the domain � := (−1, 1). Then the solution is given by

u(t, x)=
{

min
( 1
√

3t
(1− |x |), 1

)
, 0≤ t < 1

3 ,

3
2(1− t)+(1− |x |), t ≥ 1

3 .
(3-14)

Example 3.10 (two-dimensional disk). We study the case�= B1(0)⊂R2 where r=1. From Example 3.3
we know that (3-5) is in fact an equality since � is a ball and thus it holds

I2(g)= π
6 g3(4− 3g).

Hence the initial value problem (3-8) becomes

g′(t)=
g(t)2

I2(g(t))
=

6
π

1
g(t)

1
4− 3g(t)

, g(0)= 0. (3-15)

In Figure 3 we plot a numerical approximation for g. In particular, we see that for small times t > 0 the
function g(t) is proportional to the square root of t , whereas these dynamics change for larger times, as it
can be expected from (3-15).

Next, we prove that the analytic solution (3-9) also solves the variational regularization problem (1-8).

Theorem 3.11 (variational problem). Under the conditions of Theorem 3.6 it holds that (3-9) is the unique
solution of

min
u∈W 1,∞

0 (�)

1
2‖u− f ‖22+ t‖∇u‖∞, (3-16)

where f ≡ r .

Proof. The optimality condition for problem (3-16) is given by ( f −u(t))/t ∈ ∂ J (u(t)), which is sufficient
for optimality due to the convexity of (3-16). We first show that ( f − u(t))/t̃ ∈ ∂J (u(t)), where

t̃ := r I1(g(t))−
1

g(t)
I2(g(t)), (3-17)

and the functions Ik for k ∈ {1, 2} are given by (3-3). In a second step we show that t̃ = t .
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Figure 3. g(t) for the unit circle.

Step 1: By the definition of t̃ and the functions Ik it holds〈
f − u(t)

t̃
, u(t)

〉
=

1
t̃

∫
�\�rg(t)

(
r −

d(x)
g(t)

)
d(x)
g(t)

dx

=
1
t̃

(
r

g(t)
I1(g(t))−

1
g(t)2

I2(g(t))
)

=
1

g(t)
= J (u(t)).

Furthermore, for any v ∈W 1,∞
0 (�) one computes〈

f − u(t)
t̃

, v

〉
=

1
t̃

∫
�\�rg(t)

(
r −

d(x)
g(t)

)
v(x) dx ≤ J (v),

where we used Lipschitz continuity of v just as in the proof of Theorem 3.6. Hence, we have established
( f − u(t))/t̃ ∈ ∂J (u(t)).

Step 2: To show t̃ = t we use the chain rule and (3-4) from Lemma 3.5 for k ∈ {1, 2} to obtain

d
dt

t̃ = rg′(t)I ′1(g(t))+
g′(t)
g(t)2

I2(g(t))−
g′(t)
g(t)

I ′2(g(t))

= rg′(t)P(�rg(t))r2g(t)+
g′(t)
g(t)2

I2(g(t))−
g′(t)
g(t)

P(�rg(t))r3g(t)2

=
g′(t)
g(t)2

I2(g(t))= 1,

where the last equality holds since g(t) solves the ODE (3-8). Furthermore, using L’Hôpital’s rule
and (3-4) it holds

lim
t↘0

t̃ = lim
t↘0

[
r I1(g(t))−

1
g(t)

I2(g(t))
]
=− lim

t↘0

I2(g(t))
g(t)

=− lim
t↘0

I ′2(g(t))= 0,

which finally implies that t̃ = t . �
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4. Extreme points

In this section we aim to characterize extreme points of the unit ball BJ of J, which is given by

BJ := {u ∈ L2(�) : J (u)≤ 1} (4-1)

and is a convex set and closed set in L2(�). For a general convex set C , its extreme points are defined as

extr(C) := {u ∈ C : there do not exist v 6= w ∈ C, λ ∈ (0, 1) such that u = λv+ (1− λ)w}, (4-2)

meaning the extreme points of C are precisely those points which cannot be expressed through a nontrivial
convex combination of other points in C .

The set of extreme points of the unit ball of a similar functional has already been studied in [Farmer
1994; Smarzewski 1997]. There the authors considered the Lipschitz seminorm of functions on a metric
space which have a prescribed value in one point. Our situation is more complicated since we prescribe a
value on the whole boundary of �.

The following theorem characterizes the extreme points of BJ analogously to the results in [Farmer
1994]. In a nutshell, a function in BJ is extreme if and only if for almost every point in the domain there
exists a path from the point to the boundary of the domain such that the gradient of the function has unit
modulus along this path. To this end one introduces the quantity

εu
x,z := inf{ε > 0 : |xi−1− xi | − εi ≤ |u(xi−1)− u(xi )|}, (4-3)

where the infimum is computed over all finite sequences of nonnegative numbers (εi )i=1,...,n fulfilling∑n
i=1 εi ≤ ε, and points (xi )i=0,...,n with x0 = z, x1, . . . , xn = x .
Loosely speaking, εu

x,z measures the deviation of the gradient norm from 1, while moving on a path
from x to the boundary point z. The following theorem states that if the infimum of (4-3) over all boundary
points z is zero, u is an extreme function. We postpone the proof to Appendix B since it is a lengthy
generalization of the proof in [Farmer 1994].

