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et de réduction unipotente pour SO(2n + 1)

Jean-Loup Waldspurger

Soit G le groupe spécial orthogonal SO(2n + 1) défini sur un corps p-adique F.
Soit 7 une représentation admissible et irreductible de G (F') qui est tempérée et
de réduction unipotente. On démontre que w admet un front d’onde et 1’on en
donne une méthode de calcul dans certains cas particuliers.

Let G be a special orthogonal group SO(2n + 1) defined over a p-adic field F.
Let = be an admissible irreducible representation of G (F) which is tempered
and of unipotent reduction. We prove that 7 has a wave front set. In some
particular cases, we give a method to compute this wave front set.

Introduction

Soit F un corps local non archimédien et de caractéristique nulle et soit n > 1 un
entier. On suppose p > 6n+4, ou p est la caractéristique résiduelle de F'. Le groupe
spécial orthogonal SO(2n 4 1) a deux formes possibles définies sur F. Une forme
déployée que nous notons Gis, et une forme non quasi-déployée, qui est une forme
intérieure de la précédente et que nous notons G,,. Soit #f = iso ou an et soit 7
une représentation admissible irréductible de Gy (F) dans un espace complexe E.
Pour tout sous-groupe parahorique K de G:(F), notons K* son radical pro-p-
unipotent et EX" le sous-espace des éléments de E fixés par K*. De 7 se déduit
une représentation de K /K" dans EX". Le groupe K /K" s’identifie au groupe des
points sur le corps résiduel [, de F d’un groupe algébrique connexe défini sur [,.
Lusztig a défini la notion de représentation unipotente d’un tel groupe. On dit que 7
est de réduction unipotente si et seulement s’il existe K comme ci-dessus de sorte
que EX" soit non nul et que la représentation de K /K* dans EX" soit unipotente.

Soit 7r une représentation admissible irréductible de G (F). Notons g; I’algebre
de Lie de Gy. D’apres Harish-Chandra, dans un voisinage de 1’origine dans gy (F),
le caractére de 7, descendu par I’exponentielle a g (F'), est combinaison linéaire de
transformées de Fourier d’intégrales orbitales nilpotentes. Fixons une cloture algé-
brique F de F et notons A/ (;r) 1’ensemble des orbites nilpotentes @ dans g;(F) qui
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vérifient la condition suivante : il existe une orbite nilpotente O dans gy (F), qui est
incluse dans O et qui intervient avec un coefficient non nul dans le développement
du caractére de 7. On dit que 7 admet un front d’onde si N (7) admet un plus grand
élément (pour I’ordre usuel sur les orbites nilpotentes). Si c’est le cas, on appelle
ce plus grand élément le front d’onde de 7. Le théoréme principal de I’article est
le suivant.

Théoreme. Soir § = iso ou an. Alors toute représentation admissible irréductible
de Gy4(F), qui est tempérée et de réduction unipotente, admet un front d’onde.

Pour tout entier N € N, notons P¥™P(2N) I’ensemble des partitions symplec-
tiques de 2N (une partition est dite symplectique si tout entier impair y inter-
vient avec une multiplicité paire). Pour une telle partition A, notons Jord®® (1) I’en-
semble (sans multiplicités) des entiers pairs strictement positifs qui interviennent
dans A. Notons P*Y™(2N) I’ensemble des couples (A, €) ou A € P¥"P(2N) et
€€ {:I:I}Jordbp()‘). Notons Jttquad(2n) 'ensemble des quadruplets (A1, €T, 17, €7)
pour lesquels il existe deux entiers n™ et n~ de sorte que nt +n~ =n, (AT, eT) €
PYMP(2nt) et (A7, €7) € PY™P(2n7). A un tel quadruplet (AT, e, 17, €7), on
peut associer un indice § = iso ou an et une représentation admissible irréduc-
tible (A", €™, 17, €7) de G4(F), qui est tempérée et de réduction unipotente.
L’indice i est déterminé par une formule simple rappelée en 1.5 Indiquons brie-
vement quel est le parametre de Langlands de cette représentation. Notons Wy le
groupe de Weil de F et Wpr = Wr x SL(2, C) le groupe de Weil-Deligne. Un
parametre de Langlands est un couple (p, x), oit p est un homomorphisme de
Wpr dans Sp(2n; C) et x est un caractere du groupe des composantes connexes
du commutant dans Sp(2n; C) de I'image de p. Dans le cas d’une représentation
(AT, €T, A7, €7), la restriction de p a Wr est la somme directe de 2n™ fois le
caractere trivial et de 2n~ fois I'unique caractére non ramifié d’ordre 2. Le com-
mutant de I’image de cette restriction est un groupe Sp(2n™; C) x Sp(2n—; C). Les
classes de conjugaison d’éléments unipotents dans ce groupe sont paramétrées par
PYMP(2nT) x PYMP (25 7). La restriction de p a SL(2; C) prend ses valeurs dans ce
groupe et I'image d’un unipotent non trivial de SL(2; C) est paramétré par (A*, 17).
On voit que le groupe des composantes connexes du commutant dans Sp(2n; C)
de ’image de p est isomorphe a (Z/ZZ)Jordbp(“) X (Z/2Z)J°rdbp(r). Le couple
(et, €7) s’identifie & un caractere de ce groupe, qui n’est autre que le caractere
du couple (p, x).

On note jttZEadQn) le sous ensemble des (AT, €™, 17, €7) € Trrquaa(2n) tels
que tous les termes de AT et A~ soient pairs. Selon [Waldspurger 2018b, 3.4],
pour démontrer le théoréme, il suffit de prouver que, pour tout (A, €™, A7, €7)
élément de JttzﬁadQn), la représentation (A ™+, €T, A7, € ) admet un front d’onde
(cela résulte d’un argument trivial d’induction).
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Pour une représentation (A1, €T, A7, e7), o0 (AT, et, A7, e7) € Jttzgad(Zn),
on a un résultat un peu plus précis. Dans [Waldspurger 2017], on a étudié une cer-
taine représentation d’un groupe de Weyl définie par Lusztig. En supposant, comme
c’est ici le cas, que tous les termes de AT sont pairs, on a associé a (A1, e™) €
PY™P (20 1) un autre couple (A Min ¢ T-miny ¢ PYMP (2,1 (voir ci-dessous). De
méme, 2 (A, €7) € PY™P(2n7), on associe un autre couple (A ~-™in ¢ min) ¢
PY™P (25 7). Introduisons la réunion usuelle de AT ™" et A=™" que I’on note
ATmin gy —min Cest une partition symplectique de 2. Notons P°™ (25 4 1) I’en-
semble des partitions orthogonales de 2n + 1 (une partition est orthogonale si et
seulement si tout entier pair strictement positif y intervient avec multiplicité paire).
On sait bien que 1’ensemble P°"(2n + 1) paramétre les orbites nilpotentes dans
g:(F). Un front d’onde est donc paramétré par un élément de cet ensemble. D’autre
part, a la suite de Spaltenstein, on définit une dualité d : PY™P(2n) — P (2n +1),
cf. 2.6 (elle n’est ni injective, ni surjective, son image est le sous-ensemble des
partitions spéciales dans P°"™(2n + 1)).

Théoreme. Soit
P it WP L
(AT, e, A7 € )eJttquad(Zn).

Alors la représentation (A", €™, L™, € ) admet un front d’onde. Celui-ci est pa-

ramétré par la partition d(\Hminy )~ miny

La preuve de ce théoreme reprend celle de [Waldspurger 2018b]. Posons & =
(AT, eT, A7, €7). L'existence d’un front d’onde pour 7 se lit sur le caractére
de cette représentation. Celui-ci se calcule en fonction des représentations des dif-
férents groupes finis K /K* dans EX", avec les notations du premier paragraphe
ci-dessus (en vérité, le groupe fini est K7/K“, ou KT est le normalisateur de K
dans G(F)). La construction de la représentation 7 (qui est due a Lusztig) permet
d’expliciter ces représentations de groupes finis. On les décrit a I’aide de représen-
tations de groupes de Weyl W, de type B,, ou C,,. Une vieille combinatoire tirée
de [Waldspurger 2001] permet alors de traduire I’existence d’un front d’onde et
son calcul en un probléme concernant exclusivement des représentations de tels
groupes W,,, cf. 1.4. Les objets cruciaux qui interviennent ici sont les représenta-
tions o, + .+ et p,- .- définies par Lusztig (ce ne sont pas ses notations) auxquelles
on a fait allusion ci-dessus. Elles ne sont pas irréductibles en général et on connait
peu de choses sur leur décomposition en représentations irréductibles. On sait tou-
tefois que, disons dans la décomposition de p;+ .+, il y a un €lément minimal qui
est la représentation p;+ + associée a (AT, 1) par la correspondance de Springer
généralisée. Dans [Waldspurger 2018b], cela nous a suffi pour traiter non pas la
représentation sr, mais son image par 1’involution d’ Aubert—Zelevinsky. Le point
nouveau est le résultat de [Waldspurger 2017] qui affirme (sous 1’hypothese que
tous les termes de AT sont pairs) que la décomposition de p;+ .+ admet aussi un
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élément maximal pour un ordre convenable (cf. 4.1 pour un énoncé précis). C’est
0y+min_¢+min @ SgN, OU sgn est le caractere signature. Cette propri€té nous permet
de conclure.

Les paragraphes 1 a 3 sont surtout consacrés a des rappels de résultats antérieurs.
On a amélioré certains d’entre eux quand c’était nécessaire. Le théoréeme ci-dessus
est démontré au paragraphe 4. Dans le paragraphe 5, nous indiquons comment se
calculent les partitions A+T™™ et A =™ (en fait leurs transposées) et nous donnons
quelques exemples de fronts d’onde.

1. Rappel pas tres bref des résultats de [Waldspurger 2018b]

1.1. Partitions, notations. Soit A = (A1, ..., A,) une suite finie de nombres réels.
Notons #(A) le plus grand entier j € {1, ..., r} tel que A; # 0. On identifie deux
suites A et A" sit(A) =t(X) et A; = )Jj pour tout j < ¢(A). Soit A une telle suite et
soit k € N. Quitte & adjoindre a A des termes nuls, on peut écrire A = (A1, ..., A,)
avec r > k. On pose Sg(A) = A1+ -+ Ak Evidemment, Sk (1) ne dépend plus de
k des que k > £(1). On pose S(1) = S;1)(1). On définit la somme A + A" de deux
suites A et A" : (A +21'); = A; + A pour tout j > 1.

Une partition est une suite finie décroissante d’entiers positifs ou nuls. On iden-
tifie comme ci-dessus deux partitions qui ne différent que par des termes nuls.
Pour une partition A = (A, ..., A,) et pour un entier i > 1, on note mult, (i) le
nombre d’indices j tels que A; = i. On note Jord(A) I’ensemble des i > 1 tels que
mult, (i) > 0. Pour tout N € N, on note P(N) I’ensemble des partitions A telles que
S(X) = N et on note P>(N) I’ensemble des couples («, B8) de partitions telles que
S(a) + S(B) = N. On ordonne les éléments de P(N) de la fagon usuelle : 1 < A’
si et seulement si Sx (1) < Sx(A’) pour tout k € N. On définit la réunion A U A" de
deux partitions A et A’ : pour tout entier i > 1, multy; (i) = mult (i) + multy (i).

Soit A une partition. Pour tout i € N, on note J (i) ’ensemble des j > 1 tels que
Aj=1.S81i =0, on considere que J(0) est I'intervalle infini {#(A) + 1, ...}. Pour
i € Jord(X), J(i) est non vide. On note jnin(i), resp. jmax(i), le plus petit, resp.
grand, élément de J (i). On pose jyin(0) =1(1) + 1.

On note Wy le groupe de Weyl d’un systeme de racines de type By ou Cy,
avec la convention Wy = {1}. On note sgn le caractére signature usuel de Wy et
sghcp le caractere dont le noyau est le sous-groupe WAI,) d’un systeme de racines
de type Dy. Les représentations irréductibles de Wy sont paramétrées par P, (N).
Pour (¢, B) € P2(N), on note p(«, B) la représentation paramétrée par (o, ). Les
représentations irréductibles de WAL,) sont presque paramétrées par le quotient de
P>(N) par la relation d’équivalence (¢, 8) = (8, o). Presque, parce qu’un couple
de la forme (o, o) parametre deux représentations irréductibles.

Pour tout ensemble E, on note C[E] le C-espace vectoriel de base E. Pour tout
groupe fini W, on note W I’ensemble des classes d’équivalence de représentations
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irréductibles de W. En identifiant une représentation a son caractere, C[W] est
aussi I’espace des fonctions de W dans C qui sont invariantes par conjugaison.

1.2. L’espace R. On fixe pour tout I’article un entier n > 1. On note I" I’ensemble
des quadruplets y = (', r”, N*, N7) tels que

72

reN, r"eZ NteN, N eN, PP NP NT =n.

Pour un tel y, on pose R(y) = C[WN+] ® C[WN—]. On pose

R=EPRm).

yel

On définit un endomorphisme ¢ — sgn Q@ ¢ de R de la fac_;on suivante. Il respecte
chaque sous-espace R(y). Pour y comme ci-dessus, pour p* € WN+ etp” € WN ,
on pose sgn® (p™ ® p~) = (p* @sgn) ® (p~ @ sgn).

On a défini en [Waldspurger 2004, 1.10] un endomorphisme pt¢. Puisqu’il est
essentiel 2 nos constructions, rappelons sa définition. Soit y = (', r”, N*, N") el
et ¢ € R(y). Posons N = Nt + N~. L’élément pi(¢p) appartient a

P R~ NN
Ni,N>eN
Ni+N,=N
Soit § = (+/, (—=1)"'r", Ny, N») € T'. Décrivons la composante pi(¢)s de pt(¢)
dans R(§).
On définit un quadruplet d’entiers @ = (a1+, a,, a; , a, ) par les formules sui-
vantes :

a=(0,0,0,1) siO<r”"<r' ousir”=0etr estpair;
a=(0,0,1,0) si—r"<r” <0ousir”=0etr estimpair;
a=(0,1,0,00 sir <r”;
a=(1,0,0,00 sir’ <-—r'.
Notons N I’ensemble des quadruplets N = (N;", N 1> N2+ , N, ) d’entiers positifs
ou nuls tels que
N*=N+NS, N =N +N;, Ni=N/+N;, Nr=N;y+Nj.

Pour un tel quadruplet, posons Wy = Wy+ x Wy- x Wyi+ x Wy-. Ce groupe
se plonge de facon évidente dans Wy, x Wy,, resp. Wy+ x Wy-, et ces plonge-
ments sont bien définis a conjugaison pres. On a donc des foncteurs de restriction
resVWVN+XWN et d’induction 1ndWN Wy On note sgnCD le caractere de Wy qui

est le produit tensoriel des caracteres sgnCD, sgndp, sgngy, sgn, sur chacun des
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facteurs de Wy. Alors

. W, xW, _
pUys = ) indy ! (s @resyt M ().
NeN

1.3. Correspondance de Springer généralisée. Soit N € N. On a défini I’ensemble
PY™P(2N) dans I’introduction. La correspondance de Springer généralisée dans
le cas symplectique est une bijection de PY™P(2N) sur I’ensemble des couples
(k, p) ou

keN et k(k+1)<2N; pEWN_k(k+1)/2.

Pour (A, €) € PY™P(2N), on note (k; ¢, ps.c) le couple qui lui correspond et on
pose Ny ¢ = N —k; (k). +1)/2. Rappelons comment on calcule k; . On note
i1 >--->1i; lesentiersi € Jordbp(k) tels que mult, (7) soit impair. On pose

M=|{h=1,...,t; hestpairete, =—1}
—|{h=1,...,1; hestimpair et ¢;, = —1}|.

Alors, d’apres [Waldspurger 2001] XI.3, on a
kre=2M si M >0, krne=—-2M—-1 si M <0. (1)

On définit une autre représentation p; . du méme groupe Wy, , cf. [Waldspurger
2004, 5.1]. En gros, p; e est I’action de Wy, . sur un sous-espace détermin€ par €
de I’espace de cohomologie de plus haut degré d’une certaine variété algébrique,
tandis que p, . est 'action de Wy, . sur un sous-espace analogue de la somme de
tous les espaces de cohomologie de cette variété.

Soit (A1, €™, A7, €7) € Trtquad(2n). Pour £ ==+, posons 2n¢ =S(A%), k¢ =k¢ ¢,
N¢ =n® — k%(k* + 1)/2. On définit des entiers r’ € N, r” € Z par les formules
suivantes :

+ — +_ -

+_ 75— _ + _
skt £k mod2Z et kt >k, r=K k=1 ]; Lotk +§ +1,

-t _ + _
SikT #£k" mod2Z et kt <k, r/:%, ok +l§ +1

Le quadruplet y = (+/, ¥, N*, N™) appartient 4 I". Puisque
R(y) = C[Wy+]® C[Wy-1,

on peut identifier p,+ .+ ® p;- - a un €élément de R(y), a fortiori a un €lément
de R. Dans la suite p;+ .+ ® p;- - désignera cet €lément.

Pour M € N, on note P°"™(M) 1’ensemble des partitions orthogonales de M.
Pour une telle partition A, on note Jord® (1) I’ensemble des entiers impairs i > 1 tels
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que mult, (i) > 0. On note P°™"(M) I’ensemble des couples (1, €) ol A € P™(M)
etee{xl1 }J"rdbp ) /{£1}, le groupe {1} s’envoyant diagonalement dans {1 }Jordbp(”.
Soit N € N. La correspondance de Springer généralisée dans le cas orthogonal
impair est une bijection de POt QN + 1) sur I’ensemble des couples (k, p) tels
que
keN, kestimpair et k> <2N +1; pE WN—(kz—l)/Z-

Soit (ky.c, py.¢) le couple associé a (A, €) € POM(2N 4 1). Soit PN Q2N + 1)—;
le sous-ensemble des (4, €) € POMQ2N + 1) tels que k) = 1.

La correspondance de Springer généralisée dans le cas orthogonal pair est une
bijection entre P°"M(2N) et I’ensemble des couples (k, p) tels que

keN, kestpair et k> <2N;
sik>0, pe VT/N_kz/z;

sik =0, p estune classe d’équivalence dans WN_kz /25
deux représentations irréductibles p’ et p” étant ici équivalentes
si et seulement si o’ = p” ou p’ = p” @ sgncp-

On note (k). ¢, py.e) le couple associé a (A, €) € PO (2N). On note P (2N )x—o
le sous-ensemble des (A, €) € POM(2N) tels que k) =0. Quand ky =0, p;. ¢
n’est qu'une classe d’équivalence comme on vient de le dire. Autrement dit, p; ¢
est paramétrée par un couple («, B) € P»(N) a ’ordre pres. Si o = B, on pose
p;r’g = p;.c = pla, B). St # B, on choisit « et B de sorte que o > B pour I’ordre
lexicographique. On pose p;fe =pla, B)etp, . =p(B,a).

