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Fronts d’onde des représentations tempérées
et de réduction unipotente pour SO(2n+ 1)

Jean-Loup Waldspurger

Soit G le groupe spécial orthogonal SO(2n+ 1) défini sur un corps p-adique F .
Soit π une représentation admissible et irreductible de G(F) qui est tempérée et
de réduction unipotente. On démontre que π admet un front d’onde et l’on en
donne une méthode de calcul dans certains cas particuliers.

Let G be a special orthogonal group SO(2n+ 1) defined over a p-adic field F .
Let π be an admissible irreducible representation of G(F) which is tempered
and of unipotent reduction. We prove that π has a wave front set. In some
particular cases, we give a method to compute this wave front set.

Introduction

Soit F un corps local non archimédien et de caractéristique nulle et soit n ≥ 1 un
entier. On suppose p> 6n+4, où p est la caractéristique résiduelle de F . Le groupe
spécial orthogonal SO(2n+ 1) a deux formes possibles définies sur F . Une forme
déployée que nous notons G iso et une forme non quasi-déployée, qui est une forme
intérieure de la précédente et que nous notons Gan. Soit ] = iso ou an et soit π
une représentation admissible irréductible de G](F) dans un espace complexe E .
Pour tout sous-groupe parahorique K de G](F), notons K u son radical pro-p-
unipotent et E K u

le sous-espace des éléments de E fixés par K u . De π se déduit
une représentation de K/K u dans E K u

. Le groupe K/K u s’identifie au groupe des
points sur le corps résiduel Fq de F d’un groupe algébrique connexe défini sur Fq .
Lusztig a défini la notion de représentation unipotente d’un tel groupe. On dit que π
est de réduction unipotente si et seulement s’il existe K comme ci-dessus de sorte
que E K u

soit non nul et que la représentation de K/K u dans E K u
soit unipotente.

Soit π une représentation admissible irréductible de G](F). Notons g] l’algèbre
de Lie de G]. D’après Harish-Chandra, dans un voisinage de l’origine dans g](F),
le caractère de π , descendu par l’exponentielle à g](F), est combinaison linéaire de
transformées de Fourier d’intégrales orbitales nilpotentes. Fixons une clôture algé-
brique F de F et notons N (π) l’ensemble des orbites nilpotentes O dans g](F) qui
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vérifient la condition suivante : il existe une orbite nilpotente O dans g](F), qui est
incluse dans O et qui intervient avec un coefficient non nul dans le développement
du caractère de π . On dit que π admet un front d’onde si N (π) admet un plus grand
élément (pour l’ordre usuel sur les orbites nilpotentes). Si c’est le cas, on appelle
ce plus grand élément le front d’onde de π . Le théorème principal de l’article est
le suivant.

Théorème. Soit ]= iso ou an. Alors toute représentation admissible irréductible
de G](F), qui est tempérée et de réduction unipotente, admet un front d’onde.

Pour tout entier N ∈ N, notons Psymp(2N ) l’ensemble des partitions symplec-
tiques de 2N (une partition est dite symplectique si tout entier impair y inter-
vient avec une multiplicité paire). Pour une telle partition λ, notons Jordbp(λ) l’en-
semble (sans multiplicités) des entiers pairs strictement positifs qui interviennent
dans λ. Notons Psymp(2N ) l’ensemble des couples (λ, ε) où λ ∈ Psymp(2N ) et
ε ∈ {±1}Jordbp(λ). Notons Irrquad(2n) l’ensemble des quadruplets (λ+, ε+, λ−, ε−)
pour lesquels il existe deux entiers n+ et n− de sorte que n++n− = n, (λ+, ε+) ∈
Psymp(2n+) et (λ−, ε−) ∈ Psymp(2n−). À un tel quadruplet (λ+, ε+, λ−, ε−), on
peut associer un indice ] = iso ou an et une représentation admissible irréduc-
tible π(λ+, ε+, λ−, ε−) de G](F), qui est tempérée et de réduction unipotente.
L’indice ] est déterminé par une formule simple rappelée en 1.5 Indiquons briè-
vement quel est le paramètre de Langlands de cette représentation. Notons WF le
groupe de Weil de F et WDF = WF × SL(2,C) le groupe de Weil–Deligne. Un
paramètre de Langlands est un couple (ρ, χ), où ρ est un homomorphisme de
WDF dans Sp(2n;C) et χ est un caractère du groupe des composantes connexes
du commutant dans Sp(2n;C) de l’image de ρ. Dans le cas d’une représentation
π(λ+, ε+, λ−, ε−), la restriction de ρ à WF est la somme directe de 2n+ fois le
caractère trivial et de 2n− fois l’unique caractère non ramifié d’ordre 2. Le com-
mutant de l’image de cette restriction est un groupe Sp(2n+;C)×Sp(2n−;C). Les
classes de conjugaison d’éléments unipotents dans ce groupe sont paramétrées par
Psymp(2n+)×Psymp(2n−). La restriction de ρ à SL(2;C) prend ses valeurs dans ce
groupe et l’image d’un unipotent non trivial de SL(2;C) est paramétré par (λ+, λ−).
On voit que le groupe des composantes connexes du commutant dans Sp(2n;C)
de l’image de ρ est isomorphe à (Z/2Z)Jordbp(λ+)

× (Z/2Z)Jordbp(λ−). Le couple
(ε+, ε−) s’identifie à un caractère de ce groupe, qui n’est autre que le caractère χ
du couple (ρ, χ).

On note Irr
bp
quad(2n) le sous ensemble des (λ+, ε+, λ−, ε−) ∈ Irrquad(2n) tels

que tous les termes de λ+ et λ− soient pairs. Selon [Waldspurger 2018b, 3.4],
pour démontrer le théorème, il suffit de prouver que, pour tout (λ+, ε+, λ−, ε−)
élément de Irr

bp
quad(2n), la représentation π(λ+, ε+, λ−, ε−) admet un front d’onde

(cela résulte d’un argument trivial d’induction).
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Pour une représentation π(λ+, ε+, λ−, ε−), où (λ+, ε+, λ−, ε−) ∈ Irrbp
quad(2n),

on a un résultat un peu plus précis. Dans [Waldspurger 2017], on a étudié une cer-
taine représentation d’un groupe de Weyl définie par Lusztig. En supposant, comme
c’est ici le cas, que tous les termes de λ+ sont pairs, on a associé à (λ+, ε+) ∈
Psymp(2n+) un autre couple (λ+,min, ε+,min) ∈Psymp(2n+) (voir ci-dessous). De
même, à (λ−, ε−) ∈ Psymp(2n−), on associe un autre couple (λ−,min, ε−,min) ∈

Psymp(2n−). Introduisons la réunion usuelle de λ+,min et λ−,min, que l’on note
λ+,min

∪ λ−,min. C’est une partition symplectique de 2n. Notons Porth(2n+ 1) l’en-
semble des partitions orthogonales de 2n+ 1 (une partition est orthogonale si et
seulement si tout entier pair strictement positif y intervient avec multiplicité paire).
On sait bien que l’ensemble Porth(2n+ 1) paramètre les orbites nilpotentes dans
g](F). Un front d’onde est donc paramétré par un élément de cet ensemble. D’autre
part, à la suite de Spaltenstein, on définit une dualité d :Psymp(2n)→Porth(2n+1),
cf. 2.6 (elle n’est ni injective, ni surjective, son image est le sous-ensemble des
partitions spéciales dans Porth(2n+ 1)).

Théorème. Soit
(λ+, ε+, λ−, ε−) ∈ Irr

bp
quad(2n).

Alors la représentation π(λ+, ε+, λ−, ε−) admet un front d’onde. Celui-ci est pa-
ramétré par la partition d(λ+,min

∪ λ−,min).

La preuve de ce théorème reprend celle de [Waldspurger 2018b]. Posons π =
π(λ+, ε+, λ−, ε−). L’existence d’un front d’onde pour π se lit sur le caractère
de cette représentation. Celui-ci se calcule en fonction des représentations des dif-
férents groupes finis K/K u dans E K u

, avec les notations du premier paragraphe
ci-dessus (en vérité, le groupe fini est K †/K u , où K † est le normalisateur de K
dans G](F)). La construction de la représentation π (qui est due à Lusztig) permet
d’expliciter ces représentations de groupes finis. On les décrit à l’aide de représen-
tations de groupes de Weyl Wm de type Bm ou Cm . Une vieille combinatoire tirée
de [Waldspurger 2001] permet alors de traduire l’existence d’un front d’onde et
son calcul en un problème concernant exclusivement des représentations de tels
groupes Wm , cf. 1.4. Les objets cruciaux qui interviennent ici sont les représenta-
tions ρλ+,ε+ et ρλ−,ε− définies par Lusztig (ce ne sont pas ses notations) auxquelles
on a fait allusion ci-dessus. Elles ne sont pas irréductibles en général et on connaît
peu de choses sur leur décomposition en représentations irréductibles. On sait tou-
tefois que, disons dans la décomposition de ρλ+,ε+ , il y a un élément minimal qui
est la représentation ρλ+,ε+ associée à (λ+, ε+) par la correspondance de Springer
généralisée. Dans [Waldspurger 2018b], cela nous a suffi pour traiter non pas la
représentation π , mais son image par l’involution d’Aubert–Zelevinsky. Le point
nouveau est le résultat de [Waldspurger 2017] qui affirme (sous l’hypothèse que
tous les termes de λ+ sont pairs) que la décomposition de ρλ+,ε+ admet aussi un
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élément maximal pour un ordre convenable (cf. 4.1 pour un énoncé précis). C’est
ρλ+,min,ε+,min ⊗ sgn, où sgn est le caractère signature. Cette propriété nous permet
de conclure.

Les paragraphes 1 à 3 sont surtout consacrés à des rappels de résultats antérieurs.
On a amélioré certains d’entre eux quand c’était nécessaire. Le théorème ci-dessus
est démontré au paragraphe 4. Dans le paragraphe 5, nous indiquons comment se
calculent les partitions λ+,min et λ−,min (en fait leurs transposées) et nous donnons
quelques exemples de fronts d’onde.

1. Rappel pas très bref des résultats de [Waldspurger 2018b]

1.1. Partitions, notations. Soit λ= (λ1, . . . , λr ) une suite finie de nombres réels.
Notons t (λ) le plus grand entier j ∈ {1, . . . , r} tel que λ j 6= 0. On identifie deux
suites λ et λ′ si t (λ)= t (λ′) et λ j = λ

′

j pour tout j ≤ t (λ). Soit λ une telle suite et
soit k ∈ N. Quitte à adjoindre à λ des termes nuls, on peut écrire λ= (λ1, . . . , λr )

avec r ≥ k. On pose Sk(λ)= λ1+ · · ·+ λk . Évidemment, Sk(λ) ne dépend plus de
k dès que k ≥ t (λ). On pose S(λ)= St (λ)(λ). On définit la somme λ+ λ′ de deux
suites λ et λ′ : (λ+ λ′) j = λ j + λ

′

j pour tout j ≥ 1.
Une partition est une suite finie décroissante d’entiers positifs ou nuls. On iden-

tifie comme ci-dessus deux partitions qui ne diffèrent que par des termes nuls.
Pour une partition λ = (λ1, . . . , λr ) et pour un entier i ≥ 1, on note multλ(i) le
nombre d’indices j tels que λ j = i . On note Jord(λ) l’ensemble des i ≥ 1 tels que
multλ(i) > 0. Pour tout N ∈N, on note P(N ) l’ensemble des partitions λ telles que
S(λ)= N et on note P2(N ) l’ensemble des couples (α, β) de partitions telles que
S(α)+ S(β)= N . On ordonne les éléments de P(N ) de la façon usuelle : λ≤ λ′

si et seulement si Sk(λ) ≤ Sk(λ
′) pour tout k ∈ N. On définit la réunion λ∪ λ′ de

deux partitions λ et λ′ : pour tout entier i ≥ 1, multλ∪λ′(i)=multλ(i)+multλ′(i).
Soit λ une partition. Pour tout i ∈N, on note J (i) l’ensemble des j ≥ 1 tels que

λ j = i . Si i = 0, on considère que J (0) est l’intervalle infini {t (λ)+ 1, . . .}. Pour
i ∈ Jord(λ), J (i) est non vide. On note jmin(i), resp. jmax(i), le plus petit, resp.
grand, élément de J (i). On pose jmin(0)= t (λ)+ 1.

On note WN le groupe de Weyl d’un système de racines de type BN ou CN ,
avec la convention W0 = {1}. On note sgn le caractère signature usuel de WN et
sgnCD le caractère dont le noyau est le sous-groupe W D

N d’un système de racines
de type DN . Les représentations irréductibles de WN sont paramétrées par P2(N ).
Pour (α, β) ∈ P2(N ), on note ρ(α, β) la représentation paramétrée par (α, β). Les
représentations irréductibles de W D

N sont presque paramétrées par le quotient de
P2(N ) par la relation d’équivalence (α, β)≡ (β, α). Presque, parce qu’un couple
de la forme (α, α) paramètre deux représentations irréductibles.

Pour tout ensemble E , on note C[E] le C-espace vectoriel de base E . Pour tout
groupe fini W , on note Ŵ l’ensemble des classes d’équivalence de représentations
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irréductibles de W . En identifiant une représentation à son caractère, C[Ŵ ] est
aussi l’espace des fonctions de W dans C qui sont invariantes par conjugaison.

1.2. L’espace R. On fixe pour tout l’article un entier n ≥ 1. On note 0 l’ensemble
des quadruplets γ = (r ′, r ′′, N+, N−) tels que

r ′ ∈ N, r ′′ ∈ Z, N+ ∈ N, N− ∈ N, r ′2+ r ′+ N++ r ′′2+ N− = n.

Pour un tel γ , on pose R(γ )= C[ŴN+]⊗C[ŴN−]. On pose

R=
⊕
γ∈0

R(γ ).

On définit un endomorphisme ϕ 7→ sgn⊗ϕ de R de la façon suivante. Il respecte
chaque sous-espace R(γ ). Pour γ comme ci-dessus, pour ρ+ ∈ ŴN+ et ρ− ∈ ŴN− ,
on pose sgn⊗ (ρ+⊗ ρ−)= (ρ+⊗ sgn)⊗ (ρ−⊗ sgn).

On a défini en [Waldspurger 2004, 1.10] un endomorphisme ρι. Puisqu’il est
essentiel à nos constructions, rappelons sa définition. Soit γ = (r ′, r ′′, N+, N−)∈0
et ϕ ∈R(γ ). Posons N = N++ N−. L’élément ρι(ϕ) appartient à⊕

N1,N2∈N
N1+N2=N

R(r ′, (−1)r
′

r ′′, N1, N2).

Soit δ = (r ′, (−1)r
′

r ′′, N1, N2) ∈ 0. Décrivons la composante ρι(ϕ)δ de ρι(ϕ)
dans R(δ).

On définit un quadruplet d’entiers a = (a+1 , a−1 , a+2 , a−2 ) par les formules sui-
vantes :

a = (0, 0, 0, 1) si 0< r ′′ ≤ r ′ ou si r ′′ = 0 et r ′ est pair;

a = (0, 0, 1, 0) si −r ′ ≤ r ′′ < 0 ou si r ′′ = 0 et r ′ est impair;

a = (0, 1, 0, 0) si r ′ < r ′′;

a = (1, 0, 0, 0) si r ′′ <−r ′.

Notons N l’ensemble des quadruplets N = (N+1 , N−1 , N+2 , N−2 ) d’entiers positifs
ou nuls tels que

N+ = N+1 + N+2 , N− = N−1 + N−2 , N1 = N+1 + N−1 , N2 = N+2 + N−2 .

Pour un tel quadruplet, posons WN = WN+1
× WN−1

× WN+2
× WN−2

. Ce groupe
se plonge de façon évidente dans WN1 ×WN2 , resp. WN+ ×WN− , et ces plonge-
ments sont bien définis à conjugaison près. On a donc des foncteurs de restriction
resWN+×WN−

WN
et d’induction indWN1×WN2

WN
. On note sgna

CD le caractère de WN qui
est le produit tensoriel des caractères sgna+1

CD, sgna−1
CD, sgna+2

CD, sgna−2
CD sur chacun des
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facteurs de WN . Alors

ρι(ϕ)δ =
∑
N∈N

ind
WN1×WN2
WN

(
sgna

CD⊗ resWN+×WN−

WN
(ϕ)
)
.

1.3. Correspondance de Springer généralisée. Soit N ∈N. On a défini l’ensemble
Psymp(2N ) dans l’introduction. La correspondance de Springer généralisée dans
le cas symplectique est une bijection de Psymp(2N ) sur l’ensemble des couples
(k, ρ) où

k ∈ N et k(k+ 1)≤ 2N ; ρ ∈ ŴN−k(k+1)/2.

Pour (λ, ε) ∈Psymp(2N ), on note (kλ,ε, ρλ,ε) le couple qui lui correspond et on
pose Nλ,ε = N − kλ,ε(kλ,ε + 1)/2. Rappelons comment on calcule kλ,ε . On note
i1 > · · ·> it les entiers i ∈ Jordbp(λ) tels que multλ(i) soit impair. On pose

M =
∣∣{h = 1, . . . , t; h est pair et εih =−1}

∣∣
−
∣∣{h = 1, . . . , t; h est impair et εih =−1}

∣∣.
Alors, d’après [Waldspurger 2001] XI.3, on a

kλ,ε = 2M si M ≥ 0, kλ,ε =−2M − 1 si M < 0. (1)

On définit une autre représentation ρλ,ε du même groupe WNλ,ε , cf. [Waldspurger
2004, 5.1]. En gros, ρλ,ε est l’action de WNλ,ε sur un sous-espace déterminé par ε
de l’espace de cohomologie de plus haut degré d’une certaine variété algébrique,
tandis que ρλ,ε est l’action de WNλ,ε sur un sous-espace analogue de la somme de
tous les espaces de cohomologie de cette variété.

Soit (λ+, ε+, λ−, ε−)∈Irrquad(2n). Pour ζ =±, posons 2nζ = S(λζ ), kζ =kλζ ,εζ ,
N ζ
= nζ − kζ (kζ + 1)/2. On définit des entiers r ′ ∈ N, r ′′ ∈ Z par les formules

suivantes :

si k+ ≡ k− mod 2Z, r ′ = k++k−

2
, r ′′ = k+−k−

2
;

si k+ 6≡ k− mod 2Z et k+ > k−, r ′ = k+−k−−1
2

, r ′′ = k++k−+1
2

;

si k+ 6≡ k− mod 2Z et k+ < k−, r ′ = k−−k+−1
2

, r ′′ =−k++k−+1
2

.

Le quadruplet γ = (r ′, r ′′, N+, N−) appartient à 0. Puisque

R(γ )= C[ŴN+]⊗C[ŴN−],

on peut identifier ρλ+,ε+ ⊗ ρλ−,ε− à un élément de R(γ ), a fortiori à un élément
de R. Dans la suite ρλ+,ε+ ⊗ ρλ−,ε− désignera cet élément.

Pour M ∈ N, on note Porth(M) l’ensemble des partitions orthogonales de M .
Pour une telle partition λ, on note Jordbp(λ) l’ensemble des entiers impairs i ≥ 1 tels
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que multλ(i) > 0. On note Porth(M) l’ensemble des couples (λ, ε) où λ∈Porth(M)
et ε∈{±1}Jordbp(λ)/{±1}, le groupe {±1} s’envoyant diagonalement dans {±1}Jordbp(λ).

Soit N ∈ N. La correspondance de Springer généralisée dans le cas orthogonal
impair est une bijection de Porth(2N + 1) sur l’ensemble des couples (k, ρ) tels
que

k ∈ N, k est impair et k2
≤ 2N + 1; ρ ∈ ŴN−(k2−1)/2.

Soit (kλ,ε, ρλ,ε) le couple associé à (λ, ε) ∈Porth(2N + 1). Soit Porth(2N + 1)k=1

le sous-ensemble des (λ, ε) ∈Porth(2N + 1) tels que kλ,ε = 1.
La correspondance de Springer généralisée dans le cas orthogonal pair est une

bijection entre Porth(2N ) et l’ensemble des couples (k, ρ) tels que

k ∈ N, k est pair et k2
≤ 2N ;

si k > 0, ρ ∈ ŴN−k2/2;

si k = 0, ρ est une classe d’équivalence dans ŴN−k2/2,

deux représentations irréductibles ρ ′ et ρ ′′ étant ici équivalentes
si et seulement si ρ ′ = ρ ′′ ou ρ ′ = ρ ′′⊗ sgnCD.

On note (kλ,ε, ρλ,ε) le couple associé à (λ, ε)∈Porth(2N ). On note Porth(2N )k=0

le sous-ensemble des (λ, ε) ∈ Porth(2N ) tels que kλ,ε = 0. Quand kλ,ε = 0, ρλ,ε
n’est qu’une classe d’équivalence comme on vient de le dire. Autrement dit, ρλ,ε
est paramétrée par un couple (α, β) ∈ P2(N ) à l’ordre près. Si α = β, on pose
ρ+λ,ε = ρ

−

λ,ε = ρ(α, β). Si α 6= β, on choisit α et β de sorte que α > β pour l’ordre
lexicographique. On pose ρ+λ,ε = ρ(α, β) et ρ−λ,ε = ρ(β, α).

1.4. Caractérisation du front d’onde. On a introduit les groupes G iso et Gan. Pour
] = iso ou an, on note Irrtunip,] l’ensemble des classes d’isomorphismes de re-
présentations admissibles irréductibles de G](F) qui sont tempérées et de réduc-
tion unipotente. On note Irrtunip la réunion disjointe de Irrtunip,iso et Irrtunip,an. On
a défini en [Waldspurger 2018a, 1.5] un espace Rpar et une application linéaire
Rep : C[Irrtunip]→Rpar. A la suite de Lusztig, on a défini en [Mœglin et Waldspur-
ger 2003, 3.16] deux isomorphismes Rep : R→ Rpar et k : R→ Rpar. On note
F l’automorphisme de R tel que Rep ◦F = k. C’est une involution sur le calcul
de laquelle nous reviendrons en 2.5. Pour π ∈ Irrtunip, on note κπ l’élément de R
tel que k(κπ ) = Res(π). Soient n1, n2 ∈ N et ρ1 ∈ Ŵn1 , ρ2 ∈ Ŵn2 . Le quadruplet
γ = (0, 0, n1, n2) appartient à 0 et on a R(γ )= C[Ŵn1]⊗C[Ŵn2]. Notons κπ (γ )
la composante de κπ dans R(γ ). C’est une combinaison linéaire de représentations
irréductibles avec des coefficients complexes. On note mπ (ρ1, ρ2) le coefficient de
ρ1⊗ ρ2 dans cette combinaison linéaire.

On pose sgniso = 1, sgnan = −1. Soit ] = iso ou an, soit π ∈ Irrtunip,], soient
n1, n2 ∈N tels que n1+n2 = n et soient (µ1, η1) ∈Porth(2n1+1)k=1 et (µ2, η2) ∈
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Porth(2n2)k=0. Comme cas particulier de la définition ci-dessus, pour ζ = ±, on
définit les multiplicités mπ (ρµ1,η1 ⊗ sgn, ρζµ2,η2 ⊗ sgn). On pose

Mπ (µ1, η1;µ2, η2)

= mπ (ρµ1,η1 ⊗ sgn, ρ+µ2,η2
⊗ sgn)+ sgn]mπ (ρµ1,η1 ⊗ sgn, ρ−µ2,η2

⊗ sgn).

Proposition. Soient ]= iso ou an, π ∈ Irrtunip,] et µ∈Porth(2n+1). Alors π admet
un front d’onde paramétré par µ si et seulement si les deux conditions suivantes
sont vérifiées.