Theorem 4.1 (characterization of extreme points). It holds that u ∈ extr(BJ ) if and only if for almost all
x ∈� it holds

inf
z∈∂�

εu
x,z = 0, (4-4)

where εu
x,z is given by (4-3).

In the following proposition we sandwich the set of extreme points between two other interesting sets,
namely those functions whose gradient has modulus 1 everywhere except for a set with zero measure or
nonempty interior, respectively.

Proposition 4.2 (sandwiching extreme points). It holds that

{u ∈ BJ : |� \�max| = 0} ⊂ extr(BJ )⊂ {u ∈ BJ : inn(� \�max)=∅}. (4-5)

Proof. For the first inclusion we take u∈W 1,∞
0 (�)with |∇u|=1 almost everywhere, and assume that there

are v 6=w∈ BJ and λ∈ (0, 1) such that u=λv+(1−λ)w. Defining the set�ε={x ∈� : |∇v(x)|≤ 1−ε}
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for ε > 0, we obtain

1= |∇u(x)| ≤ λ|∇v(x)| + (1− λ)|∇w(x)| ≤ λ(1− ε)+ (1− λ)= 1− λε for a.e. x ∈�ε.

Since λ > 0, this implies that |�ε| = 0 and hence |∇v| = 1 almost everywhere in �. Applying the same
argument to w shows that |∇w| = 1 holds almost everywhere, as well. Using the Cauchy–Schwarz
inequality, we can compute for almost every x ∈�

1= |∇u(x)|2

= λ2
|∇v(x)|2+ (1− λ)2|∇w(x)|2+ 2λ(1− λ)∇v(x) · ∇w(x)

≤ λ2
+ (1− λ)2+ 2λ(1− λ)

= 1.

Since |∇v| = 1= |∇w|, equality has to hold for Cauchy–Schwarz which implies that ∇v(x)= c∇w(x)
for some c ≥ 0. Using that |∇v| = 1= |∇w| implies c = 1 and hence ∇v =∇w almost everywhere in �.
Therefore, v−w is constant in � and from v,w = 0 on ∂� we infer that v = w, a contradiction.

For the second inclusion we take some u ∈ extr(BJ ) and — again aiming for a contradiction — we
assume that � \�max has nonempty interior. In this case we set

v±(x) :=
{

u, x ∈�max,

u±φ, x ∈� \�max.
(4-6)

with a function φ 6= 0 to be specified. Obviously, it holds v+ 6= v− since |� \�max|> 0 and furthermore
u = v+/2+ v−/2. If we can choose φ in such a way that J (v±) ≤ 1, we have reached the desired
contradiction. Since�\�max has nonempty interior there is ε > 0 and a set�ε ⊂�\�max with nonempty
interior such that |∇u| ≤ 1− ε almost everywhere on �ε. If we define

φ(x)=
{
ε dist(x, ∂�ε), x ∈�ε,
0, else,

(4-7)

we infer that |∇v±(x)| = 1 for x ∈�max and |∇v±(x)| ≤ (1−ε)+ε= 1 for x ∈�\�max. Hence, it holds
J (v±) ≤ 1 which means v± ∈ BJ. Finally, φ 6= 0 holds since �ε has nonempty interior and therefore
does not coincide with its boundary. This is a contradiction and we can conclude. �

Corollary 4.3 (distance function is extreme point). Since �max =� for the distance function to ∂�, we
obtain that the distance function is an extreme point.

Remark 4.4. In general, both inclusions in Proposition 4.2 are proper. The second inclusion is proper
even in one dimension, as Example 4.5 below shows. In general, also the first inclusion is proper since
in [Rolewicz 1986] the author constructs an extremal function u : [0, 1]2→ R with ‖∇u‖∞ = 1 whose
gradient is supported on a set with arbitrarily small positive measure. This function can be slightly
modified to vanish on the boundary of � and hence provides a valid counterexample. The construction
involves the distance function of a fat Cantor set, which we have already investigated in Example 2.7,
and relies on a connectedness argument. However, in one space dimension one can prove that the first
inclusion is indeed an equality.
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Before we prove that the first inclusion in Proposition 4.2 is an equality in one dimension, we give an
example to show the second inclusion is proper. To this end we show that the distance function to a fat
Cantor set is no extreme point.