1.4. Caractérisation du front d’onde. On a introduit les groupes Giso et Gap. Pour
f = is0 ou an, on note Irryyip z I’ensemble des classes d’isomorphismes de re-
présentations admissibles irréductibles de G;(F) qui sont tempérées et de réduc-
tion unipotente. On note Irryy;p la réunion disjointe de Irrypip,iso €t Irrynip,an. On
a défini en [Waldspurger 2018a, 1.5] un espace RP* et une application linéaire
Rep : C[Irrunip] — RP¥. A la suite de Lusztig, on a défini en [Mceglin et Waldspur-
ger 2003, 3.16] deux isomorphismes Rep : R — RP¥ et k : R — RP¥. On note
F I’automorphisme de R tel que Rep oF = k. C’est une involution sur le calcul
de laquelle nous reviendrons en 2.5. Pour 7 € Im“niE’ on note K I’élément de R
tel que k(k,) =Res(r). Soient ny, ny e Net py € Wy, p2 € W,,. Le quadruplet
y =(0,0,n1,ny) appartient a I" et on a R(y) = C[Wm] ® C[an]. Notons k()
la composante de «, dans R(y). C’est une combinaison linéaire de représentations
irréductibles avec des coefficients complexes. On note m  (p1, p2) le coefficient de
01 ® p dans cette combinaison linéaire.

On pose sgn;, = 1, sgn,, = —1. Soit § = iso ou an, soit 7 € Irryyp ¢, soient

n1,ny € N tels que ny +ny =n et soient (i1, 1) € PO (201 + )iz et (12, m2) €
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PO (215) k0. Comme cas particulier de la définition ci-dessus, pour ¢ = =+, on
définit les multiplicités m (pu,,,, @ sgn, ,0,32,,72 ® sgn). On pose

My Gy, mis 2, m2)
= Mz (Pyy.n ® SN, 01, , @ SEN) + SN, (P, oy, B SEN, P, y, @ SEN).

Proposition. Soient i =iso ou an, w € Ityypip ¢ €t (1 € POt (2n41). Alors  admet
un front d’onde paramétré par | si et seulement si les deux conditions suivantes
sont vérifiées.

(1) Soient ny,ny € N tels que ny1 +n, =n et np > 1 si § = an. Soient
(1. n) € PO @ni+ Dt et (u2, m2) € PO (2n2) k0.

Supposons My (i1, n1; 2, 12) # 0. Alors ju1 U poy < .

(i1) 1l existe n1,ny € N tels que ny +ny =n et np > 1 si § = an et il existe
(1. n) € PO @ni+ Dt et (2, 1m2) € PO (2n2)k=o

tels que My (1, ni; n2, 12) #0 et g Upp = .

Cf. [Waldspurger 2018b, 3.7] . Les notations de cette référence étaient légere-
ment différente, les multiplicités étaient dans certains cas divisées par 2 mais cela
ne change évidemment pas I’énoncé. D’autre part, dans [Waldspurger 2018b], la
représentation 7 était d’une forme particuliere, mais cela n’était utilisé que pour
décrire explicitement la fonction «, dans [loc. cit., 3.8], cela n’intervient pas a ce
point.

1.5. Les représentations w(At, €t, 17, €7). Soit (AT, €T, 17, €7) € Trrquaa(2n).
En utilisant une construction de Lusztig, on a défini en [Waldspurger 2018a, 1.3] la
représentation (A1, €T, A7, € 7). Sa paramétrisation de Langlands a été rappelée
rapidement dans I’introduction. C’est une représentation admissible, irréductible
et tempérée de G (F), ou 'indice § est déterminé par la formule

sgn, = ( l_[ €+(i)muh”(i))( 1_[ 6_(i)mun‘(i)>, (1)

ieJord® () +) ieJord® (1)

cf. 1.3 pour la définition de sgn,. Notons D I'involution de Aubert—Zelevinski. Elle
permute les représentations admissibles irréductibles de G (F'). On a I’égalité

ResoD(m(A", ", 17, €7)) =Repopi(p;+.+ ® Py ). (2)

cf. [Waldspurger 2018a, proposition 1.11].

L’espace RP* est somme directe finie d’espaces vectoriels ayant pour base les
classes d’équivalence de représentations irréductibles et unipotentes de groupes
finis de la forme SO(2n'+1; F,) x O(2n"; F,), avec des notations compréhensibles.
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Chacun de ces espaces est muni d’involutions du méme type que D. L’espace RP*
est ainsi muni d’une involution DP" et on a prouvé en [Waldspurger 2018a, 1.7]
I’égalité Res oD = DP* o Res. Montrons que I’on a aussi

DP* o Rep(¢) = Rep(sgn ® ¢) pour tout ¢ € R. 3)

Preuve. Fixons y = (r',r”",N|,N;) € T, p; € VT/'NI, 0 € WNZ et considérons
I’élément ¢ = p; ® p» € R(y). D’apres Lusztig, le couple (7', p;) parameétre une
représentation irréductible 771 d’un groupe fini SO(2n;+1, F,), ouny =N, +r’2+r’
et |, est le corps résiduel de . De méme, le couple (r”, p>) parametre une repré-
sentation irréductible 7, d’un groupe fini SO(2n,, F,), o ny = N> + " (c’est
la forme déployée du groupe si r” est pair, non déployée si r” est impair). Le
terme Rep(¢) n’est autre que 7| @ m>. On définit usuellement une involution du
groupe de Grothendieck des représentations de longueur finie de tels groupes fi-
nis (cf. [Carter 1985, 8.2] dans le cas d’un groupe connexe et [Digne et Michel
1994, 3.10] dans le cas non connexe). C’est une somme alternée de composés de
foncteurs de restriction et d’induction. D’apres notre définition de [Waldspurger
2018a, 1.7], DP*(;r; ® my) est le produit tensoriel des images de | et 7, par ces
involutions multipliées par des signes de sorte que ces images soient des représen-
tations irréductibles. D’autre part, pour tout m € N, on définit une involution Dy,
de C[W,,] par une formule analogue : c’est une somme alternée de composés de
foncteurs de restriction et d’induction, cf. [Howlett et Lehrer 1982, corollaire 1].
Les paramétrages (1, p1) +> 71 et (r”, p2) + m, étant compatibles en un sens
plus ou moins évident aux foncteurs de restriction et d’induction, DP* (] ® 75)
est égal a I'image par Rep de +Dy, (p1) ® Dw,, (p2), le signe étant choisi de
sorte que ce terme soit le produit tensoriel de deux représentations irréductibles.
D’apres [Howlett et Lehrer 1982, corollaire 1], on a Dy, (p) = £p ® sgn pour
tout m € N et tout p € Wm Donc DP* (7 ® ;) est égal a I’'image par Rep de
(p1 ® sgn) ® (p2 ® sgn), c’est-a-dire de sgn ® . O

Il est clair d’apres sa définition que I’endomorphisme pt commute a la tensori-
sation ¢ — sgn ® ¢. Alors la formule (2) se transforme en

Resomr (AT, e, A7, e7) = Rep opL((pﬁ,ﬁ ®sgn)  (p;- . ® sgn)).
En utilisant I’égalité Rep = k o F, on obtient finalement 1’égalité

Kzt et ey =Fo PL((PA+,5+ ®sgn) @ (0~ - ® sgn)). @)
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2. Symboles, partitions spéciales, dualité

2.1. Symboles. Pour un couple A = (X, Y) de sous-ensembles finis de N, on dé-
finit le rang rg(A) et le défaut def(A) par

rg(A) = S(X) + SO = [(IX[+ Y] — 1)?/4],
ou [-] désigne la partie entiere,
def(A) = sup(|X| — Y1, [Y]—[X]).

On définit une relation d’équivalence entre couples de sous-ensembles finis de N,
engendrée par (X, Y) ~ (X', Y’), ou

X ={x+1; xeX}U{0}, Y ={y+1; yeY}u{o}.

Le rang et le défaut sont constants sur toute classe d’équivalence. On appelle sym-
bole de défaut impair une classe d’équivalence de couples A = (X, Y) tels que
|X| > |Y]| et def(A) est impair. On appelle symbole de défaut pair une classe
d’équivalence de couples A = (X, Y) tels que def(A) est pair (dans le cas pair, on
n’impose pas | X| > |Y]).

Soit m € N. On note S, jmp ’ensemble des classes d’équivalence de symboles
de défaut impair et de rang m. Pour A € Sy, jmp, on pose r(A) = (def(A) —1)/2.
On note S, pair I’ensemble des classes d’équivalence de symbole de défaut pair
et de rang m. Pour A = (X, Y) € S, pair» On pose r(A) = (|X| —[Y])/2. On a
def(A) =2|r(A)].

Remarque. La définition que I’on utilise ici des symboles de défaut pair est diffé-
rente de celle de [Waldspurger 2018b, 1.2] ot 1’on avait identifié les couples (X, Y)
et (Y, X).

Notons %,, jmp I’ensemble des triplets (7, , B) our € N, o et B sont des parti-
tions et r2+r+S(a)+S(B) = m. Remarquons que, puisque les couples de partitions
(o, B) vérifiant la relation précédente parametrent les représentations irréductibles
de W,,_,2_,, on peut identifier X, jmp a I’ensemble des couples (r, p), ou r € N
vérifie r’+r<metpe Wm_,z_,. On définit une application symb : X, imp — Sy, imp
de la fagon suivante. Soit (r, &, B) € X, imp. On suppose que B a a termes pour un
entiera>0etqueaxenaa+2r+1.0Onpose X =a+{a+2r,a+2r—1,...,0},
Y=8+{a—1,a-2,...,0}, A =(X,Y). Alors, symb(r, &, ) = A. Remar-
quons que r = r(A). L’application symb ainsi définie est une bijection de X, jmp
sur Sy imp-

Notons X,, pair I’ensemble des triplets (r, o, B) our € Z, a et B sont des partitions
et > + S(@) + S(B) = m. On peut identifier Y, pair @ ensemble des couples
(r, p), ol r € Z vérifie r> <metp € Wm_,z. On définit une application symb :
X, pair —> Sm,pair d€ la fagon suivante. Soit (r, o, B) € Zyy pair- On suppose que B aa
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termes etque e enaa+2|r|. Sir >0,onpose X =a+{a+2r—1,a+2r-2,...,0},
Y=8+{a—-1,a-2,...,0}.Sir<0,onpose X =8+{a—1,a—-2,...,0}, Y =
a+{a+2|r|—1,a-2|r|—2,...,0}.Onpose A = (X, Y). Alors symb(r, «t, ) = A.
Remarquons que » = r(A). L’application symb ainsi définie est une bijection de
2:m,palir sur Sm,pair-
Posons
S= @ CISwimpl ® CLSu pail-

n'+n"=n

D’apres la construction de 1.2, I’espace R s’identifie a

D CIZwimpl ® CIZ 07 pair].

n'4+n"=n

Des bijections symb ci-dessus se déduisent donc un isomorphisme encore noté
symb: R — S.

2.2. Partitions spéciales, cas symplectique. Soit m € N. Une partition symplec-
tique A € P¥™P(2m) est dite spéciale si Arj_1 et Ap; sont de méme parité pour
tout j > 1. On note PY™P*P(2m) le sous-ensemble des partitions spéciales. Soit
A une telle partition spéciale. Considérons 1’ensemble des éléments i € Jord®P (1)
tels que mult, (i) soit impair. S’il a un nombre pair d’éléments, on les note i; >
ip > --+>1i;.S’il aun nombre impair d’éléments, on les note i} > iy > -+ > i;_|
et on pose i; = 0. Ainsi, ¢ est toujours pair. On appelle intervalle de A un sous-
ensemble de Jord(A) U {0} de I’une des formes suivantes :

{i €Jord(A) U{0}; inp—1 > i > iop} pour h=1,...,1/2;

{i} pourice Jordbp(k) U {0} tel qu’il n’existe pas de
h=1,...,t/2 de sorte que ipp—1 > i > iop.

Parce que X est spéciale, on voit que les intervalles sont formés d’entiers pairs. On
note ITlt(k) I’ensemble de ces intervalles. 1l est ordonné de fagon naturelle : A > A’
si et seulement si i > i’ pour tous i € A eti’ € A’. L’élément minimal est celui qui
contient 0, on le note Ap, et on pose Int(A) = fﬁt(k) — {Anin}. Pour A € fvm(k),
on note J(A) I’ensemble des j > 1 tels que A; € A. C’est un intervalle de N, qui
est infini dans le cas A = Apin. On note jin(A) le plus petit élément de J (A) et,
Si A # Anpin, ON note jmax (A) le plus grand élément de J(A). On vérifie que

{/min(A); A € fvrlt()»)} est ’ensemble des j > 1 tels que j soit impair,
Aj soit pair et A;_1 > A;, avec la convention Ay = 00;

{jmax(A); A € Int(X)} est ensemble des j > 1 tels que j soit pair,
Aj soitpairet A; > Aj4q.
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Par la correspondance de Springer, on associe a (A, 1) une représentation irréduc-
tible de W,,. Elle est paramétrée par un couple (« (1), B(1)). Onnote (X (1), Y (1)) €
Sm,imp I'image de (0, (1), B(1)) par I’application symb. C’est un symbole spécial,
c’est-a-dire que | X(A)| = |Y(M)| + 1 et, si on note X(A) = (x; > -+ > X441),
YA)=1> ->Yy),0nax; =2y =x2>y2>+>Xq = Ya = Xq+1- On appelle
famille de A I’ensemble des symboles (X, Y) € S, imp tels que, quitte a remplacer
(X, Y) et (X(A), Y(1)) par des symboles équivalents, on ait

XUY=XMUYQ), XNY=XMNNYQ). (1)

On note Fam(A) la famille de A. On montre que S, imp €st la réunion disjointe
des Fam(A) quand XA décrit I’ensemble PSY™P-5P(2m).

Soit A € P™P-5P(2;). On montre qu’il y a une unique bijection croissante
A xp de I~nt()») sur X (1) — (X(A) N Y (L)) et une unique bijection croissante
A+ ya de Int(A) sur Y (A) — (X (A)NY (A)). A un symbole A = (X, Y) € Fam(2),
on associe deux éléments T € (Z/27)™P et § € (Z/27)"™™ par les formules
suivantes. On suppose les symboles choisis de sorte que (1) soit vérifié. Alors,
pour A € I?lt(k), resp. A € Int(A), on pose

(M) =|{A"€ Int(L); A" > A, xa € Y+ [{A" eInt(h); A'> A, ya € X}
+r(A) mod 27,
resp.
S(A)=|{A"eInt(A); A" > A, xp € YH+|{A €Int(h); A'> A, ya € X}
mod 27.

Par cette construction, la famille Fam(2) s’identifie a I’ensemble des couples (7, §) €
(Z)22)™P) % (72/27)™P tels que T(Ampin) = 0. On note Fam(}) cet ensemble.
Pour (7, §) dans cet ensemble, provenant du symbole A, on pose r(zt, §) =r(A).

2.3. Partitions spéciales, cas orthogonal impair. Soit m € N. Une partition ortho-
gonale A € PO (2m 4 1) est dite spéciale si Ao j €t Azj41 sont de méme parité pour
tout j > 1. Il en résulte que X est impair. On note POrthsp (21 4 1) le sous-ensemble
des partitions spéciales. Soit A une telle partition spéciale. Les constructions du pa-
ragraphe précédent s’appliquent. Par la correspondance de Springer, on associe a
(A, 1) une représentation irréductible de W,,, puis un symbole appartenant a Sy, jmp.
Il est spécial. On définit la famille de A, que I’on note Fam(A). On montre que S, imp
est la réunion disjointe des Fam(X) quand A décrit I’ensemble PP (2m + 1).

Remarquons que la conjonction des propriétés énoncées ici et dans le paragraphe
précédent entraine qu’il y a une bijection entre PY™PP(2m) et PSP (2m + 1) :
A € PY™P:SP(2m) correspond a € POMP(2m 4 1) si et seulement si Fam(X) =
Fam(w). En fait, nous utiliserons une autre bijection, la dualité, cf. 2.6.
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2.4. Partitions spéciales, cas orthogonal pair. Soit m € N. Une partition ortho-
gonale A € P"(2m) est dite spéciale si Ao j—1 €t A2; sont de méme parité pour
tout j > 1. On note P°"™5P(2m) le sous-ensemble des partitions spéciales. Soit A
une telle partition spéciale. Considérons 1’ensemble des éléments i € Jord® (1) tels
que mult, (i) soit impair. On les note i; > iy > --- > i,. L’entier ¢ est forcément
pair. On appelle intervalle de A un sous-ensemble de Jord(X) de I’une des formes
suivantes :

{i €Jord(A); ipp—1 =i =iz} pour h=1,...,1/2;

{i} pourice Jord® (1) tel qu’il n’existe pas de
h=1,...,t/2 de sorte que iop_1 =i > iyy.

Parce que A est spéciale, on voit que les intervalles sont formés d’entiers impairs.
On note Int(1) I’ensemble de ces intervalles. Comme dans le cas symplectique,
il est ordonné de facon naturelle. Pour A € Int(}), on définit J(A), jmin(A) et
Jmax (A) comme dans le cas symplectique. On vérifie que

{Jmin(A); A elInt(h)} est’ensemble des j > 1 tels que j soit impair,
Aj soit impair et ;| > A;, avec la convention Ao = o0;

{jmax(A); A € Int(X)} est 'ensemble des j > 1 tels que j soit pair,
Aj soit impair et A; > Ajiq.

Par la correspondance de Springer, on associe a (A, 1) une représentation irréduc-
tible de WmD . Elle est paramétrée par un couple («x (1), B(1)), qui n’est déterminé
qu’a I’ordre pres. On impose que «(A) > (1) pour I’ordre lexicographique (s’il
existe j tel que a(A); # B(A);, on a a(A); > B(A); pour le plus petit de ces
entiers j). On note (X (1), Y (X)) € Sy pair 'image de (0, a(2), B(2)) par I’applica-
tion symb. C’est un symbole spécial, c’est-a-dire que | X (1)| = |Y (A)] et, si on note
XM =@ > >x), YA =1 >--->y),onax; >y >xp>y; >+ >

Xq > Yq. On appelle famille de A I’ensemble des symboles (X, Y) € Sy, pair tels que,
quitte a remplacer (X, Y) et (X (1), Y (X)) par des symboles équivalents, on ait

XUY=XMUYQR), XNY=XMNYQ). (1)

On note Fam(A) la famille de A. On montre que S, pair €st la réunion disjointe
des familles Fam(X) quand A décrit 1’ensemble PP (2m).

Soit A € PP (). On montre qu’il y a une unique bijection croissante A > x
de Int(A) sur X (1) — (X(A) N Y (X)) et une unique bijection croissante A > ya
de Int(x) sur Y(1) — (X(A) N Y(1)). A un symbole A = (X, Y) € Fam(A4), on
associe deux éléments 7,8 € (Z/27)™™ par les mémes formules qu’en 2.2 (a
ceci preés qu'un I?ft()») figurant dans ces derniéres est remplacé par Int(}1)). Par
cette construction, la famille Fam()) s’identifie a ’ensemble des couples (7, §) €
(Z)27)™® % (7/27)™*) On note Fam(}) cet ensemble. Pour (z, §) dans cet
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ensemble, provenant du symbole A, on pose r(t, ) = r(A). Si Int(X) # &, on
note Apin son plus petit élément et on vérifie que

8(Amin) = r(t, 8) mod 27, 2)
si Int(A) = &, Fam(A) a un unique élément (&, ) eton a r(, @) =0.