(i) Soient n1, n2 ∈ N tels que n1+ n2 = n et n2 ≥ 1 si ]= an. Soient

(µ1, η1) ∈Porth(2n1+ 1)k=1 et (µ2, η2) ∈Porth(2n2)k=0.

Supposons Mπ (µ1, η1;µ2, η2) 6= 0. Alors µ1 ∪µ2 ≤ µ.

(ii) Il existe n1, n2 ∈ N tels que n1+ n2 = n et n2 ≥ 1 si ]= an et il existe

(µ1, η1) ∈Porth(2n1+ 1)k=1 et (µ2, η2) ∈Porth(2n2)k=0

tels que Mπ (µ1, η1;µ2, η2) 6= 0 et µ1 ∪µ2 = µ.

Cf. [Waldspurger 2018b, 3.7] . Les notations de cette référence étaient légère-
ment différente, les multiplicités étaient dans certains cas divisées par 2 mais cela
ne change évidemment pas l’énoncé. D’autre part, dans [Waldspurger 2018b], la
représentation π était d’une forme particulière, mais cela n’était utilisé que pour
décrire explicitement la fonction κπ dans [loc. cit., 3.8], cela n’intervient pas à ce
point.

1.5. Les représentations π(λ+, ε+, λ−, ε−). Soit (λ+, ε+, λ−, ε−)∈Irrquad(2n).
En utilisant une construction de Lusztig, on a défini en [Waldspurger 2018a, 1.3] la
représentation π(λ+, ε+, λ−, ε−). Sa paramétrisation de Langlands a été rappelée
rapidement dans l’introduction. C’est une représentation admissible, irréductible
et tempérée de G](F), où l’indice ] est déterminé par la formule

sgn] =
( ∏

i∈Jordbp(λ+)

ε+(i)multλ+ (i)
)( ∏

i∈Jordbp(λ−)

ε−(i)multλ− (i)
)
, (1)

cf. 1.3 pour la définition de sgn]. Notons D l’involution de Aubert–Zelevinski. Elle
permute les représentations admissibles irréductibles de G](F). On a l’égalité

Res ◦D(π(λ+, ε+, λ−, ε−))= Rep ◦ρι(ρλ+,ε+ ⊗ ρλ−,ε−), (2)

cf. [Waldspurger 2018a, proposition 1.11].
L’espace Rpar est somme directe finie d’espaces vectoriels ayant pour base les

classes d’équivalence de représentations irréductibles et unipotentes de groupes
finis de la forme SO(2n′+1; Fq)×O(2n′′; Fq), avec des notations compréhensibles.
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Chacun de ces espaces est muni d’involutions du même type que D. L’espace Rpar

est ainsi muni d’une involution Dpar et on a prouvé en [Waldspurger 2018a, 1.7]
l’égalité Res ◦D = Dpar

◦Res. Montrons que l’on a aussi

Dpar
◦Rep(ϕ)= Rep(sgn⊗ϕ) pour tout ϕ ∈R. (3)

Preuve. Fixons γ = (r ′, r ′′, N1, N2) ∈ 0, ρ1 ∈ ŴN1 , ρ2 ∈ ŴN2 et considérons
l’élément ϕ = ρ1⊗ ρ2 ∈R(γ ). D’après Lusztig, le couple (r ′, ρ1) paramètre une
représentation irréductible π1 d’un groupe fini SO(2n1+1, Fq), où n1= N1+r ′2+r ′

et Fq est le corps résiduel de F . De même, le couple (r ′′, ρ2) paramètre une repré-
sentation irréductible π2 d’un groupe fini SO(2n2, Fq), où n2 = N2 + r ′′2 (c’est
la forme déployée du groupe si r ′′ est pair, non déployée si r ′′ est impair). Le
terme Rep(ϕ) n’est autre que π1⊗ π2. On définit usuellement une involution du
groupe de Grothendieck des représentations de longueur finie de tels groupes fi-
nis (cf. [Carter 1985, 8.2] dans le cas d’un groupe connexe et [Digne et Michel
1994, 3.10] dans le cas non connexe). C’est une somme alternée de composés de
foncteurs de restriction et d’induction. D’après notre définition de [Waldspurger
2018a, 1.7], Dpar(π1⊗π2) est le produit tensoriel des images de π1 et π2 par ces
involutions multipliées par des signes de sorte que ces images soient des représen-
tations irréductibles. D’autre part, pour tout m ∈ N, on définit une involution DWm

de C[Ŵm] par une formule analogue : c’est une somme alternée de composés de
foncteurs de restriction et d’induction, cf. [Howlett et Lehrer 1982, corollaire 1].
Les paramétrages (r ′, ρ1) 7→ π1 et (r ′′, ρ2) 7→ π2 étant compatibles en un sens
plus ou moins évident aux foncteurs de restriction et d’induction, Dpar(π1⊗π2)

est égal à l’image par Rep de ±DWN1
(ρ1)⊗ DWN2

(ρ2), le signe étant choisi de
sorte que ce terme soit le produit tensoriel de deux représentations irréductibles.
D’après [Howlett et Lehrer 1982, corollaire 1], on a DWm (ρ) = ±ρ ⊗ sgn pour
tout m ∈ N et tout ρ ∈ Ŵm . Donc Dpar(π1 ⊗ π2) est égal à l’image par Rep de
(ρ1⊗ sgn)⊗ (ρ2⊗ sgn), c’est-à-dire de sgn⊗ϕ. �

Il est clair d’après sa définition que l’endomorphisme ρι commute à la tensori-
sation ϕ 7→ sgn⊗ϕ. Alors la formule (2) se transforme en

Res ◦π(λ+, ε+, λ−, ε−)= Rep ◦ρι
(
(ρλ+,ε+ ⊗ sgn)⊗ (ρλ−,ε− ⊗ sgn)

)
.

En utilisant l’égalité Rep= k ◦F , on obtient finalement l’égalité

κπ(λ+,ε+,λ−,ε−) = F ◦ ρι
(
(ρλ+,ε+ ⊗ sgn)⊗ (ρλ−,ε− ⊗ sgn)

)
. (4)
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2. Symboles, partitions spéciales, dualité

2.1. Symboles. Pour un couple 3= (X, Y ) de sous-ensembles finis de N, on dé-
finit le rang rg(3) et le défaut def(3) par

rg(3)= S(X)+ S(Y )− [(|X | + |Y | − 1)2/4],

où [·] désigne la partie entière,

def(3)= sup(|X | − |Y |, |Y | − |X |).

On définit une relation d’équivalence entre couples de sous-ensembles finis de N,
engendrée par (X, Y )∼ (X ′, Y ′), où

X ′ = {x + 1; x ∈ X} ∪ {0}, Y ′ = {y+ 1; y ∈ Y } ∪ {0}.

Le rang et le défaut sont constants sur toute classe d’équivalence. On appelle sym-
bole de défaut impair une classe d’équivalence de couples 3 = (X, Y ) tels que
|X | > |Y | et def(3) est impair. On appelle symbole de défaut pair une classe
d’équivalence de couples 3= (X, Y ) tels que def(3) est pair (dans le cas pair, on
n’impose pas |X | ≥ |Y |).

Soit m ∈ N. On note Sm,imp l’ensemble des classes d’équivalence de symboles
de défaut impair et de rang m. Pour 3 ∈ Sm,imp, on pose r(3) = (def(3)− 1)/2.
On note Sm,pair l’ensemble des classes d’équivalence de symbole de défaut pair
et de rang m. Pour 3 = (X, Y ) ∈ Sm,pair, on pose r(3) = (|X | − |Y |)/2. On a
def(3)= 2|r(3)|.

Remarque. La définition que l’on utilise ici des symboles de défaut pair est diffé-
rente de celle de [Waldspurger 2018b, 1.2] où l’on avait identifié les couples (X, Y )
et (Y, X).

Notons 6m,imp l’ensemble des triplets (r, α, β) où r ∈N, α et β sont des parti-
tions et r2

+r+S(α)+S(β)=m. Remarquons que, puisque les couples de partitions
(α, β) vérifiant la relation précédente paramètrent les représentations irréductibles
de Wm−r2−r , on peut identifier 6m,imp à l’ensemble des couples (r, ρ), où r ∈ N

vérifie r2
+r ≤m et ρ∈ Ŵm−r2−r . On définit une application symb :6m,imp→ Sm,imp

de la façon suivante. Soit (r, α, β) ∈6m,imp. On suppose que β a a termes pour un
entier a ≥ 0 et que α en a a+2r +1. On pose X = α+{a+2r, a+2r −1, . . . , 0},
Y = β + {a − 1, a − 2, . . . , 0}, 3 = (X, Y ). Alors, symb(r, α, β) = 3. Remar-
quons que r = r(3). L’application symb ainsi définie est une bijection de 6m,imp

sur Sm,imp.
Notons6m,pair l’ensemble des triplets (r, α, β) où r ∈Z, α et β sont des partitions

et r2
+ S(α) + S(β) = m. On peut identifier 6m,pair à l’ensemble des couples

(r, ρ), où r ∈ Z vérifie r2
≤ m et ρ ∈ Ŵm−r2 . On définit une application symb :

6m,pair→ Sm,pair de la façon suivante. Soit (r, α, β)∈6m,pair. On suppose que β a a
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termes et que α en a a+2|r |. Si r ≥0, on pose X =α+{a+2r−1, a+2r−2, . . . , 0},
Y = β+{a−1, a−2, . . . , 0}. Si r < 0, on pose X = β+{a−1, a−2, . . . , 0}, Y =
α+{a+2|r |−1, a−2|r |−2, . . . , 0}. On pose3= (X, Y ). Alors symb(r, α, β)=3.
Remarquons que r = r(3). L’application symb ainsi définie est une bijection de
6m,pair sur Sm,pair.

Posons
S =

⊕
n′+n′′=n

C[Sn′,imp]⊗C[Sn′′,pair].

D’après la construction de 1.2, l’espace R s’identifie à⊕
n′+n′′=n

C[6n′,imp]⊗C[6n′′,pair].

Des bijections symb ci-dessus se déduisent donc un isomorphisme encore noté
symb :R→ S.

2.2. Partitions spéciales, cas symplectique. Soit m ∈ N. Une partition symplec-
tique λ ∈ Psymp(2m) est dite spéciale si λ2 j−1 et λ2 j sont de même parité pour
tout j ≥ 1. On note Psymp,sp(2m) le sous-ensemble des partitions spéciales. Soit
λ une telle partition spéciale. Considérons l’ensemble des éléments i ∈ Jordbp(λ)

tels que multλ(i) soit impair. S’il a un nombre pair d’éléments, on les note i1 >

i2 > · · ·> it . S’il a un nombre impair d’éléments, on les note i1 > i2 > · · ·> it−1

et on pose it = 0. Ainsi, t est toujours pair. On appelle intervalle de λ un sous-
ensemble de Jord(λ)∪ {0} de l’une des formes suivantes :{

i ∈ Jord(λ)∪ {0}; i2h−1 ≥ i ≥ i2h
}

pour h = 1, . . . , t/2;

{i} pour i ∈ Jordbp(λ)∪ {0} tel qu’il n’existe pas de
h = 1, . . . , t/2 de sorte que i2h−1 ≥ i ≥ i2h .

Parce que λ est spéciale, on voit que les intervalles sont formés d’entiers pairs. On
note Ĩnt(λ) l’ensemble de ces intervalles. Il est ordonné de façon naturelle : 1>1′

si et seulement si i > i ′ pour tous i ∈1 et i ′ ∈1′. L’élément minimal est celui qui
contient 0, on le note 1min et on pose Int(λ) = Ĩnt(λ)− {1min}. Pour 1 ∈ Ĩnt(λ),
on note J (1) l’ensemble des j ≥ 1 tels que λ j ∈1. C’est un intervalle de N, qui
est infini dans le cas 1=1min. On note jmin(1) le plus petit élément de J (1) et,
si 1 6=1min, on note jmax(1) le plus grand élément de J (1). On vérifie que

{ jmin(1);1 ∈ Ĩnt(λ)} est l’ensemble des j ≥ 1 tels que j soit impair,
λ j soit pair et λ j−1 > λ j , avec la convention λ0 =∞;

{ jmax(1);1 ∈ Int(λ)} est l’ensemble des j ≥ 1 tels que j soit pair,
λ j soit pair et λ j > λ j+1.
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Par la correspondance de Springer, on associe à (λ, 1) une représentation irréduc-
tible de Wm . Elle est paramétrée par un couple (α(λ), β(λ)). On note (X (λ), Y (λ))∈
Sm,imp l’image de (0, α(λ), β(λ)) par l’application symb. C’est un symbole spécial,
c’est-à-dire que |X (λ)| = |Y (λ)| + 1 et, si on note X (λ) = (x1 > · · · > xa+1),
Y (λ)= (y1 > · · ·> ya), on a x1 ≥ y1 ≥ x2 ≥ y2 ≥ · · · ≥ xa ≥ ya ≥ xa+1. On appelle
famille de λ l’ensemble des symboles (X, Y ) ∈ Sm,imp tels que, quitte à remplacer
(X, Y ) et (X (λ), Y (λ)) par des symboles équivalents, on ait

X ∪ Y = X (λ)∪ Y (λ), X ∩ Y = X (λ)∩ Y (λ). (1)

On note Fam(λ) la famille de λ. On montre que Sm,imp est la réunion disjointe
des Fam(λ) quand λ décrit l’ensemble Psymp,sp(2m).

Soit λ ∈ Psymp,sp(2m). On montre qu’il y a une unique bijection croissante
1 7→ x1 de Ĩnt(λ) sur X (λ)− (X (λ)∩ Y (λ)) et une unique bijection croissante
1 7→ y1 de Int(λ) sur Y (λ)− (X (λ)∩Y (λ)). A un symbole 3= (X, Y ) ∈ Fam(λ),
on associe deux éléments τ ∈ (Z/2Z)Ĩnt(λ) et δ ∈ (Z/2Z)Int(λ) par les formules
suivantes. On suppose les symboles choisis de sorte que (1) soit vérifié. Alors,
pour 1 ∈ Ĩnt(λ), resp. 1 ∈ Int(λ), on pose

τ(1)=
∣∣{1′ ∈ Ĩnt(λ); 1′ ≥1, x1′ ∈ Y }

∣∣+ ∣∣{1′ ∈ Int(λ); 1′ >1, y1′ ∈ X}
∣∣

+r(3) mod 2Z;
resp.

δ(1)=
∣∣{1′ ∈ Int(λ); 1′ ≥1, x1′ ∈ Y }

∣∣+ ∣∣{1′ ∈ Int(λ); 1′ ≥1, y1′ ∈ X}
∣∣

mod 2Z.

Par cette construction, la famille Fam(λ) s’identifie à l’ensemble des couples (τ, δ)∈
(Z/2Z)Ĩnt(λ)

× (Z/2Z)Int(λ) tels que τ(1min) = 0. On note Fam(λ) cet ensemble.
Pour (τ, δ) dans cet ensemble, provenant du symbole 3, on pose r(τ, δ)= r(3).

2.3. Partitions spéciales, cas orthogonal impair. Soit m ∈N. Une partition ortho-
gonale λ ∈ Porth(2m+ 1) est dite spéciale si λ2 j et λ2 j+1 sont de même parité pour
tout j ≥ 1. Il en résulte que λ1 est impair. On note Porth,sp(2m+1) le sous-ensemble
des partitions spéciales. Soit λ une telle partition spéciale. Les constructions du pa-
ragraphe précédent s’appliquent. Par la correspondance de Springer, on associe à
(λ, 1) une représentation irréductible de Wm , puis un symbole appartenant à Sm,imp.
Il est spécial. On définit la famille de λ, que l’on note Fam(λ). On montre que Sm,imp

est la réunion disjointe des Fam(λ) quand λ décrit l’ensemble Porth,sp(2m+ 1).
Remarquons que la conjonction des propriétés énoncées ici et dans le paragraphe

précédent entraîne qu’il y a une bijection entre Psymp,sp(2m) et Porth,sp(2m+ 1) :
λ ∈ Psymp,sp(2m) correspond à µ ∈ Porth,sp(2m + 1) si et seulement si Fam(λ) =
Fam(µ). En fait, nous utiliserons une autre bijection, la dualité, cf. 2.6.
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2.4. Partitions spéciales, cas orthogonal pair. Soit m ∈ N. Une partition ortho-
gonale λ ∈ Porth(2m) est dite spéciale si λ2 j−1 et λ2 j sont de même parité pour
tout j ≥ 1. On note Porth,sp(2m) le sous-ensemble des partitions spéciales. Soit λ
une telle partition spéciale. Considérons l’ensemble des éléments i ∈ Jordbp(λ) tels
que multλ(i) soit impair. On les note i1 > i2 > · · · > it . L’entier t est forcément
pair. On appelle intervalle de λ un sous-ensemble de Jord(λ) de l’une des formes
suivantes :{

i ∈ Jord(λ); i2h−1 ≥ i ≥ i2h
}

pour h = 1, . . . , t/2;

{i} pour i ∈ Jordbp(λ) tel qu’il n’existe pas de
h = 1, . . . , t/2 de sorte que i2h−1 ≥ i ≥ i2h .

Parce que λ est spéciale, on voit que les intervalles sont formés d’entiers impairs.
On note Int(λ) l’ensemble de ces intervalles. Comme dans le cas symplectique,
il est ordonné de façon naturelle. Pour 1 ∈ Int(λ), on définit J (1), jmin(1) et
jmax(1) comme dans le cas symplectique. On vérifie que

{ jmin(1); 1 ∈ Int(λ)} est l’ensemble des j ≥ 1 tels que j soit impair,
λ j soit impair et λ j−1>λ j , avec la convention λ0=∞;

{ jmax(1);1 ∈ Int(λ)} est l’ensemble des j ≥ 1 tels que j soit pair,
λ j soit impair et λ j > λ j+1.

Par la correspondance de Springer, on associe à (λ, 1) une représentation irréduc-
tible de W D

m . Elle est paramétrée par un couple (α(λ), β(λ)), qui n’est déterminé
qu’à l’ordre près. On impose que α(λ) ≥ β(λ) pour l’ordre lexicographique (s’il
existe j tel que α(λ) j 6= β(λ) j , on a α(λ) j > β(λ) j pour le plus petit de ces
entiers j). On note (X (λ), Y (λ)) ∈ Sm,pair l’image de (0, α(λ), β(λ)) par l’applica-
tion symb. C’est un symbole spécial, c’est-à-dire que |X (λ)| = |Y (λ)| et, si on note
X (λ)= (x1 > · · ·> xa), Y (λ)= (y1 > · · ·> ya), on a x1 ≥ y1 ≥ x2 ≥ y2 ≥ · · · ≥

xa ≥ ya . On appelle famille de λ l’ensemble des symboles (X, Y ) ∈ Sm,pair tels que,
quitte à remplacer (X, Y ) et (X (λ), Y (λ)) par des symboles équivalents, on ait

X ∪ Y = X (λ)∪ Y (λ), X ∩ Y = X (λ)∩ Y (λ). (1)

On note Fam(λ) la famille de λ. On montre que Sm,pair est la réunion disjointe
des familles Fam(λ) quand λ décrit l’ensemble Porth,sp(2m).

Soit λ∈Porth,sp(λ). On montre qu’il y a une unique bijection croissante 1 7→ x1
de Int(λ) sur X (λ)− (X (λ)∩ Y (λ)) et une unique bijection croissante 1 7→ y1
de Int(λ) sur Y (λ) − (X (λ) ∩ Y (λ)). À un symbole 3 = (X, Y ) ∈ Fam(λ), on
associe deux éléments τ, δ ∈ (Z/2Z)Int(λ) par les mêmes formules qu’en 2.2 (à
ceci près qu’un Ĩnt(λ) figurant dans ces dernières est remplacé par Int(λ)). Par
cette construction, la famille Fam(λ) s’identifie à l’ensemble des couples (τ, δ) ∈
(Z/2Z)Int(λ)

× (Z/2Z)Int(λ). On note Fam(λ) cet ensemble. Pour (τ, δ) dans cet
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ensemble, provenant du symbole 3, on pose r(τ, δ) = r(3). Si Int(λ) 6= ∅, on
note 1min son plus petit élément et on vérifie que

δ(1min)≡ r(τ, δ) mod 2Z; (2)

si Int(λ)=∅, Fam(λ) a un unique élément (∅,∅) et on a r(∅,∅)= 0.

2.5. L’involution de Lusztig. Soient m ∈ N et λ ∈ Psymp,sp(2m). On note 3(λ)=
(X (λ), Y (λ)) le symbole spécial associé à λ. On représente tout élément de la
famille de λ par un symbole 3= (X, Y ) vérifiant la condition 2.2(1). Soient 3=
(X, Y ), 3′ = (X ′, Y ′) deux éléments de Fam(λ). On pose

〈3,3′〉 = r(3)+ r(3′)+ |X ∩ X ′ ∩ Y (λ)| + |Y ∩ Y ′ ∩ X (λ)| mod 2Z.

Cela définit une application :

〈 · , · 〉 : Fam(λ)×Fam(λ)→ Z/2Z.

On définit un automorphisme F de l’espace C[Fam(λ)] par la formule

F(3)= | Fam(λ)|−
1
2
∑

3′∈Fam(λ)

(−1)〈3,3
′
〉3′,

les symboles étant ici identifiés aux éléments de base de C[Fam(λ)]. On vérifie
qu’il est involutif. D’après ce que l’on a dit en 2.2, l’espace C[Sm,imp] est somme
directe des sous-espaces C[Fam(λ)] quand λ décrit Psymp,sp(2m). On note F l’au-
tomorphisme de C[Sm,imp] qui est la somme directe des automorphismes de ces
sous-espaces que l’on vient de construire.

Pour λ ∈ Porth,sp(2m), on définit exactement de la même façon un automor-
phisme F de C[Fam(λ)]. Puis, par somme directe, on en déduit un automorphisme
de C[Sm,pair].

Dans le cas orthogonal pair, on dispose d’une involution σ de Fam(λ) : si 3=
(X, Y ), σ(3)= (Y, X). Pour 3,3′ ∈ Fam(λ), on vérifie la formule

〈σ(3),3′〉 ≡ r(3′)+〈3,3′〉 mod 2Z. (1)

Rappelons que
S =

⊕
n′,n′′∈N
n′+n′′=n

C[Sn′,imp]⊗C[Sn′′,pair].

On a défini des automorphismes F de chacun des espaces qui interviennent ici. Par
produit tensoriel et sommation, on en déduit un automorphisme F de S. On a défini
en 2.1 un isomorphisme symb :R→ S. Par celui-ci, on transporte l’automorphisme
F de S en un automorphisme F de R. C’est l’automorphisme de Lusztig introduit
en 1.4.
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2.6. Dualité. Soit m ∈N. On a introduit en 2.1 l’ensemble 6m,imp, que l’on voit ici
comme un ensemble de couples (r, ρ), où ρ ∈ Ŵm−r2−r . On définit une involution
de cet ensemble par (r, ρ) 7→ (r, ρ ⊗ sgn). Transportons-la en une involution de
Sm,imp par la bijection symb. On note d l’involution obtenue. Elle se calcule ainsi.
Soit 3= (X, Y ) ∈ Sm,imp. Fixons un entier a plus grand que tous les termes de X
et Y . Posons

X ′ = {a, . . . , 0}− {a− y; y ∈ Y }, Y ′ = {a, . . . , 0}− {a− x; x ∈ X}.

Alors d(3) = (X ′, Y ′). Cette formule montre que d conserve la décomposition
en familles, c’est-à-dire que si 3 et 3′ sont dans une même famille, alors d(3) et
d(3′) sont aussi dans une même famille. On définit une application appelée dualité
d : Psymp,sp(2m)→ Porth,sp(2m+1) ou d : Porth,sp(2m+1)→ Psymp,sp(2m) par la
condition Fam(d(λ)) = d(Fam(λ)). Les deux applications sont inverses l’une de
l’autre.