Example 4.5 (distance function to Smith–Volterra–Cantor set). As in Example 2.7 we let u(x)=dist(x, F)
denote the distance function of the fat Smith–Volterra–Cantor set F ⊂� with �= [0, 1]. Trivially, since
� \�max = F , it holds that

u ∈ {u ∈W 1,∞
0 (�) : J (u)= 1∧ inn(� \�max)=∅}

but we will show that u /∈ extr(BJ ). To this end, let f = u′, which is defined almost everywhere and
satisfies ‖ f ‖∞ = 1. We define

g±(x) :=


f (x), x /∈ F,
±1, x ∈ F ∩

[
0, 1

2

]
,

∓1, x ∈ F ∩
[1

2 , 1
]
,

(4-8)

and observe that g+ 6= g− since F has positive measure. Next, we define the functions for almost every
x ∈�

f̃ (x) := 1
2 g+(x)+ 1

2 g−(x)=
{

f (x), x /∈ F,
0, x ∈ F,

(4-9)

ũ(x) :=
∫ x

0
f̃ (t) dt. (4-10)

Using the definition of the function f̃ and the fact
∫ b

a f (t) dt = 0 for every maximally chosen interval
(a, b)⊂� \ F , it is easy to see that ũ = u holds almost everywhere in �. In particular, this also implies
that f̃ = f almost everywhere. Finally, we can express u as u = v+/2+ v−/2, where

v±(x) :=
∫ x

0
g±(t) dt

satisfy v± ∈ W 1,∞
0 (�) and hence J (v±)= ‖v′±‖∞ = ‖g±‖∞ = 1. This shows that u is not an extreme

point.

The construction of this example carries over to the general case and allows us to prove that the first
inclusion in Proposition 4.2 is an equality in one space dimension. Note that for Lipschitz continuous
functions with one prescribed value in the interval the following was already proved in [Rolewicz 1984].
However, since we demand zero boundary conditions on both boundary points, the proof changes.

Proposition 4.6 (extreme points in one space dimension). Let �⊂ R be an interval. Then it holds

extr(BJ )= {u ∈W 1,∞
0 (�) : |� \�max| = 0}. (4-11)

Proof. We just have to show the inclusion “⊂”. Assume that we have a function u ∈W 1,∞
0 (�) such that

|�0| > 0 where �0 := � \�max. Without loss of generality we assume that � = [0, 1]. We let f = u′

denote its derivative and since |�0|> 0 there is some ε ∈ (0, 1] such that set�ε := {x ∈� : | f (x)| ≤ 1−ε}
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has positive measure. We define

g±(x)=


f (x), x ∈� \�ε,
f (x)± ε, x ∈�1

ε,

f (x)∓ ε, x ∈�2
ε,

(4-12)

where the sets �k
ε for k = 1, 2 satisfy �ε =�1

ε ∪̇�
2
ε and are chosen in such a way that

∫ 1
0 g±(t) dt = 0.

The construction works as follows. For α ∈ [0, 1] we define the continuous function

h(α)=
∫
�\�ε

f (t) dt +
∫
�ε∩[0,α]

f (t)+ ε dt +
∫
�ε∩[α,1]

f (t)− ε dt.

Since u vanishes on the boundary of �, its derivative f has zero mean. Hence, we find that

h(0)=
∫
�

f (t) dt − ε|�ε| = −ε|�ε|< 0,

h(1)=
∫
�

f (t) dt + ε|�ε| = ε|�ε|> 0.

Thus, by the intermediate value theorem for continuous functions, there has to be α̃ ∈ (0, 1) such that
h(α̃)= 0. Setting �1

ε :=�ε∩[0, α̃] and �2
ε :=�ε∩(α̃, 1], we see from (4-12) that h(α̃)= 0 is equivalent

to
∫ 1

0 g±(t) dt = 0.
It is obvious that g+ 6= g− and ‖g±‖∞ = 1. Furthermore, it holds f = g+/2+ g−/2, which means

that we decompose u = v+/2+ v−/2, where v± =
∫ x

0 g±(t) dt satisfy ‖v′
±
‖∞ = ‖g±‖∞ = 1 and have

zero boundary conditions due to
∫ 1

0 g±(t) dt = 0. Hence it holds J (v±)= 1 and we can conclude. �

5. Extension to finite weighted graphs

In this section we analyse a discrete version of functional J within the framework of finite weighted
graphs. This requires equipping the graph with suitable differential operators and function space structures,
according to [Elmoataz et al. 2015]. The main appeal of differential calculus on graphs is certainly that it
allows for complicated topologies, and generalizes standard finite difference approximations on grids.
Furthermore, graphs do not necessarily have to be interpreted as approximations of physical domains, but
can also model images, networks, and databases.

After introducing notation and important quantities related to finite weighted graphs, we analyse the
functional Jw, given in (5-13) below. In more detail, we study its ground states, characterize its subdif-
ferential and extreme points and investigate some properties of eigenfunctions. One of the main results is
Theorem 5.1 below, which states that ground states are distance functions, just as in the continuous case.
In general, many results carry over from the continuous case directly, which is why we omit most proofs.