2.5. L’involution de Lusztig. Soient m € N et A € PSY"P-5P(2m). On note A(L) =
(X(A), Y(1)) le symbole spécial associé a A. On représente tout élément de la
famille de A par un symbole A = (X, Y) vérifiant la condition 2.2(1). Soient A =
(X,Y), A= (X',Y’) deux éléments de Fam(A). On pose

(A, AY=r(A)+r(AN)+|1XNX'NYW)|+|YNY' NX(A)| mod2Z.
Cela définit une application :
(-, -):Fam(}) x Fam(A) — Z/27.
On définit un automorphisme F de 1’espace C[Fam())] par la formule

F(A)=|Fam()[72 Y (=DM
A’eFam())

les symboles étant ici identifiés aux éléments de base de C[Fam())]. On vérifie
qu’il est involutif. D’apres ce que ’on a dit en 2.2, I’espace C[S,,,imp] st somme
directe des sous-espaces C[Fam(A)] quand A décrit P¥Y™P-P(2m). On note F 1’au-
tomorphisme de C[S,, imp] qui est la somme directe des automorphismes de ces
sous-espaces que 1’on vient de construire.

Pour A € P°"P(2m), on définit exactement de la méme facon un automor-
phisme F de C[Fam(A)]. Puis, par somme directe, on en déduit un automorphisme
de C[Sm,pair]'

Dans le cas orthogonal pair, on dispose d’une involution o de Fam(A) : si A =
(X,Y), o(A)= (Y, X). Pour A, A’ € Fam()), on vérifie la formule

(o(A), Ny=r(A)+ (A, A') mod27Z. (1)
Rappelons que
S= B CISw.impl ® CLSu pail-

n',n"eN

n’—&—n”:n

On a défini des automorphismes F de chacun des espaces qui interviennent ici. Par
produit tensoriel et sommation, on en déduit un automorphisme F de S. On a défini
en 2.1 un isomorphisme symb : R — S. Par celui-ci, on transporte 1’automorphisme
F de S en un automorphisme F de R. C’est I’automorphisme de Lusztig introduit
en 1.4.
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2.6. Dualité. Soit m € N. On a introduit en 2.1 I’ensemble X, jmp, que I’on voit ici
comme un ensemble de couples (r, p), ou p € Wm,,z,,. On définit une involution
de cet ensemble par (r, p) — (r, p ® sgn). Transportons-la en une involution de
Sm.,imp par la bijection symb. On note d I’involution obtenue. Elle se calcule ainsi.
Soit A = (X, Y) € S,,imp. Fixons un entier a plus grand que tous les termes de X
et Y. Posons

X' ={a,....,0—{a—y; yeY}, Y ={a,...,0}—{a—x; x € X}.

Alors d(A) = (X', Y'). Cette formule montre que d conserve la décomposition
en familles, ¢’est-a-dire que si A et A’ sont dans une méme famille, alors d(A) et
d(A") sont aussi dans une méme famille. On définit une application appelée dualité
d : PY™PP(2m) — PP (2m 4 1) ou d : PP (2m + 1) — PY™PP(2m) par la
condition Fam(d (X)) = d(Fam(})). Les deux applications sont inverses 1’une de
I’ autre.

Ces dualités s’étendent en des applications d : PY™P(2m) — PP (2m 4 1)
oud : P (2m 4 1) — PY™P-5P(2m). Rappelons la définition de la premiére, celle
de la seconde étant similaire. Soit A € P*Y™P(2m). La correspondance de Springer
associe au couple (A, 1) € P¥™P(2m) une représentation p, | de W,. Le couple
(0, py,1) appartient & ¥,, jmp. Il existe une unique partition symplectique spéciale,
que I’on note sp(), dont la famille contient le symbole symb(0, p; 1). En fait,
on montre que sp(A) est la plus petite partition symplectique spéciale A’ telle que
A < A. On pose d(1) = d(sp(r)). Cette dualité est décroissante : A < A’ entraine
d))y <d).

On peut remplacer X, jmp par X, pair dans la construction ci-dessus. On ob-
tient une dualité d qui est une involution de Porthsp(2m). Celle-ci s’étend en une
application d : P°"™(2m) — PSP (2m), qui est décroissante.

2.7. Calcul de d()). Soient m € N et A € PY™(2m). Pour i € Jord(A) U {0},
notons J (i) 'ensemble des indices j > 1 tels que A; =i. C’est un intervalle de
N — {0}, infini si i = 0. On note ji,in (i) son plus petit élément et, si i # 0, jmax (@)
son plus grand élément. Considérons I’ensemble des éléments i de Jord® (1) tels
que mult, (i) soit impaire. Comme en 2.2, si cet ensemble a un nombre pair d’élé-
ments, on les note iy > - -- > i;. S’il a un nombre impair d’éléments, on les note
ip>--->i;_1etonposei; =0.Pour h =1, ..., ¢, on vérifie que

Jmin(ip) =h mod2Z et, siip #0, jmax(in) =h mod2Z.

Considérons les éléments de Jord(A) U {0} qui n’interviennent pas dans la suite
i1, ..., I, c’est-a-dire les i € Jord(A) tels que mult, (i) soit pair et aussi 0 dans le
cas ol i; # 0. Notons J()) cet ensemble. On décompose 7 (1) en union disjointe
T XuTJ"() : ")) est’'ensemble des i € J (1) tels qu’il existe h =1, ...,¢/2
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de sorte que iz;—1 > i > iop; J'(A) est son complémentaire. On vérifie que

pouri € J'(A), jmin(i) est impair et, si i # 0, jmax (i) est pair;
pouri € J”(A), jmin(i) est pair et, sii # 0, jmax(i) est impair.
Notons

Pt(A) Iensemble des entiers impairs j > 1 tels que A jestpairet Aj_ > Aj,
avec la convention Ay = o0;

P~ (1) I’ensemble des entiers pairs j > 2 tels que A est pair et A; > A4 1;
Q" (M) I'ensemble des entiers pairs j > 2 tels que A; est impair et Aj_ > A;;

O~ (A) T'ensemble des entiers impairs j > 1 tels que A; est impair et A; > Ay 1.
Ces ensembles sont disjoints. A 1’aide des propriétés précédentes, on voit que

Pt(A) estI’ensemble des jmin(i) pour i = i), avec h impair,
ou pour un élément pairi € J'(1);

P~ (A) estl’ensemble des jn.x (i) pour i =iy avec h pair et i, %0
ou pour un élément pair non nul i € 7' (1);

Q7 (1) est’ensemble des jiin(i) pour un élément impair i € 7" (1);

O~ (L) estl’ensemble des jyax (i) pour un élément impair i € 7" (1).

Ces ensembles sont disjoints. Les éléments de P (1) U P~ (A) apparaissent
presque tous par paires. Un élément de P (A) de la forme jiin (i) pour i = i;, avec
h impair est suivi de I’élément jax(ip+1) € P~ (A) sauf si iy = 0. Un élément
de PT (1) de la forme jiyin (i) pour un élément pair i € J'(A) est suivi de 1’élément
Jmax(i) € P~(X) sauf si i = 0. Le plus petit élément de P (L) est jmin(i;—1) si
i; =0 o0u jnpin(0) sii; # 0. Il n’est suivi d’aucun élément de P~ (1). Il en résulte
que |[PTA)| = |P~(L)|+ 1 et que, si on note ces ensembles

PTM) ={pf < <pgpyh P W ={p; < <p;},
on a les relations
Pl <Py <Py <py < <Pf<Pi <Pagr
On voit de méme que |QT(L)| = |Q~(X)| et que, si on note ces ensembles
0t ={q < <q}, QO W={g < <gq},
on a les relations

q1+<ql_<q;<q2_<---<q;<qb_.
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Remarquons que, pour j € QT (%), ona A; = A;4. En effet, A; est impair, donc
mult; (A ;) est pair. Mais on a aussi A;_1 > A;, d’ou I’égalité€ cherchée. De méme,
pour j € Q7 (A),onaj>2etd; | =Aj.

Définissons deux suites de nombres

M) =0CM1,8R)2,...) et s(A)=(s(M)1,5Q)2,...)

par les égalités

1 sijePt(h), 1 sijeQt),
(hj=1-1 sijeP (M), s@)j=1-1 sije0 (),
0 sinon; 0 sinon;

Lemme. On a les égalités (i) sp(A) =A+s(A); (i) dA) =1 +C().

Preuve. Posons v = A 4 s(A). Montrons que v est une partition, c’est-a-dire que
V; > v;y1 pour tout j > 1. Puisque le couple (v, v;11) s’obtient en ajoutant a
(Aj, Aj41) un couple qui appartient a {—1,0, 1} x {—1, 0, 1} et puisque A; > A1,
la conclusion est claire sauf si le couple ajouté est (—1,0), (0, 1) ou (—1, 1). Le
premier cas se produit seulement si j € Q7 (A). Dans ce casona A; > A4 par
définition de O~ (A) etalors A; —1> A ;. Le deuxieme cas se produit seulement si
j+1€ Q" ()). Dans ce cas, on a encore Aj > Ajy1 par définition de Q7T (A) et alors
Aj > Ajq1+ 1. Le dernier cas se produit quand j € Q" (A) et j+1 € 0% (1).Ona
encore A; > A1 De plus, A; et A ;1 sont tous deux impairs. Donc A; > A1 +2.
Alors Aj —1 > X1+ 1.

L’égalité des nombres d’éléments de QT (L) et de O~ (1) et la définition de s(X)
entrainent que S(v) = 2n. Une partition p de 2n est symplectique et spéciale si et
seulement si, pour tout entier j > 1 impair, u; et u ;41 sont de méme parité et si,
lorsque ces nombres sont impairs, ils sont égaux. Cela équivaut a : pour tout j > 1
impair, si u; ou u ;4 est impair, alors ;; = w;41. Montrons que v vérifie cette
condition. Soit un entier j > 1 impair, supposons v; impair. L’entier j n’appartient
pas 2 Q" (A) car il est impair. Il n’appartient pas 8 O~ (1) : sinon A serait impair
et v; = A; — 1 serait pair. Donc s(1); =0 et v; = ;. Puisque j est impair, que
Aj=v; estimpair et que j € Q@ (1), ona A; = A;4. Cette égalité entraine que
j + 1 n’appartient pas 2 Q1 (1). Il n’appartient pas non plus 8 Q~ () car j + 1 est
pair. Donc s(A) j11 =0, vj41 =X etonconclut v; =v; ;. Une preuve analogue
montre que, si vj 4 est impair, on a v; =v; 1. Donc v est symplectique et spéciale.

Soit j > 1. Par construction et d’apres la description des ensembles O (1)
et 0~ (1), Sj(v) = S;j(A) sauf s’il existe un élément impair i € 7" (1) tel que
Jmin(i) < J < jmax(@). S’il existe un tel 7, on a §;(v) = §;(A) + 1. Cela montre que
A <v. Soit u € PY™PP(2n) telle que A < . On a §;(A) < S;(u). Cela entraine

S (0) < ;1) (1)
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sauf s’il existe i comme ci-dessus. Supposons qu’il existe un tel i et notons sim-
plement j© = juin(i), j~ = jmax(i). On a j© € QT(1) et j~ € Q7 (3). Par
définition de jyin(i), on a A;+_1 > Aj+. Les entiers Ay, ..., A;+_1 sont tous les
entiers strictement supérieurs a A j+ = i qui interviennent dans A, comptés avec
leurs multiplicités. Puisque A est symplectique, I’entier S;+_1 () est pair. Puisque
jt€QT(A), jT est pair et on sait que i est impair. Donc S;+ (%) = Sj+_1(A) +i
est impair et aussi S;+ (1) + j*. Puisque A j =i est impair pour j' € {j*,..., j},
on voit que S;(A) + j est aussi impair. Supposons j pair. Alors §;(A) est impair.
Or le fait que p soit spéciale entraine que S; (1) est pair. Linégalité S; (1) < S;(u)
est alors stricte et on conclut S;(v) = §;(A) +1 < §;(«). Supposons j impair.
On sait que j* est pair et que j~ est impair par définition des ensembles Q" (1)
et O~ (A). Les hypotheéses j € {j*,..., j~ — 1} et j impair entrainent alors que
j—leljt,....,j —1}etj,j+1e{jT+1...,j7 —1}. L'égalité (1) est
démontrée pour j — 1 et pour j + 1 puisque ces entiers sont pairs. D’ou

Si—1(v) =81 (w) et Sj1(v) <S8 (w).

De plus, puisque j et j + 1 appartiennent tous deux a {j*+1,...,j~ —1},0ona
v; =i =v;41. La seconde inégalité ci-dessus se récrit

Sic1W)+2i < S (w)+ )+ ijgr.
On additionne cette inégalité avec la premiere inégalité ci-dessus et on obtient
Si—1()+i <8 (w) + (uj +pjr1)/2.
Evidemment, (j+mjr1)/2<pj,dou
Sic1w)+i <81 (u) +pj.

Le membre de gauche est S;(v), celui de droite S;(u). Cela acheve de démon-
trer (1).

L’inégalité (1) signifie que v < w. On a ainsi démontré que v était la plus petite
partition symplectique spéciale u telle que A < w. Cette propriété caractérise sp(A),
ce qui démontre le (i) de 1’énoncé.

Prouvons maintenant que

LA =¢) +s@). 2
Par définition de ces suites, cela équivaut aux égalités
PT)=PTMUQ~ (M), P (=P~ MHUQOTM). 3)

La premiere égalité concerne des indices j > 1 impairs. Soit un tel j. Supposons
d’abord j € PT(1). Onav; = A; et ce terme est pair. On a de plus A;_| > A;.
Si j =1, on a trivialement v;_; > v; et on conclut j € P*(v). Supposons j > 2.
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Certainement, j — 1 ¢ O (A) puisque j — 1 est pair. Donc v;_; > A;_;, d’ou
vj—1 > v;. Alors j appartient a P (v). Supposons maintenant j € Q™ (). Alors
v;i = A; — 1 et &; est impair, donc v; est pair. Comme on I’a vu, I’hypothese
J € O™ (A) entraine A;_; = A ;. Comme ci-dessus, j — 1 n’appartient pas a O~ ()
donc vj_y>%;j_1=2%; >v;. Dot j € PT(v). Supposons enfin que j € P (v). En
particulier v; est pair. Si A; est impair, on a nécessairement s(A); # 0 et, puisque j
est impair, j appartient 2 O~ (1). Supposons A ; pair. Alors s(1); est pair donc nul.
Si j =1, on a trivialement A;_; > A; et j appartient 2 P (). Supposons j > 2.
Puisque j € P*(v), ona vj_1 >v;,autrement dit A;_; +s(A)j_1 > A;. Onn’a pas
j— 1€ Q% ()) car cette relation entraine que Aj_; = A; est impair contrairement
a I’hypothese. Donc s(A) ;-1 < 0. L’inégalité A;_; +s(A);_1 > A; entraine alors
Aj—1 > Aj,donc j € P*(). Cela démontre la premiere égalité de (3). La seconde
se démontre de fagon analogue. Cela prouve (3), d’ou (2).

Dans le cas ou A est spéciale, on a défini I’ensemble d’intervalles I~nt(k). On
voit que PT (1) est ’ensemble des jmin(A) quand A décrit fvm(k) et que P~ (L)
est I’ensemble des jnax(A) pour A € Int(d). Alors (1) est la suite que 1’on a
définie en [Waldspurger 2018b, 1.6]. On a démontré dans cette référence 1’égalité
'd(A) = L+ ¢ (X). Supprimons I’hypothése que A est spéciale. Par définition, d(1) =
d(sp(A)). D’ou

‘d(n) ="d(sp(r)) = sp(R) + £ (sp(R)).

Puisque sp(A) = v = X + s(A), ’égalité (2) entraine la deuxieme assertion de
I’énoncé. U

Soit maintenant A € P°™"(2m). On définit P+ (1) et P~ () en échangeant les
conditions de parit€ sur les A ;. C’est-a-dire

PT(A) Iensemble des entiers impairs j > 1 tels que A j est impair
et Aj_1 > Aj, avec la convention Ao = o0;

P~ (X) I’ensemble des entiers pairs j > 2 tels que A; est impair et A; > A ;1.

Dans ce cas, on a |P*(L)| = |P~(1)|. On définit la suite { comme plus haut.
Nous aurons besoin de I’analogue du (ii) du lemme ci-dessus, mais seulement dans
le cas ou A est spéciale. C’est-a-dire

siaeP™P2m), ona dA)=Ar+C0). 4)
Cf. [Waldspurger 2018b, 1.7].

3. Induction endoscopique

3.1. L’induite endoscopique de deux partitions spéciales. Soient ni, n, € N tels
que 1] 4+ ny = n et soient A; € PY™P(2n1) et Ay € PO (21,). Pour un indice
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J =1, ondit que Ay, resp. Az j, est de bonne parit€ si A ; est pair, resp. A ; est
impair. Notons

JT  Tensemble des J = 1tels que j soit impair, A1 ; et A, ; soient de bonne
parité et il existe d = 1,2 de sorte que Ay, j—1 > Aq,j
(avec toujours la convention Ay 9 = 00);

J~ Tensemble des j > 1 tels que j soit pair, A1 ; et A ; soient de bonne parité
etil existe d =1, 2 de sorte que Ay, ; > Ay, j+1-

On vérifie que |J 7| =|J 7| et que, si on note j;” < --- < j les éléments de J T
etjl_<---<ja_ceuxdeJ_,0najl+<j1_<j2+<---<j;<ja—.0ndéﬁnitune
suite & = (&1, &2, ... ) de nombres entiers par §; = 1si j € JT, gi=—1lsijel™

et&;=0si j ¢ JTUJ~. On pose
A=A +r+E.

C’est une partition symplectique de 2n, appelée 1’induite endoscopique de A et A;.

Pour unifier les nota’Ei\(’)ns, on pose INnt()Q) = Int(A;). Pour d = 1, 2, posons
Jd,min = {jmin(A); Ae Int()‘d)}, Jd,max = {jmax(A); Ae Int(kd)}- On note j+ =
Jl,min N JZ,minv ji - -]l,max N -]2,max>

j - Jl,min U -]2,min U Jl,max ) J2,max U {OO}

Appelons intervalle relatif d’indices un sous-ensemble de N — {0} de ’une des
formes suivantes :

(1) {j}pour je JTtUT;

(2) {j,...,j'}ou j et sontdeux éléments consécutifs de 7 tels qu’il existe
un unique d = 1, 2 de sorte que {j, ..., j'} C J(A) pour un A € Int(1y).

Pour un intervalle relatif d’indices J, on pose D(J) ={A;; j € J}. On appelle
intervalle de X relatif a (A1, A») un sous-ensemble de Jord(1) U{0} de la forme D(J).
On note I~ntM, 1, (1) I'ensemble de ces intervalles relatifs. On montre qu’ils sont dis-
joints, formés de nombres pairs et que I,va 1, (1) est une partition de J ord® (1) U{0}.
Pour un intervalle relatif D, on note J (D) I’intervalle relatif d’indices J tel que
D = D(J). Les intervalles relatifs sont ordonnés de fagon naturelle : D > D’ si
et seulement si i > i’ pour tous i € D, i’ € D'. L’intervalle minimal est celui
qui contient 0, on le note Dy, et on pose Inty, »,(X) = I~nt,\1, 2, (A) — {Dmin}. Pour
De INntM, 1, (A), on note jmin (D), resp. jmax(D), le plus petit, resp. grand, élément
de J(D) (on considere que jmax (Dmin) = 00).