Ces dualités s’étendent en des applications d : Psymp(2m)→ Porth,sp(2m + 1)
ou d : Porth(2m+ 1)→ Psymp,sp(2m). Rappelons la définition de la première, celle
de la seconde étant similaire. Soit λ ∈ Psymp(2m). La correspondance de Springer
associe au couple (λ, 1) ∈ Psymp(2m) une représentation ρλ,1 de Wm . Le couple
(0, ρλ,1) appartient à 6m,imp. Il existe une unique partition symplectique spéciale,
que l’on note sp(λ), dont la famille contient le symbole symb(0, ρλ,1). En fait,
on montre que sp(λ) est la plus petite partition symplectique spéciale λ′ telle que
λ ≤ λ′. On pose d(λ) = d(sp(λ)). Cette dualité est décroissante : λ ≤ λ′ entraîne
d(λ′)≤ d(λ).

On peut remplacer 6m,imp par 6m,pair dans la construction ci-dessus. On ob-
tient une dualité d qui est une involution de Porth,sp(2m). Celle-ci s’étend en une
application d : Porth(2m)→ Porth,sp(2m), qui est décroissante.

2.7. Calcul de d(λ). Soient m ∈ N et λ ∈ Psymp(2m). Pour i ∈ Jord(λ) ∪ {0},
notons J (i) l’ensemble des indices j ≥ 1 tels que λ j = i . C’est un intervalle de
N−{0}, infini si i = 0. On note jmin(i) son plus petit élément et, si i 6= 0, jmax(i)
son plus grand élément. Considérons l’ensemble des éléments i de Jordbp(λ) tels
que multλ(i) soit impaire. Comme en 2.2, si cet ensemble a un nombre pair d’élé-
ments, on les note i1 > · · ·> it . S’il a un nombre impair d’éléments, on les note
i1 > · · ·> it−1 et on pose it = 0. Pour h = 1, . . . , t , on vérifie que

jmin(ih)≡ h mod 2Z et, si ih 6= 0, jmax(ih)≡ h mod 2Z.

Considérons les éléments de Jord(λ)∪ {0} qui n’interviennent pas dans la suite
i1, . . . , it , c’est-à-dire les i ∈ Jord(λ) tels que multλ(i) soit pair et aussi 0 dans le
cas où it 6= 0. Notons J (λ) cet ensemble. On décompose J (λ) en union disjointe
J ′(λ)tJ ′′(λ) : J ′′(λ) est l’ensemble des i ∈ J (λ) tels qu’il existe h = 1, . . . , t/2
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de sorte que i2h−1 > i > i2h ; J ′(λ) est son complémentaire. On vérifie que

pour i ∈ J ′(λ), jmin(i) est impair et, si i 6= 0, jmax(i) est pair;

pour i ∈ J ′′(λ), jmin(i) est pair et, si i 6= 0, jmax(i) est impair.

Notons

P+(λ) l’ensemble des entiers impairs j ≥ 1 tels que λ j est pair et λ j−1 > λ j ,
avec la convention λ0 =∞;

P−(λ) l’ensemble des entiers pairs j ≥ 2 tels que λ j est pair et λ j > λ j+1;

Q+(λ) l’ensemble des entiers pairs j ≥ 2 tels que λ j est impair et λ j−1 > λ j ;

Q−(λ) l’ensemble des entiers impairs j ≥ 1 tels que λ j est impair et λ j >λ j+1.

Ces ensembles sont disjoints. A l’aide des propriétés précédentes, on voit que

P+(λ) est l’ensemble des jmin(i) pour i = ih avec h impair,
ou pour un élément pair i ∈ J ′(λ);

P−(λ) est l’ensemble des jmax(i) pour i = ih avec h pair et ih 6= 0
ou pour un élément pair non nul i ∈ J ′(λ);

Q+(λ) est l’ensemble des jmin(i) pour un élément impair i ∈ J ′′(λ);

Q−(λ) est l’ensemble des jmax(i) pour un élément impair i ∈ J ′′(λ).

Ces ensembles sont disjoints. Les éléments de P+(λ) ∪ P−(λ) apparaissent
presque tous par paires. Un élément de P+(λ) de la forme jmin(i) pour i = ih avec
h impair est suivi de l’élément jmax(ih+1) ∈ P−(λ) sauf si ih+1 = 0. Un élément
de P+(λ) de la forme jmin(i) pour un élément pair i ∈ J ′(λ) est suivi de l’élément
jmax(i) ∈ P−(λ) sauf si i = 0. Le plus petit élément de P+(λ) est jmin(it−1) si
it = 0 ou jmin(0) si it 6= 0. Il n’est suivi d’aucun élément de P−(λ). Il en résulte
que |P+λ)| = |P−(λ)| + 1 et que, si on note ces ensembles

P+(λ)= {p+1 < · · ·< p+a+1}, P−(λ)= {p−1 < · · ·< p−a },

on a les relations

p+1 < p−1 < p+2 < p−2 < · · ·< p+a < p−a < p+a+1.

On voit de même que |Q+(λ)| = |Q−(λ)| et que, si on note ces ensembles

Q+(λ)= {q+1 < · · ·< q+b }, Q−(λ)= {q−1 < · · ·< q−b },

on a les relations

q+1 < q−1 < q+2 < q−2 < · · ·< q+b < q−b .
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Remarquons que, pour j ∈ Q+(λ), on a λ j = λ j+1. En effet, λ j est impair, donc
multλ(λ j ) est pair. Mais on a aussi λ j−1 > λ j , d’où l’égalité cherchée. De même,
pour j ∈ Q−(λ), on a j ≥ 2 et λ j−1 = λ j .

Définissons deux suites de nombres

ζ(λ)= (ζ(λ)1, ζ(λ)2, . . . ) et s(λ)= (s(λ)1, s(λ)2, . . . )

par les égalités

ζ(λ) j =


1 si j ∈ P+(λ),
−1 si j ∈ P−(λ),

0 sinon ;
s(λ) j =


1 si j ∈ Q+(λ),
−1 si j ∈ Q−(λ),

0 sinon ;

Lemme. On a les égalités (i) sp(λ)= λ+ s(λ) ; (ii) td(λ)= λ+ ζ(λ).

Preuve. Posons ν = λ+ s(λ). Montrons que ν est une partition, c’est-à-dire que
ν j ≥ ν j+1 pour tout j ≥ 1. Puisque le couple (ν j , ν j+1) s’obtient en ajoutant à
(λ j , λ j+1) un couple qui appartient à {−1, 0, 1}× {−1, 0, 1} et puisque λ j ≥ λ j+1,
la conclusion est claire sauf si le couple ajouté est (−1, 0), (0, 1) ou (−1, 1). Le
premier cas se produit seulement si j ∈ Q−(λ). Dans ce cas on a λ j > λ j+1 par
définition de Q−(λ) et alors λ j−1≥ λ j+1. Le deuxième cas se produit seulement si
j+1∈ Q+(λ). Dans ce cas, on a encore λ j >λ j+1 par définition de Q+(λ) et alors
λ j ≥ λ j+1+ 1. Le dernier cas se produit quand j ∈ Q−(λ) et j + 1 ∈ Q+(λ). On a
encore λ j > λ j+1 De plus, λ j et λ j+1 sont tous deux impairs. Donc λ j ≥ λ j+1+ 2.
Alors λ j − 1≥ λ j+1+ 1.

L’égalité des nombres d’éléments de Q+(λ) et de Q−(λ) et la définition de s(λ)
entraînent que S(ν)= 2n. Une partition µ de 2n est symplectique et spéciale si et
seulement si, pour tout entier j ≥ 1 impair, µ j et µ j+1 sont de même parité et si,
lorsque ces nombres sont impairs, ils sont égaux. Cela équivaut à : pour tout j ≥ 1
impair, si µ j ou µ j+1 est impair, alors µ j = µ j+1. Montrons que ν vérifie cette
condition. Soit un entier j ≥ 1 impair, supposons ν j impair. L’entier j n’appartient
pas à Q+(λ) car il est impair. Il n’appartient pas à Q−(λ) : sinon λ j serait impair
et ν j = λ j − 1 serait pair. Donc s(λ) j = 0 et ν j = λ j . Puisque j est impair, que
λ j = ν j est impair et que j 6∈ Q−(λ), on a λ j = λ j+1. Cette égalité entraîne que
j + 1 n’appartient pas à Q+(λ). Il n’appartient pas non plus à Q−(λ) car j + 1 est
pair. Donc s(λ) j+1= 0, ν j+1= λ j+1 et on conclut ν j = ν j+1. Une preuve analogue
montre que, si ν j+1 est impair, on a ν j = ν j+1. Donc ν est symplectique et spéciale.

Soit j ≥ 1. Par construction et d’après la description des ensembles Q+(λ)
et Q−(λ), S j (ν) = S j (λ) sauf s’il existe un élément impair i ∈ J ′′(λ) tel que
jmin(i)≤ j < jmax(i). S’il existe un tel i , on a S j (ν)= S j (λ)+ 1. Cela montre que
λ≤ ν. Soit µ ∈ Psymp,sp(2n) telle que λ≤ µ. On a S j (λ)≤ S j (µ). Cela entraîne

S j (ν)≤ S j (µ), (1)
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sauf s’il existe i comme ci-dessus. Supposons qu’il existe un tel i et notons sim-
plement j+ = jmin(i), j− = jmax(i). On a j+ ∈ Q+(λ) et j− ∈ Q−(λ). Par
définition de jmin(i), on a λ j+−1 > λ j+ . Les entiers λ1, . . . , λ j+−1 sont tous les
entiers strictement supérieurs à λ j+ = i qui interviennent dans λ, comptés avec
leurs multiplicités. Puisque λ est symplectique, l’entier S j+−1(λ) est pair. Puisque
j+ ∈ Q+(λ), j+ est pair et on sait que i est impair. Donc S j+(λ)= S j+−1(λ)+ i
est impair et aussi S j+(λ)+ j+. Puisque λ j ′ = i est impair pour j ′ ∈ { j+, . . . , j},
on voit que S j (λ)+ j est aussi impair. Supposons j pair. Alors S j (λ) est impair.
Or le fait que µ soit spéciale entraîne que S j (µ) est pair. L’inégalité S j (λ)≤ S j (µ)

est alors stricte et on conclut S j (ν) = S j (λ)+ 1 ≤ S j (µ). Supposons j impair.
On sait que j+ est pair et que j− est impair par définition des ensembles Q+(λ)
et Q−(λ). Les hypothèses j ∈ { j+, . . . , j−− 1} et j impair entraînent alors que
j − 1 ∈ { j+, . . . , j− − 1} et j, j + 1 ∈ { j+ + 1 . . . , j− − 1}. L’égalité (1) est
démontrée pour j − 1 et pour j + 1 puisque ces entiers sont pairs. D’où

S j−1(ν)≤ S j−1(µ) et S j+1(ν)≤ S j+1(µ).

De plus, puisque j et j + 1 appartiennent tous deux à { j++ 1, . . . , j−− 1}, on a
ν j = i = ν j+1. La seconde inégalité ci-dessus se récrit

S j−1(ν)+ 2i ≤ S j−1(µ)+µ j +µ j+1.

On additionne cette inégalité avec la première inégalité ci-dessus et on obtient

S j−1(ν)+ i ≤ S j−1(µ)+ (µ j +µ j+1)/2.

Évidemment, (µ j +µ j+1)/2≤ µ j , d’où

S j−1(ν)+ i ≤ S j−1(µ)+µ j .

Le membre de gauche est S j (ν), celui de droite S j (µ). Cela achève de démon-
trer (1).

L’inégalité (1) signifie que ν ≤ µ. On a ainsi démontré que ν était la plus petite
partition symplectique spéciale µ telle que λ≤ µ. Cette propriété caractérise sp(λ),
ce qui démontre le (i) de l’énoncé.

Prouvons maintenant que

ζ(λ)= ζ(ν)+ s(λ). (2)

Par définition de ces suites, cela équivaut aux égalités

P+(ν)= P+(λ)∪ Q−(λ), P−(ν)= P−(λ)∪ Q+(λ). (3)

La première égalité concerne des indices j ≥ 1 impairs. Soit un tel j . Supposons
d’abord j ∈ P+(λ). On a ν j = λ j et ce terme est pair. On a de plus λ j−1 > λ j .
Si j = 1, on a trivialement ν j−1 > ν j et on conclut j ∈ P+(ν). Supposons j ≥ 2.
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Certainement, j − 1 6∈ Q−(λ) puisque j − 1 est pair. Donc ν j−1 ≥ λ j−1, d’où
ν j−1 > ν j . Alors j appartient à P+(ν). Supposons maintenant j ∈ Q−(λ). Alors
ν j = λ j − 1 et λ j est impair, donc ν j est pair. Comme on l’a vu, l’hypothèse
j ∈ Q−(λ) entraîne λ j−1 = λ j . Comme ci-dessus, j − 1 n’appartient pas à Q−(λ)
donc ν j−1 ≥ λ j−1= λ j > ν j . D’où j ∈ P+(ν). Supposons enfin que j ∈ P+(ν). En
particulier ν j est pair. Si λ j est impair, on a nécessairement s(λ) j 6= 0 et, puisque j
est impair, j appartient à Q−(λ). Supposons λ j pair. Alors s(λ) j est pair donc nul.
Si j = 1, on a trivialement λ j−1 > λ j et j appartient à P+(λ). Supposons j ≥ 2.
Puisque j ∈ P+(ν), on a ν j−1 > ν j , autrement dit λ j−1+ s(λ) j−1 >λ j . On n’a pas
j − 1 ∈ Q+(λ) car cette relation entraîne que λ j−1 = λ j est impair contrairement
à l’hypothèse. Donc s(λ) j−1 ≤ 0. L’inégalité λ j−1+ s(λ) j−1 > λ j entraîne alors
λ j−1 > λ j , donc j ∈ P+(λ). Cela démontre la première égalité de (3). La seconde
se démontre de façon analogue. Cela prouve (3), d’où (2).

Dans le cas où λ est spéciale, on a défini l’ensemble d’intervalles Ĩnt(λ). On
voit que P+(λ) est l’ensemble des jmin(1) quand 1 décrit Ĩnt(λ) et que P−(λ)
est l’ensemble des jmax(1) pour 1 ∈ Int(λ). Alors ζ(λ) est la suite que l’on a
définie en [Waldspurger 2018b, 1.6]. On a démontré dans cette référence l’égalité
td(λ)= λ+ζ(λ). Supprimons l’hypothèse que λ est spéciale. Par définition, d(λ)=
d(sp(λ)). D’où

td(λ)= td(sp(λ))= sp(λ)+ ζ(sp(λ)).

Puisque sp(λ) = ν = λ + s(λ), l’égalité (2) entraîne la deuxième assertion de
l’énoncé. �

Soit maintenant λ ∈ Porth(2m). On définit P+(λ) et P−(λ) en échangeant les
conditions de parité sur les λ j . C’est-à-dire

P+(λ) l’ensemble des entiers impairs j ≥ 1 tels que λ j est impair
et λ j−1 > λ j , avec la convention λ0 =∞;

P−(λ) l’ensemble des entiers pairs j ≥ 2 tels que λ j est impair et λ j > λ j+1.

Dans ce cas, on a |P+(λ)| = |P−(λ)|. On définit la suite ζ comme plus haut.
Nous aurons besoin de l’analogue du (ii) du lemme ci-dessus, mais seulement dans
le cas où λ est spéciale. C’est-à-dire

si λ ∈ Porth,sp(2m), on a td(λ)= λ+ ζ(λ). (4)

Cf. [Waldspurger 2018b, 1.7].

3. Induction endoscopique

3.1. L’induite endoscopique de deux partitions spéciales. Soient n1, n2 ∈ N tels
que n1+ n2 = n et soient λ1 ∈ Psymp,sp(2n1) et λ2 ∈ Porth,sp(2n2). Pour un indice
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j ≥ 1, on dit que λ1, j , resp. λ2, j , est de bonne parité si λ1, j est pair, resp. λ2, j est
impair. Notons

J+ l’ensemble des j ≥ 1 tels que j soit impair, λ1, j et λ2, j soient de bonne
parité et il existe d = 1, 2 de sorte que λd, j−1 > λd, j
(avec toujours la convention λd,0 =∞);

J− l’ensemble des j ≥ 1 tels que j soit pair, λ1, j et λ2, j soient de bonne parité
et il existe d = 1, 2 de sorte que λd, j > λd, j+1.

On vérifie que |J+| = |J−| et que, si on note j+1 < · · ·< j+a les éléments de J+

et j−1 < · · ·< j−a ceux de J−, on a j+1 < j−1 < j+2 < · · ·< j+a < j−a . On définit une
suite ξ = (ξ1, ξ2, . . . ) de nombres entiers par ξ j = 1 si j ∈ J+, ξ j =−1 si j ∈ J−

et ξ j = 0 si j 6∈ J+ ∪ J−. On pose

λ= λ1+ λ2+ ξ.

C’est une partition symplectique de 2n, appelée l’induite endoscopique de λ1 et λ2.
Pour unifier les notations, on pose Ĩnt(λ2) = Int(λ2). Pour d = 1, 2, posons

Jd,min= { jmin(1); 1∈ Ĩnt(λd)}, Jd,max= { jmax(1); 1∈ Int(λd)}. On note J +=
J1,min ∩ J2,min, J − = J1,max ∩ J2,max,

J = J1,min ∪ J2,min ∪ J1,max ∪ J2,max ∪ {∞}.

Appelons intervalle relatif d’indices un sous-ensemble de N− {0} de l’une des
formes suivantes :

(1) { j} pour j ∈ J + ∪J − ;

(2) { j, . . . , j ′} où j et j ′ sont deux éléments consécutifs de J tels qu’il existe
un unique d = 1, 2 de sorte que { j, . . . , j ′} ⊂ J (1) pour un 1 ∈ Ĩnt(λd).

Pour un intervalle relatif d’indices J , on pose D(J )= {λ j ; j ∈ J }. On appelle
intervalle de λ relatif à (λ1, λ2) un sous-ensemble de Jord(λ)∪{0} de la forme D(J ).
On note Ĩntλ1,λ2(λ) l’ensemble de ces intervalles relatifs. On montre qu’ils sont dis-
joints, formés de nombres pairs et que Ĩntλ1,λ2(λ) est une partition de Jordbp(λ)∪{0}.
Pour un intervalle relatif D, on note J (D) l’intervalle relatif d’indices J tel que
D = D(J ). Les intervalles relatifs sont ordonnés de façon naturelle : D > D′ si
et seulement si i > i ′ pour tous i ∈ D, i ′ ∈ D′. L’intervalle minimal est celui
qui contient 0, on le note Dmin et on pose Intλ1,λ2(λ)= Ĩntλ1,λ2(λ)−{Dmin}. Pour
D ∈ Ĩntλ1,λ2(λ), on note jmin(D), resp. jmax(D), le plus petit, resp. grand, élément
de J (D) (on considère que jmax(Dmin)=∞).

Montrons que

pour tout j ∈ J ,
il existe un unique intervalle relatif D tel que j ∈ { jmin(D), jmax(D)}. (3)
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Preuve. L’unicité est claire puisque, quand D parcourt Ĩntλ1,λ2(λ), les J (D) sont
disjoints. Pour j =∞, on a j = jmax(Dmin). Soit j ∈ J différent de∞. Supposons
par exemple j pair, le cas j impair étant similaire. La définition de J et cette
hypothèse de parité imposent qu’il existe d = 1, 2 et 1d ∈ Int(λd) de sorte que
j = jmax(1d). Pour fixer la notation, on suppose qu’il en est ainsi pour d = 1.
L’ensemble des j ′ ∈ J tels que j ′ < j n’est pas vide : il contient jmin(11). No-
tons j− le plus grand de ces éléments. On a donc jmin(11) ≤ j− et { j−, . . . , j}
est contenu dans J (11). Si { j−, . . . , j} n’est contenu dans J (12) pour aucun
12 ∈ Ĩnt(λ2), il existe par définition des intervalles relatifs un tel intervalle D tel que
J (D)={ j−, . . . , j} et on a j = jmax(D). Supposons qu’il existe un12 ∈ Ĩnt(λ2) de
sorte que { j−, . . . , j}⊂ J (12). Si j = jmax(12), alors, par définition des intervalles
relatifs, il existe un tel intervalle D tel que { j} = J (D) et on conclut. Supposons
j < jmax(12). On note j+ le plus petit élément de J qui soit strictement supérieur
à j . Comme précédemment, on a j+ ≤ jmax(12), d’où { j, . . . , j+} ⊂ J (12). S’il
existait 1′1 ∈ Ĩnt(λ1) vérifiant { j, . . . , j+} ⊂ J (1′1), on aurait 1′1 = 11 puisque
j ∈ J (11) et aussi jmax(1

′

1) ≥ j+ > j . Cela contredit l’hypothèse j = jmax(11).
Un tel 1′1 n’existe donc pas et, par définition des intervalles relatifs, il existe un
tel intervalle D tel que J (D)= { j, . . . , j+}. Alors j = jmin(D). �

On définit une fonction χλ1,λ2 : Ĩntλ1,λ2(λ)→ Z/2Z de la façon suivante. Soit
D ∈ Ĩntλ1,λ2(λ). Si |J (D)| = 1, χλ1,λ2(D)= 0. Si |J (D)| ≥ 2, J (D) est de la forme
(2) ci-dessus et cette relation nous fournit un indice d ∈ {1, 2}. On note χλ1,λ2(D)
l’image de d dans Z/2Z. Remarquons que l’on a χλ1,λ2(Dmin)= 0.

On définit l’ensemble P+λ1,λ2
(λ) formé des jmin(D) qui sont impairs, pour D ∈

Ĩntλ1,λ2 et l’ensemble P−λ1,λ2
(λ) formé des jmax(D) qui sont pairs, pour D∈Intλ1,λ2(λ).

On définit une suite ζλ1,λ2(λ)= (ζλ1,λ2(λ)1, ζλ1,λ2(λ)2, . . . ) par ζλ1,λ2(λ) j = 1 si j ∈
P+λ1,λ2

(λ), ζλ1,λ2(λ) j=−1 si j ∈ P−λ1,λ2
(λ), ζλ1,λ2(λ) j=0 si j 6∈ P+λ1,λ2

(λ)∪P−λ1,λ2
(λ).

Lemme. ζ(λ1)+ ζ(λ2)= ζλ1,λ2(λ)+ ξ .

Preuve. Restreignons-nous d’abord à l’ensemble des j ≥ 1 impairs. Alors les fonc-
tions ci-dessus sont les fonctions caractéristiques des ensembles P+(λ1), P+(λ2),
Pλ1,λ2(λ) et J+. Il s’agit donc de prouver les égalités

P+(λ1)∪ P+(λ2)= P+λ1,λ2
(λ)∪ J+; (4)

P+(λ1)∩ P+(λ2)= P+λ1,λ2
(λ)∩ J+. (5)

Rappelons que, puisque λd est spéciale pour d = 1, 2, P+(λd) est l’ensemble
des jmin(1d) pour 1d ∈ Int(λd). Considérons un j appartenant à l’ensemble de
gauche de (4). Pour fixer la notation, supposons j ∈ P+(λ1). Alors j = jmin(11)

pour un 11 ∈ Int(λ1), en particulier j appartient à l’ensemble J . Si λ2, j est impair,
j appartient à J+ par définition de cet ensemble. Supposons λ2, j pair. Soit j+
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le plus petit élément du sous-ensemble des éléments de l’ensemble J qui sont
strictement supérieurs à j . Ce sous-ensemble contenant jmax(11) (où il convient ici
de considérer que jmax(11,min)=∞), j+ existe et on a j+≤ jmax(11). L’ensemble
{ j, . . . , j+} est contenu dans J (11) mais, puisque λ2, j est de mauvaise parité, il
n’existe pas de 12 ∈ Int(λ2) tel que { j, . . . , j+} soit contenu dans J (12). Par
définition { j, . . . , j+} est alors égal à J (D) pour un intervalle relatif D et on a
j = jmin(D). Donc j ∈ P+λ1,λ2

(λ). Inversement, considérons un j qui appartient à
l’ensemble de droite de (4). Si j ∈ J+, il est par définition de la forme jmin(1d) pour
un d = 1, 2 et un 1d ∈ Int(λd). C’est-à-dire j ∈ P+(λd). Supposons j ∈ P+λ1,λ2

(λ).
Alors j = jmin(D) pour un D ∈ Ĩntλ1,λ2(λ). Par définition des intervalles relatifs,
j appartient à J . Puisque j est impair, j est forcément de la forme jmin(1d) pour
un d = 1, 2 et un 1d ∈ Ĩnt(λd). C’est-à-dire j ∈ P+(λd). Cela prouve (4).