A finite weighted graph G is a triple G = (V, E, w), consisting of a finite set of vertices V, an edge
set E ⊂ V × V, and a weight function w : E → R≥0. The notation x ∼ y for x, y ∈ V indicates that
(x, y) ∈ E . In the following, we assume the symmetry conditions

x ∼ y ⇐⇒ y ∼ x, (5-1)

w(x, y)= w(y, x) if x ∼ y. (5-2)
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Furthermore, we assume that the graph is connected, which means that for any two vertices x, y ∈ V
there are edges (x0, x1), (x1, x2), . . . , (xn−1, xn) ∈ E such that x0 = x and xn = y. On the graph we can
define vertex functions H(V ) = {u : V → R} and edge functions H(E) = {q : E → R} which can be
viewed as real Hilbert spaces with the inner products

〈u, v〉 =
∑
x∈V

u(x)v(x), u, v ∈H(V ), (5-3)

〈q, p〉 =
∑
x∼y

q(x, y) p(x, y), q, p ∈H(E). (5-4)

If an edge function q ∈H(E) satisfies q(x, y)=−q(y, x) for all x, y ∈ V we call q antisymmetric. Next,
we define the weighted gradient ∇w of a vertex function u ∈H(V ) evaluated on an edge (x, y) ∈ E as

(∇wu)(x, y) := w(x, y)1/2(u(y)− u(x)), (5-5)

which makes ∇wu : E→ R an antisymmetric edge function. Obviously, ∇w :H(V )→H(E) is a linear
operator and its adjoint is given by ∇∗w =− divw, where

(divw q)(x) :=
∑

y:x∼y

w(x, y)1/2(q(y, x)− q(x, y)) (5-6)

denotes the weighted divergence of an edge function q ∈ H(E) evaluated in xi ∈ V. This implies the
validity of the integration by parts formula

〈q,∇wu〉 = −〈divw q, u〉 for all u ∈H(V ), q ∈H(E). (5-7)

Furthermore, we define the one-sided gradient

(∇−wu)(x, y) := w(x, y)1/2(u(y)− u(x))−, (5-8)

where (x)− := −min(x, 0), and introduce p-norms on H(V ) and H(E) by setting

‖u‖p =

(∑
x∈V

|u(x)|p
)1/p

, 1≤ p <∞, (5-9)

‖u‖∞ =max
x∈V
|u(x)|, (5-10)

‖q‖p =

(∑
x∼y

|q(x, y)|p
)1/p

, 1≤ p <∞, (5-11)

‖q‖∞ =max
x∼y
|q(x, y)|. (5-12)

Next we take a subset of the vertex set 0 ⊂ V which we identify with a Dirichlet boundary, and consider
the subspace H0(V ) = {u ∈ H(V ) : u(x) = 0 for all x ∈ 0} of all vertex functions which vanish on 0.
Analogous to (1-14), we define the functional

Jw(u)=
{
‖∇wu‖∞, u ∈H0(V ),
+∞, else.

(5-13)



728 LEON BUNGERT, YURY KOROLEV AND MARTIN BURGER

Note that also Jw is a convex and absolutely one-homogeneous functional on a Hilbert space. The aim of
the following section is to analyse Jw and show results analogous to those we have seen in Section 2.

5A. Ground states and properties of the distance function. First we will study ground states of Jw, i.e.,
functions u∗ ∈H0(V ) such that

u∗ ∈ argmin
u∈H0(V )

Jw(u)
‖u‖2

. (5-14)

Since ground states are invariant under multiplication with scalars, we can again replace the problem
with

u∗ ∈ argmax
u∈H0(V )
|∇wu|≤1

‖u‖2. (5-15)

Theorem 5.1 (ground states are distance functions). Up to global sign, the unique solution of (5-15) is
given by

u∗(x)= d(x) :=min
y∈0

dw(x, y), x ∈ V, (5-16)

where

dw(x, y) :=min
{ n∑

i=1

w(xi−1, xi )
−1/2
: n ∈ N, x0 ∼ · · · ∼ xn, x0 = x, xn = y

}
(5-17)

denotes the graph distance of x, y ∈ V.

Proof. Since dw( · , · ) is a distance and hence fulfills the triangle inequality it is standard to check that
(5-16) is 1-Lipschitz and hence admissible in (5-15). To show that (5-16) indeed solves (5-15) we note
that by possibly replacing u∗ with |u∗| one can restrict the maximization to nonnegative functions. From
there it is straightforward to see that u(x)≤ d(x) for all x ∈ V, which implies that (5-16) solves (5-15). �

Note that on graphs the distance function, and hence the solution of (5-15), does typically not fulfill
|(∇wd)(x, y)| = 1 for all (x, y) ∈ E , as the following simple example shows.

