Vol. 2, No. 1, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN (electronic): 2576-7666
ISSN (print): 2576-7658
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Semiclassical approximation of the magnetic Schrödinger operator on a strip: dynamics and spectrum

Mouez Dimassi

Vol. 2 (2020), No. 1, 197–215

In the semiclassical regime (i.e., ϵ 0), we study the effect of a slowly varying potential V (ϵt,ϵz) on the magnetic Schrödinger operator P = Dx2 + (Dz + μx)2 on a strip [a,a] × z. The potential V (t,z) is assumed to be smooth. We derive the semiclassical dynamics and we describe the asymptotic structure of the spectrum and the resonances of the operator P + V (ϵt,ϵz) for ϵ small enough. All our results depend on the eigenvalues corresponding to Dx2 + (μx + k)2 on L2([a,a]) with Dirichlet boundary condition.

PDF Access Denied

However, your active subscription may be available on Project Euclid at

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

semiclassical analysis, periodic Schrödinger operator, Bohr–Sommerfeld quantization, spectral shift function, asymptotic expansions, limiting absorption theorem
Mathematical Subject Classification 2010
Primary: 35P20, 47A55, 47N50, 81Q10, 81Q15
Received: 10 October 2018
Revised: 17 November 2018
Accepted: 2 December 2018
Published: 22 March 2019
Mouez Dimassi
Université Bordeaux I
33405 Talence