Soit j ∈ P+(λ1) ∩ P+(λ2). Alors, pour d = 1, 2, j est de la forme jmin(1d)

pour un 1d ∈ Int(λd). En particulier, λd, j est de la bonne parité. Par définition
de J+, on a j ∈ J+. Cela implique que λ j est pair. Donc il existe un intervalle
relatif D ∈ Ĩntλ1,λ2(λ) tel que j ∈ J (D). Si j = 1, on a forcément j = jmin(D) et
j ∈ P+λ1,λ2

(λ). Supposons j ≥ 2. Pour d = 1, 2, l’hypothèse j = jmin(1d) implique
que { j − 1, j} n’est contenu dans J (1′d) pour aucun 1′d ∈ Int(λd). Par défini-
tion des intervalles relatifs, { j − 1, j} n’est donc contenu dans J (D′) pour aucun
D′ ∈ Ĩntλ1,λ2(λ). En particulier j − 1 6∈ J (D), d’où j = jmin(D) et j ∈ P+λ1,λ2

(λ).
Inversement, soit j ∈ P+λ1,λ2

(λ) ∩ J+. Par définition de J+, λ1, j et λ2, j sont de
bonne parité et il existe d = 1, 2 et 1d ∈ Int(λd) de sorte que j = jmin(1d). Pour
fixer la notation, on suppose que ce d est égal à 1. Donc j ∈ P+(λ1). L’hypo-
thèse que λ2, j est de bonne parité implique qu’il existe 12 ∈ Int(λ2) de sorte
que j ∈ J (12). Supposons d’abord que tous les éléments de J soient supérieurs
ou égaux à j . Dans ce cas, j = jmin(12) et j ∈ P+(λ2). Supposons maintenant
qu’il existe des éléments de J strictement inférieurs à j , notons j− le plus grand
d’entre eux. L’hypothèse j ∈ P+λ1,λ2

(λ) signifie que j = jmin(D) pour un intervalle
relatif D. Donc { j−, . . . , j} n’est de la forme J (D′) pour aucun D′ ∈ Ĩntλ1,λ2(λ).
Les entiers j− et j sont deux éléments consécutifs de J . Ces deux propriétés et
la définition des intervalles relatifs entraînent que le nombre de d pour lesquels il
existe 1′d ∈ Int(λd) tel que { j−, . . . , j} ⊂ J (1′d) est pair. Pour d = 1, il n’existe
pas de tel 1′1 car j = jmin(11). Donc il n’existe pas non plus de tel 1′2. En par-
ticulier { j−, . . . , j} 6⊂ J (12). Puisque { jmin(12), . . . , j} ⊂ J (12), cela entraîne
j−< jmin(12), et, puisque jmin(12)∈J , la définition de j− entraîne j ≤ jmin(12),
d’où forcément j = jmin(12). Donc j ∈ P+(λ2). Cela prouve (5).

Un raisonnement analogue vaut en se restreignant à l’ensemble des entiers pairs
j ≥ 2. �

On dit que λ1 et λ2 induisent régulièrement λ si et seulement si Ĩntλ1,λ2(λ) est la
partition la plus fine de Jordbp(λ)∪{0}, c’est-à-dire si et seulement si tout intervalle
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relatif est réduit à un seul élément. Dans ce cas, χλ1,λ2 est définie sur Jordbp(λ)∪{0}
et on a χλ1,λ2(0)= 0.

3.2. Une proposition d’existence. Soient n ∈ N et λ ∈ Psymp(2n). Fixons une
fonction χ : Jordbp(λ)∪ {0} → Z/2Z telle que χ(i)= 0 pour tout i ∈ Jordbp(λ) tel
que multλ(i)= 1 et telle que χ(0)= 0.

Proposition. Il existe n1, n2 ∈N tels que n1+n2= n et il existe λ1 ∈Psymp,sp(2n1)

et λ2 ∈ Porth,sp(2n2) tels que

(i) λ1 et λ2 induisent régulièrement λ ;

(ii) d(λ1)∪ d(λ2)= d(λ) ;

(iii) χλ1,λ2 = χ .

La preuve est identique à celle de [Waldspurger 2018b, 1.11]. On la refait car,
dans cette référence, on avait bêtement supposé que tous les termes de λ étaient
pairs. On utilise les notations de 2.7.

Preuve. Notons J+ l’ensemble des j ≥ 1 tels que j soit impair, λ j soit pair et
λ j >λ j+1. Notons J− l’ensemble des j ≥2 tels que j et λ j soient pairs et λ j−1>λ j .
On voit que J+ est l’ensemble des jmax(i) pour i = ih avec h impair ou pour
i ∈ J ′′(λ)∩ Jordbp(λ). De même, J− est l’ensemble des jmin(i) pour i = ih avec h
pair ou pour i ∈J ′′(λ)∩Jordbp(λ). On en déduit que J+ et J− ont le même nombre
d’éléments et que, si on note J+ = { j+1 < · · ·< j+c } et J− = { j−1 < · · ·< j−c }, on a

j+1 < j−1 < j+2 < j−2 < . . . . < j+c < j−c .

On note r= (r1, r2, . . . ) la suite de nombres définie par r j = 1 si j ∈ J+, r j =−1
si j ∈ J− et r j = 0 si j 6∈ J+ ∪ J−.

Soit d ∈ {1, 2}. Pour j ≥ 1, disons que j et j + 1 sont d-liés si et seulement si
l’une des conditions suivantes est vérifiée :

λ j = λ j+1 est pair et χ(λ j )= d + 1(c’est-à-dire χ(λ j )≡ d + 1 mod 2Z); (1a)

j ∈ J+; (1b)

j + 1 ∈ J−; (1c)

λ j et λ j+1 sont impairs et λ j ∈ J ′′(λ). (1d)

Remarquons que cette dernière condition équivaut à

λ j et λ j+1 sont impairs et λ j+1 ∈ J ′′(λ). (1d′)

En effet, si (1d) est vérifiée, on a ih > λ j > ih+1 pour un h impair. Alors ih >

λ j+1 ≥ ih+1. Mais λ j+1 6= ih+1 puisque λ j+1 est impair et ih+1 est pair. Donc
ih > λ j+1 > ih+1 et λ j+1 ∈ J ′′(λ). La réciproque est similaire.
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Pour deux entiers 1≤ j ≤ j ′, disons qu’ils sont d-liés si et seulement si k et k+1
sont d-liés pour tout k= j, . . . , j ′−1. C’est une relation d’équivalence et les classes
sont des intervalles de N− {0}, éventuellement infinis. On note Ĩntd l’ensemble
des classes d’équivalence ayant au moins deux éléments. Pour I ∈ Ĩntd , on note
jmin(I), resp. jmax(I), le plus petit, resp. grand, élément de I (avec jmax(I)=∞

si I est infini). Pour d = 1, 2 définissons une fonction pd : N− {0} → Z/2Z par
pd( j)= 1 s’il existe I ∈ Ĩntd tel que j ∈ I, pd( j)= 0 sinon. Montrons que

(2) l’ensemble Ĩntd est fini ; il contient un élément infini si et seulement si d = 1 ;
on note Int1 l’ensemble Ĩnt1 privé de cet élément infini et on pose Int2 = Ĩnt2 ;

(3) pour I ∈ Ĩntd , jmin(I) est impair et jmax(I) est pair ou infini ;
(4) pour j ≥ 1, on a

p1( j)+ p2( j)=


2 si j ∈ J+ ∪ J−;
1 si λ j est pair, et j 6∈ J+ ∪ J−;
0 si λ j est impair et λ j ∈ J ′(λ);
2 si λ j est impair et λ j ∈ J ′′(λ);

(5) J+ est égal à l’ensemble des j ≥ 1 tels que p1( j)= p2( j)= 1 et qu’il existe
d = 1, 2 et un élément de I ∈ Intd de sorte que j = jmin(I) ;

(6) J− est égal à l’ensemble des j ≥ 1 tels que p1( j)= p2( j)= 1 et qu’il existe
d = 1, 2 et un élément de I ∈ Intd de sorte que j = jmax(I).

Soit t (λ) le plus grand entier l tel que λl > 0. Parce que χ(0) = 0, on voit
que, pour j > t (λ), j et j + 1 sont 1-liés mais pas 2-liés. Donc {t (λ)+ 1, . . .} est
contenu dans un intervalle infini I1,min ∈ Ĩnt1 tandis que, pour j ≥ t (λ)+2, { j} est
une classe d’équivalence pour la 2-liaison et j n’est pas contenu dans un élément
de Int2. Cela prouve (2).

Soit I∈ Ĩntd . On pose simplement j = jmin(I). Montrons que j est impair. C’est
évident si j = 1. On suppose j ≥ 2. Par définition, j et j + 1 sont d-liés tandis
que j − 1 et j ne le sont pas. Si (1b) ou (1c) est vérifiée, j est trivialement impair.
Supposons vérifiée (1a). On n’a pas λ j−1 = λ j : sinon ces entiers seraient pairs,
on aurait χ(λ j−1) = χ(λ j ) = d + 1 et j − 1 et j vérifieraient l’analogue de (1a)
et seraient d-liés. Donc λ j−1 > λ j . Alors j est impair ou appartient à J−. Or cette
dernière relation est exclue car elle entraîne que j − 1 et j vérifient l’analogue de
(1c) et sont d-liés. Donc j est impair. Supposons maintenant que (1d) soit vérifiée.
Supposons d’abord que λ j−1 est impair. Alors j − 1 et j vérifient l’analogue de
(1d′) et sont d-liés, ce qui n’est pas le cas. Donc λ j−1 est pair et λ j−1 > λ j . Alors
j − 1 est pair ou j − 1 ∈ J+. Or cette dernière relation est exclue car elle entraîne
que j − 1 et j vérifient l’analogue de (1b) et sont d-liés. Donc j − 1 est pair et j
est impair. Cela montre que jmin(I) est impair. Une preuve analogue montre que
jmax(I) est pair s’il n’est pas infini. Cela prouve (3).
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Soit j ∈ J+. Alors (1b) est vérifié et j et j + 1 sont d-liés pour d = 1, 2. Donc
p1( j) = p2( j) = 1. Soit maintenant j ∈ J−. Alors j est pair donc différent de
1. L’analogue de (1c) pour le couple ( j − 1, j) est vérifiée et j − 1 et j sont d-
liés pour d = 1, 2. Donc p1( j)= p2( j)= 1. Supposons maintenant λ j pair mais
j 6∈ J+ ∪ J−. Supposons par exemple j impair, le cas où j est pair se traitant de
façon analogue. Puisque j 6∈ J+, on a λ j = λ j+1. Les entiers j et j + 1 sont d-
liés pour l’unique d tel que χ(λ j ) = d + 1. Pour ce d, pd( j) = 1. Soit d ′ l’autre
élément de {1, 2}. On doit prouver que j n’appartient à aucun élément de Ĩntd ′ .
On vient de voir que j et j + 1 ne sont pas d ′-liés. Si j appartenait à un élément
I′ ∈ Ĩntd ′ , cet intervalle serait fini et j serait égal à jmax(I

′). Mais alors j serait
pair d’après (3), contrairement à l’hypothèse. Supposons maintenant λ j impair, j
impair et λ j ∈ J ′(λ). Cette dernière condition implique d’après 2.7 que jmax(λ j )

est pair, donc j < jmax(λ j ), donc λ j+1= λ j . Pour d = 1, 2, les conditions (1a), (1b)
et (1c) ne sont pas vérifiées : elles imposent que λ j ou λ j+1 est pair. La condition
(1d) ne l’est pas puisque λ j ∈ J ′(λ). Donc j et j+1 ne sont pas d-liés. Si j = 1, j
n’appartient donc à aucun élément de Ĩntd . Si j > 1, les analogues des conditions
(1a) et (1c) pour le couple ( j − 1, j) ne sont pas vérifiées : elles imposent que λ j

est pair. L’analogue de (1c) n’est pas vérifiée : elle impose j − 1 impair donc j
pair. L’analogue de (1d′) n’est pas vérifiée puisque λ j ∈ J ′(λ). Donc j − 1 et j
ne sont pas d-liés. Donc pd( j) = 0. Supposons maintenant λ j impair, j pair et
j ∈ J ′(λ). Cette dernière condition implique d’après 2.7 que jmin(λ j ) est impair,
donc jmin(λ j ) < j , donc λ j−1 = λ j . Des arguments analogues à ceux ci-dessus
montrent que, pour d = 1, 2, pd( j)= 0. Supposons enfin que λ j est impair et que
j ∈ J ′′(λ). Puisque multλ(λ j ) est paire, on a λ j−1 = λ j ou λ j+1 = λ j . Dans le
premier cas, j − 1 et j vérifient l’analogue de (1d′) et sont d-liés pour tout d . Dans
le deuxième cas, j et j+1 vérifient (1d) et sont d-liés pour tout d . Donc pd( j)= 1
pour tout d. Cela démontre (4).

Soit j ∈ J+. D’après (4), on a p1( j) = p2( j) = 1, c’est-à-dire que, pour tout
d, il existe Id ∈ Ĩntd tel que j ∈ Id . Si j = 1, on a forcément j = jmin(Id) pour
tout d. Supposons j > 1. On veut montrer que j = jmin(Id) pour au moins un d,
autrement dit que j − 1 et j ne sont pas d-liés pour au moins un d . Les analogues
pour le couple ( j − 1, j) des conditions (1b) et (1c) ne sont pas vérifiées : elles
impliquent que j est pair, alors que j est impair puisque j ∈ J+. L’analogue de
(1d) n’est pas vérifiée, puisque λ j est pair. Donc j − 1 et j ne sont d-liés que
si l’analogue de (1a) est vérifiée. Mais cette analogue ne peut être vérifiée que
pour un unique d . Cela démontre que J+ est contenu dans l’ensemble décrit en (5).
Inversement, soit j ≥ 1, supposons que p1( j)= p2( j)= 1 et qu’il existe d = 1, 2
et un élément de I ∈ Ĩntd de sorte que j = jmin(I). Autrement dit, ou bien j = 1,
ou bien il existe d tel que j − 1 et j ne sont pas d-liés. D’après (3), j est impair.
D’après (4), on a soit j ∈ J+∪J−, soit λ j est impair et λ j ∈J ′′(λ). Dans le premier
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cas, l’imparité de j entraîne j ∈ J+, ce que l’on veut prouver. Supposons donc que
λ j est impair et λ j ∈ J ′′(λ). D’après 2.7, cette condition entraîne que jmin(λ j ) est
pair, donc jmin(λ j ) < j et λ j−1 = λ j . Alors j − 1 et j vérifient l’analogue de (1d′)
et sont d-liés. Cela contredit l’hypothèse. On a ainsi prouvé (5). La preuve de (6)
est similaire.

La relation (3) entraîne

pd( j)= pd( j + 1) si j est impair. (7)

La définition de r et l’assertion (4) entraînent

r j ≡ p1( j)+ p2( j)+ 1+ λ j mod 2Z. (8)

On va montrer qu’il existe des suites d’entiers positifs ou nuls λ1 et λ2 vérifiant
les conditions suivantes, pour tout j ≥ 1 :

(9) λ1, j + λ2, j + r j = λ j ;

(10) pour d = 1, 2, λd, j ≡ d + pd( j) mod 2Z ;

(11) pour d = 1, 2, on a

(a) λd, j = λd, j+1 si j est pair, pd( j) = 1 et il n’existe pas de I ∈ Intd tel
que j = jmax(I) ou si j est impair et pd( j)= 0 ;

(b) λd, j > λd, j+1 si j est pair et il existe I ∈ Intd tel que j = jmax(I) (la
condition que j est pair est redondante d’après (3)) ;

(c) λd, j ≥ λd, j+1 si j est impair et pd( j)= 1 ou si j est pair et pd( j)= 0.

On raisonne par récurrence descendante sur j . Pour j ≥ t (λ)+2, on pose λ1, j =

λ2, j = 0. On a vu dans la preuve de (2) que j était contenu dans I1,min mais dans
aucun élément de Int2. Donc p1( j) = 1 et p2( j) = 0. De plus, j n’appartient
pas à J+ ∪ J− donc r j = 0. On voit alors que toutes les conditions ci-dessus sont
vérifiées.

On fixe j et on suppose que l’on a fixé des termes λ1, j ′ , λ2, j ′ pour j ′ > j de
sorte que les conditions ci-dessus soient vérifiées pour ces j ′. Pour d = 1, 2, on pose
λd, j = λd, j+1+ ed , avec ed ∈ Z. Les conditions ci-dessus se traduisent en termes
de ces entiers ed . L’analogue de (9) étant vérifiée pour j + 1, cette condition (9) se
traduit par

e1+ e2 = λ j − λ j+1+ r j+1− r j . (12)

De même, la condition (10) se traduit par

ed ≡ pd( j)+ pd( j + 1) mod 2Z. (13)

Remarquons que, si (12) est vérifiée, la relation (8) entraîne

e1+ e2 ≡ p1( j)+ p1( j + 1)+ p2( j)+ p2( j + 1) mod 2Z.
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Donc (13) est vérifiée pour un d si et seulement si elle l’est pour les deux d .
La condition (11) se traduit par ed = 0 dans le cas (a), ed > 0 dans le cas (b)

et ed ≥ 0 dans le cas (c). Remarquons que, dans le cas (a), la condition ed = 0 est
compatible avec (13), autrement dit pd( j) = pd( j + 1). En effet, si j est impair,
cette relation est toujours vraie d’après (5). Si j est pair, la condition (11)(a) impose
que j et j + 1 sont d-liés donc pd( j)= pd( j + 1)= 1.

Supposons la condition (11)(a) vérifiée pour un d , disons pour d = 1. On n’a pas
le choix pour e1 : on pose e1=0. La condition (12) impose e2=λ j−λ j+1+r j+1−r j .
Comme on vient de le dire, la condition (13) est vérifiée pour d = 1. Elle l’est donc
aussi pour d = 2. Il reste à vérifier les conditions provenant de (11) pour d = 2.

Supposons j impair. Supposons d’abord que la condition (11)(a) soit vérifiée
pour d = 2, auquel cas on doit vérifier que e2 = 0. La condition (11)(a) pour j
impair est que pd( j)= 0. Cette condition est vérifiée pour d = 1, 2. D’après (4),
λ j est impair et λ j ∈ J ′(λ). D’après 2.7, jmax(λ j ) est pair, donc j < jmax(λ j ) et
λ j = λ j+1. Évidemment, j, j + 1 6∈ J+ ∪ J−, donc r j = r j+1 = 0. Alors e2 =

λ j − λ j+1 + r j+1 − r j = 0. La condition (11)(b) n’est pas vérifiée pour d = 2
puisque j est impair. Supposons la condition (11)(c) vérifiée pour d = 2. On doit
alors prouver que e2 ≥ 0. Puisque j est impair, cette condition est que p2( j)= 1.
On a aussi p1( j)= 0 puisque (11)(a) est vérifiée pour d = 1. D’après (7), on a aussi
p1( j + 1)= 0 et p2( j + 1)= 1. Alors, d’après (4), ni j , ni j + 1 n’appartiennent
à J+ ∪ J−. Donc r j = r j+1 = 0. Donc e2 = λ j − λ j+1 ≥ 0.

Supposons plutôt j pair. Supposons d’abord que la condition (11)(a) soit vérifiée
pour d = 2, auquel cas on doit vérifier que e2 = 0. Pour j pair, la condition (11)(a)
pour d est que pd( j) = 1 et qu’il n’existe pas de I ∈ Intd tel que j = jmax(I).
Cette condition est vérifiée pour d = 1, 2. D’après (4), on a soit j ∈ J+ ∪ J−, soit
λ j est impair et λ j ∈ J ′′(λ). Dans le premier cas, la parité de j impose j ∈ J−.
Mais alors la relation (6) implique l’existence de d et de I ∈ Intd tels que j =
jmax(I), contrairement aux hypothèses. Supposons donc que λ j soit impair et que
λ j ∈ J ′′(λ). D’après 2.7, jmax(λ j ) est impair, donc j < jmax(λ j ) et λ j = λ j+1.
Évidemment, j, j + 1 6∈ J+ ∪ J−, donc r j = r j+1 = 0. Alors

e2 = λ j − λ j+1+ r j+1− r j = 0.

Supposons maintenant vérifiée la condition (11)(b) pour d = 2. On doit prouver que
e2 > 0. La condition est que p2( j)= 1 et qu’il existe I ∈ Int2 tel que j = jmax(I).
On a aussi p1( j) = 1 puisque (11)(a) est vérifiée pour d = 1. D’après (6), on a
j ∈ J−. Cela entraîne r j = −1. Puisque j + 1 est impair, on a j + 1 6∈ J− donc
r j+1 ≤ 0. Alors e2 = λ j − λ j+1+ r j+1− r j ≥ λ j − λ j+1+ 1> 0. Supposons enfin
vérifiée la condition (11)(c) pour d = 2, autrement dit p2( j)= 0. On doit vérifier
que e2 ≥ 0. Puisque p1( j)= 1, on a λ j pair et j 6∈ J+ ∪ J− d’après (4). Le même
raisonnement que dans le cas j impair s’applique et on conclut e2 ≥ 0.
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On peut maintenant supposer que la condition (11)(a) n’est vérifiée pour aucun d .
Supposons la condition (11)(b) vérifiée pour d = 1. On choisit pour e1 le plus petit
entier strictement positif vérifiant la relation (13). On a e1 = 1 ou 2. La condition
résultant de (11)(b) pour d = 1 est e1 > 0, elle est vérifiée. On pose

e2 = λ j − λ j+1+ r j+1− r j − e1.