Montrons que

pour tout j € 7,
il existe un unique intervalle relatif D tel quej € {jmin(D), jmax(D)}. (3)



FRONTS D’ONDE DE CERTAINES REPRESENTATIONS TEMPEREES 63

Preuve. Lunicité est claire puisque, quand D parcourt I~nt;\l, 1, (1), les J(D) sont
disjoints. Pour j =00, on a j = jpmax(Dmin)- Soit j € J différent de co. Supposons
par exemple j pair, le cas j impair étant similaire. La définition de J et cette
hypothese de parité imposent qu’il existe d = 1,2 et A, € Int(A4) de sorte que
J = jmax(Ag). Pour fixer la notation, on suppose qu’il en est ainsi pour d = 1.
L’ensemble des j' € J tels que j' < j n’est pas vide : il contient juin (A1). No-
tons j~ le plus grand de ces éléments. On a donc jnin(A) < j et{j ,..., j}
est contenu dans J(Ay). Si {j—,..., j} n’est contenu dans J(A;) pour aucun
Aj € I~nt()\2), il existe par définition des intervalles relatifs un tel intervalle D tel que
J(D)={j",...,jletona j= jmax (D). Supposons qu’il existe un A, € I~nt()\2) de
sorteque {j, ..., j} C J(A2).Si j = jmax(A2), alors, par définition des intervalles
relatifs, il existe un tel intervalle D tel que {j} = J(D) et on conclut. Supposons
j < jmax(A2). Onnote jT le plus petit élément de 7 qui soit strictement supérieur

a j. Comme précédemment, on a j* < jnax(A2), d’ou {j,..., jT} C J(Ay). S’il
existait A} € Int(1) vérifiant {j, ..., jT} C J(A}), on aurait A| = A; puisque

j € J(Ay) etaussi jmax(A}) = jt > j. Cela contredit I’hypothese j = jmax(A1).
Un tel A| n’existe donc pas et, par définition des intervalles relatifs, il existe un
tel intervalle D tel que J(D) ={j,..., j*}. Alors j = jmin(D). O

On définit une fonction x;, 5, : I~ntM, 1 (A) = Z/27 de la fagon suivante. Soit
D eI’HtM,,\Z()\). Si|J(D)|=1, xp,.,(D)=0.51|J(D)|>2, J(D) estde laforme
(2) ci-dessus et cette relation nous fournit un indice d € {1, 2}. On note x, ., (D)
I’'image de d dans Z/27. Remarquons que I’on a xy, ., (Dmin) =
On définit I’ensemble Pf 5, (1) formé des jmin(D) qui sont impairs, pour D €
Intk1 1, et’ensemble P;\ I (1) formé des jmax (D) qui sont pairs, pour D €lInty, 5, (1).
Oﬂ définit une suite &), 3, (A) = (&x,, 2, (M1, &ay0,(A)2, .. .) par é’x. wm)j=1sije€
)tl )\2()\) ;)\1 kz()‘)] =—1 Sl] eP Al )LZ()\) {)\1 )»2()“)] —OSIJ ¢ A, )\2()‘)U s )uz()\‘)'

Lemme. C(A1) +C(A2) = &y, (M) +6.

Preuve. Restreignons-nous d’abord a I’ensemble des j > 1 impairs. Alors les fonc-
tions ci-dessus sont les fonctions caractéristiques des ensembles P* (1), P*()y),
P55, (%) et JT. 11 s’agit donc de prouver les égalités

PT)UPT () =P, (G)UJTT; )

PT)NPT ) =P, G)NJ*. )

Rappelons que, puisque Ay est spéciale pour d = 1,2, P*(1y) est I’ensemble
des jmin(Ag) pour Ay € Int(Ay). Considérons un j appartenant a I’ensemble de
gauche de (4). Pour fixer la notation, supposons j € P (). Alors j = jmin(A1)

pour un Ay € Int(Ay), en particulier j appartient a I’ensemble 7. Si A, ; est impair,
j appartient a J* par définition de cet ensemble. Supposons A, ; pair. Soit j*
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le plus petit élément du sous-ensemble des éléments de I’ensemble 7 qui sont
strictement supérieurs a j. Ce sous-ensemble contenant jyax (A1) (ol il convient ici
de considérer que jmax (A1 min) = 00), j T existe etona j* < jmax(A1). Lensemble
{j. ..., jT} est contenu dans J(A;) mais, puisque A, ; est de mauvaise parité, il
n’existe pas de A, € Int(X,) tel que {j,..., j*} soit contenu dans J(A;). Par
définition {j, ..., jT} est alors égal a J(D) pour un intervalle relatif D et on a
J = jmin(D). Donc j € P;T 2, (A). Inversement, considérons un j qui appartient a
I’ensemble de droite de (4). Si j € JT, il est par définition de la forme jmin(Ay) pour
und =1,2etun Ay € Int(Ay). CEst—é—dire j € PT(Xy). Supposons j € Pﬁ’l\z (A).
Alors j = jmin(D) pour un D € Inty, ,, (). Par définition des intervalles relatifs,
J appartient a 7. Puisque j est impair, j est forcément de la forme jmin(Ag) pour
und =1,2etun Ay € I’I\ft()»d). C’est-a-dire j € P (Ay). Cela prouve (4).

Soit j € PT (A1) N Pt (Xy). Alors, pour d = 1,2, j est de la forme jiyin(Ag)
pour un Ay € Int(A,4). En particulier, A4 ; est de la bonne parité. Par définition
de JT,ona j € J*. Cela implique que A; est pair. Donc il existe un intervalle
relatif D € vant;\lykz(k) tel que j € J(D). Si j =1, on a forcément j = jnin(D) et
Jj€E Px—t,xz (A). Supposons j > 2. Pour d =1, 2, I’hypotheése j = jmin(A4) implique
que {j — 1, j} n’est contenu dans J(A]) pour aucun A/, € Int(Ay). Par défini-
tion des intervalles relatifs, {j — 1, j} n’est donc contenu dans J(D’) pour aucun
D e I’Vm,\l,,\z()\). En particulier j — 1 ¢ J(D), d’ol j = jmin(D) et j € P;T’AZ()L).
Inversement, soit j € P;: aLNJ *. Par définition de JT, A1 ; et A ; sont de
bonne parité et il existe d = 1,2 et Ay € Int(Ay) de sorte que j = jmin(Ay). Pour
fixer la notation, on suppose que ce d est égal a 1. Donc j € P*()A;). L’hypo-
thése que A ; est de bonne parité implique qu’il existe A, € Int(;) de sorte
que j € J(A3). Supposons d’abord que tous les éléments de J soient supérieurs
ou égaux 2 j. Dans ce cas, j = jmin(A2) et j € PT();). Supposons maintenant
qu’il existe des éléments de J strictement inférieurs a j, notons j~ le plus grand
d’entre eux. L’hypothese j € P):']r 3, (1) signifie que j = jmin(D) pour un Ai/ntervalle
relatif D. Donc {j—, ..., j} n’est de la forme J(D’) pour aucun D’ € Int; ;,(A).
Les entiers j~ et j sont deux éléments consécutifs de 7. Ces deux propriétés et
la définition des intervalles relatifs entrainent que le nombre de d pour lesquels il
existe A/, € Int(Ay) tel que {j—, ..., j} C J(A)) est pair. Pour d = 1, il n’existe
pas de tel A car j = jmin(A1). Donc il n’existe pas non plus de tel A}. En par-
ticulier {j—, ..., j} € J(A»). Puisque {jmin(A2), ..., j} C J(A3), cela entraine
J~ < Jmin(A2), et, puisque jmin(A2) € J, la définition de j~ entraine j < jmin(A2),
d’ou forcément j = jmin(Az). Donc j € PT(A;). Cela prouve (5).

Un raisonnement analogue vaut en se restreignant a I’ensemble des entiers pairs
j=2. O

On dit que A et A, induisent régulierement A si et seulement si I~nt;\,, 1 (1) estla
partition la plus fine de Jord® (1) U{0}, c’est-a-dire si et seulement si tout intervalle
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relatif est réduit a un seul élément. Dans ce cas, xy,,x, est définie sur Jord®? (A)U{0}
etona x, 1, (0)=0.

3.2. Une proposition d’existence. Soient n € N et A € PY™(2n). Fixons une
fonction x : Jord® (1) U {0} — Z/2Z telle que (i) = O pour tout i € Jord®® (1) tel
que mult, (i) =1 et telle que x (0) = 0.

Proposition. /] existe ny, ny € N tels que ny +ny =n et il existe Ay € PY"PP(2n;)
et Ay € PONSP(2p,) tels que

(1) A1 et Ay induisent régulierement A ;
(i) dA)Ud(r2) =d(2);
(1) xay.2, = X-
La preuve est identique a celle de [Waldspurger 2018b, 1.11]. On la refait car,

dans cette référence, on avait bétement supposé que tous les termes de A étaient
pairs. On utilise les notations de 2.7.

Preuve. Notons J*+ I’ensemble des j > 1 tels que j soit impair, A; soit pair et
Aj>Ajy1.Notons J~ I’ensemble des j > 2 tels que j et A soient pairsetA;_1 > A ;.
On voit que J* est ’ensemble des jim.x (i) pour i = i, avec h impair ou pour
i € J"(x) NJord® (1). De méme, J~ est 'ensemble des jiin (i) pour i = ij, avec h
pair ou pour i € 7” (%) NJord®®(1). On en déduit que J+ et I~ ont le méme nombre
d’éléments et que, sionnote J* = {j," <--- < jFletIJ ={j; <---<j ) ona

W< <<y <....<jt<il.
On note v = (v1, t, ...) la suite de nombres définie par v; =15si j € It vji=—1
sijeJ etr;=0sijgJtuUI .
Soit d € {1, 2}. Pour j > 1, disons que j et j + 1 sont d-liés si et seulement si
I’une des conditions suivantes est vérifiée :

Aj=MAjy estpairet x(A;) =d+ 1(c’est-a-dire x (A;) =d +1 mod 27); (la)

jedt (1b)
j+1led; (lo)
Aj et Ajy sont impairs et ; € J"(X). (1d)

Remarquons que cette derniere condition équivaut a
Aj et Ajq; sont impairs et A4 € J"(1). (1d")

n effet, si est vérifiée, on a i, > A; > iy pour un A impair. Alors i, >
En effet 1d) est fi Aj +1p h impair. Al

Ajr1 = ipy1. Mais Ajyy # ipy1 puisque Ajyp est impair et iy est pair. Donc
in > Ajy1 > ipg1 et Ajp1 € J”(X). La réciproque est similaire.
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Pour deux entiers 1 < j < j’, disons qu’ils sont d-liés si et seulement si k et k + 1
sont d-liés pour tout k = j, ..., j'—1. C’est une relation d’équivalence et les classes
sont des intervalles de N — {0}, éventuellement infinis. On note JNntd I’ensemble
des classes d’équivalence ayant au moins deux éléments. Pour J € ﬁvntd, on note
Jmin(J), resp. jmax(J), le plus petit, resp. grand, élément de J (avec jmax(J) = 00
si J est infini). Pour d = 1, 2 définissons une fonction p; : N — {0} — Z/27Z par
pa(j) =17¢’il existe J € T/I?lltd tel que j € J, pg(j) = 0 sinon. Montrons que

(2) I’ensemble 5vntd est fini ; il contient un élément infini si et seulement sid =1
on note Jnt; I’ensemble ’51\1/’(1 privé de cet élément infini et on pose Jnt; = ﬁ;{tz ;

(3) pour J € Tflthd, Jmin(J) est impair et ja.x(J) est pair ou infini;

(4) pour j >1,0na
2 sijeJtugT;

1 siAjestpair,etj&Jrug;
0 siAjestimpaireti; € J'(1);
2 siijestimpairetd; € J"(A);

r1(j)+p2(j) =

(5) J* est égal a ’ensemble des j > 1 tels que p1(j) = p2(j) =1 et qu’il existe
d =1, 2 etun élément de J € Int; de sorte que j = jmin(J);

(6) J~ estégal al’ensemble des j > 1 tels que p;(j) = p2(j) =1 et qu’il existe
d =1,2 etun élément de J € Int, de sorte que j = jmax(J).

Soit #(A) le plus grand entier / tel que A; > 0. Parce que x(0) = 0, on voit
que, pour j > t(X), j et j+ 1 sont 1-liés mais pas 2-liés. Donc {#r(A) + 1, ...} est
contenu dans un intervalle infini J; min € ﬁvntl tandis que, pour j >¢(A)+2, {j} est
une classe d’équivalence pour la 2-liaison et j n’est pas contenu dans un élément
de Jnt,. Cela prouve (2).

Soit J e 5vntd. On pose simplement j = jyin(J). Montrons que j est impair. C’est
évident si j = 1. On suppose j > 2. Par définition, j et j + 1 sont d-liés tandis
que j — 1 et j ne le sont pas. Si (1b) ou (1c) est vérifiée, j est trivialement impair.
Supposons vérifiée (1a). On n’a pas A;_; = A; : sinon ces entiers seraient pairs,
on aurait x (A;j_1) = x(A;) =d + 1 et j — 1 et j vérifieraient I’analogue de (1a)
et seraient d-li€s. Donc A;_1 > A ;. Alors j est impair ou appartient a J~. Or cette
derniere relation est exclue car elle entraine que j — 1 et j vérifient I’analogue de
(1c) et sont d-liés. Donc j est impair. Supposons maintenant que (1d) soit vérifiée.
Supposons d’abord que A;_; est impair. Alors j — 1 et j vérifient I’analogue de
(1d’) et sont d-liés, ce qui n’est pas le cas. Donc A ;_; est pairet Aj_; > A;. Alors
j — lestpairou j —1€J*. Or cette derniere relation est exclue car elle entraine
que j — 1 et j vérifient ’analogue de (1b) et sont d-li€s. Donc j — 1 est pair et j
est impair. Cela montre que jnin(J) est impair. Une preuve analogue montre que
Jmax (J) est pair s’il n’est pas infini. Cela prouve (3).
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Soit j € J*. Alors (1b) est vérifié et j et j + 1 sont d-liés pour d = 1, 2. Donc
p1(j) = p2(j) = 1. Soit maintenant j € J~. Alors j est pair donc différent de
1. L’analogue de (1c) pour le couple (j — 1, j) est vérifiée et j — 1 et j sont d-
liés pour d = 1, 2. Donc p(j) = p2(j) = 1. Supposons maintenant A ; pair mais
j €37 UJ ™. Supposons par exemple j impair, le cas ol j est pair se traitant de
facon analogue. Puisque j ¢ 3, ona A; = A,4. Les entiers j et j + 1 sont d-
liés pour I'unique d tel que x (A;) =d + 1. Pour ce d, pq(j) = 1. Soit d’ I’autre
élément de {1, 2}. On doit prouver que j n’appartient a aucun élément de ﬁvntd/.
On vient de voir que j et j + 1 ne sont pas d’-liés. Si j appartenait a un élément
7 e ﬁvntd/, cet intervalle serait fini et j serait égal & jn.x(J). Mais alors j serait
pair d’apres (3), contrairement a 1I’hypothese. Supposons maintenant A ; impair, j
impair et A; € J'(A). Cette derniére condition implique d’apres 2.7 que jmax(% ;)
est pair, donc j < jmax(A;),donc A1 =A;. Pourd =1, 2, les conditions (1a), (1b)
et (1c) ne sont pas vérifiées : elles imposent que A; ou A est pair. La condition
(1d) ne I’est pas puisque A ; € 7'(A). Donc j et j + 1 ne sont pas d-liés. Si j =1, j
n’appartient donc a aucun élément de ﬁ?l/fd. Si j > 1, les analogues des conditions
(1a) et (1c) pour le couple (j — 1, j) ne sont pas vérifiées : elles imposent que A ;
est pair. L’analogue de (1c) n’est pas vérifiée : elle impose j — 1 impair donc j
pair. L’analogue de (1d') n’est pas vérifiée puisque A; € 7'(1). Donc j — 1 et j
ne sont pas d-li€s. Donc p,(j) = 0. Supposons maintenant A; impair, j pair et
j € J'(A). Cette derniére condition implique d’apres 2.7 que jmin(A ;) est impair,
donc jmin(A;) < j, donc A;_; = A;. Des arguments analogues a ceux ci-dessus
montrent que, pour d = 1,2, py(j) = 0. Supposons enfin que A; est impair et que
j € J"()). Puisque mult, (X ;) est paire,ona Aj_; = Aj ou A;4; = A;. Dans le
premier cas, j — 1 et j vérifient I’analogue de (1d’) et sont d-liés pour tout d. Dans
le deuxieéme cas, j et j + 1 vérifient (1d) et sont d-liés pour tout d. Donc p;(j) =1
pour tout d. Cela démontre (4).

Soit j € 3J7. D’apres (4), on a p1(j) = p2(j) = 1, c’est-a-dire que, pour tout
d, il existe J; € jvntd tel que j € J4. Si j =1, on a forcément j = jnin(J4) pour
tout d. Supposons j > 1. On veut montrer que j = jnin(J4) pour au moins un d,
autrement dit que j — 1 et j ne sont pas d-liés pour au moins un d. Les analogues
pour le couple (j — 1, j) des conditions (1b) et (1c) ne sont pas vérifiées : elles
impliquent que j est pair, alors que j est impair puisque j € J*. L’analogue de
(1d) n’est pas vérifi€e, puisque A; est pair. Donc j — 1 et j ne sont d-li€s que
si ’analogue de (1a) est vérifiée. Mais cette analogue ne peut étre vérifiée que
pour un unique d. Cela démontre que J* est contenu dans I’ensemble décrit en (5).
Inversement, soit j > 1, supposons que pi(j) = p2(j) =1letqu’il existed = 1,2
et un élément de J € Tfl?l/td de sorte que j = jpmin(J). Autrement dit, ou bien j =1,
ou bien il existe d tel que j — 1 et j ne sont pas d-liés. D’apres (3), j est impair.
D’apres (4), on a soit j € JTUJ ™, soit Aj estimpair et A; € 7”(A). Dans le premier
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cas, I'imparité de j entraine j € J*, ce que I’on veut prouver. Supposons donc que
A estimpair et A; € J”(A). D’aprés 2.7, cette condition entraine que jmin(A ;) est
pair, donc jmin(A;) < jetAj_; =2x;. Alors j — I et j vérifient ’analogue de (1d")
et sont d-liés. Cela contredit I’hypothese. On a ainsi prouvé (5). La preuve de (6)
est similaire.

La relation (3) entraine

pa(j)=pa(j+1) sij estimpair. (N
La définition de v et 1’assertion (4) entrainent
tj=p1(j)+ p2(j) + 1+ 2; mod 27. ®)
On va montrer qu’il existe des suites d’entiers positifs ou nuls A; et A, vérifiant
les conditions suivantes, pour tout j > 1 :
(9) Arjt+Azjtr=Aj;
(10) pourd =1,2, A4 ;j=d~+ pq(j) mod2Z;
(11) pourd =1,2,0n a
(@) Ag,j = Aq, jy1 81 j estpair, py(j) = 1 et il n’existe pas de J € Int, tel
que j = jmax(J) ou si j est impair et py(j) =0;

(b) Ag,j > Aq, j+1 si j est pair et il existe J € JInty tel que j = jmax(J) (la
condition que j est pair est redondante d’apres (3));

(€) Ag,j = Ag,j41 81 j estimpair et py(j) =1 ousi j est pair et py(j) = 0.

On raisonne par récurrence descendante sur j. Pour j > 7(A) +2, on pose Ay, j =
A2,; =0. On a vu dans la preuve de (2) que j €était contenu dans Jy i, mais dans
aucun élément de Jnt,. Donc p(j) = 1 et p2(j) = 0. De plus, j n’appartient
pas 2 3" UJ~ donc t; = 0. On voit alors que toutes les conditions ci-dessus sont
vérifiées.