Example 5.2 (distance function with vanishing gradient). We consider the graph G= (V, E) with vertices
V = {x0, x1, x2, x3} and edges E = {(x0, x1), (x1, x2), (x2, x3)}. The weights are assumed to be 1 and we
take 0 = {x0, x3}. Using compact tuple notation, the distance function is given by

d = (0, 1, 1, 0)

and obviously it holds (∇wd)(x1, x2)= 0.

Of course, the fact that |(∇wd)(x, y)| 6= 1 in general is due to the fact that (∇wd)(x, y) can only be
interpreted as a directional derivative and not as a full gradient. However, we have the following theorem.

Proposition 5.3 (properties of the distance function). For all x ∈ V and y ∼ x the distance function d
to 0 satisfies

|(∇wd)(x, y)|
{
= 1 if y ∈ SP(x, 0) or x ∈ SP(y, 0),
< 1 else,

(5-18)
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where

SP(x, 0) :=
{

x0 ∼ · · · ∼ xn, x0 = x, xn ∈ 0, d(x)=
n∑

i=1

w(xi−1, xi )
−1/2

}
(5-19)

denotes the set of all shortest paths from x to 0.

Proof. Let x ∈ V and y ∼ x be a neighboring node. If y ∈ SP(x, 0), then x ∼ y ∼ x1 ∼ · · · ∼ xn with
xn ∈ 0 is a shortest path for x and y ∼ x1 ∼ · · · ∼ xn is a shortest path for y. Consequently, d(x) and
d(y) differ by the value dw(x, y)= w(x, y)−1/2, which means |(∇wd)(x, y)| = 1. If x ∈ SP(y, 0), the
same holds true by interchanging the roles of x and y.

In the case that x and y do not lie on a common shortest path, it holds

d(y) < d(x)+w(x, y)−1/2,

d(x) < d(y)+w(x, y)−1/2,

and hence |d(y)− d(x)|<w(x, y)−1/2, which implies |(∇wd)(x, y)|< 1. �

For a nonweighted graph, meaning that all weights are 1, we can obtain a more precise characterization
of the directional derivatives of the distance function. Furthermore, we show that the 1-norm of the
one-sided gradient ∇−wd as in a point x ∈ V counts the number of optimal paths from x to 0.

Corollary 5.4 (unitary weights). Assume that w(x, y)= 1 for all x ∼ y. Then for all x ∈ V and y ∼ x it
holds

|(∇wd)(x, y)| =
{

1 if y ∈ SP(x, 0) or x ∈ SP(y, 0),
0 else.

(5-20)

Furthermore, it holds ∑
x∼y

|(∇−w )d(x, y)| = #{y : y ∈ SP(x, 0)}. (5-21)

Proof. The first statement follows from Proposition 5.3, observing that 1> |(∇wd)(x, y)| = |d(y)−d(x)|
implies d(x)= d(y) since d takes only integer values. For the second statement we note that the one-sided
gradient (∇−wd)(x, y) equals zero if x ∈ SP(y, 0) since in this case d(y) > d(x). Hence, it holds

|(∇−wd)(x, y)| =
{

1 if y ∈ SP(x, 0),
0 else.

(5-22)

which directly implies (5-21). �

5B. Subdifferential and eigenfunctions. After having characterized the ground state of Jw as distance
function and having studied its geometric properties, we proceed with the characterization of the subdif-
ferential ∂Jw and study properties of eigenfunctions.

In the following, we fix a function u ∈ H0(V ), and define the set of edges where the gradient of u
attains its maximal modulus as

Emax = {(x, y) ∈ E : |(∇wu)(x, y)| = Jw(u)}. (5-23)
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Note that Emax is never empty due to the finite-dimensional nature of all quantities involved. The following
proposition characterizes the subdifferential of Jw analogously to Proposition 2.10.

Proposition 5.5 (characterization of the subdifferential). Let u ∈H0(V ) \ {0} and let Emax be given by
(5-23). Then it holds

∂Jw(u)= {− divw q : q ∈H(E), ‖q‖1 = 1, q(x, y)= 0 for all (x, y) ∈ E \ Emax,

q(x, y)(∇wu)(x, y)= |q(x, y)||(∇wu)(x, y)| for all (x, y) ∈ Emax}.

Next we study extreme points of the unit ball BJw of Jw, given by

BJw = {u ∈H(V ) : Jw(u)≤ 1}. (5-24)

Next we turn to the study of eigenfunctions of ∂Jw. We should first remark that λu ∈ ∂Jw(u) is not
a good definition for eigenfunctions due to the Dirichlet conditions on 0. This means that in general,
one cannot find u ∈H0(V ) and q ∈H(E) such that λu =− divw q. This is illustrated in the following
example.

Example 5.6. Let V = {x0, x1, x2}, E = {(x0, x1), (x1, x2)}, and assume all weights are 1. We set
0 = {x0, x2}. Then, trivially, the distance function d = (0, 1, 0) is an eigenfunction. If we assume that
λu = − divw q ∈ ∂Jw(u) then d(x0) = 0 implies q(x0, x1) = q(x1, x0) by definition of the divergence
operator. The characterization of the subdifferential in Proposition 5.5 then tells us that q(x0, x1)= 0=
q(x1, x0) since q has to be parallel to (∇wd)(x0, x1)= 1 and (∇wd)(x1, x0)=−1. The same holds for
q(x1, x2) and hence q = 0 which contradicts − div q = λd .