Comme précédemment, il reste seulement à prouver que e2 vérifie les conditions
résultant de (11) pour d = 2. On a exclu la condition (11)(a). Supposons que la
condition (11)(b) soit vérifiée pour d = 2. On doit montrer que e2 > 0. Les condi-
tions (11)(b) sont vérifiées pour d = 1, 2, c’est-à-dire que j est pair et qu’il existe
Id ∈ Intd de sorte que j = jmax(Id). Autrement dit, pd( j)= 1 mais j et j + 1 ne
sont pas d-liés. D’après (6), on a j ∈ J−, donc λ j est pair. Si λ j+1 = λ j , j et j + 1
vérifient (1a) pour un d et sont d-liés contrairement à l’hypothèse. Donc λ j > λ j+1.
Puisque j ∈ J−, on a aussi r j =−1. Le nombre j + 1 est impair donc n’appartient
pas à J−, d’où r j+1 ≥ 0. On voit alors que e2 = λ j − λ j+1 + r j+1 − r j − e1 est
strictement positif sauf si les trois conditions suivantes sont vérifiées : λ j =λ j+1+1,
r j+1 = 0 et e1 = 2. Supposons ces conditions vérifiées. Puisque p1( j) = 1 et
e1 = 2, la condition (13) pour d = 1, qui est vérifiée par définition de e1, implique
p1( j+1)= 1. Puisque λ j = λ j+1+1, λ j+1 est impair. Puisque r j+1= 0, la relation
(8) implique que p2( j +1)= 1. Alors, pour d = 1, 2, j +1 appartient à un élément
I′d ∈ Ĩntd . Puisque j et j + 1 ne sont pas d-liés, on a forcément j + 1= jmin(I

′

d).
D’après (5), cela entraîne j + 1 ∈ J+. Donc r j+1 = 1 contrairement à l’hypothèse.
Cette contradiction conclut. Supposons maintenant que la condition (11)(c) soit
vérifiée pour d = 2. On doit montrer que e2 ≥ 0. On a toujours la condition (11)(b)
pour d = 1, c’est-à-dire que j est pair, que p1( j)= 1 mais que j et j + 1 ne sont
pas 1-liés. La condition (11)(c) pour d = 2 dit que p2( j)= 0. Alors j et j + 1 ne
sont pas non plus 2-liés. D’autre part, la relation (4) entraîne que λ j est pair et que
j 6∈ J+ ∪ J−. D’où r j = 0. On ne peut pas avoir λ j = λ j+1 sinon la relation (1a)
serait vérifiée pour un d et j et j + 1 seraient d-liés, ce qui n’est pas le cas. On
n’a pas j + 1 ∈ J− puisque j + 1 est impair. Donc r j+1 ≥ 0. On voit alors que
e2 = λ j −λ j+1+ r j+1− r j − e1 est positif ou nul sauf si les mêmes conditions que
ci-dessus sont vérifiées : λ j = λ j+1+ 1, r j+1 = 0 et e1 = 2. Ces conditions sont
exclues par le même raisonnement que ci-dessus. D’où e2 ≥ 0.

Il nous reste à traiter le cas où (11)(c) est vérifiée pour d = 1, 2. On choisit pour
e1 le plus petit entier positif ou nul vérifiant la relation (13). On a e1 = 0 ou 1.
La condition résultant de (11)(c) pour d = 1 est e1 ≥ 0, elle est vérifiée. On pose
e2= λ j−λ j+1+r j+1−r j−e1. Comme précédemment, il reste seulement à prouver
que e2 vérifie la condition résultant de (11)(c) pour d = 2, c’est-à-dire e2 ≥ 0.

Supposons d’abord j impair. Les conditions (11)(c) pour d = 1, 2 disent que
p1( j)= p2( j)= 1. D’après (7), on a aussi p1( j + 1)= p2( j + 1)= 1. La relation
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(13) pour d = 1 implique e1 = 0. Si ni j , ni j + 1 n’appartiennent à J+ ∪ J−, on a
r j = r j+1= 0 et e2= λ j−λ j+1≥ 0. Si un seul des éléments j et j+1 appartiennent
à J+∪J−, on a par parité j ∈ J+ et j+1 6∈ J+∪J−, ou j+1 ∈ J− et j 6∈ J+∪J−.
Alors r j+1− r j =−1. Mais l’hypothèse j ∈ J+ ou j + 1 ∈ J− implique λ j > λ j+1.
Alors e2 = λ j − λ j+1− 1≥ 0. Enfin supposons que j et j + 1 appartiennent tous
deux à J+∪J−. La parité impose j ∈ J+ et j+1∈ J−. Alors r j+1−r j =−2. Mais
les hypothèses j ∈ J+ et j + 1 ∈ J− imposent non seulement λ j > λ j+1 mais aussi
que λ j et λ j+1 sont pairs. Donc λ j ≥ λ j+1+ 2. Alors e2 = λ j − λ j+1− 2≥ 0.

Supposons maintenant j pair. Les conditions (11)(c) pour d = 1, 2 disent que
p1( j)= p2( j)= 0. D’après (4), λ j est impair donc r j = 0. On n’a pas j + 1 ∈ J−

puisque j+1 est impair. Donc r j+1≥ 0. On voit alors que e2=λ j−λ j+1+r j+1−e1

est positif ou nul sauf si les trois conditions suivantes sont vérifiées : λ j = λ j+1,
r j+1 = 0 et e1 = 1. Supposons ces conditions vérifiées. D’après (13) pour d = 1,
on a p1( j + 1) = 1. Puisque λ j = λ j+1, λ j+1 est impair. L’égalité r j+1 = 0 et la
relation (8) entraînent alors p2( j + 1) = 1. Pour d = 1, 2, j + 1 appartient donc
à un élément Id ∈ Ĩntd . Puisque pd( j) = 0, j et j + 1 ne sont pas d-liés, donc
j + 1= jmin(Id). Mais alors, (5) nous dit que j + 1 appartient à J+, donc r j+1 = 1
contrairement à l’hypothèse. Cette contradiction conclut. Cela achève la preuve de
l’existence de nos suites λ1 et λ2.

Fixons donc de telles suites λ1 et λ2. La condition (11) entraîne que ce sont des
partitions, c’est-à-dire qu’elles sont décroissantes. Montrons que

(14) il existe des entiers positifs ou nuls n1 et n2 tels que n1 + n2 = n, que λ1

appartienne à Psymp,sp(2n1) et que λ2 appartienne à Porth,sp(2n2).

Si les deux dernières conditions sont vérifiées, on a forcément n1+ n2 = n. En
effet, la relation (9) implique que S(λ1)+ S(λ2)+ S(r) = S(λ) et on a S(r) = 0.
Pour prouver les deux dernières conditions, on doit prouver que, pour d = 1, 2 et
k ≥ 1, les termes λd,2k−1 et λd,2k sont de même parité et que, quand cette parité
est celle de d , on a λd,2k−1 = λd,2k . La première condition résulte de (10) et (7). Si
λd,2k−1 ≡ d mod 2Z, la condition (10) impose pd(2k−1)= 0. Alors les conditions
de (11)(a) sont vérifiées pour j = 2k− 1, d’où λd,2k−1 = λd,2k . Cela prouve (14).

Grâce à (14), on définit comme en 3.1 les ensembles d’intervalles Ĩnt(λ1), Ĩnt(λ2),
les ensembles J+ et J− et la fonction ξ . Montrons que

(15) on a {J (1); 1 ∈ Ĩnt(λd)} = Ĩntd pour d = 1, 2 ; on a J+ = J+, J− = J−

et ξ = r.

Soit d = 1, 2. La réunion des J (1) quand 1 décrit Ĩnt(λd) est l’ensemble des
j ≥ 1 tels que λd, j soit de bonne parité. D’après (10), c’est l’ensemble des j ≥ 1
tels que pd( j) = 1. Cet ensemble d’indices est donc découpé de deux façons en
intervalles : les J (1) pour 1 ∈ Ĩnt(λd) et les I ∈ Ĩntd . Pour prouver que ces décou-
pages coïncident, il suffit de prouver que les ensembles d’éléments maximaux de
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ces intervalles coïncident (en admettant ici que l’élément maximal d’un intervalle
infini est∞). C’est-à-dire qu’il suffit de prouver l’égalité

{ jmax(1); 1 ∈ Ĩnt(λd)} = { jmax(I); I ∈ Ĩntd}.

L’infini intervient dans les deux ensembles pour d = 1 et n’intervient dans aucun
d’eux pour d = 2 (d’après (2) pour l’ensemble de droite). On élimine ces termes.
Pour j ≥ 1, j n’intervient dans ces ensembles que si j est pair (d’après (3) pour
celui de droite) et λd, j ≡ d + 1 mod 2Z autrement dit pd( j) = 1. Supposons ces
conditions vérifiées. Alors j intervient dans l’ensemble de gauche si et seulement
si λd, j > λd, j+1. Si j intervient dans l’ensemble de droite, la condition (11)(b) est
vérifiée et l’inégalité précédente l’est aussi. Si j n’intervient pas dans l’ensemble
de droite, la condition (11)(a) est vérifiée et l’inégalité précédente ne l’est pas. Cela
démontre l’égalité de ces ensembles, d’où la première assertion de (15).

Par définition, J+ est l’ensemble des j ≥ 1 pour lesquels λ1, j et λ2, j sont de
bonne parité et il existe 1 ∈ Ĩnt(λ1)∪ Ĩnt(λ2) tel que j = jmin(1). En utilisant ce
que l’on vient de démontrer, il suffit d’appliquer (5) pour conclure J+ = J+. On
prouve de même que J− = J−. Alors ξ = r par définition de ces fonctions. Cela
prouve (15).

On a Ind(λ1, λ2)= λ1+λ2+ ξ par définition, d’où Ind(λ1, λ2)= λ d’après (15)
et (9). Montrons que

(16) λ1 et λ2 induisent régulièrement λ.

Il s’agit de prouver que tout intervalle relatif est réduit à un seul élément. Soit D
un intervalle relatif. Si J (D) est réduit à un seul élément, D aussi. Supposons que
J (D) a au moins deux éléments. Par définition, il existe un unique d = 1, 2 pour
lequel il existe 1d ∈ Int(λd) de sorte que J (D)⊂ J (1d). Pour fixer la notation, on
suppose d = 1. Cela entraîne : pour j, j+1 ∈ J (D), il n’existe pas de 12 ∈ Int(λ2)

tel que { j, j +1} ⊂ J (12). En effet, les extrémités jmin(D) et jmax(D) sont par dé-
finition des éléments consécutifs de l’ensemble J de 3.1. Un 12 comme ci-dessus
vérifierait donc jmin(12)≤ jmin(D) et jmax(D)≤ jmax(12), donc J (D)⊂ J (12),
ce qui est exclu. On traduit d’après (15) : il existe I1 ∈ Ĩnt1 tel que J (D) ⊂ I1

et, pour j, j + 1 ∈ J (D), j et j + 1 ne sont pas 2-liés. Soient j, j + 1 ∈ J (D).
Les indices j, j + 1 n’étant pas 2-liés, ils ne vérifient pas les conditions (1b), (1c)
et (1d) (cette dernière étant de toute façon exclue puisque λ j et λ j+1 sont pairs
par définition des intervalles relatifs). Puisque j et j + 1 sont 1-liés, ils vérifient
forcément la condition (1a) pour d = 1. Donc λ j = λ j+1. Cela étant vrai pour tout
couple { j, j + 1} ⊂ J (D), λ j est constant pour j ∈ J (D). Autrement dit, D est
réduit à un seul élément.

Montrons que
χλ1,λ2 = χ. (17)
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On a χλ1,λ2(0)= 0 par définition et χ(0)= 0 par hypothèse. Soit i ∈ Jordbp(λ).
Si multλ(i)= 1, χλ1;λ2(i)= 0 par définition et χ(i)= 0 par hypothèse. Supposons
multλ(i)≥ 2. Comme dans la preuve de (16), il existe un unique d = 1, 2 de sorte
qu’il existe1d ∈ Ĩnt(λd) tel que J (i)⊂ J (1d). On a χλ1,λ2(i)= d+1 par définition.
Toujours comme dans la preuve de (16), pour j, j + 1 ∈ J (i), la condition (1a) est
vérifiée pour ce d . Alors χ(i)= d + 1. D’où (17).

Montrons que

ζ(λ1)+ ζ(λ2)= ζ(λ)+ ξ. (18)

On a défini en 3.1 les ensembles P+λ1,λ2
(λ) et P−λ1,λ2

(λ) et la suite ζλ1,λ2(λ).
Puisque λ1 et λ2 induisent régulièrement λ, on a les égalités P+λ1,λ2

(λ) = P+(λ),
P−λ1,λ2

(λ)= P−(λ). Donc ζλ1,λ2(λ)= ζ(λ). Alors le lemme 3.1 implique (18).
L’égalité (18) entraîne

λ1+ ζ(λ1)+ λ2+ ζ(λ2)= λ1+ λ2+ ξ + ζ(λ)= λ+ ζ(λ).

Le lemme 2.7 et l’assertion 2.7(4) transforment cette égalité en

td(λ1)+
td(λ2)=

td(λ),

d’où d(λ1)∪ d(λ2)= d(λ). �

3.3. Les fonctions τ ζ , δζ . Soient n1, n2 ∈ N tels que n1+ n2 = n et soient λ1 ∈

Psymp,sp(2n1) et λ2 ∈ Porth,sp(2n2). Soit λ l’induite endoscopique de λ1 et λ2. On
considère de plus des éléments ι1 = (τ1, δ1) ∈ Fam(λ1) et ι2 = (τ2, δ2) ∈ Fam(λ2).
On pose r1 = r(τ1, δ1), r2 = r(τ2, δ2).

Pour d= 1, 2 et1∈ Ĩnt(λd), on note1+ le plus petit1′ ∈ Int(λd) tel que1′>1,
pour peu qu’il existe un tel 1′ (sinon, 1+ n’existe pas). Pour D ∈ Ĩntλ1,λ2(λ), on
définit D+ de façon similaire.

Pour D ∈ Intλ1,λ2(λ) et pour d = 1, 2, considérons l’ensemble des 1 ∈ Ĩnt(λd)

tels que jmax(D) ≤ jmax(1) (ici, on pose par convention jmax(11,min) = ∞ où
11,min est le plus petit élément de Ĩnt(λ1)). Si cet ensemble est non vide (ce qui
est le cas si d = 1 par la convention que l’on vient de poser), on note 1d(D) son
plus grand élément. On pose 11(Dmin)=11,min tandis que 12(Dmin) n’existe pas.
Si 12(D) n’existe pas et si Int(λ2) n’est pas vide, on note 12(D)+ le plus petit
élément de Int(λ2) (si Int(λ2) est vide, 12(D) et 12(D)+ n’existent pas).

Pour ζ = ±, on définit une fonction δζ ∈ (Z/2Z)Intλ1,λ2 (λ) par les formules ci-
dessous. Soit D ∈ Intλ1,λ2(λ). On pose 1d =1d(D) pour d = 1, 2. Ce terme existe
toujours dans chaque cas ci-dessous. Par contre, 1+d n’existe pas toujours. Dans ce
cas, on considère que δd(1

+

d )= 0. On écrit les formules comme des égalités, en



74 JEAN-LOUP WALDSPURGER

fait, il s’agit de congruences modulo 2Z. On pose

si jmax(D) ∈ J+,
δ+(D)= τ1(11)+ τ2(12)+ r1+ r2+ 1, δ−(D)= δ+(D)+ 1;

si jmax(D) ∈ J−, δ+(D)= δ−(D)= δ1(11)+ δ2(12);

si jmax(D) 6∈ J+ ∪ J− et J (D)⊂ J (11),

δ+(D)= δ−(D)= δ1(11)+ δ2(1
+

2 );

si jmax(D) 6∈ J+ ∪ J− et J (D)⊂ J (12),

δ+(D)= δ−(D)= δ1(1
+

1 )+ δ2(12).

Avec les mêmes notations, on définit une fonction τ ζ ∈ (Z/2Z)Ĩntλ1,λ2 (λ) par

si |J (D)| ≥ 2 et J (D)⊂ J (11), τ+(D)= τ−(D)= τ1(11)+ δ2(1
+

2 )+ r2;

si |J (D)| ≥ 2 et J (D)⊂ J (12),

τ+(D)= δ1(1
+

1 )+ τ2(12)+ r1, τ−(D)= τ+(D)+ 1;

si |J (D)| = 1 et jmin(D)= jmax(D) ∈ J+,
τ+(D)= τ−(D)= τ1(11)+ δ2(1

+

2 )+ r2;

si |J (D)| = 1 et jmin(D)= jmax(D) ∈ J−,
τ+(D)= τ−(D)= τ1(11)+ δ2(12)+ r2.

Tous ces cas sont exclusifs l’un de l’autre. On a évidemment

δ−(D)= δ+(D)+ 1 si et seulement si jmax(D) ∈ J+;

τ−(D)= τ+(D)+ 1 si et seulement si |J (D)| ≥ 2 et J (D)⊂ J (12).
(1)

On a aussi

τ+(Dmin)= τ
−(Dmin)= 0. (2)

En effet, J (Dmin) est infini. Il ne peut qu’être contenu dans J (11,min). Donc
τ+(Dmin) = τ

−(Dmin) = τ1(11(Dmin))+ δ2(12(Dmin)
+)+ r2. On a 11(Dmin) =

11,min et12(Dmin) n’existe pas. On a τ1(11,min)= 0. D’après 2.4(2) et nos conven-
tions, δ2(12(Dmin)

+)= r2. D’où (2).
Pour ζ =±, posons

Cζ
=

∑
D∈Intλ1,λ2 (λ)

(1− (−1)τ
ζ (D))((−1)δ

ζ (D)
− (−1)δ

ζ (D+)).

Ici encore, on considère que δζ (D+)= 1 si D+ n’existe pas. On a

Cζ
=

{
2(r1+ ζr2) si r1+ r2 est pair,
−2(r1+ ζr2+ 1) si r1+ r2 est impair.

(3)
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Cela résulte de [Waldspurger 2001, XI.24], à ceci près que les hypothèses de cette
référence étaient plus restrictives que les nôtres. On renvoie pour ce problème aux
explications que l’on donnera après la proposition du paragraphe suivant.

3.4. Le résultat de [Waldspurger 2001]. Les données sont les mêmes que dans le
paragraphe précédent. Pour d = 1, 2, le couple ιd = (τd , δd) provient d’un symbole
3d dans la famille de λd . On note (rd , ρd) l’élément de 6n1,imp si d = 1, 6n2,pair

si d = 2, tel que symb(rd , ρd) = 3d . On pose N1 = n1 − r2
1 − r1, N2 = n2 − r2

2 .
On fixe un élément ζ ∈ {±1}, que l’on considérera souvent comme un simple
signe ±. Si ζ = 1, on pose h+ = r1 + |r2|, h− = sup(r1 − |r2|, |r2| − r1 − 1). Si
ζ =−1, on pose h+ = sup(r1− |r2|, |r2| − r1− 1), h− = r1+ |r2|. On vérifie que
h+(h+ + 1)/2+ h−(h− + 1)/2 = r2

1 + r1 + r2
2 . On fixe des entiers n+, n− ∈ N

tels que n+ + n− = n, n+ ≥ h+(h+ + 1)/2, n− ≥ h−(h− + 1)/2 et on pose
N+ = n+−h+(h++1)/2, N− = n−−h−(h−+1)/2. On a N++ N− = N1+ N2.
On définit un quadruplet d’entiers a= (a+1 , a−1 , a+2 , a−2 ) par les formules suivantes :

a = (0, 0, 0, 1) si ζ = 1 et r1 ≥ |r2|;

a = (0, 0, 1, 0) si ζ =−1 et r1 ≥ |r2|;

a = (0, 1, 0, 0) si ζ = 1 et r1 < |r2|;

a = (1, 0, 0, 0) si ζ =−1 et r1 < |r2|.

Avec les mêmes notations qu’en 1.2, on définit une représentation 5ζ (ι1, ι2) de
WN+ ×WN− par la formule

5ζ (ι1, ι2)=
⊕
N∈N

indWN+×WN−

WN

(
sgna

CD⊗ res
WN1×WN2
WN

(ρ1⊗ ρ2)
)
.

On note Iζ (ι1, ι2) l’ensemble des quadruplets

(λ+, ε+, λ−, ε−) ∈Psymp(2n+)×Psymp(2n−)

vérifiant les conditions suivantes :

(1) kλ+,ε+ = h+, kλ−,ε− = h− ;

(2) la représentation ρλ+,ε+ ⊗ ρλ−,ε− de WN+ ×WN− intervient dans 5ζ (ι1, ι2)

avec une multiplicité strictement positive.

Pour poser la définition suivante, on a besoin d’introduire deux notations. Pour
D ∈ Intλ1,λ2(λ), notons imin(D) le plus petit élément de D. On a imin(D)≥ 1 puisque
D 6= Dmin. Pour toute partition µ, on pose multµ(≥ D)=

∑
i∈N,i≥imin(D) multµ(i).

D’autre part, on pose ν = 1 si r2 ≥ 0, ν =−1 si r2 < 0.
On note Iζ,max(ι1, ι2) l’ensemble des quadruplets

(λ+, ε+, λ−, ε−) ∈Psymp(2n+)×Psymp(2n−)



76 JEAN-LOUP WALDSPURGER

vérifiant les conditions suivantes :

(3) λ+ ∪ λ− = λ ;

(4) pour tout D ∈ Intλ1,λ2(λ), on a

multλ+(≥ D)≡ δζν(D) mod 2Z, et multλ−(≥ D)≡ δ−ζν(D) mod 2Z;

(5) pour tout D ∈ Ĩntλ1,λ2(λ) et tout i ∈ D tel que i 6= 0 et multλ+(i) > 0, resp.
multλ−(i) > 0, on a

ε+i = (−1)τ
ζν(D), resp. ε−i = (−1)τ

−ζν(D).

Dans ces formules, on a évidemment identifié les signes ± des définitions de
τ+, τ−, etc. à des éléments de {±1}. On a montré en [Waldspurger 2001, XI.29,
remarque 4] que, sous l’hypothèse (3), les deux congruences de (4) étaient équiva-
lentes.

Proposition. (i) Soit (λ+, ε+, λ−, ε−) ∈ Iζ (ι1, ι2). Alors λ+ ∪ λ− ≤ λ.

(ii) L’ensemble Iζ,max(ι1, ι2) est égal au sous-ensemble des (λ+, ε+, λ−, ε−) ∈
Iζ (ι1, ι2) tels que λ+ ∪ λ− = λ. Pour (λ+, ε+, λ−, ε−) ∈ Iζ,max(ι1, ι2), la
représentation ρλ+,ε+ ⊗ ρλ−,ε− intervient avec multiplicité 1 dans 5ζ (ι1, ι2).

Cela résulte de [Waldspurger 2001, propositions XI.28 et XI.29], ainsi qu’on l’a
expliqué dans la preuve de la proposition XII.7 de cette référence (voir aussi [Wald-
spurger 2018b, propositions 1.12 et 1.13]). A ceci près qu’alors, les hypothèses sur
ι2 étaient restrictives : on supposait que r2 était pair et positif ou nul ; dans le cas
r2 = 0, on supposait que le symbole (X, Y ) correspondant à ι2 vérifiait X ≥ Y pour
l’ordre lexicographique. En fait, cette dernière hypothèse était utilisée dans d’autres
passages de [Waldspurger 2001] mais pas dans les démonstrations des propositions
utilisées. Pour traiter le cas où r2 est impair et positif, il n’y a pas d’autre méthode
que de reprendre la démonstration. C’est ce que l’on a fait mais elle est trop longue
pour la récrire. Le cas où r2 < 0 se déduit du cas r2 > 0 de la façon suivante. On
suppose donc r2 < 0. On a dit que ι2 correspondait à un symbole 32 = (X2, Y2),
puis à un couple (r2, ρ2). Inversement, on voit que (−r2, ρ2) correspond au sym-
bole 3′2 = (Y2, X2), puis à un élément ι′2 ∈ Fam(λ2). Quand on remplace ι2 par ι′2
dans les constructions ci-dessus, la représentation 5ζ (ι1, ι2) ne change pas. Donc
la proposition ci-dessus étant vérifiée pour ι′2, elle le restera pourvu que l’on ait les
égalités Iζ (ι1, ι2)= Iζ (ι1, ι′2) et Iζ,max(ι1, ι2)= Iζ,max(ι1, ι

′

2). La première égalité
est claire d’après (1) et (2). La deuxième ne l’est pas car les fonctions τ± et δ±

dépendent de ι2. Mais, puisqu’on passe de 32 à 3′2 en permutant X2 et Y2, on
voit sur les formules de 2.2 que changer ι2 en ι′2 ne change pas δ2 et remplace τ2

par τ2+ 1. On voit ensuite sur les formules de 3.3 que cela échange les couples
(τ+, δ+) et (τ−, δ−). Mais alors, parce qu’il figure dans les conditions (4) et (5)
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un signe terme ν, qui vaut 1 pour ι′2 et −1 pour ι2, on voit que ces conditions ne
changent pas quand on remplace ι2 par ι′2. C’est ce qu’on voulait.