On fixe j et on suppose que 1’on a fixé des termes A j/, A2 j» pour j' > j de
sorte que les conditions ci-dessus soient vérifiées pour ces j'. Pour d = 1, 2, on pose
Ad,j =Aa,j+1+eq, avec eq € Z. Les conditions ci-dessus se traduisent en termes
de ces entiers e4. L’analogue de (9) étant vérifiée pour j + 1, cette condition (9) se
traduit par

erter=»Xr; —Ajy1+tjp1 — 1. (12)

De méme, la condition (10) se traduit par
eq = pa(j)+ pa(j+1) mod2Z. (13)
Remarquons que, si (12) est vérifiée, la relation (8) entraine

er+ex=pi1(j)+p1(G+ 1D+ p2(j)+ p2(j + 1) mod 27.
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Donc (13) est vérifiée pour un d si et seulement si elle I’est pour les deux d.

La condition (11) se traduit par e; = 0 dans le cas (a), e; > 0 dans le cas (b)
et e; > 0 dans le cas (c). Remarquons que, dans le cas (a), la condition e; = 0 est
compatible avec (13), autrement dit p;(j) = ps(j + 1). En effet, si j est impair,
cette relation est toujours vraie d’apres (5). Si j est pair, la condition (11)(a) impose
que j et j + 1 sont d-liés donc py(j) = pa(j+1) = 1.

Supposons la condition (11)(a) vérifiée pour un d, disons pour d = 1. On n’a pas
le choix pour e; : on pose e; =0. La condition (12) impose ex =A; —Aj 1+t —1;.
Comme on vient de le dire, la condition (13) est vérifiée pour d = 1. Elle I’est donc
aussi pour d = 2. Il reste a vérifier les conditions provenant de (11) pour d = 2.

Supposons j impair. Supposons d’abord que la condition (11)(a) soit vérifiée
pour d = 2, auquel cas on doit vérifier que e, = 0. La condition (11)(a) pour j
impair est que p;(j) = 0. Cette condition est vérifiée pour d = 1, 2. D’apres (4),
Aj est impai{ et Aj € J'(A). D’apres 2.7, jmax(X;) est pair, donc j < jmax(A;) et
%j = Xxj41. Evidemment, j, j +1 ¢ JT UJ~, donc t; = tj1 = 0. Alors e; =
Aj = Ajy1 +tj41 —t; = 0. La condition (11)(b) n’est pas vérifi€ée pour d = 2
puisque j est impair. Supposons la condition (11)(c) vérifiée pour d = 2. On doit
alors prouver que e, > 0. Puisque j est impair, cette condition est que py(j) = 1.
On a aussi p;(j) =0 puisque (11)(a) est vérifiée pour d = 1. D’apres (7), on a aussi
p1(j+1)=0et po(j+1)=1. Alors, d’apres (4), ni j, ni j + 1 n’appartiennent
aJtuJ .Donctj=rtj. 1 =0.Donce;=A; —Aj4; >0.

Supposons plutdt j pair. Supposons d’abord que la condition (11)(a) soit vérifiée
pour d = 2, auquel cas on doit vérifier que e, = 0. Pour j pair, la condition (11)(a)
pour d est que py(j) = 1 et qu’il n’existe pas de J € Inty tel que j = jmax (J).
Cette condition est vérifiée pour d = 1, 2. D’apres (4), on a soit j € 3T UJ ™, soit
Aj est impair et A; € 7”(1). Dans le premier cas, la parité de j impose j € J.
Mais alors la relation (6) implique 1’existence de d et de J € Int, tels que j =
Jmax(J), contrairement aux hypotheses. Supposons donc que A ; soit impair et que
Lj e J"(A). D’apres 2.7, jmax(A;) est impair, donc j < jmax(Aj) et X; = Aj41.
Evidemment, j, j +1 ¢ 3T UJ~, donc t;j =141 =0. Alors

erx=Aj—Ajy1+tjy—1t;=0.

Supposons maintenant vérifiée la condition (11)(b) pour d = 2. On doit prouver que
ey > 0. La condition est que py(j) = 1 et qu’il existe J € Jut, tel que j = jmax (J).
On a aussi p(j) = 1 puisque (11)(a) est vérifiée pour d = 1. D’apres (6), on a
Jj € J7. Cela entraine t; = —1. Puisque j + 1 est impair, ona j + 1 ¢ J~ donc
tir1 <0.Alorse; =A; —Ajy1+vjp1—t; >A; — A1+ 1> 0. Supposons enfin
vérifiée la condition (11)(c) pour d = 2, autrement dit p>(j) = 0. On doit vérifier
que e > 0. Puisque p(j) =1, 0na A; pair et j ZJITUJ dapres (4). Le méme
raisonnement que dans le cas j impair s’applique et on conclut e; > 0.
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On peut maintenant supposer que la condition (11)(a) n’est vérifiée pour aucun d.
Supposons la condition (11)(b) vérifiée pour d = 1. On choisit pour e; le plus petit
entier strictement positif vérifiant la relation (13). On a e; = 1 ou 2. La condition
résultant de (11)(b) pour d = 1 est e; > 0, elle est vérifiée. On pose

€2=)\j—)nj+1 +tj+1 —t;—eq.

Comme précédemment, il reste seulement a prouver que e, vérifie les conditions
résultant de (11) pour d = 2. On a exclu la condition (11)(a). Supposons que la
condition (11)(b) soit vérifiée pour d = 2. On doit montrer que e, > 0. Les condi-
tions (11)(b) sont vérifiées pour d = 1, 2, c’est-a-dire que j est pair et qu’il existe
J4 € Inty de sorte que j = jmax(J4). Autrement dit, py(j) = 1 mais j et j + 1 ne
sont pas d-liés. D’apres (6), ona j € J~, donc A estpair. SiAj 41 =A;, jetj+1
vérifient (1a) pour un d et sont d-li€s contrairement a I’hypothese. Donc A; > A ;1.
Puisque j € J7, on a aussi t; = —1. Le nombre j + 1 est impair donc n’appartient
pasa J,dout;ji; > 0. On voit alors que e = A; — A1+t —t; —ep est
strictement positif sauf si les trois conditions suivantes sont vérifi€es : A; = A1 +1,
tj11 = 0 et ey = 2. Supposons ces conditions vérifi€es. Puisque p(j) = 1 et
e1 = 2, la condition (13) pour d = 1, qui est vérifiée par définition de e;, implique
p1(j+1)=1.Puisque A; =A;1+1, A1 estimpair. Puisque v, =0, la relation
(8) implique que py(j + 1) = 1. Alors, pour d =1, 2, j + 1 appartient a un élément
J,e %d. Puisque j et j + I ne sont pas d-liés, on a forcément j + 1 = jmin(J)).
D’apres (5), cela entraine j + 1 € J*. Donc tj1| = | contrairement a I’hypothese.
Cette contradiction conclut. Supposons maintenant que la condition (11)(c) soit
vérifiée pour d = 2. On doit montrer que e, > 0. On a toujours la condition (11)(b)
pour d = 1, c’est-a-dire que j est pair, que p1(j) =1 mais que j et j + 1 ne sont
pas 1-liés. La condition (11)(c) pour d = 2 dit que p>(j) =0. Alors j et j + 1 ne
sont pas non plus 2-li€s. D’autre part, la relation (4) entraine que A ; est pair et que
j €3TUJ . D’out; =0. On ne peut pas avoir A; = A sinon la relation (1a)
serait vérifiée pour un d et j et j + 1 seraient d-liés, ce qui n’est pas le cas. On
n‘apas j+1 € J~ puisque j + 1 est impair. Donc t;1 > 0. On voit alors que
ey =MXAj—Ajp1+1jp1 —t; — e est positif ou nul sauf si les mémes conditions que
ci-dessus sont vérifi€es : A; = A1+ 1, vj;1 =0 et ey =2. Ces conditions sont
exclues par le méme raisonnement que ci-dessus. D’ou e, > 0.

Il nous reste a traiter le cas ou (11)(c) est vérifiée pour d = 1, 2. On choisit pour
e1 le plus petit entier positif ou nul vérifiant la relation (13). On a ey = 0 ou 1.
La condition résultant de (11)(c) pour d = 1 est e; > 0, elle est vérifiée. On pose
e =Aj—Ajy1+tj41—t;—e;. Comme précédemment, il reste seulement a prouver
que e; vérifie la condition résultant de (11)(c) pour d = 2, c’est-a-dire e, > 0.

Supposons d’abord j impair. Les conditions (11)(c) pour d = 1, 2 disent que
p1(j) = pa2(j) =1.D’apres (7), on a aussi p1(j + 1) = p2(j + 1) = 1. La relation
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(13) pour d = 1 implique e; = 0. Sini j, ni j + 1 n’appartiennenta J* UJ ™, on a
vj=tj; 1 =0ete;=A;—A;41 >0.Siun seul des €léments j et j+1 appartiennent
aJtuUJ ,onaparparité jeJ et j+1¢IJTUI ,ouj+1eIJ etjgITUJ .
Alors tj41 —tj = —1. Mais I'hypothése j € 3" ou j+1 € J~ implique A > A ;4.
Alors e; =X — A1 — 1 > 0. Enfin supposons que j et j + 1 appartiennent tous
deux a2 J*UJ . La parité impose j € 3" et j+1€ 3. Alors tj4 —t; = —2. Mais
les hypotheses j € J* et j +1 € J~ imposent non seulement A; > A ;4| mais aussi
que Aj et A ;4 sont pairs. Donc A; > A1 +2. Alorse; =A; —Aj11 —2>0.

Supposons maintenant j pair. Les conditions (11)(c) pour d = 1, 2 disent que
p1(j) = p2(j) = 0. D’apres (4), A; est impair donc t; =0. Onn’apas j +1€J~
puisque j +1 est impair. Donc tj;1 > 0. On voitalorsque e =A; —A 11+t 11 —e;
est positif ou nul sauf si les trois conditions suivantes sont vérifies : A; = A1,
tj11 =0 et ey = 1. Supposons ces conditions vérifiées. D’apres (13) pour d =1,
ona pi(j+1)=1.Puisque A; = A4, Aj4 est impair. I’égalité v; 1 =0 etla
relation (8) entrainent alors po(j +1) = 1. Pourd = 1,2, j + 1 appartient donc
a un élément J,; € ﬁ?{td. Puisque py(j) =0, j et j 4+ 1 ne sont pas d-liés, donc
J+ 1= jmin(Jg). Mais alors, (5) nous dit que j + 1 appartient a2 J*, donc tip=1
contrairement a I’hypothese. Cette contradiction conclut. Cela acheve la preuve de
I’existence de nos suites A et A;.

Fixons donc de telles suites A et A,. La condition (11) entralne que ce sont des
partitions, c’est-a-dire qu’elles sont décroissantes. Montrons que

(14) il existe des entiers positifs ou nuls n; et njy tels que ny +no = n, que A;
appartienne 4 PY™PP(2n) et que A, appartienne & PP (2n,).

Si les deux derniéres conditions sont vérifiées, on a forcément n| +n, = n. En
effet, la relation (9) implique que S(A1) + S(A2) +S(x) = S(A) eton a S(v) =
Pour prouver les deux dernieres conditions, on doit prouver que, pour d = 1, 2 et
k > 1, les termes Ay 2k—1 €t Ag 2; sont de méme parité et que, quand cette parité
est celle de d, on a A4 2r—1 = Ag.21. La premiere condition résulte de (10) et (7). Si
Ad.2k—1 =d mod 27, la condition (10) impose p;(2k — 1) = 0. Alors les conditions
de (11)(a) sont vérifiées pour j =2k — 1, d’oll Az 2k—1 = Ag2«. Cela la prouve ( (14).

Grace a (14), on définit comme en 3.1 les ensembles d’intervalles Int(kl) Int(kz)
les ensembles J* et J~ et la fonction £. Montrons que

(15) ona {J(A); A elnt(hg)}=Tntypourd=1,2;0naJ* =3+ J- =3
eté&é=r.

Soitd =1, 2. La réunion des J(A) quand A décrit I?lt(kd) est I’ensemble des

J = 1tels que Ay ; soit de bonne parité. D’apres (10), c’est I’ensemble des j > 1

tels que py(j) = 1. Cet ensemble d’indices est donc découpé de deux facons en

intervalles : les J(A) pour A € Int(kd) etlesJ e Jntd Pour prouver que ces décou-

pages coincident, il suffit de prouver que les ensembles d’éléments maximaux de
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ces intervalles coincident (en admettant ici que 1’élément maximal d’un intervalle
infini est 0o). C’est-a-dire qu’il suffit de prouver I’égalité

{max(A); A € Int(hg)} = {jmax(3); T € Tnity).

L’infini intervient dans les deux ensembles pour d = 1 et n’intervient dans aucun
d’eux pour d =2 (d’apres (2) pour ’ensemble de droite). On élimine ces termes.
Pour j > 1, j n’intervient dans ces ensembles que si j est pair (d’apres (3) pour
celui de droite) et A4, j =d + 1 mod 27 autrement dit p,(j) = 1. Supposons ces
conditions vérifiées. Alors j intervient dans I’ensemble de gauche si et seulement
$iAg,j > Ag, j+1. 51 j intervient dans I’ensemble de droite, la condition (11)(b) est
vérifiée et I’inégalité précédente 1’est aussi. Si j n’intervient pas dans I’ensemble
de droite, la condition (11)(a) est vérifiée et I’inégalité précédente ne I’est pas. Cela
démontre I’égalité de ces ensembles, d’ou la premiere assertion de (15).

Par définition, J* est I’ensemble des j > 1 pour lesquels A1,j et Ao j sont de
bonne parité et il existe A € ITlt(M) U I~nt()»2) tel que j = jmin(A). En utilisant ce
que I’on vient de démontrer, il suffit d’appliquer (5) pour conclure J* = J*. On
prouve de méme que J~ = J . Alors § = v par définition de ces fonctions. Cela
prouve (15).

On aInd(Aq, A2) = A1 4+ Ay + & par définition, d’ ot Ind(A1, A2) = A d’apres (15)
et (9). Montrons que

(16) A et A, induisent régulicrement A.

Il s’agit de prouver que tout intervalle relatif est réduit a un seul élément. Soit D
un intervalle relatif. Si J (D) est réduit a un seul élément, D aussi. Supposons que
J (D) a au moins deux éléments. Par définition, il existe un unique d = 1, 2 pour
lequel il existe Ay € Int(A4) de sorte que J (D) C J(A,). Pour fixer la notation, on
suppose d = 1. Cela entraine : pour j, j + 1 € J(D), il n’existe pas de A, € Int(A;)
tel que {j, j + 1} C J(Ay). En effet, les extrémités jyin (D) et jmax(D) sont par dé-
finition des éléments consécutifs de I’ensemble 7 de 3.1. Un A, comme ci-dessus
vérifierait donc jmin(AZ) = jmin(D) et jmax(D) = jmax(AZ)’ donc J(D) - J(AZ)’
ce qui est exclu. On traduit d’apres (15) : il existe J; € ’3;1/’(1 tel que J(D) C T
et,pour j, j+1¢€ J(D), jetj+ 1 nesontpas 2-liés. Soient j, j + 1 € J(D).
Les indices j, j + 1 n’étant pas 2-liés, ils ne vérifient pas les conditions (1b), (1c)
et (1d) (cette derniere €tant de toute fagcon exclue puisque A; et A; 4 sont pairs
par définition des intervalles relatifs). Puisque j et j 4+ 1 sont 1-1iés, ils vérifient
forcément la condition (1a) pour d = 1. Donc A; = A ;. Cela étant vrai pour tout
couple {j, j +1} C J(D), A; est constant pour j € J(D). Autrement dit, D est
réduit a un seul élément.

Montrons que

Xgoo = X- (17)
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On a x),.1,(0) = 0 par définition et x (0) = O par hypothese. Soit i € Jord" ).
Simulty (i) =1, x5,.,(i) = 0 par définition et x (i) = 0 par hypothese. Supposons
mult, (i) > 2. Comme dans la preuve de (16), il existe un unique d = 1, 2 de sorte
qu’il existe Ay € I~nt()»d) tel que J (i) C J(Ag).Ona xy, 2, (i) =d+1 par définition.
Toujours comme dans la preuve de (16), pour j, j + 1 € J (i), la condition (1a) est
vérifiée pour ce d. Alors x (i) =d + 1. D’ou (17).

Montrons que

LA +E(h) =5() +5§. (13)

On a défini en 3.1 les ensembles Px—t o (A) et PA_1 ,)»2 (1) et la suite &y, 2,(2).
Puisque X; et A, induisent réguliérement A, on a les égalités PA": o (L) = PT (L),
P, 5, (A) =P~ (). Donc &3, 5, (1) = £(2). Alors le lemme 3.1 implique (18).

L’égalité (18) entraine

M+EAD)+2+8(R) =2+ A2 +E+ L) =2+ Q).
Le lemme 2.7 et I’assertion 2.7(4) transforment cette égalité en
d(n) +'d (k) ="d (),
doudr)Ud(y) =d). O

3.3. Les fonctions t°, 8. Soient ny, ny € N tels que ny +ny = n et soient A €
PYMPSP(271) et Ay € PO™SP(21,). Soit A I'induite endoscopique de A1 et A>. On
considere de plus des éléments ¢| = (11, 81) € Fam(Ay) et 1y = (12, 62) € Fam(Xy).
On pose r; =r (11, 81), r2 = r(12, 62).

Pourd=1,2¢etA e fﬁt(kd), onnote AT le plus petit A’ € Int(A;) tel que A’ > A,
pour peu qu’il existe un tel A’ (sinon, A" n’existe pas). Pour D € ffftxh,\z (1), on
définit D' de fagon similaire.

Pour D € Inty, »,(A) et pour d =1, 2, considérons I’ensemble des A € fvm(kd)
tels que jmax(D) < jmax(A) (ici, on pose par convention jmax (A1 min) = 00 ol
A1 min est le plus petit élément de I~nt()\1)). Si cet ensemble est non vide (ce qui
est le cas si d = 1 par la convention que I’on vient de poser), on note Ay (D) son
plus grand élément. On pose A1(Dmin) = A1 min tandis que Az (Dpin) n’existe pas.
Si A,(D) n’existe pas et si Int(1;) n’est pas vide, on note Ay(D)" le plus petit
élément de Int(X,) (si Int(A,) est vide, Ap(D) et Ay(D)™ n’existent pas).

Pour ¢ = +, on définit une fonction 8¢ € (Z/272)™%2™* par les formules ci-
dessous. Soit D € Int;, ;,(A). On pose Ay = Ayz(D) pour d =1, 2. Ce terme existe
toujours dans chaque cas ci-dessous. Par contre, A; n’existe pas toujours. Dans ce
cas, on considere que Sd(Aj) = 0. On écrit les formules comme des égalités, en
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fait, il s’agit de congruences modulo 2Z. On pose

Si Jmax(D) € J+a
§T(D)=11(A)+1a(Ay) +r1+r+1, §(D)=8T(D)+1;
si jmax(D) € J 7, §7(D) =87(D) =81(A1) + 82(A);
Si jmax(D) €JTUJ™ et J(D) CJ(A)),
3T(D) =67 (D) =81(A1) +82(AT);
Si jmax(D) €JTUJ™ et J(D) C J(Ay),
87 (D) =687(D) =81(AT) +82(A2).