Definition 5.7 (eigenfunctions of ∂Jw). We call u ∈H0(V ) an eigenfunction of ∂Jw if there exist λ > 0
and q ∈ H(E) with − div q ∈ ∂ J (u) such that

〈λu, v〉 = 〈− divw q, v〉 for all v ∈H0(V ). (5-25)

This is equivalent to λu(x)=− divw q(x) for all x ∈ V \0.

The next example shows that nonnegative eigenfunctions of ∂Jw are not unique, as opposed to the
continuum case where Proposition 2.14 asserted that every nonnegative eigenfunction is a ground state.

Example 5.8 (multiple nonnegative eigenfunctions). We return to the graph from Example 5.2. The
functional Jw can be explicitly expressed as

Jw(u)=max(|u1|, |u2|, |u1− u2|),

where ui := u(xi ) for i = 1, 2. The unit ball and dual unit ball of Jw are depicted in Figure 4. Following
[Bungert et al. 2019a], eigenvectors are precisely all multiples of vectors in the dual unit ball whose
orthogonal hyperplane is tangent to the boundary. Here they correspond to all multiples of the four vertex
functions having the values(

0, 1
2 ,

1
2 , 0

)
, (0, 1, 0, 0), (0, 0, 1, 0), (0,−1, 1, 0).
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u1

u2

1

1

−1

−1
u1

u2

1

1

−1

−1

Figure 4. Primal and dual unit balls of Jw with all extreme points and eigenvectors (up
to scalar multiplication).

Note that the first three are also extreme points of the primal unit ball (up to scalar multiplication), whereas
the fourth one, marked in red, is not. Furthermore, the first three eigenfunctions are all nonnegative.

We have just seen that nonnegative eigenfunctions do in general not coincide with a ground state, as is
the case in the continuum. However, thanks to the following proposition, whose proof works just as in
the continuous case of Proposition 2.14, positive eigenfunctions are unique.

Proposition 5.9 (positive eigenfunctions). Let u ∈H0(V ) be a nonnegative eigenfunction with Jw(u)= 1
and let d denote the distance function to 0. Then for every x ∈ V it holds u(x) = d(x) or u(x) = 0.
Consequently, any eigenfunction which is positive in V \0 coincides with a ground state.

5C. Extreme points. As in the continuous case of Section 4, the main motivation for studying extreme
points is representer theorems. They assert certain optimization problems involving Jw admit a solution
which is a linear combination of extreme points. As before, we obtain a characterization of extreme points
which is based on the existence of paths from every vertex to the boundary 0 such that all directional
derivatives are one along this path.

Theorem 5.10 (characterization of extreme points). It holds that

extr(BJw)=
{
u ∈H0(V ) : for all x ∈ V there exist x0 ∼ · · · ∼ xn with x0 = x, and xn ∈ 0,

|(∇wu)(xi−1, xi )| = 1 for all i = 1, . . . , n
}
.

However, as opposed to the continuous case, even one-dimensional extreme functions do not necessarily
have constant modulus of the gradient, as the following example shows.

Example 5.11. We return to Example 5.2 with the distance function d(x)= (0, 1, 1, 0), which fulfills
∇wd(x1, x2) = 0. Nevertheless, it obviously is an extreme point taking the paths x1 ∼ x0 and x2 ∼ x3.
If one however adds a node x4 with x3 ∼ x4 and sets u(x)= (0, 1, 1, 0, 0) this is not extreme anymore,
since there is no path from x3 to x0 or x4 along which ∇wu has modulus 1.

Appendix A: Proof of Proposition 2.4

Before we proceed to the proof of the theorem, we need a straightforward approximation lemma for
Lipschitz functions.
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Lemma A.1. Let v ∈W 1,∞
0 (�). Then there exists a sequence (vn)⊂ C∞c (�) such that

• ‖∇vn‖∞ ≤ ‖∇v‖∞,

• ‖v− vn‖∞→ 0 as n→∞.

Proof. First, we approximate v with compactly supported functions (wn)⊂ C0,1
c (�). To this end, set

w±n (x)=min
(
v±(x)− 1

n
, 0
)
,

where v± denote the positive and negative parts of v. If we define wn := w
+
n −w

−
n , it holds

‖v−wn‖∞ ≤
1
n
→ 0, n→∞,

and ‖∇wn‖∞ ≤ ‖∇v‖∞. Furthermore, all wn are compactly supported. To see this one notes that

|v(x)| ≤ J (v) dist(x, ∂�),

which implies that wn = 0 for all x ∈ � such that dist(x, ∂�) ≤ 1/(J (v)n). Now let ε = 1/(2n) and
define mollifications vn := wn ∗ϕε. Then it holds ‖∇vn‖∞ ≤ ‖∇wn‖∞ ≤ ‖∇v‖∞ and

‖v− vn‖∞ ≤ ‖v−wn‖∞+‖vn −wn‖∞.