3.5. Réciproque de la construction des fonctions τ ζ et δζ . Soient n1, n2 ∈N tels
que n1+n2= n et soient λ1 ∈Psymp,sp(2n1) et λ2 ∈Porth,sp(2n2). Notons λ l’induite
endoscopique de λ1 et λ2. Pour ι1 = (τ1, δ1) ∈Fam(λ1) et ι2 = (τ2, δ2) ∈Fam(λ2),
on a construit en 3.3 des fonctions τ ζ et δζ pour ζ = ±. Dans ce paragraphe, il
convient de les noter plus précisément τ ζι1,ι2 et δζι1,ι2 . On note aussi Cζ

ι1,ι2 la somme
définie en 3.3.

Soient r1 ∈ N, r2 ∈ Z et, pour ζ = ±, soient τ ζ ∈ (Z/2Z)Ĩntλ1,λ2 (λ) et δζ ∈
(Z/2Z)Intλ1,λ2 (λ). On pose

Cζ
=

∑
D∈Intλ1,λ2 (λ)

(1− (−1)τ
ζ (D))

(
(−1)δ

ζ (D)
− (−1)δ

ζ (D+)).
On suppose que ces données vérifient les conditions

δ−(D)= δ+(D)+ 1 si et seulement si jmax(D) ∈ J+;

τ−(δ)= τ+(D)+ 1 si et seulement si |J (D)| ≥ 2 et J (D)⊂ J (12(D)) ;
(1)

τ+(Dmin)= τ
−(Dmin)= 0; (2)

Cζ
=

{
2(r1+ ζr2) si r1+ r2 est pair,
−2(r1+ ζr2+ 1) si r1+ r2 est impair.

(3)

Lemme. Sous ces hypothèses, il existe d’uniques

ι1 = (τ1, δ1) ∈ Fam(λ1) et ι2 = (τ2, δ2) ∈ Fam(λ2)

tels que, pour ζ = ±, on ait les égalités τ ζ = τ ζι1,ι2 et δζ = δζι1,ι2 . De plus, on a
r1 = r(τ1, δ1) et r2 = r(τ2, δ2).

Preuve. S’il existe (τ1, δ1) et (τ2, δ2) vérifiant la première assertion de l’énoncé,
les fonctions τ ζ et δζ sont données par les formules du paragraphe 3.3, où l’on
remplace r1 et r2 par r ′1 = r(τ1, δ1) et r ′2 = r(τ2, δ2). Remarquons que ces formules
ne dépendent que des images de r ′1 et r ′2 dans Z/2Z. On note symboliquement
(Xr ′1,r

′

2
) ces formules.

Commençons par prouver que, pour deux éléments donnés r ′1, r
′

2 ∈ Z/2Z, il
existe d’uniques

(τ1, δ1) ∈ (Z/2Z)Ĩnt(λ1)× (Z/2Z)Int(λ1), (τ2, δ2) ∈ (Z/2Z)Int(λ2)× (Z/2Z)Int(λ2)

telles que les formules (Xr ′1,r
′

2
) soient vérifiées. Remarquons que l’on peut considé-

rer uniquement les formules exprimant τ+ et δ+ : celles concernant τ− et δ− s’en
déduisent d’après l’hypothèse (1).



78 JEAN-LOUP WALDSPURGER

Pour D ∈ Ĩntλ1,λ2(λ) et pour d = 1, 2, notons Td(≥ D) l’ensemble des 1d ∈

Ĩnt(λd) tels que jmin(1d)≤ jmax(D) (en convenant que jmax(Dmin)=∞) et notons
Dd(≥ D) l’ensemble des 1d ∈ Int(λd) tels que jmax(1d)≤ jmax(D). Remarquons
que Td(≥ Dmin)= Ĩnt(λd) et Dd(≥ Dmin)= Int(λd). Pour deux intervalles relatifs
D > D′, il est clair que Td(≥ D) est inclus dans Td(≥ D′) et que Dd(≥ D) est
inclus dans Dd(≥ D′). On pose

Td(D)= Td(≥ D)−Td(≥ D+), Dd(D)=Dd(≥ D)−Dd(≥ D+),

avec la convention Td(≥ D+)=Dd(≥ D+)=∅ si D+ n’existe pas, c’est-à-dire
si D est l’intervalle relatif maximal. Cette définition entraîne :

(4) pour deux intervalles relatifs D 6= D′, on a

Td(D)∩Td(D′)=∅ et Dd(D)∩Dd(D′)=∅.

Montrons que

(5) Td(D) est l’ensemble des 1d ∈ Ĩnt(λd) tels que
jmin(1d) ∈ { jmin(D), jmax(D)} ;

Dd(D) est l’ensemble des 1d ∈ Int(λd) tels que
jmax(1d) ∈ { jmin(D), jmax(D)} ;

ces ensembles ont au plus un élément.

Soit 1d ∈ Ĩnt(λd), supposons jmin(1d) ∈ { jmin(D), jmax(D)}. Alors jmin(1d)≤

jmax(D) et 1d appartient à Td(≥ D). Si D est l’intervalle relatif maximal, cela
entraîne 1d ∈ Td(D). Sinon, on a jmax(D+) < jmin(D) ≤ jmin(1d) donc 1d

n’appartient pas à Td(≥ D+). D’où 1d ∈ Td(D). Réciproquement, supposons
1d ∈Td(D). L’entier jmin(1d) appartient à l’ensemble J de 3.1. D’après 3.1(3), il
existe D′ ∈ Ĩntλ1,λ2(λ) tel que jmin(1d)∈ { jmin(D′), jmax(D′)}. D’après ce que l’on
vient de prouver, on a 1d ∈ Td(D′). Alors (4) entraîne D′ = D, donc jmin(1d) ∈

{ jmin(D), jmax(D)}. Cela prouve la première assertion de (4). Supposons encore
que 1d ∈ Td(D) et considérons un intervalle 1′d ∈ Ĩnt(λd) distinct de 1d . Si
1′d >1d , on a jmax(1

′

d) < jmin(1d) ≤ jmax(D). Le nombre jmax(1
′

d) appartient
à J . Par définition des intervalles relatifs, jmin(D) et jmax(D) sont soit égaux,
soit des éléments consécutifs de J . Cela entraîne en tout cas jmax(1

′

d)≤ jmin(D).
Puisque jmin(1

′

d) < jmax(1
′

d), on a donc jmin(1
′

d) 6∈ { jmin(D), jmax(D)}, d’où
1′d 6∈ Td(D). Si maintenant 1′d < 1d , on a jmin(D) ≤ jmin(1d) < jmax(1d).
Comme ci-dessus, on en déduit jmax(D) ≤ jmax(1d), puis jmax(D) < jmin(1

′

d)

et on conclut 1′d 6∈ Td(≥ D). Donc Td(D) a au plus un élément. Les assertions
concernant Dd(D) se démontrent de la même façon. Cela prouve (5).

On va montrer que, pour tout intervalle relatif D les formules (Xr ′1,r
′

2
) exprimant

τ+(D) et δ+(D), d’une part ne font intervenir des τd(1d) que pour des 1d ∈

Td(≥ D) et des δd(1d) que pour des 1d ∈ Dd(≥ D), d’autre part que, quand



FRONTS D’ONDE DE CERTAINES REPRÉSENTATIONS TEMPÉRÉES 79

Td(D), resp. Dd(D), est non vide, elles font intervenir τd(1d), resp. δd(1d), pour
l’unique élément 1d de cet ensemble. On étudie les différents cas possibles, pour
D ∈ Intλ1,λ2(λ). On suppose d’abord D 6= Dmin. On pose simplement 1d =1d(D).

(a) Supposons que |J (D)| = 1 et que jmin(D)= jmax(D) ∈ J+. Dans ce cas, on a
jmax(D)= jmin(11)= jmin(12). D’après (5), on a T1(D)= {11}, T2(D)= {12}.
Si 1′1 ∈ D1(D), on a jmax(D) = jmin(D) ∈ J (1′1), donc J (1′1) ∩ J (11) 6= ∅,
donc 1′1 = 11. Or jmax(11) > jmin(11) = jmax(D), donc 11 6∈ D1(D). Donc
D1(D)=∅ et, de même, D2(D)=∅. Par ailleurs, si 1+2 existe, on a jmax(1

+

2 ) <

jmin(12)= jmax(D), donc 1+2 ∈D2(≥ D). Enfin, les formules dans notre cas sont

δ+(D)= τ1(11)+ τ2(12)+ r ′1+ r ′2+ 1, τ+(D)= τ1(11)+ δ2(1
+

2 )+ r ′2.

On voit que les propriétés requises sont vérifiées.

(b) Supposons que |J (D)| = 1 et que jmin(D)= jmax(D)∈ J−. Ce cas est similaire
au précédent. On a cette fois jmax(D) = jmax(11) = jmax(12). On a Td(D) = ∅
pour d = 1, 2, D1(D)= {11}, D2(D)= {12} et 11 ∈ T1(≥ D). Les formules sont

δ+(D)= δ1(11)+ δ2(12), τ+(D)= τ1(11)+ δ2(12)+ r ′2.

Les propriétés requises sont vérifiées.

(c) Supposons que |J (D)| ≥ 2, que J (D) ⊂ J (11) et que jmin(D) et jmax(D)
soient impairs. Puisque ces termes appartiennent à l’ensemble J , l’imparité im-
pose qu’ils sont de la forme jmin(D) = jmin(1

′

d ′) et jmax(D) = jmin(1
′′

d ′′) pour
des entiers d ′, d ′′ = 1, 2 et des intervalles 1′d ′ ∈ Ĩnt(λd ′) et 1′′d ′′ ∈ Ĩnt(λd ′′). Si
d ′ = 2, puisque jmin(D) et jmax(D) sont des éléments consécutifs de J , on a
jmax(D) ≤ jmax(1

′

2), d’où J (D) ⊂ J (1′2), ce qui est interdit par définition des
intervalles et par l’hypothèse J (D)⊂ J (11). Donc d ′ = 1 et forcément 1′1 =11,
c’est-à-dire jmin(D)= jmin(11). Si d ′′= 1, on a J (1′′1)∩ J (11) 6=∅ donc1′1=11.
Mais jmin(11) ≤ jmin(D) par hypothèse, donc jmin(11) ne peut pas être égal
à jmax(D). Donc d ′′ = 2 et forcément 1′2 =12. C’est-à-dire jmax(D)= jmin(12).
Alors T1(D)= {11}, T2(D)= {12}. Pour d = 1, 2 et 1′d ∈ Int(λd), on a

jmax(1
′

d) 6= jmin(D), jmax(1
′

d) 6= jmax(D)

par comparaison des parités. D’après (5), cela entraîne1′d 6∈Dd(D). Donc D1(D)=
D2(D)=∅. Si 1+2 existe, on a

jmax(1
+

2 ) < jmin(12)= jmax(D), d’où 1+2 ∈D2(≥ D).

Enfin, l’égalité jmax(D) = jmin(12) et la relation jmax(D) ∈ J (11) entraînent
jmax(D) ∈ J+. Alors

δ+(D)= τ1(11)+ τ2(12)+ r ′1+ r ′2+ 1, τ+(D)= τ1(11)+ δ2(1
+

2 )+ r ′2.
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Les propriétés requises sont vérifiées.

(d) Supposons que |J (D)| ≥ 2, que J (D)⊂ J (11), que jmin(D) soit pair et que
jmax(D) soit impair. Comme en (c), on a jmax(D) = jmin(12). On a jmin(D) =
jmax(1

′

d) pour un d = 1, 2 et un 1′d ∈ Int(λd). Si d = 1, on a J (1′1)∩ J (11) 6=∅
donc 1′1 = 11. Mais c’est impossible puisque jmax(11) ≥ jmax(D) > jmin(D).
Donc d = 2 et forcément 1′2 = 1

+

2 (ce raisonnement montre que 1+2 existe).
D’où jmin(D) = jmax(1

+

2 ). On voit que T2(D) = {12} et D2(D) = {1+2 }. Pour
1′1∈ Ĩnt(λ1), on ne peut avoir jmin(1

′

1)∈ J (D) ou jmax(1
′

1)∈ J (D) que si1′1=11.
On sait que jmin(11) ≤ jmin(D) et jmax(D) ≤ jmax(11). Par comparaison des
parités, ces inégalités sont strictes. Donc jmin(11) et jmax(11) n’appartiennent
pas à J (D) et, grâce à (5), on conclut T1(D) = D1(D) = ∅. Enfin, l’inégalité
jmin(11) ≤ jmax(D) montre que 11 ∈ T1(≥ D). On a les mêmes formules que
dans le cas (c) :

δ+(D)= τ1(11)+ τ2(12)+ r ′1+ r ′2+ 1, τ+(D)= τ1(11)+ δ2(1
+

2 )+ r ′2.

Les propriétés requises sont vérifiées.

(e) Supposons que |J (D)| ≥ 2, que J (D) ⊂ J (11), que jmin(D) soit impair et
que jmax(D) soit pair. Comme en (c), on a jmin(D) = jmin(11). Un raisonne-
ment similaire à ceux ci-dessus montre que jmax(D)= jmax(11). Donc T1(D)=
D1(D) = {11}. Si 12, resp. 1+2 , existe, on a forcément jmax(D) ≤ jmin(12)

et jmax(1
+

2 ) ≤ jmin(D). Ces inégalités sont strictes par comparaison des parités.
Cela entraîne qu’il n’existe pas de 1′2 ∈ Int(λ2) tel que jmin(1

′

2) ou jmax(1
′

2)

appartiennent à J (D). Donc T2(D)=D2(D)=∅. Par contre, si 1+2 existe, on a
1+2 ∈D2(≥ D). Puisque jmax(D) est pair, on a jmax(D) 6∈ J+. On a alors

δ+(D)= δ1(11)+ δ2(1
+

2 ), τ+(D)= τ1(11)+ δ2(1
+

2 )+ r ′2.

Les propriétés requises sont vérifiées.

(f) Supposons que |J (D)| ≥ 2, que J (D)⊂ J (11) et que jmin(D) et jmax(D) soient
pairs. En utilisant des résultats extraits de (d) et (e), on a jmin(D)= jmax(1

+

2 ) et
jmax(D) = jmax(11). De plus, jmin(11) < jmin(D) et jmax(D) < jmin(12) si 12

existe. Donc T1(D)=T2(D)=∅, D1(D)= {11} et D2(D)= {1+2 }. On a encore
jmax(D) 6∈ J+. Puisque jmin(11)≤ jmax(D), on a 11 ∈ T1(≥ D). On a les mêmes
relations que dans le cas (e) :

δ+(D)= δ1(11)+ δ2(1
+

2 ), τ+(D)= τ1(11)+ δ2(1
+

2 )+ r ′2.

On a des cas (g), (h), (i), (j) qui sont les symétriques de (c), (d), (e), (f) : on
remplace la condition J (D) ⊂ J (11) par J (D) ⊂ J (12). Les formules que l’on
obtient sont les exactes symétriques de celles obtenues dans les cas traités.
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Comme on l’a dit, les formules ci-dessus supposaient D 6= Dmin. Supposons
maintenant D = Dmin. On a D1 = D1,min, J (Dmin)⊂ J (11,min) et D2 n’existe pas.

(k) Supposons que jmin(Dmin) soit impair. On a alors jmin(Dmin) = jmin(11,min)

comme en (c). On en déduit T1(Dmin) = {11,min} mais D1(Dmin) = ∅ (par défi-
nition, l’ensemble D1(Dmin) est un sous-ensemble de Int(λ1), lequel ne contient
pas 11,min). Si Int(λ2) 6=∅, on a jmax(1

+

2 ) > jmin(D), donc

T2(Dmin)=D2(Dmin)=∅.

Par contre, 1+2 appartient à D2(≥ Dmin). L’unique formule est

τ+(Dmin)= τ1(11,min)+ δ2(1
+

2 )+ r ′2

et les propriétés requises sont vérifiées.

(l) Supposons que jmin(Dmin) soit pair. Alors jmin(Dmin)= jmax(1
+

2 ) comme en (d).
On voit que T1(Dmin) = D1(Dmin) = T2(Dmin) = ∅ et D2(Dmin) = {1

+

2 }. On a
aussi 11,min ∈ T1(≥ Dmin). La formule est la même que ci-dessus :

τ+(Dmin)= τ1(11,min)+ δ2(1
+

2 )+ r ′2

et les propriétés requises sont vérifiées.

On peut alors prouver par récurrence descendante l’assertion suivante : pour
D ∈ Ĩntλ1,λ2(λ), il existe pour d = 1, 2 d’uniques fonctions τd , resp. δd , définies sur
Td(≥ D), resp. Dd(≥ D), de sorte que les formules (Xr ′1,r

′

2
) soient vérifiées pour

tout D′ ≥ D. En effet, soit D ∈ Intλ1,λ2(λ), supposons que l’assertion ci-dessus
soit vérifiée pour D+ (la condition est vide si D est maximal). Les fonctions τd et
δd sont donc uniquement définies sur Td(≥ D+), resp. Dd(≥ D+). Il faut montrer
que l’on peut définir d’une seule façon des termes τd(1d) pour 1d ∈ Td(D) et
δd(1d) pour 1d ∈ Dd(D) de sorte que les formules soient aussi vérifiées pour
l’intervalle D. Par exemple, traitons le cas (a). Le terme δ2(1

+

2 ) est déjà défini. On
doit définir τ1(11) et τ2(12) de sorte que

δ+(D)= τ1(11)+ τ2(12)+ r ′1+ r ′2+ 1, τ+(D)= τ1(11)+ δ2(1
+

2 )+ r ′2.

Il est clair que ces équations ont une solution et que celle-ci est unique. Les autres
cas (b) à (l) sont similaires. L’assertion est donc démontrée par récurrence. Pour
D = Dmin, on obtient l’assertion voulue : pour deux éléments donnés r ′1, r

′

2 ∈ Z/2Z,
il existe d’uniques

(τ1, δ1) ∈ (Z/2Z)Ĩnt(λ1)× (Z/2Z)Int(λ1), (τ2, δ2) ∈ (Z/2Z)Int(λ2)× (Z/2Z)Int(λ2)

tels que soient vérifiées les formules (Xr ′1,r
′

2
).

Ces paires (τ1, δ1) et (τ2, δ2) ne vérifient pas forcément les conditions impo-
sées au début de la démonstration. Si (τ2, δ2) est bien un élément de Fam(λ2),
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(τ1, δ1) n’est pas forcément un élément de Fam(λ1) : c’en est un si et seulement
si τ1(11,min)= 0. D’autre part, en admettant que cette condition soit vérifiée, nos
paires vérifient les conditions requises si et seulement si r ′1 ≡ r(τ1, δ1) mod 2Z et
r ′2 ≡ r(τ2, δ2) mod 2Z. Pour démontrer la première assertion du lemme, il suffit de
prouver que ces conditions sont vérifiées pour un seul couple (r ′1, r

′

2).
Continuons avec un couple quelconque (r ′1, r

′

2) et les paires (τ1, δ1) et (τ2, δ2)

que l’on a construites ci-dessus. Posons a= τ1(11,min). Définissons τ 1 par τ 1(1)=

τ1(1)+a. Alors (τ 1, δ1) appartient bien à Fam(λ1). On pose r1 = r(τ 1, δ1), r2 =

r(τ2, δ2). Les conditions à vérifier sont

a = 0, r1 ≡ r ′1 mod 2Z, r2 ≡ r ′2 mod 2Z. (6)

Remarquons que la première condition est redondante avec la troisième. En effet,
comme on l’a vu dans la preuve de 3.1(2), on a par construction

τ+(Dmin)= τ1(11,min)+ δ2(12(Dmin)
+)+ r ′2.

On sait que δ2(12(Dmin)
+)= r2, cf. 2.4(2). On a aussi τ+(Dmin)= 0 par l’hypo-

thèse (2), d’où a+ r ′2+ r2 ≡ 0 mod 2Z.
Construisons les fonctions associées à ι1 = (τ 1, δ1) et ι2 = (τ2, δ2), que l’on note

τ ζ = τ
ζ
ι1,ι2 et δζ = δζι1,ι2 . Cela revient, dans la construction des fonctions τ ζ et δζ par

les formules (Xr ′1,r
′

2
), à changer τ1 en τ 1, r ′1 en r1 et r ′2 en r2. On remarque que les

termes τ1(11) et r ′2 n’interviennent que par leur somme τ1(11)+r ′2. Or, comme on
vient de le voir, τ 1(11)+r2 = τ1(11)+a+r2 = τ1(11)+r ′2. Changer τ1 en τ 1 et
r ′2 en r2 ne change donc pas les fonctions τ ζ et δζ . On remarque que r ′1 intervient
exactement dans les expressions δζ (D) ou τ ζ (D) telles que δ−ζ (D)= δζ (D)+ 1
ou τ−ζ (D)= τ ζ (D)+ 1. Changer r ′1 en r1 change donc les fonctions τ ζ et δζ en
multipliant éventuellement ζ par −1, en identifiant le signe ζ à un élément de {±1}.
Précisément, posons u = (−1)r

′

1+r1 . On obtient les égalités

τ ζ = τ uζ , δζ = δuζ .

En posant Cζ
= Cζ

ι1,ι2 , ces égalités entraînent Cζ
= Cuζ . D’après 3.3(3), on a les

égalités

Cζ
=

{
2(r1+ ζr2) si r1+ r2 est pair,
−2(r1+ ζr2+ 1) si r1+ r2 est impair.

Par l’hypothèse (3), on a aussi

Cuζ
=

{
2(r1+ uζr2) si r1+ r2 est pair,
−2(r1+ uζr2+ 1), si r1+ r2 est impair.
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L’égalité de ces deux expressions est équivalente aux égalités suivantes :

Si r1+ r2 est pair et
r1+ r2 est pair, r1+ ζr2 = r1+ uζr2 pour ζ =±1;
r1+ r2 est impair, r1+ ζr2 =−(r1+ uζr2+ 1) pour ζ =±1.

Si r1+ r2 est impair et
r1+ r2 est pair, −(r1+ ζr2+ 1)= r1+ uζr2 pour ζ =±1;
r1+ r2 est impair, −(r1+ ζr2+ 1)=−(r1+ uζr2+ 1) pour ζ =±1.

En sommant en ζ = ±1, le deuxième cas entraîne r1 = −(r1 + 1). C’est im-
possible puisque r1 et r1 sont positifs ou nuls. Ce cas ne se produit donc pas. Le
troisième cas non plus, pour la même raison. Cela montre que r1+ r2 et r1+ r2

sont de la même parité. Dans ce cas, les égalités ci-dessus entraînent r1 = r1 et
r2 = ur2. Alors les conditions (6) sont vérifiées si et seulement si r ′1 ≡ r1 mod 2Z

et r ′2 ≡ r2 mod 2Z. Cela démontre la première assertion du lemme. Pour ce couple
(r ′1, r

′

2) ainsi déterminé, on vient de voir que r1 = r1. On a aussi u = (−1)r
′

1+r1 = 1,
donc r2 = ur2 = r2. Cela démontre la seconde assertion de l’énoncé. �

4. Le front d’onde de π(λ+, ε+, λ−, ε−)

4.1. Le résultat de [Waldspurger 2017]. Soit m ∈ N et (λ, ε) ∈Psymp(2m). On a
introduit en 1.3 la représentation ρλ,ε de WNλ,ε . On sait qu’elle se décompose en

ρλ,ε =
⊕
(λ′,ε′)

mult(λ, ε; λ′, ε′)ρλ′,ε′,

où (λ′, ε′) parcourt les éléments de Psymp(2m) tels que les mult(λ, ε; λ′, ε′) sont
des entiers positifs ou nuls et kλ′,ε′ = kλ,ε . Le couple (λ, ε) est minimal dans cette
décomposition, c’est-à-dire que l’on a

si mult(λ, ε; λ′, ε′) 6= 0, alors λ′ > λ ou (λ′, ε′)= (λ, ε).