Avec les mémes notations, on définit une fonction ¢ € (Z/ 27)M6 52 ) par

si [J(D)| =2 et J(D)CJ(AD, tH(D)=1"(D)="11(A1)+8(AF) + 12
si|J(D)| =2 et J(D)CJ(Ar),
T(D)=8(AD) + A+, T(D) =Tt (D) +1;
si|[J(D) =1 et jmin(D)= jmx(D)€JT,
tH(D) =17 (D) = 11(A1) + 82(AF) + 12
si[J(D) =1 et jmin(D) = jmx(D)€J™,
tH(D) =17(D) = 11(A1) + 82(A2) + 12
Tous ces cas sont exclusifs I'un de I’autre. On a évidemment
§7(D)=8"(D)+1 sietseulementsi jmax(D)e JT; N
(D)=t (D)+1 sietseulementsi |J(D)|>2 et J(D)C J(Ay).

On a aussi

T+(Dmin) =7 (Dnin) =0. ()

En effet, J(Dpin) est infini. Il ne peut qu’étre contenu dans J (A1 min). Donc
T+(Dmin) =77 (Dmin) = 71 (A1 (Dmin)) + SZ(AZ(Dmin)+) +7r2.On a Ay(Dmin) =
A1 min € A2(Dpin) n’existe pas. On a 71 (A1 min) = 0. D’apres 2.4(2) et nos conven-
tions, 82(A2(Dmin)+) =ry. D’ol (2).

Pour ¢ = =+, posons

Ch= D A=E=DTO)(ED" P — (=P,

DGIHtxl,xz A)
Ici encore, on considere que 8°(D1) =1 si DT n’existe pas. On a

ot = { 2(r1 +¢r2) si ry +ry est pair, 3

—2(ry+¢ry+1) siry+r; est impair.
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Cela résulte de [Waldspurger 2001, X1.24], a ceci pres que les hypotheses de cette
référence étaient plus restrictives que les nodtres. On renvoie pour ce probléme aux
explications que 1’on donnera apres la proposition du paragraphe suivant.

3.4. Le résultat de [Waldspurger 2001]. Les données sont les mémes que dans le
paragraphe précédent. Pour d = 1, 2, le couple ¢y = (14, 84) provient d’un symbole
A4 dans la famille de A4. On note (rg, pg) I'élément de X, imp sid =1, Xy, pair
sid =2, tel que symb(ry, pg) = Agy. On pose Ny =nj — r]2 —ry, No=ny — r%.
On fixe un élément ¢ € {£1}, que I’on considérera souvent comme un simple
signe £. Si ¢ =1, on pose ht =r| + |rp|, h~ =sup(r; — |r2|, [r2| —r1 — 1). Si
¢ =—1,onpose h* =sup(r; — |r2|, |r2] —r1 — 1), h~ =r| + |rz|. On vérifie que
httht+1)/24+h (h~+1)/2 = rl2 +7r + r22. On fixe des entiers n™,n~ € N
tels que nt +n~ =n, nt > ht(ht +1)/2, n= > h=(h~ + 1)/2 et on pose
Nt=nt—ht(h*+1)/2, N~ =n"—h (h~+1)/2.0na Nt +N~ = N;+ N,.
On définit un quadruplet d’entiers a = (a;’, a , a;r , a, ) par les formules suivantes :

a=1(0,0,0,1) si¢=1 et ri>|ml;
a=(0,0,1,0) si¢=—-1 et ri>|rl;
a=(0,1,0,0) si¢=1 et ry<|rl;
a=(1,0,0,0) si¢=-1 et ry<|rl.

Avec les mémes notations qu’en 1.2, on définit une représentation IT¢(¢1, 1) de
Wy+ x Wy- par la formule

. _ Wiy, x W,
M, 1) = @ 1nd%’z+xw"’ (sen¢p ®resWZ' M0 ® p2)).
NeN

On note Z° (11, 12) I’ensemble des quadruplets
(A et A7, €7) e PY™P2nt) x PY™P(2n7)
vérifiant les conditions suivantes :
(1) k+ e+ =ht, k-c=h";

(2) lareprésentation p;+ ¢+ ® p5- ~ de Wy+ x Wy- intervient dans 16 (¢4, 1)
avec une multiplicité strictement positive.

Pour poser la définition suivante, on a besoin d’introduire deux notations. Pour
D e 1Inty, 5, (X), notons imin (D) le plus petit élément de D. On a imin (D) > 1 puisque
D # Dyin. Pour toute partition 4, on pose mult, (> D) = ZieN’iEimm(D) mult,, (7).
D’autre part, on pose v=1sir, >0, v=—1sir <0.

On note Z¢™ (¢, 1) I’ensemble des quadruplets

AT et A7, e7) e PY™P2nt) x PY™P(2n7)
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vérifiant les conditions suivantes :
B3) ATUL™ =2,
(4) pour tout D € Int,,, ;,(A),on a

mult,+ (> D) =68°V(D) mod2Z, et mult,-(> D) =4§°"(D) mod 27Z;

(5) pour tout D € Irﬁdt;m,xz (A) ettouti € D tel que i # 0 et mult,+(i) > O, resp.
mult,- (i) > 0,on a

e = (=D"'P | pesp. e = (=17 D),

1

Dans ces formules, on a évidemment identifié les signes &= des définitions de
tT, 77, etc. a des éléments de {4-1}. On a montré en [Waldspurger 2001, XI.29,
remarque 4] que, sous I’hypothese (3), les deux congruences de (4) étaient équiva-
lentes.

Proposition. (i) Soit (A1, €T, A7, €7) € I8 (11, 1p). Alors AT UA™ < A,

(ii) L’ensemble I5™ (11, 1) est égal au sous-ensemble des (A7, e, 17, €7) €
T8(11, 1p) tels que AT UL™ = A. Pour (AT, €T, A7, €7) € Z5M*(yq, 1), la
représentation py+ ¢+ @ py- - intervient avec multiplicité 1 dans 16 (11, 12).

Cela résulte de [Waldspurger 2001, propositions XI.28 et X1.29], ainsi qu’on I’a
expliqué dans la preuve de la proposition XII.7 de cette référence (voir aussi [Wald-
spurger 2018b, propositions 1.12 et 1.13]). A ceci pres qu’alors, les hypotheses sur
1 étaient restrictives : on supposait que r €était pair et positif ou nul; dans le cas
ro = 0, on supposait que le symbole (X, Y) correspondant a ¢, vérifiait X > Y pour
I’ordre lexicographique. En fait, cette derniere hypothese était utilisée dans d’autres
passages de [Waldspurger 2001] mais pas dans les démonstrations des propositions
utilisées. Pour traiter le cas ol r;, est impair et positif, il n’y a pas d’autre méthode
que de reprendre la démonstration. C’est ce que 1’on a fait mais elle est trop longue
pour la récrire. Le cas ol rp < 0 se déduit du cas r, > 0 de la facon suivante. On
suppose donc r, < 0. On a dit que ¢, correspondait a un symbole A, = (X3, Y3),
puis a un couple (2, p2). Inversement, on voit que (—r,, p2) correspond au sym-
bole A/, = (Y2, X»), puis a un élément ¢, € Fam(A2). Quand on remplace ¢, par ¢}
dans les constructions ci-dessus, la représentation IT¢(¢1, t2) ne change pas. Donc
la proposition ci-dessus étant vérifiée pour ¢}, elle le restera pourvu que 1’on ait les
égalités T (11, 1) = I8 (11, th) et I8™(1y, 1p) = Z5™ (1, ¢}). La premiere égalité
est claire d’apres (1) et (2). La deuxiéme ne I’est pas car les fonctions 7+ et §*
dépendent de 1. Mais, puisqu’on passe de A, a A, en permutant X, et Y, on
voit sur les formules de 2.2 que changer t> en ¢}, ne change pas §, et remplace 7,
par 72 + 1. On voit ensuite sur les formules de 3.3 que cela échange les couples
(tt,8%) et (r7, 87). Mais alors, parce qu’il figure dans les conditions (4) et (5)
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un signe terme v, qui vaut 1 pour ¢, et —1 pour i2, on voit que ces conditions ne
/ s ’ .
changent pas quand on remplace ¢, par ¢;. C’est ce qu’on voulait.

3.5. Réciproque de la construction des fonctions t* et §°. Soient n, n, € N tels
que 111 +n, =n et soient A; € PY™PP(2n1) et Ay € POSP(25,). Notons A I’induite
endoscopique de A et Ay. Pour ¢; = (11, 81) € Fam(Ay) et to = (12, 62) € Fam(Ay),
on a construit en 3.3 des fonctions t¢ et §° pour ¢ = +. Dans ce paragraphe, il
convient de les noter plus précisément tf,, L, et (Sf], 1,- On note aussi Cf,, 1, 1a somme
définie en 3.3. _

Soient r; € N, r, € Z et, pour ¢ = +, soient t¢ € (Z/27)"172® et §¢ ¢
(2/22)"5122®)  On pose

Co= 3 (A=EDTO) (D" - (=" P),

DEIHt)Ll’)\Z(}\,)
On suppose que ces données vérifient les conditions

§7(D)=8"(D)+1 sietseulementsi jma(D)e JT; 0
() =t"(D)+1 sietseulementsi |J(D)|>2 et J(D)C J(AyD));

T+(Dmin) =7 (Dnin) =0; ()
¢ |20 +&r) si r1 +ry est pair, 3)
=21 +¢ra+ 1) sirp4r; est impair.

Lemme. Sous ces hypotheses, il existe d’uniques
11 =(11,61) € Fam(Ay) et = (12, 82) € Fam(ry)

tels que, pour { = %, on ait les égalités T° = ‘L'f,,lz et 8° = 85,12. De plus, on a
ri=r(t1,81) et ry =r (12, 82).

Preuve. S’il existe (t1, §1) et (12, 6) vérifiant la premiere assertion de 1’énoncé,
les fonctions ¢ et 8¢ sont données par les formules du paragraphe 3.3, ou 1’on
remplace r; et rp par ri =r(t,d;) et ré =r(12, 62). Remarquons que ces formules
ne dépendent que des images de r| et 7, dans Z/2Z. On note symboliquement
(X . ,é) ces formules.

Commengons par prouver que, pour deux éléments donnés r{,r} € Z/27, il
existe d’uniques

(71, 81) € @2D)™) x @)22)™ ™, (03, 8) € (2/22)™*) x @/27)"*

telles que les formules (X, ;) soient vérifiées. Remarquons que ’on peut considé-
rer uniquement les formules exprimant T et 8T : celles concernant T~ et §~ s’en
déduisent d’apres 1’hypothese (1).
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Pour D € I?lt)»l,kz()\) et pour d = 1, 2, notons T;(> D) I’ensemble des A, €
I’fft()\d) tels que jmin(Ag) < jmax(D) (en convenant que jmax (Dmin) = 00) et notons
D4(> D) I’ensemble des Ay € Int(Ly) tels que jmax(Ag) < jmax (D). Remarquons
que T4(> Dpmin) = I~nt()»d) et D4(> Dpin) = Int(1y). Pour deux intervalles relatifs
D > D/, il est clair que T;(> D) est inclus dans T;(> D’) et que ©,(> D) est
inclus dans ®,(> D’). On pose

Ty(D)=T4(= D) —Tg(= DY), Dy(D)=D4(= D) —D4(= D7),

avec la convention T4(> D) =D,(> D1) = & si D' n’existe pas, ¢’est-a-dire
si D est I’intervalle relatif maximal. Cette définition entraine :

(4) pour deux intervalles relatifs D # D', on a
Ts(D)N Td(D/) =g et DyzD)N @d(D/) = .

Montrons que

(5) T4(D) est I’ensemble des Ay € fvrlt(kd) tels que
Jmin(Ag) € {jmin(D), jmax(D)};
9D4(D) est I’ensemble des A, € Int(Ay) tels que
Jmax(Aq) € {jmin(D), jmax(D)};
ces ensembles ont au plus un élément.

Soit Ag € I’-Vnt()\d), Supposons jmin(Ad) € {jmin(D)a jmax(D)}' Alors jmin(Ad) =
Jmax (D) et Ay appartient & T4(> D). Si D est I'intervalle relatif maximal, cela
entraine Ay € T4(D). Sinon, on a jmax (D) < jmin(D) < jmin(Ag) donc Ay
n’appartient pas a2 T,(> D). Do Ay € T4(D). Réciproquement, supposons
Ay € %T4(D). Lentier jmin(Ag) appartient a ’ensemble 7 de 3.1. D’apres 3.1(3), il
existe D’ € I~nt,\l,,\2 (A) tel que Jmin(Ag) € {Jmin(D’), jmax(D’)}. D apres ce que ’on
vient de prouver, on a Ay € T4(D’). Alors (4) entraine D’ = D, donc jmin(Ag) €
{Jmin(D), jmax(D)}. Cela prouve la premiere assertion de (4). Supposons encore
que Ay € T4(D) et considérons un intervalle A}, € Ifr\l/t()»d) distinct de A,4. Si
A; > Ag,0na jmaX(A;) < Jmin(Ag¢) < jmax(D). Le nombre jmax(Aij) appartient
a J. Par définition des intervalles relatifs, juyin(D) et jmax(D) sont soit égaux,
soit des éléments consécutifs de 7. Cela entraine en tout cas jmax(A;) < jmin(D).
PUiSque jmin(A;) < jmax(Aéj)a on a donc jmin(A/d) ¢ {jmin(D)v jmax(D)}a d’ou
A, & Tq(D). Si maintenant A/, < Ay, on a jnin(D) < jmin(Ag) < jmax(Ag).
Comme ci-dessus, on en déduit jpmax(D) < jmax(Ag), PUis jmax(D) < jmin(A/d)
et on conclut A/, & T;(> D). Donc T4(D) a au plus un élément. Les assertions
concernant ®,4(D) se démontrent de la méme facon. Cela prouve (5).

On va montrer que, pour tout intervalle relatif D les formules (X, ,;) exprimant
t7(D) et §7(D), d’une part ne font intervenir des 7,(Ay) que pour des Ay €
Tq4(= D) et des 84(Ay) que pour des Ay € Dy(> D), d’autre part que, quand
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Ta(D), resp. ®,4(D), est non vide, elles font intervenir t;(Ay), resp. §4(Ay), pour
I’unique élément A, de cet ensemble. On étudie les différents cas possibles, pour
D e Inty, ;,(A). On suppose d’abord D 7# Dpiy. On pose simplement Ay = Ay(D).

(a) Supposons que |J(D)| =1 et que jmin(D) = jmax(D) € JT. Dans ce cas, on a
jmax(D) = jmin(Al) = jmin(Al)- D’aprés (5),ona < (D) = {Al}s f5:2(1)) = {AZ}-
Si A} € D1(D), on a jmax(D) = jmin(D) € J(A)), done J(A}) NJ(A}) # 2,
donc A/l = Ay1. Or jmax(A1) > jmin(A1) = jmax(D), donc Ay ¢ D;(D). Donc
D1(D) = @ et, de méme, D, (D) = &. Par ailleurs, si A; existe, on a jmax(A;r) <
Jmin(A2) = jmax (D), donc A; € ©,(> D). Enfin, les formules dans notre cas sont

ST(D) =11 (A) +12(A) +r{+r,+1, TH(D)=11(A1) +8(AT) + 7.

On voit que les propriétés requises sont vérifiées.

(b) Supposons que |J(D)| =1 et que jmin(D) = jmax(D) € J . Ce cas est similaire
au précédent. On a cette f0is jmax (D) = jmax (A1) = jmax(A2). On a Ty(D) =
pourd =1,2,91(D)={A1}, D2(D) ={Az} et A € T, (> D). Les formules sont

§T(D) =81(A1) +82(A2), THD) =11(A1) +82(A2) + 15

Les propriétés requises sont vérifiées.

(c) Supposons que |J(D)| > 2, que J(D) C J(A}) et que jmin(D) et jmax (D)
soient impairs. Puisque ces termes appartiennent a I’ensemble 7, I’imparité im-
pose qu’ils sont de la forme jmin(D) = jmin(A/,) et jmax(D) = ]mm(Ad,,) pour
des entiers d’,d"” = 1,2 et des intervalles A/, € Int(Ay) et Al € Int(hgr). Si
d' = 2, puisque jmin(D) et jmax(D) sont des éléments consécutifs de 7, on a
Jmax (D) < _]maX(A ), d’out J(D) C J(AY), ce qui est interdit par définition des
intervalles et par ’hypothése J (D) C J(A1). Donc d’ =1 et forcément A} = Ay,
c’est-a-dire jmin(D) = jmin(A1).Sid” =1,0ona J(A)NJ(A}) # @ donc A’l =A;.
Mais jmin(A1) < jmin(D) par hypothese, donc jmin(A1) ne peut pas étre égal
a jmax(D). Donc d” = 2 et forcément A}, = Ay. C’est-a-dire jmax(D) = jmin(A2).
Alors T1(D) ={A1}, To(D) ={As}. Pourd =1,2 et A/, € Int(ry), on a

jmax(A&) 75 jmin(D)a jmax(Aéj) 7’é jmax(D)

par comparaison des parités. D’apres (5), cela entraine A/, € D 4(D). Donc (D) =
D(D)=2.Si A; existe, on a

jmaX(A;) < Jmin(A2) = jmax(D), d’ou A; € Dy(= D).

Enfin, 'égalité jn.x(D) = jmin(A2) et la relation jn.,x(D) € J(A1) entralnent
jmax(D) € J*. Alors

STD)=11(A) + (M) +r +r5+ 1, THD) =11(A) +82(AT) +75.
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Les propriétés requises sont vérifiées.

(d) Supposons que |J(D)| > 2, que J(D) C J(A}), que jmin(D) soit pair et que
Jmax (D) soit impair. Comme en (¢), on a jpax (D) = jmin(A2). On a jpin(D) =
Jmax(A)) pourund =1,2etun A/, e Int(Ay). Sid =1,ona J(ADNJ(A) #@
donc A} = Aj. Mais c’est impossible puisque jmax(A1) = jmax(D) > jmin(D).
Donc d = 2 et forcément A’2 = A; (ce raisonnement montre que A; existe).
D’0ll jmin(D) = jmax(AF). On voit que To(D) = {Az} et Do(D) = {AT}. Pour
A, €Int(A1), on ne peut avoir jmin(A]) € J (D) ou jmax(A]) € J(D) quesi A} =Aj.
On sait que jpin(A1) < jmin(D) et jmax(D) < Jjmax(A1). Par comparaison des
parités, ces inégalités sont strictes. Donc juyin(A1) et jmax (A1) n’appartiennent
pas a J(D) et, grice a (5), on conclut T1(D) = (D) = &. Enfin, 'inégalité
Jmin(A1) < jmax(D) montre que A} € T1(> D). On a les mémes formules que
dans le cas (¢) :

StD)=t(AD) + (M) +r{+r,+1, tH(D)=11(A)+86&(AT) + 1.

Les propriétés requises sont vérifiées.