The first term on the right-hand side can be bounded by 1/n as shown above. For the second term we
notice

|vn(x)−wn(x)| ≤
∫
�

|ϕε(y)|wn(x − y)−wn(x)| dy ≤ ‖∇wn‖∞
1

2n
≤ ‖∇v‖∞

1
2n

for all x ∈�.

Hence, both terms converge to zero and we can conclude. �

Proof of Proposition 2.4. We follow the argumentation of [Bredies and Holler 2016, Proposition 7], which
deals with the subdifferential of the total variation. Defining the set

C := {− div q : q ∈ C∞(�,Rn), ‖q‖1 ≤ 1},

it holds J (u) = χ∗C(u), where χ denotes the characteristic function of a set and ∗ denotes the convex
conjugate. Hence, it holds

J ∗(ζ )= χ∗∗C (ζ )= χC(ζ )

and by (2-6) one gets that ζ ∈ ∂J (u) if and only if ζ ∈ C and 〈ζ, u〉 = J (u).
Therefore, we just have to find the L2-closure of C and we claim

C = {− div q : g = g+ r, g ∈ G1
0(�), r ∈N (div;�), |q|(�)≤ 1} =: K .

Inclusion K ⊂ C : For this inclusion it is enough to show that for any q ∈M(�,Rn) with − div q ∈ K it
holds ∫

�

−(div q)v dx ≤ J (v) for all v ∈ L2(�)
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since this implies χC(− div q)= J ∗(− div q)= 0 and hence − div q ∈ C . Indeed, it suffices to check the
inequality for v ∈W 1,∞

0 (�). By Lemma A.1, we can find a sequence of functions (vn)⊂ C∞c (�) such
that ‖∇vn‖∞ ≤ ‖∇v‖∞ and ‖vn − v‖∞→ 0 as n→∞. This implies∫

�

−(div q)v dx = lim
n→∞

∫
�

−(div q)vn dx = lim
n→∞

∫
�

∇vn · dq dx ≤ |q|(�)‖∇vn‖∞ ≤ J (v).

Inclusion C ⊂ K : To prove the converse inclusion it suffices to show that K is closed in L2(�) since
C ⊂ K is obviously correct. Let (qn) ⊂M(�,Rn) be a sequence of measures such that qn = gn + rn ,
with (gn)⊂ G1

0(�), (rn)⊂N (div;�). Furthermore, assume that |qn|(�)≤ 1 and − div qn→µ strongly
in L2(�). From [Auchmuty 2006, (1.2)] we infer that ‖gn‖2 is uniformly bounded and hence, up to a
subsequence, gn converges weakly in L2(�) to some g ∈ L2(�). By the closedness of G1

0(�) we infer
that g ∈ G1

0(�). We first show that µ = − div g. To this end, we use the convergences gn ⇀ g and
div qn→ µ together with the fact that div gn = div qn to compute

〈g,∇ϕ〉 = lim
n→∞
〈gn,∇ϕ〉 = − lim

n→∞
〈div gn, ϕ〉 = − lim

n→∞
〈div qn, ϕ〉 = 〈µ, ϕ〉 for all ϕ ∈ C∞c (�),

which shows µ=− div g. Since |qn|(�)≤ 1, by the sequential Banach–Alaoglu theorem there exists a
measure q ∈M(�,Rn) such that, up to a subsequence, it holds qn ⇀ q . The lower semicontinuity of the
total variation implies |q|(�)≤ 1. Furthermore, gn ⇀ g implies that in fact rn ⇀ r := q−g. By the closed-
ness of N (div;�), we infer r ∈N (div;�). Hence, we have shown that µ=− div q ∈ K , as desired. �

Appendix B: Proof of Theorem 4.1

In order to prove the theorem, we first need the following lemma, which states a triangle inequality for
the map x 7→ εu

x,z , given by (4-3).

Lemma B.1. Let u ∈ BJ, x, y ∈�, and z ∈ ∂�. Then it holds

εu
y,z ≤ ε

u
x,z + |x − y| − |u(x)− u(y)|.

Proof. We denote by (εn)n∈N a minimizing sequence for εu
x,z , i.e., limn→∞ ε

n
= εu

x,z . This means that for
each n ∈ N there exists a path of n points xn

0 = z, xn
1 , . . . , xn

n = x connecting z and x , and nonnegative
numbers (εi )i=1,...,n such that

|xi−1− xi | − εi ≤ |u(xi−1)− u(xi )|, i = 1, . . . , n,
n∑

i=1

εi ≤ ε
n.