De plus mult(λ, ε; λ, ε)= 1.
Pour tout couple (µ, ν) ∈Psymp(2m), notons (sµ, sν) le couple tel que ksµ,sν =

kµ,ν et ρsµ,sν = ρµ,ν ⊗ sgn.

Proposition. Supposons que tous les termes de λ soient pairs. Alors il existe un
unique couple (λmin, εmin) ∈Psymp(2m) vérifiant les propriétés suivantes :

(1) mult(λ, ε; sλmin, sεmin)= 1 ;

(2) pour tout élément (λ′, ε′) ∈ Psymp(2m) tel que mult(λ, ε; sλ′, sε′) 6= 0, on a
λmin < λ′ ou (λ′, ε′)= (λmin, εmin).

Cf. [Waldspurger 2017, théorème 4.7].
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4.2. Calcul de Mπ (µ1, η1;µ2, η2). On fixe désormais un quadruplet

(λ+, ε+, λ−, ε−) ∈ Irr
bp
quad(2n).

Rappelons que l’exposant bp signifie que tous les termes de λ+ et λ− sont pairs.
On pose

π = π(λ+, ε+, λ−, ε−)

et on note ] l’indice iso ou an tel que π ∈ Irrtunip,].
Soient n1, n2 ∈ N tels que n1+ n2 = n. Soient (µ1, η1) ∈ Porth(2n1+ 1)k=1 et

(µ2, η2) ∈Porth(2n2)k=0. On a défini le nombre Mπ (µ1, η1;µ2, η2) en 1.4. On se
propose de le calculer.

Le couple (0, ρµ1,η1) appartient à 6n1,imp et son symbole à Fam(sp(µ1, η1)) pour
une partition spéciale sp(µ1, η1) ∈ Porth,sp(2n1 + 1). Posons λ1 = d(sp(µ1, η1)).
On a λ1 ∈ Psymp,sp(2n1). Il résulte de 2.6 que le symbole 31 de (0, ρµ1,η1 ⊗ sgn)
appartient à Fam(λ1).

Pour ξ =±, le couple (0, ρξµ2,η2) appartient à 6n2,pair et son symbole appartient
à Fam(sp(µ2, η2)) pour une partition spéciale sp(µ2, η2) ∈ Porth,sp(2n2). Celle-ci
ne dépend pas du signe ξ : changer de signe revient à échanger les deux termes X
et Y du symbole. Posons λ2 = d(sp(µ2, η2)). On a λ2 ∈ Porth,sp(2n2). Le symbole
3
ξ

2 de (0, ρξµ2,η2 ⊗ sgn) appartient à Fam(λ2).
Signalons que l’on a les inégalités

µ1 ≤ sp(µ1, η1), µ2 ≤ sp(µ2, η2), (1)

cf. [Waldspurger 2018b, lemmes 1.4 et 1.5].
Posons γ0 = (0, 0, n1, n2). Par définition de la multiplicité

mπ

(
ρµ1,η1 ⊗ sgn, ρξµ2,η2

⊗ sgn
)

et d’après 1.5(4), cette multiplicité est celle de (ρµ1,η1⊗ sgn)⊗ (ρξµ2,η2⊗ sgn) dans
la composante dans R(γ0) de

κπ = F(5),
où on a posé

5= ρι
(
(ρλ+,ε+ ⊗ sgn)⊗ (ρλ+,ε+ ⊗ sgn)

)
.

En 1.3, on a associé à (λ+, ε+, λ−, ε−) un élément γ = (r ′, r ′′, N+, N−) ∈ 0 et
identifié (ρλ+,ε+ ⊗ sgn)⊗ (ρλ+,ε+ ⊗ sgn) à un élément de R(γ ). On pose r1 = r ′,
r2 = (−1)r

′

r ′′. Par construction de ρι, l’élément 5 n’a de composante non nulle
que dans les composantes R(γ ′) pour γ ′ de la forme (r1, r2, N1, N2). Par définition
de F , pour un tel γ ′ et pour ϕ ∈ R(γ ′), l’élément F(ϕ) n’a de composante non
nulle dans R(γ0) que si N1+ r2

1 + r1 = n1 et N2+ r2
2 = n2. Cela entraîne

si n1 < r2
1 + r1 ou n2 < r2

2 , on a Mπ (µ1, η1;µ2, η2)= 0. (2)
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Supposons

n1 ≥ r2
1 + r1 et n2 ≥ r2

2 . (3)

Posons N1= n1−r2
1−r1, N2= n2−r2

2 et γ = (r1, r2, N1, N2). On peut se limiter
à considérer la composante 5γ de 5 dans R(γ ). Plus précisément, pour d = 1, 2,
notons Famrd (λd) l’ensemble les ιd = (τd , δd) ∈ Fam(λd) tels que r(τd , δd)= rd .
Pour de tels éléments, notons (rd , ριd ) l’élément de 6n1,imp si d = 1 et 6n2,pair

si d = 2 associé à ιd . Posons 3ιd = symb(rd , ριd ). Notons m(5γ , ρι1 ⊗ ρι2) la
multiplicité de ρι1 ⊗ ρι2 dans 5γ . Alors, par définition de F , on a l’égalité

mπ

(
ρµ1,η1 ⊗ sgn, ρξµ2,δ2

⊗ sgn
)

= |Fam(λ1)|
−

1
2 |Fam(λ2)|

−
1
2

∑
ι1∈Famr1 (λ1)

ι2∈Famr2 (λ2)

(−1)〈31,3ι1 〉+〈3
ξ

2,3ι2 〉m(5γ , ρι1⊗ρι2). (4)

Pour ζ =±, on pose nζ = S(λζ )/2, kζ = kλζ ,εζ . Notons Psymp(2nζ )kζ l’ensemble
des (λ′, ε′) ∈Psymp(2nζ ) tels que kλ′,ε′ = kζ . On peut écrire

(ρλ+,ε+ ⊗ sgn)⊗ (ρλ−,ε− ⊗ sgn)

=

∑
(λ′
+
,ε′
+
)∈Psymp(2n+)k+

(λ′
−
,ε′
−
)∈Psymp(2n−)k−

x(λ′+, ε′+, λ′−, ε′−)ρλ′+,ε′+ ⊗ ρλ′−,ε′−,

où les x(λ′+, ε′+, λ′−, ε′−) sont des multiplicités. Précisément, avec les notations
de 4.1, on a

x(λ′+, ε′+, λ′−, ε′−)=mult(λ+, ε+; sλ′
+
, sε′
+
)mult(λ−, ε−; sλ′

−
, sε′
−
). (5)

Pour

(λ′
+
, ε′
+
) ∈Psymp(2n+)k+ et (λ′

−
, ε′
−
) ∈Psymp(2n−)k−,

notons 5γ (λ
′+, ε′

+
, λ′
−
, ε′
−
) la composante dans R(γ ) de

ρι(ρλ′+,ε′+ ⊗ ρλ′−,ε′−).

Pour ι1 ∈Famr1(λ1) et ι2 ∈Famr2(λ2), notons m(5γ (λ
′+, ε′

+
, λ′
−
, ε′
−
), ρι1⊗ρι2)

la multiplicité de ρι1 ⊗ ρι2 dans 5γ (λ
′+, ε′

+
, λ′
−
, ε′
−
). On a

m(5γ , ρι1 ⊗ ρι2)

=

∑
(λ′
+
,ε′
+
)∈Psymp(2n+)k+

(λ′
−
,ε′
−
)∈Psymp(2n−)k−

x(λ′+, ε′+, λ′−, ε′−)m
(
5γ (λ

′+, ε′
+
, λ′
−
, ε′
−
), ρι1 ⊗ ρι2

)
.
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En vertu de la définition posée en 1.4, on déduit de (4) la formule finale

Mπ (µ1, η1;µ2, η2)

= |Fam(λ1)|
−

1
2 |Fam(λ2)|

−
1
2

×

∑
ι1∈Famr1 (λ1)

ι2∈Famr2 (λ2)

(−1)〈31,3ι1 〉
(
(−1)〈3

+

2 ,3ι2 〉+ sgn](−1)〈3
−

2 ,3ι2 〉
)

×

∑
(λ′
+
,ε′
+
)∈Psymp(2n+)k+

(λ′
−
,ε′
−
)∈Psymp(2n−)k−

x(λ′+, ε′+, λ′−, ε′−)m
(
5γ (λ

′+, ε′
+
, λ′
−
, ε′
−
), ρι1 ⊗ ρι2

)
. (6)

4.3. Comparaison entre deux constructions. On conserve les notations du para-
graphe précédent et on impose l’hypothèse (3) de ce paragraphe. Considérons des
éléments ι1 ∈Famr1(λ1), ι2 ∈Famr2(λ2), (λ′

+
, ε′
+
)∈Psymp(2n+)k+ , (λ′−, ε′−)∈

Psymp(2n−)k− . On a défini la multiplicité

m
(
5γ (λ

′+, ε′
+
, λ′
−
, ε′
−
), ρι1 ⊗ ρι2

)
.

Un élément ζ ∈ {±1} étant fixé, on a associé en 3.4 à (r1, r2) un couple (h+, h−).
En se reportant à la définition de 1.2 et en se rappelant que (r1, r2)= (r ′, (−1)r

′

r ′′),
on vérifie cas par cas qu’il est égal à (k+, k−) pourvu que ζ = 1 si k+ > k−,
ζ = −1 si k+ < k−. Notons que k+ > k− équivaut à (−1)r1r2 > 0 et k+ < k−

équivaut à (−1)r1r2 < 0. Si k+ = k−, ce qui équivaut à r2 = 0, ζ est indifférent, le
couple (h+, h−) ne dépendant pas de ζ et étant égal à (k+, k−). On suppose que
ζ vérifie ces conditions. On peut donc appliquer la construction de 3.4 aux entiers
n+ et n−. On en déduit une représentation 5ζ (ι1, ι2) de WN+ ⊗ WN− . On note
m
(
5ζ (ι1, ι2), ρλ′+,ε′+⊗ρλ′−,ε′−

)
la multiplicité de ρλ′+,ε′+⊗ρλ′−,ε′− dans5ζ (ι1, ι2).

Un jeu habituel avec les restrictions et inductions montre que cette multiplicité est
égale à celle de ρ1⊗ ρ2 dans la représentation∑

N∈N

ind
WN1×WN2
WN

(
sgna

CD⊗ resWN+×WN−

WN
(ρλ′+,ε′+ ⊗ ρλ′−,ε′−)

)
,

où a est défini comme en 3.4. Un calcul cas par cas montre que ce a est le même
qu’en 1.2, pourvu que, dans le cas r2 = 0, on choisisse ζ = 1 si r1 est pair, ζ =−1
si r1 est impair. Le signe ζ étant ainsi déterminé en tout cas, la représentation
ci-dessus n’est autre que la composante dans R(γ ) de

ρι(ρλ′+,ε′+ ⊗ ρλ′−,ε′−).

On conclut

m
(
5γ (λ

′+, ε′
+
, λ′
−
, ε′
−
), ρ1⊗ ρ2

)
= m

(
5ζ (ι1, ι2), ρλ′+,ε′+ ⊗ ρλ′−,ε′−

)
. (1)
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Dans les formules 3.4(4) et 3.4(5) intervient le signe ζν, ou ν = 1 si r2 ≥ 0, ν =−1
si r2 < 0. Avec la définition de ζ ci-dessus, on a

ζν = (−1)r1 . (2)

4.4. Démonstration du (i) de la proposition 1.4. On considère les données de 4.2
et on suppose Mπ (µ1, η1;µ2, η2) 6= 0. La relation 4.2(2) entraîne que l’hypothèse
4.2(3) est vérifiée. D’après 4.2(6), on peut fixer des éléments ι1 ∈ Famr1(λ1), ι2 ∈
Famr2(λ2), (λ′

+
, ε′
+
) ∈ Psymp(2n+)k+ , (λ′−, ε′−) ∈ Psymp(2n−)k− vérifiant les

conditions

x(λ′+, ε′+, λ′−, ε′−) 6= 0; (1)

m
(
5γ (λ

′+, ε′
+
, λ′
−
, ε′
−
), ρι1 ⊗ ρι2

)
6= 0. (2)

En vertu de la définition 4.2(5) de x(λ′+, ε′+, λ′−, ε′−) et de la proposition 4.1,
la relation (1) entraîne

λ+,min
≤ λ′

+
, λ−,min

≤ λ′
−
. (3)

Notons λ l’induite endoscopique de λ1 et λ2. En vertu de 4.3(1) et de la propo-
sition 3.4(i), la relation (2) entraîne

λ′
+
∪ λ′

−
≤ λ. (4)

De ces deux inégalités, on déduit

λ+,min
∪ λ−,min

≤ λ.

Posons

µ= d(λ+,min
∪ λ−,min).

La dualité est une application décroissante. L’inégalité précédente entraîne d(λ)≤µ.
D’après [Waldspurger 2018b, proposition 1.9], on a aussi d(λ1)∪ d(λ2) ≤ d(λ),
d’où d(λ1)∪d(λ2)≤ µ. Par construction, d(λ1)= sp(µ1, η1), d(λ2)= sp(µ2, η2).
D’où sp(µ1, η1)∪ sp(µ2, η2)≤ µ. En appliquant 4.2(1), on obtient

µ1 ∪µ2 ≤ µ.

C’est l’assertion (i) de la proposition 1.4.

4.5. Démonstration du (ii) de la proposition 1.4. La seule donnée est ici le qua-
druplet (λ+, ε+, λ−, ε−) ∈ Irrbp

quad(2n). On pose λ = λ+,min
∪ λ−,min. Fixons une
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fonction χ : Jordbp(λ)∪ {0} → Z/2Z vérifiant les conditions suivantes :

χ(i)= 0 pour tout i ∈ Jordbp(λ) tel que multλ(i)= 1;

χ(i)= 0 pour tout i ∈ Jordbp(λ) tel que multλ+,min(i)≥ 1 et multλ−,min(i)≥ 1
(ce qui implique multλ(i)≥ 2);

χ(i)= 0 si ε+,min
i 6= ε

−,min
i ;

χ(i)= 1 si ε+,min
i = ε

−,min
i ;

χ(i)= 1 pour tout i ∈ Jordbp(λ) tel que multλ(i)≥ 2 et que
multλ+,min(i)= 0 ou multλ−,min(i)= 0.

On choisit n1, n2 et λ1, λ2 vérifiant les conditions de la proposition 3.2, pour ce
choix de la fonction χ . C’est-à-dire que λ1 ∈ Psymp,sp(2n1), λ2 ∈ Porth,sp(2n2), λ1

et λ2 induisent régulièrement λ, d(λ1)∪ d(λ2)= d(λ)= µ et χλ1,λ2 = χ . On pose
µ1 = d(λ1), µ2 = d(λ2). On a µ1 ∈ Porth,sp(2n1+ 1), µ2 ∈ Porth,sp(2n2), et

µ1 ∪µ2 = µ. (1)

On définit r1 et r2 comme en 4.2 : r1 = r ′, r2 = (−1)r
′

r ′′, où r ′ et r ′′ sont définis
en 1.3. Pour une partition ν et pour i ∈N−{0}, posons multν(≥ i)=

∑
i ′≥i multν(i ′).

Posons η= (−1)r
′

. Pour ζ =±, on définit une fonction δζ : Jordbp(λ)→ Z/2Z par

δζ (i)≡multλζη,min(≥ i) mod 2Z.

On définit une fonction τ ζ : Jordbp(λ)∪ {0} → Z/2Z par

si i 6= 0 et multλζη,min(i) > 0, ε
ζη,min
i = (−1)τ

ζ (i)
;

si i 6= 0 et multλζη,min(i)= 0 (auquel cas multλ−ζη,min(i) > 0),
ε
−ζη,min
i = (−1)τ

ζ (i)
;

τ ζ (0)= 0.

On peut considérer que ces fonctions sont définies sur Intλ1,λ2(λ), resp. Ĩntλ1,λ2(λ),
puisque λ1 et λ2 induisent régulièrement λ. Montrons que

ces fonctions vérifient les conditions de 3.5. (2)

Preuve. Soit i ∈ Jordbp(λ). D’après la définition ci-dessus, δ−(i)= δ+(i)+ 1 si et
seulement si multλ(≥ i) est impair. Remarquons que l’on a l’égalité

multλ(≥ i)= jmax(i).

Si jmax(i) ∈ J+, jmax(i) est impair. Inversement, supposons jmax(i) impair. Si
multλ(i) = 1, jmax(i) appartient à l’ensemble J + ∪J − de 3.1 par définition des
intervalles relatifs. L’imparité impose jmax(i) ∈ J +. Or J + ⊂ J+ par définition,
donc jmax(i)∈ J+. Supposons multλ(i)≥ 2. Par définition des intervalles relatifs, il
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existe d = 1, 2 et 1d ∈ Ĩnt(λd) de sorte que J (i)= { jmin(i), . . . , jmax(i)} ⊂ J (1d).
Pour fixer la notation, supposons que d = 1, donc J (i)⊂ J (11). Par définition des
intervalles relatifs, jmax(i) appartient à l’ensemble J de 3.1. L’imparité impose
alors qu’il existe d = 1, 2 et 1′d ∈ Ĩnt(λd) de sorte que jmax(i) = jmin(1

′

d). Si
d = 1, on a jmax(i) ∈ J (11)∩ J (1′1) donc 1′1 = 11. Mais jmin(11) ≤ jmin(i) <
jmax(i), ce qui est contradictoire. Donc d = 2. Alors jmax(i)= jmin(1

′

2). Puisque
jmax(i) ∈ J (11), λ1, j est pair. Alors, par définition de J+, on a jmax(i) ∈ J+. Cela
prouve que les fonctions δζ vérifient la première condition de la relation 3.5(1).

Soit i ∈ Jordbp(λ). D’après la définition ci-dessus, τ−(i) = τ+(i) + 1 si et
seulement si multλ+,min(i) > 0, multλ−,min(i) > 0 et ε+,min

i 6= ε
−,min
i . D’après la

définition de χ , ces conditions sont équivalentes à multλ(i) ≥ 2 et χ(i) = 0. La
première condition équivaut à |J (i)| ≥ 2. Sous cette condition, puisque χ = χλ1,λ2 ,
la seconde condition équivaut à J (i)⊂ J (12(i)) avec la notation de 3.5(1). Cela
achève de prouver cette condition 3.5(1).

La condition 3.5(2) est claire.
Notons i1 > · · ·> it les entiers pairs i ≥ 2 tels que multλ+,min(i) soit impair. Pour

i ∈ Jordbp(λ), on a (−1)δ
η(i)
− (−1)δ

η(i+)
6= 0 si et seulement si δη(i) 6= δη(i+). Par

définition de δη, cela équivaut à ce que multλ+,min(i) soit impair, autrement dit à ce
que i = ih pour un h = 1, . . . , t . Pour un tel ih , on a

(−1)δ
η(ih)− (−1)δ

η(i+h ) = 2(−1)δ
η(ih) = 2(−1)mult

λ+,min (≥i)
= 2(−1)h .

On a aussi

1− (−1)τ
η(ih) = 1− ε+,min

ih
=

{
0 si ε+,min

ih
= 1,

2 si ε+,min
ih

=−1.

On en déduit

Cη
= 4

∣∣{h = 1, . . . , t; h pair et ε+,min
ih

=−1}
∣∣

−4
∣∣{h = 1, . . . , t; h impair et ε+,min

ih
=−1}

∣∣.
En utilisant 1.3(1), on obtient

Cη
=

{
2k+ si k+ est pair,
−2(k++ 1) si k+ est impair.

(3)

On a une formule analogue pour C−η, où k+ est remplacé par k−. En reprenant les
définitions de r ′ et r ′′ donnée en 1.3, un calcul cas par cas montre que (3) équivaut à

Cη
=

{
2(r ′+ r ′′) si r ′+ r ′′ est pair,
−2(r ′+ r ′′+ 1), si r ′+ r ′′ est impair.
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De même, l’égalité analogue de (3) pour C−η équivaut à

C−η =
{

2(r ′− r ′′) si r ′+ r ′′ est pair,
−2(r ′− r ′′+ 1) si r ′+ r ′′ est impair.

Par définition, r ′ = r1 et r ′′ = ηr2. Alors les formules ci-dessus sont la condition
3.5(3). Cela prouve (2). �

On peut appliquer le lemme 3.5. On note ι1 et ι2 les termes dont ce lemme
affirme l’existence. Avec les notations de 4.2, ils appartiennent à Famr1(λ1), resp.
Famr2(λ2). En conséquence, ces ensembles sont non vides. A fortiori, on a

r2
1 + r1 ≤ n1, r2

2 ≤ n2. (4)

Appliquons maintenant le calcul de 4.2 aux couples (µ1, 1) ∈Porth(2n1+ 1)k=1 et
(µ2, 1) ∈Porth(2n2)k=0 (les partitions µ1 et µ2 ont été définies ci-dessus avant (1)).
On a évidemment sp(µ1, 1)=µ1 et sp(µ2, 1)=µ2. La condition 4.2(3) est vérifiée :
c’est (4) ci-dessus. Dans la formule 4.2(6), on peut limiter les sommations aux qua-
druplets (λ′+, ε′+, λ′−, ε′−) et aux couples (ι1, ι2) tels que x(λ′+, ε′+, λ′−, ε′−) 6=0 et

m
(
5γ (λ

′+, ε′
+
, λ′
−
, ε′
−
), ρι1 ⊗ ρι2

)
6= 0.

Comme en 4.4, on déduit de ces conditions les relations 4.4(3) et 4.4(4) :

λ+,min
≤ λ′

+
, λ−,min

≤ λ′
−
, λ′

+
∪ λ′

−
≤ λ.

Mais ici λ = λ+,min
∪ λ−,min par définition. Les inégalités ci-dessus sont donc

des égalités. D’après 4.1 et 4.2(5), les conditions λ+,min
= λ′

+, λ−,min
= λ′

− et
x(λ′+, ε′+, λ′−, ε′−) 6= 0 impliquent

(λ′
+
, ε′
+
)= (λ+,min, ε+,min) et (λ′

−
, ε′
−
)= (λ−,min, ε−,min).

Dans la somme 4.2(6), il ne reste que le quadruplet (λ+,min, ε+,min, λ−,min, ε−,min)

et on sait d’après 4.1 que, pour celui-là, on a x(λ+,min, ε+,min, λ−,min, ε−,min)= 1.
Il ne reste aussi que les couples (ι1, ι2) tels que

m
(
5γ (λ

+,min, ε+,min, λ−,min, ε−,min), ρι1 ⊗ ρι2
)
6= 0.

Ou encore, d’après 4.3(1), tels que m
(
5ζ (ι1, ι2), ρλ+,min,ε+,min ⊗ ρλ−,min,ε−,min

)
6= 0,

le signe ζ étant déterminé comme en 4.3. Cette condition équivaut à ce que

(λ+,min, ε+,min, λ−,min, ε−,min) ∈ Iζ (ι1, ι2) (l’ensemble défini en 3.4).