(e) Supposons que |J(D)| > 2, que J(D) C J(A1), que jmin(D) soit impair et
que Jjmax (D) soit pair. Comme en (c), on a jumin(D) = jmin(A1). Un raisonne-
ment similaire a ceux ci-dessus montre que jmax(D) = jmax(A1). Donc T((D) =
D1(D) = {A1}. Si Ay, resp. A;, existe, on a forcément jox (D) < Jjmin(A2)
et jmax(A;r ) < jmin(D). Ces inégalités sont strictes par comparaison des parités.
Cela entraine qu’il n’existe pas de A} € Int(;) tel que jmin(A}) Ou jmax(A%)
appartiennent a J (D). Donc ¥,(D) = ©,(D) = &. Par contre, si A; existe, on a
A; € D,(> D). Puisque jimax (D) est pair, on a jyax (D) € JT. On a alors

§T(D) =681(AN +82(A7),  TH(D) =11(A) +82(A7) +715.

Les propriétés requises sont vérifiées.

(f) Supposons que |J(D)|>2,que J(D) C J(Ay) et que jmin(D) et jmax (D) soient
pairs. En utilisant des résultats extraits de (d) et (e), on a jyin(D) = jmax(A;r ) et
Jmax(D) = jmax(A1). De plus, jmin(A1) < jmin(D) €t jmax(D) < jmin(A2) si Az
existe. Donc T (D) =%, (D) =3, D1(D) ={A1} et D,(D) = {A;}. On a encore
jmax(D) € JT. Puisque jmin(A1) < jmax(D), ona Ay € T;(> D). On a les mémes
relations que dans le cas (e) :

ST(D)=81(A) +8:(AF), tHD)=11(A1) +82(A)) +75.

On a des cas (g), (h), (i), (j) qui sont les symétriques de (c), (d), (e), (f) : on
remplace la condition J(D) C J(A;) par J(D) C J(A>). Les formules que I’on
obtient sont les exactes symétriques de celles obtenues dans les cas traités.
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Comme on I’a dit, les formules ci-dessus supposaient D # Dpjn. Supposons
maintenant D = Dyip. On a D1 = Dy min, J (Dmin) C J(A1,min) €t D n’existe pas.

(k) Supposons que jmin(Dmin) soit impair. On a alors jmin(Dmin) = Jmin (A1, min)
comme en (c). On en déduit T|(Dpin) = {A| min} mais D (Dpmin) = & (par défi-
nition, I’ensemble © 1 (Dpin) est un sous-ensemble de Int(;), lequel ne contient
pas Al,min)- Silnt(A,) # <, ona jmax(A;) > Jmin(D), donc

TZ(Dmin) = QZ(Dmin) =a.
Par contre, A} appartient 2 ©»(> Dmin). L unique formule est
T (Dmin) = 11 (A1,min) + 82(AF) + 75

et les propriétés requises sont vérifiées.

(1) Supposons que jimin (Dmin) soit pair. Alors jiin (Dmin) = jmaX(A;) comme en (d).
On voit que T (Dmin) = D1 (Dmin) = T2(Dmin) = D et Da(Dmin) = {A7}. On a
aussi A min € T1(> Dpin). La formule est la méme que ci-dessus :

T (Dmin) = T1 (A1, min) + 82(AF) +7}

et les propriétés requises sont vérifiées.

On peut alors prouver par récurrence descendante 1’assertion suivante : pour
De I~ntM, 1, (1), il existe pour d = 1, 2 d’uniques fonctions 74, resp. 84, définies sur
Ta(> D), resp. ®4(> D), de sorte que les formules (X r, ré) soient vérifiées pour
tout D’ > D. En effet, soit D € Int,, ;, (1), supposons que 1’assertion ci-dessus
soit vérifiée pour DT (la condition est vide si D est maximal). Les fonctions 7, et
84 sont donc uniquement définies sur T4(> D), resp. D4(> D). Il faut montrer
que I’on peut définir d’une seule fagon des termes 7;(Ay) pour Ay € T4(D) et
84(Ag) pour Ay € ®,4(D) de sorte que les formules soient aussi vérifiées pour
I’intervalle D. Par exemple, traitons le cas (a). Le terme (SZ(A;r ) est déja défini. On
doit définir 71 (A1) et t2(A») de sorte que

§T(D)=t(AD) + (M) +ri+r+ 1, T7(D) =1(A) +82(A7) +75.

11 est clair que ces équations ont une solution et que celle-ci est unique. Les autres
cas (b) a (1) sont similaires. L’ assertion est donc démontrée par récurrence. Pour
D = Dy, on obtient I’assertion voulue : pour deux éléments donnés ri, ré eZ/27,
il existe d’uniques

(T1, 81) € (Z)22)™0D x (Z)22)™0D | (1, 85) € (Z/22)™ x (Z/22)M*

tels que soient vérifiées les formules (Xr1 )
Ces paires (71, 81) et (12, 62) ne vérifient pas forcément les conditions impo-
sées au début de la démonstration. Si (17, §2) est bien un élément de Fam(Xy),
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(11, 81) n’est pas forcément un élément de Fam(A) : c’en est un si et seulement
si T1 (A1 min) = 0. D’autre part, en admettant que cette condition soit vérifiée, nos
paires vérifient les conditions requises si et seulement si r{ = r(ty, 8;) mod 27 et
ry =r(12, 82) mod 2Z. Pour démontrer la premiére assertion du lemme, il suffit de
prouver que ces conditions sont vérifiées pour un seul couple (r}, ).

Continuons avec un couple quelconque (r{, ré) et les paires (71, 61) et (12, 62)
que I’on a construites ci-dessus. Posons a = 71 (A min). Définissons 7| par 7;(A) =
71(A) +a. Alors (T, §1) appartient bien a Fam(A1). Onpose r{ =r(ty,81), ro =
r(ta, 62). Les conditions a vérifier sont

a=0, ri=r;mod2Z, r,=rj mod?2Z. (6)

Remarquons que la premiere condition est redondante avec la troisieme. En effet,
comme on I’a vu dans la preuve de 3.1(2), on a par construction

T (Dmin) = 71 (A1 min) + 82(A2(Dpmin) ) + 7.

On sait que 83(A2(Dmin) ™) =72, cf. 2.4(2). On a aussi T+ (Dp;,) = 0 par ’hypo-
thése (2), d’olt a +r) 472 =0 mod 27.

Construisons les fonctions associées a (| = (T, 61) et 1o = (12, 62), que 1’on note
té =1, et 8 =6}, ,. Cela revient, dans la construction des fonctions 7¢ et 8¢ par
les formules (Xri’fé)’ a changer 7; en 71, r| enry et r} en ry. On remarque que les
termes 71 (A1) et ), n’interviennent que par leur somme 71 (A;) +75. Or, comme on
vient de le voir, T (A1) +r2=11(A))+a+r=11(Ay) —{—ré. Changer 7y en 7 et
ry en ry ne change donc pas les fonctions 7¢ et §°. On remarque que r; intervient
exactement dans les expressions 8¢ (D) ou t¢(D) telles que § ¢ (D) = 8°(D) + 1
ou 77¢(D) = t¢(D) + 1. Changer r| en r; change donc les fonctions ¢ et §¢ en
multipliant éventuellement ¢ par —1, en identifiant le signe ¢ a un élément de {3-1}.
Précisément, posons u = (—1)"1771, On obtient les égalités

ICZTMC’ §C:3M§.
En posant C* = waz, ces égalités entrainent C¢ = C"¢. D’apres 3.3(3), on a les
égalités
Ccé = 2(r1+¢r2) sir|+r» est pair,
- —2(r1+¢ra+1) sir;+ry estimpair.

Par I’hypothese (3), on a aussi

cHt — 2(r1+ugr) si r| +r, est pair,
| =2(1 +ugra+ 1), sir;+r; estimpair.
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L’égalité de ces deux expressions est équivalente aux égalités suivantes :

Si ry 4 rp est pair et

r1 + 1o est pair, ri+<¢ro=ri+ulr, pour { ==+l1;
r1 + rp est impair, ri+¢ro=—1+uirp+1) pour ¢ ==l1.
Si r| 4 r» est impair et
r1 + rp est pair, —(r1+¢ra+1)=ri+uir, pour ¢ ==+l;
r1 + rp est impair, —(r14+¢ra+1)=—G1+utrp+1) pour ¢ ==1.
En sommant en ¢ = +£1, le deuxieéme cas entraine r; = —(r; + 1). C’est im-

possible puisque r; et r; sont positifs ou nuls. Ce cas ne se produit donc pas. Le
troisieme cas non plus, pour la méme raison. Cela montre que r; +rp et r| + 1o
sont de la mé&me parité. Dans ce cas, les égalités ci-dessus entratnent r| = r; et
r» = ury. Alors les conditions (6) sont vérifiées si et seulement si ri =ry mod2Z
et r; = rp mod 2Z. Cela démontre la premiére assertion du lemme. Pour ce couple
(r{,r}) ainsi déterminé, on vient de voir que r =r;. On a aussi u = (=)t =1,
donc ry = ury = rp. Cela démontre la seconde assertion de 1’énoncé. O

4. Le front d’onde de t(A*, et, 17, €7)

4.1. Le résultat de [Waldspurger 2017]. Soit m € N et (&, €) € P¥Y™(2m). On a
introduit en 1.3 la représentation p; . de Wy, .. On sait qu’elle se décompose en

Prec= @ mult(x, €; 1, €) o,
(A,/,G/)

ol (A, €) parcourt les éléments de P™ (2m) tels que les mult(, €; A', €’) sont
des entiers positifs ou nuls et ks = kj . Le couple (A, €) est minimal dans cette
décomposition, c’est-a-dire que ’on a

si mult(A, e; 1/, €") #£0, alors A’ > 1 ou (A, €)=, ¢€).

De plus mult(, €; A, €) = 1.

Pour tout couple (i, v) € P¥Y™P(2m), notons (*u, *v) le couple tel que ks, » =
kp,,v et Osy s = Pp,v @ SgN.
Proposition. Supposons que tous les termes de A soient pairs. Alors il existe un
unique couple (A\™™, ™M)y € PYMP(2m) vérifiant les propriétés suivantes :

(1) mult(x, €; 2™, %™ = 1;

(2) pour tout élément (X', €') € PY™P(2m) tel que mult(r, €; 51", %) #£0, on a

)Lmin < N ou ()\/’ E/) — (Amin’ Gmin).

Cf. [Waldspurger 2017, théoreme 4.7].
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4.2. Calcul de M, (1, 115 2, 12)- On fixe désormais un quadruplet
- .\ _~.b
(AT, e, 07, €7) € Treg 4 (2n).

Rappelons que I’exposant bp signifie que tous les termes de AT et A~ sont pairs.
On pose
r=a(t, et A7, e)

et on note ff I’indice iso ou an tel que 7 € Irryyp .

Soient 11, ns € N tels que n; +n, = n. Soient (11, 1) € P°M(2n; + 1) et
(u2, m2) € POt (2125)k—0. On a défini le nombre M, (1, 15 ma, n2) en 1.4, On se
propose de le calculer.

Le couple (0, py,,;,) appartient a 3, imp €t son symbole a Fam(sp(u1, 11)) pour
une partition spéciale sp(1, 71) € P™P(2n; + 1). Posons i = d(sp(i1, m))-
On a Ay € PY"P5P(2n1). Il résulte de 2.6 que le symbole A de (0, o, ,, ® sgn)
appartient a Fam(X).

Pour £ = =, le couple (0, pizvm) appartient a X, pair €t son symbole appartient
a Fam(sp(u2, 72)) pour une partition spéciale sp(ita, 172) € PP (2n,). Celle-ci
ne dépend pas du signe £ : changer de signe revient a échanger les deux termes X
et Y du symbole. Posons Ay = d(sp(i2, 72)). On a Ay € P5P(25,). Le symbole
Ag de (0, ,052,,72 ® sgn) appartient a Fam(X,).

Signalons que 1’on a les inégalités

wi <sp(per, m1),  p2 < sp(a, n2), (D

cf. [Waldspurger 2018b, lemmes 1.4 et 1.5].
Posons yp = (0, 0, ny, no). Par définition de la multiplicité

My (lo,U«lJ?l @ sgn, piz,ﬂz ® Sgn)

et d’apres 1.5(4), cette multiplicité est celle de (py,,,, ® sgn) ® (,ofiz,,,2 ® sgn) dans
la composante dans R(yp) de
kr = F(IT),
oll on a posé
M= pt((py+.c+ ®5gN) ® (9,4 c+ @5gN)).

En 1.3, on a associé a (AT, €T, A7, e ) un élément y = (+',r", Nt,N7) € " et
identifié (p;+ .+ ®sgn) @ (p;+ .+ ® sgn) a un élément de R(y). On pose r; =7,
rp=(—1)" 'r”’. Par construction de pt, élément IT n’a de composante non nulle
que dans les composantes R(y’) pour y’ de la forme (rq, r2, N1, N>). Par définition
de F, pour un tel y’ et pour ¢ € R(y’), I’élément F(¢) n’a de composante non
nulle dans R(yp) que si Ny + rl2 +ri=niet No+ r22 = n,. Cela entraine

sing <ri4riouny <r?, ona My(ui,ni; 2, n2) =0. 2)
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Supposons
nlzrlz-l—rl et n22r22. 3)
Posons N| =n; —rlz—rl, N, :nz—rz2 et y =(r1,r2, N1, N2). On peut se limiter
a considérer la composante I, de IT dans R(Z)‘ Plus précisément, pour d = 1, 2,
notons Fam,,(Ag) I’ensemble les 1y = (74, 84) € Fam(ryg) tels que r(tq, 84) =rq4.
Pour de tels €léments, notons (rg, p,,) '€lément de X, imp sid = 1 et Xy, pair
si d =2 associ€ a t4. Posons A,, = symb(ry, p,,). Notons m(Il,, p,, ® p,,) la
multiplicité de p,, ® p,, dans IT,,. Alors, par définition de F, on a I’égalité

Mz (pﬂlyrll ® Sgn, Iofl,z,ﬁz ® Sgn)

1 1 ¢
= [Fam(A)| "2 [FamG)| 72 )~ (=DM (T, 0, @p,). ()
1 E}'am,1 (A1)
€Famy, (r2)

Pour ¢ ==, on pose n¢ = S(A%)/2, k* =kj¢ .. Notons P¥™(2n¢);c I'ensemble
des (V, €') € P¥™P(2n%) tels que ;s = k®. On peut écrire
(03+ e+ ®5gN) ® ()~ - ® sgn)
= Z x()\./+, €/+, )\./_, 6/_)10)L/+,6’+ ® ,O)L/*’E/*,

WEeNePy™nt), ¢
(W7, €T)EPY™ (207,

ot les x(A'T, €T, 2’7, €'7) sont des multiplicités. Précisément, avec les notations
de4.1,ona

T e T ) =multat, et T S Dmult(L T, e W L), ()
Pour
W €M) ePYPnty e et (W7, €7T) e PY™P Q20T
notons I1, (WT, e, A7, €7) la composante dans R(y) de
PP+ e+ @ Pyr= )-

Pour ¢; € Fam,, (1) et 1, € Fam,,(1,), notons m(l'Iy()JJr, €T N7, €M), 0L, Qp,)
la multiplicité de p,, ® p,, dans Hy()»’Jr, etV ",€7).Ona

m(nz, Py ®l0£2)
= Z Vet e’_)m(HZ(A'+, TN e, o1 ®,0L2).

()L/+7€/+)E’Psymp(2n+)k+
(N7, € T)EPY™(2n7),—
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En vertu de la définition posée en 1.4, on déduit de (4) la formule finale

My (1, ms 2, m2)
= |Fam()»1)|_%IFam()»z)rE

% Z (_1)<A17AL1>((_1)<A;5AL2> _i_sgn]j(_l)(A;#ALz))

I e]—'am,1 (A1)
%) e]—"amr2 (A2)

» Z ()\/-i- 1+ )»/_ 6 )m(l'[ ()L/-i- /+, 6 )p[1®pl2) (6)
WEeTePY™ant), ¢
A7,eT)ePY™P(2n7), -

4.3. Comparaison entre deux constructions. On conserve les notations du para-
graphe précédent et on impose I’hypothese (3) de ce paragraphe. Considérons des
éléments (| € Fam,, (A1), 12 € Fam,,(X2), W e ePY™Pnty, W, )e
PP (207 )i-. On a défini la multiplicité

m(nz()‘/+’ 6/+’ )",75 6,7)5 )OL] ® ptz)-

Un élément ¢ € {1} étant fixé, on a associé en 3.4 a (rq, 2) un couple (h+, h™).
En se reportant a la définition de 1.2 et en se rappelant que (r1, 1) = (v, (=)',
on vérifie cas par cas qu’il est égal a (k™, k™) pourvu que ¢ =1 si kT > k™,
{ =—1sik" < k™. Notons que kT > k= équivaut a (—1)"'r, > O et k™ < k™
équivaut a (—1)"1r, < 0. Si k™ =k~, ce qui équivaut & r, = 0, ¢ est indifférent, le
couple (h*, h™) ne dépendant pas de ¢ et étant égal a (k™, k~). On suppose que
¢ vérifie ces conditions. On peut donc appliquer la construction de 3.4 aux entiers

T et n~. On en déduit une représentation I1¢ (i, t;) de Wy+ ® Wy-. On note
m (I8 (11, 12), Pyt o+ @ Py - ) la multiplicité de py+ o+ ® oy~ o~ dans TTE (11, 12).
Un jeu habituel avec les restrictions et inductions montre que cette multiplicité est
égale a celle de p; ® p» dans la représentation

Wit X Wy
Z 1nd 2 (sgngp ®resy, Y (ot et ® P o)),
NeN

ou a est défini comme en 3.4. Un calcul cas par cas montre que ce a est le méme
qu’en 1.2, pourvu que, dans le cas r, = 0, on choisisse { =1 si r| est pair, £ = —1
si r; est impair. Le signe ¢ étant ainsi déterminé en tout cas, la représentation
ci-dessus n’est autre que la composante dans R(y) de

pt(pk’*,e’* ® IO)Llny/*).

On conclut

m(I, (W, €T 07 7)), p1 ® p2) =m(IE (1, 12), Py ot ® P o). (1)
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Dans les formules 3.4(4) et 3.4(5) intervient le signe {v,ouv=1sirp, >0, v=—1
si rp < 0. Avec la définition de ¢ ci-dessus, on a

tv=(=D". (@)

4.4. Démonstration du (i) de la proposition 1.4. On considere les données de 4.2

et on suppose M, (L1, n1; U2, n2) 7 0. La relation 4.2(2) entraine que 1’hypothese

4.2(3) est vérifiée. D’apres 4.2(6), on peut fixer des éléments (| € Fam,, (A1), 12 €

Fam,,(hy), W7, 1) e PY™Q2nT) s, (W7, €7) € PY™P(2n7),- vérifiant les
conditions

x(WF e 0T ET)£0; (1)

m(IT, (W7 e V7€), p, ®pyy) #0. )

En vertu de la définition 4.2(5) de x(\' T, /T, M7, ¢ T) et de la proposition 4.1,
la relation (1) entraine
)\‘—i-,min < )\‘/+ )\‘—,min < )L/—. (3)

Notons A I’induite endoscopique de A; et Ap. En vertu de 4.3(1) et de la propo-
sition 3.4(1), la relation (2) entraine

AU < 4)
De ces deux inégalités, on déduit
Amin g —min <y
Posons
(= d(cHmin gy —miny

La dualité est une application décroissante. L’ inégalité précédente entraine d (1) < .
D’apres [Waldspurger 2018b, proposition 1.9], on a aussi d(A1) Ud(Ay) < d(}),
d’ ot d(A1) Ud(A2) < . Par construction, d (A1) = sp(i1, n1), d(A2) =sp(u2, n2).
D’ou sp(ie1, n1) Usp(pa, n2) < u. En appliquant 4.2(1), on obtient

miUpo < [
C’est I’assertion (i) de la proposition 1.4.

