Vol. 2, No. 1, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN (electronic): 2576-7666
ISSN (print): 2576-7658
Author Index
To Appear
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
Fronts d'onde des représentations tempérées et de réduction unipotente pour $\mathrm{SO}(2n+1)$

Jean-Loup Waldspurger

Vol. 2 (2020), No. 1, 43–95
Abstract

Soit G le groupe spécial orthogonal SO(2n + 1) défini sur un corps p-adique F. Soit π une représentation admissible et irreductible de G(F) qui est tempérée et de réduction unipotente. On démontre que π admet un front d’onde et l’on en donne une méthode de calcul dans certains cas particuliers.

Let G be a special orthogonal group SO(2n + 1) defined over a p-adic field F. Let π be an admissible irreducible representation of G(F) which is tempered and of unipotent reduction. We prove that π has a wave front set. In some particular cases, we give a method to compute this wave front set.

PDF Access Denied

However, your active subscription may be available on Project Euclid at
https://projecteuclid.org/tunis

We have not been able to recognize your IP address 3.236.214.19 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Keywords
representation of unipotent reduction, unipotent orbit, dual orbit, wave front set
Mathematical Subject Classification 2010
Primary: 22E50
Milestones
Received: 22 June 2018
Accepted: 20 November 2018
Published: 22 March 2019
Authors
Jean-Loup Waldspurger
CNRS IMJ-PRG
Paris
France