Puisque λ+,min
∪ λ−,min

= λ, la proposition 3.4(ii) nous dit qu’elle équivaut aussi
à ce que (λ+,min, ε+,min, λ−,min, ε−,min) appartienne à Iζ,max(ι1, ι2). En outre, on
a dans ce cas

m
(
5γ (λ

+,min, ε+,min, λ−,min, ε−,min), ρι1 ⊗ ρι2
)
= 1.
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La condition (λ+,min, ε+,min, λ−,min, ε−,min) ∈ Iζ,max(ι1, ι2) équivaut à ce que les
formules 3.4(4) et 3.4(5) soient vérifiées, avec les modifications suivantes : les
couples (λ+, ε+) et (λ−, ε−) de ce paragraphe sont remplacés par (λ+,min, ε+,min)

et (λ−,min, ε−,min) ; les fonctions δ+, δ−, τ+ et τ− sont remplacées par δ+ι1,ι2 , etc.
La condition 3.4(4) détermine entièrement les fonctions δ+ι1,ι2 et δ−ι1,ι2 . En se rap-
pelant que le signe ζν qui intervient vaut précisément η (cf. 4.3(2)), on voit que
ces fonctions coïncident avec les fonctions δ+ et δ− construites ci-dessus. Les
fonctions τ+ι1,ι2 et τ−ι1,ι2 ne sont pas à première vue entièrement déterminées par
la relation 3.4(5). Toutefois, pour tout i ∈ Jordbp(λ), l’une au moins des valeurs
τ+ι1,ι2(i) ou τ−ι1,ι2(i) est déterminée et coïncide avec la valeur de τ+(i) ou τ−(i).
Puisque les couples (τ+, τ−) et (τ+ι1,ι2, τ

−
ι1,ι2
) vérifient tous deux la condition 3.5(1),

cela suffit à conclure que ces deux couples sont égaux. Alors le lemme 3.5 nous
dit que (ι1, ι2) est égal au couple (ι1, ι2) introduit ci-dessus. Inversement, pour ce
dernier couple, les conditions 3.4(4) et 3.4(5) sont bien vérifiées. Autrement dit,
dans la somme 4.2(6), il ne reste plus que le couple (ι1, ι2) et on a

m
(
5γ (λ

+,min, ε+,min, λ−,min, ε−,min), ρι1 ⊗ ρι2
)
= 1.

Cette formule 4.2(6), devient

Mπ (µ1, 1;µ2, 1)

= |Fam(λ1)|
−

1
2 |Fam(λ2)|

−
1
2 (−1)〈31,3ι1 〉

(
(−1)〈3

+

2 ,3ι2 〉+ sgn](−1)〈3
−

2 ,3ι2 〉
)
. (5)

Rappelons que 3+2 et 3−2 sont les symboles des couples (0, ρ+µ2,1 ⊗ sgn) et
(0, ρ−µ2,1⊗ sgn). Ils se déduisent l’un de l’autre par permutation des deux termes
X et Y de chaque symbole. D’après 2.5(1), on a donc

(−1)〈3
−

2 ,3ι2 〉 = (−1)r2(−1)〈3
+

2 ,3ι2 〉. (6)

Considérons la formule 1.5(1). Notons i1 > · · ·> it les entiers pairs i ≥ 2 tels que
multλ+(i) soit impair. Le premier produit de la formule vaut (−1)X+ , où

X+ =
∣∣{h = 1, . . . , t; ε+ih

=−1}
∣∣.

On a

X+≡
∣∣{h= 1, . . . , t; h pair et ε+ih

=−1}
∣∣−∣∣{h= 1, . . . , t; h impair et ε+ih

=−1}
∣∣

mod 2Z.

D’après 1.3(1), le membre de droite vaut k+/2 si k+ est pair, −(k++1)/2 si k+ est
impair. D’après le même calcul cas par cas qui a calculé Cη ci-dessus, c’est aussi
(r ′+ r ′′)/2 si r ′+ r ′′ est pair, −(r ′+ r ′′+ 1)/2 si r ′+ r ′′ est impair. On obtient

(−1)X+
=

{
(−1)(r

′
+r ′′)/2 si r ′+ r ′′ est pair,

(−1)(r
′
+r ′′+1)/2 si r ′+ r ′′ est impair.
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Le deuxième facteur de 1.5(1) se calcule de même, r ′′ étant remplacé par −r ′′. Le
produit de ces termes vaut (−1)r

′′

, ou encore (−1)r2 . La formule 1.5(1) nous dit
donc que

sgn] = (−1)r2 . (7)

Grâce à (6) et (7), (5) se simplifie en

Mπ (µ1, 1;µ2, 1)= 2|Fam(λ1)|
−

1
2 |Fam(λ2)|

−
1
2 (−1)〈31,3ι1 〉+〈3

+

2 ,3ι2 〉.

Donc Mπ (µ1, 1;µ2, 1) 6= 0. Alors, en vertu de (1), les couples (µ1, 1) et (µ2, 1)
vérifient le (ii) de la proposition 1.4, à ceci près que l’on doit de plus prouver que
n2 ≥ 1 si ] = an. Mais, si ] = an, (7) implique que r2 est impair et (4) implique
alors que n2 ≥ 1.

4.6. Conclusion. On a prouvé que µ vérifiait les conditions de la proposition 1.4.
Celle-ci implique que µ est le front d’onde de π(λ+, ε+, λ−, ε−). Cela démontre
le deuxième théorème de l’introduction. Comme on l’a dit dans celle-ci, le premier
théorème s’en déduit grâce à [Waldspurger 2018b, 3.4].

5. Sur le calcul effectif du front d’onde

5.1. Le couple (λmax, εmax). Soit (λ, ε) ∈ Psymp(2n), supposons que tous les
termes de λ sont pairs. On lui associe un couple (λmax, εmax) ∈ Psymp(2n) par
récurrence sur n, selon la construction qui suit et qui est extraite de [Waldspurger
2017, 5.1]. On représente λ sous la forme d’une suite infinie λ= (λ1, λ2, . . . ). On
associe à ε une fonction encore notée ε sur l’ensemble d’indices N>0 =N−{0} par
ε( j)= ελ j , avec la convention ε0 = 1. On note S la réunion de {1} et de l’ensemble
des j ≥ 2 tels que ε( j)(−1) j

6= ε( j − 1)(−1) j−1. On note s1 = 1 < s2 < · · · les
éléments de S. Pour ζ ∈ {±1}, notons J ζ = { j ∈ N>0; (−1) j+1ε( j) = ζ } et
J̃ ζ = J ζ − (J ζ ∩S). On pose

λmax
1 =

(∑
s∈S

λs

)
− 2| J̃−ε(1)|.

On pose n′ = n − λmax
1 /2. On note λ′ la réunion des λ j pour j ∈ J̃ ε(1) et des

λ j + 2 pour j ∈ J̃−ε(1). Pour i ∈ Jordbp(λ′), on a i = λ j ou i = λ j + 2 pour un j
comme ci-dessus. On note h[ j] le plus grand entier h ≥ 1 tel que sh < j et on pose
ε′i = (−1)h[ j]+1ε( j) ( j n’est pas uniquement déterminé par i mais on montre que
cette définition ne dépend pas du choix de j ). On montre que n′ < n (si n 6= 0), que
le couple (λ′, ε′) appartient à Psymp(2n′) et que tous les termes de λ′ sont pairs. Par
récurrence, on dispose d’un couple (λ′max

, ε′
max
). On pose λmax

= {λmax
1 } ∪ λ

′max.
On définit εmax par εmax

λmax
1
= ελ1 et εmax

i = ε′
max
i pour i ∈ Jordbp(λ′

max
) (c’est possible,

c’est-à-dire que, si λmax
1 appartient à Jordbp(λ′

max
), on a l’égalité ελ1 = ε

′max
λmax

1
). Cela
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définit le couple (λmax, εmax). Les termes de λmax sont pairs et λmax
1 est bien le plus

grand terme de λmax.

5.2. La partition tλmin. On conserve les mêmes hypothèses. On pose k = kλ,ε .
On a kλmax,εmax = k. On a rappelé en 1.3(1) comment se calculait l’entier k. On
écrit λmax

= (λmax
1 , . . . , λmax

2R+1) avec λmax
2R+1 = 0. On note j+1 < · · · < j+N les

j = 1, . . . , 2R+ 1 tels que εmax( j)(−1) j+1
= (−1)k (en considérant comme dans

le paragraphe précédent que εmax se définit sur l’ensemble d’indices). On note
j−1 < · · · < j−N les j = 1, . . . , 2R+ 1 tels que εmax( j)(−1) j

= (−1)k . On vérifie
que N = R+[k/2]+1, M = R−[k/2]. Notons ν ′ la réunion disjointe des partitions
suivantes : {

2R+ 3u− k− 1+ λmax
j+u
− 2 j+u ; u = 1, . . . , N

}
;{

2R+ 3v+ k+ λmax
j−v
− 2 j−v ; v = 1, . . . ,M

}
;{

R+ [(k− 1)/2], R+ [(k− 1)/2] − 1, . . . , 0
}
;{

R− [(k+ 3)/2], R− [(k+ 3)/2] − 1, . . . , 0
}
.

On note ν ′=(ν ′1, . . . ,ν
′

4R+1). Pour j=1, . . . , 4R+1, on pose ν j=ν
′

j−2R+[ j/2].
Cela définit une partition ν et on a l’égalité tλmin

= ν (cette égalité se déduit de
[Waldspurger 2017, 4.6 et 4.7]).

5.3. Exemples. Soit (λ+, ε+, λ−, ε−) ∈ Irr
bp
quad(2n). Les formules des deux pa-

ragraphes précédents permettent de calculer les transposées des partitions λ+,min

et λ−,min. Le front d’onde de π(λ+, ε+, λ−, ε−) est d(λ+,min
∪ λ−,min). Cette par-

tition duale se calcule ainsi : on note ν la partition obtenue en ajoutant 1 au plus
grand terme de tλ

+,min
+

tλ
−,min ; alors d(λ+,min

∪λ−,min) est la plus grande partition
orthogonale µ de 2n+ 1 telle que µ≤ ν. Le moins que l’on puisse dire est que ce
calcul n’est pas simple.

Signalons le cas particulier rassurant où ε+ = 1, c’est-à-dire ε+i = 1 pour tout
i ∈ Jordbp(λ+), et ε− = 1. Dans ce cas, on voit que λ+,max

= (2n+), ε+,max
2n+ = 1,

λ−,max
= (2n−) et ε−,max

2n− = 1. On a k+ = k− = 0. On calcule tλ+,min
= (2n+),

tλ−,min
= (2n−), puis d(λ+,min

∪λ−,min)= (2n+ 1). Autrement dit, notre représen-
tation π(λ+, 1, λ−, 1) admet un modèle de Whittaker usuel, ce qui est bien connu.

Un autre cas particulier est celui où, pour ζ =±, n± est de la forme h±(h±+1),
λζ est égal à (2hζ , 2hζ−2, . . . , 2) et où εζ est alterné, c’est-à-dire εζ2i = (−1)i pour
i = 1, . . . , hζ . Dans ce cas, on vérifie que λζ,max

= λζ,min
= λζ . Le front d’onde

de π(λ+, ε+, λ−, ε−) est alors d(λ+ ∪ λ−). On retrouve le résultat de [Mœglin
1996; Waldspurger 2018b] car notre représentation est ici cuspidale donc égale à
son image par l’involution d’Aubert–Zelevinsky.

Donnons enfin comme exemple le calcul du front d’onde de π(λ+, ε+, λ−, ε−)
dans le cas où λ− est vide et où λ+ a au plus trois termes non nuls. On pose
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simplement λ=λ+, ε= ε+, µ=d(λmin). On identifie ε au triplet (ε(1), ε(2), ε(3))
que l’on note comme un triplet de signes ±. Évidemment, certains triplets ne sont
autorisés que sous certaines hypothèses sur λ : si ε( j) 6= ε( j + 1), on doit avoir
λ j > λ j+1 ; si ε( j)=−, on doit avoir λ j > 0. On note de même εmax comme une
famille de signes. Alors les résultats sont les suivants :

ε k λmax εmax tλ
min

(+,+,+) 0 (λ1+λ2+λ3) (+) (λ1+λ2+λ3)

(+,+,−) 1 (λ1+λ2−4, λ3+2, 2) (+,+,−) (λ1+λ2−2, λ3, 1, 1)
(+,−,+) 2 (λ1, λ2, λ3) (+,−,+) (λ1−2, λ2, λ3+1, 1)
(+,−,−) 0 (λ1+λ3−2, λ2, 2) (+,−,−) (λ1+λ3−2, λ2+2)
(−,+,+) 1 (λ1+λ3, λ2) (−,+) (λ1+λ3−1, λ2+1)
(−,+,−) 3 (λ1, λ2, λ3) (−,+,−) (λ1−3, λ2−1, λ3, 2, 1, 1)
(−,−,+) 0 (λ1+λ2−2, λ3+2) (−,−) (λ1+λ2−1, λ3+1)
(−,−,−) 1 (λ1+λ2+λ3) (−) (λ1+λ2+λ3−1, 1)

ε µ

(+,+,+) (λ1+λ2+λ3+1)
(+,+,−) (λ1+λ2−1, λ3−1, 1, 1, 1)
(+,−,+) (λ1−1, λ2−1, λ3+1, 1, 1)
(+,−,−) (λ1+λ3−1, λ2+1, 1)
(−,+,+) (λ1+λ3−1, λ2+1, 1)
(−,+,−) (λ1−3, λ2−1, λ3+1, 1, 1, 1, 1)
(−,−,+) (λ1+λ2−1, λ3+1, 1)
(−,−,−) (λ1+λ2+λ3−1, 1, 1)

Remerciement

Je remercie A.-M. Aubert de m’avoir indiqué une référence utile.

Bibliographie

[Carter 1985] R. W. Carter, Finite groups of Lie type : conjugacy classes and complex characters,
Wiley, New York, 1985. MR Zbl

[Digne et Michel 1994] F. Digne et J. Michel, “Groupes réductifs non connexes”, Ann. Sci. École
Norm. Sup. (4) 27:3 (1994), 345–406. MR Zbl

[Howlett et Lehrer 1982] R. B. Howlett et G. I. Lehrer, “Duality in the normalizer of a parabolic
subgroup of a finite Coxeter group”, Bull. London Math. Soc. 14:2 (1982), 133–136. MR Zbl

[Mœglin 1996] C. Mœglin, “Représentations quadratiques unipotentes des groupes classiques p-
adiques”, Duke Math. J. 84:2 (1996), 267–332. MR Zbl

[Mœglin et Waldspurger 2003] C. Mœglin et J.-L. Waldspurger, “Paquets stables de représentations
tempérées et de réduction unipotente pour SO(2n+ 1)”, Invent. Math. 152:3 (2003), 461–623. MR
Zbl

http://msp.org/idx/mr/794307
http://msp.org/idx/zbl/0567.20023
http://dx.doi.org/10.24033/asens.1696
http://msp.org/idx/mr/1272294
http://msp.org/idx/zbl/0846.20040
http://dx.doi.org/10.1112/blms/14.2.133
http://dx.doi.org/10.1112/blms/14.2.133
http://msp.org/idx/mr/647196
http://msp.org/idx/zbl/0482.20029
http://dx.doi.org/10.1215/S0012-7094-96-08410-0
http://dx.doi.org/10.1215/S0012-7094-96-08410-0
http://msp.org/idx/mr/1404331
http://msp.org/idx/zbl/0864.22008
http://dx.doi.org/10.1007/s00222-002-0274-3
http://dx.doi.org/10.1007/s00222-002-0274-3
http://msp.org/idx/mr/1988295
http://msp.org/idx/zbl/1037.22036


FRONTS D’ONDE DE CERTAINES REPRÉSENTATIONS TEMPÉRÉES 95

[Waldspurger 2001] J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes
classiques non ramifiés, Astérisque 269, Société Mathématique de France, Paris, 2001. MR Zbl

[Waldspurger 2004] J.-L. Waldspurger, “Représentations de réduction unipotente pour SO(2n+ 1) :
quelques conséquences d’un article de Lusztig”, pp. 803–910 dans Contributions to automorphic
forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR Zbl

[Waldspurger 2017] J.-L. Waldspurger, “Propriétés de maximalité concernant une représentation
définie par Lusztig”, preprint, 2017. arXiv

[Waldspurger 2018a] J.-L. Waldspurger, “Représentations de réduction unipotente pour SO(2n+ 1),
I : une involution”, J. Lie Theory 28:2 (2018), 381–426. MR Zbl

[Waldspurger 2018b] J.-L. Waldspurger, “Représentations de réduction unipotente pour SO(2n+ 1),
III: exemples de fronts d’onde”, Algebra Number Theory 12:5 (2018), 1107–1171. MR Zbl

Received 22 Jun 2018.

JEAN-LOUP WALDSPURGER:

jean-loup.waldspurger@imj-prg.fr
CNRS IMJ-PRG, Paris, France

msp

http://msp.org/idx/mr/1817880
http://msp.org/idx/zbl/0965.22012
http://msp.org/idx/mr/2058629
http://msp.org/idx/zbl/1064.22010
http://msp.org/idx/arx/1708.09178
http://msp.org/idx/mr/3733069
http://msp.org/idx/zbl/06872036
http://dx.doi.org/10.2140/ant.2018.12.1107
http://dx.doi.org/10.2140/ant.2018.12.1107
http://msp.org/idx/mr/3840872
http://msp.org/idx/zbl/06921171
mailto:jean-loup.waldspurger@imj-prg.fr
http://msp.org


Tunisian Journal of Mathematics
msp.org/tunis

EDITORS-IN-CHIEF
Ahmed Abbes CNRS & IHES, France

abbes@ihes.fr
Ali Baklouti Faculté des Sciences de Sfax, Tunisia

ali.baklouti@fss.usf.tn
EDITORIAL BOARD

Hajer Bahouri CNRS & LAMA, Université Paris-Est Créteil, France
hajer.bahouri@u-pec.fr

Arnaud Beauville Laboratoire J. A. Dieudonné, Université Côte d’Azur, France
beauville@unice.fr

Bassam Fayad CNRS & Institut de Mathématiques de Jussieu-Paris Rive Gauche, Paris, France
bassam.fayad@imj-prg.fr

Benoit Fresse Université Lille 1, France
benoit.fresse@math.univ-lille1.fr

Dennis Gaitsgory Harvard University, United States
gaitsgde@gmail.com

Emmanuel Hebey Université de Cergy-Pontoise, France
emmanuel.hebey@math.u-cergy.fr

Mohamed Ali Jendoubi Université de Carthage, Tunisia
ma.jendoubi@gmail.com

Sadok Kallel Université de Lille 1, France & American University of Sharjah, UAE
sadok.kallel@math.univ-lille1.fr

Minhyong Kim Oxford University, UK & Korea Institute for Advanced Study, Seoul, Korea
minhyong.kim@maths.ox.ac.uk

Toshiyuki Kobayashi The University of Tokyo & Kavlli IPMU, Japan
toshi@kurims.kyoto-u.ac.jp

Yanyan Li Rutgers University, United States
yyli@math.rutgers.edu

Nader Masmoudi Courant Institute, New York University, United States
masmoudi@cims.nyu.edu

Haynes R. Miller Massachusetts Institute of Technology, Unites States
hrm@math.mit.edu

Nordine Mir Texas A&M University at Qatar & Université de Rouen Normandie, France
nordine.mir@qatar.tamu.edu

Detlef Müller Christian-Albrechts-Universität zu Kiel, Germany
mueller@math.uni-kiel.de

Mohamed Sifi Université Tunis El Manar, Tunisia
mohamed.sifi@fst.utm.tn

Daniel Tataru University of California, Berkeley, United States
tataru@math.berkeley.edu

Sundaram Thangavelu Indian Institute of Science, Bangalore, India
veluma@math.iisc.ernet.in

Saïd Zarati Université Tunis El Manar, Tunisia
said.zarati@fst.utm.tn

PRODUCTION
Silvio Levy (Scientific Editor)

production@msp.org

The Tunisian Journal of Mathematics is an international publication organized by the Tunisian Mathematical
Society (http://www.tms.rnu.tn) and published in electronic and print formats by MSP in Berkeley.

See inside back cover or msp.org/tunis for submission instructions.

The subscription price for 2020 is US $320/year for the electronic version, and $380/year (+$20, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Tunisian Journal of Mathematics (ISSN 2576-7666 electronic, 2576-7658 printed) at Mathematical Sciences Pub-
lishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously
online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

TJM peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2020 Mathematical Sciences Publishers

http://msp.org/tunis/
abbes@ihes.fr
ali.baklouti@fss.usf.tn
hajer.bahouri@u-pec.fr
beauville@unice.fr
bassam.fayad@imj-prg.fr
benoit.fresse@math.univ-lille1.fr
gaitsgde@gmail.com
emmanuel.hebey@math.u-cergy.fr
ma.jendoubi@gmail.com
sadok.kallel@math.univ-lille1.fr
minhyong.kim@maths.ox.ac.uk
toshi@kurims.kyoto-u.ac.jp
yyli@math.rutgers.edu
masmoudi@cims.nyu.edu
hrm@math.mit.edu
nordine.mir@qatar.tamu.edu
mueller@math.uni-kiel.de
mohamed.sifi@fst.utm.tn
tataru@math.berkeley.edu
veluma@math.iisc.ernet.in
said.zarati@fst.utm.tn
production@msp.org
http://www.tms.rnu.tn
http://dx.doi.org/10.2140/tunis
http://msp.org/
http://msp.org/


Tunisian Journal of Mathematics
2020 vol. 2 no. 1

1Looijenga line bundles in complex analytic elliptic cohomology
CHARLES REZK

43Fronts d’onde des représentations tempérées et de réduction
unipotente pour SO(2n + 1)

JEAN-LOUP WALDSPURGER

97Spectral Mackey functors and equivariant algebraic K-theory, II
CLARK BARWICK, SAUL GLASMAN and JAY SHAH

147Twisted Calabi–Yau ring spectra, string topology, and gauge
symmetry

RALPH L. COHEN and INBAR KLANG

197Semiclassical approximation of the magnetic Schrödinger operator
on a strip: dynamics and spectrum

MOUEZ DIMASSI

217Duality relations among multiple series with three parameters
MASAHIRO IGARASHI

Tunisian
Journalof

M
athem

atics
2020

vol.2
no.1

http://dx.doi.org/10.2140/tunis.2020.2.1
http://dx.doi.org/10.2140/tunis.2020.2.43
http://dx.doi.org/10.2140/tunis.2020.2.43
http://dx.doi.org/10.2140/tunis.2020.2.97
http://dx.doi.org/10.2140/tunis.2020.2.147
http://dx.doi.org/10.2140/tunis.2020.2.147
http://dx.doi.org/10.2140/tunis.2020.2.197
http://dx.doi.org/10.2140/tunis.2020.2.197
http://dx.doi.org/10.2140/tunis.2020.2.217

	Introduction
	1. Rappel pas très bref des résultats de W4
	1.1. Partitions, notations
	1.2. L'espace R
	1.3. Correspondance de Springer généralisée
	1.4. Caractérisation du front d'onde
	1.5. Les représentations  (+,+,-,-)

	2. Symboles, partitions spéciales, dualité
	2.1. Symboles
	2.2. Partitions spéciales, cas symplectique
	2.3. Partitions spéciales, cas orthogonal impair
	2.4. Partitions spéciales, cas orthogonal pair
	2.5. L'involution de Lusztig
	2.6. Dualité
	2.7. Calcul de d()

	3. Induction endoscopique
	3.1. L'induite endoscopique de deux partitions spéciales
	3.2. Une proposition d'existence
	3.3. Les fonctions ,
	3.4. Le résultat de W1
	3.5. Réciproque de la construction des fonctions  et 

	4. Le front d'onde de (+,+,-,-)
	4.1. Le résultat de W5
	4.2. Calcul de M(1,1;2,2)
	4.3. Comparaison entre deux constructions
	4.4. Démonstration du (i) de la proposition 1.4
	4.5. Démonstration du (ii) de la proposition 1.4
	4.6. Conclusion

	5. Sur le calcul effectif du front d'onde
	5.1. Le couple (max,max)
	5.2. La partition tmin
	5.3. Exemples

	Remerciement
	Bibliographie
	
	