4.5. Démonstration du (ii) de la proposition 1.4. La seule donnée est ici le qua-
druplet (AT, et, A7, e7) € Jttzﬂad@n). On pose A = AT MM YA =M Fixons une
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fonction x :J ord®? (A) U{0} — Z/27 vérifiant les conditions suivantes :

x(@) =0 pourtoutie Jordbp(k) tel que mult, (i) = 1;
x(@) =0 pourtoutie Jordbp(k) tel que mult; +.min (i) > 1 et multy—min (i) > 1
(ce qui implique mult; (i) > 2);
x(@)=0 si e;“mm £ ei_’min;
X =1 sig ™ =e ™
x(@)=1 pourtoutie Jordbp(k) tel que mult, (i) > 2 et que
mu]t)LJr.min (l) =0ou mult)\—,min (l) =0.

On choisit n1, ny et A1, Ay vérifiant les conditions de la proposition 3.2, pour ce
choix de la fonction yx. C’est-a-dire que A; € PY™PP(2n;), Ay € Porthsp(255), A
et A, induisent régulierement A, d(A1) Ud(A2) =d(A) = w et x;,., = x. On pose
pmr=d), p2=d(2). Ona g € PPQ2n 4+ 1), py € POMP(2n,), et

iUy = p. ey

On définit r; et r, comme en 4.2 : ry =1/, 1, = (—1)"'r", ot r’ et r” sont définis
en 1.3. Pour une partition v et pour i € N—{0}, posons mult,(>i) = Zi/zi mult, (i').
Posons n = (—1)" ". Pour { = &, on définit une fonction 8% : Jord® (L) —> Z /27 par

8% (i) = multyzymin (> i) mod 2Z.
On définit une fonction ¢ : Jord® M) U{0} - Z/2Z par
sii #0 et multyepmn (i) >0, €™ = (=) ®;
sii # 0 et multycymin (i) = 0 (auquel cas multy —¢y.min (i) > 0),
Ej—;n,min — (_1)14(1');

7°(0) = 0.

On peut considérer que ces fonctions sont définies sur Inty, ,, (1), resp. INntA1 ),
puisque A et A induisent régulierement A. Montrons que

ces fonctions vérifient les conditions de 3.5. 2)

Preuve. Soiti € Jordbp(k). D’apreés la définition ci-dessus, 8~ (i) =87 (i) + 1 si et
seulement si mult, (> i) est impair. Remarquons que I’on a I’égalité

mult) (> 1) = jmax (0).

Si jmax(i) € J*, jmax(i) est impair. Inversement, supposons jmax (i) impair. Si
mult; (i) = 1, jmax(i) appartient a ’ensemble 7 U 7~ de 3.1 par définition des
intervalles relatifs. L’ imparité impose jmax (i) € J 1. Or J+ C J T par définition,
donc jmax (i) € JT. Supposons mult; (i) > 2. Par définition des intervalles relatifs, il
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existed=1,2¢et Ay € I’-Vl’lt()nd) de sorte que J (i) = {jmin(@), - - - » Jmax (1)} C J(Ag).
Pour fixer la notation, supposons que d = 1, donc J (i) C J(Ay). Par définition des
intervalles relatifs, jma.x (i) appartient a I’ensemble J de 3.1. L’imparité impose
alors qu’il existe d = 1,2 et A/, € Int(A,) de sorte que jmax (i) = jmin(A)). Si
d=1,0na jmx(i) € J(A)NJ(A)) donc A} = Ay. Mais jmin(A1) < jmin(0) <
Jmax (i), ce qui est contradictoire. Donc d = 2. Alors jymax (i) = jmin(A/z). Puisque
Jmax (i) € J(Ay1), Ay j est pair. Alors, par définition de J*, on a jmax (i) € JT. Cela
prouve que les fonctions ¢ vérifient la premiere condition de la relation 3.5(1).

Soit i € Jordbp(k). D’apres la définition ci-dessus, 7 (i) = (i) + 1 si et
seulement si mult, +.min (i) > 0, mult;—min(i) > O et e;“min + ei_’mi“. D’apres la
définition de y, ces conditions sont équivalentes a mult, (i) > 2 et x(i) = 0. La
premiere condition équivaut a |J (i)| > 2. Sous cette condition, puisque X = X, .1,
la seconde condition équivaut a J (i) C J(A2(i)) avec la notation de 3.5(1). Cela
acheve de prouver cette condition 3.5(1).

La condition 3.5(2) est claire.

Notons i > - - - > i, les entiers pairs i > 2 tels que mult; +min (i) soit impair. Pour
i €Jord® (1), ona (—1)%"@ — (=1)%"G™) £ 0 si et seulement si §7(i) % 8" (i ). Par
définition de §7, cela équivaut a ce que mult,+.min (i) soit impair, autrement dit a ce
quei =i,pourunh=1,...,t. Pouruntel i,, ona

(_1)5”(1'»,) _ (_1)5”(1';) — 2(_1)5”(in) — 2(_1)munk+,min(2i) — 2(_1)h.
On a aussi

I = (D70 =1 —¢h™" = Tomin _

omin {o i e mn =1,

2 sig
h

On en déduit
C"=4|(h=1,...,t; h pair et e;;'mi“ =1
it,min — _l}i

—4|{h= 1,...,t; himpairete
En utilisant 1.3(1), on obtient

2k i k* est pair,
o — { si k™ est pair 3)

—2(kt +1) sik" estimpair.

On a une formule analogue pour C~", ot k™ est remplacé par k. En reprenant les
définitions de r’ et r”” donnée en 1.3, un calcul cas par cas montre que (3) équivaut a

Cn— 2(r' +r") si r’ +r” est pair,
C =207 +r"+1), sir’ +r" est impair.
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De méme, I’égalité analogue de (3) pour C~" équivaut a
c-n 2(r' —r") sir’ 4+ r” est pair,
=207 —r"+1) sir 4" est impair.
Par définition, r’ = ry et r”” = nr,. Alors les formules ci-dessus sont la condition

3.5(3). Cela prouve (2). U

On peut appliquer le lemme 3.5. On note (; et i, les termes dont ce lemme
affirme I’existence. Avec les notations de 4.2, ils appartiennent a Fam,, (A1), resp.
Famy,,(A2). En conséquence, ces ensembles sont non vides. A fortiori, on a

rPr <ni, r3<no. 4)

Appliquons maintenant le calcul de 4.2 aux couples (11, 1) € POt (Dpn; 4+ 1) et
(na, 1) € Po™(2n5)5—o (les partitions it et uo ont été définies ci-dessus avant (1)).
On a évidemment sp(u1, 1) =y et sp(uo, 1) = up. La condition 4.2(3) est vérifiée :
c’est (4) ci-dessus. Dans la formule 4.2(6), on peut limiter les sommations aux qua-
druplets (A'", €’*, A'~, €' 7) et aux couples (i1, 1) tels que x (A", €’F, A/, €/ 7) #£0et
m(I, (", €707, €7), py ® piy) #0.

Comme en 4.4, on déduit de ces conditions les relations 4.4(3) et 4.4(4) :

k+,min < )\‘/-0- )\‘—,min < )»/_

oMU <

Mais ici A = AT™in U A =™ par définition. Les inégalités ci-dessus sont donc
des égalités. D’apres 4.1 et 4.2(5), les conditions AH™in = p/F A—min — 3/~ et
x(WF, €T, M7, €7) # 0 impliquent

(A/+ €/+ — ()\‘+,min €+,min) et (A/— 6/—) — (A—,min 6—,min).
Dans la somme 4.2(6), il ne reste que le quadruplet (At min gF.min 3 = min o — min)
et on sait d’apres 4.1 que, pour celui-13, on a x (A ™0 +omin ) —min = miny _ 1
Il ne reste aussi que les couples (¢, tp) tels que

m(HZ (k+,min, €+,min’ )\—,min, E—,min)’ o ®pL2) 75 0.

Ou encore, d’apres 4.3(1), tels que m(l'lg(tl, 12), ) +min ¢+.min @ p}"—,min’e—,min) # 0,
le signe ¢ étant déterminé comme en 4.3. Cette condition équivaut a ce que

(Hmin gFomin 5 —min | —miny o 78 5)  (Pensemble défini en 3.4).

Puisque AT ™M U A—™" = ) ]a proposition 3.4(ii) nous dit qu’elle équivaut aussi
a ce que (A MmN ghmin 3= min e —miny appartienne a Z°™¥ (11, 12). En outre, on
a dans ce cas

m(nz()\—i-,min, €+,min’ )\—,min’ E—,min)’ P, ®p12) =1.
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La condition (A min g+.min ) —min c—miny o 7&max o) dquivaut a ce que les
formules 3.4(4) et 3.4(5) soient vérifiées, avec les modifications suivantes : les
couples (AT, ) et (A™, €7) de ce paragraphe sont remplacés par (A+™in, ¢+ min)
et (A™Mn ¢ ~Min) ; Jes fonctions 8T, 87, T+ et T~ sont remplacées par 8,7, etc.
La condltlon 3.4(4) détermine entierement les fonctions 8 et 8, . En se rap-
pelant que le signe {v qui intervient vaut précisément 7 (cf. 4.3(2)), on voit que
ces fonctions coincident avec les fonctions 8T et §~ construites ci-dessus. Les
fonctions 7, et 7,7, ne sont pas a premiére vue entierement déterminées par
la relation 3.4(5). Toutefois, pour tout i € J ord®? (A), 'une au moins des valeurs
Tt T, () ou r 7 (i) est déterminée et coincide avec la valeur de (i) ou T (i).
Puisque les couples (z1, t7) et (Tt| 10 Ti,.,) Vérifient tous deux la condition 3.5(1),
cela suffit a conclure que ces deux couples sont égaux. Alors le lemme 3.5 nous
dit que (¢, tp) est égal au couple (¢, tp) introduit ci-dessus. Inversement, pour ce
dernier couple, les conditions 3.4(4) et 3.4(5) sont bien vérifiées. Autrement dit,
dans la somme 4.2(6), il ne reste plus que le couple (i1, () et on a

m(l—[z(kﬁ-,min’ E+,min’ )L—,mm — mm) o0 ®;0[2) =1.

Cette formule 4.2(6), devient

Mz (1, 15 2, 1)
= [Fam(i.)| 2 [Fam(o)| "2 (— D) {A18a) (1) (A2 22) 4 sgn, (—1)d242)). (5)
Rappelons que A; et A, sont les symboles des couples (0, ,0:2’1 ® sgn) et

0, p,, | ®sgn). Ils se déduisent I'un de I"autre par permutation des deux termes
X et Y de chaque symbole. D’apres 2.5(1), on a donc

(=D*aRe) = (—1y2 (=Dt A, (6)

Considérons la formule 1.5(1). Notons i; > - - - > i; les entiers pairs i > 2 tels que

N

mult,+ (i) soit impair. Le premier produit de la formule vaut (—1)% +, ol

T=lth=1,....1 ¢ =-1}].

On a

X+E|{h:1,...,t; hpairetefhr:—l}i—“h:l,...,t; himpairete$:—1}|
mod 27.

D’apres 1.3(1), le membre de droite vaut k™ /2 si k™ est pair, — (kT +1)/2 si k™ est

impair. D’apres le méme calcul cas par cas qui a calculé C” ci-dessus, c’est aussi

" +r")/2 sir’ + 7" estpair, —(r' +r" +1)/2 si r' +r” est impair. On obtient

(¥ = (—1)'+r/2 si ¥’ 41" est pair,
| (=DEHTHED2 i 7 est impair.
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Le deuxieme facteur de 1.5(1) se calcule de méme, r” étant remplacé par —r”. Le
produit de ces termes vaut (—l)r”, ou encore (—1)"2. La formule 1.5(1) nous dit
donc que

sgn, = (—1)". @)
Grace a (6) et (7), (5) se simplifie en
My (i1, 1; . 1) = 2[Fam(i)| = [Fam(hg)| =2 (— 1) A1 Aa) HAT ),

Donc M (11, 1; 2, 1) # 0. Alors, en vertu de (1), les couples (w1, 1) et (uz, 1)
vérifient le (ii) de la proposition 1.4, a ceci pres que I’on doit de plus prouver que
ny > 1 si § = an. Mais, si § = an, (7) implique que r; est impair et (4) implique
alors que np > 1.

4.6. Conclusion. On a prouvé que u vérifiait les conditions de la proposition 1.4.
Celle-ci implique que w est le front d’onde de 7w (A1, €T, A~, € 7). Cela démontre
le deuxieme théoreme de I’introduction. Comme on I’a dit dans celle-ci, le premier
théoreme s’en déduit grace a [Waldspurger 2018b, 3.4].

5. Sur le calcul effectif du front d’onde

5.1. Le couple (A™?*, €™®*). Soit (A, €) € PY™(2n), supposons que tous les
termes de A sont pairs. On lui associe un couple (A™*, ™) ¢ PY™P(2n) par
récurrence sur n, selon la construction qui suit et qui est extraite de [Waldspurger
2017, 5.1]. On représente A sous la forme d’une suite infinie A = (A1, A2,...). On
associe a € une fonction encore notée € sur I’ensemble d’indices N. g =N — {0} par
€(j)= €, avec la convention €y = 1. On note & la réunion de {1} et de I’ensemble
des j > 2 tels que €(j)(—1)/ #e(j —1)(—=1)/~'. Onnote s; =1 <55 < --- les
éléments de &. Pour ¢ € {1}, notons J¢ = {j € Nog; (=1)/Tle(j) = ¢} et
J¢=J¢—(J¥NG). On pose

AaX — (Z xs> —2]J <M.
s€6

On pose n' = n — A" /2. On note A’ la réunion des A; pour j € J¢() et des
Aj+2pour j € J=¢M Pour i € Jord®®(1'), onai = Ajoui=A;+2pourun j
comme ci-dessus. On note [ j] le plus grand entier 4 > 1 tel que s, < j et on pose
€/ = (—1)"UHle(j) (j n’est pas uniquement déterminé par i mais on montre que
cette définition ne dépend pas du choix de j). On montre que n’ < n (si n # 0), que
le couple (A, €’) appartient a PSY™P(2n") et que tous les termes de A’ sont pairs. Par
récurrence, on dispose d’un couple (A", €"™). On pose A™** = {AM¥X} U A",
On définit €™ par ekmax =¢, et €M =¢/™ pour i € Jord® (A'™) (c’est possible,
c’est-a-dire que, si Amax appartient 2 J ordbp (A™), on alégalité €;, =€ }Lmax) Cela
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définit le couple (A™*, €M), Les termes de A™®* sont pairs et A" est bien le plus
grand terme de A™¥.

5.2. La partition ‘A™™, On conserve les mémes hypothéses. On pose k = ;.
On a kymax cmax = k. On a rappelé en 1.3(1) comment se calculait ’entier k. On
écrit AM = (AT, ..., AR ) avec Ajpt, = 0. On note jfr << j;? les
j=1,...,2R +1 tels que €™*(j)(—=1)/T! = (—1)* (en considérant comme dans
le paragraphe précédent que €™ se définit sur I’ensemble d’indices). On note
Jp <--<jylesj=1,...,2R+1 tels que €™ (j)(—1)4 = (—=1)*. On vérifie
que N = R+[k/2]+ 1, M = R—[k/2]. Notons v’ la réunion disjointe des partitions
suivantes :
2R+3u—k—1+A7" =2 u=1,..., N}

{

{2R—|—3v—i—k+kmax 2j, s v:l,...,M};
{R+[(k=1/2], R+[(k—1)/2]1-1, ...,0};
{R—[(k+3)/2], R—[(k+3)/2]—1, ...,0}.

Onnote v'= (v}, ..., Ve, ).Pour j=1,... 4R+1,0npose v; =V "—2R+[j/2].
Cela définit une partition v et on a l’égalite ’Am‘“
[Waldspurger 2017, 4.6 et 4.7]).

= v (cette egahte se déduit de

5.3. Exemples. Soit (A", e, 17, ¢7) € Jttqudd(2n) Les formules des deux pa-
ragraphes précédents permettent de calculer les transposées des partitions AT™in
et A\~ ™" Le front d’onde de (A1, €T, 17, €7) est d(A ™" U A~>™"), Cette par-
tition duale se calcule ainsi : on note v la partition obtenue en ajoutant 1 au plus
grand terme de AT™" 45,7 ™ alors d (ATMin U~ minY egt la plus grande partition
orthogonale p de 2n + 1 telle que w < v. Le moins que I’on puisse dire est que ce
calcul n’est pas simple.

Signalons le cas particulier rassurant o €™ = 1, ¢’est-a-dire e+ =1 pour tout
i € Jord®(A1), et e~ = 1. Dans ce cas, on voit que A 7™ = (2n+) e+ =,
AT = (2n7) et e, ™™ =1.0n a k* =k~ = 0. On calcule A% min = 2n™"),
fHoomin — (2p7), puis d(AH ™M UAT ™M) = (27 4+ 1). Autrement dit, notre représen-
tation (A1, 1, A7, 1) admet un modele de Whittaker usuel, ce qui est bien connu.

Un autre cas particulier est celui ou, pour ¢ = =+, n* est de la forme hjt(hjE +1),
AS estégal a (2h%,2h% —2, ..., 2) et ol € est alterné, ¢’est-a-dire egi = (—1)" pour
i=1,...,h% Dans ce cas, on vérifie que A5 = 2¢min — )¢ Le front d’onde
de 7 (AT, et, A7, €7) est alors d(AT U A7). On retrouve le résultat de [Mceglin
1996; Waldspurger 2018b] car notre représentation est ici cuspidale donc égale a
son image par 1’involution d’ Aubert—Zelevinsky.

Donnons enfin comme exemple le calcul du front d’onde de (AT, €™, A7, €7)
dans le cas ol A~ est vide et ou AT a au plus trois termes non nuls. On pose
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simplement A =1F, e =€, u=d(A™"). On identifie € au triplet (e (1), €(2), €(3))
que 1’on note comme un triplet de signes +. Evidemment, certains triplets ne sont

autorisés que sous certaines hypotheses sur A : si €(j) # €(j + 1), on doit avoir
max

Aj>Xjy1;8i€(j)=—,ondoit avoir A; > 0. On note de méme €™** comme une
famille de signes. Alors les résultats sont les suivants :
€ k Amax 6max t)\‘min

+,+,+) O (A +A2+A3) +) (A +A2+A3)

(—+.+) 1 (A1+23,22) (= +) (A+A3—1,2+1)

(_7 +9 _) 3 ()"17)\'2’)\'3) (_’ +’ _) ()"1_3’)\'2_1a)\'3’2717 1)

(= =+t 0 (A+2r22—-2,43+2) (=, —) (A+A2—1,23+1)

(= —,—) 1 (A +2A2+A3) (=) (A +2A2+A3—-1,1)

€ e
+,+ 4+ (M +A2+A3+1)

(+s +s _) ()\'l+)\'2_17)\'3_17151’ 1)
(+, —+) =1, 2-1,23+1, 1, 1)

+,— -) (AM+A3—1,2+1,1)

(=, +,+) A +A3—=1,2+1,1)

(= +,—) (A =32—1,A3+1,1,1,1,1)

(= —,+) (ArtAr2—1,23+1, 1)

(=, —,—) AM+2+23—1,1,1)
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