Now we define the path of n+ 1 points

yi =

{
xn

i , i = 0, . . . , n,
y, i = n+ 1,

which connects z and y, set
εn+1 = |x − y| − |u(x)− u(y)| ≥ 0,
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and observe that this constellation is admissible for the minimization that defines εu
y,z since

|xi−1− xi | − εi ≤ |u(xi−1)− u(xi )|, i = 1, . . . , n+ 1,
n+1∑
i=0

εi ≤ ε
n
+ |x − y| − |u(x)− u(y)|.

Hence it holds
εu

x,y ≤ ε
n
+ |x − y| − |u(x)− u(y)|

and letting n tend to infinity we obtain the desired inequality. �

Now we can proceed to the proof of the theorem.

Proof of Theorem 4.1. The proof works similarly to [Farmer 1994] with the main difference being that
there the point z = 0 is fixed. Since this causes nontrivial modifications, we present the full proof for
completeness.

We start with the implication “⇐”: to this end, we assume that (4-4) holds for almost all x ∈�. Since
εu

x,z depends continuously on z ∈ ∂� and ∂� is compact, we infer that for almost all x ∈� there exists
z ∈ ∂� with εu

x,z = 0. Aiming for a contradiction we assume u= v/2+w/2 with two functions v,w ∈ BJ.
Since εu

x,z = 0, for any ε > 0 we can find finite sequences of points (xi )i=0,...,n and numbers (εi )i=1,...,n

satisfying the restrictions such that

|xi−1− xi | − εi ≤ |u(xi−1)− u(xi )| for all i = 1, . . . , n.

Without loss of generality we assume that u(xi−1)− u(xi )≥ 0. Using also u = v/2+w/2 we infer

−εi = |xi−1− xi | − εi − |xi−1− xi |

≤ |u(xi−1)− u(xi )| − |v(xi−1)− v(xi )|

≤ u(xi−1)− u(xi )− (v(xi−1)− v(xi ))

= w(xi−1)−w(xi )− (u(xi−1)− u(xi ))

≤ |xi−1− xi | − (εi − |xi−1− xi |)

= εi ,

which means
|u(xi−1)− u(xi )− (v(xi−1)− v(xi ))| ≤ εi for all i = 1, . . . , n.

Iterating this estimate, we obtain

|u(x)− v(x)| = |u(xn)− v(xn)|

= |u(xn)− u(xn−1)− (v(xn)− v(xn−1))+ u(xn−1)− v(xn−1)|

≤ εn + |u(xn−1)− v(xn−1)|

≤ · · ·

≤

n∑
i=1

εi + |u(x0)− v(x0)| ≤ ε,



STRUCTURAL ANALYSIS OF AN L -INFINITY VARIATIONAL PROBLEM 735

where we used that x0 = z ∈ ∂� and hence u(x0) = v(x0) = 0 there. Since this estimate holds for all
ε > 0 and almost all x ∈ �, we infer u = v and hence also u = w in almost everywhere in �, which
means that u is extreme.

For the converse implication “⇒” we assume that there exists a set A ⊂� of positive measure such
that it holds ε̂x := infz∈∂� ε

u
x,z > 0 for almost all x ∈ A. We define the functions

v±(x)=
{

u(x)± ε̂x , x ∈ A,
u(x), x ∈� \ A,

which obviously satisfy v+ 6= v− and v+/2+ v−/2= u. It remains to show that v± ∈ BJ to obtain that u
is not extreme. We consider v+ only since the considerations for v− are identical. We just have to show
that |v+(x)− v−(y)| ≤ |x − y| for all x, y ∈�. For x, y ∈� \ A this is clear and hence we first assume
that x ∈� \ A and y ∈ A. In this case it holds

|v+(x)− v+(y)| = |u(x)− u(y)− ε̂y| ≤ |u(x)− u(y)| + ε̂y .

Since ε̂x = 0, by the assumption x ∈� \ A we can choose z0 ∈ ∂� such that εu
x,z0
= 0. By the definition

of ε̂y and the triangle inequality from Lemma B.1 we obtain

ε̂y ≤ ε
u
y,z0
≤ εu

x,z0︸︷︷︸
=0

+|x − y| − |u(x)− u(y)|,

which yields

|v+(x)− v−(y)| ≤ |x − y|.

Assume now that x, y ∈ A in which case it holds

|v+(x)− v+(y)| = |u(x)− u(y)+ ε̂x − ε̂y| ≤ |u(x)− u(y)| + |ε̂x − ε̂y|.

Now we choose elements zx , zy ∈ ∂� such that ε̂x = ε
u
x,zx

and ε̂y = ε
u
y,zy

. By using the triangle inequality
from Lemma B.1 for z ∈ {zx , zy} we obtain

|u(x)− u(y)| ≤ |x − y| + 1
2(εx,zx + εx,zy )−

1
2(εy,zx + εy,zy ).

After possibly exchanging the roles of x and y we can assume that the right-hand side is less than or
equal to |x − y|, which concludes the proof. �
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